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PREFACE

Digital signal processing techniques have become the method of choice in signal process-
ing as digital computers have increased in speed, convenience, and availability. As
microprocessors have become less expensive and more powerful, the number of DSP ap-
plications which have become commonly available has exploded. Thus, some DSP
microprocessors can now be considered commodity products. Perhaps the most visible
high volume DSP applications are the so called “multimedia” applications in digital
audio, speech processing, digital video, and digital communications. In many cases, these
applications contain embedded digital signal processors where a host CPU works in a
loosely coupled way with one or more DSPs to control the signal flow or DSP algorithm
behavior at a real-time rate. Unfortunately, the development of signal processing algo-
rithms for these specialized embedded DSPs is still difficult and often requires special-
ized training in a particular assembly language for the target DSP.

The tools for developing new DSP algorithms are slowly improving as the need to
design new DSP applications more quickly becomes important. The C language is prov-
ing itself to be a valuable programming tool for real-time computationally intensive soft-
ware tasks. C has high-level language capabilities (such as structures, arrays, and func-
tions) as well as low-level assembly language capabilities (such as bit manipulation,
direct hardware input/output, and macros) which makes C an ideal w-
bedded DSP, Most of the manufacturers of digital signal processing devices (such as
Texas Instruments, AT&T, Motorola, and Analog Devices) provide C compilers, simula-
tors, and emulators for their parts. These C compilers offer standard C language with ex-
tensions for DSP to allow for very efficient code to be generated. For example, an inline
assembly language capability is usually provided in order to optimize the performance of
time critical parts of an application. Because the majority of the code is C, an application
can be transferred to another processor much more easily than an all assembly language
program.

This book is constructed in such a way that it will be most useful to the engineer
who is familiar with DSP and the C language, but who is not necessarily an expert in
both. All of the example programs in this book have been tested using standard C compil-

vii



viii Preface

ers in the UNIX and MS-DOS programming environments. In addition, the examples
have been compiled utilizing the real-time programing tools of specific real-time embed-
ded DSP microprocessors (Analog Devices’ ADSP-21020 and ADSP-21062; Texas
Instrument’s TMS320C30 and TMS320C40; and AT&T’s DSP32C) and then tested with
real-time hardware using real world signals. All of the example programs presented in the
text are provided in source code form on the IBM PC floppy disk included with the book.

The text is divided into several sections. Chapters 1 and 2 cover the basic principles
of digital signal processing and C programming. Readers familiar with these topics may
wish to skip one or both chapters. Chapter 3 introduces the basic real-time DSP program-
ming techniques and typical programming environments which are used with DSP micro-
processors. Chapter 4 covers the basic real-time filtering techniques which are the corner-
stone of ope-dimensional real-time digital signal processing. Finally, several real-time
DSP applications are presented in Chapter 5, including speech compression, music signal
processing, radar signal processing, and adaptive signal processing techniques.

The floppy disk included with this text contains C language source code for all of
the DSP programs discussed in this book. The floppy disk has a high density format and
was written by MS-DOS. The appendix and the READ.ME files on the floppy disk pro-
vide more information about how to compile and run the C programs. These programs
have been tested using Borland’s TURBO C (version 3 and greater) as well as Microsoft C
(versions 6 and greater) for the IBM PC. Real-time DSP platforms using the Analog
Devices ADSP-21020 and the ADSP-21062, the Texas Instruments TMS320C30, and the
AT&T DSP32C have been used extensively to test the real-time performance of the
algorithms.
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CHAPTER 1
_—

DIGITAL SIGNAL PROCESSING
FUNDAMENTALS

Digital signal processing begins with a digital signal which appears to the computer as a
sequence of digital values. Figure 1.1 shows an example of a digital signal processing op-
eration or simple DSP system. There is an input sequence x(n), the operator 0f } and an

_output sequence, y(n). A complete digital signal processing system may consist of many

operations on the same sequence as well as operations on the result of operations.
Because digital sequences are processed, all operators in DSP are - discrete time operators
(as opposed to continuous time operators employed by analog systems). Discrete timeT)I)—
erators may be classified as time-varying or time-invariant and linear or nonlinear. Most
of the operators described in this text will be time-invariant with thewexcep-tioh of adap-
tive filters which are discussed in Section 1.7. Linearity will be discussed in Section 1.2
and several nonlinear operators will be introduced in Section 1.5.

(1) Extract parameters or features from the sequence.

(2) Produce a similar sequence with particular features enhanced or eliminated.
&) Restore the sequence to some earlier state. o -
(4) Encode or compress the sequence.

This chapter is divided into several sections. Section 1.1 deals with sequences of
numbers: where and how they originate, their spectra, and their relation to continuous
signals. Section 1.2 describes the common characteristics of linear time-invariant opera-
tors which are the most often used in DSP. Section 1.3 discusses the class of operators
called digital filters. Section 1.4 introduces the discrete Fourier transform (DFTs and
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DPS Operation

x(n) yn)
ox@2,x0),x0 ——l O {} . x2 n)00)

FIGURE 1.1 DSP operation.

FFTs). Section 1.5 describes the properties of commonly used nonlinear operators.

Section 1.6 covers basic probability theory and random processes and discusses their ap-.

plication to signal processing. Finally, Section 1.7 discusses the subject of adaptive digi-
tal filters.

1.1 SEQUENCES

In order for the digital computer to manipulate a signal, the signal must have been sam-
pled at some interval. Figure 1.2 shows an example of a continuous function of time
which has been sampled at intervals of T seconds. The resulting set of numbers is called a
sequence. If the continuous time function was x(z), then the samples would be x(nT) for n,
an integer extending over some finite range of values. It is common practice to normalize
the sample interval to 1 and drop it from the equations. The sequence then becomes x(n).
Care must be taken, however, when calculating power or energy from the sequences. The
sample interval, including units of time, must be reinserted at the appropriate points in the
power or energy calculations.

A sequence as a representation of a continuous time signal has the following impor-
tant characteristics:

X0

0 T 2T 3T 4T 5T 6T 7T 8T 9T
FIGURE 1.2 Sampling.

R %ﬂm

i
@
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£
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(1) The signal is sampled. It has finite value at only discrete points in time.

(2) The signal is truncated outside some finite length representing a finite time interval.

(3) The signal is quantized. It is limited to discrete steps in amplitude, where the step
size and, therefore, the accuracy (or signal fidelity) depends on how many steps are
available in the A/D converter and on the arithmetic precision (number of bits) of
the digital signal processor or computer.

In order to understand the nature of the results that DSP operators produce, these
characteristics must be taken into account. The effect of sampling will be considered in
Section 1.1.1. Truncation will be considered in the section on the discrete Fourier trans-
form (Section 1.4) and quantization will be discussed in Section 1.7 4.

1.1.1 The Sampling Function

The sampling function is the key to traveling between the continuous time and discrete
time worlds. It is called by various names: the Dirac delta function, the sifting function,
the singularity function, and the sampling function among them. It has the following
properties:

Property 1. J'?(t)a(t —T)dt = f(1). 1.1
Property 2. _[3(: _ydi=1. 1.2)

In the equations above, T can be any real number.

To see how this function can be thought of as the ideal sampling function, first con-
sider the realizable sampling function, A(#), illustrated in Figure 1.3. Its pulse width is one
unit of time and its amplitude is one unit of amplitude. It clearly exhibits Property 2 of
the sampling function. When A(#) is multiplied by the function to be sampled, however,
the A(f) sampling function chooses not a single instant in time but a range from —% to
+Y%. As a result, Property 1 of the sampling function is not met. Instead the following in-
tegral would result:

j T FOAG-T)dt = J.:jff(t)dt. (13)

This can be thought of as a kind of smearing of the sampling process across a band which
is related to the pulse width of A(f). A better approximation to the sampling function
would be a function A(z) with a narrower pulse width. As the pulse width is narrowed,
however, the amplitude must be increased. In the limit, the ideal sampling function must
have infinitely narrow pulse width so that it samples at a single instant in time, and infi-
nitely large amplitude so that the sampled signal still contains the same finite energy.

Figure 1.2 illustrates the sampling process at sample intervals of 7. The resulting
time waveform can be written
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Alt)
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FIGURE 1.3 Realizable sampling function.

oo

x,(6) = Z x(1)8(t — nT). (1.4)

N=—o0

The waveform that results from this process is impossible to visualize due to the infinite
amplitude and zero width of the ideal sampling function. It may be easier to picture a
somewhat less than ideal sampling function (one with very small width and very large
amplitude) multiplying the continuous time waveform.

It should be emphasized that xs(¢) is a continuous time waveform made from the su-
perposition of an infinite set of continuous time signals x(£)3(f — nT). It can also be writ-
ten

oo

X, (=Y x(nT)8(t ~nT) (1.5)

P
since the sampling function gives a nonzero multiplier only at the values ¢ = nT. In this
last equation, the sequence x(nT) makes its appearance. This is the set of numbers or sam-
ples on which almost all DSP is based.

1.1.2 Sampled Signal Spectra

Using Fourier transform theory, the frequency spectrum of the continuous time wave-
form x(r) can be written

X(f)= f:x(t)e‘”"f’ dt (1.6)

r
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and the time waveform can be expressed in terms of its spectrum as

x(t) = r X(fe'*™df. (1.7

Since this is true for any continuous function of time, x(¢), it is also true for x,(0.

X, ()= J:x (e % dr. (1.8)

Replacing x(#) by the sampling representation

X,(NH= Ji[ z x(Dd(t ~ nT)]e_jz'mdt. (1.9

The order of the summation and integration can be interchanged and Property | of the
sampling function applied to give

X, (f)= Y x(nT)e /25T (1.10)

n=-—oco

This equation is the exact form of a Fourier series representation of X (f), a periodic
function of frequency having period I/T. The coefficients of the Fourier series are x(nT)
and they can be calculated from the following integral:

x(nT) =T | X, (f)e>™ 7 4f. (1.11)

-27

The last two equations are a Fourier series pair which allow calculation of either the time
signal or frequency spectrum in terms of the opposite member of the pair. Notice that the
use of the problematic signal x() is eliminated and the sequence x(nT) can be used instead.

1.1.3 Spectra of Continuous Time
and Discrete Time Signals

By evaluating Equation (1.7) at t = nT and setting the result equal to the right-hand side
of Equation (1.11) the following relationship between the two spectra is obtained:

X(nT) = jw X(f)e™Tgr =T J' T X (el g (1.12)

The right-hand side of Equation (1.7) can be expressed as the infinite sum of a set of inte-
grals with finite limits

oo 2m+t

D) =Y T[,7 X()e* ¥ . (1.13)

m==~oco
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By changing variables to A = f — m/T (substituting f = A + m/T and df = dA)

oo us .
x(nT) = 2 2: X(A+ —’;—)ejzmTejzn

m=—co 2T

nT
T dh. (1.14)

Mgving the summation inside the integral, recognizing that /2™ (for all integers m and
n) is eqlfal to 1, and equating everything inside the integral to the similar part of Equation
(1.11) give the following relation:

X,(NH)= Z X(f+%). (1.15)

m=—oo

Equation (1.15) shows that the sampled time frequency spectrum is equal to an infinite
sum of shifted replicas of the continuous time frequency spectrum overlaid on each
oth.er. The shift of the replicas is equal to the sample frequency, Y. It is interesting to ex-
amine the conditions under which the two spectra are equal to each other, at least for
a limited range of frequencies. In the case where there are no spectral co;nponents of
frequency greater than Y%y in the original continuous time waveform, the two spectra

IG(f)!

(a) Input spectrum

> f

IG(F)!

t

1

1 1 >
.

A
z
(b) Sampled spectrum
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are equal over the frequency range f = —Yy to f = +%7. Of course, the sampled time spec-
trum will repeat this same set of amplitudes periodically for all frequencies, while the
continuous time spectrum is identically zero for all frequencies outside the specified
range.

The Nyquist sampling criterion is based on the derivation just presented and asserts
that a continuous time waveform, when sampled at a frequency greater than twice the
maximum frequency component in its spectrum, can be reconstructed completely from
the sampled waveform. Conversely, if a continuous time waveform is sampled at a
frequency lower than twice its maximum frequency component a phenomenon called
aliasing occurs. If a continuous time signal is reconstructed from an aliased representa-
tion, distortions will be introduced into the result and the degree of distortion is depen-
dent on the degree of aliasing. Figure 1.4 shows the spectra of sampled signals without
aliasing and with aliasing. Figure 1.5 shows the reconstructed waveforms of an aliased

signal.

A

/>t
VIV

(a) Input continuous time signal

at)

(b) Sampled signal

gft)

-~ -

\ [ ’

\

—> |

1GR(F)!
1
1
1
;_ fl — FIGURE 1.4 Aliasing in the fre-
Is s quency domain. {a) Input spectrum.
2 (b} Sampled spectrum.

(c) Reconstructured spectrum

{c) Reconstructed spectrum.

\ ’/
+ L
\l ll
-~

(c) Reconstructed signal

!
\ L
6 § FIGURE 1.5 Aliasing in the time
N -

domain. (a) Input continuous time
signal. (b) Sampled signal.
{c) Reconstructed signal.
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1.2 LINEAR TIME-INVARIANT OPERATORS

The most commonly used DSP operators are linear and time-invariant (or LTI). The lin-
earity property is stated as follows:

Given x(n), a finite sequence, and O{ }, an operator in n-space, let
y(n) = O{x(n)}. (1.16)
If
x(n) = ax;(n)+ bx,(n) (1.17)
where a and b are constant with respect to n, then, if O{ } is a linear operator
y(n) = aClx;(n)}+bO{x,(n)}. (1.18)
The time-invariant property means that if
¥(n) = O{x(n)}
then the shifted version gives the same response or
yin—m)=60{x(n—m)}. (1.19)
Another way to state this property is that if x(n) is periodic with period N such that
x(n+ N)=x(n)
then if G{ } is a time-invariant operator in n space
O{x(n+ N)}=0x(n)}.

Next, the LTI properties of the operator G{ } will be used to derive an expression and
methed of calculation for G{x(n)}. First, the impulse sequence can be used to represent
x(n) in a different manner,

x(my= Y x(mug(n—m). (1.20)
This is because
1, n=m
—m)= 1.21
o (n=m) {O, otherwise. ( )

The impulse sequence acts as a sampling or sifting function on the function x(r), using
the dummy variable m to sift through and find the single desired value x(n). Now this
somewhat devious representation of x(n) is substituted into the operator Equation (1.16):

Sec. 1.2 Linear Time-Invariant Operators 9

yin)=0 { x(m)uy(n — m)}. (1.22)

m=
Recalling that 6{ } operates only on functions of » and using the linearity property

oo

Ymy= Y x(m)O{ug(n—m). (123)

m=—oco

EYery operator has a set of outputs that are its response when an impulse sequence is ap-
plied to its input. The impulse response is represented by A(n) so that

h(n) = G{uy(n)). (1.24)

This impulse response is a sequence that has special significance for ©{ }, since it is the
sequence that occurs at the output of the block labeled O{ } in Figure 1.1 when an im-
pulse sequence is applied at the input. By time invariance it must be true that

h(n—m) = Ofuy(n—m)) (1.25)
so that
y(n) = 2 x(m)h(n — m). (1.26)

Equation (1.26) states that y(n) is equal to the convolution of x(n) with the impulse re-
sponse h(n). By substituting m = n — p into Equation (1.26) an equivalent form is derived

Xm= " h(p)x(n-p). (1.27)

p=—co

It must be remembered that m and p are dummy variables and are used for purposes of
the summation only. From the equations just derived it is clear that the impulse response
completely characterizes the operator G{ } and can be used to label the block representing
the operator as in Figure 1.6.

X (N) ——p h{n) —— -y (n)
FIGURE 1.6 Impulse response repre-
sentation of an operator.
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1.2.1 Causality

In the mathematical descriptions of sequences and operators thus far, it was assumed that
the impulse responses of operators may include values that occur before any applied
input stimulus. This is the most general form of the equations and has been suitable for
the development of the theory to this point. However, it is clear that no physical system
can produce an output in response to an input that has not yet been applied. Since DSP
operators and sequences have their basis in physical systems, it is more useful to consider
that subset of operators and sequences that can exist in the real world.

The first step in representing realizable sequences is to acknowledge that any se-
quence must have started at some time. Thus, it is assumed that any element of a se-
quence in a realizable system whose time index is less than zero has a value of zero.
Sequences which start at times later than this can still be represented, since an arbitrary
number of their beginning values can also be zero. However, the earliest true value of any
sequence must be at a value of n that is greater than or equal to zero. This attribute of se-
quences and operators is called causality, since it allows all attributes of the sequence to
be caused by some physical phenomenon. Clearly, a sequence that has already existed for
infinite time lacks a cause, as the term is generally defined.

Thus, the convolution relation for causal operators becomes:

W)=Y hm) x(n—m). (1.28)

m=0

This form follows naturally since the impulse response is a sequence and can have no
values for m less than zero.

1.2.2 Difference Equations

All discrete time, linear, causal, time-invariant operators can be described in theory by
the Nth order difference equation

N-1 N-1
Zamy(n—m)= prx(n—p) (1.29)
m=0 =0

where x(n) is the stimulus for the operator and y(n) is the results or output of the operator.
The equation remains completely general if all coefficients are normalized by the value
of a, giving

N-1 N-1
Y+ Y a,yn-my="Y b,x(n-p) (130)
m=1

=0

and the equivalent form

N1 N-1
Ym=Y bx(n=p)= Y ayyn—m) (1.31)
m=1

p=0

Sec. 1.2 Linear Time-Invariant Operators 11

or

y(n) = byx(n)+ byx(n—-1)+ byx(n-2)...
+by_x(n=-N+1)—ay(n—-1)—ayy(n—-2) (1.32)
—...~ay_1y(n—N+1).

To represent an operator properly may require a very high value of N, and for some com-
plex operators N may have to be infinite. In practice, the value of N is kept within limits
manageable by a computer; there are often approximations made of a particular operator
to make N an acceptable size.

In Equations (1.30) and (1.31) the terms y(n — m) and x(n — p) are shifted or de-
layed versions of the functions y(n) and x(n), respectively. For instance, Figure 1.7 shows
a sequence x(n) and x(n — 3), which is the same sequence delayed by three sample peri-
ods. Using this delaying property and Equation (1.32), a structure or flow graph can be
constructed for the general form of a discrete time LTI operator. This structure is shown
in Figure 1.8. Each of the boxes is a delay element with unity gain. The coefficients are
shown next to the legs of the flow graph to which they apply. The circles enclosing the
summation symbol (2) are adder elements.

1.2.3 The z-Transform Description of Linear Operators

There is a linear transform—called the z-transform—which is as useful to discrete time
analysis as the Laplace transform is to continuous time analysis. Its definition is

xm) =Y x(mz ™ (1.33)

n=0

where the symbol Z{ } stands for “z-transform of,” and the z in the equation is a complex
number. One of the most important properties of the z-transform is its relationship to time

x(n)
1 L.
0 1 2 3 4 5
x{(n-23)

S [ .

1 2 3 4 5 6 7 8

O

FIGURE 1.7 Shifting of a sequence.
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by
x(n) z z T > y(n)
VN
b, \ ! —a
D \ Ny | D
b, -a,
D D
b, -a,
D D

FIGURE 1.8 Fiow graph structure of linear operators.

delay in sequences. To show this property take a sequence, x(n), with a z-transform as
follows:

xm}=X@)=Y x(m)c™. (1.34)

n=0

A shifted version of this sequence has a z-transform:

Xix(n=p)}= Y x(n-p)z™. (1.35)

n=0

By letting m = n — p substitution gives:

Xlx(n=p)}="Y x(m)g P (1.36)

m=0

Sec. 1.2 Linear Time-Invariant Operators 13

=z* Zx(m)z"". 1.37)
m=0

But comparing the summation in this last equation to Equation (1.33) for the z-transform
of x(n), it can be seen that

Lfx(n~p)} =277 {x(n)} = 272 X(z). (1.38)

This property of the z-transform can be applied to the general equation for LTI operators
as follows:

p=1 q=0

z{y(n)+za,,y(n—p)} =77 z{z qu(n~q)}. (139)

Since the z-transform is a linear transform, it possesses the distributive and associative
properties. Equation (1.39) can be simplified as follows:

Zym1+ Y a,20(n=p)}= Y b, ix(n - p)). (1.40)
p=1 g=0

Using the shift property of the z-transform (Equation (1.38))

Y@+ Y 4,0 PY(@) =Y b X(2) (1.41)

p=1 9=0

Y(Z)’:l + Zal’z—p} = X(z)l:z qu_q:l. (1.42)
p=1 q=0

Finally, Equation (1.42) can be rearranged to give the transfer function in the z-transform
domain:

i b,z™?

H(zy=Y@ a0 . (1.43)
X(2) -
1+ Zapz
p=1

Using Equation (1.41), Figure 1.8 can be redrawn in the z-transform domain and this
structure is shown in Figure 1.9. The flow graphs are identical if it is understood that a
multiplication by z7! in the transform domain is equivalent to a delay of one sampling
time interval in the time domain.
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FIGURE 1.9 Flow graph structure for the z-transform of an operator.

1.2.4 Frequency Domain Transfer Function of an Operator

Taking the Fourier transform of both sides of Equation (1.28) (which describes any LTI
causal operator) results in the following:

Fom =Y mF xn-m)). (1.44)
m=0
Using one of the properties of the Fourier transform

Flx(n—m)}=e ™ F(x(n)}. (1.45)

From Equation (1.45) it follows that

Y(f)= 3 hme 2 X(f), (1.46)

m=0
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or dividing both sides by X(f)

Y_(f_)_ = Zw ~j2nfm ' 147
X(f) =0h(m)e ’ (147
which is easily recognized as the Fourier transform of the series h(m). Rewriting this equation
(&)
——==H(f)=F{h . 1.48)
) (f)= Fla(m}} (

Figure 1.10 shows the time domain block diagram of Equation (1.48) and Figure 1.11
shows the Fourier transform (or frequency domain) block diagram and equation. The fre-
quency domain description of a linear operator is often used to describe the operator.
Most often it is shown as an amplitude and a phase angle plot as a function of the variable
f (sometimes normalized with respect to the sampling rate, 1/7).

1.2.5 Frequency Response
from the z-Transform Description

Recall the Fourier transform pair

X,(f)= zx(nT)e‘f“f"T (1.49)
and
X(nT) = j X (el g (1.50)
Linear Time Invariant
X(n) ———— Hm)  —— ()
_ % FIGURE 1.10 Time domain block dia-
nn) = mz=:0 Am) x(n - m) gram of LTI system.
Linear Time Invariant
X(f ) ———f H(f) ——» Y{f)

FIGURE 1.11 Frequency block dia-
Y(£) = H(f) X{(f) gram of LTI system.
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In order to simplify the notation, the value of T, the period of the sampling waveform, is
normalized to be equal to one.

Now compare Equation (1.49) to the equation for the z-transform of x(n) as fol-
lows:

X@)=Y x(mz™". (1.51)
n=0

Equations (1.49) and (1.51) are equal for sequences x(rn) which are causal (i.e., x(n) = 0
for all n < 0) if z is set as follows:

7=e/*¥, (1.52)

A plot of the locus of values for z in the complex plane described by Equation (1.52) is
shown in Figure 1.12. The plot is a circle of unit radius. Thus, the z-transform of a causal
sequence, x(n), when evaluated on the unit circle in the complex plane, is equivalent to
the frequency domain representation of the sequence. This is one of the properties of the
z-transform which make it very useful for discrete signal analysis.

B
A
Z=a +jB
2 e
1
Izt =1
[ i | | o
1 1 1 | v *
-3 -2 - 1 2 3
-1
B, N .

FIGURE 1.12 The unit circle in the zplane.
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Summarizing the last few paragraphs, the impulse response of an operator is simply
a sequence, h(m), and the Fourier transform of this sequence is the frequency response of
the operator. The z-transform of the sequence h(m), called H(z), can be evaluated on the
unit circle to yield the frequency domain representation of the sequence. This can be writ-
ten as follows:

H@)| _ jons = H(). (1.53)

1.3 DIGITAL FILTERS

The linear operators that have been presented and analyzed in the previous sections can
be thought of as digital filters. The concept of filtering is an analogy between the action
of a physical strainer or sifter and the action of a linear operator on sequences when the
operator is viewed in the frequency domain. Such a filter might allow certain frequency
components of the input to pass unchanged to the output while blocking other compo-
nents. Naturally, any such action will have its corresponding result in the time domain.
This view of linear operators opens a wide area of theoretical analysis and provides in-
creased understanding of the action of digital systems.

There are two broad classes of digital filters. Recall the difference equation for a
general operator:

Q-1 P-1
Y= bx(n-g)- Y a,y(n—p). (1.54)
g=0 1

p=

Notice that the infinite sums have been replaced with finite sums. This is necessary in
order that the filters can be physically realizable.

The first class of digital filters have a, equal to O for all p. The common name for
filters of this type is finite impulse response (FIR) filters, since their response to an im-
pulse dies away in a finite number of samples. These filters are also called moving aver-
age (or MA) filters, since the output is simply a weighted average of the input values.

-1
Y=Y bx(n-g). (1.55)

q=0

There is a window of these weights (bq) that takes exactly the Q most recent values of
x(n) and combines them to produce the output.

The second class of digital filters are infinite impulse response (IIR) filters. This
class includes both autoregressive (AR) filters and the most general form, autoregressive
moving average (ARMA) filters. In the AR case all bq forg=1to Q—1aresettoO.

P-1
Ym)=x(n)~ Y a,y(n~p) (1.56)

p=1
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For ARMA filters, the more general Equation (1.54) applies. In either type of IIR filter, a
single-impulse response at the input can continue to provide output of infinite duration
with a given set of coefficients. Stability can be a problem for IIR filters, since with
poorly chosen coefficients, the output can grow without bound for some inputs.

1.3.1 Finite Impulse Response (FIR) Filters

Restating the general equation for FIR filters

Q0-1
Ym =Y byxin-g). (1.57)

q=0

Comparing this equation with the convolution relation for linear operators

Y=Y hm)x(n—m),
m=0

one can see that the coefficients in an FIR filter are identical to the elements in the im-
pulse response sequence if this impulse response is finite in length.

b, =h(q) forg=0,1,2,3,...,0-1.

This means that if one is given the impulse response sequence for a linear operator with a
finite impulse response one can immediately write down the FIR filter coefficients.
However, as was mentioned at the start of this section, filter theory looks at linear opera-
tors primarily from the frequency domain point of view. Therefore, one is most often
given the desired frequency domain response and asked to determine the FIR filter coeffi-
cients.

There are a number of methods for determining the coefficients for FIR filters
given the frequency domain response. The two most popular FIR filter design methods
are listed and described briefly below.

1. Use of the DFT on the sampled frequency response. In this method the required
frequency response of the filter is sampled at a frequency interval of 1/T where T is the
time between samples in the DSP system. The inverse discrete Fourier transform (see
section 1.4) is then applied to this sampled response to produce the impulse response of
the filter. Best results are usually achieved if a smoothing window is applied to the fre-
quency response before the inverse DFT is performed. A simple method to obtain FIR fil-
ter coefficients based on the Kaiser window is described in section 4.1.2 in chapter 4.

2. Optimal mini-max approximation using linear programming techniques. There is
a well-known program written by Parks and McClellan (1973) that uses the REMEZ ex-
change algorithm to produce an optimal set of FIR filter coefficients, given the required
frequency response of the filter. The Parks-McClellan program is available on the IEEE
digital signal processing tape or as part of many of the filter design packages available for
personal computers. The program is also printed in several DSP texts (see Elliot 1987 or
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Rabiner and Gold 1975). The program REMEZ.C is a C language implementation of the
Parks-McClellan program and is included on the enclosed disk. An example of a filter de-
signed using the REMEZ program is shown at the end of section 4.1.2 in chapter 4.

The design of digital filters will not be considered in detail here. Interested readers
may wish to consult references listed at the end of this chapter giving complete descrip-
tions of all the popular techniques.

The frequency response of FIR filters can be investigated by using the transfer
function developed for a general linear operator:

Q-1
Z b,z

Y() _
X z P-1 M
@ 1+2apz_”
p=1

H(z)= (1.58)

Notice that the sums have been made finite to make the filter realizable. Since for FIR fil-
ters the a,are all equal to 0, the equation becomes:

-1

H@=TE - Y bz (1.59)

X@ &

The Fourier transform or frequency response of the transfer function is obtained by let-
ting z = e/2™, which gives
0-1 )
H(N)=H@ _ jog = Y, bye ™. (1.60)
q=0
This is a polynomial in powers of 7~} or a sum of products of the form
H@)=by+bz ™ +byz 2 + bz +...+ by 279D,

There is an important class of FIR filters for which this polynomial can be factored into a
product of sums from

M-1 N-1
H =[] +on +B [ [ +70)- (1.61)
m=0 n=0

This expression for the transfer function makes explicit the values of the variable z~! which
cause H(z) to become zero. These points are simply the roots of the quadratic equation

0=z2+ o,z +8,,

which in general provides complex conjugate zero pairs, and the values vy, which provide
single zeros.
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In many communication and image processing applications it is essential to have
filters whose transfer functions exhibit a phase characteristic that changes linearly with a
change in frequency. This characteristic is important because it is the phase transfer rela-
tionship that gives minimum distortion to a signal passing through the filter. A very use-
ful feature of FIR filters is that for a simple relationship of the coefficients, bq, the result-
ing filter is guaranteed to have a linear phase response. The derivation of the relationship
which provides a linear phase filter follows.

A linear phase relationship to frequency means that

H(f) = H(f)| P,
where o and B are constants. If the transfer function of a filter can be separated into a real
function of f multiplied by a phase factor e/1%+ Bl then this transfer function will exhibit
linear phase.
Taking the FIR filter transfer function:
H@)=by+bz +byz72 + by 4. + by_z@
and replacing z by /2% g give the frequency response
H(f)=by +be™¥ +bye 7PN 4 4 p, o2@-D]

Factoring out the factor e 72MQ-12 and letting { equal (Q — 1)/2 gives

H(f) = e /2% {boejzncf + by ENS g i2mC-D)f

+...+ bQ_Ze“jZ"(g_l)f + bQ_le_ﬂ"U}.

Combining the coefficients with complex conjugate phases and placing them together in
brackets

H(f) = e/ {[boeﬂ”; + bQ_le_jZ"U]
+ [ bye/2"GDf by e—j2n(C—l)f]
+ [b2 22 bQ_3e—jzn<c—2>f]

+..}

If each pair of coefficients inside the brackets is set equal as follows:

bo = bQ—l
bl = bQ_2
b, =bg_3, etc.

Each term in brackets becomes a cosine function and the linear phase relationship is
achieved. This is a common characteristic of FIR filter coefficients.
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1.3.2 Infinite Impulse Response (lIR) Filters

Repeating the general equation for IIR filters

Q-1 P-1
wn)= Zb,,x(n -9 —Z a,y(n—p).

q=0 p=l

The z-transform of the transfer function of an IIR filter is

o-1
Yo quz_q
Z g=0
Hi = =
@ X(2) -
1+ ) ay?
p=1

No simple relationship exists between the coefficients of the IIR filter and the im-
pulse response sequence such as that which exists in the FIR case. Also, obtaining linear
phase IIR filters is not a straightforward coefficient relationship as is the case for FIR fil-
ters. However, TIR filters have an important advantage over FIR structures: In general,
IIR filters require fewer coefficients to approximate a given filter frequency response
than do FIR filters. This means that results can be computed faster on a general purpose
computer or with less hardware in a special purpose design. In other words, IIR filters are
computationally efficient. The disadvantage of the recursive realization is that TIR filters
are much more difficult to design and implement. Stability, roundoff noise, and some-
times phase nonlinearity must be considered carefully in all but the most trivial IIR filter
designs.

The direct form IIR filter realization shown in Figure 1.9, though simple in appear-
ance, can have severe response sensitivity problems because of coefficient quantization,
especially as the order of the filter increases. To reduce these effects, the transfer function
is usually decomposed into second order sections and then realized as cascade sections.
The C language implementation given in section 4.1.3 uses single precision floating-point
numbers in order to avoid coefficient quantization effects associated with fixed-point im-
plementations that can cause instability and significant changes in the transfer function.

IIR digital filters can be designed in many ways, but by far the most common IIR
design method is the bilinear transform. This method relies on the existence of a known
s-domain transfer function (or Laplace transform) of the filter to be designed. The
s-domain filter coefficients are transformed into equivalent z-domain coefficients for use
in an [IR digital filter. This might seem like a problem, since s-domain transfer functions
are just as hard to determine as z-domain transfer functions. Fortunately, Laplace trans-
form methods and s-domain transfer functions were developed many years ago for de-
signing analog filters as well as for modeling mechanical and even biological systems.
Thus, many tables of s-domain filter coefficients are available for almost any type of fil-
ter function (see the references for a few examples). Also, computer programs are avail-
able to generate coefficients for many of the common filter types (see the books by Jong,
Anoutino, Stearns (1993), Embree (1991), or one of the many filter design packages
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available for personal computers). Because of the vast array of available filter tables, the
large number of filter types, and because the design and selection of a filter requires care-
ful examination of all the requirements (passband ripple, stopband attenuation as well as
phase response in some cases), the subject of s-domain IIR filter design will not be cov-
ered in this book. However, several IIR filter designs with exact z-domain coefficients
are given in the examples in section 4.1 and on the enclosed disk.

1.3.3 Examiples of Filter Responses

As an example of the frequency response of an FIR filter with very simple coefficients,
take the following moving average difference equation:

¥(n)=0.11x(n)+0.22 x(n—1)+0.34 x(n—2)
+022 x(n-3)+0.11 x(n—4).

One would suspect that this filter would be a lowpass type by inspection of the coefficients,
since a constant (DC) value at the input will produce that same value at the output. Also,
since all coefficients are positive, it will tend to average adjacent values of the signal.

FIR Filter Frequency Response
0 T Y T T T 7 T T T

-15+

Magnitude (dB)

i 1 '

0 005 0.1 0.15 02 025 0.3 0.35 04 0.45 05

Frequency (f/fs)

FIGURE 1.13 FIR low pass response.

Sec. 1.3 Digital Filters 23

The response of this FIR filter is shown in Figure 1.13. It is indeed lowpass and the
nulls in the stop band are characteristic of discrete time filters in general.
As an example of the simplest IIR filter, take the following difference equation:

y(m) = x(n)+y(n—1).

Some contemplation of this filter’s response to some simple inputs (like constant values,
0, 1, and so on) will lead to the conclusion that it is an integrator. For zero input, the out-
put holds at a constant value forever. For any constant positive input greater than zero,
the output grows linearly with time. For any constant negative input, the output decreases
linearly with time. The frequency response of this filter is shown in Figure 1.14.

1.3.4 Filter Specifications

As mentioned previously, filters are generally specified by their performance in the fre-
quency domain, both amplitude and phase response as a function of frequency. Fig-
ure 1.15 shows a lowpass filter magnitude response characteristic. The filter gain has

IIR Filter Frequency Response
20 . r T r r T r .
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L 1

Frequency (f/fs)
FIGURE 1.14 IR integrator response.
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been normalized to be roughly 1.0 at low frequencies and the sampling rate is normalized
to unity. The figure illustrates the most important terms associated with filter specifica-
tions.

The region where the filter allows the input signal to pass to the output with litde or
no attenuation is called the passband. In a lowpass filter, the passband extends from fre-
quency f = 0 to the start of the transition band, marked as frequency fpm in Figure 145.
The transition band is that region where the filter smoothly changes from passing the sig-
nal to stopping the signal. The end of the transition band occurs at the §topbapd fre-
quency, fmp. The stopband is the range of frequencies over which tlfe filter is spec1ﬁec! to
attenuate the signal by a given factor. Typically, a filter will be specified by the following
parameters:

(1) Passband ripple—23 in the figure.
(2) Stopband attenuation—1/A.
(3) Transition start and stop frequencies— fpa_ng and fsmp.

(4) Cutoff frequency— fp ass 10€ frequency at which the filter gain is some given faf:-
tor Jower than the nominal passband gain. This may be —1 dB, —3 dB or other gain
value close to the passband gain.

Computer programs that calculate filter coefficients from frequency domain magni-
tude response parameters use the above list or some variation as the program input.

lIIllllllI'IlllllllllllII|IIllllllllllllllllllllll'
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FIGURE 1.15 Magnitude response of normalized lowpass filter.
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1.4 DISCRETE FOURIER TRANSFORMS

So far, the Fourier transform has been used several times to develop the characteristics of
sequences and linear operators. The Fourier transform of a causal sequence is:

Fixm)=X(f)= Y x(n)e™ 25" (1.62)
n=0

where the sample time period has been normalized to 1 (T = 1). If the sequence is of lim-
ited duration (as must be true to be of use in a computer) then

N-1
X(f) = Zx(n)e‘ﬂ"f" (1.63)
n=0

where the sampled time domain waveform is N samples long. The inverse Fourier trans-
form is

1/2 -
FXN=xm=[ | X(pe Ty (1.64)

since X(f) is periodic with period 1/T = 1, the integral can be taken over any full period.
Therefore,

x(n) = J'Ol X(f)e gy, (1.65)
1.4.1 Form

These representations for the Fourier transform are accurate but they have a major drawback
for digital applications—the frequency variable is continuous, not discrete. To overcome this
problem, both the time and frequency representations of the signal must be approximated.

To create a discrete Fourier transform (DFT) a sampled version of the frequency
waveform is used. This sampling in the frequency domain is equivalent to convolution in
the time domain with the following time waveform:

b= Y 8(t—rT).
This creates duplicates of the sampled time domain waveform that repeats with period T.
This T'is equal to the T used above in the time domain sequence. Next, by using the same
number of samples in one period of the repeating frequency domain waveform as in one pe-
riod of the time domain waveform, a DFT pair is obtained that is a good approximation to
the continuous variable Fourier transform pair. The forward discrete Fourier transform is

N-1

X(k) = Zx(n)e‘f""’" N (1.66)
n=0
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and the inverse discrete Fourier transform is

N-1
1 —j2mkni N (1.67)
x(n)=— E X(kye™ .
NS

For a complete development of the DFT by both graphical and theoretical means, see the
text by Brigham (chapter 6).

1.4.2 Properties

This section describes some of the properties of the DFT. The corresponding paragraph
numbers in the book The Fast Fourier Transform by Brigham (1974) are indicated. Due to
the sampling theorem it is clear that no frequency higher than Y7 can be represented by
X(k). However, the values of k extend to N—1, which corresponds to a frequency nearly
equal to the sampling frequency Y. This means that for a real sequence, the values of k
from N/2 to N~1 are aliased and, in fact, the amplitudes of these values of X(k) are

1 X(k)|=| X(N-k)|, fork=Nf2to N~-1. (1.68)

This corresponds to Properties 8-11 and 8-14 in Brigham. . .
The DFT is a linear transform as is the z-transform so that the following relation-

ships hold:
If

x(n) = o a(n)+ B b(n),
where o, and [ are constants, then

X(k) = o0 A(k)+ B B(k),

where A(k) and B(k) are the DFTs of the time functions a(n) and b(n), respectively. This
corresponds to Property 8-1 in Brigham.
The DFT also displays a similar attribate under time shifting as the z-transform. If

X(k) is the DFT of x(n) then

N-1
DFT{x(n—p)}= Y x(n—pe />N
n=0

Now define a new variable m = r — p so that n = m + p. This gives

m=N-l-p )
DFT(x(n—p)}= Y x(m)e ™mNe /2mo,
m==p
which is equivalent to the following:
DFT{x(n— p)} = e /"™ X (k). (1.69)
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This corresponds to Property 8-5 in Brigham. Remember that for the DFT it is assumed
that the sequence x(mm) goes on forever repeating its values based on the period n = 0 to
N — 1. So the meaning of the negative time arguments is simply that

x(=p)=x(N-p), forp=0toN—1.
1.4.3 Power Spectrum

The DFT is often used as an analysis tool for determining the spectra of input sequences.
Most often the amplitude of a particular frequency component in the input signal is de-
sired. The DFT can be broken into amplitude and phase components as follows:

X(f) = Xieat () + J Xigpag (f) (1.70)

X(f) =1 X(f)le*D (1.71)
where | X(f)] = /X2, + Xiag

and 6(f) = tan'l[ﬁ}
Xreal
The power spectrum of the signal can be determined using the signal spectrum times its
conjugate as follows:
XR)X*(k) = | X = Xy + Xy 1.72)
There are some problems with using the DFT as a spectrum analysis tool, however. The
problem of interest here concerns the assumption made in deriving the DFT that the se-
quence was a single period of a periodically repeating waveform. For almost all se-
quences there will be a discontinuity in the time waveform at the boundaries between
these pseudo periods. This discontinuity will result in very high-frequency components in
the resulting waveform. Since these components can be much higher than the sampling
theorem limit of Y% (or half the sampling frequency) they may be aliased into the middle
of the spectrum developed by the DFT.

The technique used to overcome this difficulty is called windowing. The problem to
be overcome is the possible discontinuity at the edges of each period of the waveform.
Since for a general purpose DFT algorithm there is no way to know the degree of discon-
tinuity at the boundaries, the windowing technique simply reduces the sequence ampli-
tude at the boundaries. It does this in a gradual and smooth manner so that no new dis-
continuities are produced, and the result is a substantial reduction in the aliased frequency
components. This improvement does not come without a cost. Because the window is
modifying the sequence before a DFT is performed, some reduction in the fidelity of the
spectral representation must be expected. The result is somewhat reduced resolution of
closely spaced frequency components. The best windows achieve the maximum reduc-
tion of spurious (or aliased) signals with the minimum degradation of spectral resolution.

There are a variety of windows, but they all work essentially the same way:
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Attenuate the sequence elements near the boundaries (nearn =0 and n = N — 1) and com-
pensate by increasing the values that are far away from the boundaries. Each window ha.s
its own individual transition from the center region to the outer elements. For a compari-
son of window performance see the references listed at the end of this chapter. (For ex-
ample, see Harris (1983)).

1.4.4 Averaged Periodograms

Because signals are always associated with noise—either due to some physical attribute of
the signal generator or external noise picked up by the signal source—the DFT of a single
sequence from a continuous time process is often not a good indication of the true spec-
trum of the signal. The solution to this dilemma is to take multiple DFTs from successive
sequences from the same signal source and take the time average of the power spectrum.
If a new DFT is taken each NT seconds and successive DFTs are labeled with superscripts:

M-1
Power Spectrum = 3" [ Xry)” + (Xingg)?| (1.73)
i=0

Clearly, the spectrum of the signal cannot be allowed to change significantly during the
interval =0to r=M (NT).

1.4.5 The Fast Fourier Transform (FFT)

The fast Fourier transform (or FFT) is a very efficient algorithm for computing the DFT
of a sequence. It takes advantage of the fact that many computations are repeated in the
DFT due to the periodic nature of the discrete Fourier kernel: e 721/ N_ The form of the
DFT is

Z

-1
X(k)= Y x(n)e 72N, (1.74)

X
Il
<

By letting Wk = ¢92mn /N Equation (1.74) becomes

N-1
X(k)= Y x(mWw"™. (1.75)
n=0
Now, W+ aV)(k + V) = Wk for all g, r that are integers due to the periodicity of the

Fourier kernel.
Next break the DFT into two parts as follows:

Ni2-1 NR2-1
X(k) = zx(zn)w,?,"" + zx(2n+1)w,§,2"“)", (1.76)
n=0 a=0

where the subscript N on the Fourier kernel represents the size of the sequence.
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By representing the even elements of the sequence x(n) by x,, and the odd elements
by x4, the equation can be rewritten

N2-1 Ni2—-1
XY= Y xo Wity + Wi, 3 x, (W (1.77)
n=0 n=0

Now there are two expressions in the form of DFTs so Equation (1.77) can be simplified
as follows:

X(k) = X, (n)+ Wi, X, (n). (1.78)

Notice that only DFTs of N2 points need be calculated to find the value of X(k). Since
the index k must go to N — 1, however, the periodic property of the even and odd DFTs is
used. In other words,

X\ ()=X,, (k=) for T<k<N-1. (1.79)

The process of dividing the resulting DFTs into even and odd halves can be repeated until
one is left with only two point DFTs to evaluate

AGK) = A(0) + A(1)e /22 for all k
=A(0) + A1) for k even
=A(0)- A1) for k odd.

Therefore, for 2 point DFTs no multiplication is required, only additions and subtrac-
tions. To compute the complete DFT still requires multiplication of the individual 2-point
DFTs by appropriate factors of W ranging from W0 to W/2-1, Figure 1.16 shows a flow
graph of a complete 32-point FFT. The savings in computation due to the FFT algorithm
is as follows.

For the original DFT, N complex multiplications are required for each of N values
of k. Also, N — 1 additions are required for each k.

In an FFT each function of the form

A0+ WEALD)

(called a butterfly due to its flow graph shape) requires one multiplication and two addi-
tions. From the flow graph in Figure 1.16 the number of butterflies is

Number of butterflies = -12!10g2 (N).

This is because there are N/2 rows of butterflies (since each butterfly has two inputs) and
there are log,(N) columns of butterflies.

Table 1.1 gives a listing of additions and multiplications for various sizes of FFTs
and DFTs. The dramatic savings in time for larger DFTs provided in the FFT has made
this method of spectral analysis practical in many cases where a straight DFT computa-
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FIGURE 1.16 32-Point, radix 2, in-place FFT. (From Rabiner and Gold, 1975, p. 380.)

tion would be much too time consuming. Also, the FFT can be used for performing oper-
ations in the frequency domain that would require much more time consuming computa-
tions in the time domain.

1.4.6 An Example of the FFT

In order to help the reader gain more understanding of spectrum analysis with the FFT, a
simple example is presented here. An input signal to a 16-point FFT processor is as fol-
lows:

x(n) = cos|27 (4n/16))

The argument of the cosine has been written in an unusual way to emphasize the fre-
quency of the waveform when processed by a 16-point FFT. The amplitude of this signal
is 1.0 and it is clearly a real signal, the imaginary component having zero amplitude.
Figure 1.17 shows the 16 samples that comprise x(0) to x(15).

Sec. 14 Discrete Fourier Transforms

31

TABLE 1.1 Comparison of Number of Butterfly Operations in the DFT and FFT,

(each operation is one complex multiply/accumulate calculation).

Transform Length DFT Operations FFT Operations
w (%) NLOG, (V)
8 64 24
16 256 64
32 1024 160
64 4096 384
128 16384 896
256 65536 1024
512 262144 4608
1024 1048576 10240
2048 4194304 22528

With this input a 16-point FFT will produce a very simple output. This output is
shown in Figure 1.18. It is a spike at k = 4 of amplitude 0.5 and a spike at k = 12 of am-
plitude —0.5. The spike nature in the FFT output in this example occurs because for a co-

sine waveform of arbitrary frequency the Fourier transform is
e 2
X(f) = j cos(2mfyr)e ¥ dr.

Representing the cosine by exponentials

X(f)= -;—‘[mef“‘ff"f dt - % _[ g anto s gy,

—o0

Cos (2n4 % )
A

NWANYANYAY

V.V VLV

s 2 4

FIGURE 1.17 Input to 16 point FFT.

> N
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FIGURE 1.18 Output of 16-point FFT.

It can be shown that the integrand in the two integrals above integrate.s to O unless the ar-
gument of the exponential is 0. If the argument of the exponential is zero, tl}e res'ult is
two infinite spikes, one at f'= f, and the other at f = —f;. These are delta functions in the
frequency domain. . ) .

Based on these results, and remembering that the impulse sequence is th‘e digital
analog of the delta function, the results for the FFT seem more plausible. It is still left to
explain why k = 12 should be equivalent to f = —f,,. Referring back to the developmept 9f
the DFT, it was necessary at one point for the frequency spectrum.t(.) become periodic
with period f;. Also, in the DFT only positive indices are used. Combining these two facts
one can obtain the results shown in Figure 1.18.

1.5 NONLINEAR OPERATORS

Most of this book is devoted to linear operators and linear-signal processing becaqse
these are the most commonly used techniques in DSP. However, there are s.everal nonlin-
ear operators that are very useful in one-dimensional' DSP.’ This secn(?n introduces the
simple class of nonlinear operators that compress or clip the input to derive the output se-
quence. o o '

There is often a need to reduce the number of significant bits in a qpantlzed se-
quence. This is sometimes done by truncation of the least signiﬁcant bits: This process is
advantageous because it is linear: The quantization error is {ncr?ased uniformly over the
entire range of values of the sequence. There are many apphcagons, however, where the
need for accuracy in quantization is considerably less at' high~s1gnal values than at lov,/-
signal values. This is true in telephone voice communications where the human ear’s
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ability to differentiate between amplitudes of sound waves decreases with the amplitude
of the sound. In these cases, a nonlinear function is applied to the signal and the resulting
output range of values is quantized uniformly with the available bits.

This process is illustrated in Figure 1.19. First, the input signal is shown in Figure
1.19(a). The accuracy is 12 bits and the range is 0 to 4.095 volts, so each quantization
level represents 1 mV. It is necessary because of some system consideration (such as
transmission bandwidth) to reduce the number bits in each word to 8. Figure 1.19(b)
shows that the resulting quantization levels are 16 times as coarse. Figure 1.19(c) shows
the result of applying a linear-logarithmic compression to the input signal. In this type of
compression the low-level signals (out to some specified value) are unchanged from the
input values. Beginning at a selected level, say f, = a, a logarithmic function is applied.
The form of the function might be

Jow = a+Alog,,(1+ f,, —a)

so that at £, = a the output also equals 2 and A is chosen to place the maximum value of
Joue @t the desired point.

A simpler version of the same process is shown in Figure 1.20. Instead of applying
a logarithmic function from the point f = a onward, the output values for [ aare all the
same. This is an example of clipping. A region of interest is defined and any values out-
side the region are given a constant output.

1.5.1 p-Law and A-Law Compression

There are two other compression laws worth listing because of their use in telephony—
the y-law and A-law conversions. The p-law conversion is defined as follows:

In(L+ pifD (1.80

Jow = s fp) D,

where sgn() is a function that takes the sign of its argument, and p is the compression pa-
rameter (255 for North American telephone transmission). The input value f;y must be
normalized to lie between —1 and +1. The A-law conversion equations are as follows:

_ - __ Alfl
f;)ut - sgn(fm) 1+ ln(A)

for |f;,| between 0 and 1/4 and (w81
1+1In(Alf, D :
-ﬁ)ut = sgn(ﬁn)rln/zlle;

for |f,,} between 1/4 and 1.

In these equations, A is the compression parameter (87.6 for European telephone trans-
mission).

An extreme version of clipping is used in some applications of image processing to
produce binary pictures. In this technique a threshold is chosen (usually based on a his-
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» Input FIGURE 1.19 ({a) Linear 12-bit ADC.
0.128 4.096 {b} Linear 8-bit ADC. {c) Nonlinear
conversion.

togram of the picture elements) and any image element with a value higher than threshold
is set to 1 and any element with a value lower than threshold is set to zero. In this way the
significant bits are reduced to only one. Pictures properly thresholded can produce excel-
lent outlines of the most interesting objects in the image, which simplifies further pro-
cessing considerably.
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FIGURE 1.20 Clipping to 8 bits.

1.6 PROBABILITY AND RANDOM PROCESSES

The signals of interest in most signal-processing problems are embedded in an environ-
ment of noise and interference. The noise may be due to spurious signals picked up dur-
ing transmission (interference), or due to the noise characteristics of the electronics that
receives the signal or a number of other sources. To deal effectively with noise in a sig-
nal, some model of the noise or of the signal plus noise must be used. Most often a proba-
bilistic model is used, since the noise is, by nature, unpredictable. This section introduces
the concepts of probability and randomness that are basic to digital signal processing and
gives some examples of the way a composite signal of interest plus noise is modeled.

1.6.1 Basic Probability

Probability begins by defining the probability of an event labeled A as P(A). Event A can
be the result of a coin toss, the outcome of a horse race, or any other result of an activity
that is not completely predictable. There are three attributes of this probability P(A):

(1) P(A) > = 0. This simply means that any result will either have a positive chance of
occurrence or no chance of occurrence.

(2) P (All possible outcomes) = 1. This indicates that some result among those possible
is bound to occur, a probability of 1 being certainty.

(3) For {A;}, where (A; " A)) =0, P(UA) = £; P(A). For a set of events, {A;}, where
the events are mutually disjoint (no two can occur as the result of a single trial of
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the activity), the probability of any one of the events occurring is equal to the sum
of their individual probabilities.

With probability defined in this way, the discussion can be extended to joint and
conditional probabilities. Joint probability is defined as the probability of occurrence of 3
specific set of two or more events as the result of a single trial of an activity. For instance,
the probability that horse A will finish third and horse B will finish first in a particular
horse race is a joint probability. This is written:

P(AN B) = P(A and B) = P(AB). (1.82)

Conditional probability is defined as the probability of occurrence of an event A given
that B has occurred. The probability assigned to event A is conditioned by some knowl-
edge of event B. This is written

P(A given B) = P(A|B). (1.83)

If this conditional probability, P(A]B), and the probability of B are both known, the proba-
bility of both of these events occurring (joint probability) is

P(AB) = P(A|B)P(B). (1.84)

So the conditional probability is multiplied by the probability of the condition (event B)
to get the joint probability. Another way to write this equation is

P(A|B) = P}%’?

This is another way to define conditional probability once joint probability is understood.

(1.85)

1.6.2 Random Variables

‘In signal processing, the probability of a signal taking on a certain value or lying in a cer-
tain range of values is often desired. The signal in this case can be thought of as a random
variable (an element whose set of possible values is the set of outcomes of the activity).
For instance, for the random variable X, the following set of events, which could occur,
may exist:

Event A X takes on the value of 5 (X = 5)

EventBX =19
Event CX=1.66
etc.

This is a useful set of events for discrete variables that can only take on certain specified
values. A more practical set of events for continuous variables associates each event with
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the variable lying within a range of values. A cumulative distribution function (or CDF)
for a random variable can be defined as follows:

F(x)=P(X<x). (1.86)

This cumulative distribution, function, then, is a monotonically increasing function of the
independent variable x and is valid only for the particular random variable, X. Figure 1.21
shows an example of a distribution function for a random variable. If F(x) is differenti-
ated with respect to x the probability density function (or PDF) for X is obtained, repre-
sented as follows:

dF(x)
=27 1.87
p(x) p (1.87)
Integrating p(x) gives the distribution function back again as follows:
F(x) = J' P, (1.88)

Since F(x) is always monotonically increasing, p(x) must be always positive or zero.
Figure 1.22 shows the density function for the distribution of Figure 1.21. The utility of
these functions can be illustrated by determining the probability that the random variable
X lies between a and b. By using probability Property 3 from above

P(X<b)=Pla<X<b)+P(X<a) (1.89)
This is true because the two conditions on the right-hand side are independent (mutually

exclusive) and X must meet one or the other if it meets the condition on the left-hand
side. This equation can be expressed using the definition of the distribution:

Pla< X <b)=F(b)- F(a)

J-b (o)dx (1.90)

In this way, knowing the distribution or the density function allows the calculation of the
probability that X lies within any given range.

1.6.3 Mean, Variance, and Gaussian Random Variables

There is an operator in random variable theory called the expectation operator usually
written E[x]. This expression is pronounced “the expected value of x.”” The expectation
operator extracts from a random variable the value that the variable is most likely to take
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FIGURE 1.21 An example of cumulative distribution function (CDF).
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FIGURE 1.22 Density function.
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on. The expected value is sometimes called the mean, average, or first moment of the
variable and is calculated from the density function as follows:

Hx1= [ xp(odx. (1.91)

A typical density function for a random variable is shown in Figure 1.23. The most likely
value of variable x is also indicated in the figure. The expected value can be thought of as
a “center of gravity” or first moment of the random variable x.

The variance of a random variable is defined as

62 = Var{x} = E[(x - E[x])zl, (1.92)

where ¢ is the root mean square value of the variable’s difference from the mean. The
variance is sometimes called the mean square value of x.

By extending the use of the expectation operator to joint probability densities, a
variable Y can be a function of two random variables, s and # such that

Y=6{s,1}.
Then the expected value of Y will be
EY]= Jm j°°0[s, t} p(s, t)dsdt (1.93)

where the joint probability density of s and ¢ (p(s,?)), is required in the equation. The cor-
relation of two random variables is defined to be the expected value of their product

Elst) = j - _[ st pls, D)dsd. (1.94)
px)
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FIGURE 1.23 Continuous PDF showing E[x].
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This definition will be used in the development of autocorrelation in section 1.6.5,

There is a set of random variables called Gaussian random variables whose density
functions have special characteristics that make them particularly easy to analyze. Also,
many physical processes give rise to approximately this sort of density function, A
Gaussian density function has the following form:

Y]
plx)= —J;?-exP[~ (sztl)] (1.95)

where W is the mean value of x and 62 is the variance,

1.6.4 Quantization of Sequences

Quantization is to the amplitude domain of a continuous analog signal as sampling is to
the time domain. It is the step that allows a continuous amplitude signal to be represented
in the discrete amplitude increments available in a digital computer. To analyze the
process of quantization, it is useful to diagram a system as shown in Figure 1.24. The il-
lustration shows a continuous amplitude input signal, £, which is sampled and quantized,
then reconstructed in the continuous amplitude domain. The output signal is f. By com-
paring the input and output of this process the effect of quantization can be illustrated.

The action of the box marked quantization in Figure 1.24 is illustrated in Figure
1.25. A set of decision levels is applied to each input signal, and the two levels which
bracket the signal above and below are determined. A digital code is assigned to the re-
gion between each levels. In Figure 1.25, the digital code consists of 6 bits and runs from
binary O to binary 63. The application of these decision levels and the assignment of a
code to the input signal sample is the complete process of quantization. Reconstruction of
the signal is accomplished by assigning a reconstruction level to each digital code.

The task that remains is to assign actual values to the decision levels and the recon-
struction levels. Referring to Figure 1.25, the minimum value of the input signal is la-
beled a, and the maximum value is labeled ay;. If the signal f has a probability density of
p(f), then the mean squared error due to the quantization and reconstruction process is

~y
\
~yY

FIGURE 1.24 Quantization and reconstruction of a signal.
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FIGURE 1.25 Quantization operation showing decision and reconstruction levels.

e={r-P}=[" - e,

and if the signal range is broken up into the segments between decision levels dj and dj”,
then

=g
e=E{(/-PP}= 3 [ (- pindr.
j=0"%

Numerical solutions can be determined that minimize € for several common probability
densities. The most common assumption is a uniform density (p(f) equals 1/N for all val-
ues of f, where N is the number of decision intervals). In this case, the decision levels are
uniformly spaced throughout the interval and the reconstruction levels are centered tze—
tween decision levels. This method of quantization is almost universal in commercial
analog-to-digital converters. For this case the error in the analog-to-digital convene_r o.ut—
put is uniformly distributed from —Y, of the least significant bit to +!% of the least signifi-
cant bit. If it is assumed that the value of the least significant bit is unity, then the mean
squared error due to this uniform quantization is given by:

+3 . oa +3 1
vl = [ Jr -7 o= [ P =
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since p(f) = 1 from - to +Y%. This mean squared error gives the equivalent variance, or
noise power, added to the original continuous analog samples as a result of the uniform
quantization. If it is further assumed that the quantization error can be modeled as a sta-
tionary, uncorrelated white noise process (which is a good approximation when the number
of quantization levels is greater than 16), then a maximum signal-to-noise ratio (SNR)
can be defined for a quantization process of B bits (2B quantization levels) as follows:

SNR = 10log;o(V? / var{e}) = 101og)o (12V?),
10 0

where V2 is the total signal power. For example, if a sinusoid is sampled with a peak am-
plitude of 281, then V2 = 228/8 giving the signal to noise ratio for a full scale sinusoid as

SNR =101log,,((1.5)(2*%)) = 6.02B+1.76.

This value of SNR is often referred to as the theoretical signal-to-noise ratio for a B bit
analog-to-digital converter. Because the analog circuits in a practical analog-to-digital
converter always add some additional noise, the SNR of a real-world converter is always
less than this value.

1.6.5 Random Processes, Autocorrelation,
and Spectral Density

A random process is a function composed of random variables. An example is the ran-
dom process f(#). For each value of ¢, the process f(#) can be considered a random vari-
able. For ¢ = a there is a random variable f(a) that has a probability density, an expected
value (or mean), and a variance as defined in section 1.6.3. In a two-dimensional image,
the function would be f(x,y), where x and y are spatial variables. A two-dimensional ran-
dom process is usually called a random field. Each f(a,b) is a random variable.

One of the important aspects of a random process is the way in which the random
variables at different points in the process are related to each other. The concept of joint
probability is extended to distribution and density functions. A joint probability distribu-
tion is defined as

F(s,t)= P(S <5, T <t) (where S and T are some constants),

and the corresponding density function is defined as

*F(s, 1)
)= —. 1.96)
R ¢
The integral relationship between distribution and density in this case is
$ t
Fis,1)= J' j (e, B)do dB. 1.97)

In section 1.6.3 it was shown that the correlation of two random variables is the expected
value of their product. The autocorrelation of a random process is the expected value of
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the products of the random variables which make up the process. The symbol for autocor-
relation is Rﬁ« (t;. t,) for the function f(r) and the definition is

Ry(t). 1) = E[ft))F ()] (1.98)
=J:E|3pf(°" Bi 1y, 1 )do d, (1.99)

where ps(ct, B; ¢, ,) is the joint probability density fit;) and f{ty). By including o and
in the parentheses the dependence of pson these variables is made explicit.

In the general case, the autocorrelation can have different values for each value of
t, and t,. However, there is an important special class of random processes called station-
ary processes for which the form of the autocorrelation is somewhat simpler. In station-
ary random processes, the autocorrelation is only a function of the difference between the
two time variables. For stationary processes

Ry(t, - 1) = Rz(&) = E{fe - ©) f(D] (1.100)

In section 1.6.6 the continuous variable theory presented here is extended to discrete vari-
ables and the concept of modeling real world signals is introduced.

1.6.6 Modeling Real-World Signals with AR Processes

By its nature, a noise process cannot be specified as a function of time in the way a deter-
ministic signal can. Usually a noise process can be described with a probability function
and the first and second moments of the process. Although this is only a partial character-
ization, a considerable amount of analysis can be performed using moment parameters
alone. The first moment of a process is simply its average or mean value. In this section,
all processes will have zero mean, simplifying the algebra and derivations but providing
results for the most common set of processes.
The second moment is the autocorrelation of the process

r(n,n—k)= Elu(nyX(n—-k)},  fork=0,tL£2,..

The processes considered here are stationary to second order. This means that the first
and second order statistics do not change with time. This allows the autocorrelation to be
represented by

r(n, n—k) = r(k), fork=0,+1,1£2,...

since it is a function only of the time difference between samples and not the time vari-
able itself. In any process, an important member of the set of autocorrelation values is
r(0), which is

r(0) = E{u(ny(n)} = Effu(mi }, (1.101)



44 Digital Signal Processing Fundamentals Chap. 1

which is the mean square value of the process. For a zero mean process this is equal to
the variance of the signal

r(0) = var{u}. (1.102)

The process can be represented by a vector u(n) where

u(n)
u(n—-1)
u(n)={u(n-2) (1.103)

u(n~-M+1)

Then the autocorrelation can be represented in matrix form

R= E{u(n)u” (n)} (1.104)

) r(1) r(2)... r(m-1) |
r(=1) r(0) r(1)... :
r(-2) NG )) r(0)... :
: : : r-1)
: : : r(0)
| r(-M+1) r(-M~+2) ... ) |

The second moment of a noise process is important because it is directly related to
the power spectrum of the process. The relationship is

M-1

SU)= Y rkye i, (1.105)

k=—M+1

which is the discrete Fourier transform (DFT) of the autocorrelation of the process (r(k)).
Thus, the autocorrelation is the time domain description of the second order statistics, and
the power spectral density, S(f), is the frequency domain representation. This power
spectral density can be modified by discrete time filters.

Discrete time filters may be classified as autoregressive (AR), moving average
(MA), or a combination of the mwo (ARMA). Examples of these filter structures and the
z-transforms of each of their impulse responses are shown in Figure 1.26. It is theoreti-
cally possible to create any arbitrary output stochastic process from an input white noise
Gaussian process using a filter of sufficiently high (possibly infinite) order.

Referring again to the three filter structures in Figure 1.26, it is possible to create
any arbitrary transfer function H(z) with any one of the three structures. However, the or-
ders of the realizations will be very different for one structure as compared to another.
For instance, an infinite order MA filter may be required to duplicate an M™ order AR
filter.

One of the most basic theorems of adaptive and optimal filter theory is the Wold
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decomposition. This theorem states that any real-world process can be decomposed into a
deterministic component (such as a sum of sine waves at specified amplitudes, phases,
and frequencies) and a noise process. In addition, the theorem states that the noise
process can be modeled as the output of a linear filter excited at its input by a white noise
signal.

\DAPTIVE FILTERS AND SYSTEMS

The problem of determining the optimum linear filter was solved by Norbert Wiener and
others. The solution is referred to as the Wiener filter and is discussed in section 1.7.1.
Adaptive filters and adaptive systems attempt to find an optimum set of filter parameters
(often by approximating the Wiener optimum filter) based on the time varying input and
output signals. In this section, adaptive filters and their application in closed loop adap-
tive systems are discussed briefly. Closed-loop adaptive systems are distinguished from
open-loop systems by the fact that in a closed-loop system the adaptive processor is con-
trolled based on information obtained from the input signal and the output signal of the
processor. Figure 1.27 illustrates a basic adaptive system consisting of a processor that is
controlled by an adaptive algorithm, which is in turn controlled by a performance calcula-
tion algorithm that has direct knowledge of the input and output signals.

Closed-loop adaptive systems have the advantage that the performance calculation
algorithm can continuously monitor the input signal (d) and the output signal (y) and de-
termine if the performance of the system is within acceptable limits. However, because
several feedback loops may exist in this adaptive structure, the automatic optimization al-
gorithm may be difficult to design, the system may become unstable or may result in
nonunique and/or nonoptimum solutions. In other situations, the adaptation process may
not converge and lead to a system with grossly poor performance. In spite of these possi-
ble drawbacks, closed-loop adaptive systems are widely used in communications, digital
storage systems, radar, sonar, and biomedical systems.

The general adaptive system shown in Figure 1.27(a) can be applied in several
ways. The most common application is prediction, where the desired signal (d) is the ap-
plication provided input signal and a delayed version of the input signal is provided to the
input of the adaptive processor (x) as shown in Figure 1.27(b). The adaptive processor
miust then try to predict the current input signal in order to reduce the error signal (€) to-
ward a mean squared value of zero. Prediction is often used in signal encoding (for exam-
ple, speech compression), because if the next values of a signal can be accurately pre-
dicted, then these samples need not be transmitted or stored. Prediction can also be used
to reduce noise or interference and therefore enhance the signal quality if the adaptive
processor is designed to only predict the signal and ignore random noise elements or
known interference patterns.

As shown in Figure 1.27(c), another application of adaptive systems is system
modeling of an unknown or difficult to characterize system. The desired signal (d) is the
unknown system’s output and the input to the unknown system and the adaptive proces-
sor (x) is a broadband test signal (perhaps white Gaussian noise). After adaptation, the
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unknown system is modeled by the final transfer function of the adaptive processor, By
using an AR, MA, or ARMA adaptive processor, different system models can be ob.
tained. The magnitude of the error (€) can be used to Jjudge the relative success of each
model.

1.7.1 Wiener Filter Theory

The problem of determining the optimum linear filter given the structure shown in Figure
1.28 was solved by Norbert Wiener and others. The solution is referred to as the Wiener
filter. The statement of the problem is as follows:
Determine a set of coefficients, Wy, that minimize the mean of the squared error of
the filtered output as compared to some desired output. The error is written

M
e(n)=d(n)—zw;u(n—k+l), (1.106)

k=1

or in vector form

e(n)=d(n)— wa(n). (1.107)

The mean squared error is a function of the tap weight vector w chosen and is written

J(w) = E{e(n)eX(n)}. (1.108)

wn)

e(n)

FIGURE 1.28 Wiener filter problem.
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Substituting in the expression for e(n) gives

J(w)= E{d(n)d*(n) —d(nyu? (myw
(1.109)
-wHu(n)d¥(n) + wHu(nyn? (n)w}

J(w) = var{d} - pw— wip + wRw, (1.110)

where p = E{u(n)d*(n)}, the vector that is the product of the cross correlation between
the desired signal and each element of the input vector.

In order to minimize J(w) with respect to w, the tap weight vector, one must set the de-
rivative of J(w) with respect to w equal to zero. This will give an equation which, when
solved for w, gives W), the optimum value of w. Setting the total derivative equal to zero gives

~2p+2Rw, =0 111
or
Rw, =p. (1.112)

If the matrix R is invertible (nonsingular) then W, can be solved as

w, =R7p. (1.113)

So the optimum tap weight vector depends on the autocorrelation of the input
process and the cross correlation between the input process and the desired output,
Equation (1.113) is called the normal equation because a filter derived from this equation
will produce an error that is orthogonal (or normal) to each element of the input vector.
This can be written

E{u(n)ey¥(n)} = 0. (L114)

It is helpful at this point to consider what must be known to solve the Wiener filter
problem:

(1) The M x M autocorrelation matrix of u(n), the input vector
(2) The cross correlation vector between u(n) and d(n) the desired response.

It is clear that knowledge of any individual u(n) will not be sufficient to calculate
these statistics. One must take the ensemble average, E{ }, to form both the autocorrela-
tion and the cross correlation. In practice, a model is developed for the input process and
from this model the second order statistics are derived.

A legitimate question at this point is: What is d(n)? It depends on the problem. One ex-
ample of the use of Wiener filter theory is in linear predictive filtering. In this case, the de-
sired signal is the next value of u(r), the input. The actual u(n) is always available one sam-
ple after the prediction is made and this gives the ideal check on the quality of the prediction.
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CHAPTER 2

C PROGRAMMING
FUNDAMENTALS

The purpose of this chapter is to provide the programmer with a complete overview of
the fundamentals of the C programming language that are important in DSP applications.
In particular, text manipulation, bitfields, enumerated data types, and unions are not dis-
cussed, because they have limited utility in the majority of DSP programs. Readers with
C programming experience may wish to skip the bulk of this chapter with the possible
exception of the more advanced concepts related to pointers and structures presented in
sections 2.7 and 2.8. The proper use of pointers and data structures in C can make a DSP
program easier to write and much easier for others to understand. Example DSP programs
in this chapter and those which follow will clarify the importance of pointers and data
structures in DSP programs.

2.1 THE ELEMENTS OF REAL-TIME DSP PROGRAMMING

The purpose of a programming language is to provide a tool so that a programmer can
easily solve a problem involving the manipulation of some type of information. Based on
this definition, the purpose of a DSP program is to manipulate a signal (a special kind of
information) in such a way that the program solves a signal-processing problem. To do
this, a DSP programming language must have five basic elements:

(1) A method of organizing different types of data (variables and data types)

(2) A method of describing the operations to be done (operators)

(3) A method of controlling the operations performed based on the results of operations
(program control)
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1.7.2 LMS Algorithms

The LMS algorithm is the simplest and most used adaptive algorithm in use today. In thig
brief section, the LMS algorithm as it is applied to the adaptation of time-varying FIR fj}.
ters (MA systems) and IR filters (adaptive recursive filters or ARMA systems) is de-
scribed. A detailed derivation, Jjustification and convergence properties can be found jp
the references.

For the adaptive FIR system the transfer function is described by

o-1
Yn)= Y b, (k)x(n~g), (L.115)

9=0

where b(k) indicates the time-varying coefficients of the filter. With an FIR filter the
mean squared error performance surface in the multidimensional space of the filter coef-
ficients is a quadratic function and has a single minimum mean squared error (MMSE).
The coefficient values at the optimal solution is called the MMSE solution. The goal of
the adaptive process is to adjust the filter coefficients in such a way that they move from
their current position toward the MMSE solution. If the input signal changes with time,
the adaptive system must continually adjust the coefficients to follow the MMSE soly-
tion. In practice, the MMSE solution is often never reached.

The LMS algorithm updates the filter coefficients based on the method of steepest
descent. This can be described in vector notation as follows:

B, =B, -pv, (1.116)

where B, is the coefficient column vector, 1 is a parameter that controls the rate of con-
vergence and the gradient is approximated as

aE[e,%]
Vi = =-2¢,X (1.117)
k aBk kN k

where X, is the input signal column vector and g, is the error signal as shown on Figure
1.27. Thus, the basic LMS algorithm can be written as

B, =B, +2ue,X, (1.118)

The selection of the convergence parameter must be done carefully, because if it is
too small the coefficient vector will adapt very slowly and may not react to changes in the
input signal. If the convergence parameter is too large, the system will adapt to noise in
the signal and may never converge to the MMSE solution.

For the adaptive IIR system the transfer function is described by

o-1 P-1
Y=Y b (0x(n=)~ Y a,()y(n~ p), (1.119)
=0

q p=l1
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where b(k) and a(k) indicate the time-varying coefficients of the filter. With an IIR filter,
the mean squared error performance surface in the multidimensional space of the filter
coefficients is not a quadratic function and can have multiple minimums that may cause
the adaptive algorithm to never reach the MMSE solution. Because the IIR system has
poles, the system can become unstable if the poles ever move outside the unit circle dur-
ing the adaptive process. These two potential problems are serious disadvantages of adap-
tive recursive filters that limit their application and complexity. For this reason, most ap-
plications are limited to a small number of poles. The LMS algorithm can again be used
to update the filter coefficients based on the method of steepest descent. This can be de-
scribed in vector notation as follows:

W =W, —MV,, (1.120)

where W, is the coefficient column vector containing the a and b coefficients, M is a di-
agonal matrix containing convergence parameters U for the a coefficients and Vv through
Vp_ that controls the rate of convergence of the b coefficients. In this case, the gradient
is approximated as

Vi=-2¢og.ap BB, (1.121)

where €, is the error signal as shown in Figure 1.27, and

-1
(x,,(k):x(k—n)+2bq(k)a,,(k—q) (1.122)
q=0
P-1
Ba(ky=y(k~m)+ Y b, (k)P (k- p). (1.123)
p=0

The selection of the convergence parameters must be done carefully because if they
are too small the coefficient vector will adapt very slowly and may not react to changes in
the input signal. If the convergence parameters are too large the system will adapt to
noise in the signal or may become unstable. The proposed new location of the poles
should also be tested before each update to determine if an unstable adaptive filter is
about to be used. If an unstable pole location is found the update should not take place
and the next update value may lead to a better solution.
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(4) A method of organizing the data and the operations so that a sequence of program
steps can be executed from anywhere in the program (functions and data structures)
and

(5) A method to move data back and forth between the outside world and the program
(input/output)

These five elements are required for efficient programming of DSP algorithms. Their im-
plementation in C is described in the remainder of this chapter.

As a preview of the C programming language, a simple real-time DSP program is
shown in Listing 2.1. It illustrates each of the five elements of DSP programming. The
listing is divided into six sections as indicated by the comments in the program. This sim-
ple DSP program gets a series of numbers from an input source such as an A/D converter
(the function getinput () is not shown, since it would be hardware specific) and deter-
mines the average and variance of the numbers which were sampled. In signal-processing
terms, the output of the program is the DC level and total AC power of the signal.

The first line of Listing 2.1, main (), declares that the program called main, which
has no arguments, will be defined after the next left brace ({ on the next line). The main
program (called main because it is executed first and is responsible for the main control
of the program) is declared in the same way as the functions. Between the left brace on
the second line and the right brace half way down the page (before the line that starts
float awerage ...) are the statements that form the main program. As shown in this
example, all statements in C end in a semicolon (;) and may be placed anywhere on the
input line. In fact, all spaces and carriage control characters are ignored by most C com-
pilers. Listing 2.1 is shown in a format intended to make it easier to follow and modify.
The third and fourth lines of Listing 2.1 are statements declaring the functions
(average, variance, sqrt) that will be used in the rest of the main program (the
function sqrt () is defined in the standard C library as discussed in the Appendix. This
first section of Listing 2.1 relates to program organization (element four of the above
list). The beginning of each section of the program is indicated by comments in the pro-
gram source code (i. e., /* section 1 */). Most C compilers allow any sequence of
characters (including multiple lines and, in some cases, nested comments) between the
/* and */ delimiters.

Section two of the program declares the variables to be used. Some variables are
declared as single floating-point numbers (such as ave and var); some variables are de-
clared as single integers (such as i, count, and number); and some variables are ar-
rays (such as signal[100]). This program section relates to element one, data organi-
zation.

Section three reads 100 floating-point values into an array called signal using a for
loop (similar to a DO loop in FORTRAN). This loop is inside an infinite while loop
that is common in real-time programs. For every 100 samples, the program will display
the results and then get another 100 samples. Thus, the resulis are displayed in real-time.
This section relates to element five (input/output) and element three (program control).

Section four of the example program uses the functions average and variance
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main () /* section 1 */
{
float average(),variance(),sqgrt(); /* declare functions */
float signal[100], ave,var; /*section 2 */
int count,i; /* declare variables */
while(1l) {
for(count = 0 ; count < 100 ; count++) { /* section 3 */
signal [count] = getinput(); /* read input signal */
}
ave = average(signal,count}; /* section 4 */
var = variance(signal,count); /* calculate results */
printf ("\n\nAverage = %f", ave); /* section 5 */
printf(" Variance = %f",var); /* print results */
}
}
float average(float array([],int size) /* section 6 */
{ /* function calculates average */
int ij;
float sum = 0.0; /* intialize and declare sum */
for(i = 0 ; i < size ; i++)
sum = sum + arrayl[il; /* calculate sum */
return(sum/size); /* return average */

}

float variance(float array([],int size) /* function calculates variance */

{

int i; /* declare local variables */
float ave;

float sum = 0.0; /* intialize sum of signal */
float sum2 = 0.0; /* sum of signal squared */

for{(i = 0 ; i < size ; i++) {

sum = sum + arrayl[il;

sum2 = sum2 + arrayli]*arrayi{il}; /* calculate both sums */
}
ave = sum/size; /* calculate average */
return{ {sum2 - sum*ave)/(size-1)); /* return variance */

Listing 2.1 Example C program that calculates the average and variance of
a sequence of numbers.

to calculate the statistics to be printed. The variables ave and var are used to store the
results and the library function print€ is used to display the results. This part of the
program relates to element four (functions and data structures) because the operations de-
fined in functions average and variance are executed and stored.
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Section five uses the library function printf to display the results ave, vay
and also calls the function sgrt in order to display the standard deviation. This par;
of the program relates to element four (functions) and element five (input/output), be.
cause the operations defined in function 8sqrt are executed and the results are also’ dis
played. )

The two functions, average and variance, are defined in the remaining part of
Listing 2.1. This last section relates primarily to element two (operators), since the de.
tailed operation of each function is defined in the same way that the main program wag
defined. The function and argument types are defined and the local variables to be used in
each function are declared. The operations required by each function are then defined fo}-
lowed by a return statement that passes the result back to the main program.

2.2 VARIABLES AND DATA TYPES

All programs work by manipulating some kind of information. A variable in C is defined
by declaring that a sequence of characters (the variable identifier or name) are to be
treated as a particular predefined type of data. An identifier may be any sequence of char-
acters (usually with some length restrictions) that obeys the following three rules:

(1) All identifiers start with a letter or an underscore ().
(2) The rest of the identifier can consist of letters, underscores, and/or digits.

(3) The rest of the identifier does not match any of the C keywords. (Check compiler
implementation for a list of these.)

In particular, C is case sensitive; making the variables Average, AVERAGE, and
AVeRagGe all different.

The C language supports several different data types that represent integers
(declared int), floating-point numbers (declared £1oat or double), and text data (de-
clared char). Also, arrays of each variable type and pointers of each type may be de-
c.lared. The first two types of numbers will be covered first followed by a brief introduc-
tion to arrays (covered in more detail with pointers in section 2.7). The special treatment
of text using character arrays and strings will be discussed in Section 223.

2.2.1 Types of Numbers

A C program must declare the variable before it is used in the program. There are several
pres of numbers used depending on the format in which the numbers are stored (float-
ing-point format or integer format) and the accuracy of the numbers (single-precision ver-
sus double-precision floating-point, for example). The following example program illus-
trates the use of five different types of numbers:
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main()
{
int i; /* size dependent on implementation */
short j; /* 16 bit integer */
long k; /* 32 bit integer */
float a; /* single precision floating-point */
double b; /* double precision floating-point */
k = 72000;
J=k;
i=k;
b =0.1;
a = b;

printf({"\n%1d %d $d\n%20.15f\n%20.15f" ,k,3,i,b,a);

Three types of integer numbers (int, short int, and long int) and two types of
floating-point numbers (f1loat and double) are illustrated in this example. The actual
sizes (in terms of the number of bytes used to store the variable) of these five types de-
pends upon the implementation; all that is guaranteed is that 2 short int variable will
not be larger than a long int and a double will be twice as large as a £loat. The
size of a variable declared as just int depends on the compiler implementation. It is nor-
mally the size most conveniently manipulated by the target computer, thereby making
programs using ints the most efficient on a particular machine. However, if the size of
the integer representation is important in a program (as it often is) then declaring vari-
ables as int could make the program behave differently on different machines. For ex-
ample, on a 16-bit machine, the above program would produce the following results:

72000 6464 6464
0.100000000000000
0.100000001490116

But on a 32-bit machine (using 32-bit ints), the output would be as follows:

72000 6464 72000
0.1000000000006000
0.100000001490116

Note that in both cases the short and long variables, k and 3, (the first two numbers dis-
played) are the same, while the third number, indicating the int i, differs. In both cases,
the value 6464 is obtained by masking the lower 16 bits of the 32-bit k value. Also, in both
cases, the floating-point representation of 0.1 with 32 bits (fLloat) is accurate to eight dec-
imal places (seven places is typical). With 64 bits it is accurate to at least 15 places.

Thus, to make a program truly portable, the program should contain only short
int and long int declarations (these may be abbreviated short and long). In addi-
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tion to the five types illustrated above, the three ints can be declared as unsigned by
preceding the declaration with unsigned. Also, as will be discussed in more detail in the
next section concerning text data, a variable may be declared to be only one byte long by
declaring it a char (signed or unsigned). The following table gives the typical sizes
and ranges of the different variable types for a 32-bit machine (such as a VAX) and a 16.
bit machine (such as the IBM PC).

16-bit 16-bit 32-bit 32-bit
Variable Machine Machine Machine Machine
Declaration Size (bits) Range Size (bits) Range
char 8 ~128 to 127 8 -128 t0 127
unsiged char 8 010255 8 0to 255
int 16 —32768 to 32767 32 +2.1e9
unsigned int 16 0to 65535 32 0to 4.3¢9
short 16 —32768 to 32767 16 —~32768 to 32767
unsigned short 16 0 to 65535 16 0 to 65535
long 32 +2.1e9 32 +2.1e9
unsigned long 32 010 4.3¢9 32 010 4.3¢9
float 32 +1.0e+38 32 +le+38
double 64 +1.0e+306 64 +1e+308
2.2.2 Arrays

Almost all high-level languages allow the definition of indexed lists of a given data type,
commonly referred to as arrays. In C, all data types can be declared as an array simply by
placing the number of elements to be assigned to the array in brackets after the array
name. Multidimensional arrays can be defined simply by appending more brackets con-
taining the array size in each dimension. Any N-dimensional array is defined as follows:

type name[sizel] [size2] [sizeN];

For example, each of the following statements are valid array definitions:

unsigned int 1list[10];

double input[5};

short int x{2000];

char input_buffer{20];
unsigned char imagel256][256];
int matrix{41[31[2]};
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Note that the array definition unsigned char image[256][256] could define an
8-bit, 256 by 256 image plane where a grey scale image is represented by values from 0
to 255. The last definition defines a three-dimensional matrix in a similar fashion. One
difference between C and other languages is that arrays are referenced using brackets to
enclose each index. Thus, the image array, as defined above, would be referenced as
image{i] [j] where 4 and j are row and column indices, respectively. Also, the first
element in all array indices is zero and the last element is N-1, where N is the size of the
array in a particular dimension. Thus, an assignment of the first element of the five ele-
ment, one-dimensional array input (as defined above) such as input[01=1.3; is
legal while input [51=1.3; is not.

Arrays may be initialized when they are declared. The values to initialize the array are
enclosed in one or more sets of braces ({}) and the values are separated by commas. For
example, a one-dimensional array called vector can be declared and initialized as follows:

int vector([6] = { 1, 2, 3, 5, 8, 13 };

A two-dimensional array of six double-precision floating-point numbers can be declared
and initialized using the following statement:

double af33[2] = {
{ 1.5, 2.5},
{1.1le-5, 1.7e5 },
{ 1.765 , 12.678 }
};

Note that commas separate the three sets of inner braces that designate each of the three rows
of the matrix a, and that each array initialization is a statement that must end in a semicolon.

2.3 OPERATORS

Once variables are defined to be a given size and type, some sort of manipulation must be
performed using the variables. This is done by using operators. The C language has more
operators than most languages; in addition to the usual assignment and arithmetic opera-
tors, C also has bitwise operators and a full set of logical operators. Some of these opera-
tors (such as bitwise operators) are especially important in order to write DSP programs
that utilize the target processor efficiently.

2.3.1 Assignment Operators

The most basic operator is the assignment operator which, in C, is the single equal sign
(=). The value on the right of the equal sign is assigned to the variable on the left.
Assignment statements can also be stacked, as in the statement a=b=1; . In this case, the
statement is evaluated right to left so that 1 is assigned to b and b is assigned to a. In C,
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a=ave (x) is an expression, while a=ave(x); is a statement. The addition of the
semicolon tells the compiler that this is all that will be done with the result from the func.
tion ave (x). An expression always has a value that can be used in other expressions,
Thus, a=b+(c=ave (x)); is a legal statement. The result of this statement would be
that the result returned by ave (x) is assigned to ¢ and b+c is assigned to a. C also al-
lows multiple expressions to be placed within one statement by separating them with the
commas. Each expression is evaluated left to right, and the entire expression (comprised
of more than one expression) assumes the value of the last expression which is evaluateq,
For example, a=(olda=a,ave(x)); assigns the current value of a to olda, calls the
function ave (x) and then assigns the value returned by ave (x) to a.

2.3.2 Arithmetic and Bitwise Operators

The usual set of binary arithmetic operators (operators which perform arithmetic on two
operands) are supported in C using the following symbols:

* multiplication

/ division

+ addition

- subtraction

% modulus (integer remainder after division)

The first four operators listed are defined for all types of variables (char, int, £loat,
and double). The modulus operator is only defined for integer operands. Also, there is
no exponent operator in C; this floating-point operation is supported using a simple func-
tion call (see the Appendix for a description of the pow function).

In C, there are three unary arithmetic operators which require only one operand.
First is the unary minus operator (for example, -i, where 1 is an int) that performs a
two’s-complement change of sign of the integer operand. The unary minus is often useful
when the exact hardware implementation of a digital-signal processing algorithm must be
simulated. The other two unary arithmetic operators are increment and decrement, repre-
sented by the symbols ++ and ~-, respectively. These operators add or subtract one from
any integer variable or pointer. The operand is often used in the middle of an expression,
and the increment or decrement can be done before or after the variable is used in the ex-
pression (depending on whether the operator is before or after the variable). Although the
use of ++ and -~ is often associated with pointers (see section 2.7), the following exam-
ple illustrates these two powerful operators with the ints i,j,and k:

i=4;

=17

k = i++ + j; /* i is incremented to 5, k = 11 */
k =k + —-——j; /* 3 is decremented to 6, k = 17 */
k = k + i++; /* i is incremented to 6, k = 22 */

Binary bitwise operations are performed on integer operands using the following symbols:
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& bitwise AND
| bitwise OR
A bitwise exclusive OR
<< arithmetic shift left (number of bits is operand)
>> arithmetic shift right (number of bits is operand)

The unary bitwise NOT operator, which inverts all the bits in the operand, is imple-
mented with the ~ symbol. For example, if 4 is declared as an unsigned int, then
i = ~0; sets i to the maximum integer value for an unsigned int.

2.3.3 Combined Operators

C allows operators to be combined with the assignment operator (=) so that almost any
statement of the form

<variable> = <variable> <operator> <expression>
can be replaced with
<variable> <operator> = <expression>

where <variable> represents the same variable name in all cases. For example, the
following pairs of expressions involving x and ¥ perform the same function:

X =X +y; X += y;
X =X -y X -=y;
X =x*y; X *= vy;
X =x/y; x /=y;
X =x%Yy; X 3= y;
X=X &Yy; X &= y;
X =X :Yy; X = y;
X=x"y; X °=y;
X = X << y; X <<= y;
X =X > vy; X >>= y;

In many cases, the left-hand column of statements will result in a more readable and eas-
ier to understand program. For this reason, use of combined operators is often avoided.
Unfortunately, some compiler implementations may generate more efficient code if the
combined operator is used.

2.3.4 Logical Operators

Like all C expressions, an expression involving a logical operator also has a value. A log-
ical operator is any operator that gives a result of true or false. This could be a compari-
son between two values, or the result of a series of ANDs and ORs. If the result of a logi-
cal operation is true, it has a nonzero value; if it is false, it has the value 0. Loops and if
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statements (covered in section 2.4) check the result of logical operations and change pro.

gram flow accordingly. The nine logical operators are as follows:

< less than

<= less than or equal to
== equal to

>= greater than or equal to
> greater than

1= not equal to

&& logical AND
H] logical OR
L] logical NOT (unary operator)

Note that == can easily be confused with the assignment operator (=) and will result in a
valid expression because the assignment also has a value, which is then interpreted as
true or false. Also, && and | | should not be confused with their bitwise counterparts (&
and |) as this may result in hard to find logic problems, because the bitwise results may
not give true or false when expected.

2.3.5 Operator Precedence and Type Conversion

Like all computer languages, C has an operator precedence that defines which operators in
an expression are evaluated first. If this order is not desired, then parentheses can be used
to change the order. Thus, things in parentheses are evaluated first and items of equal
precedence are evaluated from left to right. The operators contained in the parentheses or
expression are evaluated in the following order (listed by decreasing precedence):

4, —— increment, decrement

- unary minus

*,/,% multiplication, division, modulus
+,- addition, subtraction

<<, >> shift left, shift right
<,<=,>=,> relational with less than or greater than
==,1= equal, not equal

& bitwise AND

A bitwise exclusive OR

| bitwise OR

&& logical AND

i1 logical OR

Staternents and expressions using the operators just described should normally use vari-
ables and constants of the same type. If, however, you mix types, C doesn’t stop dead
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(like Pascal) or produce a strange unexpected result (like FORTRAN). Instead, C uses a
set of rules to make type conversions automatically. The two basic rules are:

(1) If an operation involves two types, the value with a lower rank is converted to the
type of higher rank. This process is called promotion and the ranking from highest
to lowest type is double, float, long, int, short, and char. Unsigned of each of the
types outranks the individual signed type.

(2) In an assignment statement, the final result is converted to the type of the variable
that is being assigned. This may result in promotion or demotion where the value is
truncated to a lower ranking type.

Usually these rules work quite well, but sometimes the conversions must be stated
explicitly in order to demand that a conversion be done in a certain way. This is accom-
plished by type casting the quantity by placing the name of the desired type in parenthe-
ses before the variable or expression. Thus, if i is an int, then the statement
i=10*(1.55+1.67); would set i to 32 (the truncation of 32.2), while the statement
i=10*((int)1.55+1.67); would set i to 26 (the truncation of 26.7 since
(int)1.55 is truncated to 1).

2.4 PROGRAM CONTROL

The large set of operators in C allows a great deal of programming flexibility for DSP ap-
plications. Programs that must perform fast binary or logical operations can do so without
using special functions to do the bitwise operations. C also has a complete set of program
control features that allow conditional execution or repetition of statements based on the
result of an expression. Proper use of these control structures is discussed in section
2.11.2, where structured programming techniques are considered.

2.4.1 Conditional Execution: if-else

In C, as in many languages, the i £ statement is used to conditionally execute a series of
statements based on the result of an expression. The if statement has the following
generic format:

if (value)
statementl;

else
statement?2;

where value is any expression that results in (or can be converted to) an integer value.
If value is nonzero (indicating a true result), then statement1 is executed; otherwise,
statement2 is executed. Note that the result of an expression used for value need
not be the result of a logical operation—all that is required is that the expression results in
a zero value when statement2 should be executed instead of statement1. Also, the
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else statement2; portion of the above form is optional, allowing statement to
be skipped if value is false.

When more than one statement needs to be executed if a particular value is true, 3
compound statement is used. A compound statement consists of a left brace ({), some
number of statements (each ending with a semicolon), and a right brace (}). Note that the
body of the main () program and functions in Listing 2.1 are compound statements. In
fact, a single statement can be replaced by a compound statement in any of the contrg]
structures described in this section. By using compound statements, the if-else cop.
trol structure can be nested as in the following example, which converts a floating-point
number (result) to a 2-bit twos complement number (out):

if(result > 0) { /* positive outputs */
if (result > sigma)
out = 1; /* biggest output */
else
out = 0; /* 0 < result <= sigma */
}
else { /* negative outputs */
if(result < sigma)
out = 2; /* smallest output */
else
out = 1; /* sigma <= result <= 0 */

Note that the inner if-else statements are compound statements (each consisting of two
statements), which make the braces necessary in the outer i f-else control structure (with-
out the braces there would be too many else statements, resulting in a compilation error).

2.4.2 The switch Statement

When a program must choose between several alternatives, the if-else statement be-
comes inconvenient and sometimes inefficient. When more than four alternatives from a
single expression are chosen, the switch statement is very useful. The basic form of the
switch statement is as follows:

switch(integer expression) {
case constantl:

statements; (optional)

break; (optional)
case constant2:

statements; (optional)

break; (optional)

e e (more optional statements)
default: (optional)

statements; (optional)
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Program control jumps to the statement after the case label with the constant (an integer
or single character in quotes) that matches the result of the integer expression in the
switch statement. If no constant matches the expression value, control goes to the state-
ment following the default label. If the default label is not present and no matching case
labels are found, then control proceeds with the next statement following the switch
statement. When a matching constant is found, the remaining statements after the corre-
sponding case label are executed until the end of the switch statement is reached, or a
break statement is reached that redirects control to the next statement after the switch
statement. A simple example is as follows:

switch(i) {

case 0:
printf("\nError: I is zero");
break;

case 1:
J = k*k;
break;

default:
j = k*k/i;

The use of the break statement after the first two case statements is required in order to
prevent the next statements from being executed (a break is not required after the last
case or default statement). Thus, the above code segment sets j equal to k*k/i,
unless i is zero, in which case it will indicate an error and leave J unchanged. Note that
since the divide operation usually takes more time than the case statement branch, some

execution time will be saved whenever i equals 1.

2.4.3 Single-Line Conditional Expressions
C offers a way to express one if-else control structure in a single line. It is called a

conditional expression, because it uses the conditional operator, ? z, which is the only tri-
nary operator in C. The general form of the conditional expression is:

expressionl ? expression2 : expression3

If expressionl is true (nonzero), then the whole conditional expression has the value
of expression2. If expressionl is false (0), the whole expression has the value of
expresgsion3. One simple example is finding the maximum of two expressions:

maxdif = (a0 > a2) ? a0-al : a2-al;

Conditional expressions are not necessary, since if-else statements can provide the
same function. Conditional expressions are more compact and sometimes lead to more
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efficient machine code. On the other hand, they are often more confusing than the fami.
iar 1 f£-else control structure.

2.4.4 Loops: while, do-while, and for

C has three control structures that allow a statement or group of statements to be repeated a
fixed or variable number of times. The while loop repeats the statements until a test ex-
pression becomes false, or zero. The decision to go through the loop is made before the
loop is ever started. Thus, it is possible that the loop is never traversed. The general form is;

while (expression)
statement

where statement can be a single statement or a compound statement enclosed in
braces. An example of the latter that counts the number of spaces in a null-terminated
string (an array of characters) follows:

space_count = 0; /* space_count is an int */
i=0; /* array index, i = 0 */
while(stringfi])} {

if (string[i] == ' ') space_count++;.

144 /* next char */

Note that if the string is zero length, then the value of stxring{i] will initially point to
the null terminator (which has a zero or false value) and the while loop will not be exe-
cuted. Normally, the while loop will continue counting the spaces in the string until the
null terminator is reached.

The do-while loop is used when a group of statements need to be repeated and
the exit condition should be tested at the end of the loop. The decision to go through the
loop one more time is made after the loop is traversed so that the loop is always executed
at least once. The format of do-while is similar to the while loop, except that the do
keyword starts the statement and while (expression) ends the statement. A single
or compound statement may appear between the do and the while keywords. A common
use for this loop is in testing the bounds on an input variable as the following example il-
lustrates:

do {
printf("\nEnter FFT length (less than 1025) :");
scanf ("%d",&fft_length);

} while(fft_length > 1024);

In this code segment, if the integer ££t_1length entered by the user is larger than 1024,
the user is prompted again until the ££t_length entered is 1024 or less.
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The for loop combines an initialization statement, an end condition statement, and
an action statement (executed at the end of the loop) into one very powerful control struc-
ture. The standard form is:

for(initialize ; test condition ; end update)
statement; i

The three expressions are all optional (fox (; ; ) ; is an infinite loop) and the statement may
be a single statement, a compound statement or just a semicolon (a null statement). The most
frequent use of the £or loop is indexing an array through its elements. For example,

for(i = 0 ; i < length ; i++) a[i]l = 0;

sets the elements of the array a to zero from a[0] up to and including a[length-1].
This £or statement sets i to zero, checks to see if i is less than length, if so it exe-
cutes the statement a [1]=0;, increments i, and then repeats the loop until i is equal to
length. The integer i is incremented or updated at the end of the loop and then the test
condition statement is executed. Thus, the statement after a £or loop is only executed if
the test condition in the £ox loop is true. For loops can be much more complicated, be-
cause each statement can be multiple expressions as the following example illustrates:

for(i =0, i3 =1 ; i <25 ; i++ , i3 = 3*i3)
printf("\n%d %4",i,i3);

This statement uses two ints in the £or loop (i, i3) to print the first 25 powers of 3.
Note that the end condition is still a single expression (i < 25), but that the initialization
and end expressions are two assignments for the two integers separated by a comma.

2.4.5 Program Jumps: break, continue, and goto

The loop control structures just discussed and the conditional statements (1 £, if~else,
and switch) are the most important control structures in C. They should be used ex-
clusively in the majority of programs. The last three control statements (break,
continue, and goto) allow for conditional program jumps. If used excessively, they
will make a program harder to follow, more difficult to debug, and harder to modify.

The break statement, which was already illustrated in conjunction with the switch
statement, causes the program flow to break free of the switch, for, while, or
do-while that encloses it and proceed to the next statement after the associated control
structure. Sometimes break is used to leave a loop when there are two or more reasons
to end the loop. Usually, however, it is much clearer to combine the end conditions in a
single logical expression in the loop test condition. The exception to this is when a large
number of executable statements are contained in the loop and the result of some state-
ment should cause a premature end of the loop (for example, an end of file or other error
condition).
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The continue statement is almost the opposite of break; the continyg
causes the rest of an iteration to be skipped and the next iteration to be started. The
cont inue statement can be used with for, while, and do-while loops, but cannet
be used with switch. The flow of the loop in which the continue statement appears
is interrupted, but the loop is not terminated. Although the continue statement can Te-
sult in very hard-to-follow code, it can shorten programs with nested if-else state.
ments inside one of three loop structures.

The goto statement is available in C, even though it is never required in C pro-
gramming. Most programmers with a background in FORTRAN or BASIC computer lan-
guages (both of which require the goto for program control) have developed bad pro-
gramming habits that make them depend on the goto. The goto statement in C uses 3
label rather than a number making things a little better. For example, one possible legiti-
mate use of goto is for consolidated error detection and cleanup as the following simple
example illustrates:

program statements

status = function_one(alpha,beta,constant);
if (status != 0) goto error_exit;

more program statements

status = function_ two(delta, time);

if(status != 0) goto error_exit;
error_exit: /*end up here from all errors */
switch(status) {
case 1:
printf("\nDivide by zero error\n");
exit();
case 2:
printf(“\nout of memory error\n");
exit();
case 3:
printf{"\nLog overflow error\n");
exit();
default:
printf ("\nUnknown error\n");
exit();
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In the above example, both of the fictitious functions, function_one and
function_two (see the next section concerning the definition and use of functions),
perform some set of operations that can result in one of several errors. If no errors are de-
tected, the function returns zero and the program proceeds normally. If an error is de-
tected, the integer status is set to an error code and the program jumps to the label
error_exit where a message indicating the type of error is printed before the program
is terminated.

2.5 FUNCTIONS

All C programs consist of one or more functions. Even the program executed first is a
function called main(), as illustrated in Listing 2.1. Thus, unlike other programming
languages, there is no distinction between the main program and programs that are called
by the main program (sometimes called subroutines). A C function may or may not re-
tumn a value thereby removing another distinction between subroutines and functions in
languages such as FORTRAN. Each C function is a program equal to every other func-
tion. Any function can call any other function (a function can even call itself), or be
called by any other function. This makes C functions somewhat different than Pascal pro-
cedures, where procedures nested inside one procedure are ignorant of procedures else-
where in the program. It should also be pointed out that unlike FORTRAN and several
other languages, C always passes functions arguments by value not by reference. Because
arguments are passed by value, when a function must modify a variable in the calling
program, the C programmer must specify the function argument as a pointer to the begin-
ning of the variable in the calling program’s memory (see section 2.7 for a discussion of
pointers).

2.5.1 Defining and Declaring Functions

A function is defined by the function type, a function name, a pair of parentheses contain-
ing an optional formal argument list, and a pair of braces containing the optional exe-
cutable statements. The general format for ANSI C is as follows:

type name(formal argument list with declarations)
{
function body

The type determines the type of value the function returns, not the type of arguments. If
no type is given, the function is assumed to return an int (actually, a variable is also
assumed to be of type int if no type specifier is provided). If a function does not return a
value, it should be declared with the type void. For example, Listing 2.1 contains the
function average as follows:
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float average(float arrayl[l,int size)
{
int i;
float sum = 0.0; /* initialize and declare sum */
for{(i =0 ; i < size ; i++)
sum = sum + arraylil; /* calculate sum */
return(sum/size) ; /* return average */

The first line in the above code segment declares a function called average will returp
a single-precision floating-point value and will accept two arguments. The two argumen;
names (array and size) are defined in the formal argument list (also called the formal
parameter list). The type of the two arguments specify that array is a one-dimensional
array (of unknown length) and size is an int. Most modern C compilers allow the ar-
gument declarations for a function to be condensed into the argument list.

Note that the variable array is actually just a pointer to the beginning of the
float array that was allocated by the calling program. By passing the pointer, only one
value is passed to the function and not the large floating-point array. In fact, the function
could also be declared as follows:

float average(float *array, int size)

This method, although more correct in the sense that it conveys what is passed to the
function, may be more confusing because the function body references the variable as
arrayl[il.

The body of the function that defines the executable statements and local variables
to be used by the function are contained between the two braces. Before the ending brace
(3), a return statement is used to return the £loat result back to the calling program. If
the function did not return a value (in which case it should be declared void), simply
omitting the return statement would return control to the calling program after the last
statement before the ending brace. When a function with no return value must be termi-
nated before the ending brace (if an error is detected, for example), a return; state-
ment without a value should be used. The parentheses following the return statement are
only required when the result of an expression is returned. Otherwise, a constant or vari-
able may be returned without enclosing it in parentheses (for example, return 0; or
return n;).

Arguments are used to convey values from the calling program to the function.
Because the arguments are passed by value, a local copy of each argument is made for
the function to use (usually the variables are stored on the stack by the calling program).
The local copy of the arguments may be freely modified by the function body, but will
not change the values in the calling program since only the copy is changed. The return
statement can communicate one value from the function to the calling program. Other
than this returned value, the function may not directly communicate back to the calling
program. This method of passing arguments by value, such that the calling program’s
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variables are isolated from the function, avoids the common problem in FORTRAN
where modifications of arguments by a function get passed back to the calling program,
resulting in the occasional modification of constants within the calling program.

When a function must return more than one value, one or more pointer arguments
must be used. The calling program must allocate the storage for the result and pass the
function a pointer to the memory area to be modified. The function then gets a copy of
the pointer, which it uses (with the indirection operator, *, discussed in more detail in
Section 2.7.1) to modify the variable allocated by the calling program. For example, the
functions average and variance in Listing 2.1 can be combined into one function
that passes the arguments back to the calling program in two £1oat pointers called ave
and var, as follows:

void stats(float *array,int size,float *ave, float *var)

{

int i;
float sum = 0.0; /* initialize sum of signal */
float sum2 = 0.0; /* sum of signal squared */
for(i = 0 ; 1 < size ; i++) {

sum = sum + arrayl[il; /* calculate sums */

sum2 = sum2 + arrayli]*arrayl([i];

*ave sum/size; /* pass average and variance */
*var = (sum2-sum* (*ave))/{size-1);

In this function, no value is returned, so it is declared type wvoid and no return statement
is used. This stats function is more efficient than the functions average and vari-
ance together, because the sum of the array elements was calculated by both the average
function and the variance function. If the variance is not required by the calling program,
then the average function alone is much more efficient, because the sum of the squares of
the array elements is not required to determine the average alone.

2.5.2 Storage Class, Privacy, and Scope

In addition to type, variables and functions have a property called storage class. There
are four storage classes with four storage class designators: auto for automatic variables
stored on the stack, extern for external variables stored outside the current module,
static for variables known only in the current module, and register for temporary
variables to be stored in one of the registers of the target computer. Each of these four
storage classes defines the scope or degree of the privacy a particular variable or function
holds. The storage class designator keyword (auto, extern, static, or register)
must appear first in the variable declaration before any type specification. The privacy of
a variable or function is the degree to which other modules or functions cannot access a
variable or call a function. Scope is, in some ways, the complement of privacy because
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t}:j scope of a variable describes how many modules or functions have access to the varj.
able.

o Auto variables can only be declared within a function, are created when the func.
tion is invoked, and are lost when the function is exited. Auto variables are known only
to the function in which they are declared and do not retain their value from one invoca-
tion of a function to another. Because auto variables are stored on a stack, a functiop
that uses only auto variables can call itself recursively. The auto keyword is rarely
ulsed in C programs, since variables declared within functions default to the auto storage
class.

Another important distinction of the auto storage class is that an auto variable ig
only defined within the control structure that surrounds it. That is, the scope of an auto
variable is limited to the expressions between the braces ({ and }) containing the variable
declaration. For example, the following simple program would generate a compiler error
since 3 is unknown outside of the for loop: '

main()
{
int i;
for(i=0;i<10;i++) {
int j; /* declare j here */
J o= i*i;
printf(*sd",j);
}
printf (“sd",j); /* j unknown here */

Register variables have the same Scope as auto variables, but are stored in
some type of register in the target computer. If the target computer does not have regis-
ters, or if no more registers are available in the target computer, a variable declared as
register will revert to auto. Because almost all microprocessors have a large num-
ber of registers that can be accessed much faster than outside memory, register vari-
ables can be used to speed Up program execution significantly. Most compilers limit the
use of register variables to pointers, integers, and characters, because the target ma-
c.hines rarely have the ability to use registers for floating-point or double-precision opera-
tions.

Extern variables have the broadest scope. They are known to all functions in a
module and are even known outside of the module in that they are declared. Extern
variables are stored in their own separate data area and must be declared outside of any
functions. Functions that access extern variables must be careful not to call themselves
or call other functions that access the same extern variables, since extexrn variables
retain their values as functions are entered and exited. Extern is the default storage
class for variables declared outside of functions and for the functions themselves. Thus,
functions not declared otherwise may be invoked by any function in a module as well as
by functions in other modules.
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Static variables differ from extern variables only in scope. A static vari-
able declared outside of a function in one module is known only to the functions in that
module. A static variable declared inside a function is known only to the function in
which it is declared. Unlike an auto variable, a static variable retains its value from
one invocation of a function to the next. Thus, static refers to the memory area as-
signed to the variable and does not indicate that the value of the variable cannot be
changed. Functions may also be declared statie, in which case the function is only
known to other functions in the same module. In this way, the programmer can prevent
other modules (and, thereby, other users of the object module) from invoking a particular
function.

2.5.3 Function Prototypes

Although not in the original definition of the C language, function prototypes, in one
form or another, have become a standard C compiler feature. A function prototype is a
statement (which must end with a semicolon) describing a particular function. It tells the
compiler the type of the function (that is, the type of the variable it will return) and the
type of each argument in the formal argument list. The function named in the function
prototype may or may not be contained in the module where it is used. If the function is
not defined in the module containing the prototype, the prototype must be declared exter-
nal. All C compilers provide a series of header files that contain the function prototypes
for all of the standard C functions. For example, the prototype for the stats function
defined in Section 2.5.1 is as follows:

extern void stats(float *,int,float *,float *);

This prototype indicates that stats (which is assumed to be in another module) returns
no value and takes four arguments. The first argument is a pointer to a £loat (in this
case, the array to do statsistics on). The second argument is an integer (in this case, giv-
ing the size of the array) and the last two arguments are pointers to £loats which will
return the average and variance results.

The result of using function prototypes for all functions used by a program is that
the compiler now knows what type of arguments are expected by each function. This in-
formation can be used in different ways. Some compilers convert whatever type of actual
argument is used by the calling program to the type specified in the function prototype
and issue a warning that a data conversion has taken place. Other compilers simply issue
a warning indicating that the argument types do not agree and assume that the program-
mer will fix it if such a mismatch is a problem. The ANSI C method of declaring func-
tions also allows the use of a dummy variable with each formal parameter. In fact, when
this ANSI C approach is used with dummy arguments, the only difference between func-
tion prototypes and function declarations is the semicolon at the end of the function pro-
totype and the possible use of extern to indicate that the function is defined in another
module.
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2.6 MACROS AND THE C PREPROCESSOR

The C preprocessor is one of the most useful features of the C programming language.
Although most languages allow compiler constants to be defined and used for conditiona]
compilation, few languages (except for assembly language) allow the user to define
macros. Perhaps this is why C is occasionally referred to as a portable macro assembly
langueage. The large set of preprocessor directives can be used to completely change the
look of a C program such that it is very difficult for anyone to decipher. On the other
hand, the C preprocessor can be used to make complicated programs easy to follow, very
efficient, and easy to code. The remainder of this chapter and the programs discussed in
this book hopefully will serve to illustrate the latter advantages of the C preprocessor.

The C preprocessor allows conditional compilation of program segments, user-
defined symbolic replacement of any text in the program (called aliases as discussed in
Section 2.6.2), and user-defined multiple parameter macros. All of the preprocessor di-
rectives are evaluated before any C code is compiled and the directives themselves are re-
moved from the program before compilation begins. Each preprocessor directive begins
with a pound sign (#) followed by the preprocessor keyword. The following list indicates
the basic use of each of the most commonly used preprocessor directives:

j#idefine NAME macro Associate symbol NAME with macro definition
. (optional parameters)

f#include "file" Copy named £ile (with directory specified) into
current compilation

#include <file> Include £ile from standard C library

#if expression Conditionally compile the following code if result
of expression is true

#ifdef symbol Conditionally compile the following code if the
symbol is defined

#ifndef symbol Conditionally compile the following code if the
symbol is not defined

#else Conditionally compile the following code if the
associated #i £ is not true

#endif Indicates the end of previous #else, #if,
#ifdef, or #ifndef

#undef macro Undefine previously defined macro

2.6.1 Conditional Preprocessor Directives

Most of the above preprocessor directives are used for conditional compilation of por-
tions of a program. For example, in the following version of the stats function (de-
scribed previously in section 2.5.1), the definition of DEBUG is used to indicate that the
print statements should be compiled:
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void stats(float *array, int size, float *ave, float *var)

{

int 1i;
float sum = 0.0; /* initialize sum of signal */
float sum2 = 0.0; /* sum of signal squared */

for(i = 0 ; i < size ; 1++) {
sum = sum + arraylil;
sum2 = sum2 + arrayl[i]*array]{i]; /* calculate sums */
}

#ifdef DEBUG
printf("\nIn stats sum = %f sum2 = %£", sum, sum2);
printf ("\nNumber of array elements = %d",size);

#endif
*ave = sum/size; /* pass average */
*var = (sum2 - sum* (*ave))/(size-1); /* pass variance */

}

If the preprocessor parameter DEBUG is defined anywhere before the #ifdef DEBUG
statement, then the print£ statements will be compiled as part of the program to aid in
debugging stats (or perhaps even the calling program). Many compilers allow the defi-
nition of preprocessor directives when the compiler is invoked. This allows the DEBUG
option to be used with no changes to the program text.

2.6.2 Aliases and Macros

Of all the preprocessor directives, the #define directive is the most powerful because it
allows aliases and multiple parameter macros to be defined in a relatively simple way.
The most common use of #define is a macro with no arguments that replaces one
string (the macro name) with another string (the macro definition). In this way, an alias
can be given to any string including all of the C keywords. For example:

#define DO for(

replaces every occurrence of the string DO (all capital letters so that it is not confused

with the C keyword do) with the four-character string for (. Similarly, new aliases of all
the C keywords could be created with several #define statements (although this seems
silly since the C keywords seem good enough). Even single characters can be aliased. For
example, BEGIN could be aliased to { and END could be aliased to }, which makes a C
program look more like Pascal.

The #define directive is much more powerful when parameters are used to create
a true macro. The above DO macro can be expanded to define a simple FORTRAN style
DO loop as follows:

#define DO(var,beg,end) for(var=beg; var<=end; var++)
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The three macro parameters var, beg, and end are the variable, the beginning value
and the ending value of the DO loop. In each case, the macro is invoked and the string’
placed in each argument is used to expand the macro. For example,

DO(i,1,10)
expands to
for(i=1; i<=10; i++)

which is the valid beginning of a for loop that will start the variable i at 1 and stop it g¢
10. Although this DO macro does shorten the amount of typing required to create such 3
simple for loop, it must be used with caution. When macros are used with other opera-
tors, other macros, or other functions, unexpected program bugs can occur. For example,
the above macro will not work at all with a pointer as the var argument, becausge
DO(*ptr, 1,10) would increment the pointer’s value and not the value it points to (see
section 2.7.1). This would probably result in a very strange number of cycles through the
loop (if the loop ever terminated). As another example, consider the following CcuBg
macro, which will determine the cube of a variable:

#define CUBE(x) (X) * (x) * (x)

This macro will work fine (although inefficiently) with CUBE (i+3), since it would ex-
pand to (i+j)=* (i+3) * (i+3). However, CUBE (i++) expands to (i+4)*(i+4)
*(i++), resulting in i getting incremented three times instead of once. The resulting
value would be x(x+1)(x+2) not x3.

The ternary conditional operator (see section 2.4.3) can be used with macro defini-
tions to make fast implementations of the absolute value of a variable (ABS), the mini-
mum of two variables (MIN), the maximum of two variables (MAX), and the integer
rounded value of a floating-point variable (ROUND) as follows:

#define ABS(a) (({a) < 0) ? (-a) : (a)

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

#define MIN(a,b) (((a) < (b)) ? (a): (b))

#define ROUND(a) (((a}<0)2?(int) ((a)-0.5): {int) ((a)+0.5))

Note that each of the above macros is enclosed in parentheses so that it can be used freely
in expressions without uncertainty about the order of operations. Parentheses are also re-
quired around each of the macro parameters, since these may contain operators as well as
simple variables.

All of the macros defined so far have names that contain only capital letters. While
this is not required, it does make it easy to separate macros from normal C keywords
in programs where macros may be defined in one module and included (using the
#include directive) in another. This practice of capitalizing all macro names and using
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lower case for variable and function names will be used in all programs in this book and
on the accompanying disk.

2.7 POINTERS AND ARRAYS

A pointer is a variable that holds an address of some data, rather than the data itself. The
use of pointers is usually closely related to manipulating (assigning or changing) the ele-
ments of an array of data. Pointers are used primarily for three purposes:

(1) To point to different data elements within an array

(2) To allow a program to create new variables while a program is executing (dynamic
memory allocation)

(3) To access different locations in a data structure

The first two uses of pointers will be discussed in this section; pointers to data structures
are considered in section 2.8.2,

2.7.1 Special Pointer Operators

Two special pointer operators are required to effectively manipulate pointers: the indi-
rection operator (*) and the address of operator (&). The indirection operator (*) is used
whenever the data stored at the address pointed to by a pointer is required, that is, when-
ever indirect addressing is required. Consider the following simple program:

main()
{

int i, *ptr;

i=17; /* set the value of i */
ptr = &i; /* point to address of i */
printf(“\n%d~,i).; /* print i two ways */
printf("\n¥d", *ptr) ;

*ptr = 11; /* change i with pointer */
printf("\n%d 4", *ptr,i); /* print change */

This program declares that i is an integer variable and that ptr is a pointer to an integer
variable. The program first sets i to 7 and then sets the pointer to the address of i by the
Statement ptr=&i;. The compiler assigns i and ptr storage locations somewhere in
memory. At run time, ptr is set to the starting address of the integer variable i. The above
program uses the function printf (see section 2.9.1) to print the integer value of i in two
different ways—by printing the contents of the variable 1 (printf("\n%d",i);),
and by using the indirection operator (printf ("\n%d", *ptr);). The presence of
the * operator in front of ptr directs the compiler to pass the value stored at the address
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ptr to the print£ function (in this case, 7). If only ptr were used, then the address as-
signed to ptx would be displayed instead of the value 7. The last two lines of the exam-
ple illustrate indirect storage; the data at the ptx address is changed to 11. This results in
changing the value of i only because ptr is pointing to the address of i.

An array is essentially a section of memory that is allocated by the compiler and
assigned the name given in the declaration statement. In fact, the name given is nothing
more than a fixed pointer to the beginning of the array. In C, the array name can be used
as a pointer or it can be used to reference an element of the array (i.e., af2]). If a is de-
clared as some type of array then *a and a[0] are exactly equivalent. Furthermore,
* (a+i) and a[i] are also the same (as long as i is declared as an integer), although
the meaning of the second is often more clear. Arrays can be rapidly and sequentially ac-
cessed by using pointers and the increment operator (++). For example, the following
three statements set the first 100 elements of the array a to 10:

int *pointer;
pointer = a;
for(i = 0; i < 100 ; i++) *pointer++ = 10;

On many computers this code will execute faster than the single statement for (i=0;
i<100; i++) alil=10;, because the post increment of the pointer is faster than the
array index calculation.

2.7.2 Pointers and Dynamic Memory Allocation

C has a set of four standard functions that allow the programmer to dynamically change
the type and size of variables and arrays of variables stored in the computer’s memory. C
programs can use the same memory for different purposes and not waste large sections of
memory on arrays only used in one small section of a program. In addition, auto vari-
ables are automatically allocated on the stack at the beginning of a function (or any sec-
tion of code where the variable is declared within a pair of braces) and removed from the
stack when a function is exited (or at the right brace, }). By proper use of auto variables
(see section 2.5.2) and the dynamic memory allocation functions, the memory used by a
particular C program can be very little more than the memory required by the program at
every step of execution. This feature of C is especially attractive in multiuser environ-
ments where the product of the memory size required by a user and the time that memory
is used ultimately determines the overall system performance. In many DSP applications,
the proper use of dynamic memory allocation can enable a complicated DSP function to
be performed with an inexpensive single chip signal processor with a small limited inter-
nal memory size instead of a more costly processor with a larger external memory.

Four standard functions are used to manipulate the memory available to a particular
program (sometimes called the heap to differentiate it from the stack). Malloc allocates
bytes of storage, calloc allocates items which may be any number of bytes long, £ree
removes a previously allocated item from the heap, and realloc changes the size of a
previously allocated item.

When using each function, the size of the item to be allocated must be passed to the
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function. The function then returns a pointer to a block of memory at least the size of the
item or items requested. In order to make the use of the memory allocation functions
portable from one machine to another, the built-in compiler macro sizeof must be
used. For example:

int *ptr;
ptr = (int *) malloc(sizeof(int));

allocates storage for one integer and points the integer pointer, ptr, to the beginning of
the memory block. On 32-bit machines this will be a four-byte memory block (or one
word) and on 16-bit machines (such as the IBM PC) this will typically be only two bytes.
Because malloc (as well as calloc and realloc) returns a character pointer, it must
be cast to the integer type of pointer by the (int *) cast operator. Similarly, calloc
and a pointer, array, can be used to define a 25-element integer array as follows:

int *array:
array = (int *) calloc(25,sizeof(int));

This statement will allocate an array of 25 elements, each of which is the size of an int
on the target machine. The array can then be referenced by using another pointer (chang-
ing the pointer array is unwise, because it holds the position of the beginning of the allo-
cated memory) or by an array reference such as array[i] (where i may be from O to
24). The memory block allocated by calloc is also initialized to zeros.

Malloc, calloc, and £ree provide a simple general purpose memory allocation
package. The argument to £ree (cast as a character pointer) is a pointer to a block previ-
ously allocated by malloc or calloc; this space is made available for further alloca-
tion, but its contents are left undisturbed. Needless to say, grave disorder will result if the
space assigned by malloc is overrun, or if some random number is handed to free.
The function £ree has no return value, because memory is always assumed to be hap-
pily given up by the operating system.

Realloc changes the size of the block previously allocated to a new size in bytes
and returns a pointer to the (possibly moved) block. The contents of the old memory
block will be unchanged up to the lesser of the new and old sizes. Realloc is used less
than calloc and malloc, because the size of an array is usually known ahead of time.
However, if the size of the integer array of 25 elements allocated in the last example must
be increased to 100 elements, the following statement can be used:

array = {(int *) realloc( (char *)array, 100*sizeof(int));

Note that unlike calloc, which takes two arguments (one for the number of items and
one for the item size), realloc works similar to malloc and takes the total size of the
array in bytes. It is also important to recognize that the following two statements are not
equivalent to the previous realloc statement:

free((char *)array);
array = {(int *) calloc(100,sizeof(int));
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These statements do change the size of the integer array from 25 to 100 elements, but g,
not preserve the contents of the first 25 elements. In fact, calloc will initialize al] 1y
integers to zero, while realloc will retain the first 25 and not set the remaining 75
array elements to any particular value.

Unlike £ree, which returns no value, malloc, realloc, and calloc retum 5
null pointer (0) if there is no available memory or if the area has been corrupted by stor.
ing outside the bounds of the memory block. When realloe returns 0, the block
pointed to by the original pointer may be destroyed.

2.7.3 Arrays of Pointers
Any of the C data types or pointers to each of the data types can be declared as an array,

Arrays of pointers are especially useful in accessing large matrices. An array of pointerg
to 10 rows each of 20 integer elements can be dynamically allocated as follows:

int *mat(10];

int i;
for(i = 0 ; i <10 ; i++) {
mat[i] = (int *)calloc(20, sizeof (int));

if(lmatfi]) |
printf ("\nError in matrix allocation\n"};
exit(1);

In this code segment, the array of 10 integer pointers is declared and then each pointer is
set to 10 different memory blocks allocated by 10 successive calls to calloe. After each
call to calloc, the pointer must be checked to insure that the memory was available
(!mat[i] will be true if mat [i] is null). Each element in the matrix mat can now be
accessed by using pointers and the indirection operator. For example, * (mat {i] + i)
gives the value of the matrix element at the ith row (0-9) and the jth column (0-19) and
is exactly equivalent to mat [i] [ J1. In fact, the above code segment is equivalent (in
the way mat may be referenced at least) to the array declaration int mat [10]1120];,
except that mat [10] [20] is allocated as an auto variable on the stack and the above
calls to calloc allocates the space for mat on the heap. Note, however, that when mat
is allocated on the stack as an auto variable, it cannot be used with free or realloc
and may be accessed by the resulting code in a completely different way.

The calculations required by the compiler to access a particular element in a two-
dimensional matrix (by using matrix{i] [j], for example) usually take more instruc-
tions and more execution time than accessing the same matrix using pointers. This is es-
pecially true if many references to the same matrix row or column are required. However,
depending on the compiler and the speed of pointer operations on the target machine, ac-
cess to a two-dimensional array with pointers and simple pointers operands (even incre-
ment and decrement) may take almost the same time as a reference to a matrix such as
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ali] [3]. For example, the product of two 100 x 100 matrices could be coded using
two-dimensional array references as follows:

int a[lOO][lOO],b[lOO][100],0[100][100]; /* 3 matrices */
int i,3j,k; /* indices */

/* code to set up mat and vec goes here */

/* do matrix multiply ¢ = a * b */
for(i = 0 ; i < 100 ; j++) {
for(j = 0 ; j < 100 ; j++) {
clil[j]l = 0;
for(k = 0 ; k < 100 ; k++)
cli][3] += alillk] * blk][3j);

The same matrix product could also be performed using arrays of pointers as follows:

int a[lOO][100],b[100][100],c[100][100]; /* 3 matrices */
int *aptr, *bptr, *cptr; /* pointers to a,b,c */
int i,3,k; /* indicies */.

/* code to set up mat and vec goes here */

/* doc=a*b */
for(i = 0 ; 1 < 100 ; i++) {
cptr = c[i];
bptr = b{0];
for(j = 0 ; j <100 ; j++) {
aptr = ali}l;
*cptr = (*aptr++) * (*bptr++);
for(k = 1 ; k < 100; k++) {
*eptr += (*aptr++) * blk][j];
}
cptr++;

The latter form of the matrix multiply code using arrays of pointers runs 10 to 20 percent
faster, depending on the degree of optimization done by the compiler and the capabilities
of the target machine. Note that ¢[1] and a [4i] are references to arrays of pointers each
pointing to 100 integer values. Three factors help make the program with pointers faster:

(1) Pointer increments (such as *aptr++) are usually faster than pointer adds.
(2) No multiplies or shifts are required to access a particular element of each matrix.
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(3) The first add in the inner most loop (the one involving k) was taken outside the
loop (using pointers aptr and bptr) and the initialization of ¢[11 [J} to zero
was removed.

2.8 STRUCTURES

Pointers and arrays allow the same type of data to be arranged in a list and easily accessed
by a program. Pointers aiso allow arrays to be passed to functions efficiently and dynami-
cally created in memory. When unlike logically related data types must be manipulated,
the use of several arrays becomes cumbersome. While it is always necessary to process
the individual data types separately, it is often desirable to move all of the related data
types as a single unit. The powerful C data construct called a structure allows new data
types to be defined as a combination of any number of the standard C data types. Once the
size and data types contained in a structure are defined (as described in the next section),
the named structure may be used as any of the other data types in C. Arrays of structures,
pointers to structures, and structures containing other structures may all be defined.

One drawback of the user-defined structure is that the standard operators in C do not
work with the new data structure. Although the enhancements to C available with the C++
programining language do allow the user to define structure operators (see The C++
Programming Language, Stroustrup, 1986), the widely used standard C language does not
support such concepts. Thus, functions or macros are usually created to manipulate the
structures defined by the user. As an example, some of the functions and macros required
to manipulate structures of complex floating-point data are discussed in section 2.8.3.

2.8.1 Declaring and Referencing Structures

A structure is defined by a structure template indicating the type and name to be used to
reference each element listed between a pair of braces. The general form of an N-element
structure is as follows:

struct tag name {
typel element namel;
type2 element name2;

typeN element_nameN;
} variable_name;

In each case, typel, type2, ..., typeN refer to a valid C data type (char, int,
float, or double without any storage class descriptor) and element namel,
element_name2, ..., element_nameN refer to the name of one of the elements
of the data structure. The tag_name is an optional name used for referencing the struc-
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" ture later. The optional variable_name, or list of variable names, defines the names

of the structures to be defined. The following structure template with a tag name of
record defines a structure containing an integer called length, a float called
sample_rate, a character pointer called name, and a pointer to an integer array called
data:

struct record {
int length;
float sample_ rate;
char *name;
int *data;
};

This structure template can be used to declare a structure called voice as follows:
struct record voice;
The structure called voice of type record can then be initialized as follows:

voice.length = 1000;
voice.sample rate = 10.e3;
voice.name = "voice signal®;

The last element of the structure is a pointer to the data and must be set to the beginning
of a 1000-element integer array (because length is 1000 in the above initialization). Each
element of the structure is referenced with the form struct_name.element. Thus,
the 1000-element array associated with the voice structure can be allocated as follows:

voice.data = (int *) calloc(1000,sizeof(int));

Similarly, the other three elements of the structure can be displayed with the following
code segment:

printf ("\nLength = %d",voice.length);
printf("\nSampling rate = %f",voice.sample rate);
printf("\nRecord name = %s",voice.name);

A typedef statement can be used with a structure to make a user-defined data type and
make declaring a structure even easier. The typedef defines an alternative name for the
structure data type, but is more powerful than #define, since it is a compiler directive
as opposed to a preprocessor directive. An alternative to the record structure is a
typedef called RECORD as follows:

typedef struct record RECORD;
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This statement essentially replaces all occurrences of RECORD in the program with the
struct record definition thereby defining a new type of variable called RECORD
that may be used to define the voice structure with the simple statement RECORD voice ;.

The typedef statement and the structure definition can be combined so that the
tag name record is avoided as follows:

typedef struct {
int length;
float sample_rate;
char *name;
int *data;
} RECORD;

In fact, the typedef£ statement can be used to define a shorthand form of any type of
data type including pointers, arrays, arrays of pointers, or another typede€£. For exam-
ple,

typedef char STRING[80];

allows 80-character arrays to be easily defined with the simple statement STRING
namel, name2;. This shorthand form using the typedef is an exact replacement for
the statement char namel[80], name2 [80];.

2.8.2 Pointers to Structures

Pointers to structures can be used to dynamically allocate arrays of structures and effi-
ciently access structures within functions. Using the RECORD typedef defined in the
last section, the following code segment can be used to dynamically allocate a five-
element array of RECORD structures:

RECORD *voices;
voices = (RECORD *) calloc (5, sizeof (RECORD) ) ;

These two statements are equivalent to the single-array definition RECORD
voices[5]; except that the memory block allocated by calloe can be deallocated by
a call to the £ree function. With either definition, the length of each element of the array
could be printed as follows:

int i;
for(i =0 ; 1 <5 ; i++)
printf ("\nLength of voice %d = %d",1i,voices[i].length);

The voices array can also be accessed by using a pointer to the array of structures. If
voice_ptr is a RECORD pointer (by declaring it with RECORD *voice_ptr;), then
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(*voice ptr).length could be used to give the length of the RECORD which was
pointed to by voice_ptr. Because this form of pointer operation occurs with structures
often in C, a special operator (->) was defined. Thus, voice _ptr->length is equiv-
alent to (*voice_ptr). length. This shorthand is very useful when used with func-
tions, since a local copy of a structure pointer is passed to the function. For example, the
following function will print the length of each record in an array of RECORD of length
size:

void print_record_length (RECORD *rec, int size)

{
int i;
for(i = 0 ; i < size ; i++) {
printf ("\nLength of record %d = %d",i,rec_>length);
rec++;
}
}

Thus, a statement like print_record*length(voices, 5) ; will print the lengths
stored in each of the five elements of the array of RECORD structures.

2.8.3 Complex Numbers

A complex number can be defined in C by using a structure of two floats and a
typedef as follows:

typedef struct {
float real;
float imag;
} COMPLEX;

Three complex numbers, %, ¥, and z can be defined using the above structure as follows:
COMPLEX X,¥,z;

In order to perform the complex addition z = x + y without functions or macros, the fol-
lowing two C statements are required:

z.real = x.real + y.real;
z.imag = x.imag + y.imag;

These two statements are required because the C operator + can only work with the indi-
vidual parts of the complex structure and not the structure itself. In fact, a statement in-
volving any operator and a structure should give a compiler error. Assignment of any
structure (like z = x;) works just fine, because only data movement is involved. A sim-
ple function to perform the complex addition can be defined as follows:
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COMPLEX cadd{(COMPLEX a,COMPLEX b) /* pass by value */
{

COMPLEX sum; /* define return value */
sum.real = a.real + b.real;
sum.imag = a.imag + b.imag;
return(sum) ;
}

This function passes the value of the a and b structures, forms the sum of a and b, and
then returns the complex summation (some compilers may not allow this method of pass-
ing structures by value, thus requiring pointers to each of the structures). The cadd func-
tion may be used to set z equal to the sum of x and y as follows:

z = cadd(x,y):

The same complex sum can also be performed with a rather complicated single line
macro defined as follows:

#define CADPD(a,b}\
(C_t.real=a.real+b.real,C_t.imag=a.imag+b.imag,C_t)

This macro can be used to replace the cadd function used above as follows:

COMPLEX C_t;
z = CADD(z,¥y);

This CADD macro works as desired because the macro expands to three operations separated
by commas. The one-line macro in this case is equivalent to the following three statements:

C_t.real = x.real + y.real;
C_t.imag = x.imag + y.real;
z = C_t;

The first two operations in the macro are the two sums for the real and imaginary parts.
The sums are followed by the variable ¢_t (which must be defined as COMPLEX before
using the macro). The expression formed is evaluated from left to right and the whole ex-
pression in parentheses takes on the value of the last expression, the complex structure
C_t, which gets assigned to 2 as the last statement above shows.

The complex add macro CADD will execute faster than the cadd function because
the time required to pass the complex structures x and y to the function, and then pass the
sum back to the calling program, is a significant part of the time required for the function
call. Unfortunately, the complex add macro cannot be used in the same manner as the
function. For example:

COMPLEX a,b,c,d;
d = cadd(a,cadd(b,c));
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will form the sum d=a+b+c; as expected. However, the same format using the CADD
macro would cause a compiler error, because the macro expansion performed by the C
preprocessor results in an illegal expression. Thus, the CADD may only be used with sim-
ple single-variable arguments. If speed is more important than ease of programming, then
the macro form should be used by breaking complicated expressions into simpler two-
operand expressions. Numerical C extensions to the C language support complex num-
bers in an optimum way and are discussed in section 2.10.1.

2.9 COMMON C PROGRAMMING PITFALLS

The following sections describe some of the more common errors made by programmers
when they first start coding in C and give a few suggestions how to avoid them.

2.9.1 Array Indexing

In C, all array indices start with zero rather than one. This makes the last index of a N
long array N-1. This is very useful in digital signal processing, because many of the ex-
pressions for filters, z-transforms, and FFTs are easier to understand and use with the
index starting at zero instead of one. For example, the FFT output for k = 0 gives the zero
frequency (DC) spectral component of a discrete time signal. A typical indexing problem
is illustrated in the following code segment, which is intended to determine the first 10
powers of 2 and store the results in an array called power2:

int power2{10};

int i,p;

p=1;

for (i =1 ; i<= 10 ; i++) {
power2[i] = p;
p = 2*p;

This code segment will compile well and may even run without any difficulty. The prob-
lem is that the £or loop index i stops on i=10, and power2 [10] is not a valid index
to the power2 array. Also, the for loop starts with the index 1 causing power2[0] to
not be initialized. This results in the first power of two (20, which should be stored in
power2[0]) to be placed in power2[1]. One way to correct this code is to change the
for loop to read for(i = 0; 1i<10; i++), so that the index to power2 starts at O
and stops at 9.

2.9.2 Failure to Pass-by-Address
This problem is most often encountered when first using scanf to read in a set of vari-

ables. If i is an integer (declared as int i;), then a statement like scanf ("%d~", i) ;
is wrong because scanf expects the address of (or pointer to) the location to store the
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integer that is read by scanf. The correct Statement to read in the integer i is
scanf ("%d", &i) ;, where the address of operator (&) was used to point to the addresg
of i and pass the address to scanf as required. On many compilers these types of errorg
can be detected and avoided by using function prototypes (see section 2.5.3) for all user
written functions and the appropriate include files for all C library functions. By using
function prototypes, the compiler is informed what type of variable the function expects
and will issue a warning if the specified type is not used in the calling program. On many
UNIX systems, a C program checker called LINT can be used to perform parameter-type
checking, as well as other syntax checking.

2.9.3 Misusing Pointers

Because pointers are new to many programmers, the misuse of pointers in C can be par-
ticularly difficult, because most C compilers will not indicate any pointer errors. Some
compilers issue a warning for some pointer errors. Some pointer errors will result in the
programs not working correctly or, worse yet, the program may seem to work, but wil
not work with a certain type of data or when the program is in a certain mode of opera-
tion. On many small single-user systems (such as the IBM PC), misused pointers can eas-
ily result in writing to memory used by the operating system, often resulting in a system
crash and requiring a subsequent reboot.

There are two types of pointer abuses: setting a pointer to the wrong value (or not
initializing it at all) and confusing arrays with pointers. The following code segment
shows both of these problems:

char *string;
char msg[10];
int 1i;
printf ("\nEnter title");
scanf ("%s", string) ;
i=0;
while(*string I= ' ') {
i++;
string++;
}
msg="Title = ",
printf('%s %s %d before space", msg, string,i);

The first three statements declare that memory be allocated to a pointer variable called
string, a 10-element char array called msg and an integer called 1. Next, the user is
asked to enter a title into the variable called string. The while loop is intended to
search for the first space in the string and the last printf statement is intended to dis-
play the string and the number of characters before the first space.

There are three pointer problems in this program, although the program will com-
pile with only one fatal error (and a possible warning). The fatal error message will refer-
ence the msg="Title ="; statement. This line tells the compiler to set the address of
the msg array to the constant string "Title =". This is not allowed so the error
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“Lvalue required” (or something less useful) will be produced. The role of an array and a
pointer have been confused and the msg variable should have been declared as a pointer
and used to point to the constant string "Title =", which was already allocated stor-
age by the compiler.

The next problem with the code segment is that scanf will read the string into the
address specified by the argument string. Unfortunately, the value of string at exe-
cution time could be anything (some compilers will set it to zero), which will probably
not point to a place where the title string could be stored. Some compilers will issue a
warning indicating that the pointer called string may have been used before it was de-
fined. The problem can be solved by initializing the string pointer to a memory area allo-
cated for storing the title string. The memory can be dynamically allocated by a simple
call to calloc as shown in the following corrected code segment:

char *string, *msg;
int i;
string:calloc(BO,sizeof(char));
printf("\nEnter title*);
scanf ("%s", string);
i=0;
while(*string 1= ' ) {
i++;
string++;
}
msg="Title =v;
printf("$s %s %d before space",msg, string, i) ;

The code will now compile and run but will not give the correct response when a title
string is entered. In fact, the first characters of the title string before the first space will
not be printed because the pointer string was moved to this point by the execution of
the while loop. This may be useful for finding the first space in the whi le loop, but re-
sults in the address of the beginning of the string being lost. It is best not to change a
pointer which points to a dynamically allocated section of memory. This pointer problem
can be fixed by using another pointer (called ep) for the while loop as follows:

char *string, *cp, *msg;
int i;
string:calloc(BO,sizeof(char));
printf ("\nEnter title");
scanf ("$s", string) ;
i=0;
cp = string;
while(*cp 1= + 1) {
i++;
Cp++;
}
msg="Title =";
printf("%s %s %d before space", msg,string,i);
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Another problem with this program segment is that if the string entered containg
spaces, then the while loop will continue to search through memory until it findg
space. On a PC, the program will almost always find a space (in the operating syster, 1
haps) and will set i to some large value. On larger multiuser systems, this may result j
fatal run-time error because the operating system must protect memory not allocated -
the program. Although this programming problem is not unique to C, it does illustrate
important characteristic of pointers—pointers can and will point to any memory loca
without regard to what may be stored there.

Some ANSI C compilers designed for DSP processors are now available with numeric

extensions. These language extensions were developed by the ANSI NCEG (Numeric @ 7

Extensions Group), a working committee reporting to ANSI X3J11. This section gives
overview of the Numerical C language recommended by the ANSI standards commi
Numerical C has several features of interest to DSP programmers:

(1) Fewer lines of code are required to perform vector and matrix operations.

(2) Data types and operators for complex numbers (with real and imaginary compos
nents) are defined and can be optimized by the compiler for the target processor;
This avoids the use of structures and macros as discussed in section 2.8.3.

(3) The compiler can perform better optimizations of programs containing iterati
which allows the target processor to complete DSP tasks in fewer instruction cycles..

2.10.1 Complex Data Types

Complex numbers are supported using the keywords complex, creal, cimag, and
conj. These keywords are defined when the header file complest.h is included. The
are six integer complex types and three floating-point complex types, defined as shown
the following example:

short int complex i;

int complex j;

long int complex k;

unsigned short int complex ui;
unsigned int complex uj;
unsigned long int complex uk;
float complex x;

double complex y;

long double complex z;

The real and imaginary parts of the complex types each have the same representations
the type defined without the complex keyword. Complex constants are represented a5
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sum of a real constant and an imaginary constant, which is defined by using the suffix i
after the imaginary part of the number. For example, initialization of complex numbers is
performed as follows:

short int complex i = 3 + 2i;
float complex x[3] = {1.0+2.0i, 3.0i, 4.0};

The following operators are defined for complex types: & (address of), * (point to com-
plex number), + (add), — (subtract), * (multiply), / (divide). Bitwise, relational, and logi-
cal operators are not defined. If any one of the operands are complesx, the other
operands will be converted to complex, and the result of the expression will be
complex. The ereal and cimag operators can be used in expressions to access the
real or imaginary part of a complex variable or constant. The con3j operator returns the
complex conjugate of its complex argument. The following code segment illustrates these
operators:

float complex a,b,c;

creal(a)=1.0;

cimag(a)=2.0;

creal (b)=2.0*cimag(a) ;

cimag(b)=3.0;

c=conj(b) ; /* ¢ will be 4 - 3i */

2.10.2 iteration Operators

Numerical C offers iterators to make writing mathematical expressions that are computed
iteratively more simple and more efficient. The two new keywords are iter and sum.
Iterators are variables that expand the execution of an expression to iterate the expression
so that the iteration variable is automatically incremented from O to the value of the itera-
tor. This effectively places the expression inside an efficient £or loop. For example, the
following three lines can be used to set the 10 elements of array ix to the integers 0 to 9:

iter I=10;
int ix[101;
ix[I1=1;

The sum operator can be used to represent the sum of values computed from values of an
iterator. The argument to sum must be an expression that has a value for each of the iter-
ated variables, and the order of the iteration cannot change the result. The following code
segment illustrates the sum operator:

float a[10],b{10},c[10],d[10}{10],e[10]}{10],£(10][10];
float s;

iter I=10, J=10, K=10;

s=sum{al[I]); /* computes the sum of a into s */
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blJ]=sum(alT]); /* sum of a calculated 10 times and storeg
in the elements of b */
c[Ji=sum(d[I] [J]); /* computes the sum of the column
elements of d, the statement is
iterated over J */

2.11.1 Software Quality

The four measures of software quality (reliability, maintainability, extensibility, and effi-
ciency) are rather difficult to quantify. One almost has to try to modify a program to find
* out if it is maintainable or extensible. A program is usually tested in a finite number of

= ; * 11 the el ts in g * o . . .
z[i??;?z[iilfjé)[l] (K] *é [K???]S)‘_a I mz;iim ;unlii;l;y ) / ways much smaller than the millions of input data conditions. This means that a program
cl{I=sum(d[T] [K]*a[K]) ; ' /* matrix * vector */ can be considered reliable only after years of bug-free use in many different environ-

ments.

Programs do not acquire these qualities by accident. It is unlikely that good pro-
grams will be intuitively created just because the programmer is clever, experienced, or
uses lots of comments. Even the use of structured-programming techniques (described
briefly in the next section) will not assure that a program is easier to maintain or extend.
It is the author’s experience that the following five coding situations will often lessen the
software quality of DSP programs:

17 COMMENTS ON PROGRAMMING STYLE

The four common measures of good DSP software are reliability, maintainability, ey,
sibility, and efficiency.

A reliable program is one that seldom (if ever) fails. This is especially importang
DSP because tremendous amounts of data are often processed using the same program.
the program fails due to one sequence of data passing through the program, it may be dj
ficult, or impossible, to ever determine what caused the problem.

Since most programs of any size will occasionally fail, a maintainable program
one that is easy to fix. A truly maintainable program is one that can be fixed by someo
other than the original programmer. It is also sometimes important to be able to Maintain
a program on more than one type of processor, which means that in order for a progra
to be truly maintainable, it must be portable.

An extensible program is one that can be easily modified when the requiremen
change, new functions need to be added, or new hardware features need to be exploited.

An efficient program is often the key to a successful DSP implementation of a d
sired function. An efficient DSP program will use the processing capabilities of the targ
computer (whether general purpose or dedicated) to minimize the execution time. In
typical DSP system this often means minimizing the number of operations per input sam

(1) Functions that are too big or have several purposes

(2) A main program that does not use functions

(3) Functions that are tightly bound to the main program

(4) Programming “tricks” that are always poorly documented
(5) Lack of meaningful variable names and comments

An oversized function (item 1) might be defined as one that exceeds two pages of source
listing. A function with more than one purpose lacks strength. A function with one clearly
defined purpose can be used by other programs and other programmers. Functions with
many purposes will find limited utility and limited acceptance by others. All of the func-
tions described in this book and contained on the included disk were designed with this
important consideration in mind. Functions that have only one purpose should rarely ex-

ple or maximizing the number of operations that can be performed in parallel. In eith ceed one page. This is not to say that all functions will be smaller than this. In time-
case, minimizing the number of operations per second usually means a lower overall sys . critical DSP applications, the use of in-line code can easily make a function quite long
tem cost as fast computers typically cost more than slow computers. For example, but can sometimes save precious execution time. It is generally true, however, that big
could be said that the FFT algorithm reduced the cost of speech processing (both imple programs are more difficult to understand and maintain than small ones.

mentation cost and development cost) such that iexpensive speech recognition and gen A main program that does not use functions (item 2) will often result in an ex-
eration processors are now available for use by the general public. tremely long and hard-to-understand program. Also, because complicated operations
Unfortunately, DSP programs often forsake maintainability and extensibility for ef: often can be independently tested when placed in short functions, the program may be
ficiency. Such is the case for most currently available programmable signal processin easier to debug. However, taking this rule to the extreme can result in functions that are
integrated circuits. These devices are usually programmed in assembly language in such tightly bound to the main program, violating item 3. A function that is tightly bound to
way that it is often impossible for changes to be made by anyone but the original pro- the rest of the program (by using too many global variables, for example) weakens the
grammer, and after a few months even the original programmer may have to rewrite th entire program. If there are lots of tightly coupled functions in a program, maintenance
program to add additional functions. Often a compiler is not available for the Processor of. becomes impossible. A change in one function can cause an undesired, unexpected
’ change in the rest of the functions.
piled language. The current trend in programmable signal processors appears to be to- Clever programming tricks (item 4) should be avoided at all costs as they will often
ward high-level languages. In fact, many of the DSP chip manufacturers are supplying C : not be reliable and will almost always be difficult for someone else to understand (even
with lots of comments). Usually, if the program timing is so close that a trick must be
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used, then the wrong processor was chosen for the application. Even if the progray
trick solves a particular timing problem, as soon as the system requirements Chang
they almost always do), a new timing problem without a solution may soon develop,
A program that does not use meaningful variables and comments (item 5) ig
anteed to be very difficult to maintain. Consider the following valid C program:

11.2 Structured Programming

sructured programming has developed from the notion that any algorithm, no matter
how complex, can be expressed by using the programming-control structures if-else,
while, and sequence. All programming languages must contain some representation of
these three fundamental control structures. The development of structured programming

main() {int _o_oo_,_ooo;for(_o oo _=2;; o__o_  ++ .
{for{__o00o_=2; o__00_ % 000_1=0;__000_++; ) ‘revealed that if a program uses these three control structures, then the logic of the pro-
1 (_ 000 == 0 _oo_)printf("\nsd*, o_oo_ ):}} can be read and understood by beginning at the first statement and continuing

‘downward to the last. Also, all programs could be written without goto statements.
Generally, structured-programming practices lead to code that is easier to read, easier to
maintain, and even easier to write.

The C language has the three basic control structures as well as three additional
structured-programming constructs called do-while, for, and case. The additional three
control structures have been added to C and most other modern languages because they
‘are convenient, they retain the original goals of structured programming, and their use
often makes a program easier to comprehend.

The sequence control structure is used for operations that will be executed once in a
function or program in a fixed sequence. This structure is often used where speed is most
important and is often referred to as in-line code when the sequence of operations are
identical and could be coded using one of the other structures. Extensive use of in-line

Even the most experienced C programmer would have difficulty determining what
three-line program does. Even after running such a poorly documented program, it
be hard to determine how the results were obtained. The following program does ex:
the same operations as the above three lines but is easy to follow and modify:

main ()
{
int prime_test,divisor;
/* The outer for loop trys all numbers >1 and the inner
for loop checks the number tested for any divisors
less than itself. */

for (prime_test = 2 ; ; prime_test++) { code can obscure the purpose of the code segment.
3 3 = - 3 3 3 = . 1 i . . . . . qs P
for(divisor = 2 ; prime_test % divisor != 0 ; divisor:+); The if-else control structure in C is the most common way of providing conditional
if (divisor == prime_test) printf("\n%d", prime_test);

execution of a sequence of operations based on the result of a logical operation. Indenting
of different levels of 1£ and else statements (as shown in the example in section 2.4.1)
is not required; it is an expression of C programming style that helps the readability of the
-else control structure. Nested while and for loops should also be indented for im-
proved readability (as illustrated in section 2.7.3).

The case control structure is a convenient way to execute one of a series of opera-
ons based upon the value of an expression (see the example in section 2.4.2). It is often
used instead of a series of if-else structures when a large number of conditions are tested
based upon a common expression. In C, the switch statement gives the expression to
‘test and a series of case statements give the conditions to match the expression. A
default statement can be optionally added to execute a sequence of operations if none
of the listed conditions are met.

The last three control structures (while, do-while, and for) all provide for repeating
sequence of operations a fixed or variable number of times. These loop statements can
ake a program easy to read and maintain. The while loop provides for the iterative ex-
cution of a series of statements as long as a tested condition is true; when the condition
, false, execution continues to the next statement in the program. The do-while con-
-trol structure is similar to the while loop, except that the sequence of statements is exe-
cuted at least once. The £or control structure provides for the iteration of statements
‘with automatic modification of a variable and a condition that terminates the iterations.
For loops are more powerful in C than most languages. C allows for any initializing
tatement, any iterating statement and any terminating statement. The three statements do

}

It is easy for anyone to discover that the above well-documented program prints a lis
prime numbers, because the following three documentation rules were followed:

(1) Variable names that are meaningful in the context of the program were used. Av
variable names such as ®.y,z or i,j.k, unless they are simple indexes used 1
very obvious way, such as initializing an entire array to a constant.

(2) Comments preceded each major section of the program (the above program
has one section). Although the meaning of this short program is fairly clear wi
the comments, it rarely hurts to have too many comments. Adding a blank line,
tween different parts of a program also sometimes improves the readability
program because the different sections of code appear separated from each other;

(3) Statements at different levels of nesting were indented to show which control st
ture controls the execution of the statements at a particular level. The author p
to place the right brace ({) with the control structure (for, while, if, etc.) an
place the left brace (}) on a separate line starting in the same column as the b
ning of the corresponding control structure. The exception to this practice
function declarations where the right brace is placed on a separate line after
gument declarations.
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after displaying an error message. Such an error-related exit is performed by calling the C
brary function exit (n) with a suitable error code, if desired. Similarly, many of the
unctions have more than one return statement as this can make the logic in a function
much easier to program and in some cases more efficient.

not need to be related and any of them can be a null statement or multiple statemenpg;
following three examples of while, do-while, and £or loops ail calculate the

of two of an integer i (assumed to be greater than 0) and set the result to x._ The
loop is as follows:

k =2; /* while loop k=2**i */
while(i > 0) {
k = 2%k;

i
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}

The do-while loop is as follows:

k =1; /* do-while loop k = 2%*ji */

k = 2%k;
i
} while(i > 0);

The £ox loop is as follows:

fortk =2 ; i >1; i—)
k = 2*k; /* for loop k=2**j */

Which form of loop to use is a personal matter. Of the three equivalent code segm
shown above, the for loop and the while loop both seem easy to understand and wo
probably be preferred over the do-while construction.

The C language also offers several extensions to the six structured progra

because more than one condition may cause the iterations to stop. The infamous
statement is also included in C. Nearly every language designer includes a goto st
ment with the advice that it should never be used along with an example of whe
might be useful. :

The program examples in the following chapters and the programs contained on.
enclosed disk were developed by using structured-programming practices. The code
be read from top to bottom, there are no goto statements, and the six accepted cont

throughout the software in this book is that each program and function have only
entry and exit point. Although every function and program does have only one ¢
point (as is required in C), many of the programs and functions have multiple exit poi
Typically, this is done in order to improve the readability of the program. For examp
error conditions in a main program often require terminating the program prema




CHAPTER 3

DSP MICROPROCESSORS
IN EMBEDDED SYSTEMS

The term embedded system is often used to refer to a processor and associated circuits
required to perform a particular function that is not the sole purpose of the overall Sys-
tem. For example, a keyboard controller on a computer system may be an embedded
system if it has a processor that handles the keyboard activity for the computer system.
In a similar fashion, digital signal processors are often embedded in larger systems to
perform specialized DSP operations to allow the overall system to handle general pur-
pose tasks. A special purpose processor used for voice processing, including analog-to-
digital (A/D) and digital-to-analog (D/A) converters, is an embedded DSP system when
it is part of a personal computer system. Often this type of DSP runs only one appli-
cation (perhaps speech synthesis or recognition) and is not programmed by the end user.
The fact that the processor is embedded in the computer system may be unknown to
the end user.

A DSP’s data format, either fixed-point or floating-point, determines its ability
to handle signals of differing precision, dynamic range, and signal-to-noise ratios.
Also, ease-of-use and software development time are often equally important when
deciding between fixed-point and floating-point processors. Floating-point processors
are often more expensive than similar fixed-point processors but can execute more
instructions per second. Each instruction in a floating-point processor may also be
more complicated, leading to fewer cycles per DSP function. DSP microprocessors can
be classified as fixed-point processors if they can only perform fixed-point multi-
plies and adds, or as floating-point processors if they can perform floating-point oper-
ations.
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The precision of a particular class of A/D and D/A converters (classified in terms
of cost or maximum sampling rate) has been slowly increasing at a rate of about one
bit every two years. At the same time the speed (or maximum sampling rate) has also
been increasing. The dynamic range of many algorithms is higher at the output than at
the input and intermediate results are often not constrained to any particular dynamic
range. This requires that intermediate results be scaled using a shift operator when a
fixed-point DSP is used. This will require more cycles for a particular algorithm in
fixed-point than on an equal floating-point processor. Thus, as the A/D and D/A re-
quirements for a particular application require higher speeds and more bits, a
fixed-point DSP may need to be replaced with a faster processor with more bits. Also,
the fixed-point program may require extensive modification to accommodate the greater
precision.

In general, floating-point DSPs are easier to use and allow a quicker time-to-
market than processors that do not support floating-point formats. The extent to which
this is true depends on the architecture of the floating-point processor. High-level lan-
guage programmability, large address spaces, and wide dynamic range associated with
floating-point processors allow system development time to be spent on algorithms and
signal processing problems rather than assembly coding, code partitioning, quantization
error, and scaling. In the remainder of this chapter, floating-point digital signal proces-
sors and the software required to develop DSP algorithms are considered in more de-
tail.

3.1 TYPICAL FLOATING-POINT DIGITAL SIGNAL PROCESSORS

This section describes the general properties of the following three floating-point DSP
processor families: AT&T DSP32C and DSP3210, Analog Devices ADSP-21020 and
ADSP-21060, and Texas Instruments TMS320C30 and TMS320C40. The information
was obtained from the manufacturers’ data books and manuals and is believed to be an
accurate summary of the features of each processor and the development tools available.
Detailed information should be obtained directly from manufacturers, as new features are
constantly being added to their DSP products. The features of the three processors are
summarized in sections 3.1.1, 3.1.2, and 3.1.3.

The execution speed of a DSP algorithm is also important when selecting a proces-
sor. Various basic building block DSP algorithms are carefully optimized in assembly
language by the processor’s manufacturer. The time to complete a particular algorithm is
often called a benchmark. Benchmark code is always in assembly language (sometimes
without the ability to be called by a C function) and can be used to give a general mea-
sure of the maximum signal processing performance that can be obtained for a particular
processor. Typical benchmarks for the three floating-point processor families are shown
in the following table. Times are in microseconds based the on highest speed processor
available at publication time.



100 DSP Microprocessors in Embedded Systems Chap, 3 Sec. 3.1 Typical Floating-Point Digital Signal Processors 101
ASN, ¢ [ ]
DSP32C ADSP21020 TMS320C30 TMS320¢4 MSNO—MSNS 7]
DSP3210 ADSP21060 ABO—AB21 _ADDRESS BUS (24)
> I
Maximum Instruction MMDO—WMDZ _J T n | ¢ ll U
Cycle Speed (MIPs) 20 40 20 30 "o T Y Y Y
1024 Complex cycles 161311* 19245 40457 38629 PD’;O_,,",,’;?‘; R ROMO-— RAM2 RAM1 RAMO
FFT with bitreverse time 2016.4 481.13 2022.85 128763 zx oRr
- ROM RAM RAM RAM
FIR Filter cycles 187* 4 45 2 P 4x512x32 512x 32 512x32 512x 32
(35 Taps) time 2.34 1.1 2.25 14 PIF
IIR Filter cycles 85* 14 23 21 [PCW (167 ]
(2 Biquads) time 1.06 0.35 L15 0.7 MisdUm CEE:" :E:?
4x4 * 4x1 cycles 80* 24 58 37 " _
Matrix Multiply time 1.0 0.6 2.9 123 o Wit EAPNT | [ ﬁ ﬁ
0B00—DB31 ¢ ) DX 3?) |
*Cycle counts for DSP32C and DSP3210 are clock cycles including wait states (1 instruction = 4 clock cy- SROYN >
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o [TE0F 27 |
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oL
ocK [ OBUF (32) |
3.1.1 AT&T DSP32C and DSP3210 oo R
= 5 o
Figure 3.1 shows a block diagram of the DSP32C microprocessor manufactured by sy RI—R14 (24)
AT&T (Allentown, PA). The following is a brief description of this processor provided Ra RIS—R19 (24)
by AT&T. o RESTL 20, 20 uTILITY S
The DSP32C’s two execution units, the control arithmetic unit (CAU) and the data INTREQH, m PINS 18 ':::(‘::
arithmetic unit (DAU), are used to achieve the high throughput of 20 million instruc- o, oKz,
tions per second (at the maximum clock speed of 80 MHz). The CAU performs 16- or
24-bit integer arithmetic and logical operations, and provides data move and control ca-
pabilities. This unit includes 22 general purpose registers. The DAU performs 32-bit
. . . . . . . . . . LEGEND*;
ﬂo_atlng-po.mt. anthmen.c for s.1gnal processing functions. It .mcludes a 32-bit ﬂoatmg- AG~A3  Accumulators 03 ISR Input shift rgister POR2  PIO data rogister 2
point multiplier, a 40-bit floating-point adder, and four 40-bit accumulators. The multi- ALY Arithmesic logic unit VTP Interrupt vector table pointer PIN Serial DMA input pointer
; ; i ; : ; CAU  Control arithmetic unit OBUF  Output buter PIO Paralie! /O unit
- N
plier and the adder work in parallel to perfqnn 25 million floating-point computations DAV  Dotm et roh OSR  Ouut shitt registr PIOP  Paraliol O pot rogistr
per second. The DAU also incorporates special-purpose hardware for data-type conver- DAUC  DAU control register PAR  PIO address register PIR PIO interrupt register
sions. EMR Emor mask regisier PARE PIO address register extended POUT Serial DMA output pointer
On-chip memory includes 1536 words of RAM. Up to 16 Mbytes of external mem- DU oy surce rogicer PR o R B
ory can be directly addressed by the external memory interface that supports wait states oc Inputioutput control register PCW  Processor control word ROM  Road-only memory
and bus arbitration. All memory can be addressed as 8-, 16- or 32-bit data, with the 32-bit ::‘_m :::'“‘m" ":::: ipoline PDR  PIO data register sio Serial /O unit
data being accessed at the same speed as 8- or 16-bit data.

. * For a detailed description, see Architecture,
The DSP32C has three I/O ports: an external memory port, a serial port and a 16-bit

paraliel port. In addition to providing access to commercially available memory, the ex-
ternal memory interface can be used for memory mapped I/O. The serial port can inter-
face to a time division multiplexed (TDM) stream, a codec, or another DSP32C. The par-
allel port provides an interface to an external microprocessor. In summary, some of the
key features of the DSP32C follow.

FIGURE 3.1 Block diagram of DSP32C processor (Courtesy AT&T).
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« Four memory accesses/instruction for exceptional memory bandwidth BERRW_.
: 25632 M

 Easy-to-learn and read C-like assembly language AENMRN ~a-> : 32 12:.;2
o Serial and parallel ports with DMA for clean external interfacing DENMWN DMAC i -
+ Single-instruction data conversion for IEEE P754 floating-point, 8-, 16-, and 24-bjt idp (32)

integers, p-law, A-Law and linear numbers odp (3] |V

. . . - ient (16)

* Fully vectored interrupts with hardware context saving up to 2 million interrupts ocnt (16)] JA——N —— ——

per second dmac (@)} N—y/ L—E:_j_, ‘_‘:j_'
+ Byte-addressable memory efficiently storing 8- and 16-bit data = gl ﬁ =
» Wait-states of 1/4 instruction increments and two independent external memory of —» [ out(a2 VA ~1

. . e ] | but(32) aN—/ DATA BUS (32)
speed partitions for flexible, cost-efficient memory configurations 0o ~*— | obut(32 o v
K, LD, 0cK, | L2 E \,t <t
DESCRIPTION OF AT&T HARDWARE DEVELOPMENT HARDWARE oLD, sY A 1
Toe DAU (ay [.dauc CAU
» Full-speed operation of DSP32C (80 MHz) =T ey L9 ALU 16/32 ]
+ Serial /O through an AT&T T7520 High Precision Codec with mini-BNC connec- B80T = B @) by [BARREL SHTERt6/32)
- - @2 @2 *m)* ]

tors for analog input and output timer (3 MULTIPLIER

» Provision for external serial I/O through a 34-pin connector toon®) BT | pefpesh (32)
. . wo Y | 01432 |

» Upper 8-bits of DSP32C parallel I/O port access via connector HARDWARE 115—120 {32)
« DSP32C Simulator providing an interactive interface to the development system. CKI, RESTN, ZN CONTROL citc\;i:sw?s sp(32)
« Simulator-controlled software breakpoints; examining and changing memory con- IRON—RIN I 7 POINT ove ()

tents or device registers IACKD—ACK1 omr (16) “o) (w’ADDE“ SA (32)

K
| ' i olhana KN T
Figure 3.2 shows a block diagram of the DSP3210 microprocessor manufactured by VSs  ———t ps (32)
AT&T. The following is a brief description of this processor provided by AT&T.
LEGEND:
AT&T DSP3210 DIGITAL SIGNAL PROCESSOR FEATURES CAU  Control Arithmetic Unit S0 Serial npurOutput
. . DAU  Data Arithmetic Unit TSC  TimerStatus/Control
« 16.6 million instructions per second (66 MHz clock) RAM Random Access Memory  DMAC  DMA Controfier
. . . - ROM Read Only Memory MMIO  Memory Mapped VO

¢ 63 instructions, 3-stage pipeline

« Two 4-kbyte RAM blocks, 1-kbyte boot ROM
* 32-bit barrel shifter and 32-bit timer
* Serial I/O port, 2 DMA channels, 2 external interrupts
-» Full 32-bit floating-point arithmetic for fast, efficient software development

FIGURE 3.2 Block diagram of DSP3210 processor (Courtesy AT&T).

+ C-like assembly language for ease of programming
* All single-cycle instructions; four memory accesses/instruction cycle
» Hardware context save and single-cycle PC relative addressing
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* Microprocessor bus compatibility (The DSP3210 is designed for efficient bug Master
designs. This allows the DSP3210 to be easily incorporated into minOprOCessOr.
based designs

* 32-bit, byte-addressable address space allowing the DSP3210 and a micropn-ocess()r
to share the same address space and to share pointer values.

* Retry, relinquish/retry, and bus error support

* Page mode DRAM support

+ Direct support for both Motorola and Intel signaling

FLOATING-POINT
& FIXED-POINT
ALU

AT&T DSP3210 FAMILY HARDWARE DEVELOPMENT SYSTEM DESCRIPTION

The MP3210 implements one or two AT&T DSP3210 32-bit floating-point DSPs with a
comprehensive mix of memory, digital I/O and professional audio signal I/O. The
MP3210 holds up to 2 Mbytes of dynamic RAM (DRAM). The DT-Connect interface ep-
ables real-time video I/0. MP3210 systems include: the processor card; C Host drivers
with source code; demos, examples and utilities, with source code; User’s Manual; and
the AT&T DSP3210 Information Manual. DSP3210 is the low-cost Multimedia
Processor of Choice. New features added to the DSP3210 are briefly outlined below.

JTAG TEST &
EMULATION
]'> PMA
j'> DMA
<}:D PMD
=< ow

32-BIT
BARREL

T 1l

SHIFTER
I

PROGRAM
SEQUENCER

FIGURE 3.3 Block diagram of ADSP-21020 processor {Courtesy Analog Devices.)

DSP3210 FEATURES USER BENEFITS j>
* Speeds up to 33 MFLOPS The high performance and large on-chip -_T
memory space enable wise .,\\ o\ «
* 2k x 32 on-chip RAM fast, efficient processing of complex algo- 355 I I <|l E
rithms. = 2| 3 g
* Full, 32-bit, floating-point Ease of programming/higher performance. | £
* All instructions are single cycle e \
* Four memory accesses per Higher performance. 1 - 3\\ M\
instruction cycle Q':D ox @ @
* Microprocessor bus compatibility Designed for efficient bus master. ax a a £ %
* 32-bit byte-addressable designs. This allows the DSP3210 address space to - z 3 gg z
* Retry, relinquish/retry easily be incorporated into pP %‘gg
* error support bus-based designs. The 32-bit, byte- 5 - 5%
* Boot ROM addressable space allows the £ :D ,%E‘g’
* Page mode DRAM support DSP3210 and a pP to share the same ;§ "V § N §§
* Directly supports 680X0 address space and to share pointer G:D & H =
and 80X86 signaling values as well. ® i
3.1.2 Analog Devices ADSP-210XX

Figure 3.3 shows a block diagram of the ADSP-21020 microprocessor manufactured by
Analog Devices (Norwood, MA). The ADSP-21060 core processor is similar to the
ADSP-21020. The ADSP-21060 (Figure 3.4) also includes a large on-chip memory, a
DMA controller, serial ports, link ports, a host interface and multiprocessing features

A

105




=

-
@
5 5 u
z a @ i
S = 5 ex|{O sex]| &
E S (335||0H|583|| & NN #
t - Q. =
E [T T FElle o] =
i X HIEE T lm
: = m{ 4K & ”
. i 2| |5 | |E
[+
Q o - O [
£ 48| (e8] @
o = v @
Egs N o o Z ]
L] EPA w o | @
= -—— | { 1] )| 7] Q
o — HER 10A
) o (<}
Ek a 1
$8 ¢ - S
1 X — H H ~ 100 o r o
23 £ _‘:]L,bepo L BeE =
"UE a — :>( DM on T3@
< B —] o & S&E
s3 2 v [ — o L S
~qa 8 -
0g -
i
a
Uy ;
=
gw= o« ?t
[+
=
SHSI -
N
= O oy ouw IE———
[/ © 2 3]
F4 gc & b 2 g\
n.l(”l ) ™ e
o 3| 2 al| 8 W
gl & sl = EE
= " » = ) 4T
F a| a I oo
g| g @ 8
® ® = B
3| 8 §| 8
« < = =
o =l = &l o
o N [ a
K4 9< —
n)‘
L.
N
- " € = o©
x w
Ky 9< age ‘L:
ax (3 Y
@© T E
2
=
106

FIGURE 3.4 Block diagram of ADSP-21060 processor (Courtesy Analog Devices.)
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with the core processor. The following is a brief description of these processors provided
by Analog Devices.

The ADSP-210XX processors provide fast, flexible arithmetic computation units,
unconstrained data flow to and from the computation units, extended precision and dy-
namic range in the computation units, dual address generators, and efficient program se-
quencing. All instructions execute in a single cycle. It provides one of the fastest cycle
times available and the most complete set of arithmetic operations, including seed 1/x,
min, max, clip, shift and rotate, in addition to the traditional multiplication, addition, sub-
traction, and combined addition/subtraction. It is IEEE floating-point compatible and al-
lows interrupts to be generated by arithmetic exceptions or latched status exception han-
dling.

The ADSP-210XX has a modified Harvard architecture combined with a 10-port
data register file. In every cycle two operands can be read or written to or from the regis-
ter file, two operands can be supplied to the ALU, two operands can be supplied to the
multiplier, and two results can be received from the ALU and multiplier. The processor’s
48-bit orthogonal instruction word supports fully parallel data transfer and arithmetic op-
erations in the same instruction.

The processor handles 32-bit IEEE floating-point format as well as 32-bit integer
and fractional formats. It also handles extended precision 40-bit IEEE floating-point for-
mats and carries extended precision throughout its computation units, limiting data trun-
cation errors.

The processor has two data address generators (DAGs) that provide immediate or
indirect (pre- and post-modify) addressing. Modulus and bit-reverse addressing opera-
tions are supported with no constraints on circular data buffer placement. In addition to
zero-overhead loops, the ADSP-210XX supports single-cycle setup and exit for loops.
Loops are both nestable (six levels in hardware) and interruptable. The processor sup-
ports both delayed and nondelayed branches. In summary, some of the key features of the
ADSP-210XX core processor follow:

* 48-bit instruction, 32/40-bit data words

+ 80-bit MAC accumulator

« 3-stage pipeline, 63 instruction types

+ 32 x 48-bit instruction cache

+ 10-port, 32 X 40-bit register file (16 registers per set, 2 sets)
6-level loop stack

24-bit program, 32-bit data address spaces, memory buses

1 instruction/cycle (pipelined)

1-cycle multiply (32-bit or 40-bit floating-point or 32-bit fixed-point)
6-cycle divide (32-bit or 40-bit floating-point)

2-cycle branch delay

Zero overhead loops

Barrel shifter
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* Algebraic syntax assembly language

* Multifunction instructions with 4 operations per cycle
* Dual address generators

* 4-cycle maximum interrupt latency

Timer 0
Timer 1

3.1.3 Texas Instruments TMS320C3X and TMS320C40

_ Sng [eieydueg \

Figure 3.5 shows a block diagram of the TMS320C30 microprocessor and Figure 3¢
shows the TMS320C40, both manufactured by Texas Instruments (Houston, TX). The
TMS320C30 and TMS320C40, processors are similar in architecture except that the
TMS320C40 provides hardware support for multiprocessor configurations. The followjng
is a brief description of the TMS320C30 processor as provided by Texas Instruments.
The TMS320C30 can perform parallel multiply and ALU operations on integer or
floating-point data in a single cycle. The processor also possesses a general-purpoge
register file, program cache, dedicated auxiliary register arithmetic units (ARAU), inter-
nal dual-access memories, one DMA channel supporting concurrent 1/0, and 3 short
machine-cycle time. High performance and ease of use are products of these features,
General-purpose applications are greatly enhanced by the large address Space, mu)-
tiprocessor interface, internally and externally generated wait states, two external inter-
face ports, two timers, two serial ports, and multiple interrupt structure. High-level lap.
guage is more easily implemented through a register-based architecture, large address
space, powerful addressing modes, flexible instruction set, and well-supported floating-

Address Generators
Control Registers

RAM Biock 1
(1K x 32)

Data
Integer/
Floating-Point
ALU

Precision
Address
Generator 1

point arithmetic. Some key features of the TMS320C30 are listed below. §§ P §. -g.
2 H :
* 4 stage pipeline, 113 instructions 55 © E dg; o g g g
* One 4K x 32-bit single-cycle dual access on-chip ROM block - = K 3 £§ § g§ 5 o Qg
* Two 1K x 32-bit single-cycle dual access on-chip RAM blocks é §8§ § $ § §§
* 64 x 32-bit instruction cache € oo o © 2 § §
* 32-bit instruction and data words, 24-bit addresses  * §§§ 2 EER
* 40/32-bit floating-point/integer multiplier and ALU a~3
¢ 32-bit barrel shifter Jefioquod =

* Multiport register file: Eight 40-bit extended precision registers (accumulators)
* Two address generators with eight auxiliary registers and two arithmetic units
* On-chip direct memory access (DMA)) controller for concurrent /O
* Integer, floating-point, and logical operations

* Two- and three-operand instructions

* Parallel ALU and multiplier instructions in a single cycle

* Block repeat capability

* Zero-overhead loops with single-cycle branches

Conditional calls and returns

FIGURE 3.5 Block diagram of TMS320C30 and TMS32C31 processor (Courtesy Texas Instruments).
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Program Cache and Program and Deta Memory for Zero Walt-Siale Exscution
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FIGURE 3.6 Block diagram of TMS320C40 processor (Courtesy Texas Instruments).
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* Interlocked instructions for multiprocessing support
* Two 32-bit data buses (24- and 13-bit address)

» Two serial ports

* DMA controller

¢ Two 32-bit timers

3.2 TYPICAL PROGRAMMING TOOLS FOR DSP

The manufacturers of DSP microprocessors typically provide a set of software tools de-
signed to enable the user to develop efficient DSP algorithms for their particular proces-
sors. The basic software tools provided include an assembler, linker, C compiler, and
simulator. The simulator can be used to determine the detailed timing of an algorithm and
then optimize the memory and register accesses. The C compilers for DSP processors
will usually generate assembly source code so that the user can see what instructions are
generated by the compiler for each line of C source code. The assembly code can then be
optimized by the user and then fed into the assembler and linker.

Most DSP C compilers provide a methed to add in-line assembly language routines
to C programs (see section 3.3.2). This allows the programmer to write highly efficient
assembly code for time-critical sections of a program. For example, the autocorrelation
function of a sequence may be calculated using a function similar to a FIR filter where
the coefficients and the data are the input sequence. Each multiply-accumulate in this al-
gorithm can often be calculated in one cycle on a DSP microprocessor. The same C algo-
rithm may take 4 or more cycles per multiple-accumulate. If the autocorrelation calcula-
tion requires 90 percent of the time in a C program, then the speed of the program can be
improved by a factor of about 3 if the autocorrelation portion is coded in assembly lan-
guage and interfaced to the C program (this assumes that the assembly code is 4 times
faster than the C source code). The amount of effort required by the programmer to create
efficient assembly code for just the autocorrelation function is much less than the effort
required to write the entire program in assembly langunage.

Many DSP software tools come with a library of DSP functions that provide highly
optimized assembly code for typical DSP functions such as FFTs and DFTs, FIR and IIR
filters, matrix operations, correlations, and adaptive filters. In addition, third parties may
provide additional functions not provided by the manufacturer. Much of the DSP library
code can be used directly or with small modifications in C programs.

3.2.1 Basic C Compiler Tools

AT&T DSP32C software development tools. The DSP32C’s C Compiler
provides a programmer with a readable, quick, and portable code generation tool com-
bined with the efficiency provided by the assembly interface and extensive set of library
routines. The package provides for compilation of C source code into DSP32 and
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DSP32C assembly code, an assembler, a simulator, and a number of other usefy] utilitieg
for source and object code management. The three forms of provided libraries are:

* libc A subset of the Standard C Library
* libm  Math Library
* libap  Application Software Library, complete C-callable set of DSP routines.

DSP32C support software library. This package provides assembly-Jeye
programming. Primary tools are the assembler, linker/loader, a make utility that Provides
better control over the assembly and link/load task, and a simulator for program debyg.
ging. Other utilities are: library archiver, mask ROM formatter, object file dumper, syp,.
bol table lister, object file code size reporter, and EPROM programmer formatter. The SL
package is necessary for interface control of AT&T DSP32C Development Systems.

The Application Library has over seven dozen subroutines for arithmetic, matrix,
filter, adaptive filter, FFT, and graphics/imaging applications. All files are assembly
source and each subroutine has an example test program. Version 2.2.1 adds four routines
for sample rate conversion.

AT&T DSP3210 software development tools. This package includes a c
language compiler, libraries of standard C functions, math functions, and digital signal
processing application functions. A C code usage example is provided for each of the
math and application library routines. The C Compiler also includes all of the assem-
bler, simulator, and utility programs found in the DSP3210 ST package. Since the C
libraries are only distributed as assembled and then archived “.a” files, a customer may
also find the DSP3210-AL package useful as a collection of commented assembly code
examples.

DSP3210 support software library. The ST package provides assembly
level programming. The primary tools of the package are the assembler, linker/loader,
and a simulator for program development, testing, and debugging. A 32C to 3210 assem-
bly code translator assists developers who are migrating from the DSP32C device.
Additional utilities are library archiver, mask ROM formatter, object code disassembler,
object file dumper, symbol table lister, and object code size reporter. The AT&T
Application Software Library includes over ninety subroutines of typical operations for
arithmetic, matrix, filter, adaptive filter, FFT, and graphics/imaging applications. All files
are assembly source and each subroutine has an example test program.

Analog devices ADSP-210XX C tools. The C tools for the ADSP-21000
family let system developers program ADSP-210XX digital signal processors in ANSI C.
Included are the following tools: the G21K C compiler, a runtime library of C functions,
and the CBUG C Source-Level Debugger. G21K is Analog Devices’ port of GCC, the
GNU C compiler from the Free Software Foundation, for the ADSP-21000 family of dig-
ital signal processors. G21K includes Numerical C, Analog Devices’ numerical process-
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ing extensions to the C language based on the work of the ANSI Numerical C Extensions
Group (NCEG) subcommittee.

The C runtime library functions perform floating-point mathematics, digital signal
processing, and standard C operations. The functions are hand-coded in assembly lan-
guage for optimum runtime efficiency. The C tools augment the ADSP-21000 family
assembler tools, which include the assembler, linker, librarian, simulator, and PROM
splitter.

Texas Instruments TMS320C30 C tools. The TMS320 floating-point C
compiler is a full-featured optimizing compiler that translates standard ANSI C programs
into TMS320C3x/C4x assembly language source. The compiler uses a sophisticated opti-
mization pass that employs several advanced techniques for generating efficient, compact
code from C source. General optimizations can be applied to any C code, and target-
specific optimizations take advantage of the particular features of the TMS320C3x/Cdx
architecture. The compiler package comes with two complete runtime libraries plus the
source library. The compiler supports two memory models. The small memory model en-
ables the compiler to efficiently access memory by restricting the global data space to a
single 64K-word data page. The big memory model allows unlimited space.

The compiler has straightforward calling conventions, allowing the programmer to
easily write assembly and C functions that call each other. The C preprocessor is inte-
grated with the parser, allowing for faster compilation. The Common Object File Format
(COFF) allows the programmer to define the system’s memory map at link time. This
maximizes performance by enabling the programmer to link C code and data objects into
specific memory areas. COFF also provides rich support for source-level debugging. The
compiler package includes a utility that interlists original C source statements into the as-
sembly language output of the compiler. This utility provides an easy method for inspect-
ing the assembly code generated for each C statement.

All data sizes (char, short, int, long, float, and double) are 32 bits. This
allows all types of data to take full advantage of the TMS320Cx/C4x’s 32-bit integer and
floating-point capabilities. For stand-alone embedded applications, the compiler enables
linking all code and initialization data into ROM, allowing C code to run from reset.

3.2.2 Memory Map and Memory Bandwidth Considerations

Most DSPs use a Harvard architecture with three memory buses (program and two data
memory paths) or a modified Harvard architecture with two memory buses (one bus is
shared between program and data) in order to make filter and FFT algorithms execute
much faster than standard von Neumann microprocessors. Two separate data and address
busses allow access to filter coefficients and input data in the same cycle. In addition,
most DSPs perform multiply and addition operations in the same cycle. Thus, DSPs exe-
cute FIR filter algorithms at least four times faster than a typical microprocessor with the
same MIPS rating.

The use of a Harvard architecture in DSPs causes some difficulties in writing C
programs that utilize the full potential of the multiply-accumulate structure and the multi-
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ple memory busses. All three manufacturers of DSPs described here provide a method
assign separate physical memory blocks to different C variable types. For example, ayy,
variables that are stored on the heap can be moved from internal memory to externa
memory by assigning a different address range to the heap memory segment. In the z.
sembly language generated by the compiler the segment name for a particular C variabje
or array can be changed to locate it in internal memory for faster access or to allow it to
be accessed at the same time as the other operands for the multiply or accumulate opera-
tion. Memory maps and segment names are used by the C compilers to separate differen¢
types of data and improve the memory bus utilization. Internal memory is often used for
coefficients (because there are usually fewer coefficients) and external memory is uged
for large data arrays.

The ADSP-210XX C compiler also supports special keywords so that any C varj.
able or array can be placed in program memory or data memory. The program memory is
used to store the program instructions and can also store floating-point or integer data,
When the processor executes instructions in a loop, an instruction cache is used to allow
the data in program memory (PM) and data in the data memory (DM) to flow into the
ALU at full speed. The pm keyword places the variable or array in program memory, and
the dm keyword places the variable or array in data memory. The default for static or
global variables is to place them in data memory.

3.2.3 Assembly Language Simulators and Emulators

Simulators for a particular DSP allow the user to determine the performance of a DSP al-
gorithm on a specific target processor before purchasing any hardware or making a major
investment in software for a particular system design. Most DSP simulator software is
available for the IBM-PC, making it easy and inexpensive to evaluate and compare the
performance of several different processors. In fact, it is possible to write all the DSP ap-
plication software for a particular processor before designing or purchasing any hard-
ware. Simulators often provide profiling capabilities that allow the user to determine the
amount of time spent in one portion of a program relative to another. One way of doing
this is for the simulator to keep a count of how many times the instruction at each address
in a program is executed.

Emulators allow breakpoints to be set at a particular point in a program to examine
registers and memory locations, to determine the results from real-time inputs. Before a
breakpoint is reached, the DSP algorithm is running at full speed as if the emulator were
not present. An in-circuit emulator (ICE) allows the final hardware to be tested at full
speed by connecting to the user’s processor in the user’s real-time environment. Cycle
counts can be determined between breakpoints and the hardware and software timing of a
system can be examined.

Emulators speed up the development process by allowing the DSP algorithm to run
at full speed in a real-time environment. Because simulators typically execute DSP pro-
grams several hundred times slower than in real-time, the wait for a program to reach a
particular breakpoint in a simulator can be a long one. Real world signals from A/D con-
verters can only be recorded and then later fed into a simulator as test data. Although fhe
test data may test the algorithm performance (if enough test data is available), the timing
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of the algorithm under all possible input conditions cannot be tested using a simulator.
Thus, in many real-time environments an emulator is required.

The AT&T DSP32C simulator is a line-oriented simulator that allows the user to
examine all of the registers and pipelines in the processor at any cycle so that small pro-
grams can be optimized before real-time constraints are imposed. A typical computer dia-
log (user input is shown in bold) using the DSP32C simulator is shown below (courtesy
of AT&T):

$im: SHOWRW=1

$im: b end

bp set at addr 0x44

$im: run

12 | r000004* * * * |0000: rll = Ox7£(127)

16 | r000008* * * w00007c* |0004: * r2 = rill

20 | r00000c** * * r00007c* |0008: a3 = *r2

25 | r000010** * r5a%aba* __ = * IOOOC: rl0l = * rl

30 | r000014* * * * 10010: NOP

34 | r000018* * * * |0014: rl0 = r10 + Oxff81(-127)
38 | r00001lc* * * w000080* [0018: * r3 = rl0

42 | r000020** * * r000080* |001lc: *r3 = a0 = float(*r3)
47 | r000024** * * * |0020: a0 = a3 * a3

52 | r000028* * r000074* r000070**|0024: al = *rd4— + a3 * *r4-—
57 | r00002c** * r000068* r000064**|0028: a2 = *r5— + a3 * *rS5—
63 | r000030**w000080** * * |002¢c: a0 = a0 * a3

69 | r000034* * * r00006c* {0030: al = *rd + al * a3

73 | r000038** * r00005c* r000058**[0034: a3 = *ré6— + a3 * *ré6—
79 | r00003c** * r00007c* r000060**|0038: a2 = *r5 + a2 * *r2
85 | r000040** * * * |003¢c: al = al + a0

90 | r000044* * r000080* * 10040: *r7 = a0 = al + *r3
breakpoint at end{0x000044} decode:*r7 = a0 = al + *r3

$im: x7.f£

r7 = 16.000000
$im: nwait.d
nwait = 16

In the above dialog the flow of data in the four different phases of the DSP32C in-
struction cycle are shown along with the assembly language operation being performed.
The cycle count is shown on the left side. Register 17 is displayed in floating-point after
the breakpoint is reached and the number of wait states is also displayed. Memory reads
are indicated with an r and memory writes with a w. Wait states occurring when the same
memory is used in two consecutive cycles are shown with **,

AT&T DSP32C EMULATION SYSTEM DESCRIPTION

* Real-time application development

* Interactive interface to the ICE card(s) provided by the DSP32C simulator through
the high-speed parallel interface on the PC Bus Interface Card
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Figure 3.7 shows a typical screen from the ADSP-21020 screen-oriented simulator., This 1 eeggg ;;:33632 FLOAT eratio,RO R6 00000006 R? 060000000
simulator allows the timing and debug of assembly language routines. The user Interface  § ] ggeau 43a2109b3 LDFN  @89b3H,R1 ARG 1c40 AR1 00 10
of the simulator lets you completely control program execution and easily change the . |eeee15 45618006 LDFGE ©.00,R1 ARZ 660680000 AR3 6000689fb
. . 150 b . e 3 : 000616 91860001 ADDF R1,Re v{AR41 600000600 ARS 00000000Y
contents of registers and memory. Breakpoints can also be set to Stop execution of the | 000617 62607480 MPYF  200.60,R0 | |AR6 00006000 AR? 00060666 |
program at a particular point. The ADSP-21020 simulator creates a Tepresentation of : ] ILE: chZ.c - - ALLS
the device and memory spaces as defined in a system architecture file. It can also simy. ‘ [5066 ﬁ:’:s?;g:‘;‘;;“;tr ) al 1: mainO
late input and output from I/O devices using simulated data files. Program execution can | ::gg _in_ptr:
be observed on a cycle-by-cycle basis and changes can be made on-line to COFTect errors, ] 9669 percent_pass = 86.9;
. . . H . . e
The same screen based mterfage 1s used ff)r both 'the sn.mulator and thg IR-CIrcuit emuly- 22;1 fp = percent_pass/(206.0»ratio); v
tor. A C-source level debugger is also available with this same type of interface (see sec. 0072 fa = (Z260.8 - percent_pass)/(200.8=ratio); |
tion 3.3.1). ] P loaded a 953323 6f2h0666 080bOB14 B274001a Of
. ; ar . 3 84 Symbols loade A 61la 6fa60800a
. F]gure 3.8 shows a typnf:al screen from the TMS320C_30 screen-oriented simulator, Done I|e000e4 6r2c0008 0f246000 672809b2 14406318|
This simulator allows the timing of assembly language routines as well as C source code, 9 o main v 000008 07616200 1441036f 65a00682 43a209b3v
because it shows the assembly language and C source code at the same time. All of the * h || 20900c 45628000 61800002 eacer4ae 62066233 |

registers can be displayed after each step of the processor. Breakpoints can also be settp . .
stop execution of the program at a particular point. 3 FIGURE 3.8 TMS320C30 simulator in mixed mode assembly language mode
3 {Courtesy Texas Instruments.)
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- Data Memory (Fixed) ——- i

_play_fifo: Program Memory (Disassembled,/T) — . . . . . .
mpﬂ Y (800060001 -107811072 RAM  [0002de] comp(rZ,rd): E This section describes some of the more advanced software tools available for floating-
RAM  [000600011 147128993 RAM  [0002d4f1 if ge jump _L20 (db): 1 . point DSP microprocessors. Source-level debugging of C source code is described in the
:2: :gggggggg} fggg?g?gg 1’:2: {gggg:g} :g:: o next section. Section 3.3.2 describes several assembly language interfaces often used in
RAN 1060000041 -372968788 RAN  [8002e2] rZ2=dm(Oxfffffffa,i6}; ] DSP programming to accelerate key portions of a DSP algorithm. Section 3.3.3 jllustrates
RAN  [00600005] -569122157 RAM  >10002e3) r4=ashift r2 by 6x3; E the numeric C extensions to the C language using DSP algorithms as examples (see

Ran [0002e41 r9=6x32f5;

Section 2.10 for a description of numeric O).

Cycle Counter RAN [0002e5] r2=r4+r9;
[ 578324791 ] RAN [0002e6] r12=-0x473f:; 1 ;
RAN  [0002e?] r8=6x4749: E 3.3.1 Source Level Debuggers

—— Active Register File (Hex) Ran [0002e8] r4=r2; 4

RO: 458d4de5a00 R8: 06000000600 Ran [0002e9] i13=0x2ec; E 3 L X

R1: 0000060160 R3: 0000000000 B|RAM % [0602ea] Jump _note (db): 3 i Communication Automation & Control (CAC), Inc. (Allentown, PA) offers a debugger
gg ggg‘;:ggggg gi‘;f g??????ggg gg: Egggggg; 'l‘g::f" ] for DSP32C assembly language with C-source debugging capability. Both versions are
R4: 0000000400 R12: 458ddc5a00 H|RAM  [0002ed] r12-re: 3 ] compatible with the following vendors’ DSP32C board for the AT computer under MS-
R5: 4574200060 R13: c833101cdb RAM [0002¢e] r8=dm(Oxfffffff5,i63; b 4 DOS: all CAC boards, Ariel, AT&T DSP32C-DS and ICE, Burr-Brown ZPB34, Data

R6: 0000000660 Ri4: fIFrFffffeff RAM [0002ef ] £2=£8+112;
R?: 8a016018056 R15: 8fc3fOfsff RAM [0002f0) dm(Oxf{ffffff5,i6)=r2:
_L21:

Translation, Loughborough Sound Images, and Surrey Medical Imaging Systems. C-
source code of the drivers is provided to enable the user to port either debugger to an un-
supported DSP32C based board.

Both D3EMU (assembly language only) and D3BUG (C-source and mixed assem-
lfbly code) are screen-oriented user-friendly symbolic debuggers and have the following
eatures:

Target Halted oy:12:47"

FIGURE 3.7 ADSP-21020 simulator displaying assembly language and processor
registers {Courtesy Analog Devices.)
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Single-step, multiple breakpoints, run at full speed
Accumulator/register/mem displays updated automatiéally after each step
Global variables with scrolling

Stand-alone operation or callable by host application

D3BUG ONLY

C-source and assembly language mixed listing display modes.
Local and watch variables.

Stack trace display.

Multiple source files/directories with time stamp check.

Figure 3.9 shows a typical screen generated using the D3BUG source level debug-

ger with the DSP32C hardware executing the program. Figure 3.9 shows the mixed as-
sembly-C source mode of operation with the DSP32C registers displayed. Figure 3.1
shows the C source mode with the global memory location displayed as the entire C pro-
gram is executed one C source line at a time in this mode.

Figure 3.11 shows a typical screen from the ADSP-21020 simulator when C source

level debugging is being performed using CBUG. C language variables can be displayed
and the entire C program can be executed one C source line at a time in this mode. This
same type of C source level debug can also be performed using the in-circuit emulator.

acc break cont disk goto halt i‘o men code quit reg step vars mix ?-DOS ?-heip
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acc break cont disk goto halt i-‘o mem code quit reg step vars mix 1-D0S T-hetp

0650

0851 = Select two frequencies =/

0852> freql = 576.0:;

0953> freqZ = 1472.0;

9054

0855 /» Calculate the frequency ratio between the sel

0856 /= sanilini rate for both oscillators. =/
0658>

freq_ratio2 = freqZ/sample_rate:
0059

0060 /» Initialize each oscillator =,

8061> oscinit(freq_ratiol,state_uarinblesl):

9063) oscinit{freq_ratioZ,state_variables2):

066

0664 /= Generate 128 samples for each oscillator =/
0865> oscN(state_variables1,128,datal);

8066> oscN(state_variables2,128,data2);

0867

9668 /= Add the two waveforms together =/

00693> add_tones(datal,data2);

9870

0071 /= Now compute the fft using the AT&T

0e7Z> rffta(128,?,data_in); g spplicatio

r-: GLOBAL UARIABLES —-

8873

atallo]

63002c: 2.685559e-603
datazlo]

03022c: 2.685559¢-603
data_inlo1l

03042c: 2.685559¢-003
data_outfoe]

83862c: 2.685559¢-063
errno

0360600 : 865319799
find_max

00038c : 536084951
freq1

630604: 1.933384e+026
freq2

636008: 1.933384¢+026
freq _ratiol

030006c: 1.933384e+026
freq_ratio2

0360016: 1.933384e+026
log1e

000410: 809561647

FIGURE 3.10 DSP32C debugger D3BUG in C-source mode (Courtesy Communication

Automation & Control (CAC), Inc. {Allentown, PA).)
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CBUG ( .
<Continue> RuZik. exe)

0000b4: 94Z2effe8
0000b8: 30000477
0000bc: 00000009
0060cO: 000600000
0000c4: c0610008
90006c8: 30000477
00006cc: 900000000

0000d4: c0146048
0000dY: YaBesooy
0000dc: c6610610
06000c6: 30200008
0060c4: 00000600

9600eB: c0610014
9900ec: 1fel01dd
g00ure: cHb19v0c
0000f4: 30000477
0000f8: 00000608
v000fc: 0140444
060100: c01401064
000104: 9aB8c06008

REGISTERS ==
rie=r14+0xffffed 1:0x030008 freq2
%ri14++=a0=wrl 2:0xfffo34
nop 3:0xfffO3c
nop 4:0x036800 _1
rie=freq2 5:0x688191
wriqeezaf=wrl 6:68xfffdJa
no ?:0xfffffd

8:0x1cf81b

r1B8e=0x6648 9:0xbfa335
rl4e=ri4-4 10:6xfffffc
rie=freq_ratio2 11:9x060405a
wrl=al=a@ 12:8xf933e3
nop 13:0xf££606
8061> oscinit(freq_ratiol,state_variables1); 14:0xfffo38
rie=state_variables1 15:0xfIffff
»rl4++ri9=rie 16:0xfIffff
rle=freq_ratiol 17 :0x5ee?ff
wrl4++=a@=srl 18:6x0000a6
nop 19:6x000604
call oscinit (riB) 20:0x16bf11
r18c-0x0194 21:0x600008
ri4e-r14-8 22:0xfEfFFPff

18: 0.90960000e+608 al: ©.8000000c+006 aZ: ©.0000000c+080 a3: 1.7000809c+03b

FIGURE 3.9 DSP32C debugger D3BUG in mixed assembly C-source mode (Courtesy

Communication Automation & Control (CAC), Inc. (Allentown, PA).)

{Step> <Next>

<Finish> <Break> <Up> <D
<Execution..> <Breaks..> <Data..> <Context..> (Synbols.?) <Hodg:??>
muZlk.c
83: for(i =8 : i < endi ; i+s) ¢ .
Bif sig_out = 0.9;
gS: for(v = @ ; v < vnum : vses) {
Bg: sig_out += note(&notesivl,tbreaks,rates):
88: sendout(si :
89 ) sig_out)
38: ¥ C exp
by - X
>si
92: flush):; -gagi?ggss
93: flags(0); /» turn off LED =~
[ CBUG Status
§ No debug symbols for _key_down().
gteppsng into code with symbols.
rr: User halt. Do a CBUG Step/Next to resume C debuggin
$ Err: User halt. Do a CBUG Step/Next to resume C degggggng.

Target Halted

FIGURE 3.11 ADSP-21020 simulator displaying C source code (Courtesy
Devices.)

08:16:49

Analog



©reak

FILE:
0670
0071

0072 fa = (200.0 - percent_pass)/(200.0xratio):
0073 deltaf = fa-fp:
0074
8075 nfilt = filter_length( att, deltaf, &beta ):
8076
007? Isize = nfilt/ratio:
0078
8079 nfilt = lsizexratio + 1;
6086 BP> npair = (nfilt - 1),2;
o681
pesz for(i = @ . i < ratio ; i++) {

0883 hlil = (float =) calloc(lsize,sizeof (float)); v
0084 if (thiid) { I
COMMAND — {CALLS

ATCH Al 1: mainQ)

Loading ch2.out 1: i 3

84 Symbols loaded Z2: clk 19ee

Done

Eo main i
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atch: ¢ emory:’ olor Mo e Run=F5: Step=F8 ' Next=F10

chZz.c 4‘——_;;‘““¥ﬁ

fp = percent_pass/(200.8xratio);

FIGURE 3.12 TMS320C30 simulator in C-source mode (Courtesy Texas Instruments.)

Figure 3.12 shows a typical screen from the TMS320C30 simulator when C source
level debugging is being performed. C language variables can be displayed and the entire
C program can be executed one C source line at a time in this mode.

3.3.2 Assembly-C Language Interfaces

The DSP32C/DSP3210 compiler provides a macro capability for in-line assembly lan-
guage and the ability to link assembly language functions to C programs. In-line assem-
bly is useful to control registers in the processor directly or to improve the efficiency of
key portions of a C function. C variables can also be accessed using the optional operands
as the following scale and clip macro illustrates:

asm void scale(flt_ptr,scale_f,clip)
{

% ureg flt_ptr,scale f,clip;

a0 = scale f * *flt_ptr

al -a0 + clip

a0 ifalt(clip)

*flt_ptr++ = a0 = a0

}

Assembly language functions can be easily linked to C programs using several
macros supplied with the DSP32C/DSP3210 compiler that define the beginning and. the
end of the assembly function so that it conforms to the register usage of the C compiler.
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The macro @B saves the calling function’s frame pointer and the return address. The
macro @EO reads the return address off the stack, performs the stack and frame pointer
adjustments, and returns to the calling function. The macros do not save registers used in
the assembly language code that may also be used by the C compiler—these must be
saved and restored by the assembly code. All parameters are passed to the assembly lan-
guage routine on the stack and can be read off the stack using the macro param (), which
gives the address of the parameter being passed.

The ADSP-210XX compiler provides an asm() construct for in-line assembly lan-
guage and the ability to link assembly language functions to C programs. In-line assem-
bly is useful for directly accessing registers in the processor, or for improving the effi-
ciency of key portions of a C function. The assembly language generated by asm() is
embedded in the assembly language generated by the C compiler. For example,
asm("bit set imask 0x40;") will enable one of the interrupts in one cycle. C
variables can also be accessed using the optional operands as follows:

asm("%0=clip %1 by %2;" : "=g* (result) : "a" (x), "d* (y));

where result, x and y are C language variables defined in the C function where the
macro is used. Note that these variables will be forced to reside in registers for maximum
efficiency.

ADSP-210XX assembly language functions can be easily linked to C programs
using several macros that define the beginning and end of the assembly function so that it
conforms to the register usage of the C compiler. The macro entry saves the calling
function’s frame pointer and the return address. The macro exit reads the return address
off the stack, performs the stack and frame pointer adjustments, and returns to the calling
function. The macros do not save registers that are used in the assembly language code
which may also be used by the C compiler—these must be saved and restored by the as-
sembly code. The first three parameters are passed to the assembly language routine in
registers r4, 18, and r12 and the remaining parameters can be read off the stack using the
macro reads ().

The TMS320C30 compiler provides an asm() construct for in-line assembly lan-
guage. In-line assembly is useful to control registers in the processor directly. The assem-
bly language generated by asm() is embedded in the assembly language generated by
the C compiler. For example, asm(* LDI @MASK, IE") will unmask some of the in-
terrupts controlled by the variable MASK. The assembly language routine must save the
calling function frame pointer and return address and then restore them before returning
to the calling program. Six registers are used to pass arguments to the assembly language
routine and the remaining parameters can be read off the stack.

3.3.3 Numeric C Compilers

As discussed in section 2.10, numerical C can provide vector, matrix, and complex oper-
ations using fewer lines of code than standard ANSI C. In some cases the compiler may
be able to perform better optimization for a particular processor. A complex FIR filter
can be implemented in ANSI C as follows:
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typedef struct {
float real, imag;
} COMPLEX;

COMPLEX float x[1024],w[1024];
COMPLEX *xc, *wc,out;
KC=X;
WC=W;
out.real = 0.0;
out.imag = 0.0
for(i =0 ; i <n ; i++) {
out.real += xc[i].real*wc([i].real - xcli].imag*wc(i].imag;
out.imag += xcl[i].real*wc[i].imag + xcli] .imag*wc([i] .real;

’

The following code segment shows the numeric C implementation of the same complex
FIR filter:

complex float out,x[1024],w[1024];
{
iter I = n;
out=sum(x[I]*w(I]);

The numeric C code is only five lines versus the ten lines required by the standard C im-
plementation. The numeric C code is more efficient, requiring 14 cycles per filter tap ver-
sus 17 in the standard C code.

More complicated algorithms are also more compact and readable. The followir}g
code segment shows a standard C implementation of a complex FFT without the bit-
reversal step (the output data is bit reversed):

void fft_c(int n,COMPLEX *x,COMPLEX *w)
{

COMPLEX u, temp, tm;

COMPLEX *xi,*Xip, *wptr;

int i,j,le,windex;

windex = 1;
for(le=n/2 ; le > 0 ; le/=2) {
wptr = w;
for (j =0 ; j<le; j++) {
u = *wptr;
for (i =3 ;:;i<n; 1i=1+2*le) {
xi =x + i;
xip = xi + le;
temp.real = xi->real + xip->real;
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temp.imag = xi->imag + xip->imag;
tm.real = xi->real - xip->real;
tm.imag = xi->imag - xip->imag;
xip->real = tm.real*u.real - tm.imag*u.imag;
xip->imag = tm.real*u.imag + tm.imag*u.real;
*xi = temp;

}

wptr = wptr + windex;

}

windex = 2*windex;

The following code segment shows the numeric C implementation of a complex FFT
without the bit-reversal step:

void fft nc(int n, complex float *x, complex float *w)
{
int size,sect,deg = 1;
for(size=n/2 ; size > 0 ; size/=2) {
for(sect=0 ; sect < n ; sect += 2*size) ({
complex float *xl=x+sect;
complex float *x2=xl+size;
{ iter I=size;
for(1) {
complex float temp;
temp = x1[I] + x2(I]);
x2[I] = (x1[I] - x2[I]) * w[deg*I];
x1[I] = temp;

deg *= 2;

The twiddle factors (w) can be initialized using the following numeric C code:

void init_w(int n, complex float *w)
{

iter I = n;

float a = 2.0*PI/n;

wl[I] = cosf(I*a) + li*sinf(I*a);

Note that the performance of the init_w function is almost identical to a standard C im-
plementation, because most of the execution time is spent inside the cosine and sine func-
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tions. The numerical C implementation of the FFT also has an almost identical execution
time as the standard C version.

4 REAL-TIME SYSTEM DESIGN CONSIDERATIONS

Real-time systems by definition place a hard restriction on the response time to one of
more events. In a digital signal processing system the events are usually the arrival of
new input samples or the requirement that a new output sample be generated. In this sec-
tion several real-time DSP design considerations are discussed.

Runtime initialization of constants in a program during the startup phase of a DSp’
execution can lead to much faster real-time performance. Consider the pre-calculation of
1/, which may be used in several places in a particular algorithm. A lengthy divide i
each case is replaced by a single multiply if the constant is pre-calculated by the compiler
and stored in a static memory area. Filter coefficients can also be calculated during the
startup phase of execution and stored for use by the real-time code. The tradeoff that re-
sults is between storing the constants in memory which increases the minimum memory
size requirements of the embedded system or calculating the constants in real-time. Also,
if thousands of coefficients must be calculated, the startup time may become exceeding
long and no longer meet the user’s expectations. Most DSP software development sys-
tems provide a method to generate the code such that the constants can be placed in ROM
so that they do not need to be calculated during startup and do not occupy more expen-
sive RAM.

3.4.1 Physical Input/Output (Memory Mapped,
Serial, Polled)

Many DSPs provide hardware that supports serial data transfers to and from the processor
as well as external memory accesses. In some cases a direct memory access (DMA) con-
troller is also present, which reduces the overhead of the input/output transfer by transfer-
ring the data from memory to the slower I/O device in the background of the real-time
program. In most cases the processor is required to wait for some number of cycles when-
ever the processor accesses the same memory where the DMA process is taking place.
This is typically a small percentage of the processing time, unless the input or output
DMA rate is close to the MIPS rating of the processor.

Serial ports on DSP processors typically run at a maximum of 20 to 30 Mbits/sec-
ond allowing approximately 2.5 to 4 Mbytes to be transferred each second. If the (liata
input and output are continuous streams of data, this works well with the typical floating-
point processor MIPS rating of 12.5 to 40. Only 4 to10 instructions could be exe_cuted be-
tween each input or output leading to a situation where very little signal processing could
be performed.

Parallel memory-mapped data transfers can take place at the MIPs rating of the
processor, if the I/O device can accept the data at this rate. This allows for rapid transfers
of data in a burst fashion. For example, 1024 input samples could be acquired from 2
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10 MHz A/D converter at full speed in 100 usec, and then a FFT power spectrum calcula-
tion could be performed for the next 5 msec. Thus, every 5.1 msec the A/D converter's
output would be used.

Two different methods are typically used to synchronize the microprocessor with
the input or output samples. The first is polling loops and the second is interrupts which
are discussed in the next section. Polling loops can be highly efficient when the input and
output samples occur at a fixed rate and there are a small number of inputs and outputs.
Consider the following example of a single input and single output at the same rate:

for(;;) {
while(*in_status & 1);
*out = filter(*in)

}

It is assumed that the memory addresses of in, out, and in_status have been de-
fined previously as global variables representing the physical addresses of the I/O ports.
The data read at in_status is bitwise ANDed with 1 to isolate the least significant bit.
If this bit is 1, the while loop will loop continuously until the bit changes to 0. This bit
could be called a “not ready flag” because it indicates that an input sample is not avail-
able. As soon as the next line of C code accesses the in location, the hardware must set
the flag again to indicate that the input sample has been transferred into the processor.

* After the £ilter function is complete, the returned value is written directly to the out-

put location because the output is assumed to be ready to accept data. If this were not the
case, another polling loop could be added to check if the output were ready. The worst
case total time involved in the filter function and at least one time through the while
polling loop must be less than the sampling interval for this program to keep up with the
real-time input. While this code is very efficient, it does not allow for any changes in the
filter program execution time. If the filter function takes twice as long every 100 samples
in order to update its coefficients, the maximum sampling interval will be limited by this
larger time. This is unfortunate because the microprocessor will be spending almost half
of its time idle in the while loop. Interrupt-driven /O, as discussed in the next section,
can be used to better utilize the processor in this case.

3.4.2 Interrupts and Interrupt-Driven /O

In an interrupt-driven I/O system, the input or output device sends a hardware interrupt to
the microprocessor requesting that a sample be provided to the hardware or accepted as
input from the hardware. The processor then has a short time to transfer the sample. The
interrupt response time is the sum of the interrupt latency of the processor, the time re-
quired to save the current context of the program running before the interrupt occurred
and the time to perform the input or output operation. These operations are almost always
performed in assembly language so that the interrupt response time can be minimized.
The advantage of the interrupt-driven method is that the processor is free to perform other
tasks, such as processing other interrupts, responding to user requests or slowly changing
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the parameters associated with the algorithm. The disadvantage of interrupts is the over.
head associated with the interrupt latency, context save, and restore associated with the

interrupt process. o

The following C code example (file INTOUT.C on the enclosed disk) illustrates the
functions required to implement one output interrupt driven process that will generate
1000 samples of a sine wave:

#include <signal.h>
#include <math.h>
#include "rtdspc.h”

#define SIZE 10
int output_store([SIZE];
int in inx = 0;

volatile int out_inx = 0;

void sendout (float x);
void output_isr(int ino);

int in_fifo[10000];
int index = 0;

void main()

{
static float £,a;
int i,3;
setup_codec(6) ;
for{(i = 0 ; i < SIZE-1 ; i++) sendout(i);
interrupt (SIG_IRQ3, output_isr);
i=0;
j=1;
for(;;) {
for(£f=0.0 ; £ < 1000.0 ; £ += 0.005) {
sendout (a*sinf (£*PI));
i+= 3;
if (i%25 == 0) {
a = 100.0*exp(i*Se-5);
if(a > 30000.0 || 1 < 0) § = -3;
}
}
}
}
void sendout (float x)
{
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}

in_inx++;

if (in_inx == SIZE) in_inx = 0;
while(in inx == out_inx);
output_storelin_inx] = (int)x;

void output_isr(int ino)

{

volatile int *out = (int *)0x40000002;

if (index < 10000)
in_fifolindex++]1=16*in_inx+out_inx;

*out = output_store(out_inx++] << 16;
if (out_i: == SIZE) out_inx = 0;
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The C function output_isr is shown for illustration purposes only (the code is ADSP-
210XX specific), and would usually be written in assembly language for greatest effi-
ciency. The functions sendout and output_isr form a software first-in first-out
(FIFO) sample buffer. After each interrupt the output index is incremented with a circular
0-10 index. Each call to sendout increments the in_inx variable until it is equal to
the out_inx variable, at which time the output sample buffer is full and the while loop
will continue until the interrupt process causes the out_inx to advance. Because the
above example generates a new a value every 25 samples, the FIFO tends to empty dur-
ing the exp function call. The following table, obtained from measurements of the exam-
ple program at a 48 KHz sampling rate, illustrates the changes in the number of samples

in the software FIFO.
Sample Index in inx value out_inx value Number of Samples in FIFO
0 2 2 10
1 3 3 10
2 4 4 10
3 4 5 9
4 4 6 8
5 4 7 7
6 4 8 6
7 4 9 5
8 7 0 7
9 9 1 8
10 2 2 10

As shown in the table, the number of samples in the FIFO drops from 10 to 5 and then is
quickly increased to 10, at which point the FIFO is again full.
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3.4.3 Efficiency of Real-Time Compiled Code

The efficiency of compiled C code varies considerably from one compiler to the next
One way to evaluate the efficiency of a compiler is to try different C constructs, sych as.
case statements, nested 1 £ statements, integer versus floating-point data, while Toops
versus £or loops and so on. It is also important to reformulate any algorithm or eXpres.
sion to eliminate time-consuming function calls such as calls to exponential, square ro,

or transcendental functions. The following is a brief list of optimization techniques thy
can improve the performance of compiled C code.

(1) Use of arithmetic identities—multiplies by 0 or 1 should be eliminated whenever
possible especially in loops where one iteration has a multiply by 1 or zero, A} di-
vides by a constant can also be changed to multiplies.

(2) Common subexpression elimination—repeated calculations of same subexpression
should be avoided especially within loops or between different functions.

(3) Use of intrinsic functions—use macros whenever possible to eliminate the function
call overhead and convert the operations to in-line code.

(4) Use of register variables—force the compiler to use registers for variables which
can be identified as frequently used within a function or inside a loop.

(5) Loop unrolling—duplicate statements executed in a loop in order to reduce the
number of loop iterations and hence the loop overhead. In some cases the loop is
completely replaced by in-line code.

(6) Loop jamming or loop fusion—combining two similar loops into one, thus reduc-
ing loop overhead.

(7) Use post-incremented pointers to access data in arrays rather than subscripted vari-
ables (x=array [i++] is slow, x=*ptr++ is faster).

In order to illustrate the efficiency of C code versus optimized assembly code, the follow-
ing C code for one output from a 35 tap FIR filter will be used:

float in[35},coefs[35],y;

main()

{
register int i;
register float *x = in, *w = coefs;
register float out;

out = *X++ * *wi+t;

for(i = 16 ; i—>= 0; ) ¢{
out += *X++ * *wr+;
out += *X++ * Fyst;

}

y=out;
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The FIR C code will execute on the three different processors as follows:
Optimized C Optimized Relative Efficiency
Processor Code Cycles Assembly Cycles of C Code (%)
DSP32C 462 187 40.5
ADSP-21020 185 44 238
TMS320C30 241 45 18.7

The relative efficiency of the C code is the ratio of the assembly code cycles to the C
code cycles. An efficiency of 100 percent would be ideal. Note that this code segment is
one of the most efficient loops for the DSP32C compiler but may not be for the other
compilers. This is illustrated by the following 35-tap FIR filter code:

float in{35],coefs[35] Y

main()

{
register int i;
register float *x
register float *w
register float out;

in;
coefs;

o

Out = *X++ * *yt++;
for(i =0 ; i <17 ; i++ ) {
out += *xX++ * tyas;
out += *X++ * *yi4;
}
y=out;
}

This £for-loop based FIR C code will execute on the three different processors as fol-
lows:

Optimized C Optimized Relative Efficiency
Processor Code Cycles Assembly Cycles of C Code (%)
DSP32C 530 187 353
ADSP-21020 109 44 404
TMS320C30 211 45 21.3

Note that the efficiency of the ADSP-

21020 processor C code is now almost equal to the

efficiency of the DSP32C C code in the previous example.
The complex FFT written in standard C code shown in Section 3.3.3 can be used to



CHAPTER 4

REAL-TIME FILTERING

Filtering is the most commonly used signal processing technique. Filters are usually used
to remove or attenuate an undesired portion of a signal’s spectrum while enhancing the
desired portions of the signal. Often the undesired portion of a signal is random noise
with a different frequency content than the desired portion of the signal. Thus, by design-
ing a filter to remove some of the random noise, the signal-to-noise ratio can be improved
in some measurable way.

Filtering can be performed using analog circuits with continuous-time analog in-
puts or using digital circuits with discrete-time digital inputs. In systems where the input
signal is digital samples (in music synthesis or digital transmission systems, for example)
a digital filter can be used directly. If the input signal is from a sensor which produces an
analog voltage or current, then an analog-to-digital converter (A/D converter) is required
to create the digital samples. In either case, a digital filter can be used to alter the spec-
trum of the sampled signal, x;, in order to produce an enhanced output, y;. Digital filtering
can be performed in either the time domain (see section 4.1) or the frequency domain (see
section 4.4), with general-purpose computers using previously stored digital samples or
in real-time with dedicated hardware.

4.1 REAL-TIME FIR AND IIR FILTERS

Figure 4.1 shows a typical digital filter structure containing N memory elements used to
store the input samples and N memory elements (or delay elements) used to store the out-
put sequence. As a new sample comes in, the contents of each of the input memory ele-
ments are copied to the memory elements to the right. As each output sample is formed
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Xi—
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e

FIGURE 4.1 Filter structure of Nth order filter. The previous N input and output sam-
ples stored in the delay elements are used to form the output sum.

by accumulating the products of the coefficients and the stored values, the output mem-
ory elements are copied to the left. The series of memory elements forms a digital delay
line. The delayed values used to form the filter output are called zaps because each output
makes an intermediate connection along the delay line to provide a particular delay. This
filter structure implements the following difference equation:

Q-1 P-1
Ym) =Y byx(n-g)-Y a,y(n-p). @1
q=0 p=1

As discussed in Chapter 1, filters can be classified based on the duration of their impulse
response. Filters where the a,, terms are zero are called finite impulse response (FIR) fil-
ters, because the response of the filter to an impulse (or any other input signal) cannot
change N samples past the last excitation. Filters where one or more of the a, terms are
nonzero are infinite impulse response (IIR) filters. Because the output of an IIR filter de-
pends on a sum of the N input samples as well as a sum of the past N output samples, the
output response is essentially dependent on all past inputs. Thus, the filter output re-
sponse to any finite length input is infinite in length, giving the IIR filter infinite memory.

Finite impulse response (FIR) filters have several properties that make them useful
for a wide range of applications. A perfect linear phase response can easily be con-
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structed with an FIR filter allowing a signal to be passed without Phase distortiop, FIR
filters are inherently stable, so stability concerns do not arise in the design or implemey,
tation phase of development. Even though FIR filters typically require a large Dumbey o;
multiplies and adds per input sample, they can be implemented using fast convolutioy,
with FFT algorithms (see section 4.4.1). Also, FIR structures are simpler and easier ¢
implement with standard fixed-point digital circuits at very high speeds. The only pogsi.
ble disadvantage of FIR filters is that they require more multiplies for a given ffequency
response when compared to IIR filters and, therefore, often exhibit a longer Processing
delay for the input to reach the output.

During the past 20 years, many techniques have been developed for the design ang
implementation of FIR filters. Windowing is perhaps the simplest and oldest FIR design
technique (see section 4.1.2), but is quite limited in practice. The window design methog
has no independent control over the passband and stopband ripple. Also, filters with un-
conventional responses, such as multiple passband filters, cannot be designed. Op the
other hand, window design can be done with a pocket calculator and can come close to
optimal in some cases.

This section discusses FIR filter design with different equiripple error in the pass-
bands and stopbands. This class of FIR filters is widely used primarily because of the
well-known Remez exchange algorithm developed for FIR filters by Parks and
McClellan. The general Parks-McClellan program can be used to design filters with sey.
eral passbands and stopbands, digital differentiators, and Hilbert transformers. The FIR
coefficients obtained program can be used directly with the structure shown in Figure 4.1
(with the a_ terms equal to zero). The floating-point coefficients obtained can be directly
used with floating-point arithmetic (see section 4.1.1).

The Parks-McClellan program is available on the IEEE digital signal processing
tape or as part of many of the filter design packages available for personal computers,
The program is also printed in several DSP texts (see Elliot, 1987, or Rabiner and Gold,
1975). The program REMEZ.C is a C language implementation of the Parks-McClellan
program and is included on the enclosed disk. An example of a filter designed using the
REMEZ program is shown at the end of section 4.1.2. A simple method to obtain FIR fil-
ter coefficients based on the Kaiser window is also described in section 4.1.2. Although
this method is not as flexible as the Remez, exchange algorithm it does provide optimal
designs without convergence problems or filter length restrictions.

4.1.1 FIR Filter Function

Figure 4.2 shows a block diagram of the FIR real-time filter implemented by the function
fir_ filter (shown in Listing 4.1 and contained in the file FILTER.C). The
fir_ filter function implements the FIR filter using a history pointer and coefficients
passed to the function. The history array is allocated by the calling program and is used to
store the previous N — 1 input samples (where N is the number of FIR filter coefficients).
The last few lines of code in £ir_£ilter implements the multiplies and accumulates
required for the FIR filter of length N. As the history pointer is advanced by using a post-
increment, the coefficient pointer is post-decremented. This effectively time reverses the
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FIGURE 4.2 Block diagram of real-time N tap FIR filter structure as imple-
mented by function £ir filter.

history [0]

coefficients so that a true convolution is implemented. On some microprocessors, post-
decrement is not implemented efficiently so this code becomes less efficient, Improved
efficiency can be obtained in this case by storing the filter coefficients in time-reversed
order. Note that if the coefficients are symmetrical, as for simple linear phase lowpass fil-
ters, then the time-reversed order and normal order are identical. After the for loop and
N ~ 1 multiplies have been completed, the history array values are shifted one sample to-
ward history[0], so that the new input sample can be stored in history[N-1].
The £ir_filter implementation uses pointers extensively for maximum efficiency.
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fir filter — Perform fir filtering sample by sample on floats

Requires array of filter coefficients and pointer to history.
Returns one output sample for each input sample.

float fir_filter (float input, float *coef, int n, float *history)

float input new float input sample

float *coef pointer to filter coefficients
int n number of coefficients in filter
float *history history array pointer

Returns float value giving the current output.

*******************‘k*****************************************************/

float fir_filter(float input,float *coef,int n, float *history)
{

int i;

float *hist_ptr, *histl_ptr, *coef_ptr;

float output;

hist_ptr = history:;
histl_ptr = hist_ptr; /* use for history update */
coef_ptr = coef + n - 1; /* point to last coef */

/* form output accumulation */

output = *hist_ptr++ * (*coef_ptr—};

for(i = 2 ; i <n; i++) {
*histl_ptr++ = *hist_ptr; /* update history array */
output += (*hist_ptr++) * (*coef_ptr-);

}

output += input * (*coef_ptr); /* input tap */

*histl_ptr = input; /* last history */

return (output) ;

LISTING 4.1 Function fir_ filter(input,coef,n, history).

4.1.2 FIR Filter Coefficient Calculation

Because the stopband attenuation and passband ripple and the filter length are all speci-

Chap. 4

fied as inputs to filter design programs, it is often difficult to determine the filter length
required for a particular filter specification. Guessing the filter length will eventually
reach a reasonable solution but can take a long time. For one stopband and one passband
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the following approximation for the filter length (N) of an optimal lowpass filter has been

developed by Kaiser:

Ay —16 4.2)
29Af

where:
Af:z(j;np"fkms)kﬂ

and Ay, is the minimum stopband attenuation (in dB) of the stopband from f;, to f/2.
The approximation for N is accurate within about 10 percent of the actual required filter
length. For the Kaiser window design method, the passband error (8;) is equal to the
stopband error (3,) and is related to the passband ripple (A, ) and stopband attenuation
(in dB) as follows:

5, =1-10"=u /%
8, = 107 Am /20
A = ~40l0gyo(1-107% %)

As a simple example, consider the following filter specifications, which specify a
lowpass filter designed to remove the upper half of the signal spectrum:

Passband (fpass): 0-0.19f,
Passband ripple (A,,,,): <0.2dB
Stopband (fsmp): 025-05f,
Stopband Attenuation (Asmp): > 40 dB

From these specifications

5, =0.01145,
8, =0.01,
Af =0.06.

The result of Equation (4.2) is N = 37. Greater stopband attenuation or a smaller transi-
tion band can be obtained with a longer filter. The filter coefficients are obtained by mul-
tiplying the Kaiser window coefficients by the ideal lowpass filter coefficients. The ideal
lowpass coefficients for a very long odd length filter with a cutoff frequency of £, are
given by the following sinc function:

¢ = ﬁ‘%""_) @3)

Note that the center coefficient is k = 0 and the filter has even symmetry for all coeffi-
cients above k = 0. Very poor stopband attenuation would result if the above coefficients
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were truncated by using the 37 coefficients (effectively multiplying the sinc
rectangular window, which would have a stopband attenuation of about 13 dB
However, by multiplying these coefficients by the appropriate Kaiser wind
band and passband specifications can be realized. The symmetrical Kaiser

given by the following expression:

2k \?
IpdB,f1-[1-—=
o1B ( N_l)

LB ’ 44

where I(B) is a modified zero order Bessel function of the first kind, B
dow parameter which determines the stopband attenuation. The empiri
when Aguop 15 less than 50 dB is B = 0.5842%(A - 21)%4 + 0'07886*(Ast0p
for a stopband attenuation of 40 dB, B = 3.39532. Listing 4.2 shows program KSRFIR ¢
which can be used to calculate the coefficients of a FIR filter using the Kaiser windo“:
method. The length of the filter must be odd and bandpass; bandstop or highpass filters
can also be designed. Figure 4.3(a) shows the frequency response of the resulting 37.
point lowpass filter, and Figure 4.3(b) shows the frequency response of a 35-point low-
pass filter designed using the Parks-McClellan program. The following computer dialog
shows the results obtained using the REMEZ.C program;

Wy =

~ 21). Thus,

REMEZ EXCHANGE FIR FILTER DESIGN PROGRAM cen

: EXAMPLEl — LOWPASS FILTER

EXAMPLE2 — BANDPASS FILTER

: EXAMPLE3 — DIFFERENTIATOR

EXAMPLE4 -~ HILBERT TRANSFORMER

: KEYBOARD — GET INPUT PARAMETERS FROM KEYBOARD

U W N R

selection [1 to 5] ? 5

number of coefficients [3 to 128] ? 35

Filter types are: 1=Bandpass, 2=Differentiator, 3=Hilbert
filter type [1 to 3] 2 1

number of bands [1 to 10] ? 2
Now inputting edge (corner) frequencies for 4 band edges

edge frequency for edge (corner) # 1 [0 to 0.5] 2 0
edge frequency for edge (corner) # 2 [0 to 0.51 2 .19

edge frequency for edge (corner) # 3 [0.19 to 0.5] ? .25

Chap_
function y, , §

OW, the stop:
wi -
ndow, W is 3

is the Kaiser win- 3
cal formula forp 4
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FIGURE 4.3 (a) Frequency response of 37 tap FIR filter designed using the

Kaiser window method. (b) Frequency response of 35 tap FIR filter designed
using the Parks-McClellan program.
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edge frequency for edge (cormer) # 4 [0.25 to 0.5} ? .5

gain of band # 1 [0 to 1000] 2 1

weight of band # 1 [0.1 to 100] ? 1

gain of band # 2 [0 to 1000] 2 O

of band # 2 [0.1 to 100] 2 1

weight

#coeff = 35

Type = 1

#bands = 2

Grid = 16

E[1] = 0.00

E[2] = 0.19

E[3] = 0.25

E[4] = 0.50

Gain, wt([1l] = 1.00 1.00
Gain, wt{2) = 0.00 1.00

Iteration 1 2 345 6 7

Kk kAR ko kA kA ko ko kb h bk hhh b kA bk kb k ko khk kb bk kb kkdx

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

H(
H(
H(
H(
H(
H(
H(
H(
H(
H(
H{
H(
H{
H{
H(
H({
H(
H(

BANDPASS FILTER
FILTER LENGTH = 35
#*%+% TMPULSE RESPONSE *****

1)
2)

3) =

4)
5)
6)
7)

-6.360096001e-003
~7.662615827e-005
7.691285583e-003
5.056414595e-003

= -8.359812578e-003

8) =

9)
10)
11)
12)
13)
14)
15)
16)
17)
18)

-1.040090568e-002
8.696002091e-003
2.017050147e-002

-2.756078525e-003

= -3.003477728e-002
= -8.907503106e-003

4.171576865e-002

3.410815421e-002 =

-5.073291821e-002
-8.609754956e-002
5.791494030e~-002
3.117008479e-001

= H(
= H(

H(
H({
H{
H(
H(
H(

= H(

H(
H(
H(
H(
H(

= H(
= H(
= H{
4.402931165e-001 =

H(

35)
34)
33)
32)
31)
30)
29)
28)
27)
26)
25)
24)
23)
22)
21)
20)
19)
18)
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BAND 1 BAND 2
LOWER BAND EDGE 0.00000000 0.25000000
UPPER BAND EDGE 0.19000000 0.50000000
DESIRED VALUE 1.00000000 0.00000000
WEIGHTING 1.00000000 1.00000000
DEVIATION 0.00808741 0.00808741

DEVIATION IN DB  -41.84380886 -41.84380886

EXTREMAL FREQUENCIES

0.0156250 0.0520833 0.0815972 0.1093750 0.1371528
0.1614583 0.1822917 0.1900000 0.2500000 0.2586806
0.2777778 0.3038194 0.3298611 0.3576389 0.3854167
0.4131944 0.4427083 0.4704861 0.5000000

FIR coefficients written to text file COEF.DAT

Note that the Parks-McClellan design achieved the specifications with two fewer coeffi-
cients, and the stopband attenuation is 1.8 dB better than the specification. Because the
stopband attenuation, passband ripple, and filter length are all specified as inputs to the
Parks-McClellan filter design program, it is often difficult to determine the filter length
required for a particular filter specification. Guessing the filter length will eventually
reach a reasonable solution but can take a long time. For one stopband and one passband,
the following approximation for the filter length (N) of an optimal lowpass filter has been
developed by Kaiser:

_ —20logg /8,5, —13

4.5
14.6Af + *3)

where:

8, =1—1074m /40
8, =10 Awee 120

Af:z(fgw'_j;us)Aﬁ

A, is the total passband ripple (in dB) of the passband from O to fpass. If the maximum
of the magnitude response is 0 dB, then A is the maximum attenuation throughout the
passband. A, is the minimum stopband attenuation (in dB) of the stopband from f,, to
£,/2. The approximation for N is accurate within about 10 percent of the actual required
filter length (usually on the low side). The ratio of the passband error (81) to the stopband
error (3,) is entered by choosing appropriate weights for each band. Higher weighting of
stopbands will increase the minimum attenuation; higher weighting of the passband will
decrease the passband ripple.

The coefficients for the Kaiser window design (variable name £ix_1p£37k) and
the Parks-McClellan design (variable name £ir_1pf£35) are contained in the include
file FILTER.H.
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}
deltaf = (fa-fp) ; if(filt_cat == 2) deltaf = -deltaf;
filter_length( att, deltaf, &nfilt, &npair, &beta );
if( npair > 500 ){
printf("\n*** Filter length %d is too large.\n", nfilt );
exit (0);

/* Linear phase FIR filter coefficient computation using the Kaiser windoy
design method. Filter length is odd. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "rtdspc.h"

}
printf("\n...filter length: %d ...beta: %f", nfilt, beta );

fc = (fp + fa); hinpair] = fc;
if ( filt_cat == 2 ) hinpair] = 1 - fc;
pifc = PI * fc;
for ( n=0; n < npair; n++) {
i = (npair - n);

double get_float (char *title_string, double low_limit,double up_limit),;
void filter_ length(double att,double deltaf,int *nfilt,int *npair, double *beta
double izero (double vY); i

void main() h[n] = sin(i * pifc) / (i * PI):

{ if( filt_cat == 2 ) hin] = - h[nl;
static float h{[500], w[500}, x[500}; }
int eflag, filt_cat, npair, nfilt, n; break;

case 3: case 4:

double att, fa, fp, fal, fa2, fpl, fp2, deltaf, 41, &, f1, fu, beta;
printf ("\m—> Transition bands must be equal <—*);

double fc, fm, pifc, tpifm, i, y, valizb;

char ft_s[128]; do {
eflag = 0;

char fp s[] = "Passband edge frequency Fp"; switch (filt_cat){

char fa_s{] = "Stopband edge frequency Fa*; case 3:

char fpl s[] = "Lower passband edge frequency Fpl*; fal = get_float( fal_s, 0, 0.5);

char fp2_s(] = "Upper passband edge frequency Fp2*; fpl = get_float( fpl_s, fal, 0.5);

char fal s[] = "Lower stopband edge frequency Fal"; fp2 = get_float( fp2_s, fpl, 0.5);

char fa2_s[] = "Upper stopband edge frequency Fa2"; fa2 = get_float( fa2_s, fp2, 0.5); break;

case 4:

printf("\nFilter type (Ip, hp, bp, bs) ? *); fpl = get_float( fpl_s, 0, 0.5);

gets(ft_s); fal = get_float( fal_ s, fpl, 0.5);

strupr( ft_s }; fa2 = get_float( fa2_s, fal, 0.5);

att = get_float("Desired stopband attenuation (ae)", 10, 200); fp2 = get_float( fp2_s, fa2, 0.5);

filt_cat = 0; }

if( stremp( ft_s, "LP" ) == 0 ) filt_cat = 1; dl = fpl - fal; 42 = fa2 - fp2;

if( stremp( ft_s, *HP" ) == 0 ) filt_cat = 2; if ( fabs(dl - d2) > 1E-5 ){

if( strcamp( ft_s, "BP" ) == 0 ) filt_cat = 3; printf( "\n...error...transition bands not equali\n");

if( stramp( ft_s, "BS" ) == 0 ) filt_cat = 4; eflag = -1;

}

} while (eflag):

deltaf = dl; if(filt_cat == 4) deltaf = -deltaf;

filter length( att, deltaf, &nfilt, &npair, &beta);

if( npair > 500 ){
printf("\n*** Filter length %d is too large.\n", nfilt );
exit(0);

if(!filt_cat) exit(0);

switch ( filt_cat ){
case 1: case 2:
switch ( filt_cat ){
case 1:
fp = get_float( fp_s, 0, 0.5 )
fa = get_float( fa s, fp, 0.5 ); break;

}

case 2: printf( "\n..filter length: %d ...beta: %f", nfilt, beta) ;
fa = get_float( fa_s, 0, 0.5 )y: fl = (fal + fpl) / 2; fu = (fa2 + fp2) / 2;
fp = get_float( fp_ s, fa, 0.5 Y: fc = (fu - £1); fm = (fu + f1) / 2;

hinpair]) = 2 * fc; if( filt_cat == 4 ) hlnpair] = 1 - 2 * fc;
LISTING 4.2 Program KSRFIR to calculate FIR filter coefficients using the

Kaiser window method. (Continued) LISTING 4.2 (Continued)
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pifc = PI * fc¢; tpifm = 2 * PI * fm;
for (n = 0; n < npair; n++){
i = (npair - n);
hin] = 2 * sin(i * pifc) * cos(i * tpifm) / (i * pI);
if ( filt_cat == 4) h[n] = -h[n];
} break;
default: printf( "\n## error\n" ); exit(0);
}

/* Compute Kaiser window sample values */
y = beta; wvalizb = izerol(y);
for (n = 0; n <= npair; n++) {
i = (n - npair);
y = beta * sqrt(l - (i / npair) * (i / npair));
wln] = izerol(y) / valizb;

}

/* first half of response */
for(n = 0;- n <= npair; n++) x[n} = w[n] * hln};

printf("\n—First half of coefficient set...remainder by symmetry——");
printf("\n # ideal window actual ");
printf("\n coeff value filter coeff");
for(n=0; n <= npair; n++){
printf ("\n %44 %9.6f %9.6f $9.6£",n, h[n], w[n], x([n});
}
}

/* Use att to get beta (for Kaiser window function) and nfilt (always odd
valued and = 2*npair +1) using Kaiser’s empirical formulas */

void filter_ length(double att,double deltaf,int *nfilt,int *npair, double *beta)

{
*beta = 0; /* value of beta if att < 21 */
if(att >= 50) *beta = .1102 * (att - 8.71);
if (att < 50 & att >= 21)
*beta = .5842 * pow( {att-21), 0.4) + .07886 * (att -~ 21);
*npair = (int)( (att - 8) / (29 * deltaf) );
*nfilt = 2 * *npair +1;
}

/* Compute Bessel function Izero(y) using a series approximation */
double izero(double y){
double s=1, ds=1, d=0;
do{
d=4da+ 2; ds =ds * (y*ty)/(d*d);
s = s + ds;
} while( ds > 1E-7 * s);
return(s);

LISTING 4.2 (Continued)
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4.1.3 IIR Filter Function

Infinite impulse response (IIR) filters are realized by feeding back a weighted sum of past
output values and adding this to a weighted sum of the previous and current input values.
In terms of the structure shown in Figure 4.1, IIR filters have nonzero values for some or
all of the a,, values. The major advantage of IIR filters compared to FIR filters is that a
given order IIR filter can be made much more frequency selective than the same order
FIR filter. In other words, IIR filters are computationally efficient. The disadvantage of
the recursive realization is that IIR filters are much more difficult to design and imple-
ment. Stability, roundoff noise and sometimes phase nonlinearity must be considered
carefully in all but the most trivial IIR filter designs.

The direct form IIR filter realization shown in Figure 4.1, though simple in appear-
ance, can have severe response sensitivity problems because of coefficient quantization,
especially as the order of the filter increases. To reduce these effects, the transfer function
is usually decomposed into second order sections and then realized either as parallel or
cascade sections (see chapter 1, section 1.3). In section 1.3.1 an IIR filter design and im-
plementation method based on cascade decomposition of a transfer function into second
order sections is described. The C language implementation shown in Listing 4.3 uses
single-precision floating-point numbers in order to avoid coefficient quantization effects
associated with fixed-point implementations that can cause instability and significant
changes in the transfer function.

Figure 4.4 shows a block diagram of the cascaded second order IIR filter imple-
mented by the 1ir_£i1ter function shown in Listing 4.3. This realization is known as
a direct form 1I realization because, unlike the structure shown in Figure 4.1, it has only

Section 1 Section N

new_hist

coef [2] coef (4] coof[4*N-2]

—05 B 1)) Bow

history 2

FIGURE 4.4 Block diagram of real-time IIR filter structure as implemented by func-
tion iir_filter.
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/*******************************************************************
Kkkogey
* %

iir_filter -~ Perform IIR filtering sample by sample on floats

Implements cascaded direct form IT second order sections.
Requires arrays for history and coefficients.

The length (n) of the filter specifies the number of sections.
The size of the history array is 2*n.

The size of the coefficient array is 4*n + 1 because

the first coefficient is the overall scale factor for the filter.
Returns one output sample for each input sample.

float iir filter(float input, float *coef,int n, float *history)

float input new float input sample

float *coef pointer to filter coefficients
int n number of sections in filter
float *history history array pointer

Returns float value giving the current output.

****************‘k*************‘k****i'*************************************/

float iir filter(float input, float *coef, int n, float *history)
{

int i;

float *histl_ptr,*hist2_ptr,*coef_ptr;

float output,new_hist, historyl, history?2;

coef_ptr = coef; /* coefficient pointer */

hist]l_ptr = history;
hist2_ptr = histl ptr + 1;

/* first history */
/* next history */

output = input * (*coef_ptr++); /* overall input scale factor */
for(i = 0 ; i <n ; i++) {

historyl = *histl_ptr;
history2 = *hist2_ptr;

/* history values */

output = output - historyl * (*coef _Dtr++) ;
new_hist = output - history2 * (*coef_ptr++); /* poles */

output new_hist + historyl * (*coef _ptr++) ;
output = output + history2 * (*coef _ptr++); /* zeros */

*hist2_ptr++ = *histl_ptr;
*histl ptr++ = new_hist;

LISTING 4.3 Function iir filter(input,coef,n,history). (Continued)
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histl_ptr++;
hist2_ptr++;

}

return(output) ;

LISTING 4.3 (Continued)

two delay elements for each second-order section. This realization is canonic in the sense
that the structure has the fewest adds (4), multiplies (4), and delay elements (2) for each
second order section. This realization should be the most efficient for a wide variety of -
general purpose processors as well as many of the processors designed specifically for
digital signal processing.

IIR filtering will be illustrated using a lowpass filter with similar specifications as used
in the FIR filter design example in section 4.1.2. The only difference is that in the IIR filter
specification, linear phase response is not required. Thus, the passband is 0 to 0.2 £, and the
stopband is 0.25 £, t0 0.5 f,. The passband ripple must be less than 0.5 dB and the stopband
attenuation must be greater than 40 dB. Because elliptic filters (also called Cauer filters)
generally give the smallest transition bandwidth for a given order, an elliptic design will be
used. After referring to the many elliptic filter tables, it is determined that a fifth order elliptic
filter will meet the specifications. The elliptic filter tables in Zverev (1967) give an entry for
a filter with a 0.28 dB passband ripple and 40.19 dB stopband attenuation as follows:

Q =1.3250 (stopband start of normalized prototype)
oy =—0.5401 (first order real pole)

o, =-0.5401 (real part of first biquad section)

o3 =—0.5401 (real part of second biquad section)
Q,=1.0277 (imaginary part of first biquad section)
Q,=1.9881 (first zero on imaginary axis)
Q;=0.7617 (imaginary part of second biquad section)
Q,=1.3693 (second zero on imaginary axis)

As shown above, the tables in Zverev give the pole and zero locations (real and imagi-
nary coordinates) of each biquad section. The two second-order sections each form a conju-
gate pole pair and the first-order section has a single pole on the real axis. Figure 4.5(a)
shows the locations of the 5 poles and 4 zeros on the complex s-plane. By expanding the
complex pole pairs, the s-domain transfer function of a fifth-order filter in terms of the above
variables can be obtained. The z-domain coefficients are then determined using the bilinear
transform (see Embree and Kimble, 1991). Figure 4.5(b) shows the locations of the poles and
zeros on the complex z-plane. The resulting z-domain transfer function is as follows:

0.0553(1+z7") 140704z +22  1-0.01037" + 72
1-0436z7" 1-0.523z7' -0.8622 1-0.6967"" — 0.48672
Figure 4.6 shows the frequency response of this Sth order digital IIR filter.
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FIGURE 4.5 Pole-zero plot of fifth-
order elliptic IR lowpass filter. (a) s-
plane representation of analog proto-
type fifth-order elliptic filter. Zeros are
indicated by “0” and poles are indi-
cated by “x”. {b) z-plane representa-
tion of lowpass digital filter with cut-
off frequency at 0.2 £ In each case,
poles are indicated with “x”and

zeros with “o0”".

The function iir_f£ilter (shown in Listing 4.3) implements the direct form II cascade
filter structure illustrated in Figure 4.4. Any number of cascaded second order sections
can be implemented with one overall input (x;) and one overall output (y,). The coeffi-
cient array for the fifth order elliptic lowpass filter is as follows:
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FIGURE 4.6 (a) Lowpass fifth-order elliptic IR filter linear magnitude fre-
quency response. (b) Lowpass fifth-order elliptic lIR filter frequency re-
sponse. Log magnitude in decibels versus frequency.
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float iir_1pf5([13] = {
0.0552961603,
-0,4363630712, 0.0000000000, 1.0000000000, 0.0000000000,
-0.5233039260, 0.8604439497, 0.7039934993, 1.0000000000,
~0.6965782046, 0.4860509932, -0.0103216320, 1.0000000000
Y

The number of sections required for this filter is three, because the first-order section jg
implemented in the same way as the second-order sections, except that the second-order
terms (the third and fifth coefficients) are zero. The coefficients shown above were ob-
tained using the bilinear transform and are contained in the include file FILTER H. The
definition of this filter is, therefore, global to any module that includes FILTER H. The
iir f£ilter function filters the floating-point input sequence on a sample-by-sample
basis so that one output sample is returned each time iir filter is invoked. The his-
tory array is used to store the two history values required for each second-order section,
The history data (two elements per section) is allocated by the calling function, The inj-
tial condition of the history variables is zero if calloec is used, because it sets alj the al-
located space to zero. If the history array is declared as static, most compilers initialize
static space to zero. Other initial conditions can be loaded into the filter by allocating and
initializing the history array before using the iir filter function. The coefficients
of the filter are stored with the overall gain constant (K) first, followed by the denomina-
tor coefficients that form the poles, and the numerator coefficients that form the zeros for
each section. The input sample is first scaled by the K value, and then each second-order
section is implemented. The four lines of code in the iir filter function used to im-
plement each second-order section are as follows:

output = output - historyl * (*coef _DPtr++);

new_hist = output - history2 * (*coef_ptr++); /* poles */

output = new_hist + historyl * (*coef _btr++);
output = output + history2 * (*coef_ptr++); /* zeros */
The historyl and history2 variables are the current history associated with the sec-
tion and should be stored in floating-point registers (if available) for highest efficiency.
The above code forms the new history value (the portion of the output which depends on
the past outputs) in the variable new_hist to be stored in the history array for use by
the nextcall to 4ir_filter. The history array values are then updated as follows:

*hist2_ptr++ = *histl_ptr;
*histl_ptr++ = new_hist;
histl_ptr++;

hist2_ptr++;

This results in the oldest history value (*hist2_ptr) being lost and updated with
the more recent *histl ptr value. The new_hist value replaces the old
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*histl_ptr value for use by the next call to iir filter. Both history pointers are
incremented twice to point to the next pair of history values to be used by the next
second-order section.

4.1.4 Real-Time Filtering Example

Real-time filters are filters that are implemented so that a continuous stream of input sam-
ples can be filtered to generate a continuous stream of output samples. In many cases,
real-time operation restricts the filter to operate on the input samples individually and
generate one output sample for each input sample. Multiple memory accesses to previous
input data are not possible, because only the current input is available to the filter at any
given instant in time. Thus, some type of history must be stored and updated with each
new input sample. The management of the filter history almost always takes a portion of
the processing time, thereby reducing the maximum sampling rate which can be sup-
ported by a particular processor. The functions fir filter and iir filter areim-
plemented in a form that can be used for real-time filtering. Suppose that the functions
getinput () and sendout () return an input sample and generate an output sample at
the appropriate time required by the external hardware. The following code can be used
with the iir filtexr function to perform continuous real-time filtering:

static float histi[6];
for(;;)
sendout (iir_filter(getinput(), iir_1pf5,3,histi));

In the above infinite loop for statement, the total time required to execute the in,
iir_ filter, and out functions must be less than the filter sampling rate in order to
insure that output and input samples are not lost. In a similar fashion, a continuous real-
time FIR filter could be implemented as follows:

static float histf[34];
for(;:)
sendout (fir_filter (getinput(), fir_1pf35,35,histf));

Source code for sendout () and getinput () interrupt driven input/output functions
is available on the enclosed disk for several DSP processors. C code which emulates
getinput () and sendout () real-time functions using disk read and write functions
is also included on the disk and is shown in Listing 4.4. These routines can be used to
debug real-time programs using a simpler and Iess expensive general purpose computer
environment (IBM-PC or UNIX system, for example). The functions shown in
Listing 4.4 read and write disk files containing floating-point numbers in an ASCII text
format. The functions shown in Listings 4.5 and 4.6 read and write disk files containing
fixed-point numbers in the popular WAV binary file format. The WAYV file format is part
of the Resource Interchange File Format (RIFF), which is popular on many multimedia
platforms.

(text continues on page 158)
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Chap, 4
#include <stdlib.h>

#include <stdio.h> #incmde o
1 .

#include <stdio.h>
ginclude <string.h>
#include <math.h>

#j_nclude <conio.h>
#include swavimt . h*

/* getinput - get one sample fram disk to simulate real-time i
input #,

float getinput()

{ ginclude “rtdspc.h”
static FILE *fp = NULL;
float x; J* code to get samples from a WAV type file format */
/* open input file if not done in previous calls */
if (tfp) /* getinput - get one sample from disk to simulate realtime input */
char s([80];
printf("\nEnter input file name ? "); /* input WAV format header with null init */
gets(s); WAVE_HDR win = { ", OL };
fp = fopen(s,"r"); CHUNK_HDR cin = { "*, 0L };
if(1fp) | DATA HDR din = { "*, OL };
printf(*\nError opening input file in GETINPUT\n"); WAVEFORMAT wavin = { 1, 1, OL, OL, 1, 8 };
exit(1);
} /* global number of samples in data set */
} unsigned long int number_of_samples = 0;
/* read data until end of file */ :
if (fscanf(fp, "%f",&x) != 1) exit(l); float getinput ()
return(x) ; {
}

static FILE *fp_getwav = NULL;

static channel number = 0;

short int int_datal4]; /* max of 4 channels can be read */
unsigned char byte datal4]; /* max of 4 channels can be read */
short int j;

int i;

/* sendout - send sample to disk to simulate real-time output */

void sendout (float x)
{
static FILE *fp = NULL;
/* open output file if not done in previous calls */

if (1fp) { /* open input file if not done in previous calls */
char s[80}; if (! fp getwav) {
printf("\nEnter output file name ? "); char s[80];
gets(s); printf("\nEnter input .WAV file name ? ");
fp = fopen(s,"w"); gets(s);
if(!fp) { fp_getwav = fopen(s, "rb");
printf ("\nError opening output file in SENDOUT\n"); if (1 fp_getwav) {
exit(1); printf ("\nError opening *.WAV input file in GETINPUT\n");
} exit(1l);
} }

/* write the sample and check for errors */
if (fprintf(fp, "$f\n",x) < 1) {
printf ("\nError writing output file in SENDOUT\n");
exit(1l);

/* read and display header information */

fread(&win, sizeof (WAVE_HDR) , 1, fp_getwav) ;

printf (*\n%c%c%ckc",
win.chunk_id[0],win.chunk_id[1],win.chunk_id[2],win.chunk_id[3]};

printf ("\nChunkSize = %1d bytes",win.chunk_size);

LISTING 4.4 Functions sendout (output) and getinput () used to emulate

LISTING 45 Function getinput() used to emulate real-time input using
real-time input/output using ASCH text data files (contained in GETSEND.C).

WAV format binary data files (contained in GETWAV.C). (Continued)
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if (strnicmp(win.chunk_id, "RIFF",4) != 0) {

printf("\nError in RIFF header\n");

exit(1l);
}

fread(&cin, sizeof (CHUNK_HDR),1, fp_getwav) ;

printf("\n");

for(i = 0 ; i < 8 ; i++) printf("%c",cin.form type(il]);

printf("\n");

if (strmicmp (cin. form_type, "WAVEfmt *,8) != 0)
printf("\nError in WAVEfmt header\n");
exit(1);

{

}

if(cin.hdr_size != sizeof (WAVEFORMAT)) {
printf("\nError in WAVEfmt header\n");
exit(l);

}

fread(&wavin, sizeof (WAVEFORMAT) , 1, fp_getwav) ;
if (wavin.wFormatTag != WAVE_FORMAT PCM) {
printf("\nError in WAVEfmt header - not PCM\n") ;
exit(1);
}
printf ("\nNumber of channels %d",wavin.nChannels) ;
printf("\nSample rate = %1d",wavin.nSamplesPerSec) ;
printf("\nBlock size of data = %d bytes”,wavin.nBlockAlign) ;
printf ("\nBits per Sample %d\n",wavin.wBitsPerSample) ;

/* check channel number and block size are good */
if (wavin.nChannels > 4 || wavin.nBlockAlign > 8) {
printf("\nError in WAVEfmt header - Channels/BlockSize\n");
exit(1l);

fread(&din, sizeof (DATA_HDR), 1, fp_getwav) ;
printf ("\n¥%c%c%ckc",

din.data_type[0],din.data_type[1],din.data_type[2] ,din.data_type[3]);
printf("\nData Size = %1d bytes",din.data_size);

/* set the number of samples (global) */
number_of_samples din.data_size/wavin.nBlockAlign;

printf("\nNumber of Samples per Chamnel = %1d\n",number_of samples);

if (wavin.nChannels > 1) {
do {
printf ("\nError Channel Number [0..%d] - “,wavin.nChannels-

LISTING 4.5 (Continued)

Sec. 4.1 Real-Time FIR and IIR Filters 155

Chap. 4 §
i = getche() '‘0';
if(i < (4-'0')) exit(l);
} while(i < 0 || i >= wavin.nChannels);
channel_number = ji;
}

}

/* read data until end of file */
if (wavin.wBitsPerSample == 16) {
if(fread(int_data,wavin.nBlockAlign,1,fp _getwav) != 1) {
flush(); /* flush the output when input runs out */
exit(1);

}
j = int_data[channel_number] ;
}
else {
if(fread(byte_data,wavin.nBlockAlign,l,fp _getwav) 1= 1) {

flush(); /* flush the output when input runs out */

exit(1);
}
j = byte_data[channel_number];
j ~= 0x80;
Jj <<= 8;

}

return{( (float)j);

LISTING 4.5 (Continued)

#include
#include
#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<string.h>
<math.h>
"wavfmt . h*
"rtdspc.h"

/* code to send samples to a WAV type file format */

/* define BITS16 if want to use 16 bit samples */
/* sendout - send sample to disk to simulate realtime output */

static FILE *fp_sendwav
static DWORD samples_sent

NULL;
OL; /* used by flush for header */

1); i

} LISTII_\IG 4.6 Functions sendout (output) and flush() used to emulate
real-time output using WAV format binary data files (contained in
SENDWAV.C). (Continued)
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/* WAV format header init */
static WAVE HDR wout = { "RIFF", OL }; /* fill size at flush */
static CHUNK_HDR cout = { "WAVEfmt " , sizeof (WAVEFORMAT) };
static DATA _HDR dout = { "data" , OL }; /* £ill size at flush */

if(x > 32767.0) j = 32767;
else if(x < -32768.0) j = -32768;

sifdef BITS16

static WAVEFORMAT wavout = { 1, 1, OL, OL, 1, 8 }; § ~= 0x8000;
extern WAVE_HDR win; if (fwrite (&],sizeof (short int),1, fp_sendwav) != 1) {
extern CHUNK_HDR cin; printf (“\nError writing 16 Bit output *.WAV file in SENDOUT\n");
extern DATA HDR din; exit(1);
extern WAVEFORMAT wavin; }
. #else
void sendout (float x) /* clip output to 8 bits */
{ j =3 > 8;
int BytesPerSample; j ~= 0x80;

short int j;
if (fputc(j, fp_sendwav) == EOF) {

printf ("\nError writing output *.WAV file in SENDOUT\n");
exit(l);

/* open output file if not done in previous calls */
if (1 fp_sendwav) {

char s[80];

printf ("\nEnter output *.WAV file name ? ");

gets(s);

fp_sendwav = fopen(s, "wb");

if (1 fp_sendwav) {
printf ("\nError opening output *.WAV file in SENDOUT\n");
exit(1l);

}
fendif

samples_sent++;

}

) /* routine for flush - must call this to update the WAV header */

/* write out the *.WAV file format header */ void flush()

#ifdef BITSL6 {

wavout .wBitsPerSample = 16;
wavout .nBlockAlign = 2;
printf("\nUsing 16 Bit Samples\n");

int BytesPerSample;

BytesPerSample = (int)ceil (wavout.wBitsPerSample/8.0);
dout.data_size=BytesPerSample*samples_sent;

#else
pondit wavout .wBitsPerSample = 8; wout.chunk_size=
dout .data_size+sizeof (DATA_HDR) +sizeof (CHUNK_HDR) +sizeof (WAVEFORMAT) ;
wavout .nSamplesPerSec = SAMPLE RATE; /* check for an i t WAV head i i i
BytesPerSample = (int)ceil (wavout.wBitsPerSample/8.0); if (strni ( r?pu hun} .ga"er ax“1d use the sampl:.mg rate, if valid */
wavout .nAvgBytesPerSec = BytesPerSample*wavout.nSamplesPerSec; cmptwin. ¢ —1d, "RIFF f4) == 0 & wavin.nSamplesPerSec != 0) {
wavout .nSamplesPerSec = wavin.nSamplesPerSec;
furite (swout, izeof (WAVEHDR) , 1, fp._sendwav) ; ) wavout .nAvgBytesPerSec = BytesPerSample*wavout.nSamplesPerSec;
fwrite (&cout, sizeof (CHUNK_HDR), 1, fp_sendwav) ;
fwrite (&wavout, sizeof (WAVEFORMAT) , 1, fp_sendwav) ; fseek (£
fwrite (sdout, sizeof (DATA_HDR) , 1, fp_sendwav) ; eek (fp_sendwav, OL, SEEK_SET) ;
) fwrite (&wout, sizeof (WAVE_HDR) , 1, fp_sendwav) ;

fwrite (&cout, sizeof (CHUNK_HDR), 1, fp_sendwav) ;
fwrite (&wavout, sizeof (WAVEFORMAT) , 1, fp_sendwav) ;
fwrite (&dout, sizeof (DATA_HDR), 1, fp_sendwav) ;

/* write the sample and check for errors */
/* clip output to 16 bits */
j = (short int)x;

LISTING 4.6 (Continued) LISTING 4.6 (Continued)
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4.2 FILTERING TO REMOVE NOISE

Noise is generally unwanted and can usually be reduced by some type of filtering. Noise
can be highly correlated with the signal or in a completely different frequency band, i,
which case it is uncorrelated. Some types of noise are impulsive in nature and occur reja.
tively infrequently, while other types of noise appear as narrowband tones near the signa]
of interest. The most common type of noise is wideband thermal noise, which originateg
in the sensor or the amplifying electronic circuits. Such noise can often be considereq
white Gaussian noise, implying that the power spectrum is flat and the distribution jg nor-
mal. The most important considerations in deciding what type of filter to use to remove
noise are the type and characteristics of the noise. In many cases, very little is knowp
about the noise process contaminating the digital signal and it is usually costly (in terms
of time and/or money) to find out more about it. One method to study the noise perfor-
mance of a digital system is to generate a model of the signal and noise and simulate the
system performance in this ideal condition. System noise simulation is illustrated in the
next two sections. The simulated performance can then be compared to the system perfor-
mance with real data or to a theoretical model.

4.2.1 Gaussian Noise Generation

The function gaussian (shown in Listing 4.7) is used for noise generation and is con-
tained in the FILTER.C source file. The function has no arguments and returns a single
random floating-point number. The standard C library function rand is called to gener-
ate uniformly distributed numbers. The function rand normally returns integers from 0
to some maximum value (a defined constant, RAND_MAX, in ANSI implementations). As
shown in Listing 4.7, the integer values returned by rand are converted to £loat val-
ues to be used by gaussian. Although the random number generator provided with
most C compilers gives good random numbers with uniform distributions and long peri-
ods, if the random number generator is used in an application that requires truly random,
uncorrelated sequences, the generator should be checked carefully. If the rand function
is in question, a standard random number generator can be easily written in C (see Park
and Miller, 1988). The function gaussian returns a zero mean random number with a
unit variance and a Gaussian (or normal) distribution. It uses the Box-Muller method (see
Knuth, 1981; or Press, Flannary, Teukolsky, and Vetterling, 1987) to map a pair of inde-
pendent uniformly distributed random variables to a pair of Gaussian random variables.
The function rand is used to generate the two uniform variables v1 and v2 from -1 to
+1, which are transformed using the following statements:

r = v1*vl + v2*v2;

fac = sqgrt(-2.*log(r)/r);
gstore = vl*fac;

gaus = v2*fac;

The x variable is the radius squared of the random point on the (v1, v2) plane. Ip th'e
gaussian function, the r value is tested to insure that it is always less than 1 (which it
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/**********************i'***************************************************

gaussian - generates zero mean unit variance Gaussian random numbers

Returns one zero mean unit variance Gaussian random numbers as a double.
yUses the Box-Muller transformation of two uniform random numbers to
Gaussian random numbers.

*************************************************************************/

float gaussian()

{
static int ready = 0; /* flag to indicated stored value */
static float gstore; /* place to store other value */
static float rconstl = (float) (2.0/RAND_MAX) ;
static float rconst2 = (float) (RAND_MAX/2.0) ;
float v1,v2,r, fac,gaus;

/* make two numbers if none stored */
if(ready == 0) {

do {
vl (float)rand() - rconst2;
v2 (float)rand() - rconst2;
vl *= rconstl;
v2 *= rconstl;
r = vi*vl + v2*y2;

} while(r > 1.0f); /* make radius less than 1 */

I

/* remap vl and v2 to two Gaussian numbers */
fac = sqrt(-2.0f*log(r)/r);

gstore = vl*fac; /* store one */
gaus = v2*fac; /* return one */
ready = 1; /* set ready flag */
}
else {
ready = 0; /* reset ready flag for next pair */

gaus = gstore; /* return the stored one */
}
return(gaus) ;

LISTING 4.7 Function gaussian().

usually is), so that the region uniformly covered by (v1, v2) is a circle and so that
log(x) is always negative and the argument for the square root is positive. The vari-
ables gstore and gaus are the resulting independent Gaussian random variables.
Because gaussian must return one value at a time, the gstore variable is a static
floating-point variable used to store the v1*£ac result until the next call to gaussian.
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The static integer variable ready is used as a flag to indicate if gstore has ;
been stored or if two new Gaussian random numbers should be generated. Just

4.2.2 Signal-to-Noise Ratio Improvement

One common application of digital filtering is signal-fo-noise ratio enhancement, 1t the
signal has a limited bandwidth and the noise has a spectrum that is broad, then a filter cap
be used to remove the part of the noise spectrum that does not overlap the signa) spec-
trum. If the filter is designed to match the signal perfectly, so that the maximum amoupt
of noise is removed, then the filter is called a matched or Wiener filter. Wiener ﬁltering is
briefly discussed in section 1.7.1 of chapter 1.

Figure 4.7 shows a simple example of filtering a single tone with added white
noise. The MKGWN program (see Listing 4.8) was used to add Gaussian white nojse
with a standard deviation of 0.2 to a sine wave at a 0.05 f; frequency as shown in Figure
4.7(a). The standard deviation of the sine wave signal alone can be easily found to be
0.7107. Because the standard deviation of the added noise is 0.2, the signal-to-noise ratig
of the noisy signal is 3.55 or 11.0 dB. Figure 4.7(b) shows the result of applying the 35.
tap lowpass FIR filter to the noisy signal. Note that much of the noise is still present but
is smaller and has predominantly low frequency components. By lowpass filtering the
250 noise samples added to the sine wave separately, the signal-to-noise ratio of Figure
4.7(b) can be estimated to be 15 dB. Thus, the filtering operation improved the signal-to-
noise ratio by 4 dB.

(CY

Sample Value
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Sample Number

5 Program MKGWN.C Output
1. T T T

4.3 SAMPLE RATE CONVERSION

Many signal processing applications require that the output sampling rate be different
than the input sampling rate. Sometimes one section of a system can be made more effi-
cient if the sampling rate is lower (such as when simple FIR filters are involved or in data
transmission). In other cases, the sampling rate must be increased so that the spectral de-
tails of the signal can be easily identified. In either case, the input sampled signal must be
resampled to generate a new output sequence with the same spectral characteristics but at
a different sampling rate. Increasing the sampling rate is called interpolation or upsam-
pling. Reducing the sampling rate is called decimation or downsampling. Normally, the
sampling rate of a band limited signal can be interpolated or decimated by integer ratios
such that the spectral content of the signal is unchanged. By cascading interpolation and
decimation, the sampling rate of a signal can be changed by any rational fraction, P/M,
where P is the integer interpolation ratio and M is the integer decimation ratio.
Interpolation and decimation can be performed using filtering techniques (as described in
this section) or by using the fast Fourier transform (see section 4.4.2).

Decimation is perhaps the simplest resampling technique because it involves redutf-
ing the number of samples per second required to represent a signal. If the input signal is
strictly band-limited such that the signal spectrum is zero for all frequencies above
f,/(2M), then decimation can be performed by simply retaining every Mih sample and

(b)

Sample Value
=)

50 100 150 200 250
Sample Number

FIGURE 4.7 MKGWN program example output. Filtering a sine wave with
added noise (frequency = 0.05). (a) Unfiltered version with Gaussian noise
(standard deviation = 0.2). {(b) Output after lowpass filtering with 35-point
FIR filter.
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#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include "rtdspc.h"
#include "filter.h"

/***********************************************************************

MKGWN.C - Gaussian Noise Filter Example

This program performs filters a sine wave with added Gaussian noise
It performs the filtering to implement a 35 point FIR filter
(stored in variable fir 1pf35) on an generated signal.

The filter is a LPF with 40 dB out of band rejection. The 3 dB
point is at a relative frequency of approximately .25*fs.

************i****************************'k******************************/

float sigma = 0.2;

void main()
{
int i, j:
float x;
static float hist[34];
for(i = 0 ; i < 250 ; i++) {
X = sin(0.05*2*pI*i) + sigma*gaussian() ;
sendout (fir_filter(x, fir 1pf£35,35 ,hist));

LISTING 4.8 Program MKGWN to add Gaussian white noise to cosine
wave and then perform FIR filtering.

discarding the M — 1 samples in between. Unfortunately, the spectral content of a signal
above f/(2M) is rarely zero, and the aliasing caused by the simple decimation almost al-
ways causes trouble. Even when the desired signal is zero above J/(2M), some amount of
noise is usually present that will alias into the lower frequency signal spectrum. Aliasing
due to decimation can be avoided by lowpass filtering the signal before the samples are
decimated. For example, when M = 2, the 35-point lowpass FIR filter introduced in sec-
tion 4.1.2 can be used to eliminate almost all spectral content above 0.25 f; (the attenua-
tion above 0.25 f; is greater than 40 dB). A simple decimation program could then be
used to reduce the sampling rate by a factor of two. An IIR lowpass filter (discussed in
section 4.1.3) could also be used to eliminate the frequencies above f,/(2M) as long as
linear phase response is not required.
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4.3.1 FIR Interpolation

Interpolation is the process of computing new samples in the intervals between existing
data points. Classical interpolation (used before calculators and computers) involves esti-
mating the value of a function between existing data points by fitting the data to a low-
order polynomial. For example, linear (first-order) or quadratic (second-order) polyno-
mial interpolation is often used. The primary attraction of polynomial interpolation is
computational simplicity. The primary disadvantage is that in signal processing, the input
signal must be restricted to a very narrow band so that the output will not have a large
amount of aliasing. Thus, band-limited interpolation using digital filters is usually the
method of choice in digital signal processing. Band-limited interpolation by a factor P:1
(see Figure 4.8 for an illustration of 3:1 interpolation) involves the following conceptual
steps:

(1) Make an output sequence P times longer than the input sequence. Place the input
sequence in the output sequence every P samples and place P — 1 zero values be-
tween each input sample. This is called zero-packing (as opposed to zero-padding).
The zero values are located where the new interpolated values will appear. The ef-
fect of zero-packing on the input signal spectrum is to replicate the spectrum P
times within the output spectrum. This is illustrated in Figure 4.8(a) where the out-
put sampling rate is three times the input sampling rate.

(2) Design a lowpass filter capable of attenuating the undesired P — 1 spectra above the
original input spectrum. Ideally, the passband should be from 0 to f/2P) and the
stopband should be from f12P) to £,/2 (where S, is the filter sampling rate that is
P times the input sampling rate). A more practical interpolation filter has a transi-
tion band centered about f//2P). This is illustrated in Figure 4.8(b). The passband
gain of this filter must be equal to P to compensate for the inserted zeros so that the
original signal amplitude is preserved,

(3) Filter the zero-packed input sequence using the interpolation filter to generate the
final P:1 interpolated signal. Figure 4.8(c) shows the resulting 3:1 interpolated
spectrum. Note that the two repeated spectra are attenuated by the stopband attenu-
ation of the interpolation filter. In general, the stopband attenuation of the filter
must be greater than the signal-to-noise ratio of the input signal in order for the in-
terpolated signal to be a valid representation of the input.

4.3.2 Real-Time Interpolation Followed by Decimation

Figure 4.8(d) illustrates 2:1 decimation after the 3:1 interpolation, and shows the spec-
trum of the final signal, which has a sampling rate 1.5 times the input sampling rate.
Because no lowpass filtering (other than the filtering by the 3:1 interpolation filter) is per-
formed before the decimation shown, the output signal near £;"/2 has an unusually shaped
power spectrum due to the aliasing of the 3:1 interpolated spectrum. If this aliasing
causes a problem in the system that processes the interpolated output signal, it can be
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FIGURE 4.8 lllustration of 3:1 interpolation followed by 2:1 decimation. The aliased
input spectrum in the decimated output is shown with a dashed line. (a) Example real
input spectrum. (b) 3:1 interpolation filter response {f = 3f). {c} 3:1 interpolated
spectrum. (d} 2:1 decimated output (f," = £/2).

eliminated by either lowpass filtering the signal before decimation or by designing the in-
terpolation filter to further attenuate the replicated spectra.

The interpolation filter used to create the interpolated values can be an OR or FIR
lowpass filter. However, if an IIR filter is used the input samples are not preserved ex-
actly because of the nonlinear phase response of the IIR filter. FIR interpolation filters
can be designed such that the input samples are preserved, which also results in some
computational savings in the implementation. For this reason, only the implementation of
FIR interpolation will be considered further. The FIR lowpass filter required for interpo-
lation can be designed using the simpler windowing techniques. In this section, a Kaiser
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" window is used to design 2:1 and 3:1 interpolators. The FIR filter length must be odd so

that the filter delay is an integer number of samples and the input samples can be pre-
served. The passband and stopband must be specified such that the center coefficient of
the filter is unity (the filter gain will be P) and P coefficients on each side of the filter
center are zero. This insures that the original input samples are preserved, because the re-
sult of all the multiplies in the convolution is zero, except for the center filter coefficient
that gives the input sample. The other P — 1 output samples between each original input
sample are created by convolutions with the other coefficients of the filter. The following
passband and stopband specifications will be used to illustrate a P:1 interpolation filter:

Passband frequencies: 0-0.81,/(2P)
Stopband frequencies: 1.2£f/(2P)y-0.5 f;
Passband gain: P

Passband ripple: <0.03dB
Stopband attenuation: > 56 dB

The filter length was determined to be 16P — 1 using Equation (4.2) (rounding to the
nearest odd length) and the passband and stopband specifications. Greater stopband atten-
uation or a smaller transition band can be obtained with a longer filter. The interpolation
filter coefficients are obtained by multiplying the Kaiser window coefficients by the ideal
lowpass filter coefficients. The ideal lowpass coefficients for a very long odd length filter
with a cutoff frequency of f, /2P are given by the following sinc function:

Psin(kn/ P)
Cp = ——— .
kn

Note that the original input samples are preserved, because the coefficients are zero for
all k = nP, where n is an integer greater than zero and ¢, = 1. Very poor stopband attenua-
tion would result if the above coefficients were truncated by using the 16P — 1 coeffi-
cients where I < 8P. However, by multiplying these coefficients by the appropriate
Kaiser window, the stopband and passband specifications can be realized. The symmetri-
cal Kaiser window, w,, is given by the following expression:

Io{B 1‘(%)2 }
1))

where I,(B) is a modified zero order Bessel function of the first kind, P is the Kaiser
window parameter which determines the stopband attenuation and N in equation (4.7)
is 16P+ 1. The empirical formula for B when A, is greater than 50 dB is
B = 0.1102*(Ag,,, — 8.71). Thus, for a stopband attenuation of 56 dB, B = 5.21136.
Figure 4.9(a) shows the frequency response of the resulting 31-point 2:1 interpolation
filter, and Figure 4.9(b) shows the frequency response of the 47-point 3:1 interpolation
filter.

(4.6)

W, = , %))
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FIGURE 4.9 (a) Frequency response of 31-point FIR 2:1 interpolation filter
{gain = 2 or 6 dB). (b) Frequency response of 47-point FIR 3:1 interpolation
filter (gain = 3 or 9.54 dB).
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4.3.3 Real-Time Sample Rate Conversion

Listing 4.9 shows the example interpolation program INTERP3.C, which can be used to
interpolate a signal by a factor of 3. Two coefficient arrays are initialized to have the dec-
imated coefficients each with 16 coefficients. Each of the coefficient sets are then used
individually with the £ir £ilter function to create the interpolated values to be sent
to sendout (). The original input signal is copied without filtering to the output every
P sample (where P is 3). Thus, compared to direct filtering using the 47-point original fil-
ter, 15 multiplies for each input sample are saved when interpolation is performed using
INTERP3. Note that the rate of output must be exactly three times the rate of input for
this program to work in a real-time system.

<stdliib.h>
<stdio.h>
<string.h>
<math.h>
"rtdspc.h"

#include
#include
#include
#include
#include

/******‘k***********’k******************‘k******'lr*****************************

INTERP3.C - PROGRAM TO DEMONSTRATE 3:1 FIR FILTER INTERPOLATION
USES TWO INTERPOLATION FILTERS AND MULTIPLE CALLS TO THE
REAL TIME FILTER FUNCTION fir_filter().

*************************************************************************/

main()

{

int i;

float signal_in;

/* interpolation coefficients for the decimated filters */
static float coef31[16] ,coef32{16];

/* history arrays for the decimated filters */

static float hist31{15] ,hist32[15];

/* 3:1 interpolation coefficients, PB 0-0.133, SB 0.2-0.5 */

static float interp3[47] = {

-0.00178662, -0.00275%941, 0., 0.00556927, 0.00749929, 0.,
-0.01268113, -0.01606336, 0., 0.02482278, 0.03041984, 0.,
-0.04484686, -0.05417098, 0., 0.07917613, 0.09644332, 0.,
~0.14927754, -0.19365910, 0., 0.40682136, 0.82363913, 1.0,
0.82363913, 0.40682136, 0., -0.19365910, -0.14927754, 0.,
0.09644332, 0.07917613, 0., ~-0.05417098, -0.04484686, 0.,
0.03041984, 0.02482278, 0., -0.01606336, -0.01268113, 0.

LISTING 4.9 Example INTERP3.C program
(Continued)

for 3:1 FIR interpolation.
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0.00749928, 0.00556927, 0., -0.00275941, -0.00178662

}: 0.8} i
for(i = 0 ; i < 16 ; i++) coef3l[i] = interp3[3*i]; 06 1 ‘ I it i
0.4 : i | 7

for(i =0 ; i < 16 ; i++) coef32[i] interp3([3*i+1];
/* make three samples for each input */
for(;:) {
signal_in = getinput();
sendout (hist31[71); /* delayed input */
sendout (fir_filter(signal_in,coef31,16,hist31));

0.2 !

(a)

Sample Value
=

sendout (fir_filter(signal_in, coef32,16,hist32)); 041 | b
} |
} 0.6 b
LISTING 4.9 (Continued) -0.8 1
Figure 4.10 shows the result of running the INTERP3.C program on the WAVE3 DAT -1 . - . L :
data file contained on the disk (the sum of frequencies 0.01, 0.02 and 0.4). Figure 4.10(a) 0 30 100 150 200 250
shows the original data. The result of the 3:1 interpolation ratio is shown in Figure Sample Number
4.10(b). Note that the definition of the highest frequency in the original data set (0.4 f)is
much improved, because in Figure 4.10(b) there are 7.5 samples per cycle of the highest ) Program INTERP3.C Output
frequency. The startup effects and the 23 sample delay of the 47-point interpolation filter ' ' ’ ' ' '
is also easy to see in Figure 4.10(b) when compared to Figure 4.10(a). 08l 4
osl |[Hill it L 1
i FAST FILTERING ALGORITHMS 04 ‘H;:,‘ L il Al ‘J
4 [l il il :
' ] iith | I
The FFT is an extremely useful tool for spectral analysis. However, another important ap- s o2l | ; I bk ; ‘;, (i ‘ | |
plication for which FFTs are often used is fast convolution. The formulas for convolution = BRI | i i ‘ HHH | kil
were given in chapter 1. Most often a relatively short sequence 20 to 200 points in length i 0 i {154 .
(for example, an FIR filter) must be convolved with a number of longer input sequences. (b) E‘ ' | ; ‘
The input sequence length might be 1,000 samples or greater and may be changing with v 02} ‘ ‘ i HE
time as new data samples are taken. i
One method for computation given this problem is straight implementation of the 04r ‘ i
time domain convolution equation as discussed extensively in chapter 4. The number of real 06k |
multiplies required is M * (N ~ M + 1), where N is the input signal size and M is the length ' |4l
of the FIR filter to be convolved with the input signal. There is an alternative to this rather 08F 4
lengthy computation method—the convolution theorem. The convolution theorem states
that time. domain f:onvolution is equival‘ent to multiplication in the' frequency domain. The -1 0 ™ 700 300 200 500 600 700 800
convolution equation above can be rewritten in the frequency domain as follows:
Sample Number

Y(k) = H(k) X(k) 4.8)
. . FIGURE 4.10 {a) Example of INTERP3 for 3:1 interpolation. Original
Because interpolation is also a filtering operation, fast interpolation can also be pet- WAVES3.DAT. (b} 3:1 interpolated WAVE3.DAT output.

formed in the frequency domain using the FFT. The next section describes the implemen-
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tation of real-time filters using FFT fast convolution methods, and section 4.4.2 desers
a real-time implementation of frequency domain interpolation. Cribes

4.4.1 Fast Convolution Using FFT Methods

Equation (4.8) indicates that if the frequency domain representations of h(n) and x(n)
known, then Y(k) can be calculated by simple multiplication. The sequence y(n) cap t:re
be obtained by inverse Fourier transform. This sequence of steps is detailed below: .

(1) Create the array H(k) from the impulse response h(n) using the FFT.
(2) Create the array X(k) from the sequence x(n) using the FFT,

(3) Multiply H by X point by point thereby obtaining ¥(k).

(4) Apply the inverse FFT to Y(k) in order to create y(n).

There are several points to note about this procedure. First, very often the impulse
response h(n) of the filter does not change over many computations of the convolutiop
equation. Therefore, the array H(k) need only be computed once and can be used repeat-
edly, saving a large part of the computation burden of the algorithm,

Second, it must be noted that h(n) and x(n) may have different lengths. In this case, it
is necessary to create two equal length sequences by adding zero-value samples at the end of
the shorter of the two sequences. This is commonly called zero filling or zero padding. This
is necessary because all FFT lengths in the procedure must be equal. Also, when using the
radix 2 FFT all sequences to be processed must have a power of 2 length. This can require
zero filling of both sequences to bring them up to the next higher value that is a power of 2.

Finally, in order to minimize circular convolution edge effects (the distortions that
occur at computation points where each value of h(n) does not have a matching value in
x(n) for mulitiplication), the length of x(n) is often extended by the original length of h(n)
by adding zero values to the end of the sequence. The problem can be visualized by
thinking of the convolution equation as a process of sliding a short sequence, h(n), across
a longer sequence, x(n), and taking the sum of products at each translation point. As this
translation reaches the end of the x(n) sequence, there will be sums where not all h(n) val-
ues match with a corresponding x(n) for multiplicatjon. At this point the output y(n) is ac-
tually calculated using points from the beginning of x(n), which may not be as useful as
at the other central points in the convolution, This circular convolution effect cannot be
avoided when using the FFT for fast convolution, but by zero filling the sequence its re-
sults are made predictable and repeatable.

The speed of the FFT makes convolution using the Fourier transform a practical
technique. In fact, in many applications fast convolution using the FFT can be signifi-
cantly faster than normal time domain convolution. As with other FFT applications, there
is less advantage with shorter sequences and with very small lengths the overhead can
create a penalty. The number of real multiply/accumulate operations required for fast
convolution of an N length input sequence (where N is a large number, a power of 2 and
real FFTs are used) with a fixed filter sequence is 2*N*[1 + 2*log,(N)]. For example,
when N is 1,024 and M is 100, fast convolution is as much as 2.15 times faster.
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The program RFAST (see Listing 4.10) illustrates the use of the ££t function for
fast convolution (see Listing 4.11 for a C language implementation). Note that the in-
verse FFT is performed by swapping the real and imaginary parts of the input and out-
put of the ££t function. The overlap and save method is used to filter the con-
tinuous real-time input and generate a continuous output from the 1024 point FFT. The
convolution problem is filtering with the 35-tap low pass FIR filter as was used in sec-
tion 4.2.2. The filter is defined in the FILTER.H header file (variable £ir_1p£35).
The RFAST program can be used to generate results similar to the result shown in
Figure 4.7(b).
(text continues on page 176)

#include <stdlib.h>
#include <stdio.h>

" #include <string.h>

#include <math.h>
#include “rtdspc.h"
#include *filter.h"

/*;\-***********‘k**********i'**********************************************

RFAST.C - Realtime fast convolution using the FFT

This program performs fast convolution using the FFT. It performs
the convolution required to implement a 35 point FIR filter
(stored in variable fir 1pf35) on an

arbitrary length realtime input. The filter is

a LPF with 40 dB out of band rejection. The 3 dB point is at a
relative frequency of approximately .25*fs.

************************************************************************/

/* FFT length must be a power of 2 */
#define FFT_LENGTH 1024

#define M 10

/* must be log2 (FFT_LENGTH) */

#define FILTER_LENGTH 35

void main()

{

int i, j;

float tempflt;
COMPLEX *samp, *filt;

static float input_save[FILTER_LI-N‘;I'H];

/* power of 2 length of FFT and complex allocation */
samp = (COMPLEX *) calloc (FFT_LENGTH, Sizeof(COMPLEX));
if (Isamp) {

LISTING 4.10 Program RFAST to perform real-time fast convolution using
the overlap and save method. (Continued)
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exit(1l);
}

/* Zero fill the filter to the sequence length */
filt = (COMPLEX *) calloc(FFT_LENGTH, sizeof (COMPLEX));
if (1Eilt)
exit(1);
}

/* copy the filter into complex array and scale by 1/N for inverse FFT */
tempflt = 1.0/FFT_LENGTH;
for(i = 0 ; i < FILTER_LENGTH ; i++)

filt{i] .real = tempflt*fir 1pf35[i];

/* FFT the zero filled filter impulse response */
FEE(£ilt, M) ;

/* read in one FFT worth of samples to start, imag already zero */
for(i = 0 ; i < FFT_LENGTH-FILTER_LENGTH ; i++)
samp([i] .real = getinput();

/* save the last FILTER_LENGTH points for next time */
for(j = 0 ; j < FILTER _LENGTH ; j++, i++)
input_save(jl = samp[i].real = getinput();

while(1) {

/* do FFT of samples */
fft (samp, M) ;

/* Multiply the two transformed sequences */
/* swap the real and imag outputs to allow a forward FFT instead of
inverse FFT */
for(i = O ; i < FFT_LENGTH ; i++) {
tempflt = samp[i].real * filt[i].real
- samp{i].imag * filt[i].imag;
samp[i) .xreal = samp([i].real * £ilt[i].imag
+ sampii].imag * filt(i].real;
tempflt;

samp (i} .imag
}

/* Inverse fft the multiplied sequences */
fft (samp, M) ;

/* Write the result out to a dsp data file */
/* because a forward FFT was used for the inverse FFT,

LISTING 4.10 (Continued)
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the output is in the imag part */
for(i = FILTER_LENGTH ; i < FFT_LENGTH ; i++) sendout(sampli].imag);

/* overlap the last FILTER_LENGTH-1 input data points in the next FFT */
for(i = 0; i < FILTER_LENGTH ; i++) {
samp[i].real = input_savel(i];
samp[i].imag = 0.0;
}

for( ; 1 < FPFT_LENGTH-FILTER_LENGTH ; i++) {
samp[i] .real = getinput();
samp{i] .imag = 0.0;

}

/* save the last FILTER_LENGTH points for next time */
for(j = 0 ; j < FILTER _LENGTH ; j++, i++) {
input_save[j] = samp[i].real = getinput();
samp[i].imag = 0.0;

LISTING 4.10 (Continued)
/**************************************************************************

fft - In-place radix 2 decimation in time FFT

Requires pointer to complex array, x and power of 2 size of FFT, m
(size of FFT = 2**m). Places FFT output on top of input COMPLEX array.

void fft(COMPLEX *x, int m)

*************************************************************************/

void f£ft (COMPLEX *x,int m)
{
/* used to store the w complex array */
/* stores m for future reference */

/* length of fft stored for future */

static COMPLEX *w;
static int mstore = 0;
static int n = 1;

COMPLEX u, temp, tm;
COMPLEX *xi,*xip, *xj, *wptr;

int i,3j,k,1,le,windex;

double arg,w_real,w_imag,wrecur_real,wrecur_imag,wtemp_real;

LISTING 4.11 Radix 2 FFT function ££t (x,m). (Continued)
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if(m != mstore) {

/* free previously allocated storage and set new m */

if (mstore != 0) free(w);
mstore = m;
if(m == 0) return; /* if m=0 then done */

/* n = 2*%*m = fft length */

n=1 <<m;
le = n/2;

/* allocate the storage for w */

w = (COMPLEX *) calloc(le-l,sizeof(COMPLEx));
if(1w) {

exit(1l);
}

/* calculate the w values recursively */

arg = 4.0*atan(1.0)/le;
wrecur_real = w_real = cos{arg) ;
wrecur_imag = w_imag = -sin(arg);

/* PI/le calculation */

Xj = w;

for (j =1; j < le; j++) {
xj->real = (float)wrecur_real;
Xj->imag = (float)wrecur_imag;
Xj++;

wtenmp_real = wrecur_real*w_real - wrecur_imag*w_imag;
wrecur_imag = wrecur_real*w_imag + wrecur_imag*w_real;
wrecur_real = wtemp_real;

/* start fft */

le = n;

windex = 1;

for (1=0;1<m; 1++) {
le = le/2;

/* first iteration with no multiplies */
for(i=0;i<n;i=i+2*1e) {

xi =x + i;
xip = xi + le;

LISTING 4.11 (Continued)
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*xi = temp;

/* remaining iterations

wptr = w + windex

for (j =
u = *wptr;
for (1 =3 ;

temp.real
temp. imag
tm.real =
tm. imag =
xip->real
Xip->imag

}

}

j=0;

k = n/2;

while(k <= j) {
i=3-k;
k = k/2;

}

j=3+k;

if (i < j§) {
xi=x+i,‘
Xj = x + j;

temp = *xj;
*xj = *xi;
*x1 = temp;

i<n;

xi =x + i;

xip = xi + 1le;

windex = 2*windex;

for (i =1 ; i < (n-1)

Fast Filtering Algorithms

temp.real = xi->real + xip->real;
temp.imag = xi->imag + xip->imag;
xip->real = xi->real - xip->real;
Xip->imag = xi->imag - xip->imag;

use stored w */

-1;

1:3<1le; j++) {

1=1+ 2%le) {

= xi->real + xip->real;

= xi->imag + xip->imag;

xi->real - xip->real;

xi->imag - xip->imag;

= tm.real*u.real - tm.imag*u.imag;
= tm.real*u.imag + tm.imag*u.real;

*xi = temp;

Wptr = wptr + windex;

/* rearrange data by bit reversing */

;oi+d) {

LISTING 4.11 (Continued)
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4.4.2 Interpolation Using the FFT

In section 4.3.2 time domain interpolation was discussed and demonstrated using severy
short FIR filters. In this section, the same process is demonstrated using FFT techniques
The steps involved in 2:1 interpolation using the FFT are as follows: )

(1) Perform an FFT with a power of 2 length (N) which is greater than or equa] to the
length of the input sequence.

(2) Zero pad the frequency domain representation of the signal (a complex array) by
inserting N — 1 zeros between the positive and negative half of the spectrum, The
Nyquist frequency sample output of the FFT (at the index N/2) is divided by 2 apnq
placed with the positive and negative parts of the spectrum, this results in a Sym-
metrical spectrum for a real input signal.

(3) Perform an inverse FFT with a length of 2N.

(4) Multiply the interpolated result by a factor of 2 and copy the desired portion of the
result that represents the interpolated input, this is all the inverse FFT samples if the
input length was a power of 2.

Listing 4.12 shows the program INTFFT2.C that performs 2:1 interpolation using
the above procedure and the ££t function (shown in Listing 4.11). Note that the inverse
FFT is performed by swapping the real and imaginary parts of the input and output of the
££t function. Figure 4.11 shows the result of using the INTFFT2 program on the 128
samples of the WAVE3.DAT input file used in the previous examples in this chapter
(these 256 samples are shown in detail in Figure 4.10(a)). Note that the output length is
twice as large (512) and more of the sine wave nature of the waveform can be seen in the
interpolated result. The INTFFT2 program can be modified to interpolate by a larger
power of 2 by increasing the number of zeros added in step (2) listed above. Also, be-
cause the FFT is employed, frequencies as high as the Nyquist rate can be accurately in-
terpolated. FIR filter interpolation has a upper frequency limit because of the frequency
response of the filter (see section 4.3.1).

#include
#include
#include
#include
#include

/************* IRARE KA AR AT AR AR AR AT AR ARk Ak Ak kb Ak ko hhkk Ak hhhk bk kb hkkhhkd

INTFFT2.C - Interpolate 2:1 using FFT

Generates 2:1 interpolated time domain data.

* Ak dkdkkkkhkkhkdkdok ***********************************************************/

<stdlib.h>
<stdio.h>
<string.h>
<math.h>
"rtdspc.h"

LISTING 4.12 Program INTFFT2.C used to perform 2:1 interpolation using
the FFT. (Continued)
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¢define LENGTH 256

pdefine M 8 /* must be log2 (FFT_LENGTH) */
main()
( a

int 1;

float temp;

COMPLEX *samp;

/* allocate the complex array (twice as long) */
samp = (COMPLEX *) calloc(2*LENGTH, sizeof (COMPLEX));
if(!samp) {
printf ("\nError allocating fft memory\n");
exit(1l);
}

/* copy input signal to complex array and do the fft */
for (i = 0; i < LENGTH; i++) samp[i].real = getinput();

fft (samp, M) ;

/* swap the real and imag to do the inverse fft */
for (i = 0; i < LENGTH; i++) {
temp = samp(i].real;
sanmp(i] .real = samp{il.imag;
samp[i].imag = temp;
}

/* divide the middle frequency component by 2 */
samp [LENGTH/2] .real 0.5*samp [LENGTH/2] .real ;
samp [LENGTH/2] . imag 0.5*samp [LENGTH/2] . imag;

/* zero pad and move the negative frequencies */
samp [3*LENGTH/2] = samp[LENGTH/2];
for (i = LENGTH/2 + 1; i < LENGTH ; i++) {

samp [i+LENGTH] = samp([i];
samp[i].real = 0.0;
samp{i] .imag = 0.0;

}

/* do inverse fft by swapping input and output real & imag */

fft (samp,M+1) ;

/* copy to output and multiply by 2/(2*LENGTH) */
temp = 1.0/LENGTH;

for (i=0; i < 2*LENGTH; i++) sendout(temp*samp(i].imag):;

LISTING 4.12 (Continued)
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. Program INTFFT2.C Output
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FIGURE 4.11 Example use of the INTFFT2 program used to interpolate
WAVES signal by a 2:1 ratio.

4.5 OSCILLATORS AND WAVEFORM SYNTHESIS

The generation of pure tones is often used to synthesize new sounds in music or for test-
ing DSP systems. The basic oscillator is a special case of an IIR filter where the poles are
on the unit circle and the initial conditions are such that the input is an impulse. If the
poles are moved outside the unit circle, the oscillator output will grow at an exponential
rate. If the poles are placed inside the unit the circle, the output will decay toward zero.
The state (or history) of the second order section determines the amplitude and phase of
the future output. The next section describes the details of this type of oscillator. Section
4.5.2 considers another method to generate periodic waveforms of different frequencies
—the wave table method. In this case any period waveform can be used to generate a
fundamental frequency with many associated harmonics.

4.5.1 IR Filters as Oscillators

The impulse response of a continuous time second order oscillator is given by

J(0) = e SI(@)
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If d > O then the output will decay toward zero and the peak will occur at

_ tan"(w/d)

t = .
peak ©

(4.10)

The peak value will be

—dt
e

Wt ak) = ————
ke vd?* + »?

A second-order difference can be used to generate a response that is an approximation of
this continuous time output. The equation for a second-order discrete time oscillator is
based on an IIR filter and is as follows:

“4.11)

Yn+1 = C1Yn 3 blxn» (412)

where the x input is only present for ¢ = 0 as an initial condition to start the oscillator and

c = 2¢H cos(wt)
Cy = e
where T is the sampling period (1/f;) and @ is 27 times the oscillator frequency.

The frequency and rate of change of the envelope of the oscillator output can be
changed by modifying the values of d and ® on a sample by sample basis. This is illus-
trated in the OSC program shown in Listing 4.13. The output waveform grows from a
peak value of 1.0 to a peak value of 16000 at sample number 5000. After sample 5000
the envelope of the output decays toward zero and the frequency is reduced in steps every
1000 samples. A short example output waveform is shown in Figure 4.12.

4.5.2 Table-Generated Waveforms

Listing 4.14 shows the program WAVETAB.C, which generates a fundamental fre-
quency at a particular musical note given by the variable key. The frequency in Hertz is
related to the integer key as follows:

f =440 ¢2%2 (4.13)

Thus, a key value of zero will give 440 Hz, which is the musical note A above mid-
dle C. The WAVETAB.C program staris at a key value of —24 (two octaves below A) and
steps through a chromatic scale to key value 48 (4 octaves above A). Each sample output
value is calculated using a linear interpolation of the 300 values in the table gwave. The
300 sample values are shown in Figure 4.13 as an example waveform. The gwave array is
301 elements to make the interpolation more efficient. The first element (0) and the last ele-
ment (300) are the same, creating a circular interpolated waveform. Any waveform can be
substituted to create different sounds. The amplitude of the output is controlled by the env
variable, and grows and decays at a rate determined by trel and amp arrays.



#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "rtdspc.h”

/* change_flag:
-1 = start new sequence from t=0
0 = no change, generate next sample in sequence
1 = change rate or frequency after start

*

float osc(float, float,int); !

float rate, freq;

float amp = 16000;

if (change_flag != 0) {
/* assume rate and freq change every time */
wosc = freq * two_pi_div_sample rate;
arg = 2.0 * cos(wosc);

void main() a = arg * rate;

{ b = -rate * rate;
long int i,length = 100000;
if (change_flag < 0) { /* re-start case, set state variables */
/* calculate the rate required to get to desired amp in 5000 samples */ y0 = 0.0f;

rate = (float)exp(log(amp)/(5000.0)); return(yl = rate*sin(wosc));

}
/* start at 4000 Hz */
freq = 4000.0; -

}
/* make new sample */
out = a*yl + b*y0;

/* first call to start up oscillator */ y0 = v1;
sendout (osc (freq, rate, ~1)) ; vl = out;
/* special case for first 5000 samples to increase amplitude */ return(out) ;
for(i = 0 ; i < 5000 ; i++) }
sendout (osc (freq, rate,0));
LISTING 4.13 (Continued)
/* decay the osc 10% every 5000 samples */
rate = (float)exp(log(0.9)/(5000.0)); x104 Program OSC.C Output
for( ; i < length ; i++) {
if((1%1000) == 0) { /* change freq every 1000 samples */ )

freq = 0.98*freq;
sendout (osc (freq, rate, 1)) ;

1.5 H ﬂ

}
else { /* normal case */
sendout (osc(freq, rate, 0)) ; 05t .
} D) g
} G
>
flush(); % 0 E
} g
2 st
/* Function to generate samples from a second order oscillator i
rate = envelope rate of change parameter (close to 1).
change_flag = indicates that frequency and/or rate have changed. -1
v i
. -1.5} E
float osc(float freq, float rate,int change_flag)
{
/* calculate this as a static so it never happens again */ -2 . v . . + L L
o 0 500 1000 1500 2000 2500 3000 3500 4000

static float two_pi div_sample_rate = (float) (2.0 * PI / SAMPLE RATE);
static float yl,y0,a,b,arg;
float out,wosc;

Sample Number

FGURE 4.12 Example signal output from the OSC.C program (modified to
reach peak amplitude in 500 samples and change frequency every 500 sam-
ple for display purposes).

LISTING 4.13 Program OSC to generate a sine wave signal with a variable
frequency and envelope using a second-order IIR section. {Continued)
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if(i == tbreaks[ci]) rate = rates[++ci];
env = rate*env;

/* determine interpolated sample value from table */

#include <stdlib.h>
#include <math.h>

#include "rtdspc.h*" X (int)pha
#include “"gwave.h" /* ve{301]) array */ = \int)phase;
gu= ) ol frac = phase - (float)k;
/* Wavetable Music Generator 4-20-94 PME */ sample = gwavelk]; . .
delta = gwavel(k+1] - sample; /* possible wave_size+l access */
int key; sample += frac*delta;
! /* calculate output and send to DAC */
void main() sig_out = env*sample;
{ sendout (sig_out);
int t,told,ci,k; /* calculate next phase value */
float ampold,rate,env,wave_size,dec,phase,frac,delta,sample; Phase += dec; . .
register long int i,endi; if(phase >= wave_size) phase -= wave_size;
register float sig_out; } }
static float trel(5] = {  0.02,  0.14, 0.6, 1.0, 0.0 }; ‘ flush();
static float amps{S5] = { 15000.0 , 10000.0, 4000.0, 10.0, 0.0 }; }
Stat%c Flgazb ra;zﬁg;: LISTING 4.14 (Continued)
static in re ;
wave_size = 300.0; /* dimension of original wave */
~ gram WAVET R
endi = 96000; /* 2 second notes */ . G\.N.'AVEforPro . v I?BC .
for(key = -24 ; key < 48 ; key++) { i
/* decimation ratio for key semitones down */ |
dec = powf(2.0,0.0833333333*(float)key),-
/* calculate the rates required to get the desired amps */ |
i=0; ° ]
told = 0; 3
ampold = 1.0; /* always starts at unity */ i ]
while(amps({i] > 1.0) { e
t = trel(i]*endi; :,é}
rates[i] = expf(logf (amps[i] /ampold) / (t-told)) ;
ampold = amps{i]; 04k
tbreaks[i] = told = t; )
i++;
' 0.6
}
phase = 0.0; -08F
rate = rates[0]; 1 ) . A . .
env = 1.0; 0 50 100 150 200 250 300
ci=0;
for(i = 0 ; i < endi ; i++) { Sample Number
/* calculate envelope amplitude */
FIGURE 4.13 Example waveform (gwave[301] array) used by program
LISTING 4.14 Program WAVETAB to generate periodic waveform at any WAVETAB.
frequency. (Continued)

s
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(4) Amount of overlap between successive spectra: Determines accuracy of the esti-
mate, directly affects computation time

(5) Number of spectra averaged: Determines maximum rate of change of the detectable
spectra and directly affects the noise floor of the estimate

CHAPTER 5

%
REAL-TIME DSP APPLICATIONS

5.1.1 Speech Spectrum Analysis

One of the common application areas for power spectral estimation is speech processing.
The power spectra of a voice signal give essential clues to the sound being made by the
speaker. Almost all the information in voice signals is contained in frequencies below
3,500 Hz. A common voice sampling frequency that gives some margin above the
Nyquist rate is 8,000 Hz. The spectrum of a typical voice signal changes significantly
every 10 msec or 80 samples at 8,000 Hz. As a result, popular FFT sizes for speech pro-
cessing are 64 and 128 points.

Included on the MS-DOS disk with this book is a file called CHKL.TXT. This is
the recorded voice of the author saying the words “chicken little.”” These sounds were
chosen because of the range of interesting spectra that they produced. By looking at a plot
of the CHKL.TXT samples (see Figure 5.1) the break between words can be seen and the

This chapter combines the DSP principles described in the previous chapters with the
specifications of real-time systems designed to solve real-world problems and provide
complete software solutions for several DSP applications. Applications of FFT spectrum
analysis are described in section 5.1. Speech and music processing are considered in sec-
tions 5.3 and 5.4. Adaptive signal processing methods are illustrated in section 5.2 (para-
metric signal modeling) and section 5.5 (adaptive frequency tracking).

CHKL.TXT Speech Samples
150 T T T T r

1 FFT POWER SPECTRUM ESTIMATION

Signals found in most practical DSP systems do not have a constant power spectrum. The
spectrum of radar signals, communication signals, and voice waveforms change continu-
ally with time. This means that the FFT of a single set of samples is of very limited use.
More often a series of spectra are required at time intervals determined by the type of sig-
nal and information to be extracted.

Power spectral estimation using FFTs provides these power spectrum snapshots
(called periodograms). The average of a series of periodograms of the signal is used as
the estimate of the spectrum of the signal at a particular time. The parameters of the aver-
age periodogram spectral estimate are:

Sample Value

-150 L L : A L
0 1000 2000 3000 4000 5000 6000

(1) Sample rate: Determines maximum frequency to be estimated

(2) Length of FFT: Determines the resolution (smallest frequency difference detectable)

(3) Window: Determines the amount of spectral leakage and affects resolution and
noise floor

Sample Number

FIGURE 5.1 Original CHKL.TXT data file consisting of the author's words
“chicken little” sampled at 8 kHz (6000 samples are shown).
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relative volume can be inferred from the envelope of the waveform. The ffequency co
tent is more difficult to determine from this plot. n-

The program RTPSE (see Listing 5.1) accepts continuous input samples (ysip,
getinput ()) and generates a continuous set of spectral estimates. The power Spectragl
estimation parameters, such as FFT length, overlap, and number of spectra averaged, are
set by the program to default values. The amount of overlap and averaging can be
changed in real-time. RTPSE produces an output consisting of a spectral estimate every 4
input samples. Each power spectral estimate is the average spectrum of the input file over
the past 128 samples (16 FFT outputs are averaged together).

Figure 5.2 shows a contour plot of the resulting spectra plotted as a frequency ver.
sus time plot with the amplitude of the spectrum indicated by the contours. The high fre.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "rtdspc.h"

/*******'k******************************************‘k******************

RTPSE.C - Real-Time Power spectral estimation using the FFT

This program does power spectral estimation on input samples.
The average power spectrum in each block is determined
and used to generate a series of outputs.

Length of each FFT snapshot: 64 points
Number of FFTs to average: 16 FFTs
Amount of overlap between each FFT: 60 points

*t******************************k*******'k****************************/

/* FFT length must be a power of 2 */
#define FFT_LENGTH 64
#define M 6 /* must be log2 (FFT_LENGTH) */

/* these variables global so they can be changed in real-time */
int numav = 16;
int ovlap = 60;

main()
{
int i ' J ki
float scale, tempflt;

LISTING 5.1 Program RTPSE to perform real-time power spectral estimation using
the FFT. (Continued)
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static float mag [FFT_LENGTH], sig[FFT_LENGTH], hamw({FFT_LENGTH];
static COMPLEX samp [FFT_LENGTH] ;

/* overall scale factor */
scale = 1.0f/(float)FFT_LENGTH;
scale *= scale/(float)numav;

/* calculate hamming window */
tempflt = 8.0*atan(1.0)/(FFT_LENGTH-1);
for(i = 0 ; i < FFT_LENGTH ; i++)
hamw(i] = 0.54 - 0.46*cos(tempflt*i);

/* read in the first FFT_LENGTH samples, overlapped samples read in loop */
for(i = 0 ; i < FFT_LENGTH ; i++) sigfi] = getinput();

for(;;) {
for (k=0; k<FFT_LENGTH; k++) magl{k]l = 0;
for (j=0; j<numav; j++){
for (k=0; k<FFT_LENGTH; k++){
samp[k] .real = hamw(k]*sig([k];

samp [k} .imag = 0;
}

fft (samp, M) ;

for (k=0; k<FFT_LENGTH; k++){
tempflt = samp(k].real * samplk].real;
tempflt += samp[k].imag * samp[k].imag;
tempflt = scale*tempflt;
mag[k] += tempflt;

}

/* overlap the new samples with the old */
for(k = 0 ; k < ovlap ; k++) siglk] sig[k+FFT_LENGTH-ovlap];
for( ; k < FFT_LENGTH ; k++) sig(k] = getinput();
}

/* Take log after averaging the magnitudes. */
for (k=0; k<FFT_LENGTH/2; k++){
tempflt = maglk];
if (tempflt < 1l.e-10f) tempflt = 1.e-10f;
sendout (10.0£*1ogl0(tempflt));

LISTING 5.1 (Continued)
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Contour Plot of Power Spectrum of CHKL TXT

T T T T

FFT Frequency Bin Number

Spectral Estimate Number

FIGURE 5.2 Contour plot of the power spectrum versus frequency and
time obtained using the RTPSE program with the input file CHKL.TXT.
Contours are at 5 dB intervals and the entire 2D power spectrum is normal-
ized to 0 dB.

quency content of the “chi’” part of “chicken” and the lower frequency content of “Jittle”’
are clearly indicated.

5.1.2 Doppler Radar Processing

Radar signals are normally transmitted at a very high frequency (usually greater than 100
MHz), but with a relatively narrow bandwidth (several MHz). For this reason most radar
signals are processed after mixing them down to baseband using a quadrature demodula-
tor (see Skolnik, 1980). This gives a complex signal that can be processed digitally in
real-time to produce a display for the radar operator. One type of display is a moving tar-
get indicator (MTI) display where moving targets are separated from stationary targets by
signal processing. It is often important to know the speed and direction of the moving tar-
gets. Stationary targets are frequently encountered in radar because of fixed obstacles
(antenna towers, buildings, trees) in the radar beam’s path. The beam is not totally
blocked by these targets, but the targets do return a large echo back to the receiver. These
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targets can be removed by determining their average amplitude from a series of echoes
and subtracting them from each received echo. Any moving target will not be subtracted
and can be further processed. A simple method to remove stationary echoes is to simply
subtract successive echoes from each other (this is a simple highpass filter of the Doppler
signal). The mean frequency of the remaining Doppler signal of the moving targets can
then be determined using the complex FFT.

Listing 5.2 shows the program RADPROC.C, which performs the DSP required to
remove stationary targets and then estimate the frequency of the remaining Doppler sig-
nal. In order to illustrate the operation of this program, the test data file RADAR.DAT
was generated. These data represent the simulated received signal from a stationary target

#include <stdlib.h>
#include <math.h>
#include "rtdspc.h"

/*********************************************************************

RADPROC.C - Real-Time Radar processing

This program subtracts successive complex echo signals to
remove stationary targets from a radar signal and then

does power spectral estimation on the resulting samples.

The mean frequency is then estimated by finding the peak of the
FFT spectrum.

Requires complex input (stored real, imag) with 12
consecutive samples representing 12 range locations from
each echo.

******‘k**********************)\'***************************************/

/* FFT length must be a power of 2 */
#define FFT LENGTH 16
#define M 4

#define ECHO_SIZE 12

/* must be log2 (FFT_LENGTH) */

void main()
{
int i,3.k;
float tempflt,rin,iin,pl,p2;
static float mag [FFT_LENGTH] ;
static COMPLEX echos [ECHO_SIZE] [FFT_LENGTH] ;
static COMPLEX last_echo[ECHO_SIZE];

LISTING 5.2 Program RADPROC to perform real-time radar signal process-
ing using the FFT. {Continued)
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/* read in the first echo */
for(i = 0 ; i < ECHO_SIZE ; i++) {
last_echoli].real = getinput();
last_echo[i].imag = getinput();
}

for(:;) {
for (j=0; j< FFT_LENGTH; j++){

Chap. 5

/* remove stationary targets by subtracting pairs (highpass filter) = /

for (k=0; k< ECHO_SIZE; k++){
rin = getinput();
iin = getinput();
echos{k] [j].real
echos k] [j].imag
last_echo(k] .real
last_echo[k] . imag
}
}
/* do FFTs on each range sample */
for (k=0; k< ECHO_SIZE; k++) {

rin - last_echolk]}.real;
iin - last_echo(k].imag;

rin;
iin;

[

Ion

fft (echos(k] ,M);

for(j = 0 ; 3 < FFT_LENGTH ; j++) {
tempflt = echos{k][j].real * echoslk][j].real;
tempflt += echos(k]([j}.imag * echos[k][j].imag;
mag{j] = tempflt;
}
/* find the biggest magnitude spectral bin and output */
tempflt = mag(0];

i=0;
for(j =1 ; j < FFT_LENGTH ; j++) {
if(mag{j] > tempflt) {
tempflt = mag(jl;
i=j;
}

}

/* interpolate the peak loacation */
pl = mag[i]l - mag[i-1];
p2 = magfi] - mag[i+l];
sendout ( (float)i + (pl-p2)/(2* (pl+p2+le-30)));

}
}
}

LISTING 5.2 (Continued)
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added to a moving target signal with Gaussian noise. The data is actually a 2D matrix
representing 12 consecutive complex samples (real,imag) along the echo in time (repre-
senting 12 consecutive range locations) with each of 33 echoes following one after an-
other. The sampling rates and target speeds are not important to the illustration of the pro-
gram. The output of the program is the peak frequency location from the 16-point FFT in
bins (0 to 8 are positive frequencies and 9 to 15 are —7 to —1 negative frequency bins). A
simple (and efficient) parabolic interpolation is used to give a fractional output in the re-
sults. The output from the RADPROC program using the RADAR.DAT as input is 24
consecutive numbers with a mean value of 11 and a small standard deviation due to the
added noise. The first 12 numbers are from the first set of 16 echoes and the last 12 num-
bers are from the remaining echoes.

5.2 PARAMETRIC SPECTRAL ESTIMATION

The parametric approach to spectral estimation attempts to describe a signal as a result
from a simple system model with a random process as input. The result of the estimator is
a small number of parameters that completely characterize the system model. If the
model is a good choice, then the spectrum of the signal model and the spectrum from
other spectral estimators should be similar. The most common parametric spectral estima-
tion models are based on AR, MA, or ARMA random process models as discussed in
section 1.6.6 of chapter 1. Two simple applications of these models are presented in the
next two sections.

5.2.1 ARMA Modeling of Signals

Figure 5.3 shows the block diagram of a system modeling problem that will be used to il-
lustrate the adaptive IIR LMS algorithm discussed in detail in section 1.7.2 of chapter 1.
Listing 5.3 shows the main program ARMA.C, which first filters white noise (generated
using the Gaussian noise generator described in section 4.2.1 of chapter 4) using a second-
order IIR filter, and then uses the LMS algorithm to adaptively determine the filter function.
Listing 5.4 shows the function iir_biguad, which is used to filter the white
noise, and Listing 5.5 shows the adaptive filter function, which implements the LMS algo-
rithm in a way compatible with real-time input. Although this is a simple ideal example
where exact convergence can be obtained, this type of adaptive system can also be used
to model more complicated systems, such as communication channels or control systems.
The white noise generator can be considered a training sequence which is known to the
algorithm; the algorithm must determine the transfer function of the system. Figure 5.4
shows the error function for the first 7000 samples of the adaptive process. The error re-
duces relatively slowly due to the poles and zeros that must be determined. FIR LMS al-
gorithms generally converge much faster when the system can be modeled as a MA sys-
tem (see section 5.5.2 for an FIR LMS example). Figure 5.5 shows the path of the pole

coefficients (b0,b1) as they adapt to the final result where b0 = 0.748 and bl = -0.272.
(text continues on page 198)
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float iir_adapt_filter(float i

{

/*

/*

/*

/*

/*
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int i;

Real-Time DSP Applications

static float out_histl,out_hist2;
static float betal2] ,beta_h1[2] ‘beta_h2{2];

static float alphal3] .alpha_h1

static float in hist([3];
float output,e;

output = out_histl * b[0];
output += out_hist2 * b[1];

in_hist[0] = input;
for(i = 0; i <3 ; i++)
output += in hist[i) * af

calclulate alpha and beta
for(i = 0 ; i <3 ; i+s+)
alphafi] =

betaf0]
beta[l] =

error calculation */
e = d - output;
update coefficients */

al0] += e*0.2*alpha0};
all] += e*0.1*alpha(l];
af2] += e*0.06*alpha(2];
b[0] += e*0.04*beta{0];
b[1l] += e*0.02*beta(1];

update history for alpha */

for(i=0;i<3;i++) {
alpha_h2{i] = alpha_hi[i]
alpha hi{i] = alphali];

}

update history for beta */
for(i = 0 ; i <2 ; i++) ¢

LISTING 5.5 Function iir_adapt_f
adaptive second-order IIR filter {cont

/*

i];

!

ilter(input,d,a,
ained in ARMA.C)

nput, float d,float *a, float *b)

[3],alpha_h2(3];

poles */

/* zeros */

update coefficients */
in hist(i] + b[0]*alpha hi[i] + bl1]*alpha_h2[i];

= out_histl + b[0]*beta_h1[0] + b[1] *beta_h2[0];
out_hist2 + b[0]*beta_h1([1] + bll]l*beta_h2[1];

b), which implements an LMS
(Continued)

Sec. 5.2 Parametric Spectral Estimation
Chap, 5
beta_h2{i] = beta_hl[i];
beta hl{i] = beta[i];
}

Sample Value

/* update input/output history */

197

out_hist2 = out_histl;
out_histl = output;
in hist[2] = in_hist[1];
in_hist(1] = input;
return(output) ;
LISTING 5.5 (Continued)
Error Signal from ARMA.C
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FIGURE 5.4 Error signal during the HR adaptive process, illustrated by the

program ARMA.C.
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Pole Location Coefficients Adaptation from ARMA.C

0.15 . : , : . —

0.1

0.05

b[1] Coefficient

! ! i

0.1 02 03 0.4 0.5 0.6 0.7 0.8

-0.3 L L 4
0
b[0] Coefficient

FIGURE 5.5 Pole coefficients (b0,b1) during the lIR adaptive process, illus-
trated by the program ARMA.C.

5.2.2 AR Frequency Estimation

The frequency of a signal can be estimated in a variety of ways using spectral analysis
methods (one of which is the FFT illustrated in section 5.1.2). Another parametric ap-
proach is based on modeling the signal as resulting from an AR process with a single
complex pole. The angle of the pole resulting from the model is directly related to the
mean frequency estimate. This model approach can easily be biased by noise or other sig-
nals but provides a highly efficient real-time method to obtain mean frequency informa-
tion.

The first step in the AR frequency estimation process is to convert the real signal
input to a complex signal. This is not required when the signal is already complex, as is
the case for a radar signal. Real-to-complex conversion can be done relatively simply by
using a Hilbert transform FIR filter. The output of the Hilbert transform filter gives the
imaginary part of the complex signal and the input signal is the real part of the complex
signal. Listing 5.6 shows the program ARFREQ.C, which implements a 35-point Hilbert
transform and the AR frequency estimation process. The AR frequency estimate deter-
mines the average frequency from the average phase differences between consecutive
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#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include "rtdspc.h"

/* ARFREQ.C - take real data in one record and determine the
1st order AR frequency estimate versus time. Uses a Hilbert transform
to convert the real signal to complex representation */

main()

{

/* 35 point Hilbert transform FIR filter cutoff at 0.02 and 0.48
+/- 0.5 dB ripple in passband, zeros at 0 and 0.5 */

static float fir hilbert35[35] = {

0.038135, 0.000000, 0.024179, 0.000000, 0.032403,
0.000000, 0.043301, 0.000000, 0.058420, 0.000000,
0.081119, 0.000000, 0.120167, 0.000000, 0.207859,
0.000000, 0.635163, 0.000000, -0.635163, 0.000000,
-0.207859, 0.000000, -0.120167, 0.000000, -0.081119,
0.000000, ~0.058420, 0.000000, -0.043301, 0.000000,
-0.032403, 0.000000, ~0.024179, 0.000000, ~0.038135
}:
static float hist[34];
int i,winlen;
float sig_real,sig_imag, last_real, last_imag;
float cpi,xr,xi, freq;
cpi = 1.0/(2.0*PI);
winlen = 32;
last_real = 0.0;
last_imag = 0.0;
for(;;) {
/* determine the phase difference between sucessive samples */
xr = 0.0;
xi = 0.0;

for(i = 0 ; i < winlen ; i++) {
sig_imag = fir_filter (getinput (), fir hilbert35,35,hist};
sig_real = hist[16];
Xr += sig_real * last_real;
Xr += sig_imag * last_imag;
xi += sig_real * last_imag;

LISTING 5.6 Program ARFREQ.C, which calculates AR frequency estimates
in real-time. (Continued)
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xi -= sig_imag * last_real;
last_real = sig_real;
last_imag = sig_imag;
}
/* make sure the result is valid, give 0 if not *,
if(fabs(xr) > le-10)
freq = cpi*atan2(xi,xr);

else
freq = 0.0;
sendout (freq) ;

}

LISTING 5.6 (Continued)

complex samples. The arc tangent is used to determine the phase angle of the complex re-
sults. Because the calculation of the arc tangent is relatively slow, several simplificationg
can be made so that only one arc tangent is calculated for each frequency estimate. Let 5

be the complex sequence after the Hilbert transform. The phase difference is "

¢n = arg[xn]— arg[xn—l] = a‘rg[xnx;—ll' . 1)

The average frequency estimate is then

wilen—] wien~1
zq)" arg] Zx,,xn_lJ (52)

7 — _n=0 =~ n=0
f 2n wlen 2n ’

where the last approximation weights the phase differences based on the amplitude of the
complex signal and reduces the number of arc tangents to one per estimate. The constant
wlen is the window length (winlen in program ARFREQ) and controls the number of
phase estimates averaged together. Figure 5.6 shows the results from the ARFREQ pro-
gram when the CHKL.TXT speech data is used as input. Note that the higher frequency
content of the “chi” sound is easy to identify.

3 SPEECH PROCESSING

Communication channels never seem to have enough bandwidth to carry the desired
speech signals from one location to another for a reasonable cost. Speech compression at-
tempts to improve this situation by sending the speech signal with as few bits per second
as possible. The same channel can now be used to send a larger number of speech signals

at a lower cost. Speech compression techniques can also be used to reduce the amount of
memory needed to store digitized speech.
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Frequency Estimates from ARFREQ.C
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FIGURE 5.6 Frequency estimates from program ARFREQ.C, using the
CHKL.DAT speech data as input.

5.3.1 Speech Compression

The simplest way to reduce the bandwidth required to transmit speech is to simply reduce
the number bits per sample that are sent. If this is done in a linear fashion, then the qual-
ity of the speech (in terms of signal-to-noise ratio) will degrade rapidly when less than 8
bits per sample are used. Speech signals require 13 or 14 bits with linear quantization in
order to produce a digital representation of the full range of speech signals encountered in
telephone applications. The International Telegraph and Telephone Consultative Committee
(CCITT, 1988) recommendation G.711 specifies the basic pulse code modulation (PCM)
algorithm, which uses a logarithmic compression curve called p-law. p-law (see section
1.5.1 in chapter 1) is a piecewise linear approximation of a logarithmic transfer curve
consisting of 8 linear segments. It compresses a 14-bit linear speech sample down to 8
bits. The sampling rate is 8000 Hz of the coded output. A compression ratio of 1.75:1 is
achieved by this method without much computational complexity. Speech quality is not
degraded significantly, but music and other audio signals would be degraded. Listing 5.7
shows the program MULAW.C, which encodes and decodes a speech signal using p-law
compression. The encode and decode algorithms that use tables to implement the com-
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1clude <stdlib.h>
1clude <stdio.h>
wclude "rtdspc.h”
iclude "mu.h"

B R L L
LT

LAW.C - PROGRAM TO DEMONSTRATE MU LAW SPEECH COMPRESSION

t*************************-k*******************************************
*/

n()
int i,3;
for(;;) {

i = (int) getinput();

encode 14 bit linear input to mu-law */
j = abs(i);
if(j > Ox1f£ff) j = Ox1fff;
j = invmutab(j/2];
if(i < 0) j |= 0x80;

decode the 8 bit mu-law and send out */
sendout ( (float)mutablj]l);

LISTING 5.7 Program MULAW.C, which encodes and decodes a speech signal using
p-law compression.

pression are also shown in this listing. Because the tables are rather long, they are in the
include file MU.H.

5.3.2 ADPCM (G.722)

The CCITT recommendation G.722 is a standard for digital encoding of speech and audio
signals in the frequency range from 50 Hz to 7000 Hz. The G.722 algorithm uses sub-
band adaptive differential pulse code modulation (ADPCM) to compress 14-bit, 16 kHz
samples for transmission or storage at 64 kbits/sec (a compression ratio of 3.5:1).
Because the G.722 method is a wideband standard, high-quality telephone network appli-
cations as well as music applications are possible. If the sampling rate is increased, the
same algorithmm can be used for good quality music compression.

The G.722 program is organized as a set of functions to optimize memory usage
and make it easy to follow. This program structure is especially efficient for G.722, since
most of the functions are shared between the higher and lower sub-bands. Many of the
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functions are also shared by both the encoder and decoder of both sub-bands. All of the
functions are performed using fixed-point arithmetic, because this is specified in the
CCITT recommendation. A floating-point version of the G.722 C code is included on
the enclosed disk. The floating-point version runs faster on the DSP32C processor, which
has limited support for the shift operator used extensively in the fixed-point implementa-
tion. Listing 5.8 shows the main program G722MAIN.C, which demonstrates the algo-
rithm by encoding and decoding the stored speech signal “chicken little,” and then oper-
ates on the real-time speech signal from getinput (). The output decoded signal is
played using sendout () with an effective sample rate of 16 kHz (one sample is inter-
polated using simple linear interpolation giving an actual sample rate for this example of

#include <stdlib.h>
#include "rtdspc.h"

/* Main program for g722 encode and decode demo for 210X0 */

extern int encode({int,int);
extern void decode(int);
extern void reset();

/* outputs of the decode function */
extern int xoutl,xout2;

int chkl_coded{6000];
extern int pm chkl([};

void main()

{
int i,3,t1,t2;
float xf1 = 0.0;
float xf2 = 0.0;

/* reset, initialize required memory */
reset ();

/* code the speech, interpolate because it was recorded at 8000 Hz */
for(i = 0 ; i < 6000 ; i++) {(
tl=64*chkl1[i];
t2=32* (chkl[i]+chkl[i+1]);
chkl_coded[i]=encode(tl, t2);
}

/* interpolate output to 32 KHz */
for{(i = 0 ; i < 6000 ; i++) {

LISTING 5.8 The main program (G722MAIN.C), which demonstrates the
ADPCM algorithm in real-time. (Continued)
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decode (chkl_coded[i]);
xfl = (float)xoutl;
sendout (0.5*x£2+0.5*xf1) ;
sendout (xf1) ;
*xf2 = (float)xout2;
sendout (0.5*x£2+0. S*xf1);
sendout (x£2) ;
}

/* simulate a 16 KHz sampling rate (actual is 32 KHz) */
/* note: the g722 standard calls for 16 KHz for voice Operation */
while (1) {
t1=0.5*(getinput () +getinput());
£2=0.5* (getinput () +getinput());

J=encode(tl,t2);
decode(j);

xfl = (float)xoutl;
sendout (0.5* (xf1+x£2) ) ;
sendout (xf1};

xf2 = (float)xout2;
sendout (0.5* (x£2+xf1)) ;
sendout (xf2) ;

LISTING 5.8 (Continued)

32 kHz). Listing 5.9 shows the encode function, and Listing 5.10 shows the decode
function; both are contained in G.722.C. Listing 5.11 shows the functions filtexz,
filtep, quant], invgxl, logscl, scalel, upzero, uppol2, uppoll, in-
vqah, and logsch, which are used by the encode and decode functions. In Listings
5.9, 5.10, and 5.11, the global variable definitions and data tables have been omitted for
clarity.
(text continues on page 215)

722 encode function two ints in, one int out */

encede(int xinl, int xin2)

int i;

int *h_ptr;

int *temf_ptr, *tamf_ptrl;

long int xa,xb;

int x1,xh;

LISTING 5.8 Function encode (xinl,xin2) (contained in G.722.C). (Continued)

/*
/*

/*

/*

/*

/*

/*
/*

/*

Sec. 5.3 Speech Processing

int decis;

int sh; /* this comes from adaptive predictor */
int eh;

int dh;

int il,ih;

int szh, sph, ph,vh;
int szl,spl,sl,el;

encode: put input samples in xinl = first value, xin2 = second value */
returns il and ih stored together */

transmit quadrature mirror filters implemented here */
h_ptr = h;
tamf_ptr = tgmf;
xa = (long) (*tgmf_ptr++) * (*h_ptr++);
xb = (long) (*tgmf_ptr++) * (*h_ptr++);
main multiply accumulate loop for samples and coefficients */
for(i = 0 ; 1 < 10 ; i++) {
xa += (long) (*tqmf_ ptr++) * (*h_ptr++);
xb += (long) (*tgmf_ptr++) * (*h_ptr++);
}
final mult/accumulate */
Xa += (long) (*tamf_ptr++) * (*h_ptr++);
xb += (long) (*tgmf_ptr) * (*h_ptr++);

update delay line tqmf */
tamf _ptrl = tgmf_ptr - 2;
for(i =0 ; i <22 ; i++) *tgmf ptr— = *tqmf_ptril—;
*tgmf_ptr— = xinl;
*tgnf_ptr = xin2;

(xa + xb) >> 15;
(xa - xb) >> 15;

x1
xh

end of quadrature mirror filter code */

into regular encoder segment here */
starting with lower sub band encoder */

filtez - compute predictor output section - zero section */
szl = filtez (delay_bpl,delay dltx);
filtep - compute predictor output signal (pole section) */

spl = filtep(rltl,all,rlt2,al2);

LISTING 5.9 (Continued)

205
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:ompute the predictor output value in the lower sub_band encoder */

sl
el

szl + spl;
xl - sl;

uantl: quantize the difference signal */
il = quantl(el, detl);

nvgxl: does both invgal and invgbl- computes quantized difference signal */
‘or invgbl, truncate by 2 1lsbs, so mode = 3 */

nvgal case with mode = 3 */
dlt = ((long)detl*ggd_coded_table{il >> 2]) >> 15;

ogscl: updates logarithmic quant. scale factor in low sub band*/
nbl = logscl(il,nbl);

wcalel: compute the quantizer scale factor in the lower sub band*/
alling parameters nbl and 8 (constant such that scalel can be scaleh) */
detl = scalel(nbl,8);

arrec - simple addition to compute recontructed signal for adaptive pred */
plt = 41t + szl;

pzero: update zero section predictor coefficients (sixth order)*/
‘alling parameters: dlt, dlti(circ pointer for delaying */

1t1, dit2, ..., dlté from dlt */

bpli (linear_buffer in which all six values are delayed */

‘eturn params: updated bpli, delayed dltx */

upzero (dlt,delay_dltx,delay bpl);

ppol2- update second predictor coefficient apl2 and delay it as al2 */
‘alling parameters: all, al2, plt, pltl, plt2 */

al2 = uppol2(all,al2,plt,pltl,plt2);

ppoll :update first predictor coefficient apll and delay it as all */
alling parameters: all, apl2, plt, pltl */

all = uppoll(all,al2,plt,pltl);

‘econs : compute recontructed signal for adaptive predictor */
rlt = sl + dlt;

lone with lower sub_band encoder; now implement delays for next time*/

LISTING 5.9 (Continued)
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rlt2 = rltcl;
ritl = rlt;
plt2 = pltl;
pltl = plt;

/* high band encode */

filtez (delay bph,delay_dhx) ;

szh

sph filtep(rhl,ahl,rh2,ah2);
/* predic: sh = sph + szh */

sh = sph + szh;
/* subtra: eh = xh - sh */

eh = xh - sh;

/* quanth - quantization of difference signal for higher sub-band */
/* quanth: in-place for speed params: eh, deth (has init. value) */
/* return: ih */

if(eh >= 0) {

ih = 3; /* 2,3 are pos codes */
}
else {

ih = 1; /* 0,1 are neg codes */
}

decis = (564L* (long)deth) >> 12L;
if (abs(eh) > decis) ih—; /* mih = 2 case */

/* invgah: in-place compute the quantized difference signal
in the higher sub-band*/

dh = ((long)deth*qq2_code2_table[ih]) >> 15L ;
/* logsch: update logarithmic quantizer scale factor in hi sub-band*/
nbh = logsch(ih,nbh);

/* note : scalel and scaleh use same code, different parameters */
deth = scalel (nbh,10);

/* parrec - add pole predictor output to quantized diff. signal (in place)*/
ph = dh + szh;

/* upzero: update zero section predictor coefficients (sixth order) */
/* calling parameters: dh, dhi(circ), bphi (circ) */
/* return params: updated bphi, delayed dhx */

upzero (dh, delay_dhx, delay_bph};

LISTING 5.9 (Continued)
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ppol2: update second predictor coef aph? and delay as ah2 */
ralling params: ahl, ah2, ph, phil, ph2 */

‘eturn params: aph2 */

ah2 = uppol2 (ahl,ah2,ph,ph1,ph2);

ppoll: update first predictor coef. aph2 and delay it as ahl */
ahl = uppoll (ahl, ah2,ph,phl);

‘econs for higher sub-band */
yh = sh + dh;

lone with higher sub-band encoder, now Delay for next time */
rh2 = rhi;

rhl = yh;
ph2 = phi;
phl = ph;

mltiplexing ih and il to get signals together */
return(il | (ih << 6));

LISTING 5.9 (Continued)

lecode function, result in xoutl and xout2 */

| decode (int input)

int i;

int xal,xa2; /* gmf accumulators */
int *h_ptr;

int pm *ac_ptr, *ac_ptrl, *ad_ptr, *ad | ptrl;
int ilr,ih;

int xs,xd;

int rl, rh;

int di;

plit transmitted word from input into ilr and ih */
ilr = input & Ox3f;

ih = input >> 6;

OWER SUB_BAND DECODER */

‘iltez: compute predictor output for zero section */

LISTING 5.10 Function decode (input) (contained in G.722.C). (Continued)

S———— |

/*

/*

/*

/*

/*

/*
/*

/*

/*

/*

/*

/*

Sec. 5.3 Speech Processing 209
dec_szl = filtez( dec_del_bpl,dec_del_dltx) ;

filtep: compute predictor output signal for pole section */
dec_spl = filtep(dec_rltl, dec_all,dec_rlt2,dec_al2);

dec_sl = dec_spl + dec_szl;

invgxl: compute quantized difference signal for adaptive predic in low sb */
dec_dlt = ( (long)dec_detl*qq4_code4_ta.b1e[ilr >> 21) >> 15;

invgxl: compute quantized difference signal for decoder output in low sb */
dl = ((long)dec_detl*qq6_code6_tab1e[ilr]) >> 15;

rl = dl + dec_sl;

logscl: quantizer scale factor adaptation in the lower sub-band */
dec_nbl = logscl(ilr,dec_nbl);

scalel: computes quantizer scale factor in the lower sub band */
dec_detl = scalel (dec_nbl, 8);

parrec - add pole predictor output to quantized diff. signal (in place) */
for partially reconstructed signal */

dec_plt = dec_dit + dec_szl;
upzero: update zero section predictor coefficients */

upzero (dec_dlt, dec_del_dltx, dec_del bpl);
uppol2: update second predictor coefficient apl2 and delay it as al2 */
dec_al2 = uppolz(dec_all,dec__alZ,dec__plt,dec _pltl,dec_plt2);

uppoll: update first predictor coef. (pole setion) */

dec_all = uppoll (dec_all,dec_al2,dec_plt,dec  pltl);

Trecons : compute recontructed signal for adaptive predictor */
dec_rlt = dec_sl + dec_dlt;

done with lower sub band decoder, implement delays for next time */

USTING 5.10 (Continued)
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dec_rlt2 = dec_rltl; /* recons : compute recontructed signal for adaptive predictor */
dec_rltl = dec_rlt; : rh = dec_sh + dec_dh;
dec_plt2 = dec_pltl;
dec_pltl = dec_plt; | /* done with high band decode, implementing delays for next time here */

i dec_rh2 = dec_rhl;
* HIGH SUB-BAND DECODER */ ; dec_rhl = rh;
dec_ph2 = dec_phl;
* filtez: compute predictor output for zero section */ dec_phl = dec_ph;
dec_szh = filtez(dec_del_bph,dec_del_dhx); /* end of higher sub_band decoder */
* filtep: compute predictor output signal for pole section */ /* end with receive quadrature mirror filters */
. xd = rl - rh;
dec_sph = filtep(dec_rhl,dec_ahl,dec_rh2,dec_ah2); xs = rl + rh;
* predic:compute the predictor output value in the higher sub_band decoder */ i /* receive quadrature mirror filters implemented here */
! h ptr = h;
dec_sh = dec_sph + dec_szh; ac_ptr = accumc;
: ad_ptr = accumd;
* invgah: in-place compute the quantized difference signal : xal = (long)xd * (*h_ptr++);
in the higher sub band */ xa2 = {long)xs * (*h_ptr++);
/* main multiply accumulate loop for samples and coefficients */
dec_dh = ((long)dec_deth*gq2_code2_table[ih]) >> 15L ; ; for{i = 0 ; i < 10 ; i++) {
xal += (long) {*ac_ptr++) * (*h_ptr++);
* logsch: update logarithmic quantizer scale factor in hi sub band */ ; xa2 += (long) (*ad_ptr++) * (*h_ptr++);
‘ }
dec_nbh = logsch(ih,dec_nbh); : /* final mult/accumulate */
xal += (long) (*ac_ptr) * (*h_ptr++);
* scalel: compute the guantizer scale factor in the higher sub band */ xa2 += (long) (*ad_ptr) * (*h_ptr++);
dec_deth = scalel (dec_nbh,10); /* scale by 2714 */
xoutl = xal >> 14;
* parrec: compute partially recontructed signal */ xout2 = xa2 >> 14;

dec_ph = dec_dh + dec_szh;
/* update delay lines */

* upzero: update zero section predictor coefficients */ ac_ptrl = ac_ptr - 1;
ad_ptrl = ad_ptr - 1;
upzero (dec_dh, dec_del dhx,dec_del_bph); for(i = 0 ; 1 < 10 ; i++) {
*ac_ptr— = *ac_ptrl—;
*uppol2: update second predictor coefficient aph2 and delay it as ah2 */ 1 *ad _ptr— = *ad_ptrl—;
}
dec_ah2 = uppol2(dec_ahl,dec_ah2,dec_ph,dec_phl,dec_ph2); *ac_ptr = xd;
*ad_ptr = xs;

* uppoll: update first predictor coef. (pole setion) */

dec_ahl = uppoll (dec_ahl,dec_ah2,dec_ph,dec_phl); LISTING 5.10 (Continued)

LISTING 5.10 (Continued)
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-1tez - compute predictor output signal (zero section) */
put: bpll-6 and diltl-6, output: gzl */

iltez(int *bpl,int *dlt)

nt i;
.ong int zl;
:1 = (long) (*bpl++) * (*dlt++);
:‘or(i=l;i<6;i++)
zl += (long) (*bpl++) * (*dlt++);

‘eturn( (int) (z1 >> 14)); /* x2 here */

ltep - compute predictor output signal (pole section) */
put rltl-2 and all-2, output spl */

‘iltep(int riltl,int all,int rlt2,int al2)

ong int pl;
1 = (long)all*rltl;
1 += (long)al2*rlt2;

eturn( (int) (p1 >> 14)); /* x2 here */

antl - guantize the difference signal in the lower sub-band */
uantl (int el, int detl)

nt ril,mil;
ong int wd,decis;

s of difference signal */
d = abs(el);
termine mil based on decision levels and detl gain */
or(mil = 0 ; mil < 30 ; mil++) {

decis = (decis_levl[mil]*(long)detl) >> 15L;
if(wd < decis) break;

mil=30 then wd is less than all decision levels */
f(el >= Q) ril = quant26bt_pos[mil];

lse ril = Quant26bt_neg[mil];

eturn(ril);

LISTING 5.11 Functions used by the encode and decode algorithms of G.722 (con-
tained in G.722.C). {Continued)

Chap. 5
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/* logscl - update the logarithmic quantizer scale factor in lower sub-band */

/* note that nbl is passed and returned */

int logscl(int il,int nbl)
{
long int wd;
wd = ((long)nbl * 127L) >> 7L; /* leak factor 127/128 */
nbl = (int)wd + wl_code_table[il >> 2];
if(nbl < 0) nbl = 0;
if(nbl > 18432) nbl = 18432;
returm(nbl) ;
}

/* scalel: compute the quantizer scale factor in the lower or upper sub-band*/

int scalel(int nbl, int shift_constant)

{
int wdl,wd2,wd3;
wdl = (nbl >> 6) & 31;
wd2 = nbl >> 11;
wd3 = ilb_table{wdl] >> (shift_constant + 1 - wd2);
return({wd3 << 3);
}

/* upzero - inputs: dlt, d1ti[0-5], bli[0-5], outputs: updated bli{0-5] */
/* also implements delay of bli and update of dlti from dlt */

void upzero(int dlt,int *dlti,int *bli)
{
int i,wd2,wd3;
/*if dlt is zero, then no sum into bli */
if(dlt == 0) {
for(i =0 ; i <6 ; i++) {

bli[i] = (int) ((255L*bli[i]) >> 8L); /* leak factor of 255/256 */

}
}
else {
for(i =0 ; i < 6 ; i++) {
if((long)dlt*diti[i] »>= 0) wd2 = 128; else wd2 = -128;
wd3 = (int) ((255L*bli[i]) >> 8L);
blifi] = wd2 + wd3;
}
}
/* implement delay line for dit */

LISTING 5.11 (Continued)

/* leak factor of 255/256 */
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diti{s] = d1ti[4];
dltcif4] = Aiti([3);
dlti{3] = diti[2}];
diti{2] = ditif(1];
ditifl] = Aiti([o0);

a1ti{0] = dit;

ippol2 - update second predictor coefficient (pole section) */
inputs: all, al2, plt, pltl, plt2. outputs: apl2 */

uppol2(int all,int al2,int plt,int pltl,int plt2)

long int wd2,wd4;

int apl2;

wd2 = 4L* (long)all;

if ((long)plt*pltl >= OL) wd2 = -wd2; /* check same sign */

wd2 = wd2 >> 7; /* gain of 1/128 */
if ((long)plt*plt2 >= OL) {

wdd = wd2 + 128; /* same sign case */
}
else {

wdd = wd2 - 128;
}
apl2 = wd4 + (127L*(long)al2 >> 7L); /* leak factor of 127/128 */

ipl2 is limited to +-.75 */
if(apl2 > 12288) apl2 = 12288;
if(apl2 < -12288) apl2 = -12288;
return(apl2) ;

1ppoll - update first predictor coefficient (pole section) */
inputs: all, apl2, plt, pltl. outputs: apll */

uppoll (int all,int apl2,int plt,int pltl)

long int wd2;
int wd3,apll;
wd2 = ({(long)all*255L) >> 8L; /* leak factor of 255/256 */
if((long)plt*pltl >= OL) {
apll = (int)wd2 + 192; /* same sign case */
}
else {
apll = (int)wd2 - 192;
}

LISTING 5.11 (Continued)
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/* note: wd3= .9375-.75 is always positive */
wd3 = 15360 - apl2; /* limit value */
if(apll > wd3) apll = wd3;
if (apll < -wd3) apll = -wd3;
return{apll);
}

/* logsch - update the logarithmic quantizer scale factor in higher sub-band */
/* note that nbh is passed and returned */

int logsch(int ih, int nbh)
{
int wd;
wd = ((long)nbh * 127L) >> TL; /* leak factor 127/128 */
nbh = wd + wh_code_table(ih];
if(nbh < 0) nbh = 0;
if (nbh > 22528) nbh = 22528;
return (nbh) ;

LISTING 5.11 (Continued)

Figure 5.7 shows a block diagram of the G.722 encoder (transmitter), and
Figure 5.8 shows a block diagram of the G.722 decoder (receiver). The entire algorithm
has six main functional blocks, many of which use the same functions:

1) A transmit quadrature mirror filter (QMF) that splits the frequency band into
two sub-bands.

(2&3) A lower sub-band encoder and higher sub-band encoder that operate on the
data produced by the transmit QMF.

4&5) A lower sub-band decoder and higher sub-band decoder.

©) A receive QMF that combines the outputs of the decoder into one value.

Higher Sub-Band | 16 kbit/s

Transmit X, | ADPCM Encoder Ih 64 Kbl
S L
Filters .| Lower Sub-Band | 48 kbit/s
X, | ADPCM Encoder 1, -

FIGURE 5.7 Block diagram of ADPCM encoder {transmitter) implemented by pro-
gram G.722.C.
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16 kbit/s |  Higher Sub-Band o R e, 4-Level I 16 kbit/s
64 kbit/s I ADPCM Decoder T Quadrar:re o C ggssttiger
- e
:.ded —»1 DMUX Mirror X ‘r
48 kbit/s‘ Lower Sub-Band . Filters o A 4
I, | ADPCM Decoder n "
‘} Quantizer
Adaptation h
Mode Indication y
FIGURE 5.8 Biock diagram of ADPCM decoder (receiver) implemented by program 4-Level
G.722.C. Inverse
The G.722.C functions have been checked against the G.722 specification and are Adapt.lve
fully compatible with the CCITT recommendation. The functions and program variables are Quantizer
named according to the functional blocks of the algorithm specification whenever possible. < 9y
Quadrature mirror filters are used in the G.722 algorithm as a method of splitting Sy Adaptive !
the frequency band into two sub-bands (higher and lower). The QMFs also decimate the - Predictor Ty A_'_ +
encoder input from 16 kHz to 8 kHz (transmit QMF) and interpolate the decoder output - +
from 8 kHz to 16 kHz (receive OMF). These filters are 24-tap FIR filters whose impulse
response can be considered lowpass and highpass filters. Both the transmit and receive

QMFs s.ha.re the same coefﬁcients.and a delay hm? of the same number of taps. FIGURE 5.9 Block diagram of higher sub-band ADPCM encoder implemented by
Figure 5.9 shows a block diagram of the higher sub-band encoder. The lower and program G.722.C.

higher sub-band encoders operate on an estimated difference signal. The number of bits

required to represent the difference is smaller than the number of bits required to repre-

sent the complete input signal. This difference signal is obtained by subtracting a pre- Figure 5.10 shows a block diagram of the higher sub-band decoder. In general, both

dicted value from the input value: ’ the higher and lower sub-band encoders and decoders make the same function calls in al-
most the same order because they are similar in operation. For mode 1, a 60 level inverse
el = x1 - sl adaptive quantizer is used in the lower sub-band, which gives the best speech quality. The
eh = xh - sh higher sub-band uses a 4 level adaptive quantizer.
The predicted value, s1 or sh, is produced by the adaptive predictor, which con-
tains a second-order filter section to model poles, and a sixth-order filter section to model 4-Level
zeros in the input signal. After the predicted value is determined and subtracted from the 16 kbit/s _ Inverse dy j
input signal, the estimate signal e1 is applied to a nonlinear adaptive quantizer. Iy Adaptive e @ + rﬁ_* Ty
One important feature of the sub-band encoders is a feedback loop. The output of Quantizer
the adaptive quantizer is fed to an inverse adaptive quantizer to produce a difference sig- yy
nal. This difference signal is then used by the adaptive predictor to produce s1 (the esti- Adaptive Sy
mate of the input signal) and update the adaptive predictor. A, _ Predictor
The G.722 standard specifies an auxiliary, nonencoded data channel. While the
G.722 encoder always operates at an output rate of 64 kbits per second (with 14-bit, - Quantizer

16kHz input samples), the decoder can accept encoded signals at 64, 56, or 48 kbps. The
56 and 48 kbps bit rates correspond to the use of the auxiliary data channel, which oper-
ates at either 8 or 16 kbps. A mode indication signal informs the decoder which mode is FIGURE 5.10 Block diagram of higher sub-band ADPCM decoder implemented by
being used. This feature is not implemented in the G.722.C program. program G.722.C.

4

Adaptation
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MUSIC PROCESSING #include <stdlib.h>
#include <math.h>

Music signals require more dynamic range and a much wider bandwidth than speech sig- #include "rtdspc.h”

nals. Professional quality music processing equipment typically uses 18 to 24 bits to rep-

resent each sample and a 48 kHz or higher Sampling rate. Consumer dlgltal audio pro- /**************************************************************************

cessing (in CD players, for example) is usually done with 16-bit samples and a 44.1 kHz

sampling rate. In both cases, music processing is a far greater challenge to a digital signal EQUALIZ.C - PROGRAM TO DEMONSTRATE AUDIO EQUALIZATION

processor than speech processing. More MIPs are required for each operation and quanti- USING 7 1IR BANDPASS FILTERS.

zation noise in filters becomes more important. In most cases DSP techniques are less ex-
pensive and can provide a higher level of performance than analog techniques.

***‘k*********************************************************************/

. R /* gain values global so they can be changed in real-time */
5.4.1 Equalization and Noise Removal /* start at flat pass through */

float gain(7] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
Equalization refers to a filtering process where the frequency content of an audio signal is

adjusted to make the source sound better, adjust for room acoustics, or remove noise that void main()

may be in a frequency band different from the desired signal. Most audio equalizers have {

a number of bands that operate on the audio signal in parallel with the output of each fil- int i;

ter, added together to form the equalized signal. This structure is shown in Figure 5.11. float signal_in,signal out;

The program EQUALIZ.C is shown in Listing 5.12. Each gain constant is used to adjust
the relative signal amplitude of the output of each bandpass filter. The input signal is al-
ways added to the output such that if all the gain values are zero the signal is unchanged.

/* history arrays for the filters */
static float hist([7]([2];

Setting the gain values greater tharf zero will l?oost frequency response in each band. , /* bandpass filter coefficients for a 44.1 kHz sampling rate */

For example, a boost of 6 dB is obtained by setting one of the gain values to 1.0. The 1 /* center fregs are 60, 150, 400, 1000, 2400, 6000, 15000 Hz */

center frequencies and number of bandpass filters in analog audio equalizers vary widely ; /* at other rates center fregs are: */

from one manufacturer to another. A seven-band equalizer with center frequencies at 60, ! /* at 32 kHz: 44, 109, 290, 726, 1742, 4354, 10884 Hz */

| /* at 22.1 kHz: 30, 75, 200, 500, 1200, 3000, 7500 Hz */

static float bpf{7]1([5] = {
{ 0.0025579741, -1.9948111773, 0.9948840737, 0.0, -1.0 1},
{ 0.0063700872, -1.9868060350, 0.9872598052, 0.0, -1.01},
Bandpass l { 0.0168007612, -1.9632060528, 0.9663984776, 0.0, -1.0 1},
) Filter { 0.0408578217, -1.8988473415,  0.9182843566, 0.0, -1.0 },
I { 0.0914007276, -1.7119922638, 0.8171985149, 0.0, -1.01},
| f ! Gain [0] { 0.1845672876, -1.0703823566, 0.6308654547, 0.0, -1.0 1},
Y { 0.3760778010, 0.6695288420, 0.2478443682, 0.0, -1.01},
. TTTT™NA ~ };
el L z Y
] o out for(;;) {
- / /* sum 7 bpf outputs + input for each new sample */
signal_out = signal_in = getinput();
Bandpass | for(i = 0 ; i <7 ; i++)
—> Filter signal_out += gain[i]*iir_filter(signal_in,bpf(i],1,hist[i]);
| Gain [6] sendout (signal_out) ;
}
}
233:52%11 Block diagram of audio equalization implemented by program LISTIhIIG 5.12 Program EQUALIZ.C, which performs equalization on audio samples
in real-time.
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150, 400, 1000, 2400, 6000, and 15000 Hz is implemented by program EQUALIZ.C. The
bandwidth of each filter is 60 percent of the center frequency in each case, and the sam-
pling rate is 44100 Hz. This gives the coefficients in the example equalizer program

EQUALIZ.C shown in Listing 5.12. The frequency response of the 7 filters is shown in
Figure 5.12.

5.4.2 Pitch-Shifting

Changing the pitch of a recorded sound is often desired in order to allow it to mix with g
new song, or for special effects where the original sound is shifted in frequency to a poing
where it is no longer identifiable. New sounds are often created by a series of pitch shifts
and mixing processes.

Pitch-shifting can be accomplished by interpolating a signal to a new sampling rate,
and then playing the new samples back at the original sampling rate (see Alles, 1980; or
Smith and Gossett, 1984). If the pitch is shifted down (by an interpolation factor greater
than one), the new sound will have a longer duration. If the pitch is shifted upward (by an
interpolation factor less than one where some decimation is occurring), the sound be-
comes shorter. Listing 5.13 shows the program PSHIFT.C, which can be used to pitch-

7 Band Equalizer Filter Frequency Response

0 e e L R e
\ S S oo
FAERY 3 , . Y - L

-10

-12+
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10! 102 103 104 105

Frequency (Hz, fs=44100 Hz)

FIGURE 5.12 Frequency response of 7 filters used in program EQUALIZ.C.
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shift a sound up or down by any number of semitones (12 semitones is an octave as indi-
cated by equation 4.13). It uses a long Kaiser window filter for interpolation of the sam-
ples as illustrated in section 4.3.2 in chapter 4. The filter coefficients are calculated in the
first part of the PSHIFT program before real-time input and output begins. The filtering is
done with two FIR filter functions, which are shown in Listing 5.14. The history array is
only updated when the interpolation point moves to the next input sample. This requires
that the history update be removed from the fir filter function discussed previ-
ously. The history is updated by the function £ ir_history_update. The coefficients
are decimated into short polyphase filters. An interpolation ratio of up to 300 is per-

formed and the decimation ratio is determined by the amount of pitch shift selected by
the integer variable key.

#include <stdlib.h>
#include <math.h>
#include "rtdspc.h"

/* Kaiser Window Pitch shift Algorithm */

/* set interpolation ratio */
int ratio = 300;
/* passband specified, larger makes longer filters */
float percent pass = 80.0;
/* minimum attenuation in stopbands (dB), larger make long filters */
float att = 50.0;
/* key value to shift by (semi-tones up or down) */
/* 12 is one octave */
int key = -12;
int lsize;

void main()

{
int i,3;
int nfilt,npair,n,k;
float fa, fp,deltaf,beta, valizb,alpha;
float w,ck,y,npair_inv, pi_ratio;
float signal_in,phase,dec;

int old_key = 0; /* remember last key value */
float **h;
static float hist([100}; /* lsize can not get bigger than 100 */

long int filter_length(float, float, float *);
float izero(float);

LISTING 5.13 Program PSHIFT.C, which performs pitch shifting on audio samples in
real-time. (Continued)
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float fir_filter no_update(float input, float *coef,int n, float *history);
void fir_update_history(float input,int n,float *history); !

fp = percent_pass/(200.0*ratio);

fa = (200.0 - percent_pass)/(200.0*ratio);
deltaf = fa-fp;

nfilt = filter_length( att, deltaf, &beta );

lsize = nfilt/ratio;

nfilt = (long)lsize*ratio + 1;
npair (nfilt - 1)/2;

h = (float **) calloc(ratio,sizeof (float *));
if(th) exit(l);
for(i = 0 ; i < ratio ; i++) {
h[i] = (£loat *) calloc(lsize,sizeof(float));
if(th[i]) exit(l);

}

/* Compute Kaiser window sample values */
i=0;

j=20;

valizb = 1.0 / izero(beta);
npair_inv = 1.0/npair;
pi_ratio = PI/ratio;
hii++][{j] = 0.0; /*n = 0 case */
for (n = 1 ; n < npair ; n++) {
k = npair -~ n;
alpha = k * npair_inv;
y = beta * sgrt(l1.0 ~ (alpha * alpha));
w = valizb * izero(y);
ck = ratio*sin(k*pi_ratio)/(k*PI);
hii++1[j] = w * ck;
if(i == ratio) {
i=0;
J4+;
}
}
force the pass through point */
hi{i)l{lsize/2] = 1.0;

second half of response */
for(n = 1; n < npair; n++) {

i = npair - n; /* "from" location */

LISTING 5.13 (Continued)
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k = npair + n; /* "to" location */
h{k%ratio] [k/ratio] = h[i%ratio][i/ratio];
}

/* interpolate the data by calls to fir_filter no_update,
decimate the interpolated samples by only generating the samples

required */
phase = 0.0;
dec = (float)ratio;
for( ; ;) {

/* decimation ratio for key semitones shift */
/* allow real-time updates */
if (key != old_key) {
dec = ratio*pow(2.0,0.0833333333*key);
0l1d_key = key;
}

signal_in = getinput();

while(phase < (float)ratio) {
k = (int)phase; /* pointer to poly phase values */
sendout (fir_filter no_update(signal_in, h([k],1lsize, hist));
phase += dec;

}

phase -= ratio;

fir_update_ history{signal_in, lsize hist);

}

/* Use att to get beta (for Kaiser window function) and nfilt (always odd
valued and = 2*npair +1) using Kaiser’s empirical formulas. */
long int filter_length(float att,float deltaf, float *beta)
{
long int npair;
*beta = 0.0; /* value of beta if att < 21 */
if(att >= 50.0) *beta = .1102 * (att - 8.71);
if (att < 50.0 & att >= 21.0)
*beta = .5842 * pow( (att-21.0), 0.4) + .07886 * (att - 21.0);
npair = (long int) ( (att - 8.0) / (28.72 * deltaf) );
return(2*npair + 1);
}

/* Compute Bessel function Izero(y) using a series approximation */
float izero(float y){

float s=1.0, ds=1.0, d=0.0;

do {

LISTING 5.13 (Continued)
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d=d4d+ 2;
ds = ds * (y*y)/(a*d);
s = s + ds;
} while( ds > 1E-7 * s);
return(s);
LISTING 5.13 (Continued)
/* run the fir filter and do not update the history array */
float fir_filter no update (f1 i i
: 1 (float input, float *coef, int n, float *history)

int i;
float *hist_ptr, *coef_ptr;
float output;

hist_ptr = history;
coef_ptr = coef + n - 1; /* point to last coef */
/* form output accumulation */

output = *hist_ptr++ * (*coef _ptr-);

for(i = 2 ; i<n; i+ ¢
output += (*hist_ptr++) * (*coef_ptr—);
) ’
output += input * (*coef _ptr); /* input tap */

return(output) ;

/* update the fir filter history array */

\(/old fir_update_history(float input,int n, float *history)

int i;
float *hist_ptr,*histl_ptr;

h.ist_ptr = history;
;1iz§ip_§;:f+l= hist_ptr; /* use for history update */
for(i = 2 ; i <n; i++) {

} *histl_ptr++ = *hist_ptr++; /* update history array */

*hist]l =1 ;
) stl _ptr = input; /* last history */

LISTING 5.14 Functions £ir £11
_filter no_update and
update_history used by program PSHIFT.C. " finfiier
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5.4.3 Music Synthesis

Music synthesis is a natural DSP application because no input signal or A/D converter is
required. Music synthesis typically requires that many different sounds be generated at
the same time and mixed together to form a chord or multiple instrument sounds (see
Moorer, 1977). Each different sound produced from a synthesis is referred to as a voice.
The duration and starting point for each voice must be independently controlled. Listing
5.15 shows the program MUSIC.C, which plays a sound with up to 6 voices at the same
time. It uses the function note (see Listing 5.16) to generate samples from a second
order IIR oscillator using the same method as discussed in section 4.5.1 in chapter 4. The
envelope of each note is specified using break points. The array trel gives the relative
times when the amplitude should change to the values specified in array amps. The enve-
lope will grow and decay to reach the amplitude values at each time specified based on
the calculated first-order constants stored in the rates array. The frequency of the sec-
ond order oscillator in note is specified in terms of the semitone note number key. A
key value of 69 will give 440 Hz, which is the musical note A above middle C.

#include <stdlib.h>

#include <math.h>

#include "rtdspc.h"

#include "song.h" /* song[108][7) array */

/* 6 Voice Music Generator */

typedef struct {
int key, t,cindex;
float cw,a,b;
float y1,y0;

)} NOTE_STATE;

#define MAX VOICES 6
float note(NOTE_STATE *,int *,float *);

void main()
{
long int n,t,told;
int vnum,v,key;
float ampold;
register long int i,endi;
register float sig_out;

LISTING 5.15 Program MUSIC.C, which illustrates music synthesis by play-
ing a 6-voice song. {Continued)
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static NOTE_STATE notes[MAX_ VOICES*SONG_LENGTH] ;
static float trel{5] = 0.1, 0.2, 0.7, 1.0, 0.0 };
static float amps({5] = { 3000.0 , 5000.0, 4000.0, 10.0, 0.0 };

static float rates[10];
static int tbreaks[10];

for(n = 0 ; n < SONG_LENGTH ; n++) {

/* number of samples per note */
endi = 6*songn][0];

/* calculate the rates required to get the desired amps */
i= 0;
told = 0;
ampold = 1.0; /* always starts at unity */
while(amps{i] > 1.0) {
t = trellil*endi;
rates[i] = exp(log(amps[i]/ampold)/ (t-told));
ampold = amps[i];
tbreaks[i] = told = t;
i++;

}

/* set the key numbers for all voices to be played (vnum is how many) */
for(v = 0 ; v < MAX_VOICES ; v++) {
key = song[n] [v+1];
if(lkey) break;
notes([v] .key = key;
notes([v].t = 0;

}

vnum = v;
for(i = 0 ; 1 < endi ; i++) {
sig out = 0.0;
for(v = 0 ; v < viaum ; v++) {
sig_out += note(&notes|[vl, tbreaks, rates);
}
sendout (sig_out);
}
}
flush();

LISTING 5.15 (Continued)
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#include <stdlib.h>
#include <math.h>
#include "rtdspc.h"

/* Function to generate samples from a second order oscillator */

/* key constant is 1/12 */
#define KEY_CONSTANT 0.083333333333333

/* this sets the A above middle C reference frequency of 440 Hz */
#define TWO_PI_DIV_FS_440 (880.0 * PI / SAMPLE_RATE)

/* cw is the cosine constant required for fast changes of envelope */
/* a and b are the coefficients for the difference equation */

/* y1l and y0 are the history values */

/* t is time index for this note */

/* cindex is the index into rate and tbreak arrays (reset when t=0) */

typedef struct {
int key, t,cindex;
float cw,a,b;
float y1,y0;

} NOTE_STATE;

/*
key:
semi-tone pitch to generate,
number 69 will give A above middle C at 440 Hz.
rate_array:
rate constants determines decay or rise of envelope (close to 1)
tbreak_array:
determines time index when to change rate
*/

/* NOTE_STATE structure, time break point array, rate parameter array */
float note(NOTE_STATE *s,int *tbreak_array,float *rate_array)
{

register int ti,ci;
float wosc,rate,out;

ti = s->t;
/* t=0 re-start case, set state variables */
if(rei) {

wosc = TWO_PI_DIV_FS_440 * pow(2.0, (s->key-69} * KEY_CONSTANT) ;

LISTING 5.16 Function note(state, tbreak array,rate_array) generates
the samples for each note in the MUSIC.C program. (Continued)
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s->cw = 2,0 * cos {(wosc) ;
rate = rate_array{0];
$->a = s->cw * rate;
s->b = -rate * rate;
s->y0 = 0.0;

out = rate*sin(wosc);
s->cindex = 0;

/* rate change */

}
else {
ci = s->cindex;
/* rate change case */
if(ti == tbreak_array[ci]) {
rate = rate_array[++ci];
S->a = s->cw * rate;
S->b = ~rate * rate;
s->cindex = ci;

}

/* make new sample */
out = s->a * s->yl + g-sp * s->y0;
S->y0 = s->yi;

}

s->yl = out;

S->t = ++ti;

return{out) ;

LISTING 5.16 {Continued)

'APTIVE FILTER APPLICATIONS

A signal can be effectively improved or enhanced using adaptive methods, if the signal
frequency content is narrow compared to the bandwidth and the frequency content
changes with time. If the frequency content does not change with time, a simple matched
filter will usually work better with less complexity. The basic LMS algorithm is illus-
trated in the next section. Section 5.5.2 illustrates a method that can be used to estimate
the changing frequency of a signal using an adaptive LMS algorithm.

5.5.1 LMS Signal Enhancement

Figure 5.13 shows the block diagram of an LMS adaptive signal enhancement that will be
used to illustrate the basic LMS algorithm. This algorithm was described in section 1.7.2
in chapter 1. The input signal is a sine wave with added white noise. The adaptive LMS
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FIGURE 5.13 Block diagram of LMS adaptive signal enhancement.

#include <stdlib.h>
tinclude <stdio.h>
#include <math.h>

#include "rtdspc.h"

#define N 351 .
#define L 20 /* filter order, (length L+l) */
/* set convergence parameter */

float mu = 0.01;

void main()

{
float lms(float, float, float *,int, float, float);

static float d4IN],b{21];
float signal_amp,noise_anp,arg,x,y;
int k;

/* create signal plus noise */
signal_amp = sqrt(2.0);
noise_; = 0.2*sqgrt(12.0);
arg = 2.0*PI/20.0;

LISTING 5.17 Program LMS.C which illustrates signal-to-noise enhance-
ment using the LMS algorithm. (Continued)
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for(k = 0 ; k < N ; k++) {

, d[k] = signal_amp*sin(arg*k) + noise_amp*gaussian();

/* scale based on L */
mu = 2.0%mu/ (L+1);

x = 0.0;
for(k = 0 ; k < N ; k++) {
sendout (1ms (x,d[k),b,L,mu,0.01));
/* delay x one sample */
x = d[k];
}

LISTING 5.17 (Continued)

/*
function lms(x,d,b,1,mu,alpha)

Implements NIMS Algorithm b(k+1)=b(k)+2*mu*e*x (k) / ({1+1) *sig)

X = input data

d = desired signal

b[0:1] = Adaptive coefficients of lth order fir filter

1 = order of filter (> 1)

ma = Convergence parameter (0.0 to 1.0)

alpha = Forgetting factor sig{k)=alpha* (x(k)**2)+(1-alpha) *sig(k-1)

(>= 0.0 and < 1.0)

returns the filter output
*/

float lms(float x,float 4,float *b,int 1,
{ float mu, float alpha)
int 11;
float e,mu_e,lms_const,y;
static float px([51]; /* max L = 50 */
static float sigma = 2.0; /* start at 2 and update internally */

px[0]=x;

US‘!’ING 5.18 Function 1ms(x,d,b,1,m,alpha) implements the LMS al-
gorithm. (Continued)
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/* calculate filter output */
y=b[0]*px{0];
for(il =1 ; 11 <=1 ; 11++)
y=y+b[11]*px{11];

/* error signal */
e=d-y;

/* update sigma */
sigma=alpha* (px[0]*px[0]1)+ (1-alpha)*sigma;
m_e=mu*e/sigma;

/* update coefficients */
for(ll = 0 ; 11 <= 1 ; 1l++)
b[ll]=b[ll]+mu_e*px[ll];
/* update history */
for(ll =1 ; 11 >= 1; 11-)
px[11}=px{11-1];

return(y) ;

LISTING 5.18 (Continued)

algorithm (see Listings 5.17 and 5.18) is a 21 tap (20th order) FIR filter where the filter
coefficients are updated with each sample. The desired response in this case is the noisy
signal and the input to the filter is a delayed version of the input signal. The delay (A) is
selected so that the noise components of d; and x; are uncorrelated (a one-sample delay
works well for sine waves and white noise).

The convergence parameter ma is the only input to the program. Although many re-
searchers have attempted to determine the best value for mu, no universal solution has
been found. If mu is too small, the system may not converge rapidly to a signal, as is il-
lustrated in Figure 5.14. The adaptive system is moving from no signal (all coefficients
are zero) to an enhanced signal. This takes approximately 300 samples in Figure 5.14b
with mu = 0.01 and approximately 30 samples in Figure 5.14c withmu = 0.1.
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FIGURE 5.14 (c¢) Enhanced signal obtained from program LMS.C with
m = 0.1. (Continued)

5.5.2 Frequency Tracking with Noise

Listing 5.19 shows the INSTF.C program, which uses the 1ms function to determine in-
stantaneous frequency estimates. Instead of using the output of the adaptive filter as illus-
trated in the last section, the INSTF program uses the filter coefficients to estimate the
frequency content of the signal. A 1024-point FFT is used to determine the frequency re-
sponse of the adaptive filter every 100 input samples. The same peak location finding al-
gorithm as used in section 5.1.2 is used to determine the interpolated peak frequency re-
sponse of the adaptive filter. Note that because the filter coefficients are real, only the
first half of the FFT output is used for the peak search.

Figure 5.15 shows the output of the INSTF program when the 100,000 samples
from the OSC.C program (see section 4.5.1 of chapter 4) are provided as an input. Figure
5.15(a) shows the result without added noise, and Figure 5.15(b) shows the result when
white Gaussian noise (standard deviation = 100) is added to the signal from the OSC pro-
gram. Listing 5.19 shows how the INSTF program was used to add the noise to the input
signal using the gaussian () function. Note the positive bias in both results due to the fi-
nite length (128 in this example) of the adaptive FIR filter. Also, in Figure 5.15(b) the first
few estimates are off scale because of the low signal level in the beginning portion of the
waveform generated by the OSC program (the noise dominates in the first 10 estimates).
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#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "rtdspc.h"

/* LMS Instantaneous Frequency Estimation Program */
#define L 127

#define LMAX 200
#define NEST 100

/* filter order, L+l coefficients */
/* max filter order, L+1 coefficients */
/* estimate decimation ratio in output */

/* FFT length must be a power of 2 */
#define FFT_LENGTH 1024
#define M 10 /* must be log2 (FFT_LENGTH) */
/* set convergence parameter */

float mu = 0.01;

void main()
{
float 1lms(float, float, float *,int, float, float);
static float b[LMAX];
static COMPLEX samp{FFT_LENGTH];
static float mag[FFT _LENGTH];
float x,d, tempflt,pl,p2;
int i,3.k;

/* scale based on L */
mu = 2.0*mu/ (L+1);

x = 0.0;
for(;;) {
for(i =0 ; 1 < NEST ; i++) {
/* add noise to input for this example */
x = getinput() + 100.0*gaussian();
Ims(x,d,b,L,mu, 0.01);
/* delay 4 one sample */
d = x;

}

LISTING 5.19 Program INSTF.C. which uses function 1ms(x,d,b,1,m, alpha)
to implement the LMS frequency tracking algorithm. (Continued)
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/* copy L+1 coefficients */

for(i =0 ; 1 <= L ; i++) {
samp[i] .real = b{i];
samp(i].imag = 0.0;

}

/* zero pad */

for( ; i < FFT_LENGTH ; i++) {
samp{i] .real = 0.0;
samp[i] .imag = 0.0;

}

fft (samp,M) ;

for(j = 0 ; j < FFT_LENGTH/2 ; J++) {
tempflt = samp[j].real * samplj].real;
tempflt += samp(j].imag * samp(j).imag;
mag([j] = tempflt;

}

/* find the biggest magnitude spectral bin and output */

tempflt = mag(0};
i=0;
for{j = 1 ; j < FFT_LENGTH/2 ; j++) {
if (mag{j] > tempflt) {
tempflt = magljl;

i=j;
}
}
/* interpolate the peak loacation */
if(i == 0) {
pl =p2 = 0.0;
}
else {
pl = mag[i] - magli-1];
p2 = magli] - magli+l];
}

sendout ( ({float)i + 0.5*((pl—p2)/(p1+p2+1e-30)))/FFI‘_LEM;‘I'H);

LISTING 5.19 (Continued)
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APPENDIX

DSP FUNCTION LIBRARY
AND PROGRAMS

The enclosed disk is an IBM-PC compatible high-density disk (1.44 MBytes capacity)
and contains four directories called PC, ADSP21K, DSP32C, and C30 for the specific
programs that have been compiled and tested for the four platforms discussed in this
book. Each directory contains a file called READ.ME, which provides additional infor-
mation about the software. A short description of the platforms used in testing associated
with each directory is as follows:

Directory Available Sampling
Name Platform used to Compile and Test Programs MIPs Rate (kHz)

PC General Purpose IBM-PC or workstation Not Any

(ANSIC) Real-time
ADSP21K Analog Devices EZ-LAB ADSP-21020/ADSP-21060

(version 3.1 compiler software) 25 32
DSP32C CAC AC4-A0 Board with DBDADA-16

(version 1.6.1 compiler software) 12.5 16
C30 Domain Technologies DSPCard-C31

(version 4.50 compiler software) 16.5 16

The following table is a program list of the C programs and functions described in detail
in chapters 3, 4, and 5. The first column gives the section number in the text where the
program is described and then a short description of the program. The remaining columns
give the filenames of the four different versions of the source code for the four different
platforms. Note that the files from each platform are in different directories as shown in
the previous table.
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PC 210X0 DSP32C 320C30
filename filename filename filename
(*.0) (*.c) (*.0 (*.0
3.3.3 1024-Point FFT Test Function fft1k fftn fftlk fftlk
3.4.2 Interrupt-Driven Output example NA intout NA NA
4.1.1 FIR Filter Function (fir_filter) filter filter filter filter
4.1.2 FIR Filter Coefficient by Kaiser Window ksrfir NA NA NA
4.1.2 FIR Filter Coefficients by Parks-McClellan remez NA NA NA
4.1.3 IIR Filter Function (iir_filter) filter filter filter filter
4.1.4 Real-Time getinput Function (ASCII text for PC) getsend getinput getinput send_c30
4.1.4 Real-Time getinput Function (WAYV file format) getwav NA NA NA
4.1.4 Real-Time sendout Function (ASCII text for PC) getsend sendout sendout send_c30
4.1.4 Real-Time sendout Function (WAYV file format) sendwav NA NA NA
4.2.1 Gaussian Noise Generation Function filter filter filter filter
4.2.2 Signal-to-Noise Ratio Improvement mkgwn mkgwn mkgwn mkgwn
4.3.3 Sample Rate Conversion example interp3 NA NA NA
4.4.1 Fast Convolution Using FFT Methods rfast rfast21 rfast32 rfast30
4.4.2 Interpolation Using the FFT intfft2 NA NA NA
4.5.1 IIR Filters as Oscillators 0sc osc osc osc
4.5.2 Table-Generated Waveforms wavetab wavetab wavetab wavetab
5.1.1 Speech Spectrum Analysis rpse NA NA NA
5.1.2 Doppler Radar Processing radproc NA NA NA
5.2.1 ARMA Modeling of Signals arma NA NA NA
5.2.2 AR Frequency Estimation arfreq NA NA NA
5.3.1 Speech Compression mulaw mulaw mulaw mulaw
5.3.2 ADPCM (G.722 fixed-point) g722 g722 21k NA g722¢3
5.3.2 ADPCM (G.722 floating-point) NA g722 21f g722 32c  g722c3f
5.4.1 Equalization and Noise Removal equaliz equaliz equaliz equaliz
5.4.2 Pitch-Shifting pshift pshift pshift pshift
5.4.3 Music Synthesis music mu2lk mu32c muc3
5.5.1 LMS Signal Enhancement Ims NA NA NA
5.5.2 Frequency Tracking with Noise instf NA NA NA

Note: “NA” refers to programs that are not applicable to a particular hardware platform.

Make files (with an extension .MAK) are also included on the disk for each plat-
form. If the user does not have a make utility availible, PC batch files (with an extension
BAT) are also included with the same name as the make file. The following table is a
make file list for many of the C programs described in detail in Chapters 3, 4and5:
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PC 210X0 DSP32C 320C30
filename filename filename filename
(*.mak) (*.mak) (*.mak) (*.mak)
3.4.2 Interrupt-Driven Output Example NA iout21k NA NA
4.2.2 Signal-to-Noise Ratio Improvement mkgwn mkgwn mkgwn mkgwn
4.3.3 Sample Rate Conversion Example interp3 NA NA NA
4.4.1 Fast Convolution Using FFT Methods rfast f21k f32 rfc30
4.4.2 Interpolation Using the FFT intfft2 NA NA NA
4.5.1 IR Filters as Oscillators osc osc21k 0s¢ osc
4.5.2 Table Generated Waveforms wavetab wavetab wavetab wavetab
5.1.1 Speech Spectrum Analysis rtpse NA NA NA
5.1.2 Doppler Radar Processing radproc NA NA NA
5.2.1 ARMA Modeling of Signals arma NA NA NA
5.2.2 AR Frequency Estimation arfreq arfreq arfreq arfreq
5.3.1 Speech Compression mulaw mulaw mulaw mulaw
5.3.2 ADPCM (G.722 fixed-point) g722 £722_21k NA 8722¢3
5.3.2 ADPCM (G.722 floating-point) NA 8722_21f 8722_32¢ 8722c3f
5.4.1 Equalization and Noise Removal eqgpe eq eq eq
5.4.2 Pitch Shifting ps ps Ps ps
5.4.3 Music Synthesis music mu2lk mu32c muc3
5.5.1 LMS Signal Enhancement Ims NA NA NA
5.5.2 Frequency Tracking with Noise instf instf instf instf

Note: “NA” refers to programs that are not applicable to a particular platform,
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case statement, 65
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causality, 10

circular convolution, 170

clipping, 33, 34
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combined operators, 61
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complex conversion, 198

Complex Data, 90
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complex signal, 190, 198, 200

compound statements, 64
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Dirac delta function, 3
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discrete Fourier transform, 1, 3, 18, 25, 26, 44,
52

discrete Time Signals, 5

disk files, 151

do-while loop, 66, 96

documentation, 94

Doppler, 190, 191

double precision, 57

downsampling, 160
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dynamic memory allocation, 77, 78

E
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EQUALIZ.C, 218, 219, 220
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F
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fast Fourier transform, 26, 28, 52, 160, 184
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145, 147, 184

filter functions, 221

filter order, 229, 234

filter specifications, 23, 24, 137
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FILTER.C, 134, 158
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finite impulse response (FIR), 17, 133, 140

FIR filter, 18, 20, 22, 23, 50, 111, 113, 121, 128,
129, 134, 136, 138, 142, 144, 145, 147, 151,
160, 162, 165, 168, 171, 176, 198, 199, 221,
231,233

fir_filter, 134, 135, 136, 151, 162, 167, 168, 199,
221, 222,223,224

floating point, 203

flush, 154, 155, 156, 157, 180, 183, 226

fopen, 152, 153, 155

for loop, 54, 67, 72, 76, 87, 91, 94, 95, 96, 135
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GETSEND.C, 152
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H

hamming window, 188

Harris, 28, 52

highpass filter, 191

Hilbert transform, 198, 199, 200

1
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ideal lowpass filter, 137, 165

identifier, 56
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interrupts, 102, 107, 121, 125, 126

INTFFT2.C, 176, 177

INTOUT.C, 126

inverse DFT, 18

inverse FFT, 170, 171, 172, 176, 177

iteration, 67, 90, 91, 95, 128, 140, 174

K

Kaiser window, 18, 134, 137, 138, 141, 142, 143,
144, 165, 221, 222,223

keyboard, 98, 138

keywords, 56, 66, 75, 76, 90, 91, 114

KSRFIR.C, 138
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type conversion, 62

typedef, 83, 84, 85, 122, 225, 226
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unit circle, 16, 17, 51, 178
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user interface, 116
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