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v

Preface

In a little time I felt something alive moving on my left leg, which advancing gently forward over my
breast, came almost up to my chin; when bending my eyes downward as much as I could, I perceived 
it to be a human creature not six inches high, with a bow and arrow in his hands, and a quiver at his
back. … I had the fortune to break the strings, and wrench out the pegs that fastened my left arm to the
ground; for, by lifting it up to my face, I discovered the methods they had taken to bind me, and at the
same time with a violent pull, which gave me excessive pain, I a little loosened the strings that tied down
my hair on the left side, so that I was just able to turn my head about two inches. … These people are
most excellent mathematicians, and arrived to a great perfection in mechanics by the countenance and
encouragement of the emperor, who is a renowned patron of learning. This prince has several machines
fixed on wheels, for the carriage of trees and other great weights.

(From Gulliver’s Travels—A Voyage to Lilliput, by Jonathan Swift, 1726.)

In the Nevada desert, an experiment has gone horribly wrong. A cloud of nanoparticles — micro-robots —
has escaped from the laboratory. This cloud is self-sustaining and self-reproducing. It is intelligent and
learns from experience. For all practical purposes, it is alive.

It has been programmed as a predator. It is evolving swiftly, becoming more deadly with each passing
hour.

Every attempt to destroy it has failed.
And we are the prey.

(From Michael Crichton’s techno-thriller Prey, HarperCollins Publishers, 2002.)

Almost three centuries apart, the imaginative novelists quoted above contemplated the astonishing, at times
frightening possibilities of living beings much bigger or much smaller than us. In 1959, the physicist Richard
Feynman envisioned the fabrication of machines much smaller than their makers. The length scale of man,
at slightly more than 100 m, amazingly fits right in the middle of the smallest subatomic particle, which is
approximately 10�26 m, and the extent of the observable universe, which is of the order of 1026 m. Toolmaking
has always differentiated our species from all others on Earth. Close to 400,000 years ago, archaic Homo 
sapiens carved aerodynamically correct wooden spears. Man builds things consistent with his size, typically in
the range of two orders of magnitude larger or smaller than himself. But humans have always striven to
explore, build, and control the extremes of length and time scales. In the voyages to Lilliput and Brobdingnag
in Gulliver’s Travels, Jonathan Swift speculates on the remarkable possibilities which diminution or magnifi-
cation of physical dimensions provides. The Great Pyramid of Khufu was originally 147 m high when com-
pleted around 2600 B.C., while the Empire State Building constructed in 1931 is presently 449 m high. At the
other end of the spectrum of manmade artifacts, a dime is slightly less than 2 cm in diameter. Watchmakers
have practiced the art of miniaturization since the 13th century. The invention of the microscope in the 17th
century opened the way for direct observation of microbes and plant and animal cells. Smaller things were
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manmade in the latter half of the 20th century. The transistor in today’s integrated circuits has a size of 0.18
micron in production and approaches 10 nanometers in research laboratories.

Microelectromechanical systems (MEMS) refer to devices that have characteristic length of less than
1 mm but more than 1 micron, that combine electrical and mechanical components, and that are fabri-
cated using integrated circuit batch-processing technologies. Current manufacturing techniques for
MEMS include surface silicon micromachining; bulk silicon micromachining; lithography, electro-
deposition, and plastic molding; and electrodischarge machining. The multidisciplinary field has witnessed
explosive growth during the last decade and the technology is progressing at a rate that far exceeds that
of our understanding of the physics involved. Electrostatic, magnetic, electromagnetic, pneumatic and
thermal actuators, motors, valves, gears, cantilevers, diaphragms, and tweezers of less than 100 micron
size have been fabricated. These have been used as sensors for pressure, temperature, mass flow, velocity,
sound and chemical composition, as actuators for linear and angular motions, and as simple components
for complex systems such as robots, lab-on-a-chip, micro heat engines and micro heat pumps. The lab-
on-a-chip in particular is promising to automate biology and chemistry to the same extent the integrated
circuit has allowed large-scale automation of computation. Global funding for micro- and nanotechnol-
ogy research and development quintupled from $432 million in 1997 to $2.2 billion in 2002. In 2004, the
U.S. National Nanotechnology Initiative had a budget of close to $1 billion, and the worldwide invest-
ment in nanotechnology exceeded $3.5 billion. In 10 to 15 years, it is estimated that micro- and nano-
technology markets will represent $340 billion per year in materials, $300 billion per year in electronics,
and $180 billion per year in pharmaceuticals.

The three-book MEMS set covers several aspects of microelectromechanical systems, or more broadly,
the art and science of electromechanical miniaturization. MEMS design, fabrication, and application as
well as the physical modeling of their materials, transport phenomena, and operations are all discussed.
Chapters on the electrical, structural, fluidic, transport and control aspects of MEMS are included in the
books. Other chapters cover existing and potential applications of microdevices in a variety of fields,
including instrumentation and distributed control. Up-to-date new chapters in the areas of microscale
hydrodynamics, lattice Boltzmann simulations, polymeric-based sensors and actuators, diagnostic tools,
microactuators, nonlinear electrokinetic devices, and molecular self-assembly are included in the three
books constituting the second edition of The MEMS Handbook. The 16 chapters in MEMS: Introduction
and Fundamentals provide background and physical considerations, the 14 chapters in MEMS: Design
and Fabrication discuss the design and fabrication of microdevices, and the 15 chapters in MEMS:
Applications review some of the applications of micro-sensors and microactuators.

There are a total of 45 chapters written by the world’s foremost authorities in this multidisciplinary
subject. The 71 contributing authors come from Canada, China (Hong Kong), India, Israel, Italy, Korea,
Sweden, Taiwan, and the United States, and are affiliated with academia, government, and industry.
Without compromising rigorousness, the present text is designed for maximum readability by a broad
audience having engineering or science background. As expected when several authors are involved, and
despite the editor’s best effort, the chapters of each book vary in length, depth, breadth, and writing style.
These books should be useful as references to scientists and engineers already experienced in the field or
as primers to researchers and graduate students just getting started in the art and science of electro-
mechanical miniaturization. The Editor-in-Chief is very grateful to all the contributing authors for their
dedication to this endeavor and selfless, generous giving of their time with no material reward other than
the knowledge that their hard work may one day make the difference in someone else’s life. The 
talent, enthusiasm, and indefatigability of Taylor & Francis Group’s Cindy Renee Carelli (acquisition 
editor), Jessica Vakili (production coordinator), N. S. Pandian and the rest of the editorial team at
Macmillan India Limited, Mimi Williams and Tao Woolfe (project editors) were highly contagious and
percolated throughout the entire endeavor.

Mohamed Gad-el-Hak

vi Preface
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Editor-in-Chief

Mohamed Gad-el-Hak received his B.Sc. (summa cum laude) in mechani-
cal engineering from Ain Shams University in 1966 and his Ph.D. in fluid
mechanics from the Johns Hopkins University in 1973, where he worked with
Professor Stanley Corrsin. Gad-el-Hak has since taught and conducted research
at the University of Southern California, University of Virginia, University of
Notre Dame, Institut National Polytechnique de Grenoble, Université de Poitiers,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Technische Universität
München, and Technische Universität Berlin, and has lectured extensively at
seminars in the United States and overseas. Dr. Gad-el-Hak is currently the Inez
Caudill Eminent Professor of Biomedical Engineering and chair of mechanical
engineering at Virginia Commonwealth University in Richmond. Prior to his

Notre Dame appointment as professor of aerospace and mechanical engineering, Gad-el-Hak was senior
research scientist and program manager at Flow Research Company in Seattle, Washington, where he
managed a variety of aerodynamic and hydrodynamic research projects.

Professor Gad-el-Hak is world renowned for advancing several novel diagnostic tools for turbulent
flows, including the laser-induced fluorescence (LIF) technique for flow visualization; for discovering the
efficient mechanism via which a turbulent region rapidly grows by destabilizing a surrounding laminar
flow; for conducting the seminal experiments which detailed the fluid–compliant surface interactions in
turbulent boundary layers; for introducing the concept of targeted control to achieve drag reduction, lift
enhancement and mixing augmentation in wall-bounded flows; and for developing a novel viscous pump
suited for microelectromechanical systems (MEMS) applications. Gad-el-Hak’s work on Reynolds num-
ber effects in turbulent boundary layers, published in 1994, marked a significant paradigm shift in the
subject. His 1999 paper on the fluid mechanics of microdevices established the fledgling field on firm
physical grounds and is one of the most cited articles of the 1990s.

Gad-el-Hak holds two patents: one for a drag-reducing method for airplanes and underwater vehicles and
the other for a lift-control device for delta wings. Dr. Gad-el-Hak has published over 450 articles,
authored/edited 14 books and conference proceedings, and presented 250 invited lectures in the basic and
applied research areas of isotropic turbulence, boundary layer flows, stratified flows, fluid–structure
interactions, compliant coatings, unsteady aerodynamics, biological flows, non-Newtonian fluids, hard
and soft computing including genetic algorithms, flow control, and microelectromechanical systems.
Gad-el-Hak’s papers have been cited well over 1000 times in the technical literature. He is the author of
the book “Flow Control: Passive, Active, and Reactive Flow Management,” and editor of the books “Frontiers
in Experimental Fluid Mechanics,” “Advances in Fluid Mechanics Measurements,” “Flow Control:
Fundamentals and Practices,” “The MEMS Handbook,” and “Transition and Turbulence Control.”

Professor Gad-el-Hak is a fellow of the American Academy of Mechanics, a fellow and life member of
the American Physical Society, a fellow of the American Society of Mechanical Engineers, an associate fel-
low of the American Institute of Aeronautics and Astronautics, and a member of the European Mechanics
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Society. He has recently been inducted as an eminent engineer in Tau Beta Pi, an honorary member 
in Sigma Gamma Tau and Pi Tau Sigma, and a member-at-large in Sigma Xi. From 1988 to 1991,
Dr. Gad-el-Hak served as Associate Editor for AIAA Journal. He is currently serving as Editor-in-Chief for
e-MicroNano.com, Associate Editor for Applied Mechanics Reviews and e-Fluids, as well as Contributing
Editor for Springer-Verlag’s Lecture Notes in Engineering and Lecture Notes in Physics, for McGraw-Hill’s
Year Book of Science and Technology, and for CRC Press’ Mechanical Engineering Series.

Dr. Gad-el-Hak serves as consultant to the governments of Egypt, France, Germany, Italy, Poland,
Singapore, Sweden, United Kingdom and the United States, the United Nations, and numerous industrial
organizations. Professor Gad-el-Hak has been a member of several advisory panels for DOD, DOE, NASA
and NSF. During the 1991/1992 academic year, he was a visiting professor at Institut de Mécanique 
de Grenoble, France. During the summers of 1993, 1994 and 1997, Dr. Gad-el-Hak was, respectively, a
distinguished faculty fellow at Naval Undersea Warfare Center, Newport, Rhode Island, a visiting excep-
tional professor at Université de Poitiers, France, and a Gastwissenschaftler (guest scientist) at
Forschungszentrum Rossendorf, Dresden, Germany. In 1998, Professor Gad-el-Hak was named the
Fourteenth ASME Freeman Scholar. In 1999, Gad-el-Hak was awarded the prestigious Alexander von
Humboldt Prize — Germany’s highest research award for senior U.S. scientists and scholars in all disci-
plines — as well as the Japanese Government Research Award for Foreign Scholars. In 2002, Gad-el-Hak
was named ASME Distinguished Lecturer, as well as inducted into the Johns Hopkins University Society
of Scholars.
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© 2006 by Taylor & Francis Group, LLC



ix

Contributors

Ronald J. Adrian
Department of Mechanical and

Aerospace Engineering
Arizona State University
Tempe, Arizona, U.S.A.

Ramesh K. Agarwal
Department of Mechanical and

Aerospace Engineering
Washington University in St. Louis
St. Louis, Missouri, U.S.A.

Ali Beskok
Department of Mechanical

Engineering
Texas A&M University
College Station, Texas, U.S.A.

Thomas R. Bewley
Department of Mechanical and

Aerospace Engineering
University of California, San Diego
La Jolla, California, U.S.A.

Kenneth S. Breuer
Division of Engineering
Brown University
Providence, Rhode Island, U.S.A.

Hsueh-Chia Chang
Center for Microfluidics and 

Medical Diagnostics
University of Notre Dame
Notre Dame, Indiana, U.S.A.

Mohamed Gad-el-Hak
Department of Mechanical

Engineering
Virginia Commonwealth University
Richmond, Virginia, U.S.A.

J. William Goodwine
Department of Aerospace and 

Mechanical Engineering 
University of Notre Dame
Notre Dame, Indiana, U.S.A.

Nicolas G.
Hadjiconstantinou
Department of Mechanical

Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts, U.S.A.

George Em Karniadakis
Center for Fluid Mechanics
Brown University
Providence, Rhode Island, U.S.A.

Robert M. Kirby
School of Computing
University of Utah
Salt Lake City, Utah, U.S.A.

Kartikeya Mayaram
Department of Electrical and

Computer Engineering
Oregon State University
Corvallis, Oregon, U.S.A.

Oleg Mikulchenko
Advanced Mixed Signal Development
Intel Corporation
Sacramento, California, U.S.A.

Joshua I. Molho
Caliper Life Sciences Incorporated
Mountain View, California, U.S.A.

Alexander Oron
Department of Mechanical

Engineering

Technion—Israel Institute of
Technology

Haifa, Israel

Juan G. Santiago
Department of Mechanical

Engineering
Stanford University
Stanford, California, U.S.A.

Mihir Sen
Department of Aerospace and

Mechanical Engineering
University of Notre Dame
Notre Dame, Indiana, U.S.A.

Kendra V. Sharp
Department of Mechanical and

Nuclear Engineering
Pennsylvania State University
University Park, Pennsylvania, U.S.A.

William N. Sharpe, Jr.
Department of Mechanical

Engineering
The Johns Hopkins University
Baltimore, Maryland, U.S.A.

Robert H. Stroud
The Aerospace Corporation
Sterling, Virginia, U.S.A.

William Trimmer
Belle Mead Research, Inc.
Hillsborough, New Jersey, U.S.A.

Keon-Young Yun
Research & Development Center
Samhongsa Co., Ltd.
Seoul, Korea

© 2006 by Taylor & Francis Group, LLC



xi

Table of Contents

Preface .......................................................................................................................................v

Editor-in-Chief .......................................................................................................................vii

Contributors ............................................................................................................................ix

1 Introduction Mohamed Gad-el-Hak ......................................................................1-1

2 Scaling of Micromechanical Devices William Trimmer
and Robert H. Stroud ..................................................................................................2-1

3 Mechanical Properties of MEMS Materials William N. Sharpe, Jr. ......................3-1

4 Flow Physics Mohamed Gad-el-Hak ........................................................................4-1

5 Integrated Simulation for MEMS: Coupling 
Flow-Structure-Thermal-Electrical Domains Robert M. Kirby,
George Em Karniadakis, Oleg Mikulchenko and Kartikeya Mayaram ........................5-1

6 Molecular-Based Microfluidic Simulation Models Ali Beskok ..............................6-1

7 Hydrodynamics of Small-Scale Internal Gaseous Flows
Nicolas G. Hadjiconstantinou ......................................................................................7-1

8 Burnett Simulations of Flows in Microdevices Ramesh K. Agarwal 
and Keon-Young Yun ....................................................................................................8-1

9 Lattice Boltzmann Simulations of Slip Flow in Microchannels
Ramesh K. Agarwal ......................................................................................................9-1

10 Liquid Flows in Microchannels Kendra V. Sharp,
Ronald J. Adrian, Juan G. Santiago and Joshua I. Molho ........................................10-1

11 Lubrication in MEMS Kenneth S. Breuer ..............................................................11-1

12 Physics of Thin Liquid Films Alexander Oron ....................................................12-1

© 2006 by Taylor & Francis Group, LLC



13 Bubble/Drop Transport in Microchannels Hsueh-Chia Chang ..........................13-1

14 Fundamentals of Control Theory J. William Goodwine ......................................14-1

15 Model-Based Flow Control for Distributed Architectures
Thomas R. Bewley ......................................................................................................15-1

16 Soft Computing in Control Mihir Sen and J. William Goodwine  ......................16-1

xii Table of Contents

© 2006 by Taylor & Francis Group, LLC



The farther backward you can look,
the farther forward you are likely to see.

(Sir Winston Leonard Spencer Churchill, 1874–1965)

Janus, Roman god of
gates, doorways and all
beginnings, gazing both
forward and backward.

As for the future, your task is not to foresee, but to enable it.

(Antoine-Marie-Roger de Saint-Exupéry, 1900–1944,
in Citadelle [The Wisdom of the Sands])
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1
Introduction

How many times when you are working on something frustratingly tiny, like your wife’s wrist watch,
have you said to yourself, “If I could only train an ant to do this!” What I would like to suggest is the
possibility of training an ant to train a mite to do this. What are the possibilities of small but movable
machines? They may or may not be useful, but they surely would be fun to make.

(From the talk “There’s Plenty of Room at the Bottom,” delivered by Richard P. Feynman at the
annual meeting of the American Physical Society, Pasadena, California, December 1959.)

Toolmaking has always differentiated our species from all others on Earth. Aerodynamically correct
wooden spears were carved by archaic Homo sapiens close to 400,000 years ago. Man builds things con-
sistent with his size, typically in the range of two orders of magnitude larger or smaller than himself, as
indicated in Figure 1.1. Though the extremes of length-scale are outside the range of this figure, man, at
slightly more than 100 m, amazingly fits right in the middle of the smallest subatomic particle, which is

1-1

102

Diameter of Earth

Diameter of proton

10−16

104 106 1012 1014 1020108 1010 1016 1018

meter

Astronomical unit Light year

10−610−810−1010−14 10−12 10010−210−4 102

meter

Typical man-made
devices

Nanodevices

ManHuman hairH-Atom diameter

Voyage to Lilliput

Voyage to Brobdingnag

Microdevices

FIGURE 1.1 Scale of things, in meters. Lower scale continues in the upper bar from left to right. One meter is 106

microns, 109 nanometers, or 1010 Angstroms.

Mohamed Gad-el-Hak
Virginia Commonwealth University
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approximately 10�26 m, and the extent of the observable universe, which is of the order of 1026 m (15 billion
light years); neither geocentric nor heliocentric, but rather egocentric universe. But humans have always
striven to explore, build, and control the extremes of length and time scales. In the voyages to Lilliput and
Brobdingnag of Gulliver’s Travels, Jonathan Swift (1726) speculates on the remarkable possibilities which
diminution or magnification of physical dimensions provides.1 The Great Pyramid of Khufu was originally
147 m high when completed around 2600 B.C., while the Empire State Building constructed in 1931 is
presently — after the addition of a television antenna mast in 1950 — 449 m high. At the other end of the
spectrum of manmade artifacts, a dime is slightly less than 2 cm in diameter. Watchmakers have practiced
the art of miniaturization since the 13th century. The invention of the microscope in the 17th century
opened the way for direct observation of microbes and plant and animal cells. Smaller things were man-
made in the latter half of the 20th century. The transistor — invented in 1947 — in today’s integrated
circuits has a size2 of 0.18 micron (180 nanometers) in production and approaches 10 nm in research lab-
oratories using electron beams. But what about the miniaturization of mechanical parts — machines —
envisioned by Feynman (1961) in his legendary speech quoted above?

Manufacturing processes that can create extremely small machines have been developed in recent years
(Angell et al., 1983; Gabriel et al., 1988, 1992; O’Connor, 1992; Gravesen et al., 1993; Bryzek et al., 1994; Gabriel,
1995; Ashley, 1996; Ho and Tai, 1996, 1998; Hogan, 1996; Ouellette, 1996, 2003; Paula, 1996; Robinson et al.,
1996a, 1996b; Tien, 1997; Amato, 1998; Busch-Vishniac, 1998; Kovacs, 1998; Knight, 1999; Epstein, 2000;
O’Connor and Hutchinson, 2000; Goldin et al., 2000; Chalmers, 2001; Tang and Lee, 2001; Nguyen and
Wereley, 2002; Karniadakis and Beskok, 2002; Madou, 2002; DeGaspari, 2003; Ehrenman, 2004; Sharke, 2004;
Stone et al., 2004; Squires and Quake, 2005). Electrostatic, magnetic, electromagnetic, pneumatic and thermal
actuators, motors, valves, gears, cantilevers, diaphragms, and tweezers of less than 100 µm size have been fab-
ricated. These have been used as sensors for pressure, temperature, mass flow, velocity, sound, and chemical
composition, as actuators for linear and angular motions, and as simple components for complex systems,
such as lab-on-a-chip, robots, micro-heat-engines and micro heat pumps (Lipkin, 1993; Garcia and
Sniegowski, 1993, 1995; Sniegowski and Garcia, 1996; Epstein and Senturia, 1997; Epstein et al., 1997; Pekola
et al., 2004; Squires and Quake, 2005).

Microelectromechanical systems (MEMS) refer to devices that have characteristic length of less than
1 mm but more than 1 micron, that combine electrical and mechanical components, and that are fabricated
using integrated circuit batch-processing technologies. The books by Kovacs (1998) and Madou (2002)
provide excellent sources for microfabrication technology. Current manufacturing techniques for MEMS
include surface silicon micromachining; bulk silicon micromachining; lithography, electrodeposition, and
plastic molding (or, in its original German, Lithographie Galvanoformung Abformung, LIGA); and electrodis-
charge machining (EDM). As indicated in Figure 1.1, MEMS are more than four orders of magnitude larger
than the diameter of the hydrogen atom, but about four orders of magnitude smaller than the traditional
manmade artifacts. Microdevices can have characteristic lengths smaller than the diameter of a human hair.
Nanodevices (some say NEMS) further push the envelope of electromechanical miniaturization (Roco, 2001;
Lemay et al., 2001; Feder, 2004).

The famed physicist Richard P. Feynman delivered a mere two, albeit profound, lectures3 on electro-
mechanical miniaturization: “There’s Plenty of Room at the Bottom,” quoted above, and “Infinitesimal
Machinery,” presented at the Jet Propulsion Laboratory on February 23, 1983. He could not see a lot of use
for micromachines, lamenting in 1959 that “(small but movable machines) may or may not be useful, but
they surely would be fun to make,” and 24 years later said,“There is no use for these machines, so I still don’t

1-2 MEMS: Introduction and Fundamentals

1Gulliver’s Travels were originally designed to form part of a satire on the abuse of human learning. At the heart of
the story is a radical critique of human nature in which subtle ironic techniques work to part the reader from any
comfortable preconceptions and challenge him to rethink from first principles his notions of man.

2The smallest feature on a microchip is defined by its smallest linewidth, which in turn is related to the wavelength
of light employed in the basic lithographic process used to create the chip.

3Both talks have been reprinted in the Journal of Microelectromechanical Systems, vol. 1, no. 1, pp. 60–66, 1992, and
vol. 2, no. 1, pp. 4–14, 1993.
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understand why I’m fascinated by the question of making small machines with movable and controllable
parts.” Despite Feynman’s demurring regarding the usefulness of small machines, MEMS are finding
increased applications in a variety of industrial and medical fields with a potential worldwide market in
the billions of dollars.

Accelerometers for automobile airbags, keyless entry systems, dense arrays of micromirrors for high-
definition optical displays, scanning electron microscope tips to image single atoms, micro heat exchang-
ers for cooling of electronic circuits, reactors for separating biological cells, blood analyzers, and pressure
sensors for catheter tips are but a few of the current usages. Microducts are used in infrared detectors,
diode lasers, miniature gas chromatographs, and high-frequency fluidic control systems. Micropumps are
used for ink jet printing, environmental testing, and electronic cooling. Potential medical applications for
small pumps include controlled delivery and monitoring of minute amount of medication, manufactur-
ing of nanoliters of chemicals, and development of artificial pancreas. The much sought-after lab-on-
a-chip is promising to automate biology and chemistry to the same extent the integrated circuit has
allowed large-scale automation of computation. Global funding for micro- and nanotechnology research
and development quintupled from $432 million in 1997 to $2.2 billion in 2002. In 2004, the U.S. National
Nanotechnology Initiative had a budget of close to $1 billion, and the worldwide investment in nano-
technology exceeded $3.5 billion. In 10 to 15 years, it is estimated that micro- and nanotechnology mar-
kets will represent $340 billion per year in materials, $300 billion per year in electronics, and $180 billion
per year in pharmaceuticals.

The multidisciplinary field has witnessed explosive growth during the past decade. Several new jour-
nals are dedicated to the science and technology of MEMS; for example Journal of Microelectromechanical
Systems, Journal of Micromechanics and Microengineering, Microscale Thermophysical Engineering,
Microfluidics and Nanofluidics Journal, Nanotechnology Journal, and Journal of Nanoscience and Nanotech-
nology. Numerous professional meetings are devoted to micromachines; for example Solid-State Sensor
and Actuator Workshop, International Conference on Solid-State Sensors and Actuators (Transducers),
Micro Electro Mechanical Systems Workshop, Micro Total Analysis Systems, and Eurosensors. Several
web portals are dedicated to micro- and nanotechnology; for example, �http://www.smalltimes.com�,
�http://www.emicronano.com�, �http://www.nanotechweb.org/�, and �http://www.peterindia.net/
NanoTechnologyResources.html�.

The three-book MEMS set covers several aspects of microelectromechanical systems, or more broadly, the
art and science of electromechanical miniaturization. MEMS design, fabrication, and application as well as
the physical modeling of their materials, transport phenomena, and operations are all discussed. Chapters
on the electrical, structural, fluidic, transport and control aspects of MEMS are included in the books. Other
chapters cover existing and potential applications of microdevices in a variety of fields, including instru-
mentation and distributed control. Up-to-date new chapters in the areas of microscale hydrodynamics, lat-
tice Boltzmann simulations, polymeric-based sensors and actuators, diagnostic tools, microactuators,
nonlinear electrokinetic devices, and molecular self-assembly are included in the three books constituting
the second edition of The MEMS Handbook. The 16 chapters in MEMS: Introduction and Fundamentals pro-
vide background and physical considerations, the 14 chapters in MEMS: Design and Fabrication discuss the
design and fabrication of microdevices, and the 15 chapters in MEMS: Applications review some of the
applications of microsensors and microactuators.

There are a total of 45 chapters written by the world’s foremost authorities in this multidisciplinary
subject. The 71 contributing authors come from Canada, China (Hong Kong), India, Israel, Italy, Korea,
Sweden, Taiwan, and the United States, and are affiliated with academia, government, and industry.
Without compromising rigorousness, the present text is designed for maximum readability by a broad
audience having engineering or science background. As expected when several authors are involved, and
despite the editor’s best effort, the chapters of each book vary in length, depth, breadth, and writing style.
The nature of the books — being handbooks and not encyclopedias — and the size limitation dictate the
noninclusion of several important topics in the MEMS area of research and development.

Our objective is to provide a current overview of the fledgling discipline and its future developments
for the benefit of working professionals and researchers. The three books will be useful guides and references
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to the explosive literature on MEMS and should provide the definitive word for the fundamentals and
applications of microfabrication and microdevices. Glancing at each table of contents, the reader may
rightly sense an overemphasis on the physics of microdevices. This is consistent with the strong convic-
tion of the Editor-in-Chief that the MEMS technology is moving too fast relative to our understanding
of the unconventional physics involved. This technology can certainly benefit from a solid foundation of
the underlying fundamentals. If the physics is better understood, less expensive, and more efficient,
microdevices can be designed, built, and operated for a variety of existing and yet-to-be-dreamed appli-
cations. Consistent with this philosophy, chapters on control theory, distributed control, and soft com-
puting are included as the backbone of the futuristic idea of using colossal numbers of microsensors and
microactuators in reactive control strategies aimed at taming turbulent flows to achieve substantial
energy savings and performance improvements of vehicles and other manmade devices.

I shall leave you now for the many wonders of the small world you are about to encounter when navi-
gating through the various chapters of these volumes. May your voyage to Lilliput be as exhilarating,
enchanting, and enlightening as Lemuel Gulliver’s travels into “Several Remote Nations of the World.”
Hekinah degul! Jonathan Swift may not have been a good biologist and his scaling laws were not as good as
those of William Trimmer (see Chapter 2 of MEMS: Introduction and Fundamentals), but Swift most certainly
was a magnificent storyteller. Hnuy illa nyha majah Yahoo!
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2.1 Introduction

A revolution in understanding and utilizing micromechanical devices is starting. The utility of these
devices will be enormous, and with time they will fill the niches of our lives as pervasively as electronics.
What form will these microdevices take? What will actuate them, and how will they interact with their
environment? We cannot foresee where the developing technology will take us.

How, then, do we start to design this world of the micro? As you will discover in this book, there are a
large number of ways to fabricate microdevices and a vast number of designs. The number of options is
greater than we could possibly pursue. Should we just start trying different approaches until something
works? Perhaps there is a better way.

Scaling theory is a valuable guide to what may work and what will not. By understanding how phe-
nomena behave and change as their scale size changes, we can gain some insight and better understand
the profitable approaches. This chapter examines how things change with size, and it will develop a math-
ematics that helps find the profitable approaches.

Three general scale sizes will be discussed: astronomical objects; the normal objects we deal with, called
macro-objects; and very small objects, called micro-objects. Things that are effective at one of these scale sizes
often are insignificant at another scale size. As an example, gravitational forces dominate on an astronomical
scale. The motions of our planet around the sun and of our sun around the galaxy are driven mostly by grav-
itational forces. Yet on the macroscale of my desk top, the gravitational force between two objects such as my
tape dispenser and stapler is insignificant. A few simple scaling calculations later in this chapter will tell us
this: on astronomical scales, be concerned with gravity; on smaller scales, look to other forces to move objects.

What is obvious on an astronomical-scale size or on a macroscale size is often not obvious on the
microscale. For example, take the case of an electric motor. It is really a magnetic motor, and almost all
macrosized electric actuators use magnetic fields to generate forces. Hence, one’s first intuition would be to
use magnetic motors in designing microdevices. In practice, however, most of the common micromotor
designs use electrostatic fields instead of magnetic fields. The reasons for this will become obvious in the
following discussion of how forces scale.

2-1
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2-2 MEMS: Introduction and Fundamentals

The field of micromechanical devices is extremely broad. It encompasses all of the traditional science
and engineering disciplines, only on a smaller scale. Try to think of a traditional science or engineering
discipline that does not have a microequivalent. What we are about in our new discipline is replicating
the macroscience and macroengineering on a microscale. As a result, technical people from all science and
engineering disciplines can make important contributions to this field.

The time scale from conception to utilization has been collapsing. Alessandro Volta and Andre Marie
Ampere developed the basic concepts of electricity, and about 100 years later, Nikola Tesla and Thomas
Alva Edison developed practical electric generators and motors. In contrast, the micro-comb-drive motor
was described in 1989 and currently is being used in automobiles as an airbag sensor [Tang et al., 1989].
Volta and Ampere’s ideas took 100 years to culminate in practical implementation, but the micro-
comb-drive motor took less than a dozen years from conception to full-scale implementation.

One of the marvelous things about nature is its widely varying scale sizes. Section 2.2 will discuss this
broad range of scales. Section 2.3 will show how scaling theory can be used as a guide to understand how
phenomena change with scale. We hope the material that follows encourages you to explore the broad
scope of this new field.

2.2 The Log Plot

As the scale, or size, of a system changes by several orders of magnitude, the system tends to behave differently.
Consider, for example, a glass of water that is about 5 cm on a side. Pour the glass of water onto a table and
notice how the water flows and runs off the edge of the table. If the size of the glass is decreased by two orders
of magnitude, or a factor of 100, the glass is now 0.05 cm (or 0.5 mm) on a side. Pour this glass onto the table
and see how the surface tension pulls the water into a drop that sticks to the table. Turn the table on its side
and observe that it is difficult to make the drop flow to the edge of the table. In each case, the substance is
the same, water, and the table is the same, but changing the water’s scale size makes it behave very differently.

Decreasing the size of the glass by another two orders of magnitude, the glass is now 0.0005 cm, or
5 µm, on a side. If you try to pour a drop this size onto the table, it most likely will not even reach the
table. Some air current will entrain the drop and carry it away like mist flowing through the city at night.
Again, the behavior of the water is dramatically different because of its size. Even the act of pouring the
glass over the table is different. The 5 cm glass pours, whereas water in the 0.05 cm and 0.0005 cm glasses
is constrained by surface tension. Different physical effects manifest themselves differently because of the
system size.

Figure 2.1 shows the full range of sizes available to us, from atoms to the universe. Atoms are the small-
est mechanical system we will manipulate in the near future; their size is several angstroms (10�10 m). The
universe is the largest mechanical system we can observe. Depending upon the particular astronomical
theory, the universe is about 1037 m in diameter. Hence, the full range available for us to investigate and
use is about 1047 m, or 47 orders of magnitude.

The horizontal axis in Figure 2.1 represents the size of the system. The short vertical lines in the cen-
ter of the plot represent a factor-of-10 change in the system size. The long vertical lines represent a change
of 100,000, or five orders of magnitude. Along the top, the size of the system is given in meters, and in the
central band the size of the system is given in angstroms. Figure 2.1 is plotted as a log plot for two 
reasons: (1) to enable everything to be depicted on the same piece of paper, and (2) to easily portray the
different size domains.

One can get a sense of the size of things by looking at the ant, the human, and the whale. These famil-
iar objects span about five orders of magnitude. Several orders of magnitude smaller than the ant are bac-
teria and viruses. Going to larger systems, the U.S. road system is about five orders of magnitude larger
than the whale, and the earth’s orbit is about five orders of magnitude larger than the U.S. road system.
Increasing another five or six orders of magnitude brings us to interstellar distances.

The bottom portion of Figure 2.1 shows the units we use to measure things. The angstrom, micron,
millimeter, meter, kilometer, and mile are familiar units, but then we see a gap of about a dozen orders of
magnitude before we reach the astronomical units of the light year and parsec.
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The microregion of interest to this chapter ranges from about a millimeter to an angstrom (from about
10�3 to 10�10 meters). This region comprises roughly a fifth of the full range of domains available for us
to explore and may seem like a small portion, but consider that the U.S. roadway system is one of the
largest mechanical systems we will build for quite a while. Buildings and ships are probably the largest
self-contained mechanical systems we will construct in the near future. Most of the larger domains are so
large that they simply are not accessible to us. Thus, the microregion represents the majority of the new
domains available for exploration.

This microdomain is enticing. Part of its charm is that conventional designs do not work well, and
ingenuity is needed to make new designs. For example, macrodevices and microdevices that transfer
water tend to use different physical principles. An open ditch works at one scale, and a capillary works 
at a smaller scale. Because microdesigners are left without the conventional solutions, they have the
opportunity to find their own solutions.

2.3 Scaling of Mechanical Systems

As the size of a system changes, its physical parameters also change, often in a dramatic way [Trimmer 
et al., 1989; Madou, 1997]. To understand how these parameters change, consider the scale factor S. This
scale factor is similar to the small notation on the corner of a mechanical drawing that might say the scale
of the drawing is 1:10. The actual object to be made is 10 times the size of the drawing. A scale of 1:100
means the actual object is 100 times larger. In the microdomain, the scale might be 100:1, meaning the
object is 100 times smaller than the drawing. When the scale size changes, all the dimensions of the object
change by exactly the same amount S such that 1:S.

Scaling of Micromechanical Devices 2-3
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This scale factor S can be used to describe how physical phenomena change. All the lengths of the
drawing scale by the factor S, but other parameters such as the volume scale differently. Volume V is
length L times width W times height H, or

V � L � W � H (2.1)

When the scale changes by 1/100 (that is, decreases by a factor of 100), the length and width and height
all change by 1/100, and the volume decreases by (1/100)3 or 1/1,000,000. The volume decreases by a fac-
tor of a million when the scale size decreases by a factor of a hundred. Volume is an example of a para-
meter that scales as S3. The force due to surface tension scales as S1; the force due to electrostatics scales
as S2; the force due to certain magnetic forces scales as S3; and gravitational forces scale as S4. Now, if the
size of the system decreases from a meter to a millimeter, this is a decrease of a factor of a thousand,
S � 1/1000. The surface tension force decreases by a factor of a thousand, S1 � (1/1000)1; the electrostatic
force decreases by a factor of a million, S2 � (1/1000)2 � 1/1,000,000; the magnetic force decreases by a
factor of a billion, S3 � (1/1000)3 � 1/1,000,000,000; and the gravitational force decreases by a factor of
a trillion, S4 � (1/1000)4 � 1/1,000,000,000,000. Indeed, changing the size of a mechanical system
changes which forces are important.

Knowing how a physical phenomenon scales, whether as S1 or S2 or S3 or S4 or some other power of S,
guides our understanding of how to design small mechanical systems. As an example, consider a 
water bug. The weight of the water bug scales as the volume, or S3, while the force used to support the
bug scales as the surface tension (S1) times the distance around the bug’s foot (S1), and the force on 
the bug’s foot scales as S1 � S1 � S2. When the scale size, S, decreases, the weight decreases more rapidly
than the surface tension forces. Changing from a 2 m man to a 2 mm bug decreases the weight by a fac-
tor of a billion while the surface tension force decreases by a factor of only a million. Hence, the bug can
walk on water.

Scaling provides a good guide to how things behave and offers insight into small systems, but scaling
is just that — a good guide. It usually does not provide exact solutions. For example, the scaling above
does not take into account the difference between the water bug’s foot and a person’s foot. Water bug’s
feet are designed for water, and we expect superior performance. Creativity and intuition are what make
an excellent design; scaling is a guide to understanding which design elements are important.

A mathematical notation captures the different scaling laws in a convenient form. This notation shows
many different scaling laws at once and can be used to easily understand what happens to the different
terms and parameters of an equation as the scale size changes.

Consider four different force laws, F � S1, F � S2, F � S3, F � S4, and collect these different cases into
a vertical Trimmer bracket:

F � � � (2.2)

The topmost element of this bracket refers to the case where the force scales as S1, the next element down
refers to the case where the force scales as S2, and so on.

To continue, let us do something with this bracket. Work W is force F times distance D, or

W � F � D (2.3)

and, extending our notation,

W � F � D � � � � � � � � (2.4)

S2

S3

S4

S5

S1

S1

S1

S1

S1

S2

S3

S4

S1

S2

S3

S4

© 2006 by Taylor & Francis Group, LLC



or

W � � � (2.5)

Note that distance D always scales as S1, and its bracket consists of all S1’s. In the top case where the force scales
as S1, the distance scales as S1, and their product scales as S2. In the second element down, the force scales as
S2, the distance scales as S1, and their product scales as S3. Here in one notation we have shown how the work
scales for the four different force laws. For example, the gravitational force between an object and the earth
scales as S3 (the earth’s mass remains constant in this example, and the mass of the object scales as its volume,
S3). Looking at the third element down, we see that a force scaling of S3 gives us a work, or energy, scaling of
S4. If the size of a system decreases by a factor of a thousand (say, from 10 cm to 0.10 mm), the gravitational
energy required to move an object from the bottom to the top of a machine under consideration decreases
by (1/1000)4 � 1/1,000,000,000,000. The gravitational work decreases by a factor of a trillion. We know
this intuitively: drop an ant from ten times its height, and it walks away. Please do not try this with a horse.

How do the acceleration and transit times change for the different force-scaling laws? Acceleration a is
equal to force F divided by the mass m:

a � �
m

F
� � F � m�1 (2.6)

and we know the mass scales as S3, and m�1 scales as S�3, giving:

a � � � � �
�1

� � � � � � � � (2.7)

This is an interesting result. When the force scales as S1, the acceleration scales as S�2. If the size of the
system decreases by a factor of 100, the acceleration increases by (1/100)�2 � 10,000. As the system
becomes smaller, the acceleration increases. A predominance of the forces we use in the microdomain
scales as S2. For these forces, the acceleration scales as S�1, and decreasing the size by a factor of 100
increases the acceleration by a factor of 100, still a nice increase in acceleration. In general, small systems
tend to accelerate very rapidly. Where the force scales as S3, the acceleration remains constant,
(1/100)0 � 1, and the acceleration decreases for forces that scale as S4.

The transit time t to move from point A to B in our scalable drawing can be calculated as:

x � �
1

2
� at2 (2.8)

t � ��
2

a

x
�� � �2� � (x)0.5 � (a)�0.5 (2.9)

and

t � � � � �
0.5

� �
�0.5

� � � � � � � � � � (2.10)

t � � � (2.11)
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For the case where the force scales as S2, transit time t scales as S1. If the system decreases by a factor of 100,
the transit time decreases by a factor of 100. Again, we know this intuitively; small things tend to be fast.

Depending upon the equation and variables of interest, the Trimmer brackets can be configured dif-
ferently. To continue the above example, we might be interested in how things will behave if the acceler-
ation instead of the force scales in different ways. We could write:

a � � � (2.12)

From above:

t � ��
2

a

x
�� � �2� � (x)0.5 � (a)�0.5 (2.13)

and

t � � � � �
0.5

� �
�0.5

� � � � � � � � � � (2.14)

t � � � (2.15)

The top element in this bracket describes how time scales when the acceleration scales as S1. (In the ear-
lier discussion, the top element describes how time scales when the force scales as S1.) We can arrange
these brackets to fit the problem at hand. We need not even use integer exponents. For example, we could
have defined the acceleration as:

a � � � (2.16)

and then calculated the transit times for these five new scaling functions.
Let us examine the gravitational example in the introduction to this chapter. As we will see in 

a moment, gravitational forces scale as S4 and are a dominant force in large systems but not in small 
systems. The force between two objects is

F � G �
M1

r

�
2

M2� (2.17)

where F is the force; G is the gravitational constant (� 6.670 � 10�11 N m2 kg�2), which does not change
with scale size; M1 and M2 are the masses of the two objects; and r is the separation. The masses scale as:

M � ρ � V � S0 � S3 � S3 (2.18)

where the density ρ is assumed constant (S0), and V is the volume (S3). Now force F scales as:

F � S0 �
S3

S

�
2

S3

� � S4 (2.19)
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Now, let us make a different assumption and suppose the density is not constant with scale size. The 
density could be represented as:

ρ � � � (2.20)

and force F becomes:

F � G � G � G � ρ2 � V1 � V2 � R�2 (2.21)

F � S0 � � S3S3S�2 � S0 � � S3S3S�2 � � � (2.22)

From the top element, where the density does not change with size, the force scales as S4. From the third
element down, when the density scales as S�2, the gravitational force remains constant as the scale size
changes. That is, if astronomical objects become less dense as they become larger (as ρ � S�2), then the
gravitational force between objects remains constant (F � S0) among differently sized astronomical systems.

It is useful to understand how different forces scale. A more complete listing of forces and their scaling
is given below,

F � � � � � � (2.23)

Surface tension has the propitious scaling of S1 and increases rapidly relative to other forces as a system
becomes smaller; however, changing the surface tension usually requires changing the temperature,
adding a surfactant, or altering some other parameter that is usually difficult to control. Most forces cur-
rently used by microdesigners scale as S2. These include electrostatic forces, forces generated by pressures,
and biological forces (the force an animal can exert generally depends upon the cross-section of the mus-
cle). How magnetic forces scale depends upon how the current density (current per unit area of the coils)
scales. If the current density J in the coil remains constant (S0), the magnetic force between two coils scales
as S4, and in this case the magnetic forces become weak in the microdomain; however, we can remove heat
much more efficiently from a small volume, and the current density of a microcoil can be much higher
than in a large coil. If the current density scales as S�1 when the system decreases by a factor of ten, the
current density increases by a factor of ten. In this case, the coil has much higher resistive losses, but the
force scales much more advantageously as S2.
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3.1 Introduction

New technologies tend to originate with new materials and manufacturing processes that are used to cre-
ate new products. In the early stages, the emphasis is on novel devices and systems as well as on ways of
making them. Studies of fundamental issues such as mechanical properties and design procedures come
later. For example, in 1830 there were 23 miles of railroad track in the U.S., and by 1870 there were 53,000
miles of track. The Bessemer steelmaking process, however, did not originate until 1856, and the
American Society for Testing and Materials (ASTM) was not organized until 1898.

The same is true for microelectromechanical systems (MEMS). The emphasis over the past dozen or
so years has been on new materials, new manufacturing processes, and new microdevices — and right-
fully so. These technological advances have been paralleled by an increasing interest in mechanical test-
ing of materials used in MEMS. More researchers are becoming involved, with the topic appearing in
symposia sponsored by the Society for Experimental Mechanics, the American Society of Mechanical
Engineers, and the Materials Research Society. Further, the November 2000 ASTM symposium,
Mechanical Testing of Structural Films, was an important first step toward standardization of test meth-
ods. This increase in MEMS material testing has occurred over the past ten or so years, and this chapter
is a review of the current status of the field.

Mechanical properties of interest fall into three general categories: elastic, inelastic, and strength. The
designer of a microdevice needs to know its elastic properties in order to predict the amount of deflection
from an applied force, or vice versa. If the material is ductile and the deformed structure does not need to
return to its initial state, then the designer must know the device’s inelastic behavior. The strength of the
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material must be known so that the allowable operating limits can be set. The manufacturer of a MEMS
device needs to understand the relation between the processing and the properties of the material.

The importance of mechanical properties was recognized early on by a leader in the MEMS field,
Richard Muller, who wrote in 1990, “Research on the mechanical properties of the electrical materials
forming microdynamic structures (which previously had exclusively electrical uses), on the scaling of
mechanical design, and on the effective uses of computer aids is needed to provide the engineering base
that will make it possible to exploit fully this technology” [Muller, 1990]. Later, expanded conclusions and
recommendations were made in a 1997 report of a National Research Council committee that Muller
chaired [Muller, 1997]. One conclusion was, “Test-and-characterization methods and metrologies are
required to (1) help fabrication facilities define MEMS materials for potential users, (2) facilitate consis-
tent evaluations of material and process properties at the required scales, and (3) provide a basis for com-
parisons among materials fabricated at different facilities.” One recommendation was, “Studies that
address fundamental mechanical properties (e.g., Young’s modulus, fatigue strength, residual stress, inter-
nal friction) and the engineering physics of long-term reliability, friction, and wear are vitally needed.”
These rather obvious statements apply to the development of any new technology.

There have been other reviews of the topic. The first on freestanding thin films by Menter and Pashley
(1959) is interesting from a historical point of view. This author reviewed existing techniques and intro-
duced new ones in 1996 [Sharpe et al., 1996] and looked at the variation in the mechanical properties of
polysilicon as tested by several researchers in 1997 [Sharpe et al., 1997b]. Obermeier (1996) reviewed test
methods for mechanical and thermophysical properties. Ballarini (1998) prepared a report for the Air
Force Research Laboratory that reviewed pertinent experimental and theoretical work up until then. Yi
and Kim (1999a) published a review article, “Measurement of Mechanical Properties for MEMS
Materials,” on just this topic. Schweitz and Ericson (1999) reviewed the state of the art and offered some
interesting conclusions and advice. Chang and Sharpe (1999) wrote an introductory chapter on the 
subject, and Spearing (2000) wrote a comprehensive exposition from a materials aspect.

This chapter is intended to be a comprehensive survey focusing on both the test methods and the prop-
erties that have been measured. After briefly defining the mechanical properties of interest, the chapter
reviews the current test methods for MEMS materials. Then, a comprehensive set of tables summarizes
the properties of the various materials. In almost all cases, these properties are not yet firmly established
with the confidence typical in a handbook, so a final table of initial design values completes the chapter
as an aid to initial consideration and design of MEMS.

If the reader is interested in the experimental methods, then the review of test methods will lead to the
appropriate references. If the reader desires details about mechanical properties of specific materials, then
the tables and the references will prove useful. Finally, if the reader wants to know only the typical 
properties for an initial design concept, the last section provides a succinct answer.

3.2 Mechanical Property Definitions

The properties of interest here are material properties; that is, the measured value is independent of the
test method. Implicit is the understanding that the property is also independent of the size of the speci-
men, but that may not necessarily be the case for MEMS materials. The fabrication process for, say, thin-
film silicon carbide is completely different from that of bulk silicon carbide, and it is reasonable to expect
different mechanical behavior. The question of specimen-size effect needs to be considered at the appro-
priate length scale — in this case, whether a 200 � 200 µm cross-section tensile specimen behaves the
same way as a 2 � 2 µm specimen. That question is not very easy to answer until test methods exist with
sufficient sensitivity and reproducibility to differentiate the material behavior.

The American Society for Testing and Materials defines standard test procedures through a lengthy process
of draft and review. Many of the common standards for structural materials were set in the early part of the
twentieth century; however, new standards are established to meet the demands of new technologies, and
a complete set of standards is issued each year. For example, the field of fracture mechanics as a usable
measure of material and structural response emerged in the early 1950s. The first draft of a standard
measure of fracture toughness did not appear until 1965, with the first complete standard appearing in
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1970 [ASTM, 1970]. It will be some time before standards for measuring the mechanical properties of
MEMS materials are established, but it is useful to be guided by the accepted definitions of mechanical
properties. The pertinent standards for testing the mechanical properties of metals appear in [ASTM,
2000a] and those for ceramics in [ASTM, 2000b]. ASTM Standard E-8 gives directions for tension test-
ing of metals, while E-9 covers compression testing. ASTM Standards C-1273 and C-1161 cover the ten-
sion and creep testing of ceramics. Once the stress–strain curve is obtained, various approximations, or
curve-fits, can be used to insert the material behavior into the design process.

Young’s modulus is the slope of the linear part of the stress–strain curve of a material; it is a measure
of its stiffness. ASTM E-111 specifies that, “The test specimen is loaded uniaxially and load and strain are
measured, either incrementally or continuously.” It goes on to prescribe how the slope is determined
along with a myriad of other details. Poisson’s ratio is a measure of the lateral contraction or expansion
of a material when subjected to an axial stress within the elastic region. ASTM E-132 requires that, “In
this test method, the value of Poisson’s ratio is obtained from strains resulting from uniaxial stress only.”
Note that these elastic properties are defined for isotropic materials only. Neither of these is easy to 
measure at the MEMS material size scale, as will be seen in the next section. When a material is inelastic
(and nonlinear), we need the complete stress–strain curve to specify the material’s behavior.

The strength of a material enables us to determine how much force can be applied to a component or
structure. ASTM E-6 defines fracture strength as “the normal stress at the beginning of fracture”; it is the
useful measure for brittle materials. ASTM C-1161 defines flexural strength as “a measure of the ultimate
strength of a specified beam in bending”; note the linking of the strength measure to a particular size and
shape of specimen. If the material is inelastic, then yield strength (defined by a prescribed deviation from
initial linearity) defines the departure from elastic response, and tensile strength denotes the maximum
stress the material will support before complete failure. Compressive strength is more difficult to estab-
lish unless the material is brittle.

Fracture toughness is a generic term for various measures of resistance to extension of a crack. The most
familiar measure is plane-strain fracture toughness, ASTM E-399, which requires that the test specimen
be thick enough to produce a state of plane strain at the tip of the crack. In this case, the value measured
is indeed a material property that is independent of specimen size. Perhaps a more appropriate measure
for MEMS is plane-stress fracture toughness, ASTM E-561, but it requires either measuring or inferring
the actual crack extension. Implicit in all fracture testing is the condition that the radius at the tip of the
crack be very small relative to other dimensions; this is a difficult requirement at the MEMS size scale.

The response of a material to cyclic loading is presented as the S–N curve, which is a plot of the 
applied stress S on the ordinate vs. the number of cycles to failure N on the abscissa. One obtains such a
plot by testing many samples at various levels of applied stress and recording the number of cycles until
the specimen breaks in two. ASTM E-466 gives the detailed procedures for metals; this is obviously an
expensive test.

Creep is the time-dependent increase in strain under applied stress. Although creep is important in 
systems operating at high temperature, there is no ASTM standard for creep testing of metals. ASTM C-1291
defines procedures for testing ceramics. As in fatigue testing, results are usually presented in the form of plots.

3.3 Test Methods

Measuring mechanical properties of materials manufactured by processes used in MEMS is not easy. We must
be able to: (1) obtain and mount a specimen, (2) measure its dimensions, (3) apply force or displacement
to deform it, (4) measure the force, and (5) measure the displacement or, preferably, measure the strain.
All of these steps are fully developed and standardized for common structural materials where the mini-
mum dimension of the gauge section of a tensile specimen is 2 mm or so. ASTM E-345 does describe 
procedures for testing metallic foils that are less than 150 µm thick, but the rest of the dimensions are
large. ASTM E-8 includes wires and even describes special grips but does not state a minimum diameter.
These two standards offer guidance, but neither is completely appropriate for small MEMS specimens.

The preferred way to determine mechanical properties is by direct methods similar to the approaches
of ASTM. To obtain Young’s modulus, a uniform stress is applied; it is calculated from direct 
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measurements of the applied force and the dimensions of the specimen. Strain is measured directly as the
force is applied. The specimen is designed to have a uniform gauge section that is long enough to assure
that the stress field is not affected by the grip ends and to permit strain measurement. This is not always
possible for MEMS materials; in fact, it is most often neither possible nor practical. It is then necessary to
resort to inverse methods using a model (simple or complex) of the test structure. Force is applied to the
test structure and displacement is measured with the elastic, inelastic, or strength properties then
extracted from the model. A simple example that has been widely used in MEMS material testing is a can-
tilever beam. If it is sufficiently long and thin, then only the Young’s modulus enters as a material prop-
erty into the formula relating force and displacement. Other examples are resonant structures and bulge
tests with pressurized membranes; these are described later. If more than one material property appears
in the model, then different geometries must be tested.

The formulas for determining Young’s modulus, E, by various methods are
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Static Beam Resonant Beam Bulge Test Tensile Test
P

�
bh�

p(1 � v)a4

��
�3hc(v)

ML3�2

�
2bh3

4PL3

�
�bh3

where h, b, and L are the thickness, width, and length of the specimen; P and p are the applied force and
pressure; M is the effective mass; ω is the resonant frequency; a is the dimension of a square membrane; and
δ and ε are the measured deflection and strain, respectively. The function of Poisson’s ratio, c(ν), depends
upon the geometry and is often approximated. The simplicity of the tensile test is an obvious advantage.

Johnson et al. (1999) have compared the uniaxial and bending tests and point out that uncertainty in
specimen dimensions is more of a problem in bending tests, while overall elongation is difficult to mea-
sure in a tension test. However, if strain can be measured directly, the overall elongation does not need 
to be measured. Johnson et al. also point out that strength due to misalignment is more of a problem in
tension than in bending.

As will be seen later in this chapter, there is an alarming variability among measured values of even so
basic a property as Young’s modulus for the most widely studied MEMS material — polysilicon. Senturia
(1998) attributes this to two primary reasons, “insufficiently precise models used to interpret the data and
metrology errors in establishing the geometry of the test devices.” He is referring to inverse methods 
in the first point; whether the boundary conditions of the actual structure actually match the model is a
significant question. Senturia’s point on metrology applies to all test methods — direct or inverse.

It is useful to distinguish between on-chip test methods and property tests. It is very important in this
technology to be able to obtain a measure of mechanical properties from test structures that are on the
same chip (or die) as the manufactured MEMS. That usually precludes a direct property measurement on
a specimen, which must be larger to allow gripping and pulling even though the size of the gauge section
is the same size scale as the microdevice. This is not an issue in mechanical and civil engineering fields,
where the required specimen size is smaller than the system or structure. We may regard property tests as
basic or baseline and on-chip tests as practical. Obviously, completeness requires direct comparisons of
the two approaches with specimens and test structures on the same die.

3.3.1 Specimen and Test Structure Preparation

Microdesign processes cannot take a billet of bulk material and shape it into the final MEMS product as
is common for most manufacturing processes. Rather, the microdevice is produced by deposition and
etching processes. This means that the specimen or test structure cannot be cut from the bulk material
but must be produced by the same processes as the product. A tensile specimen must be designed so that
one end remains fixed to the die and the other end accommodates some sort of gripping mechanism. A
test structure must be designed so that the boundaries are indeed fixed, and it must incorporate some sort
of actuating mechanism to produce force and a sensor to determine displacement or, perhaps, strain.

An early and interesting approach to producing tensile specimens of thin foils was conceived by Neugebauer
(1960), who deposited gold films onto oriented rocksalt crystals. The gold film was glued to the grips of a test
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machine and the test section covered with sealing wax while the salt was dissolved away. These specimens
ranged in thickness from 0.05 to 1.5 µm and were 1–2 mm wide and approximately 1 cm long. Neugebauer
found the tensile strength to be two to four times higher than for annealed bulk material but observed no
dependence on film thickness. The Young’s modulus values agreed with those of the bulk material.

This is a simple example of specimen preparation, but it is illustrative of the methods used in the
mechanical test methods for MEMS materials. One deposits the material of interest and removes the
unwanted portions of the supporting substrate. An additional step patterns the test material through
photolithography.

3.3.2 Dimension Measurement

Minimum features in MEMS are usually on the order of 1 µm — a bit larger than in microelectronics.
Measuring the 2 � 2 µm cross section of a tensile specimen or the equivalent dimensions of a test struc-
ture might seem to be easy, but it is not. The thickness of a layer is well controlled and measured by the
manufacturer. Lengths are large enough to measure with sufficient accuracy in an optical microscope. It
is the width of small specimens or test structure components that is difficult to determine.

A major problem is that the cross-section is not sharply defined or even rectangular as expected. Figure
3.1 is a scanning electron microscope (SEM) photograph of the end of a polysilicon tensile specimen after
testing. This specimen is from the Multi-User MEMS Process (MUMPs) process at Cronos, which deposits
a first layer of polysilicon that is 2.0 µm thick and then a second layer that is 1.5 µm thick. The interface
between these two layers is visible in the photograph. The designed width is 2.0 µm, which is approxi-
mately the case at the bottom of the rectangular. The fact that the cross section is not a perfect rectangle
contributes to the uncertainty in the area. The corners are somewhat rounded, which makes it difficult to
establish the edges when making a plan-view measurement.

The dimensions of a specimen or test structure are normally established before the experiment, but a
more accurate measurement may be made after the specimen is broken. Optical or scanning electron
microscopy, mechanical or optical profilometry, and interferometry are possible measurement tech-
niques, but some of these can be quite time consuming and expensive. Johnson et al. (1999) state that it
is typical to assign an uncertainty of between �0.05 and �0.10 µm to width measurements. A 2 µm wide
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FIGURE 3.1 Scanning electron micrograph of the end of a broken tensile specimen. The specimen is 3.5 mm thick
and 2 mm wide at the bottom. (Reprinted with permission from Sharpe et al. [1999a] “Polysilicon Tensile Testing with
Electrostatic Gripping,” in Microelectromechanical Structures for Materials Research, Materials Research Society
Symposium 518, pp. 191–96, 15–16 April, San Francisco.).
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specimen would therefore have at most �5% relative uncertainty in its width, which is actually quite rea-
sonable for such small specimens. This reinforces the statement by Senturia (1998) that metrology is a
major problem in determining mechanical properties.

3.3.3 Force and Displacement Measurement

Johnson et al. (1999) explain that tensile tests require the measurement of larger forces and smaller over-
all displacements, while the opposite is true for bending tests. To break a polysilicon tensile specimen
2 � 2 µm square with a fracture strength of 2 GPa requires a force of 8 mN. If that same specimen is
50 µm long, fixed at one end, and with a transverse point load at the other end, breaking it requires a force
of only 0.05 mN. If that material has a modulus of 160 GPa, the elongation of a tensile specimen is
0.62 µm, while the deflection at the end of a bending specimen is 10.4 µm.

Commercial force transducers are readily available with a range of �5 g (50 mN) and a resolution of
0.001 g. This author prefers to use the lower range of a �100-g load cell because it is stiffer relative to a
tensile specimen and to calibrate it with weights. This achieves a resolution of 0.01 g with a full-scale
uncertainty of �1% [Sharpe et al., 1999a]. Howard and Fu (1997) review suitable force transducers, and
others, such as Greek et al. (1995) and Saif and MacDonald (1996), construct their own.

Commercial capacitance-based displacement transducers can be used to measure the overall displace-
ment of a test system to a resolution of 0.01 µm and full-scale uncertainty of �1% [Sharpe et al., 1999a].
Schemes to measure mechanical deflections at the optical microscope level are attractive, and Pan and
Hsu (1999) present a vernier gauge approach to measure residual stress. This approach can be electrically
instrumented with differential capacitance measurement as shown by Que et al. (1999).

3.3.4 Strain Measurement

It is, of course, preferable to measure strain directly, whether the test arrangement is bending or tension;
however, this is difficult to do on such small specimens. The author and his colleagues have developed a
laser-based strain-measurement system in which two reflective lines are deposited on the gauge section
of a tensile specimen during manufacture. These lines are perpendicular to the loading axis, and when they
are illuminated with a low-power laser beam, interference fringe patterns are formed. When the specimen
is strained, the lines separate and the fringes move; tracking the motion with diode arrays and a computer
system enables real-time strain measurement on specimens as narrow as 20 µm. A set of four lines on
wider specimens permits measurement of Poisson’s ratio; details are given in Sharpe et al. (1997c; 1997d),
and the resolution is approximately �5 microstrain with a relative uncertainty of 5% at 0.5% strain.

Detailed full-field strain measurements at the MEMS size scale are desirable but difficult. Micro-Raman
spectroscopy can probe very small areas on the order of 1 µm in diameter on thin films. Analysis of frequency
shifts as force is applied to a specimen leads to local strain measurements [Benrakkad et al., 1995; Pinardi 
et al., 1997; Zhang et al., 1997; Amimoto et al., 1998]. The moiré method using e-beam lithography to write
high-frequency line and dot gratings at a small scale has been demonstrated by Dally and Read (1993), but
this is a very challenging process. Chasiotis and Knauss (1998) are developing digital image correlation 
methods to measure strains in tensile specimens; the resolution is 300–500 microstrain. Mazza et al. (1996a)
have demonstrated this to be a viable technique on single-crystal silicon specimens. Laser speckle methods
can give full-field results and have been demonstrated by Anwander et al. (2000) and Chang et al. (2000).
None of these techniques has been applied to extensive studies of mechanical properties of MEMS materials.

3.3.5 Tensile Tests

Three arrangements are used in tensile tests of MEMS materials: specimen in a supporting frame, speci-
men fixed to a die at one end; and separate specimen. A fourth clever approach was introduced early on
by Koskinen et al. (1993) but has not been continued. They deposited a grid of long, thin tensile speci-
mens that were all fastened to larger portions at each end; the appearance was similar to a foil resistance
strain gauge. One end of the arrangement was fixed, and the other was attached to a movable grip that
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could be rotated about an axis perpendicular to the grid. This caused all of the specimens to buckle, each
a different amount than its neighbor. When the grip moved, each specimen in turn was straightened and
pulled. The recorded force-displacement record enabled measurement of modulus and strength.

3.3.5.1 Specimen in Frame

Read and Dally (1992) introduced a very effective way of handling thin-film specimens in 1992. The ten-
sile specimen is patterned onto the surface of a wafer, and then a window is etched in the back of the wafer
to expose the gauge section. The result is a specimen suspended across a rectangular frame, which can be
handled easily and placed into a test machine. The two larger ends of the frame are fastened to grips, and
the two narrower sides are cut to completely free the specimen. This is an extension of the much earlier
approach by Neugebauer (1960) and has been adopted by others [Cunningham et al., 1995; Emery et al.,
1997; Ogawa et al., 1997; Sharpe et al., 1997c; Cornella et al., 1998; Yi and Kim, 1999b]. A SEM photo-
graph of such a specimen while still in the frame is shown in Figure 3.2.

3.3.5.2 Specimen Fixed at One End

Tsuchiya introduced the concept of a tensile specimen fixed to the die at one end and gripped with an
electrostatic probe at the other end [Tsuchiya et al., 1998]. This approach has been adopted by this author
and his students [Sharpe et al., 1998a]; Figure 3.3 is a photograph of this type of specimen. The gauge
section is 3.5 µm thick, 50 µm wide, and 2 mm long. The fixed end is topped with a gold layer for electri-
cal contact. The grip end is filled with etch holes, as are the two curved transition regions from the grips
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35x 285 µm

FIGURE 3.2 Scanning electron micrograph of a polysilicon tensile specimen in a supporting single-crystal silicon
frame. (Reprinted with permission from Sharpe, W.N., Jr., Yuan, B., Vaidyanathan, R., and Edwards, R.L. [1996] 
Proc. SPIE 2880, pp. 78–91.)

FIGURE 3.3 A tensile specimen fixed at the left end with a free grip end at the right end. (Reprinted with permis-
sion from Sharpe, W.N., Jr., and Jackson, K. [2000] Microscale Systems: Mechanics and Measurements Symposium,
Society for Experimental Mechanics, pp. ix–xiv.)
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to the gauge section. The large grip end is held in place during the etch-release process by four anchor
straps, which are broken before testing.

Chasiotis and Knauss (2000) have developed procedures for gluing the grip end of a similar specimen
to a force/displacement transducer, which enables application of larger forces. A different approach is to
fabricate the grip end in the shape of a ring and insert a pin into it to make the connection to the test sys-
tem. Greek et al. (1995) originated this with a custom-made setup, and LaVan et al. (2000a) use the probe
of a nanoindenter for the same purpose.

It is possible to build the deforming mechanism onto or into the wafer, although getting an accurate
measure of the forces and deflections can be difficult. Biebl and von Philipsborn (1995) stretched poly-
silicon specimens in tension with residual stresses in the structure. Yoshioka et al. (1996) etched a hinged
paddle in the silicon wafer, which could be deflected to pull a thin single-crystal specimen. Nieva et al.
(1998) produced a framed specimen and heated the frame to pull the specimen, as did Kapels et al. (2000).

3.3.5.3 Separate Specimen

The challenge of picking up a tensile specimen only a few microns thick and placing it into a test machine
is formidable. However, if the specimens are on the order of tens or hundreds of microns thick, as they
are for LIGA-deposited materials, doing so is perfectly possible. This author and his students developed
techniques to test steel microspecimens having submillimeter dimensions [Sharpe et al., 1998b]. The steel
dog-biscuit-shaped specimens were obtained by cutting thin slices from the bulk material and then cut-
ting out the specimens with a small CNC mill. Electroplated nickel specimens can be patterned into a
similar shape in LIGA molds as shown in Figure 3.4. These specimens are released from the substrate by
etching, picked up, and put into grips with inserts that match the wedge-shaped ends [Sharpe et al., 1997e].

McAleavey et al. (1998) used the same sort of specimen to test SU-8 polymer specimens. Mazza et al.
(1996b) prepared nickel specimens of similar size in the gauge section but with much larger grip ends.
Christenson et al. (1998) fabricated LIGA nickel specimens of a more conventional shape; they 
were approximately 2 cm long with flat grip ends, large enough to test in a commercial table-top 
electrohydraulic test machine.

3.3.5.4 Smaller Specimens

All of the above methods may appear impressive to the materials test engineer accustomed to common
structural materials, but there is a continuing push toward smaller structural components at the
nanoscale. Yu et al. (2000) have successfully attached the ends of carbon nanotubes as small as 20 nm in
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FIGURE 3.4 Nickel microspecimen produced by the LIGA method. The overall length is 3.1 mm, and the width of
the specimen at the center is 200 mm. (Reprinted with permission from Sharpe, W.N., Jr., et al. [1997] Proc. Int. Solid
State Sensors and Actuators Conf. — Transducers ’97, pp. 607–10. © 1997 IEEE.)
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diameter and a few microns long to atomic force microscopy (AFM) probes. As the probes are moved
apart inside a SEM, their deflections are measured and used to extract both the force in the tube and its
overall elongation. They report strengths up to 63 GPa and modulus values up to 950 GPa.

3.3.6 Bend Tests

Three arrangements are also used in bend tests of structural films: out-of-plane bending of cantilever
beams, beams fastened at both ends, and in-plane bending of beams. Larger specimens, which can be
individually handled, can also be tested in bending fixtures similar to those used for ceramics.

3.3.6.1 Out-of-Plane Bending

The approach here is simple. The process patterns long, narrow, and thin beams of the test material onto
a substrate and then etches away the material underneath to leave a cantilever beam hanging over the
edge. By measuring the force vs. deflection at or near the end of the beam, one can extract Young’s mod-
ulus via the formula in section 3.3. However, this is difficult because if the beams are long and thin, the deflec-
tions can be large, but the forces are small. The converse is true if the beam is short and thick, but then
the applicability of simple beam theory comes into question. If the beam is narrow enough, Poisson’s ratio
does not enter the formula; otherwise, beams of different geometries must be tested to determine it.

Weihs et al. (1988) introduced this method in 1988 by measuring the force and deflection with a
nanoindenter having a force resolution of 0.25 µN and a displacement resolution of 0.3 nm. Typical spec-
imens had a thickness, width, and length of 1.0, 20, and 30 µm, respectively. Figure 3.5 shows a cantilever
beam deflected by a nanoindenter tip in a later investigation [Hollman et al., 1995].

Biebl et al. (1995a) attracted the end of a cantilever down to the substrate with electrostatic forces and
recorded the capacitance change as the voltage was increased to pull more of the beam into contact.
Fitting these measurements to an analytical model permitted a determination of Young’s modulus.

Krulevitch (1996) proposed a technique for measuring Poisson’s ratio of thin films fabricated in the
shapes of beams and plates by comparing the measured curvatures. These were two-layer composite
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FIGURE 3.5 A cantilever microbeam deflected out of plane by a diamond stylus. The beam was cut from a free-
standing diamond film. (Reprinted with permission from Hollman, P., et al. (1995) “Residual Stress, Young’s Modulus
and Fracture Stress of Hot Flame Deposited Diamond,” Thin Solid Films 270, pp. 137–42.)
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structures, so the properties of the substrate must be known. Kraft et al. (1998) also tested composite
beams by measuring the force-deflection response with a nanoindenter. Bilayer cantilever beams have
been tested by Tada et al. (1998), who heated the substrate and measured the curvature.

More sensitive measurements of force and displacement on smaller cantilever beams can be made by
using an AFM probe, as shown by Serre et al. (1998), Namazu et al. (2000), Comella and Scanlon (2000),
and Kazinczi et al. (2000). A specially designed test machine using an electromagnetic actuator has been
developed by Komai et al. (1998).

3.3.6.2 Beams with Fixed Ends

Working with a beam that is fixed at both ends is somewhat easier; the beam is stiffer and more robust.
Tai and Muller (1990) used a surface profilometer to trace the shapes of fixed-fixed beams at various load
settings. By comparing measured traces and using a finite element analysis of the structure, they were able
to determine Young’s modulus.

A promising on-chip test structure has been developed over the years by Senturia and his students; it is
shown schematically in Figure 3.6. A voltage is applied between the conductive polysilicon beam and the sub-
strate to pull the beam down, and the voltage that causes the beam to make contact is a measure of its stiff-
ness. This concept was introduced early on by Petersen and Guarnieri (1979) and further developed by Gupta
et al. (1996). A similar approach and analysis were described by Zou et al. (1995). The considerable advantage
here is that the measurements can be made entirely with electrical probing in a manner similar to that used
to check microelectronic circuits. This opens the opportunity for process monitoring and quality control.

The fixed ends clearly exert a major influence on the stiffness of the test structure. Kobrinsky et al.
(1999) have thoroughly examined this effect and shown its importance. The problem is that a particular
manufacturing process, or even variations within the same process, may etch the substrate slightly 
differently and change the rigidity of the ends. Nevertheless, this is a potentially very useful method for
monitoring the consistency of MEMS materials and processes.

Zhang et al. (2000) recently conducted a thorough study of silicon nitride in which microbridges
(fixed–fixed beams) were deflected using a nanoindenter with a wedge-shaped indenter. By fitting the meas-
ured force-deflection records to their analytical model, they extracted both Young’s modulus and residual stress.

3.3.6.3 In-Plane Bending

In-plane bending may be a more appropriate test method in that the structural supports of MEMS accelerom-
eters are subjected to that mode of deformation. Jaecklin et al. (1994) pushed long, thin cantilever beams
with a probe until they broke; optical micrographs gave the maximum deflections, from which the fracture
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FIGURE 3.6 Schematic of a fixed-fixed beam. (Reprinted with permission from Kobrinsky, M. et al. [1999]
“Influence of Support Compliance and Residual Stress on the Shape of Doubly-Supported Surface Micromachined
Beams,” MEMS Microelectromechanical Systems 1, pp. 3–10, ASME, New York.)
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strain was determined. Jones et al. (1996) constructed a test structure consisting of cantilever beams of
different lengths fastened to a movable shuttle. As the shuttle was pushed, the beams contacted fixed stops
on the substrate; the deformed shape was videotaped and the fracture strain determined. Figure 3.7 is a
photograph of one of their deformed specimens.

Kahn et al. (1996) developed a double cantilever beam arrangement to measure the fracture toughness
of polysilicon and used the measured displacement between the two beams to determine Young’s modu-
lus via a finite element model. The beams were separated by forcing a mechanical probe between them
and pushing it toward the notched end. Fitzgerald et al. (1998) have taken a similar approach to measure
crack growth and fracture toughness in single-crystal silicon, but they use a clever structure that permits
opening the beams by compression of cantilever extensions.

3.3.6.4 Bending of Larger Specimens

Microelectromechanical technology is not restricted to thin-film structures, although they are far-and-
away predominant. Materials fabricated with thicknesses on the order of tens or hundreds of microns are
of current interest and likely to become more important in the future.

Ruther et al. (1995) manufactured a microtesting system using the LIGA process to test electroplated
copper. The interesting feature is that the in-plane cantilever beam and the test system are fabricated
together on the die; however, this requires a rather complex assembly. Stephens et al. (1998) fabricated rows
of LIGA nickel beams sticking up from the substrate and then measured the force applied near the upper
tip of the beam while displacing the substrate. The resulting force-displacement curve permitted extraction
of Young’s modulus, and the recorded maximum force gave a modulus of rupture.
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FIGURE 3.7 A polysilicon cantilever beam subjected to in-plane bending. The beam is 2.8 mm wide, and the verti-
cal distance between the fixed end at the bottom and the deflected end at the top is 70 mm. (Reprinted with permis-
sion from Sharpe, W.N., Jr., et al. [1998] “Round-Robin Tests of Modulus and Strength of Polysilicon,”
Microelectromechanical Structures for Materials Research Symposium, pp. 56–65.)
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Larger structures, such as the microengine under development at the Massachusetts Institute of
Technology, have thicknesses on the order of several millimeters. It then becomes necessary to test specimens
of similar sizes in what is sometimes called the mesocale region, whose dimensions generally range from
0.1 mm to 1 cm. Single-crystal silicon is the material of interest for initial versions, and Chen et al. (1998)
have developed a method for bend testing square plates simply supported over a circular hole and record-
ing the force as a small steel ball is pushed into the center of the plate. Fracture strengths are obtained,
and this efficient arrangement permits study of the effects of various manufacturing processes on the
load-carrying capability of the material.

3.3.7 Resonant Structure Tests

Frequency and changes in frequency can be measured precisely, and elastic properties of modeled struc-
tures can be determined. The microstructures can be very small and excited by capacitive comb-drives,
which require only electrical contact. This makes this approach suitable for on-chip testing; in fact, the
MUMPs process at Cronos includes a resonant structure on each die. That microstructure moves paral-
lel to the substrate, but others vibrate perpendicularly.

Petersen and Guarnieri (1979) introduced the resonant structure concept in 1979 by fabricating arrays of
thin, narrow cantilever beams of various lengths extending over an anisotropically etched pit in the substrate.
The die containing the beams was excited by variable frequency electrostatic attraction between the substrate
and the beams, and the vibration perpendicular to the substrate was measured by reflection from an incident
laser beam, as shown by the schematic in Figure 3.8. Yang and Fujita (1997) used a similar approach to study
the effect of resistive heating on U-shaped beams. Commercial AFM cantilevers were tested in a similar man-
ner by Hoummady et al. (1997), who measured the higher resonant modes of a cantilever beam with a mass
on the end. Zhang et al. (1991) measured vibrations of a beam fixed at both ends by using laser interferom-
etry. Michalicek et al. (1995) developed an elaborate and carefully modeled micromirror that was excited by
electrostatic attraction. Deflection was also measured by laser interferometry, and experiments determined
Young’s modulus over a range of temperatures as well as validating the model.

Microstructures that vibrate parallel to the plane of the substrate require less processing because the
substrate does not have to be removed. Biebl et al. (1995b) introduced this concept, and Kahn et al. (1998)
have used a more recent version to study the effects of heating on the Young’s modulus of films sputtered
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FIGURE 3.8 Schematic of the resonant structure system of Petersen and Guarnieri (1979). (Reprinted with per-
mission from Petersen, K.E., and Guarnieri, C.R. [1979] “Young’s Modulus Measurements of Thin Films Using
Micromechanics,” J. Appl. Phys. 50, pp. 6761–66.)
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onto the structure. Figure 3.9 is a SEM image of their structure, which is easy to model. Pads A, B, C,
and D are fixed to the substrate; the rest of the structure is free. Electrostatic comb-drives excite the 
two symmetrical substructures, which consist of four flexural springs and a rigid mass. The resonant 
frequency of this device is around 47 kHz. Brown et al. (1997) have developed a different approach 
in which a small notched specimen is fabricated as part of a large resonant fan-shaped component. This
resonant structure, shown in Figure 3.10, has been used primarily for fatigue and crack growth studies,
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FIGURE 3.9 Scanning electron micrograph of the in-plane resonant structure of Kahn et al. (1998). (Reprinted with
permission from Kahn, H. et al. [1998] “Heating Effects on the Young’s Modulus of Films Sputtered onto
Micromachined Resonators,” Microelectromechanical Structures for Materials Research Symposium, pp. 33–38.)
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FIGURE 3.10 Scanning electron micrograph of the in-plane resonant structure of Brown et al. (1997). (Reprinted
with permission from Brown, S.B. et al. [1997] “Materials Reliability in MEMS Devices,” Proc. Int. Solid-State Sensors
and Actuators Conf. — Transducers ’97, pp. 591–93. © 1997 IEEE.)
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but Young’s modulus of polysilicon has been extracted from its finite element model [Sharpe 
et al., 1998c].

3.3.8 Membrane Tests

It is relatively easy to fabricate a thin membrane of test material by etching away the substrate; the mem-
brane is then pressurized and the measured deflection can be used to determine the biaxial modulus. An
advantage of this approach is that tensile residual stress in the membrane can be measured, but the value
of Poisson’s ratio must be assumed. This method, often called bulge testing, was first introduced by Beams
(1959), who tested thin films of gold and silver and measured the center deflection of the circular mem-
brane as a function of applied pressure. Jacodine and Schlegel (1966) used this approach to measure
Young’s modulus of silicon oxide. Tabata et al. (1989) tested rectangular membranes whose deflections
were measured by observations of Newton’s rings, as did Maier-Schneider et al. (1995). The variation of
Hong et al. (1990) used circular membranes with force deflection measured at the center with a nanoin-
denter. Pressurized square membranes with the deflection measured by a stage-mounted microscope
were tested by Walker et al. (1990) to study the effect of hydrofluoric acid exposure on polysilicon; a sim-
ilar approach to determine biaxial modulus, residual stress, and strength was used by Cardinale and
Tustison (1992). Vlassak and Nix (1992) eliminated the need to assume a value of Poisson’s ratio by test-
ing rectangular silicon nitride films with different aspect ratios. More recently, Jayaraman et al. (1998)
used this same approach to measure Young’s modulus and Poisson’s ratio of polysilicon.

3.3.9 Indentation Tests

A nanoindenter is, in the fewest words, simply a miniature and highly sensitive hardness tester. It measures
both force and displacement, and modulus and strength can be obtained from the resulting plot. Penetration
depths can be very small (a few nanometers), and automated machines permit multiple measurements to
enhance confidence in the results and also to scan small areas for variations in properties.

Weihs et al. (1989) measured the Young’s modulus of an amorphous silicon oxide film and a nontex-
tured gold film with a nanoindenter and obtained only limited agreement with their microbeam deflec-
tion experiments. The modulus measured by indentation was consistently higher, and the large pressure
of the indenter tip was the probable cause. Taylor (1991) used nanoindenter measurements restricted to
penetrations of 200 nm into silicon nitride films 1 µm thick to study the effects of processing on mechan-
ical properties. Young’s modulus decreased with decreasing density of the films.

Bhushan and Li (1997) have studied the tribological properties of MEMS materials, and Li and Bhusan
(1999) used a nanoindenter to measure the modulus and a microhardness tester to measure the fracture
toughness of thin films. Measurements of Young’s modulus of polysilicon showed a wide scatter. Bucheit
et al. (1999) examined the mechanical properties of LIGA-fabricated nickel and copper by using a
nanoindenter as one of the tools. In most cases, Young’s modulus from nanoindenter measurements were
higher than from tension tests, but the nanoindenter does allow looking at both sides of the thin film as
well as at sectioned areas.

3.3.10 Other Test Methods

The readily observed buckling of a column-like structure under compression can be used to measure
forces in specimens; if the specimen breaks, the fracture strength can be estimated. Tai and Muller (1988)
fabricated long, thin polysilicon specimens with one end fixed and the other enclosed in slides. The mov-
able end was pushed with a micromanipulator, and its displacement when the structure buckled was used
to determine the strain (not stress) at fracture. Ziebart and colleagues have analyzed thin films with var-
ious boundary conditions ranging from fixed along two sides [Ziebart et al., 1997] to fixed on all four
sides [Ziebart et al., 1999]. The first arrangement permitted the measurement of Poisson’s ratio when the
side supports were compressed, and the second determined prestrains induced by processing. Beautiful
patterns are obtained, but the analysis and the specimen preparation can be time consuming.
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Another clever approach based on buckling is described by Cho et al. (1997). They etched away the silicon
substrate under an overhanging strip of diamond-like carbon film and used the buckled pattern to deter-
mine the residual stress in the film. A more traditional creep test was used by Teh et al. (1999) to study
creep in 2 � 2 � 100 µm polysilicon strips fixed at each end. As current passed through the specimens,
they heated up, and their buckled deflection over time at a constant current was used to extract a strain-
vs.-time creep curve. This approach is complicated by the nonuniformity of the strain in the specimen.

Although torsion is an important mode of deformation in certain MEMS, such as digital mirrors, few
test methods have been developed. Saif and MacDonald (1996) introduced a system to twist very small
(10 µm long and 1 µm on a side) pillars of single-crystal silicon and measure both the force and deflec-
tion. Larger (300 µm long with side dimensions varying from 30 to 180 µm) of both silicon and LIGA
nickel were tested by Schiltges et al. (1998). Emphasis was on the elastic properties only with the shear
modulus values agreeing with expected bulk values.

Nondestructive measurements of elastic properties of thin films can be accomplished with laser-
induced ultrasonic surface waves. A laser pulse generates an impulse in the film, and a piezoelectric trans-
ducer senses the surface wave. In principle, Young’s modulus, density, and thickness can be determined,
but this cannot be achieved for all combinations of film and substrate materials. Schneider and Tucker
(1996) describe this test method and present results for a wide range of films; the Young’s modulus 
values generally agree with other thin-film measurements. A drawback here is the planar size of the film;
the input and output must be several millimeters apart. A related technique uses Brillouin scattering 
as described in Monteiro et al. (1996).

3.3.11 Fracture Tests

Single-crystal silicon and polysilicon are both brittle materials, and it is therefore natural to want to 
measure their fracture toughness. This is even more difficult than measuring their fracture strength
because of the need for a crack with a tip radius that is small relative to the specimen dimensions.

Photolithography processes for typical thin films have a minimum feature radius of approximately
1 mm. Fan et al. (1990), Sharpe et al. (1997f) and Tsuchiya et al. (1998) have tested polysilicon films in
tension using edge cracks, center cracks, and edge cracks, respectively. Kahn et al. (1999) modeled a 
double-cantilever specimen with a long crack and wedged it open with an electrostatic actuator.

Fitzgerald et al. (1999) prepared sharp cracks in double-cantilever silicon crystal specimens by etch-
ing, and Suwito et al. (1997) modeled the sharp corner of a tensile specimen to measure the fracture
toughness. Van Arsdell and Brown (1999) introduced cracks at notches in polysilicon with a diamond
indenter. A promising new approach using a focused ion beam (FIB) can prepare cracks with tip radii of
30 nm according to K. Jackson (pers. comm.).

3.3.12 Fatigue Tests

Many MEMS operate for billions of cycles, but that kind of testing is conducted on microdevices, such as
digital mirrors instead of the more basic reversed bending or push–pull tests so familiar to the metal
fatigue community. Brown and his colleagues have developed a fan-shaped, electrostatically driven
notched specimen that has been used for fatigue and crack growth studies [Brown et al., 1993, 1997; Van
Arsdell and Brown, 1999]. Minoshima et al. (1999) have tested single-crystal silicon in bending fatigue,
and Sharpe et al. (1999) reported some preliminary tension–tension tests on polysilicon. As noted earlier,
fatigue data are reported as stress-vs.-life plots, and Kapels et al. (2000) present a plot that looks much
like one would expect for a metal; the allowable applied stress decreases from 2.9 GPa for a monotonic
test to 2.2 GPa at one million cycles.

3.3.13 Creep Tests

Some MEMS are thermally actuated, so the possibility of creep failure exists. No techniques similar to the
familiar dead-weight loading to produce strain-vs.-time curves exist. Teh et al. (1999) have observed the
buckling of heated fixed-end polysilicon strips.
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3.3.14 Round-Robin Tests

Mechanical testing of MEMS materials presents unique challenges as the above review shows.
Convergence of test methods into a standard is still far in the future, but progress in that direction usu-
ally begins with a round-robin program in which a common material is tested by the method-of-choice
in participating laboratories. That first step was taken in 1997/1998 with the results reported at the Spring
1998 meeting of the Materials Research Society [Sharpe et al., 1998c]. Polysilicon from the MUMPs 19
and 21 runs of Cronos were tested in bending (Figure 3.7), resonance (Figure 3.10), and tension (Figure
3.3). Young’s modulus was measured as 174 � 20 GPa in bending, 137 � 5 GPa in resonance, and
139 � 20 GPa in tension. Strengths in bending were 2.8 � 0.5 GPa, in resonance 2.7 � 0.2 GPa, and in
tension 1.3 � 0.2 GPa. These variations were alarming but in retrospect perhaps not too surprising given
the newness of the test methods at that time.

A more recent interlaboratory study of the fracture strength of polysilicon manufactured at Sandia has
been arranged by LaVan et al. (2000b). Strengths measured on similar tensile specimens by Tsuchiya in Japan
and at Johns Hopkins were 3.23 � 0.25 and 2.85 � 0.40 GPa respectively. LaVan tested in tension with a dif-
ferent approach and obtained 4.27 � 0.61 GPa. It seems clear that more effort needs to be devoted to the
development of test methods that can be used in a standardized manner by anyone who is interested.

3.4 Mechanical Properties

This section lists in tabular form the results of measurements of mechanical properties of materials used
in MEMS structural components. Its intent is not only to provide values of mechanical properties but also
to supply references on materials and test methods of interest. Because as yet no standard test method
exists and such a wide variety in the values is obtained for supposedly identical materials, readers with a
strong interest in the mechanical behavior of a particular material can use the tables to identify pertinent
references.

Almost all the data listed comes from experiments directly related to free-standing structural films. The
only exceptions are the results from ultrasonic measurements by Schneider and Tucker (1996) because
they tested a number of materials of interest. Including information on the processing conditions for each
reference proved too cumbersome, but the short comments in the tables should be useful. Many of the
results are average values of multiple replications, and the standard deviations are included when they are
available. Most of the materials used in MEMS are ceramics and show linear and brittle behavior, in
which case only the fracture strength is listed. The tables for ductile materials show both yield and ulti-
mate strengths. Also note that the values in the tables are edited from a larger list. Some of the same val-
ues have been presented in two different venues (e.g., a conference publication and a journal paper), in
which case the more archival version was referenced. A limited number of studies have been conducted
on the effects of environment (temperature, hydrofluoric acid, saltwater, etc.) on MEMS materials, but
that area of research is in its infancy and is not included.

First, typical stress–strain curves are plotted in Figure 3.11 to compare the mechanical behavior
of MEMS materials with a common structural steel, A533-B, which is moderately strong (yield strength
of 440 MPa) but ductile and tough. Polysilicon is linear and brittle and much stronger. LIGA nickel is 
ductile and considerably stronger than bulk pure nickel. One must test materials as they are produced
for MEMS instead of relying on bulk material values.

The microstructure of these MEMS materials is also different from that of bulk materials. The physics of
the thin-film deposition process cause the grains to be columnar in a direction perpendicular to the film as
shown in Figure 3.12. The result is similar to the cross-section of a piece of bamboo or wood, and the mate-
rial is transversely isotropic. Test methods are not sensitive enough to measure the anisotropic constants.

Table 3.1 lists metal films tested in a free-standing manner such as would be appropriate for use in
MEMS. Only aluminum is currently used in that fashion, but the other materials are commonly used in
the electronics industry and may be of interest. Note that all of the materials are ductile; the complete
stress–strain curves are included in many of the references. The values of Young’s modulus as measured
for pure bulk materials are listed for reference.

3-16 MEMS: Introduction and Fundamentals

© 2006 by Taylor & Francis Group, LLC



Mechanical Properties of MEMS Materials 3-17

0

0.2

0.4

0.6

0.8

1

1.2

1.4

–0.5 0.50 1.51 2

Strain (%)

S
tr

es
s 

(G
P

a)

Polysilicon
Polysilicon
Steel
Nickel

FIGURE 3.11 Representative stress–strain curves of polysilicon, electroplated nickel, and A-533B steel. These are
from microspecimens tested in the author’s laboratory.
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FIGURE 3.12 Microstructure of two common MEMS materials. Note the columnar grain structure perpendicular to the
plane of the film. (a) Polysilicon deposited in two layers; the bottom layer is 2.0 µm thick and the top one is 1.5 µm thick.
(Reprinted with permission from Sharpe et al. [1998c] “Round-Robin Tests of Modulus and Strength of Polysilicon,” in
Microelectromechanical Structures for Materials Research, Materials Research Society Symposium 518, pp. 56–65, 15–16
April, Francisco. © 1998 IEEE.) (b) Nickel electroplated into LIGA molds. (Reprinted with permission from Sharpe et al.
[1997d] “Measurements of Young’s Modulus, Poisson’s Ratio, and Tensile Strength of Polysilicon,” Proc. IEEE Tenth Annual
Int. Workshop on Micro Electro Mechanical Systems, pp. 424–29, 26–30 January, Nagoya, Japan. © 1998 IEEE.)
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Carbon can be deposited to form an amorphous or crystalline structure that is often referred to as
diamond-like carbon, (DLC). Diamond itself has a very high stiffness and strength as well as a low coef-
ficient of friction; for these reasons DLC offers exciting possibilities in MEMS. The very limited results to
date, shown in Table 3.2, support this line of reasoning although they are far too sparse to be conclusive.

Electroplated nickel and nickel–iron MEMS, usually manufactured via the LIGA process, offer the pos-
sibility of larger and stronger actuators and connectors. The microstructure and mechanical properties of
an electroplated material are highly dependent upon the composition of the plating bath and on the 
current and temperature. Similarly, the composition of a nickel–iron alloy significantly affects its charac-
teristics. Young’s modulus and strength values are listed in Tables 3.3 and 3.4 for nickel and nickel–iron
respectively. The modulus of bulk nickel is around 200 GPa, and the yield strength of pure fine-grained
nickel is approximately 60 MPa [ASM, 1990]. Table 3.3 shows that the modulus of nickel is generally
somewhat lower and the strength considerably higher. Nickel–iron has a smaller modulus, as expected,
but can be a very strong material as seen from the limited results in Table 3.4.
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TABLE 3.1 Metals

Young’s Yield Ultimate
Modulus Strength Strength

Metals (GPa) (GPa) (GPa) Method Comments Ref.

Aluminum 8–38 — 0.04–0.31 Tension 110–160 µm thick Hoffman (1989)

modulus of bulk 40 — 0.15 Tension 1.0 µm thick Ogawa et al. (1996)
material � 69 GPa

69–85 — — Bending Various lengths Comella and 
Scanlon (2000)

Copper 86–137 0.12–0.24 0.33–0.38 Tension Plated; annealed Buchheit et al.
(1999)

modulus of bulk 108–145 — — Indentation Various locations Buchheit et al.
material � 117 GPa (1999)

98 � 4 — — Tension Laser speckle Anwander et al.
(2000)

Gold 40–80 — 0.2–0.4 Tension 0.06–16 µm thick Neugebauer (1960)
modulus of bulk 57 0.26 — Bending �1 µm thick Weihs et al. (1988)

material � 74 GPa

74 — — Indentation �1 µm thick Weihs et al. (1988)

82 — 0.33–0.36 Tension 0.8 µm thick Emery et al. (1997)

— — 0.22–0.27 Bending Composite beam Kraft et al. (1998)

Titanium

modulus of bulk 96 � 12 — 0.95 � 0.15 Tension 0.5 µm thick Ogawa et al. (1997)
material � 110 GPa

Ti–Al–Ti — 0.07–0.12 0.14–0.19 Tension Composite film Read and Dally 
(1992)

TABLE 3.2 Diamond-Like Carbon

Young’s Fracture
Modulus (GPa) Strength (GPa) Method Comments Ref.

600–1100 0.8–1.8 Bending Hot flame deposited Hollman et al. (1995)
800–1140 — Ultrasonic CVD diamond Schneider and Tucker (1996)
150–800 — Ultrasonic Laser arc deposited Schneider and Tucker (1996)
580 — Brillouin CVD diamond Monteiro et al. (1996)
94–128 — Buckling Poisson’s ratio � 0.22 Cho et al. (1998)
— 8.5 � 1.4 Tension Amorphous diamond LaVan et al. (2000a)
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The most common MEMS material, polysilicon, is also the most tested, as Table 3.5 demonstrates. The
stiffness coefficients of single-crystal silicon are well established, and the modulus in different directions
can vary from 125 to 180 GPa [Sato et al., 1997]. Aggregate theories predict that randomly oriented poly-
crystalline silicon should have a Young’s modulus between 163 and 166 GPa [Guo et al., 1992; Jayaraman
et al., 1999]. Most of the modulus values in Table 3.5 are near or within this range, but some vary widely,
especially when a test method is first used. An estimate of what the fracture strength should be is more
difficult as it depends on the flaws in the material. Even though strength is easier to measure than mod-
ulus (one needs to measure only force), there are fewer entries. This is because many of the bending, res-
onance, and bulge tests do not lead to failure in the specimen.

Single-crystal silicon has also been studied extensively, as Table 3.6 shows. The modulus values are
measured along particular crystallographic directions, so they should not be expected to compare with
the polysilicon values.

Silicon carbide holds promise for MEMS because of its expected high stiffness, strength, and chemical
and temperature stability; and Sarro (2000) provides a thorough overview of its potential. Bulk silicon
carbide is commonly available, but manufacturing processes for thin, free-standing films are still in devel-
opment. Table 3.7 lists results from the few tests to date; note that no strength values appear.
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TABLE 3.3 Nickel

Young’s Yield Ultimate
Modulus Strength Strength
(GPa) (GPa) (GPa) Method Comments Ref.

202 0.40 0.78 Tension Vibration for modulus Mazza et al. (1996b)
�200 — — Ultrasonic 3–75 µm thick Schneider and Tucker (1996)
168–182 0.1 � 0.01 — FE Model Microgrippers Basrour et al. (1997)
205 — — Resonance Also fatigue Dual et al. (1997)
68* — — Torsion *Shear modulus Dual et al. (1997)
176 � 30 0.32 � 0.03 0.55 Tension �200 µm thick Sharpe et al. (1997e)
131–160 0.28–0.44 0.46–0.76 Tension Varied current Christenson et al. (1998)
231 � 12 1.55 � 05 2.47 � 0.07 Tension 6 µm thick Greek and Ericson (1998)
180 � 12 — — Resonance Film on resonator Kahn et al. (1998)
181 � 36 0.33 � 0.03 0.44 � 0.04 Tension LIGA 3 films Sharpe and McAleavey (1998)
158 � 22 0.32 � 0.02 0.52 � 0.02 Tension LIGA 4 films Sharpe and McAleavey (1998)
182 � 22 0.42 � 0.02 0.60 � 0.01 Tension HI-MEMS films Sharpe and McAleavey (1998)
153 � 14 — 1.28 � 0.24* Bending *Modulus of rupture Stephens et al. (1998)
156 � 9 0.44 � 0.03 — Tension Current � 20 ma/cm2 Buchheit et al. (1999)
92 0.06/0.16* — *Tension/ Annealed Buchheit et al. (1999)

compression
160 � 1 0.28/0.27* — *Tension/ Current � 50 ma/cm2 Buchheit et al. (1999)

compression
146–184 — — Indentation Various locations Buchheit et al. (1999)
194 — — Tension Laser speckle Anwander et al. (2000)

TABLE 3.4 Nickel–Iron

Young’s Yield Ultimate 
Modulus Strength Strength 
(GPa) (GPa) (GPa) Method Comments Ref.

65 — — Fixed ends 80% Ni–20% Fe Chung and Allen (1996)
119 0.73 1.62 Tension 50% Ni–50% Fe Dual et al. (1997)
115 — — Resonance 50% Ni–50% Fe Dual et al. (1997)
15–54* — — Torsion *Shear modulus Dual et al. (1997)
155 — 2.26 Tension Electroplated Greek and Ericson (1998)
— 1.83–2.20 2.26–2.49 Tension HI-MEMS films Sharpe and McAleavey (1998)
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Silicon nitride commonly appears in both MEMS and in microelectronics as an insulating layer, and
interest in its use as a structural material is growing. Table 3.8 lists its properties. Silicon oxide is also typ-
ically included in a MEMS or microelectronics process, but it is less likely to be used as a structural com-
ponent because of its low stiffness and strength, as shown in Table 3.9.

To date, the main application of the polymer SU-8 is as a mask material for thicker electroplated metal
MEMS. Its use as a structural component is possible, but the values of stiffness and strength in Table 3.10
are very low.

Fracture toughness values have been measured for polysilicon; Table 3.11 lists the results. Note that this
is not the plane-strain fracture toughness that is a materials property; care is needed, as some authors list
this value as KIc.
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TABLE 3.5 Polysilicon

Young’s Fracture  
Modulus (GPa) Strength (GPa) Method Comments Ref.

160 — Bulge Obtains residual stress Tabata et al. (1989)
123 — Fixed ends Heavily doped Tai and Muller (1990)
190–240 — Bulge Various etches Walker et al. (1990)
164–176 2.86–3.37 Tension Varied grain size Koskinen et al. (1993)
— 2.11–2.77 Bending CMOS process Biebl et al. (1995a)
147 � 6 — Resonance Temperature effects Biebl et al. (1995b)
170 — Bending Varied doping Biebl and Philipsborn (1995)
— 0.57-0.77 Tension Weibull analysis Greek et al. (1995)
151–162 — Bulge Various anneals Maier-Schneider et al. (1995)
163 — Resonance Temperature effects Michalicek et al. (1995)
171–176 — Fixed ends Pull-in voltage Zou et al. (1995)
149 � 10 — Fixed ends Pull-in voltage Gupta et al. (1996)
150 � 30 — Resonance 10 µm thick Kahn et al. (1996)
140* 0.70 Tension *Approximate Read and Marshall (1996)
152–171 — Ultrasonic 0.4 µm thick Schneider and Tucker (1996)
176–201 — Indentation Different depths Bhushan and Li (1997)
160–167 1.08–1.25 Tension Weibull analysis Greek and Johansson (1997)
178 � 3 — Fixed ends Ph.D. thesis Gupta (1997)
169 � 6 1.20 � 0.15 Tension Poisson’s ratio � 0.22 � .01 Sharpe et al. (1997d)
174 � 20 2.8 � 0.5 Bending Tested by Jones et al. Sharpe et al. (1998c)
132 — Tension Tested by Chasiotis et al. Sharpe et al. (1998c)
137 � 5 2.7 � 0.2 Resonance Tested by Brown et al. Sharpe et al. (1998c)
140 � 14 1.3 � 0.1 Tension Tested by Sharpe et al. Sharpe et al. (1998c)
172 � 7 1.76 Tension 10 µm thick Greek and Ericson (1998)
162 � 4 — Bulge Poisson’s ratio � 0.19 � .03 Jayaraman et al. (1998)
168 � 4 — Resonance 0.45–0.9 µm thick Kahn et al. (1998)
135 � 10 — Bending AFM Serre et al. (1998)
95–167 — Indentation Also wear tests Sundararajan and Bhushan 

(1998)
167 2.0–2.7 Tension Modulus from bulge; P-doped Tsuchiya et al. (1998a)
163 2.0–2.8 Tension Modulus from bulge; Tsuchiya et al. (1998a)

undoped
— 1.8–3.7 Tension Different sizes and anneals Tsuchiya et al. (1998b)
95/175 — Indentation Doped and undoped Li and Bhushan (1998)
198 — Bending Capacitive device Que et al. (1999)
166 � 5 1.0 � 0.1 Tension Force-displacement Chasiotis and Knauss (2000)
— 4.27 � 0.61 Tension By LaVan et al. LaVan et al. (2000b)
— 2.85 � 0.40 Tension By Sharpe et al. LaVan et al. (2000b)
— 3.23 � 0.25 Tension By Tsuchiya et al. LaVan et al. (2000b)
158 � 8 1.56 � 0.25 Tension Size effects Sharpe and Jackson (2000)
159 and 169 — Tension Two specimens from Sharpe Yi (pers. comm.)
— 3.2 � 0.3 Bending Assumed E � 160 GPa Jones et al. (2000)
— 2.9 � 0.5 Tension 4 µm thick Kapels et al. (2000)
— 3.4 � 0.5 Bending 4 µm thick Kapels et al. (2000)
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Poisson’s ratio is an important materials property when the stress state is biaxial, but only a very lim-
ited number of measurements have been made. Those are listed in the comments columns of the tables.

The question of the effect of size on the strength of MEMS materials often arises. This is because
MEMS structural components can be on the same size scale as fine single-crystal “whiskers” of materials,
which can have very high strengths, the premise being that they have fewer imperfections. However, there
are no dramatic increases in strength because the materials still have fine grains relative to the specimen
size. Tsuchiya et al. (1998) found an increase in the tensile strength of polysilicon specimens 2.0 µm thick
as their length increased from 30 to 300 µm, but the gain was only 30%. Recent results show that the mod-
ulus of polysilicon does not vary with specimen size, but the strength increases from 1.21 to 1.65 GPa with
decreasing specimen size [Sharpe et al., 2001]. From a practical point of view, the effect of size on strength
for common MEMS structural components is not a concern.

On the other hand, Namazu et al. (2000) tested silicon crystal beams ranging in width from 0.2 to
1.04 mm, in thickness from 0.25 to 0.52 mm and in length from 6 to 9.85 mm. The beams were prepared
by anisotropic etching; the smallest were tested using an atomic force microscope, and the largest with a
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TABLE 3.6 Silicon Crystals

Young’s Modulus (GPa) Fracture Strength (GPa) Method Comments Ref.

177 � 18 2.0–4.3 Bending �110� Johansson et al. (1988)
188 — Indentation Weihs et al. (1989)
163 	3.4 Bending �110� Weihs et al. (1989)
122 � 2 — Bending �110� Ding et al. (1989)
125 � 1 — Resonance �110� Ding et al. (1989)
131 — Resonance Zhang et al. (1991)
173 � 13 — Bending �110� Osterberg et al. (1994)
147 0.26–0.82 Tension �110� Cunningham et al. (1995)
— 8.5–20 Torsion Shear and normal Saif and MacDonald (1996)
60–200 — Indentation Various doping Bhushan and Li (1997)
130 — Resonance �100� Dual et al. (1997)
75 — Torsion Shear modulus Dual et al. (1997)
125–180 1.3–2.1 Tension Three orientations Sato et al. (1997)
— 9.5–26.4 Bending Various etches Chen et al. (1998)
— 0.7–3.0 Bending Measured roughness Chen et al. (1999)
142 � 9 1.73 Tension �100� Greek and Ericson (1998)
165 � 20 2–8 Bending Fatigue tests also Komai et al. (1998)
168 — Indentation �100� Li and Bhushan (1999)
— 0.59 � 0.02 Tension �100� Mazza and Dual (1999)
— 2–6 Bending Fatigue also Minoshima et al. (1999)
169.2 � 3.5 0.6–1.2 Tension Various etches Yi and Kim (1999b)
115–191 — Tension Three orientations Yi and Kim (1999c)
164.9 � 4 — Tension Laser speckle Anwander et al. (2000)
169.9 0.5–17 Bending Various sizes Namazu et al. (2000)

TABLE 3.7 Silicon Carbide

Young’s  Fracture  
Modulus (GPa) Strength (GPa) Method Comments Ref.

394 — Bulge 3C–SiC Tong and Mehregany (1992)
88 � 10 to — Bulge + indentation Amorphous SiC El Khakani et al. (1993)
242 � 30
694 — Resonance 3C–SiC Su and Wettig (1995)
100–150 — Ultrasonic 0.2–0.3 µm thick Schneider and Tucker (1996)
331 — Bulge 3C–SiC; assumed Mehregany et al. (1997)
n � 0.25 196 — Acoustic microscopy Amorphous SiC Cros et al. (1997)
and 273
395 — Indentation 3C–SiC Sundararajan and Bhushan (1998)
470 � 10 — Bending 3C–SiC Serre et al. (1999)

© 2006 by Taylor & Francis Group, LLC



microhardness tester. The mean bending strengths covered an astonishing range from 0.47 to 17.5 GPa —
a factor of 37.

3.5 Initial Design Values

If the manufacturing and testing technology for materials used in MEMS were as fully developed as those
associated with common structural materials, such as aluminum, for example, then this entire chapter
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TABLE 3.8 Silicon Nitride

Young’s  Fracture  
Modulus (GPa) Strength (GPa) Method Comments Ref.

130–146 � 20% — Resonance �0.3 µm thick Petersen and Guarnieri (1979)
230 and 330 — Bulge Different processing Hong et al. (1990)
373 — Fixed ends Low stress Tai and Muller (1990)
101–251* — Indentation *Assume Poisson’s ratio � 0.27 Taylor (1991)
110 and 160* 0.39–0.42 Bulge *Biaxial modulus Cardinale and Tustison (1991)
222 � 3 — Bulge Poisson’s ratio � 0.28 � 0.05 Vlassak and Nix (1992)
216 � 10 — Indentation Vlassak and Nix (1992)
230–265 — Ultrasonic 0.2–0.3 µm thick Schneider and Tucker (1996)
192 — Resonance Buchaillot et al. (1997)
194.25 � 1% — Resonance Hoummady et al. (1997)
130 — Buckling Ziebart et al. (1999)
290 7.0 � 0.9 Bending Kuhn et al. (2000)
202.57 � 15.80 12.26 � 1.69* Fixed ends *Bending strength Zhang et al. (2000)
255 � 3 6.4 � 1.1 Tension Poisson’s ratio � 0.23 � 0.01 G. Coles (pers. comm.)

TABLE 3.9 Silicon Oxide

Young’s Modulus (GPa) Fracture Strength (GPa) Method Comments Ref.

66* — Bulge *Assumed n � 0.18 Jaccodine and Schlegel (1966)
57–92 � 20% — Resonance Various depositions Petersen and Guarnieri (1979)
64 	0.6 Indentation Weihs et al. (1988)
83 — Bending Weihs et al. (1988)
— 0.6–1.9 Tension In vacuum and in air Tsushiya et al. (1999)

TABLE 3.10 SU-8

Young’s  Yield Strength
modulus (GPa) (GPa) Ultimate Strength (GPa) Method Comments Ref.

�3 — 0.12–0.13 Tension McAleavey et al. (1998)
1.5–3.1 0.03–0.05 0.05–0.08 Tension Strain by SIEM Chang et al. (2000)

TABLE 3.11 Fracture Toughness Values

Fracture Toughness 
(MPa-m1/2) Test Method Material Ref.

1.8 � 0.3 Tension; edge crack Silicon nitride; two kinds Fan et al. (1990)
1.2 Indentation Silicon crystal DeBoer et al. (1993)
0.96–1.65 Double cantilever Silicon crystal Fitzgerald et al. (1999)
1.4 � 0.6 Tension; center crack Polysilicon Sharpe et al. (1997f)
1.9–4.5 Tension; edge crack Polysilicon Tsuchiya et al. (1997)
3.5–5.0 Notched specimen Polysilicon; various dopings Ballarini et al. (1998)
1.1–2.7 Notched specimen Polysilicon; various dopings Kahn et al. (1999)
1.2 � 0.3 Sharp precrack Polysilicon Kahn et al. (2000)
1.6 � 0.3 Tension; corner Polysilicon K. Jackson (pers. comm.)
1.0 � 0.1 Surface crack Polysilicon J. Bagdahn (pers. comm.)
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could have been reduced to a one-page table. However, that is not the case; the materials themselves are
new, and the test methods are still in their infancy. It may be useful to list “best guesses” at the material
properties of MEMS materials to be used in an initial design, and Table 3.12 does that. These are only esti-
mates, and the actual properties resulting from a particular manufacturing process may be quite differ-
ent from these nominal values.

Aluminum, copper, and gold have essentially the same modulus values as the bulk materials, but the
ultimate strengths are slightly higher than those found for commercially pure materials. Young’s modu-
lus for thin-film nickel can vary depending upon the deposition parameters, but it is conservative to
assume that it will be lower (at 180 GPa) than the 200 GPa expected for bulk pure nickel. There are fewer
results for nickel–iron, so the modulus of 120 GPa is only a rough estimate. However, it is clear that thin-
film nickel and nickel–iron alloys are quite a bit stronger than one would expect from knowledge of bulk
behavior.

The values listed for diamond-like carbon are only an optimistic guide. There are many variations of
this material, and very few test results. These properties are included because such a material would be
very attractive if it could be realized.

Polysilicon has certainly been thoroughly tested and is widely used, but there still is no “standard” value —
at least for Young’s modulus. The explanation for this is, of course, the difficulty in testing at this size scale,
but there is a clear trend toward a modulus in the neighborhood of 160 GPa. An assumption of that num-
ber �10 GPa can be used with confidence in the initial design of a microdevice. It is also clear that the
strength can vary depending upon the manufacturing process but will fall in the range of 1.2 to 3.0 GPa.

Single-crystal silicon has been thoroughly characterized to the point that it has been used as a 
“standard material” to validate test systems. The modulus depends on orientation, and the strength range
is enormous with some extremely high values being reported.

Silicon carbide is widely promoted as a MEMS material, but conclusive measurements of its modulus
have yet to be made, and there are no measurements of strength. One should use the modulus value with
caution. The situation is better for silicon nitride, as it has been more widely used and tested.

Although Table 3.12 lists numbers to three significant figures, the reader will surely appreciate their
unreliability and wonder as to their value. But many other uncertainties occur between the initial design
and the product. Dimensions may not result as specified, and that can have a profound effect on the stiff-
nesses of small components. Boundary conditions may not be as specified either, due to variations in etch
release processes. Nevertheless, the values in Table 3.12 offer a starting point. Users should certainly refer
to the more detailed information in the other tables and probably should consult the appropriate references.
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TABLE 3.12 Initial Design Values

Young’s Poisson’s Yield Ultimate or  Fracture
Material Modulus (GPa) Ratio Strength (GPa) Strength (GPa)

Aluminum 70 — — 0.15
Copper 120 — 0.15 0.35
Gold 70 — — 0.30
Nickel 180 — 0.30 0.50
Nickel–iron 120 — 0.70 1.60
Diamond-like carbon 800 0.22 — 8.0
Polysilicon 160 0.22 — 1.2–3.0
Silicon crystal 125–180 — — 	1.0
Silicon carbide 400 0.25 — —
Silicon nitride 250 0.23 — 6.0
Silicon oxide 70 — — 1.0
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One of the first men who speculated on the remarkable possibilities which magnification or diminution of
physical dimensions provides was Jonathan Swift, who, in Gulliver’s Travels, drew some conclusions as to
what dwarfs and giants would really look like, and what sociological consequences size would have. Some
time ago Florence Moog (Scientific American, November 1948) showed that Swift was a “bad biologist,” or
Gulliver a “poor liar.” She showed that a linear reduction in size would carry with it a reduction in the num-
ber of brain cells, and hence a reduction in intellectual capacity in Lilliputians, whereas the enormous
Brobdingnagians were physically impossible; they could have had physical reality only if their necks and legs
had been short and thick. These 90-ton monsters could never have walked on dry land, nor could their
tremendous weight have been carried on proportionately-sized feet.

Even though Swift, in his phantasy, committed a number of physical errors, because he was not suffi-
ciently aware of the fact that some physical properties of a body are proportional to the linear dimen-
sions (height), whereas others vary with the third power of linear size (such as weight and cell number),
yet he surpassed his medieval predecessors in many respects and drew a number of excellent conclusions,
bringing both giants and dwarfs close to physical reality.

(F. W. Went, “The Size of Man”)

4.1 Introduction

This chapter reviews the status of our understanding of fluid flow physics particular to microdevices. It
is an update of the earlier publication by the same author [Gad-el-Hak, 1999]. The coverage here is broad
leaving the details to other chapters in the handbook that treat specialized problems in microscale fluid
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mechanics. Not all MEMS devices involve fluid flows of course, but the present chapter will focus on
those that do. Microducts, micronozzles, micropumps, microturbines, and microvalves are examples of
small devices involving the flow of liquids and gases. MEMS can also be related to fluid flows indirectly. The
availability of inexpensive, batch-processing-produced microsensors and microactuators provides opportu-
nities for targeting small-scale coherent structures in macroscopic turbulent shear flows. Flow control using
MEMS promises a quantum leap in control system performance [Gad-el-Hak, 2000]. Additionally, the
extremely small sensors made possible by microfabrication technology allow measurements with spatial
and temporal resolutions not achievable before. For example, high-Reynolds-number turbulent flow
diagnoses are now feasible down to the Kolmogorov scales [Löfdahl and Gad-el-Hak, 1999]. Those indi-
rect topics are also left to other chapters in the book.

4.2 Flow Physics

The rapid progress in fabricating and utilizing microelectromechanical systems during the last decade has
not been matched by corresponding advances in our understanding of the unconventional physics
involved in the manufacture and operation of small devices [Kovacs, 1998; Knight, 1999; Gad-el-Hak,
1999; Karniadakis and Beskok, 2002; Nguyen and Wereley, 2002; Madou, 2002; Stone et al., 2004; Squires
and Quake, 2005]. Providing such understanding is crucial to designing, optimizing, fabricating, and uti-
lizing improved MEMS devices. The present chapter focuses on the physics of fluid flows in microdevices.

Fluid flows in small devices differ from those in macroscopic machines. The operation of MEMS-based
ducts, nozzles, valves, bearings, turbomachines, etc., cannot always be predicted from conventional flow
models such as the Navier–Stokes equations with no-slip boundary condition at a fluid–solid interface as
routinely and successfully applied for larger flow devices. Many questions have been raised when the
results of experiments with microdevices could not be explained via traditional flow modeling. The pressure
gradient in a long microduct was observed to be nonconstant, and the measured flow rate was higher than
that predicted from the conventional continuum flow model. Load capacities of microbearings were dimin-
ished and electric currents needed to move micromotors were extraordinarily high. The dynamic response
of micromachined accelerometers operating at atmospheric conditions was observed to be overdamped.

In the early stages of development of this exciting new field, the objective was to build MEMS devices
as productively as possible. Microsensors were reading something, but not many researchers seemed to
know exactly what. Microactuators were moving, but conventional modeling could not precisely predict
their motion. After a decade of unprecedented progress in MEMS technology, perhaps the time is now ripe
to slow down a bit, take stock, and answer the many questions that arose. The ultimate aim of this long-
term exercise is to achieve rational-design capability for useful microdevices and to be able to characterize
definitively and with as little empiricism as possible the operations of microsensors and microactuators.

Dealing with fluid flow through microdevices presents the questions of which model to use, which
boundary condition to apply, and how to proceed to obtain solutions to the problem at hand. Obviously
surface effects dominate in small devices. The surface-to-volume ratio for a machine with a characteristic
length of 1 m is 1 m�1, while that for a MEMS device having a size of 1 µm is 106 m�1. The millionfold
increase in surface area relative to the mass of the minute device substantially affects the transport of mass,
momentum, and energy through the surface. The small length scale of microdevices may invalidate the con-
tinuum approximation altogether. Slip flow, thermal creep, rarefaction, viscous dissipation, compressibil-
ity, intermolecular forces, and other unconventional effects may have to be taken into account, preferably
using only first principles, such as conservation of mass, Newton’s second law, and conservation of energy.

This chapter discusses continuum as well as molecular-based flow models and the choices to be made.
Computing typical Reynolds, Mach, and Knudsen numbers for the flow through a particular device is a
good start to characterize the flow. For gases, microfluid mechanics has been studied by incorporating slip
boundary conditions, thermal creep, and viscous dissipation as well as compressibility effects into the con-
tinuum equations of motion. Molecular-based models have also been attempted for certain ranges of the
operating parameters. Use is made of the well-developed kinetic theory of gases embodied in the Boltzmann
equation and of direct simulation methods such as Monte Carlo. Microfluid mechanics of liquids is more
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complicated. The molecules are much more closely packed at normal pressures and temperatures, and the
attractive or cohesive potential between the liquid molecules as well as between the liquid and solid mole-
cules plays a dominant role if the characteristic length of the flow is sufficiently small. In cases when the tra-
ditional continuum model fails to provide accurate predictions or postdictions, expensive molecular
dynamics simulations seem to be the only first-principle approach available to rationally characterize liquid
flows in microdevices. Such simulations are not yet feasible for realistic flow extent or number of molecules.
As a consequence, the microfluid mechanics of liquids is much less developed than that for gases.

4.3 Fluid Modeling

There are basically two ways of modeling a flow field, either as the fluid really is — a collection of
molecules — or as a continuum where the matter is assumed continuous and indefinitely divisible. The
first method is subdivided into deterministic methods and probabilistic ones, while in the second method
the velocity, density, pressure, etc., are defined at every point in space and time, and conservation of mass,
energy, and momentum leads to a set of nonlinear partial differential equations (Euler, Navier–Stokes,
Burnett, etc.). Fluid modeling classification is depicted schematically in Figure 4.1.

The continuum model, embodied in the Navier–Stokes equations, applies to numerous flow situations.
It ignores the molecular nature of gases and liquids and regards the fluid as a continuous medium
describable in terms of the spatial and temporal variations of density, velocity, pressure, temperature, and
other macroscopic flow quantities. For dilute gas flows near equilibrium, the Navier–Stokes equations are
derivable from the molecularly based Boltzmann equation but can also be derived independently of that
for both liquids and gases. In the case of direct derivation, some empiricism is necessary to close the
resulting indeterminate set of equations. The continuum model is easier to handle mathematically (and
is also more familiar to most fluid dynamicists) than the alternative molecular models. Continuum mod-
els should therefore be used as long as they are applicable. Thus, careful considerations of the validity of
the Navier–Stokes equations and the like are in order.

Basically, the continuum model leads to fairly accurate predictions as long as local properties, such as
density and velocity, can be defined as averages over elements that are large compared with the microscopic
structure of the fluid but small enough in comparison with the scale of the macroscopic phenomena to
permit using differential calculus to describe them. Additionally, the flow must not be too far from thermo-
dynamic equilibrium. The former condition is almost always satisfied, but it is the latter that usually restricts
the validity of the continuum equations. As the following section shows, the continuum flow equations
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do not form a determinate set. The shear stress and heat flux must be expressed in terms of lower-order
macroscopic quantities such as velocity and temperature, and the simplest (i.e., linear) relations are valid
only when the flow is near thermodynamic equilibrium. Worse yet, the traditional no-slip boundary condi-
tion at a solid–fluid interface breaks down even before the linear stress–strain relation becomes invalid.

To be more specific, we temporarily restrict the discussion to gases where the concept of mean free path
is well defined. Liquids are more problematic and we defer their discussion to a later section. For gases,
the mean free path L is the average distance traveled by molecules between collisions. For an ideal gas
modeled as rigid spheres, the mean free path is related to temperature T and pressure p as follows

L � � (4.1)

where n is the number density (number of molecules per unit volume), σ is the molecular diameter, and
k is the Boltzmann constant (1.38 �10–23 J/K � molecule).

The continuum Navier–Stokes model is valid when L is much smaller than a characteristic flow dimen-
sion L. As this condition is violated, the flow is no longer near equilibrium, and the linear relation
between stress and rate of strain and the no-slip velocity condition are no longer valid. Similarly, the lin-
ear relation between heat flux and temperature gradient and the no-jump temperature condition at a
solid–fluid interface are no longer accurate when L is not much smaller than L.

The length-scale L can be some overall dimension of the flow, but a more precise choice is the scale of
the gradient of a macroscopic quantity, as for example the density ρ,

L �
ρ

(4.2)

� �
The ratio between the mean free path and the characteristic length is known as the Knudsen number

Kn � (4.3)

and generally the traditional continuum approach is valid, albeit with modified boundary conditions, as
long as Kn � 0.1.

The Knudsen number can be expressed in terms of other important dimensionless parameters in fluid
mechanics. The Reynolds number is the ratio of inertial forces to viscous forces

Re � (4.4)

where vo is a characteristic velocity and ν is the kinematic viscosity of the fluid. The Mach number is the
ratio of flow velocity to the speed of sound

Ma � (4.5)

The Mach number is a dynamic measure of fluid compressibility and may be considered as the ratio 
of inertial forces to elastic forces. From the kinetic theory of gases, the mean free path is related to the 
viscosity as follows:

ν � � L v�m
(4.6)

where µ is the dynamic viscosity and v�m is the mean molecular speed, which is somewhat higher than the
sound speed ao,

v�m � ��ao (4.7)

where γ is the specific heat ratio (i.e., the isentropic exponent). Combining Equations (4.3)–(4.7),
we reach the required relation

Kn � �� (4.8)
Ma
�
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�
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In boundary layers, the relevant length scale is the shear-layer thickness δ, and for laminar flows

� (4.9)

Kn � � (4.10)

where Reδ is the Reynolds number based on the freestream velocity vo, and the boundary layer thickness
δ, and Re is based on vo and the streamwise length scale L.

Rarefied gas flows are in general encountered in flows in small geometries, such as MEMS devices, and
in low-pressure applications, such as high-altitude flying and high-vacuum gadgets. The local value of
Knudsen number in a particular flow determines the degree of rarefaction and the degree of validity of
the Navier–Stokes model. The different Knudsen number regimes are determined empirically and are
therefore only approximate for a particular flow geometry. The pioneering experiments in rarefied gas
dynamics were conducted by Knudsen in 1909. In the limit of zero Knudsen number, the transport terms
in the continuum momentum and energy equations are negligible, and the Navier–Stokes equations then
reduce to the inviscid Euler equations. Both heat conduction and viscous diffusion and dissipation are
negligible, and the flow is then approximately isentropic (i.e., adiabatic and reversible) from the contin-
uum viewpoint, while the equivalent molecular viewpoint is that the velocity distribution function is
everywhere of the local equilibrium or Maxwellian form. As Kn increases, rarefaction effects become
more important, and eventually the continuum approach breaks down altogether. The different Knudsen
number regimes are depicted in Figure 4.2, and can be summarized as follows:

Euler equations (neglect molecular diffusion): Kn → 0 (Re → ∞)
Navier–Stokes equations with no-slip boundary conditions: Kn � 10–3

Navier–Stokes equations with slip boundary conditions: 10–3 � Kn � 10–1

Transition regime: 10–1 � Kn � 10
Free-molecule flow: Kn � 10

As an example, consider air at standard temperature (T � 288 K) and pressure (p � 1.01 �105 N/m2).
A cube one micron on a side contains 2.54 � 107 molecules separated by an average distance of
0.0034 microns. The gas is considered dilute if the ratio of this distance to the molecular diameter exceeds
7; in the present example this ratio is 9, barely satisfying the dilute gas assumption. The mean free path
computed from Equation (4.1) is L � 0.065 µm. A microdevice with characteristic length of 1 µm would
have Kn � 0.065, which is in the slip-flow regime. At lower pressures, the Knudsen number increases. For
example, if the pressure is 0.1 atm and the temperature remains the same, Kn � 0.65 for the same 1 µm

Ma
�
�R�e�

Ma
�
Reδ

1
�
�R�e�

δ
�
L
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device, and the flow is then in the transition regime. There would still be more than 2 million molecules
in the same 1 µm cube, and the average distance between them would be 0.0074 µm. The same device at
100 km altitude would have Kn � 3 � 104, well into the free-molecule flow regime. Knudsen number for
the flow of a light gas like helium is about three times larger than that for air flow at otherwise the same
conditions.

Consider a long microchannel where the entrance pressure is atmospheric and the exit conditions are
near vacuum. As air goes down the duct, the pressure and density decrease while the velocity, Mach num-
ber, and Knudsen number increase. The pressure drops to overcome viscous forces in the channel. If
isothermal conditions prevail,1 density also drops and conservation of mass requires the flow to acceler-
ate down the constant-area tube. The fluid acceleration in turn affects the pressure gradient resulting in
a nonlinear pressure drop along the channel. The Mach number increases down the tube, limited only by
choked-flow condition Ma � 1. Additionally, the normal component of velocity is no longer zero. With
lower density, the mean free path increases, and Kn correspondingly increases. All flow regimes depicted
in Figure 4.2 may occur in the same tube: continuum with no-slip boundary conditions, slip-flow regime,
transition regime, and free-molecule flow. The air flow may also change from incompressible to com-
pressible as it moves down the microduct. A similar scenario may take place if the entrance pressure is,
say, 5 atm, while the exit is atmospheric. This deceivingly simple duct flow may in fact manifest every single
complexity discussed in this section. The following six sections discuss in turn the Navier–Stokes equa-
tions, compressibility effects, boundary conditions, molecular-based models, liquid flows, and surface
phenomena.

4.4 Navier–Stokes Equations

This section recalls the traditional conservation relations in fluid mechanics. A concise derivation of these
equations can be found in Gad-el-Hak (2000). Here, we reemphasize the precise assumptions needed to
obtain a particular form of the equations. A continuum fluid implies that the derivatives of all the
dependent variables exist in some reasonable sense. In other words, local properties, such as density and
velocity, are defined as averages over elements that are large compared with the microscopic structure of
the fluid but small enough in comparison with the scale of the macroscopic phenomena to permit the use
of differential calculus to describe them. As mentioned earlier, such conditions are almost always met. For
such fluids, and assuming the laws of nonrelativistic mechanics hold, the conservation of mass, momen-
tum, and energy can be expressed at every point in space and time as a set of partial differential equations
as follows:

	 (ρuk) � 0 (4.11)

ρ � 	 uk � � 	 ρgi (4.12)

ρ � 	 uk � � � 	 Σki
(4.13)

where ρ is the fluid density, uk is an instantaneous velocity component (u, v, w), Σki is the second-order
stress tensor (surface force per unit area), gi is the body force per unit mass, e is the internal energy, and
qk is the sum of heat flux vectors due to conduction and radiation. The independent variables are time t
and the three spatial coordinates x1, x2, and x3 or (x, y, z).
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and temperature decrease downstream, the former not as fast as in the isothermal case. None of that changes the qual-
itative arguments made in the example.
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Equations (4.11), (4.12), and (4.13) constitute five differential equations for the 17 unknowns ρ, ui, Σki,
e, and qk. Absent any body couples, the stress tensor is symmetric having only six independent compo-
nents, which reduces the number of unknowns to 14. Obviously, the continuum flow equations do not
form a determinate set. To close the conservation equations, the relation between the stress tensor and
deformation rate, the relation between the heat flux vector and the temperature field, and appropriate
equations of state relating the different thermodynamic properties are needed. The stress–rate-of-strain
relation and the heat-flux–temperature-gradient relation are approximately linear if the flow is not too
far from thermodynamic equilibrium. This is a phenomenological result but can be rigorously derived
from the Boltzmann equation for a dilute gas assuming the flow is near equilibrium. For a Newtonian,
isotropic, Fourier, ideal gas, for example, those relations read

Σki � �p δki	 µ � 	 � 	 λ � � δki (4.14)

qi � �κ 	 Heat flux due to radiation (4.15)

de � cvdT and p � ρ�T (4.16)

where p is the thermodynamic pressure, µ and λ are the first and second coefficients of viscosity, respectively,
δki is the unit second-order tensor (Kronecker delta), κ is the thermal conductivity, T is the temperature
field, cv is the specific heat at constant volume, and � is the gas constant which is given by the Boltzmann
constant divided by the mass of an individual molecule k � m�. Stokes’ hypothesis relates the first and
second coefficients of viscosity thus, λ 	 �

2
3

� µ � 0, although the validity of this assumption for other than
dilute, monatomic gases has occasionally been questioned [Gad-el-Hak, 1995]. With the above constitu-
tive relations and neglecting radiative heat transfer, Equations (4.11), (4.12), and (4.13) respectively read

	 (ρuk) � 0 (4.17)

ρ � 	 uk � � � 	 ρgi 	 	µ � 	 � 	 δkiλ 
 (4.18)

ρ � 	 uk � � �κ � � p 	 φ (4.19)

The three components of the vector Equation (4.18) are the Navier–Stokes equations expressing the con-
servation of momentum for a Newtonian fluid. In the thermal energy Equation (4.19), φ is the always
positive dissipation function expressing the irreversible conversion of mechanical energy to internal
energy as a result of the deformation of a fluid element. The second term on the right-hand side of (4.19)
is the reversible work done (per unit time) by the pressure as the volume of a fluid material element
changes. For a Newtonian, isotropic fluid, the viscous dissipation rate is given by

φ � µ � 	 �
2

	 λ � �
2

(4.20)

There are now six unknowns, ρ, ui, p, and T, and the five coupled Equations (4.17), (4.18), and (4.19) plus
the equation of state relating pressure, density, and temperature. These six equations together with suffi-
cient number of initial and boundary conditions constitute a well-posed, albeit formidable, problem. The
system of Equations (4.17)–(4.19) is an excellent model for the laminar or turbulent flow of most fluids,
such as air and water, under many circumstances including high-speed gas flows for which the shock
waves are thick relative to the mean free path of the molecules.
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Considerable simplification is achieved if the flow is assumed incompressible, usually a reasonable
assumption provided that the characteristic flow speed is less than 0.3 of the speed of sound. The incom-
pressibility assumption is readily satisfied for almost all liquid flows and many gas flows. In such cases,
the density is assumed either a constant or a given function of temperature (or species concentration).
The governing equations for such flow are

� 0 (4.21)

ρ � 	 uk � � � 	 	µ � 	 �
 	 ρgi (4.22)

ρcp � 	 uk � � �κ � 	 φincomp (4.23)

where φ
incomp is the incompressible limit of Equation (4.20). These are now five equations for the five

dependent variables ui, p, and T. Note that the left-hand side of Equation (4.23) has the specific heat at
constant pressure cp and not cv . It is the convection of enthalpy — and not internal energy — that is balanced
by heat conduction and viscous dissipation. This is the correct incompressible-flow limit — of a compressi-
ble fluid — as discussed in detail in Section 10.9 of Panton (1996); a subtle point, perhaps, but one that
is frequently missed in textbooks.

For both the compressible and the incompressible equations of motion, the transport terms are neg-
lected away from solid walls in the limit of infinite Reynolds number (Kn → 0). The fluid is then approx-
imated as inviscid and nonconducting, and the corresponding equations read (for the compressible case)

	 (ρuk) � 0 (4.24)

ρ � 	 uk � � � 	 ρgi (4.25)

ρcv � 	 uk � � �p (4.26)

The Euler Equation (4.25) can be integrated along a streamline, and the resulting Bernoulli’s equation
provides a direct relation between the velocity and pressure.

4.5 Compressibility

The issue of whether to consider the continuum flow compressible or incompressible seems straightfor-
ward but is in fact full of potential pitfalls. If the local Mach number is less than 0.3, then the flow of a
compressible fluid like air can — according to the conventional wisdom — be treated as incompressible.
But the well-known Ma � 0.3 criterion is only a necessary criterion, not a sufficient one, to allow a treat-
ment of the flow as approximately incompressible. In other words, in some situations the Mach number
can be exceedingly small while the flow is compressible. As is well documented in heat transfer textbooks,
strong wall heating or cooling may cause the density to change sufficiently and the incompressible
approximation to break down, even at low speeds. Less known is the situation encountered in some
microdevices where the pressure may strongly change due to viscous effects even though the speeds may
not be high enough for the Mach number to go above the traditional threshold of 0.3. Corresponding to
the pressure changes would be strong density changes that must be taken into account when writing the
continuum equations of motion. In this section, we systematically explain all situations where compress-
ibility effects must be considered. Let us rewrite the full continuity Equation (4.11) as follows

	 ρ � 0 (4.27)
∂uk
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where

is the substantial derivative

� 	 uk �
expressing changes following a fluid element. The proper criterion for the incompressible approximation
to hold is that

� �
is vanishingly small. In other words, if density changes following a fluid particle are small, the flow is
approximately incompressible. Density may change arbitrarily from one particle to another without vio-
lating the incompressible flow assumption. This is the case, for example, in the stratified atmosphere and
ocean, where the variable-density/temperature/salinity flow is often treated as incompressible.

From the state principle of thermodynamics, we can express the density changes of a simple system in
terms of changes in pressure and temperature,

ρ � ρ(p, T) (4.28)

Using the chain rule of calculus,

� α � β (4.29)

where α and β are respectively the isothermal compressibility coefficient and the bulk expansion coeffi-
cient — two thermodynamic variables that characterize the fluid susceptibility to change of volume —
which are defined by the following relations

α(p, T) ≡ �
T

(4.30)

β(p, T) ≡ � �
p

(4.31)

For ideal gases, α � 1/p and β � 1/T. Note, however, that in the following arguments invoking the ideal
gas assumption will not be necessary. The flow must be treated as compressible if pressure- and/or 
temperature-changes — following a fluid element — are sufficiently strong. Equation (4.29) must, of
course, be properly nondimensionalized before deciding whether a term is large or small. Here, we follow
closely the procedure detailed in Panton (1996).

Consider first the case of adiabatic walls. Density is normalized with a reference value ρo, velocities
with a reference speed vo, spatial coordinates and time with respectively L and L/vo, the isothermal com-
pressibility coefficient and bulk expansion coefficient with reference values αo and βo. The pressure is
nondimensionalized with the inertial pressure-scale ρov

2
o. This scale is twice the dynamic pressure; that is,

the pressure change as an inviscid fluid moving at the reference speed is brought to rest.
Temperature changes for adiabatic walls can only result from the irreversible conversion of mechanical

energy into internal energy via viscous dissipation. Temperature is therefore nondimensionalized as follows

T* �
T � To �

T � To

� � Pr � �
(4.32)

where To is a reference temperature, µo, κo, and cpo
are respectively reference viscosity, thermal, conductiv-

ity, and specific heat at constant pressure, and Pr is the reference Prandtl number, (µocpo
)/κo.

v2
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In the present formulation, the scaling used for pressure is based on the Bernoulli’s equation and there-
fore neglects viscous effects. This particular scaling guarantees that the pressure term in the momentum
equation will be of the same order as the inertia term. The temperature scaling assumes that the conduc-
tion, convection, and dissipation terms in the energy equation have the same order of magnitude. The
resulting dimensionless form of Equation (4.29) reads

� γoMa2 �α* � � (4.33)

where the superscript * indicates a nondimensional quantity, Ma is the reference Mach number (vo/ao,
where ao is the reference speed of sound), and A and B are dimensionless constants defined by A ≡ αoρocpo

To

and B ≡ βoTo. If the scaling is properly chosen, the terms having the * superscript in the right-hand side
should be of order one, and the relative importance of such terms in the equations of motion is deter-
mined by the magnitude of the dimensionless parameters appearing to their left (e.g. Ma, Pr, etc.).
Therefore, as Ma2 → 0, temperature changes due to viscous dissipation are neglected (unless Pr is very
large as, for example, in the case of highly viscous polymers and oils). Within the same order of approx-
imation, all thermodynamic properties of the fluid are assumed constant.

Pressure changes are also neglected in the limit of zero Mach number. Hence, for Ma � 0.3 (i.e.,
Ma2 � 0.09), density changes following a fluid particle can be neglected and the flow can then be approx-
imated as incompressible.2 However, there is a caveat to this argument. Pressure changes due to inertia
can indeed be neglected at small Mach numbers, and this is consistent with the way we nondimensional-
ized the pressure term above. If, on the other hand, pressure changes are mostly due to viscous effects, as
is the case, for example, in a long microduct or a micro-gas-bearing, pressure changes may be significant
even at low speeds (low Ma). In that case the term

in Equation (4.33) is no longer of order one and may be large regardless of the value of Ma. Density then
may change significantly, and the flow must be treated as compressible. Had pressure been nondimen-
sionalized using the viscous scale

� �
instead of the inertial one

(ρo v 2
o)

the revised Equation (4.33) would have Re�1 appearing explicitly in the first term in the right-hand side,
accentuating this term’s importance when viscous forces dominate.

A similar result can be gleaned when the Mach number is interpreted as follows

Ma2 � � v2
o �

s

� �
s

� � (4.34)

where s is the entropy. Again, the above equation assumes that pressure changes are inviscid, and there-
fore small Mach number means negligible pressure and density changes. In a flow dominated by viscous
effects — such as that inside a microduct — density changes may be significant even in the limit of zero
Mach number.

Identical arguments can be made in the case of isothermal walls. Here strong temperature changes 
may be the result of wall heating or cooling even if viscous dissipation is negligible. The proper 
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temperature scale in this case is given in terms of the wall temperature Tw and the reference temperature
To as follows

�T � (4.35)

where�T is the new dimensionless temperature. The nondimensional form of Equation (4.29) now reads

� γoMa2α* � β*B � � (4.36)

Here we notice that the temperature term is different from that in Equation (4.33). Ma no longer appears
in this term, and strong temperature changes, that is, large (Tw � To)/To, may cause strong density
changes regardless of the value of the Mach number. Additionally, the thermodynamic properties of the
fluid are not constant but depend on temperature; as a result the continuity, momentum, and energy
equations all couple. The pressure term in Equation (4.36), on the other hand, is exactly as it was in the
adiabatic case, and the arguments made before apply: the flow should be considered compressible if
Ma � 0.3 or if pressure changes due to viscous forces are sufficiently large.

Experiments in gaseous microducts confirm the above arguments. For both low- and high-Mach-
number flows, pressure gradients in long microchannels are nonconstant, consistent with the compress-
ible flow equations. Such experiments were conducted by, among others, Prud’homme et al. (1986),
Pfahler et al. (1991), van den Berg et al. (1993), Liu et al. (1993, 1995), Pong et al. (1994), Harley et al.
(1995), Piekos and Breuer (1996), Arkilic (1997), and Arkilic et al. (1995, 1997a, 1997b). Sample results
will be presented in the following section.

In three additional scenarios significant pressure and density changes may take place without inertial,
viscous, or thermal effects. First is the case of quasi-static compression/expansion of a gas in, for exam-
ple, a piston-cylinder arrangement. The resulting compressibility effects are, however, compressibility of
the fluid and not of the flow. Two other situations where compressibility effects must also be considered
are problems with length-scales comparable to the scale height of the atmosphere and rapidly varying
flows as in sound propagation [Lighthill, 1963].

4.6 Boundary Conditions

The continuum equations of motion described earlier require a certain number of initial and boundary
conditions for proper mathematical formulation of flow problems. In this section, we describe the
boundary conditions at a fluid–solid interface. Boundary conditions in the inviscid flow theory pertain
only to the velocity component normal to a solid surface. The highest spatial derivative of velocity in the
inviscid equations of motion is first order, and only one velocity boundary condition at the surface is
admissible. The normal velocity component at a fluid–solid interface is specified, and no statement can
be made regarding the tangential velocity component. The normal-velocity condition simply states that
a fluid-particle path cannot go through an impermeable wall. Real fluids are viscous, of course, and the
corresponding momentum equation has second-order derivatives of velocity, thus requiring an addi-
tional boundary condition on the velocity component tangential to a solid surface.

Traditionally, the no-slip condition at a fluid–solid interface is enforced in the momentum equation,
and an analogous no-temperature-jump condition is applied in the energy equation. The notion under-
lying the no-slip/no-jump condition is that within the fluid there cannot be any finite discontinuities of
velocity/temperature. Those would involve infinite velocity/temperature gradients and so produce infi-
nite viscous stress/heat flux that would destroy the discontinuity in infinitesimal time. The interaction
between a fluid particle and a wall is similar to that between neighboring fluid particles, and therefore no
discontinuities are allowed at the fluid–solid interface either. In other words, the fluid velocity must be zero
relative to the surface, and the fluid temperature must be equal to that of the surface. But strictly speak-
ing those two boundary conditions are valid only if the fluid flow adjacent to the surface is in thermody-
namic equilibrium. This requires an infinitely high frequency of collisions between the fluid and the solid
surface. In practice, the no-slip/no-jump condition leads to fairly accurate predictions as long as

D�T�
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�
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�
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Kn � 0.001 (for gases). Beyond that, the collision frequency is simply not high enough to ensure equilib-
rium, and a certain degree of tangential-velocity slip and temperature jump must be allowed. This is a
case frequently encountered in MEMS flows, and we develop the appropriate relations in this section.

For both liquids and gases, the linear Navier boundary condition empirically relates the tangential
velocity slip at the wall ∆u|w to the local shear

∆u|w � ufluid � uwall � Ls �
w

(4.37)

where Ls is the constant slip length, and

�
w

is the strain rate computed at the wall. In most practical situations, the slip length is so small that the 
no-slip condition holds. In MEMS applications, however, that may not be the case. Once again we defer
the discussion of liquids to a later section and focus for now on gases.

Assuming isothermal conditions prevail, the above slip relation has been rigorously derived by
Maxwell (1879) from considerations of the kinetic theory of dilute, monatomic gases. Gas molecules,
modeled as rigid spheres, continuously strike and reflect from a solid surface, just as they continuously
collide with each other. For an idealized perfectly smooth wall (at the molecular scale), the incident angle
exactly equals the reflected angle, and the molecules conserve their tangential momentum and thus exert
no shear on the wall. This is termed specular reflection and results in perfect slip at the wall. For an
extremely rough wall, on the other hand, the molecules reflect at some random angle uncorrelated with
their entry angle. This perfectly diffuse reflection results in zero tangential-momentum for the reflected
fluid molecules to be balanced by a finite slip velocity in order to account for the shear stress transmitted
to the wall. A force balance near the wall leads to the following expression for the slip velocity

ugas � uwall � L �
w

(4.38)

where L is the mean free path. The right-hand side can be considered as the first term in an infinite Taylor
series, sufficient if the mean free path is relatively small enough. Equation (4.38) states that significant slip
occurs only if the mean velocity of the molecules varies appreciably over a distance of one mean free path.
This is the case, for example, in vacuum applications and/or flow in microdevices. The number of colli-
sions between the fluid molecules and the solid in those cases is not large enough for even an approxi-
mate flow equilibrium to be established. Furthermore, additional (nonlinear) terms in the Taylor series
would be needed as L increases and the flow is further removed from the equilibrium state.

For real walls some molecules reflect diffusively and some reflect specularly. In other words, a portion of
the momentum of the incident molecules is lost to the wall, and a (typically smaller) portion is retained
by the reflected molecules. The tangential-momentum-accommodation coefficient σv is defined as the
fraction of molecules reflected diffusively. This coefficient depends on the fluid, the solid, and the surface
finish and has been determined experimentally to be between 0.2–0.8 [Thomas and Lord, 1974; Seidl and
Steiheil, 1974; Porodnov et al., 1974; Arkilic et al., 1997b; Arkilic, 1997], the lower limit being for excep-
tionally smooth surfaces while the upper limit is typical of most practical surfaces. The final expression
derived by Maxwell for an isothermal wall reads

ugas � uwall � L �
w

(4.39)

For σv � 0 the slip velocity is unbounded, while for σv � 1, Equation (4.39) reverts to (4.38).
Similar arguments were made for the temperature-jump boundary condition by von Smoluchowski

(1898). For an ideal gas flow in the presence of wall-normal and tangential temperature gradients, the
complete (first-order) slip-flow and temperature-jump boundary conditions read

∂u
�∂y

2 � σv
�σv

∂u
�∂y

∂u
�∂y

∂u
�∂y
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ugas � uwall �
1 τw 	 (�qx)w

� L � �
w

	 � �
w

(4.40)

Tgas � Twall � 	 
 1
(�qy)w

� 	 
 � �
w

(4.41)

where x and y are the streamwise and normal coordinates, ρ and µ are respectively the fluid density and
viscosity, � is the gas constant, Tgas is the temperature of the gas adjacent to the wall, Twall is the wall tem-
perature, τw is the shear stress at the wall, Pr is the Prandtl number, γ is the specific heat ratio, and qx and
qy are respectively the tangential and normal heat flux at the wall.

The tangential-momentum-accommodation coefficient σv and the thermal-accommodation coeffi-
cient σT are given by respectively

σv � (4.42)

σT � (4.43)

where the subscripts i, r, and w stand for respectively incident, reflected, and solid wall conditions, τ is a
tangential momentum flux, and dE is an energy flux.

The second term in the right-hand side of Equation (4.40) is the thermal creep, which generates slip
velocity in the fluid opposite to the direction of the tangential heat flux (i.e., flow in the direction of
increasing temperature). At sufficiently high Knudsen numbers, a streamwise temperature gradient in a
conduit leads to a measurable pressure gradient along the tube. This may be the case in vacuum applica-
tions and MEMS devices. Thermal creep is the basis for the so-called Knudsen pump — a device with no
moving parts — in which rarefied gas is hauled from a cold chamber to a hot one.3 Clearly, such a pump
performs best at high Knudsen numbers and is typically designed to operate in the free-molecule flow
regime.

In dimensionless form, Equations (4.40) and (4.41), respectively, read

u*gas � u*wall � Kn � �
w

	 � �
w

(4.44)

T *
gas � T *

wall � 	 
 � �
w

(4.45)
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where the superscript * indicates dimensionless quantity, Kn is the Knudsen number, Re is the Reynolds
number, and Ec is the Eckert number defined by

Ec � � (γ � 1) Ma2
(4.46)

where vo is a reference velocity, ∆T � (Tgas � To), and To is a reference temperature. Note that very low
values of σv and σT lead to substantial velocity slip and temperature jump even for flows with small a
Knudsen number.

The first term in the right-hand side of Equation (4.44) is first order in Knudsen number, while the
thermal creep term is second order, meaning that the creep phenomenon is potentially significant at large
values of the Knudsen number. Equation (4.45) is first order in Kn. Using Equations (4.8) and (4.46), the
thermal creep term in Equation (4.44) can be rewritten in terms of ∆T and Reynolds number. Thus,

u*gas � u*wall � Kn � �
w

	 � �
w

(4.47)

Large temperature changes along the surface or low Reynolds numbers clearly lead to significant thermal
creep.

The continuum Navier–Stokes equations with no-slip/no-temperature jump boundary conditions are
valid as long as the Knudsen number does not exceed 0.001. First-order slip/temperature-jump bound-
ary conditions should be applied to the Navier–Stokes equations in the range of 0.001 � Kn � 0.1. The
transition regime spans the range of 0.1 � Kn � 10, in which second-order or higher slip/temperature-
jump boundary conditions are applicable. Note, however, that the Navier–Stokes equations are first-order
accurate in Kn as will be shown later, and are themselves not valid in the transition regime. Either higher-
order continuum equations (e.g., Burnett equations), should be used there, or molecular modeling
should be invoked abandoning the continuum approach altogether.

For isothermal walls, Beskok (1994) derived a higher-order slip-velocity condition as follows

ugas � uwall � 	L � �
w

	 � �
w

	 � �
w

	 …
 (4.48)

Attempts to implement the above slip condition in numerical simulations are rather difficult. Second-
order and higher derivatives of velocity cannot be computed accurately near the wall. Based on asymp-
totic analysis, Beskok (1996) and Beskok and Karniadakis (1994, 1999) proposed the following alternative
higher-order boundary condition for the tangential velocity, including the thermal creep term,

u*gas � u*wall � � �
w

	 � �
w

(4.49)

where b is a high-order slip coefficient determined from the presumably known no-slip solution, thus
avoiding the computational difficulties mentioned above. If this high-order slip coefficient is chosen as
b � u�w /uw, where the prime denotes derivative with respect to y and the velocity is computed from the
no-slip Navier–Stokes equations, Equation (4.49) becomes second-order accurate in Knudsen number.
Beskok’s procedure can be extended to third- and higher-orders for both the slip-velocity and thermal
creep terms.

Similar arguments can be applied to the temperature-jump boundary condition, and the resulting
Taylor series reads in dimensionless form (Beskok, 1996),

T *
gas � T *

wall � 	 
 	Kn � �
w

	 � �
w

	 …
 (4.50)
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Again, the difficulties associated with computing second- and higher-order derivatives of temperature are
alleviated using an identical procedure to that utilized for the tangential velocity boundary condition.

Several experiments in low-pressure macroducts or in microducts confirm the necessity of applying
slip boundary condition at sufficiently large Knudsen numbers. Among them are those conducted by
Knudsen (1909), Pfahler, et al. (1991), Tison (1993), Liu et al. (1993, 1995), Pong et al. (1994), Arkilic
et al. (1995), Harley et al. (1995), and Shi et al. (1995, 1996). The experiments are complemented by the
numerical simulations carried out by Beskok (1994, 1996), Beskok and Karniadakis (1994, 1999), Beskok
et al. (1996), and Karniadakis and Beskok (2002). Here we present selected examples of the experimental
and numerical results.

Tison (1993) conducted pipe flow experiments at very low pressures. His pipe had a diameter of 2 mm
and a length-to-diameter ratio of 200. Both inlet and outlet pressures were varied to yield Knudsen num-
ber in the range of Kn � 0–200. Figure 4.3 shows the variation of mass flow rate as a function of (p2

i � p2
o),

where pi is the inlet pressure and po is the outlet pressure.4 The pressure drop in this rarefied pipe flow is
nonlinear, characteristic of low-Reynolds-number compressible flows. Three distinct flow regimes are
identified: (1) slip flow regime, 0 � Kn � 0.6; (2) transition regime, 0.6 � Kn � 17, where the mass
flowrate is almost constant as the pressure changes; and (3) free-molecule flow, Kn � 17. Note that the
demarcation between these three regimes is slightly different from that mentioned earlier. As stated, the
different Knudsen number regimes are determined empirically and are therefore only approximate for 
a particular flow geometry.

Shih et al. (1995) conducted their experiments in a microchannel using helium as a fluid. The inlet
pressure varied, but the duct exit was atmospheric. Microsensors were fabricated in situ along their
MEMS channel to measure the pressure. Figure 4.4 shows their measured mass flow rate versus the inlet
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FIGURE 4.3 Variation of mass flowrate as a function of (p2
i � p2

o). Original data acquired by S.A. Tison and plotted
by Beskok et al. (1996). (Reprinted with permission from Beskok et al. [1996] “Simulation of Heat and Momentum
Transfer in Complex Micro-Geometries,” J. Thermophys. & Heat Transfer 8, pp. 355–70.)

4The original data in this figure were acquired by S.A. Tison and plotted by Beskok et al. (1996).
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pressure. The data are compared to the no-slip solution and the slip solution using three different values
of the tangential-momentum-accommodation coefficient, 0.8, 0.9, and 1.0. The agreement is reasonable
with the case σv � 1, indicating perhaps that the channel used by Shih et al., was quite rough on the
molecular scale. In a second experiment [Shih et al., 1996], nitrous oxide was used as the fluid. The square
of the pressure distribution along the channel is plotted for five different inlet pressures in Figure 4.5. The
experimental data (symbols) compare well with the theoretical predictions (solid lines). Again, the non-
linear pressure drop shown indicates that the gas flow is compressible.

Arkilic (1997) provided an elegant analysis of the compressible, rarefied flow in a microchannel. The
results of his theory are compared to the experiments of Pong et al., (1994) in Figure 4.6. The dotted line is
the incompressible flow solution, where the pressure is predicted to drop linearly with streamwise distance.
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The dashed line is the compressible flow solution that neglects rarefaction effects (assumes Kn � 0).
Finally, the solid line is the theoretical result that takes into account both compressibility and rarefaction
via slip-flow boundary condition computed at the exit Knudsen number of Kn � 0.06. That theory com-
pares most favorably with the experimental data. In the compressible flow through the constant-area
duct, density decreases and thus velocity increases in the streamwise direction. As a result, the pressure
distribution is nonlinear with negative curvature. A moderate Knudsen number (i.e., moderate slip) actu-
ally diminishes, albeit rather weakly, this curvature. Thus, compressibility and rarefaction effects lead to
opposing trends, as pointed out by Beskok et al. (1996).

4.7 Molecular-Based Models

In the continuum models discussed thus far, the macroscopic fluid properties are the dependent variables
while the independent variables are the three spatial coordinates and time. The molecular models recog-
nize the fluid as a myriad of discrete particles: molecules, atoms, ions, and electrons. The goal here is to
determine the position, velocity, and state of all particles at all times. The molecular approach is either
deterministic or probabilistic (refer to Figure 4.1). Provided that there is a sufficient number of micro-
scopic particles within the smallest significant volume of a flow, the macroscopic properties at any loca-
tion in the flow can then be computed from the discrete-particle information by a suitable averaging or
weighted averaging process. The present section discusses molecular-based models and their relation to
the continuum models previously considered.

The most fundamental of the molecular models is deterministic. The motion of the molecules is gov-
erned by the laws of classical mechanics, although at the expense of greatly complicating the problem, the
laws of quantum mechanics can also be considered in special circumstances. The modern molecular
dynamics computer simulations (MD) have been pioneered by Alder and Wainwright (1957, 1958, 1970)
and reviewed by Ciccotti and Hoover (1986), Allen and Tildesley (1987), Haile (1993), and Koplik and
Banavar (1995). The simulation begins with a set of N molecules in a region of space, each assigned a ran-
dom velocity corresponding to a Boltzmann distribution at the temperature of interest. The interaction
between the particles is prescribed typically in the form of a two-body potential energy and the time evo-
lution of the molecular positions is determined by integrating Newton’s equations of motion. Because
MD is based on the most basic set of equations, it is valid in principle for any flow extent and any range
of parameters. The method is straightforward in principle but there are two hurdles: (1) choosing a

Flow Physics 4-17

2.8

2.4

0.8
0.2
Nondimensional position (x)

N
on

di
m

en
si

on
al

 p
re

ss
ur

e

0.4 0.6 0.80 1

1.6

1.2

   2

Pong et al. (1994)
Outlet Knudsen number = 0.0
Outlet Knudsen number = 0.06
Incompressible flow solution

FIGURE 4.6 Pressure distribution in a long microchannel. The symbols are experimental data while the lines are
different theoretical predictions. (Reprinted with permission from Arkilic [1997] Measurement of the Mass Flow and
Tangential Momentum Accommodation Coefficient in Silicon Micromachined Channels, Ph.D. thesis, Massachusetts
Institute of Technology.)

© 2006 by Taylor & Francis Group, LLC



proper and convenient potential for particular fluid and solid combinations, and (2) the colossal
computer resources required to simulate a reasonable flowfield extent.

For purists, the former difficulty is a sticky one. There is no totally rational methodology by which a
convenient potential can be chosen. Part of the art of MD is to pick an appropriate potential and validate
the simulation results with experiments or other analytical/computational results. A commonly used
potential between two molecules is the generalized Lennart-Jones 6–12 potential, to be used in the 
following section and further discussed in the section following that.

The second difficulty, and by far the most serious limitation of molecular dynamics simulations, is the
number of molecules N that can realistically be modeled on a digital computer. Since the computation of
an element of trajectory for any particular molecule requires consideration of all other molecules as
potential collision partners, the amount of computation required by the MD method is proportional to N2.
Some savings in computer time can be achieved by cutting off the weak tail of the potential (see Figure 4.11)
at, say, rc � 2.5 σ, and shifting the potential by a linear term in r so that the force goes smoothly to zero
at the cutoff. As a result, only nearby molecules are treated as potential collision partners, and the 
computation time for N molecules no longer scales with N2.

The state of the art of molecular dynamics simulations in the early 2000s is such that with a few hours
of CPU time general purpose supercomputers can handle around 100,000 molecules. At enormous
expense, the fastest parallel machine available can simulate around 10 million particles. Because of the
extreme diminution of molecular scales, the above translates into regions of liquid flow of about 0.06 µm
(600 angstroms) in linear size, over time intervals of around 0.001 µsec, enough for continuum behavior
to set in for simple molecules. To simulate 1 sec of real time for complex molecular interactions (e.g.,
vibration modes, reorientation of polymer molecules, collision of colloidal particles, etc.) requires 
unrealistic CPU time measured in hundreds of years.

MD simulations are highly inefficient for dilute gases where the molecular interactions are infrequent.
The simulations are more suited for dense gases and liquids. Clearly, molecular dynamics simulations are
reserved for situations where the continuum approach or the statistical methods are inadequate to com-
pute from first principles important flow quantities. Slip boundary conditions for liquid flows in
extremely small devices are such a case, as will be discussed in the following section.

An alternative to the deterministic molecular dynamics is the statistical approach where the goal is to
compute the probability of finding a molecule at a particular position and state. If the appropriate con-
servation equation can be solved for the probability distribution, important statistical properties, such as
the mean number, momentum, or energy of the molecules within an element of volume, can be com-
puted from a simple weighted averaging. In a practical problem, it is such average quantities that concern
us rather than the detail for every single molecule. Clearly, however, the accuracy of computing average
quantities via the statistical approach improves as the number of molecules in the sampled volume
increases. The kinetic theory of dilute gases is well advanced, but that of dense gases and liquids is much
less so due to the extreme complexity of having to include multiple collisions and intermolecular forces
in the theoretical formulation. The statistical approach is well covered in books such as those by Kennard
(1938), Hirschfelder et al. (1954), Schaaf and Chambré (1961), Vincenti and Kruger (1965), Kogan
(1969), Chapman and Cowling (1970), Cercignani (1988, 2000) and Bird (1994), and review articles such
as those by Kogan (1973), Muntz (1989), and Oran et al. (1998).

In the statistical approach, the fraction of molecules in a given location and state is the sole dependent
variable. The independent variables for monatomic molecules are time, the three spatial coordinates, and
the three components of molecular velocity. Those describe a six-dimensional phase space.5 For diatomic
or polyatomic molecules, the dimension of phase space is increased by the number of internal degrees of
freedom. Orientation adds an extra dimension for molecules that are not spherically symmetric. Finally,
for mixtures of gases, separate probability distribution functions are required for each species. Clearly, the
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complexity of the approach increases dramatically as the dimension of phase space increases. The sim-
plest problems are, for example, those for steady, one-dimensional flow of a simple monatomic gas.

To simplify the problem we restrict the discussion here to monatomic gases having no internal degrees
of freedom. Furthermore, the fluid is restricted to dilute gases and molecular chaos is assumed. The for-
mer restriction requires the average distance between molecules δ to be an order of magnitude larger than
their diameter σ. That will almost guarantee that all collisions between molecules are binary collisions,
avoiding the complexity of modeling multiple encounters.6 The molecular chaos restriction improves the
accuracy of computing the macroscopic quantities from the microscopic information. In essence, the vol-
ume over which averages are computed has to have enough molecules to reduce statistical errors. It can
be shown that computing macroscopic flow properties by averaging over a number of molecules will
result in statistical fluctuations with a standard deviation of approximately 0.1% if one million molecules
are used and around 3% if one thousand molecules are used. The molecular chaos limit requires the
length-scale L for the averaging process to be at least 100 times the average distance between molecules
(i.e., typical averaging over at least one million molecules).

Figure 4.7, adapted from Bird (1994), shows the limits of validity of the dilute gas approximation
(δ/σ � 7), the continuum approach (Kn � 0.1, as discussed previously), and the neglect of statistical
fluctuations (L/δ � 100). Using a molecular diameter of σ � 4 �10–10 m as an example, the three limits
are conveniently expressed as functions of the normalized gas density ρ/ρo or number density n/no, where
the reference densities ρo and no are computed at standard conditions. All three limits are straight lines in
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the log–log plot of L versus ρ/ρo, as depicted in Figure 4.7. Note the shaded triangular wedge inside which
both the Boltzmann and Navier–Stokes equations are valid. Additionally, the lines describing the three
limits very nearly intersect at a single point. As a consequence, the continuum breakdown limit always lies
between the dilute gas limit and the limit for molecular chaos. As density or characteristic dimension is
reduced in a dilute gas, the Navier–Stokes model breaks down before the level of statistical fluctuations
becomes significant. In a dense gas, on the other hand, significant fluctuations may be present even when
the Navier–Stokes model is still valid.

The starting point in statistical mechanics is the Liouville equation, which expresses the conservation
of the N-particle distribution function in 6N-dimensional phase space,7 where N is the number of
particles under consideration. Considering only external forces that do not depend on the velocity of the
molecules,8 the Liouville equation for a system of N mass points reads

	 
N

k�1

ξ
→

k � 	 
N

k�1

F
→

k � = 0 (4.51)

where � is the probability of finding a molecule at a particular point in phase space, t is time, ξ
→

k is the
three-dimensional velocity vector for the kth molecule, x→k is the three-dimensional position vector for the
kth molecule, and F

→
is the external force vector. Note that the dot product in Equation (4.51) is carried

out over each of the three components of the vectors ξ
→

, x→ and F
→

and that the summation is overall mol-
ecules. Obviously such an equation is not tractable for a realistic number of particles.

A hierarchy of reduced distribution functions may be obtained by repeated integration of the Liouville
equation above. The final equation in the hierarchy is for the single particle distribution, which also involves
the two-particle distribution function. Assuming molecular chaos, that final equation becomes a closed
one (i.e., one equation in one unknown) and is known as the Boltzmann equation, the fundamental relation
of the kinetic theory of gases. That final equation in the hierarchy is the only one that offers any hope of
obtaining analytical solutions.

A simpler direct derivation of the Boltzmann equation is provided by Bird (1994). For monatomic gas
molecules in binary collisions, the integro-differential Boltzmann equation reads

	 ξj 	 Fj � J( f, f *), j � 1, 2, 3 (4.52)

where nf is the product of the number density and the normalized velocity distribution function
(dn/n � fdξ

→
), xj, and ξj are respectively the coordinates and speeds of a molecule,9 Fj is a known external

force, and J( f, f *)is the nonlinear collision integral that describes the net effect of populating and depop-
ulating collisions on the distribution function. The collision integral is the source of difficulty in obtain-
ing analytical solutions to the Boltzmann equation and is given by

J( f, f *) � ��

��
�4π

0

n2( f *f *1 � f f1) ξ
→

r σdΩ(dξ
→

)1 (4.53)

where the superscript * indicates postcollision values, f and f1 represent two different molecules, ξ
→

r is the
relative speed between two molecules, σ is the molecular cross-section, Ω is the solid angle, and
dξ

→
� dξ1dξ2dξ3.

Once a solution for f is obtained, macroscopic quantities, such as density, velocity, and temperature,
can be computed from the appropriate weighted integral of the distribution function. For example,

ρ � mn � m�(n f )dξ
→

(4.54)

ui � �ξi fdξ
→

(4.55)

∂(nf)
�∂ξj

∂(nf)
�∂xj

∂(nf)
�∂t

∂�
�
∂ξ

→

k

∂�
�∂x→k

∂�
�∂t
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7Three positions and three velocities for each molecule of a monatomic gas with no internal degrees of freedom.
8This excludes Lorentz forces, for example.
9Constituting together with time the seven independent variables of the single-dependent-variable equation.
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kT � ∫ mξi ξi fdξ
→

(4.56)

If the Boltzmann equation is nondimensionalized with a characteristic length L and characteristic
speed [2(k/m)T]1/2, where k is the Boltzmann constant, m is the molecular mass, and T is temperature,
the inverse Knudsen number appears explicitly in the right-hand side of the equation as follows:

	 ξ�j 	�Fj � J�(�f , �f *), j � 1, 2, 3 (4.57)

where the topping symbol � represents a dimensionless variable, and �f is nondimensionalized using a
reference number density no.

The five conservation equations for the transport of mass, momentum, and energy can be derived by
multiplying the Boltzmann equation above by the molecular mass, momentum, and energy respectively,
then integrating overall possible molecular velocities. Subject to the restrictions of dilute gas and molec-
ular chaos stated earlier, the Boltzmann equation is valid for all ranges of Knudsen number from 0 to ∞.
Analytical solutions to this equation for arbitrary geometries are difficult mostly because of the nonlin-
earity of the collision integral. Simple models of this integral have been proposed to facilitate analytical
solutions [see, for example, Bhatnagar et al. (1954)].

There are two important asymptotes to Equation (4.57). First, as Kn → ∞, molecular collisions become
unimportant. This is the free-molecule flow regime depicted in Figure 4.2 for Kn � 10, where the only impor-
tant collision is that between a gas molecule and the solid surface of an obstacle or a conduit. Analytical solu-
tions are then possible for simple geometries, and numerical simulations for complicated geometries are
straightforward once the surface-reflection characteristics are accurately modeled. Second, as Kn → 0, colli-
sions become important and the flow approaches the continuum regime of conventional fluid dynamics. The
Second Law specifies a tendency for thermodynamic systems to revert to equilibrium state, smoothing any
discontinuities in macroscopic flow quantities. The number of molecular collisions in the limit Kn → 0 is so
large that the flow approaches the equilibrium state in a time that is short compared to the macroscopic time-
scale. For example, for air at standard conditions (T � 288 K; p � 1 atm), each molecule experiences on
average 10 collisions per nanosecond and travels 1 micron in the same time. Such a molecule has already for-
gotten its previous state after 1 nsec. In a particular flowfield, if the macroscopic quantities vary little over a
distance of 1 µm or over a time interval of 1 nsec, the flow of STP air is near equilibrium.

At Kn � 0, the velocity distribution function is everywhere of the local equilibrium or Maxwellian form

�f (0) � π�3/2 exp[�(�ξ ��u)2] (4.58)

where ξ� and u� are the dimensionless speeds respectively of a molecule and of the flow. In this Knudsen
number limit, the velocity distribution of each element of the fluid instantaneously adjusts to the equi-
librium thermodynamic state appropriate to the local macroscopic properties as this molecule moves
through the flow field. From the continuum viewpoint, the flow is isentropic, and heat conduction and
viscous diffusion and dissipation vanish from the continuum conservation relations.

The Chapman–Enskog theory attempts to solve the Boltzmann equation by considering a small per-
turbation of f� from the equilibrium Maxwellian form. For small Knudsen numbers, the distribution
function can be expanded in terms of Kn in the form of a power series

�f � �f (0) 	 Kn�f (1) 	 Kn2�f (2) 	 … (4.59)

By substituting the above series in the Boltzmann Equation (4.57) and equating terms of equal order, we
arrive at the following recurrent set of integral equations:

�J(�f (0), �f (0)) � 0,

�J(�f (0), �f (1)) � 	 �ξj
	 �Fj , … (4.60)
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The first integral is nonlinear, and its solution is the local Maxwellian distribution, Equation (4.58). Each
of the distribution functions �f (1), �f (2), etc., satisfies an inhomogeneous linear equation whose solution
leads to the transport terms needed to close the continuum equations appropriate to the particular level
of approximation. The continuum stress tensor and heat flux vector can be written in terms of the dis-
tribution function, which in turn can be specified in terms of the macroscopic velocity and temperature
and their derivatives [Kogan, 1973]. The zeroth-order equation yields the Euler equations, the first-order
equation results in the linear transport terms of the Navier–Stokes equations, the second-order equation
gives the nonlinear transport terms of the Burnett equations, and so on. Keep in mind, however, that the
Boltzmann equation as developed in this section is for a monatomic gas. This excludes the all-important
air, which is composed largely of diatomic nitrogen and oxygen.

As discussed earlier, the Navier–Stokes equations can and should be used up to a Knudsen number of 0.1.
Beyond that, the transition flow regime commences (0.1 � Kn � 10). In this flow regime, the molecular
mean free path for a gas becomes significant relative to a characteristic distance for important flow-
property changes to take place. The Burnett equations can be used to obtain analytical/numerical solu-
tions for at least a portion of the transition regime for a monatomic gas, although their complexity has
limited the results for realistic geometries (Agarwal et al., 1999, 2001; Lockerby and Reese, 2003). There
is also a certain degree of uncertainty about the proper boundary conditions to use with the continuum
Burnett equations, and experimental validation of the results has been very scarce. Additionally, as the gas
flow departs farther from equilibrium, the bulk viscosity (�λ 	 �

2
3

�µ, where λ is the second coefficient of
viscosity) is no longer zero, and Stokes’ hypothesis no longer holds (see Gad-el-Hak, 1995, for an 
interesting summary of the issue of bulk viscosity).

In the transition regime, the molecularly-based Boltzmann equation cannot easily be solved either, unless
the nonlinear collision integral is simplified. So, clearly, the transition regime is in dire need of alterna-
tive solutions. MD simulations as mentioned earlier are not suited for dilute gases. The best approach for
the transition regime right now is the direct simulation Monte Carlo (DSMC) method developed by Bird
(1963, 1965, 1976, 1978, 1994) and briefly described below. Some recent reviews of DSMC include those
by Muntz (1989), Cheng (1993), Cheng and Emmanuel (1995), and Oran et al. (1998). The mechanics as
well as the history of the DSMC approach and its ancestors are well described in Bird (1994).

Unlike molecular dynamics simulations, DSMC is a statistical computational approach to solving rar-
efied gas problems. Both approaches treat a gas as discrete particles. Subject to the dilute gas and molec-
ular chaos assumptions, the direct simulation Monte Carlo method is valid for all ranges of Knudsen
number, although it becomes quite expensive for Kn � 0.1. Fortunately, this is the continuum regime
where the Navier–Stokes equations can be used analytically or computationally. DSMC is therefore ideal
for the transition regime (0.1 � Kn � 10), where the Boltzmann equation is difficult to solve. The Monte
Carlo method is, like its namesake, a random-number strategy based directly on the physics of the indi-
vidual molecular interactions. The idea is to track a large number of randomly selected, statistically rep-
resentative particles, and to use their motions and interactions to modify their positions and states. The
primary approximation of the direct simulation Monte Carlo method is to uncouple the molecular
motions and the intermolecular collisions over small time intervals. A significant advantage of this
approximation is that the amount of computation required is proportional to N, in contrast to N2 for
molecular dynamics simulations. In essence, particle motions are modeled deterministically, while colli-
sions are treated probabilistically, each simulated molecule representing a large number of actual mole-
cules. Typical computer runs of DSMC in the 1990s involved tens of millions of intermolecular collisions
and fluid–solid interactions.

The DSMC computation is started from some initial condition and followed in small time steps that
can be related to physical time. Colliding pairs of molecules in a small geometric cell in physical space are
randomly selected after each computational time step. Complex physics such as radiation, chemical reac-
tions, and species concentrations can be included in the simulations without the necessity of nonequilib-
rium thermodynamic assumptions that commonly afflict nonequilibrium continuum-flow calculations.
DSMC is more computationally intensive than classical continuum simulations, and should therefore be
used only when the continuum approach is not feasible.
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The DSMC technique is explicit and time marching and therefore always produces unsteady flow sim-
ulations. For macroscopically steady flows, Monte Carlo simulation proceeds until a steady flow is estab-
lished within a desired accuracy at sufficiently large time. The macroscopic flow quantities are then the
time average of all values calculated after reaching the steady state. For macroscopically unsteady flows,
ensemble averaging of many independent Monte Carlo simulations is carried out to obtain the final
results within a prescribed statistical accuracy.

4.8 Liquid Flows

From the continuum point of view, liquids and gases are both fluids obeying the same equations of
motion. For incompressible flows, for example, the Reynolds number is the primary dimensionless param-
eter that determines the nature of the flow field. True, water, for example, has density and viscosity that are
respectively three orders and two orders of magnitude higher than those for air, but if the Reynolds num-
ber and geometry are matched, liquid and gas flows should be identical.10 For MEMS applications, how-
ever, we anticipate the possibility of nonequilibrium flow conditions and the consequent invalidity of the
Navier–Stokes equations and the no-slip boundary conditions. Such circumstances can best be researched
using the molecular approach. We discussed this for gases earlier and will give the corresponding argu-
ments for liquids in the present section. The literature on non-Newtonian fluids in general and polymers
in particular is vast (for example, the bibliographic survey by Nadolink and Haigh, 1995, cites over 4,900
references on polymer drag reduction alone) and provides a rich source of information on the molecu-
lar approach for liquid flows.

Solids, liquids, and gases are distinguished merely by the degree of proximity and the intensity of motions
of their constituent molecules. In solids, the molecules are packed closely and confined, each hemmed in
by its neighbors [Chapman and Cowling, 1970]. Only rarely would one solid molecule slip from its neigh-
bors to join a new set. As the solid is heated, molecular motion becomes more violent, and a slight ther-
mal expansion takes place. At a certain temperature that depends on ambient pressure, sufficiently intense
motion of the molecules enables them to pass freely from one set of neighbors to another. The molecules
are no longer confined but are nevertheless still closely packed, and the substance is now considered a liquid.
Further heating of the matter eventually releases the molecules altogether, allowing them to break the bonds
of their mutual attractions. Unlike solids and liquids, the resulting gas expands to fill any available volume.

Unlike solids, neither liquids nor gases can resist finite shear force without continuous deformation; that
is, the definition of a fluid medium. In contrast to the reversible, elastic, static deformation of a solid, the con-
tinuous deformation of a fluid resulting from the application of a shear stress results in an irreversible
work that eventually becomes random thermal motion of the molecules — that is, viscous dissipation.
There are around 25 million molecules of STP air in a 1 µm cube. The same cube would contain around
34 billion molecules of water. So liquid flows are a continuum even in extremely small devices through
which gas flows would not be a continuum. The average distance between molecules in the gas example is
one order of magnitude higher than the diameter of its molecules, while that for the liquid phase
approaches the molecular diameter. As a result, liquids are almost incompressible. Their isothermal com-
pressibility coefficient α and bulk expansion coefficient β are much smaller than those for gases. For water,
for example, a hundredfold increase in pressure leads to a less than 0.5% decrease in volume. Sound speeds
through liquids are also higher than through gases, and as a result most liquid flows are incompressible.11

The exception is the propagation of ultra-high-frequency sound waves and cavitation phenomena.
The mechanism by which liquids transport mass, momentum, and energy must be very different from that

for gases. In dilute gases, intermolecular forces play no role, and the molecules spend most of their time
in free flight between brief collisions that abruptly change their direction and speed. The random molecular
motions are responsible for gaseous transport processes. In liquids, on the other hand, the molecules are
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closely packed though not fixed in one position. In essence, the liquid molecules are always in a collision state.
Applying a shear force must create a velocity gradient so that the molecules move relative to one another,
ad infinitum as long as the stress is applied. For liquids, momentum transport due to the random molec-
ular motion is negligible compared to that due to the intermolecular forces. The straining between liquid
molecules causes some to separate from their original neighbors, bringing them into the force field of new
molecules. Across the plane of the shear stress, the sum of all intermolecular forces must, on average, balance
the imposed shear. Liquids at rest transmit only normal force, but when a velocity gradient occurs, the net
intermolecular force has a tangential component.

The incompressible Navier–Stokes equations describe liquid flows under most circumstances. Liquids,
however, do not have a well-advanced molecular-based theory like that for dilute gases. The concept of
mean free path is not very useful for liquids, and the conditions under which a liquid flow fails to be in
quasi-equilibrium state are not well defined. There is no Knudsen number to guide us through the maze
of liquid flows. We do not know from first principles the conditions under which the no-slip boundary
condition becomes inaccurate or the point at which the stress–rate of strain relation or the heat flux–
temperature gradient relation fails to be linear. Certain empirical observations indicate that those simple
relations that we take for granted occasionally fail to accurately model liquid flows. For example, it has
been shown in rheological studies (Loose and Hess, 1989) that non-Newtonian behavior commences
when the strain rate approximately exceeds twice the molecular frequency-scale

γ. � � 2 ��1 (4.61)

where the molecular time-scale � is given by

� � 	 
 (4.62)

where m is the molecular mass, and σ and ε are respectively the characteristic length- and energy-scale for
the molecules. For ordinary liquids such as water, this time-scale is extremely small and the threshold shear
rate for the onset of non-Newtonian behavior is therefore extraordinarily high. For high-molecular-weight
polymers, on the other hand, m and σ are both many orders of magnitude higher than their respective
values for water, and the linear stress–strain relation breaks down at realistic values of the shear rate.

The moving contact line when a liquid spreads on a solid substrate is an example where slip-flow must
be allowed to avoid singular or unrealistic behavior in the Navier–Stokes solutions [Dussan and Davis,
1974; Dussan, 1976, 1979; Thompson and Robbins, 1989]. Other examples where slip-flow must be
admitted include corner flows [Moffatt, 1964; Koplik and Banavar, 1995] and extrusion of polymer melts
from capillary tubes [Pearson and Petrie, 1968; Richardson, 1973; Den, 1990].

Existing experimental results of liquid flow in microdevices are contradictory. This is not surprising
given the difficulty of such experiments and the lack of a guiding rational theory. Pfahler et al. (1990,
1991), Pfahler (1992), and Bau (1994) summarize the relevant literature. For small-length-scale flows,
a phenomenological approach for analyzing the data is to define an apparent viscosity µa calculated so
that if it were used in the traditional no-slip Navier–Stokes equations instead of the fluid viscosity µ, the
results would be in agreement with experimental observations. Israelachvili (1986) and Gee et al. (1990)
found that µa � µ for thin-film flows as long as the film thickness exceeds 10 molecular layers (�5 nm).
For thinner films, µa depends on the number of molecular layers and can be as much as 105 times larger
than µ. Chan and Horn’s (1985) results are somewhat different: the apparent viscosity deviates from the
fluid viscosity for films thinner than 50 nm.

In polar-liquid flows through capillaries, Migun and Prokhorenko (1987) report that µa increases for
tubes smaller than 1 µm in diameter. In contrast, Debye and Cleland (1959) report µa smaller than µ for
paraffin flow in porous glass with average pore size several times larger than the molecular length-scale.
Experimenting with microchannels ranging in depths from 0.5 µm to 50 µm, Pfahler, et al. (1991) found
that µa is consistently smaller than µ for both liquid (isopropyl alcohol, silicone oil) and gas (nitrogen,
helium) flows in microchannels. For liquids, the apparent viscosity decreases with decreasing channel

1
�2mσ2

�ε

∂u
�∂y
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depth. Other researchers using small capillaries report that µa is about the same as µ [Anderson and
Quinn, 1972; Tukermann and Pease, 1981, 1982; Tuckermann, 1984; Guvenc, 1985; Nakagawa et al., 1990].

Very recently, Sharp (2001) and Sharp et al. (2001) asserted that, despite the significant inconsistencies
in the literature regarding liquid flows in microchannels, such flows are well predicted by macroscale con-
tinuum theory. A case can be made to the contrary, however, as will be seen at the end of this section, and
the final verdict on this controversy is yet to come.

The above contradictory results point to the need for replacing phenomenological models with first-
principles models. The lack of molecular-based theory of liquids — despite extensive research by the rhe-
ology and polymer communities — leaves molecular dynamics simulations as the nearest alternative to a
first-principles model. MD simulations offer a unique approach to checking the validity of the traditional
continuum assumptions. However, as was pointed out earlier, such simulations are limited to exceedingly
minute flow extent.

Thompson and Troian (1997) provide molecular dynamics simulations to quantify the slip-flow bound-
ary condition dependence on shear rate. Recall the linear Navier boundary condition introduced earlier

∆u|w � ufluid � uwall � Ls �
w

(4.63)

where Ls is the constant slip length, and

�
w

is the strain rate computed at the wall. The goal of Thompson and Troian’s simulations was to determine
the degree of slip at a solid–liquid interface as the interfacial parameters and the shear rate change. In
their simulations, a simple liquid underwent planar shear in a Couette cell as shown in Figure 4.8. The
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FIGURE 4.8 Velocity profiles in a Couette flow geometry at different interfacial parameters. All three profiles are for
U � σ��1, and h � 24.57σ. The dashed line is the no-slip Couette-flow solution. (Reprinted with permission from
Thompson and Troian [1997] “A General Boundary Condition for Liquid Flow at Solid Surfaces,” Nature 389,
pp. 360–62.)
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typical cell measured 12.51 � 7.22 � h, in units of molecular length-scale σ, where the channel depth h
varied in the range of 16.71σ–24.57σ, and the corresponding number of molecules simulated ranged from
1,152 to 1,728. The liquid is treated as an isothermal ensemble of spherical molecules. A shifted
Lennart-Jones 6–12 potential is used to model intermolecular interactions, with energy- and length-scales
ε and σ, and cut-off distance rc � 2.2σ :

V(r) � 4ε	� �
�12

� � �
�6

� � �
�12

	 � �
�6


 (4.64)

The truncated potential is set to zero for r � rc .
The fluid–solid interaction is also modeled with a truncated Lennart-Jones potential, with energy- and

length-scales ε wf and σwf, and cut-off distance rc. The equilibrium state of the fluid is a well-defined liq-
uid phase characterized by number density n � 0.81σ�3 and temperature T � 1.1ε/k, where k is the
Boltzmann constant.

The steady state velocity profiles resulting from Thompson and Troian’s (1997) MD simulations are
depicted in Figure 4.8 for different values of the interfacial parameters εwf, σwf, and nw. Those parameters,
shown in units of the corresponding fluid parameters ε, σ, and n, characterize respectively the strength of the
liquid–solid coupling, the thermal roughness of the interface, and the commensurability of wall and liquid
densities. The macroscopic velocity profiles recover the expected flow behavior from continuum hydrody-
namics with boundary conditions involving varying degrees of slip. Note that when slip exists, the shear rate
γ. no longer equals U/h. The degree of slip increases (i.e., the amount of momentum transfer at the wall–fluid
interface decreases) as the relative wall density nw increases or the strength of the wall–fluid coupling σwf

decreases — in other words, when the relative surface energy corrugation of the wall decreases. Conversely,
the corrugation is maximized when the wall and fluid densities are commensurate and the strength of the
wall–fluid coupling is large. In this case, the liquid feels the corrugations in the surface energy of the solid
owing to the atomic close-packing. Consequently, there is efficient momentum transfer, and the no-slip con-
dition applies, or in extreme cases, a “stick” boundary condition takes hold.

Variations of the slip length Ls and viscosity µ as functions of shear rate γ. are shown in Figure 4.9 for
five different sets of interfacial parameters. For Couette flow, the slip length is computed from its definition,
∆u|w/γ. � (U/γ. � h)/2. The slip length, viscosity, and shear rate are normalized in the figure using the
respective molecular scales for length σ, viscosity ε�σ�3, and inverse time ��1. The viscosity of the fluid
is constant over the entire range of shear rates (Figure 4.9b) indicating Newtonian behavior. As indicated
earlier, non-Newtonian behavior is expected for γ. � 2��1, well above the shear rates used in Thompson
and Troian’s simulations.

At low shear rates, the slip length behavior is consistent with the Navier model (i.e., is independent of
the shear rate). Its limiting value Lo

s ranges from 0 to �17σ for the range of interfacial parameters chosen
(Figure 4.9a). In general, the amount of slip increases with decreasing surface energy corrugation. Most
interestingly, at high shear rates the Navier condition breaks down as the slip length increases rapidly with
γ.c. The critical shear-rate value for the slip length to diverge, γ.c, decreases as the surface energy corrugation
decreases. Surprisingly, the boundary condition is nonlinear even though the liquid is still Newtonian. In
dilute gases, the linear slip condition and the Navier–Stokes equations, with their linear stress–strain rela-
tion, are both valid to the same order of approximation in Knudsen number. In other words, deviation
from linearity is expected to take place at the same value of Kn � 0.1. In liquids, in contrast, the slip
length appears to become nonlinear and to diverge at a critical value of shear rate well below the shear
rate at which the linear stress–strain relation fails. Moreover, the boundary condition deviation from lin-
earity is not gradual but is rather catastrophic. The critical value of shear rate γ.c signals the point at which
the solid can no longer impart momentum to the liquid. This means that the same liquid molecules
sheared against different substrates will experience varying amounts of slip and vice versa.

Based on the above results, Thompson and Troian (1997) suggest a universal boundary condition at a
solid–liquid interface. Scaling the slip length Ls by its asymptotic limiting value Lo

s and the shear rate γ. by
its critical value γ.c collapses the data in the single curve shown in Figure 4.10. The data points are well
described by the relation

rc
�σ

rc
�σ

r
�σ

r
�σ
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Ls � L
o
s 	1 � 


�

(4.65)

The nonlinear behavior close to a critical shear rate suggests that the boundary condition can signifi-
cantly affect flow behavior at macroscopic distances from the wall. Experiments with polymers confirm
this observation [Atwood and Schwalter, 1989]. The rapid change in the slip length suggests that for flows
in the vicinity of γ.c, small changes in surface properties can lead to large fluctuations in the apparent
boundary condition. Thompson and Troian (1997) conclude that the Navier slip condition is but the 
low-shear-rate limit of a more generalized universal relationship that is nonlinear and divergent. Their
relation provides a mechanism for relieving the stress singularity in spreading contact lines and corner
flows, as it naturally allows for varying degrees of slip on approach to regions of higher rate of strain.

To place the above results in physical terms, consider water12 at a temperature of T � 288 K. The
energy-scale in the Lennart-Jones potential is then ε � 3.62 � 10–21 J. For water, m � 2.99 � 10–26 kg,
σ � 2.89 � 10–10 m, and at standard temperature n � 3.35 � 1028 molecules/m3. The molecular time-scale
can thus be computed,

� � [mσ2/ε] � 8.31 � 10�13 s
1
�2

1
�2γ.

�γ.c
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FIGURE 4.9 Variation of slip length and viscosity as functions of shear rate. (Reprinted with permission from
Thompson and Troian [1997] “A General Boundary Condition for Liquid Flow at Solid Surfaces,” Nature 389,
pp. 360–62.)

12Water molecules are complex, forming directional, short-range covalent bonds and thus requiring a more com-
plex potential than the Lennart-Jones to describe the intermolecular interactions. For the purpose of the qualitative
example described here, however, we use the computational results of Thompson and Troian (1997), who employed
the L–J potential.
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For the third case depicted in Figure 4.10 (the open squares), γ.c� � 0.1, and the critical shear rate at
which the slip condition diverges is thus γ.c � 1.2 � 1011 s�1. Such an enormous rate of strain13 may be
found in extremely small devices having extremely high speeds. On the other hand, the conditions to
achieve a measurable slip of 17σ (the solid circles in Figure 4.9) are not difficult to encounter in microde-
vices: density of solid that is four times that of liquid, and energy-scale for wall-fluid interaction that is
one-fifth of energy-scale for liquid.

The limiting value of slip length is independent of the shear rate and can be computed for water as
L

o
s � 17 σ � 4.91 �10�9 m. Consider a water microbearing having a shaft diameter of 100 µm, a rotation

rate of 20,000 rpm, and a minimum gap of h � 1 µm. In this case, U � 0.1 m/sec, and the no-slip shear
rate is U/h � 105 s–1. When slip occurs at the limiting value just computed, the shear rate and the wall
slip-velocity are computed as follows

γ. � � 9.90 �104 s�1 (4.66)

∆u|w � γ.Ls � 4.87 �10�4 m/s (4.67)

As a result of the Navier slip, the shear rate is reduced by 1% from its no-slip value, and the slip velocity
at the wall is about 0.5% of U, small but not insignificant.

4.9 Surface Phenomena

The surface-to-volume ratio for a machine with a characteristic length of 1 m is 1 m�1, while that for a
MEMS device having a size of 1 µm is 106 m�1. The millionfold increase in surface area relative to the
mass of the minute device substantially affects the transport of mass, momentum, and energy through
the surface. Obviously surface effects dominate in small devices. The surface boundary conditions in
MEMS flows have already been discussed earlier. We have shown that in microdevices it is possible to have
measurable slip-velocity and temperature jump at a solid–fluid interface. In this section, we illustrate
other ramifications of the large surface-to-volume ratio unique to MEMS and provide a molecular view-
point to surface forces.

U
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13Note however that γ.c for high-molecular-weight polymers would be many orders of magnitude smaller than the
value developed here for water.

© 2006 by Taylor & Francis Group, LLC



In microdevices, both radiative and convective heat loss/gain are enhanced by the huge surface-to-volume
ratio. Consider a device having a characteristic length Ls. Use of the lumped capacitance method to com-
pute the rate of convective heat transfer, for example, is justified if the Biot number (�hLs/κs, where h is
the convective heat transfer coefficient of the fluid and κs is the thermal conductivity of the solid) is less
than 0.1. Small Ls implies a small Biot number and a nearly uniform temperature within the solid. Within
this approximation, the rate at which heat is lost to the surrounding fluid is given by

ρs L
3
s ca � �hL2

s (Ts � T∞) (4.68)

where ρs and cs are respectively the density and specific heat of the solid, Ts is its (uniform) temperature,
and T∞ is the ambient fluid temperature. Solution of the above equation is trivial, and the temperature of
a hot surface drops exponentially with time from an initial temperature Ti,

� exp	� 
 (4.69)

where the time constant � is given by

� � (4.70)

For small devices, the time it takes the solid to cool is proportionally small. Clearly, the millionfold
increase in surface-to-volume ratio implies a proportional increase in the rate at which heat escapes.
Identical scaling arguments can be made regarding mass transfer.

Another effect of the diminished scale is the increased importance of surface forces and the waning
importance of body forces. Based on biological studies, Went (1968) concludes that the demarcation
length-scale is around 1 mm. Below that, surface forces dominate over gravitational forces. A 10 mm piece
of paper will fall when gently placed on a smooth vertical wall, while a 0.1 mm piece will stick. Try it!
Stiction is a major problem in MEMS applications. Certain structures such as long, thin polysilicon beams
and large, thin comb-drives have a propensity to stick to their substrates and thus fail to perform as
designed [Mastrangelo and Hsu, 1992; Tang et al., 1989].

Conventional dry friction between two solids in relative motion is proportional to the normal force that
is usually a component of the moving device weight. The friction is independent of the contact-surface
area because the van der Waals cohesive forces are negligible relative to the weight of the macroscopic
device. In MEMS applications, the cohesive intermolecular forces between two surfaces are significant,
and the stiction is independent of the device mass but is proportional to its surface area. The first micro-
motor did not move — despite large electric current through it — until the contact area between the
100 µm rotor and the substrate was reduced significantly by placing dimples on the rotor’s surface 
[Fan et al., 1988, 1989; Tai and Muller, 1989].

One last example of surface effects that to my knowledge has not been investigated for microflows is
the adsorbed layer in gaseous wall-bounded flows. It is well known [Brunauer, 1944; Lighthill, 1963] that
when a gas flows in a duct, the gas molecules are attracted to the solid surface by the van der Waals and
other forces of cohesion. The potential energy of the gas molecules drops on reaching the surface. The
adsorbed layer partakes the thermal vibrations of the solid, and the gas molecules can only escape when
their energy exceeds the potential energy minimum. In equilibrium, at least part of the solid would be
covered by a monomolecular layer of adsorbed gas molecules. Molecular species with significant partial
pressure — relative to their vapor pressure — may locally form layers two or more molecules thick.
Consider, for example, the flow of a mixture of dry air and water vapor at STP. The energy of adsorption
of water is much larger than that for nitrogen and oxygen, making it more difficult for water molecules
to escape the potential energy trap. It follows that the life time of water molecules in the adsorbed layer
significantly exceeds that for the air molecules (60,000-fold, in fact) and, as a result, the thin surface layer
would be mostly water. For example, if the proportion of water vapor in the ambient air is 1:1,000 (i.e.,
very low humidity level), the ratio of water to air in the adsorbed layer would be 60:1. Microscopic rough-
ness of the solid surface causes partial condensation of the water along portions having sufficiently strong

ρs L
3
s cs

�
hL2

s

t
�
�
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�
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concave curvature. So, surfaces exposed to nondry air flows are mainly liquid water surfaces. In most
applications, this thin adsorbed layer has little effect on the flow dynamics despite the fact that the den-
sity and viscosity of liquid water are far greater than those for air. In MEMS applications, however, the
layer thickness may be a significant portion of the characteristic flow dimension, and the water layer may
have a measurable effect on the gas flow. A hybrid approach combining molecular dynamics and con-
tinuum flow simulations or MD–Monte Carlo simulations may be used to investigate this issue.

Majumdar and Mezic (1998, 1999) have studied the stability and rupture into droplets of thin liquid
films on solid surfaces. They point out that the free energy of a liquid film consists of a surface tension
component as well as highly nonlinear volumetric intermolecular forces resulting from van der Waals,
electrostatic, hydration, and elastic strain interactions. For water films on hydrophilic surfaces such as sil-
ica and mica, Majumdar and Mezic (1998) estimate the equilibrium film thickness to be about 0.5 nm 
(2 monolayers) for a wide range of ambient-air relative humidities. The equilibrium thickness grows 
very sharply, however, as the relative humidity approaches 100%.

Majumdar and Mezic’s (1998, 1999) results raise many questions. What are the stability characteristics of
their water film in the presence of air flow above it? Would this water film affect the accommodation coef-
ficient for microduct air flow? In a modern Winchester-type hard disk, the drive mechanism has a read/write
head that floats 50 nm above the surface of the spinning platter. The head and platter together with the
intervening air layer form a slider bearing. Would the computer performance be affected adversely by the
high relative humidity on a particular day when the adsorbed water film is no longer “thin”? If a microduct
hauls liquid water, would the water film adsorbed by the solid walls influence the effective viscosity of the
water flow? Electrostatic forces can extend to almost 1 µm (the Debye length), and that length is known to
be highly pH-dependent. Would the water flow be influenced by the surface and liquid chemistry? Would
this explain the contradictory experimental results of liquid flows in microducts discussed earlier?

The few examples above illustrate the importance of surface effects in small devices. From the contin-
uum viewpoint, forces at a solid–fluid interface are the limit of pressure and viscous forces acting on a
parallel elementary area displaced into the fluid when the displacement distance is allowed to tend to
zero. From the molecular point of view, all macroscopic surface forces are ultimately traced to intermol-
ecular forces, which subject is extensively covered in Israelachvilli (1991) and the references therein. Here we
provide a very brief introduction to the molecular viewpoint. The four forces in nature are (1) the strong
and (2) the weak forces describing the interactions between neutrons, protons, electrons, etc.; (3) the elec-
tromagnetic forces between atoms and molecules; and (4) gravitational forces between masses. The range
of action of the first two forces is around 10�5 nm, and hence neither concerns us overly in MEMS appli-
cations. The electromagnetic forces are effective over a much larger though still small distance on the order
of the interatomic separations (0.1–0.2 nm). Effects over longer range — several orders of magnitude 
longer — can and do rise from the short-range intermolecular forces. For example, the rise of liquid columns
in capillaries and the action of detergent molecules in removing oily dirt from fabric are the result of inter-
molecular interactions. Gravitational forces decay with the distance to the second power, while intermol-
ecular forces decay much quicker, typically with the seventh power. Cohesive forces are therefore
negligible once the distance between molecules exceeds a few molecular diameters, while massive bodies
like stars and planets are still strongly interacting via gravity over astronomical distances.

Electromagnetic forces are the source of all intermolecular interactions and the cohesive forces holding
atoms and molecules together in solids and liquids. They can be classified as (1) purely electrostatic forces
arising from the Coulomb force between charges, interactions between charges, permanent dipoles,
quadrupoles, etc.; (2) polarization forces arising from the dipole moments induced in atoms and molecules
by the electric field of nearby charges and permanent dipoles; and (3) quantum mechanical forces that give
rise to covalent or chemical bonding and to repulsive steric or exchange interactions that balance the attrac-
tive forces at very short distances. The Hellman–Feynman theorem of quantum mechanics states that once
the spatial distribution of the electron clouds has been determined by solving the appropriate Schrödinger
equation, intermolecular forces may be calculated on the basis of classical electrostatics, in effect reducing
all intermolecular forces to Coulombic forces. Note however that intermolecular forces exist even when the
molecules are totally neutral. Solutions of the Schrödinger equation for general atoms and molecules are not
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easy of course, and modeling alternatives are sought to represent intermolecular forces. The van der Waals
attractive forces are usually represented with a potential that varies as the inverse-sixth power of distance,
while the repulsive forces are represented with either a power or an exponential potential.

A commonly used potential between two molecules is the generalized Lennart-Jones (L–J 6–12) pair
potential given by

Vij(r) � 4ε	cij � �
�12

� dij � �
�6


 (4.71)

where Vij is the potential energy between two particles i and j, r is the distance between the two molecules,
ε and σ are respectively characteristic energy- and length-scales, and cij and dij are parameters to be 
chosen for the particular fluid and solid combinations under consideration. The first term in the right-
hand side is the strong repulsive force that is felt when two molecules are at extremely close range com-
parable to the molecular length-scale. That short-range repulsion prevents overlap of the molecules in
physical space. The second term is the weaker van der Waals attractive force that commences when the
molecules are sufficiently close (several times σ). That negative part of the potential represents the attrac-
tive polarization interaction of neutral, spherically symmetric particles. The power of 6 associated with
this term is derivable from quantum mechanics considerations, while the power of the repulsive part of
the potential is found empirically. The Lennart-Jones potential is zero at very large distances, has a weak
negative peak at r slightly larger than σ, is zero at r � σ, and is infinite as r → 0.

The force field resulting from this potential is given by

Fij(r) �� � 	cij � �
�13

� � �
�7


 (4.72)

A typical L–J 6–12 potential and force field are shown in Figure 4.11, for c � d � 1. The minimum poten-
tial Vmin � �ε, corresponds to the equilibrium position (zero force) and occurs at r � 1.12 σ. The attrac-
tive van der Waals contribution to the minimum potential is –2ε, while the repulsive energy contribution
is 	ε. Thus the inverse 12th-power repulsive force term decreases the strength of the binding energy at
equilibrium by 50%.

The L–J potential is commonly used in molecular dynamics simulations to model intermolecular
interactions between dense gas or liquid molecules and between fluid and solid molecules. As mentioned
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earlier, such potential is not accurate for complex substances, such as water, whose molecules form direc-
tional covalent bonds. As a result, MD simulations for water are much more involved.

4.10 Parting Remarks

Richard Feynman’s 40-year-old vision of building minute machines is now a reality. Microelectromechanical
systems have witnessed explosive growth during the last decade and are finding increased applications in a
variety of industrial and medical fields. The physics of fluid flows in microdevices has been explored in this
chapter. While we now know considerably more than we did just few years ago, much physics remains to be
explored so that rational tools can be developed for the design, fabrication, and operation of MEMS devices.

The traditional Navier–Stokes model of fluid flows with no-slip boundary conditions works only for a
certain range of the governing parameters. This model basically demands two conditions: (1) the fluid is
a continuum, which condition is almost always satisfied as there are usually more than 1 million mole-
cules in the smallest volume in which appreciable macroscopic changes take place (this is the molecular
chaos restriction); and (2) the flow is not too far from thermodynamic equilibrium, which is satisfied if
there is a sufficient number of molecular encounters during a time that is small compared to the small-
est time-scale for flow changes. During this time, the average molecule would have moved a distance small
compared to the smallest flow length-scale.

For gases, the Knudsen number determines the degree of rarefaction and the applicability of tradi-
tional flow models. As Kn → 0, the time- and length-scales of molecular encounters are vanishingly small
compared to those for the flow, and the velocity distribution of each element of the fluid instantaneously
adjusts to the equilibrium thermodynamic state appropriate to the local macroscopic properties as this
molecule moves through the flow field. From the continuum viewpoint, the flow is isentropic, and heat
conduction and viscous diffusion and dissipation vanish from the continuum conservation relations
leading to the Euler equations of motion. At small but finite Kn, the Navier–Stokes equations describe
near-equilibrium, continuum flows.

Slip flow must be taken into account for Kn � 0.001. The slip boundary condition is at first linear in
Knudsen number; then nonlinear effects take over beyond a Knudsen number of 0.1. At the same transition
regime (i.e., 0.1 � Kn � 10), the linear-stress–rate-of-strain and heat-flux–temperature-gradient relations
needed to close the Navier–Stokes equations also break down, and alternative continuum equations (e.g.,
Burnett or higher-order equations) or molecular-based models must be invoked. In the transition regime,
provided that the dilute gas and molecular chaos assumptions hold, solutions to the difficult Boltzmann
equation are sought, but physical simulations such as Monte Carlo methods are more readily executed in
this range of Knudsen number. In the free-molecule flow regime (i.e., Kn � 10), the nonlinear collision inte-
gral is negligible, and the Boltzmann equation is drastically simplified. Analytical solutions are possible in
this case for simple geometries and numerical integration of the Boltzmann equation is straightforward for
arbitrary geometries provided that the surface-reflection characteristics are accurately modeled.

Gaseous flows are often compressible in microdevices even at low Mach numbers. Viscous effects can
cause sufficient pressure drop and density changes for the flow to be treated as compressible. In a long,
constant-area microduct, all Knudsen number regimes may be encountered, and the degree of rarefac-
tion increases along the tube. The pressure drop is nonlinear and the Mach number increases down-
stream, limited only by choked-flow condition.

Similar deviation and breakdown of the traditional Navier–Stokes equations occur for liquids as well,
but there the situation is more murky. Existing experiments are contradictory. There is no kinetic theory
of liquids, and first-principles prediction methods are scarce. Molecular dynamics simulations can be
used, but they are limited to extremely small flow extents. Nevertheless, measurable slip is predicted from
MD simulations at realistic shear rates in microdevices.

Much nontraditional physics is still to be learned, and many exciting applications of microdevices are
yet to be discovered. The future is bright for this emerging field of science and technology. Feynman was
right about the possibility of building mite-size machines, but was unduly cautious in forecasting that
while such machines would be fun to make, they might or might not be useful.
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5.1 Introduction

5.1.1 Full-System Simulation

Microelectromechanical systems (MEMS) involve complex functions governed by diverse transient phys-
ical and electrical processes for each of their many components. The design complexity and functionality
complexity of MEMS exceeds by far the complexity of Very Large Scale Integration (VLSI) systems. Today,
however, VLSI systems are simulated routinely, thanks to the many advances in computer assisted design
(CAD) and simulation tools achieved over the last two decades. It is clear that similar and even greater
advances are required in the MEMS field in order to make full-system simulation of MEMS a reality in the
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near future. This will enable the MEMS community to explore new pathways of discovery and expand the
role and influence of MEMS at a rapid rate.

In order to develop such a systems-level simulation framework that is sufficiently accurate and robust,
all processes involved need to be simulated at a comparable degree of accuracy and integrated seamlessly.
That is, circuits, semiconductors, springs and masses, beams and membranes, as well as the flow field need
to be simulated in a consistent and compatible way and in reasonable computational time. This coupling
of diverse domains has already been addressed by the electrical engineering community, primarily for
mixed-circuit-device simulation.

The combination of circuits and devices necessitates the use of different levels of description. At a first
level for analog circuits represented by lumped continuum models, the use of ordinary differential equa-
tions (ODEs) and algebraic equations (AEs) is sufficient. However, some other devices and circuits can
be described as digital automata, and thus boolean equations of mathematical logic should be employed
in the description; these equations correspond to digital circuit simulation on the digital level. Finally,
some semiconductor devices of the kind encountered in MEMS have to be described as linear and non-
linear partial differential equations (PDEs), and they are usually employed on the device-simulation level.
Mixed-level simulation is implemented for digital-analog (or analog-mixed) circuit simulation and for
analog-circuit-device simulation. In the following paragraphs, we briefly review the common practice in
simulating circuits with some nonfluidic devices.

The code SPICE, which is an acronym for Simulation Program with Integrated Circuit Emphasis, was devel-
oped in the 1970s at UC Berkeley [Nagel and Pederson, 1973] and since then it has become the unofficial
industrial standard by integrated circuit (IC) designers. SPICE is a general-purpose simulation program for
circuits that may contain resistors, capacitors, inductors, switches, transmission lines, etc., as well as the five
most common semiconductor devices: diodes, Bipolar Junction Transistor (BJTs), Junction Field Effect
(JFETs), Metal Semiconductor Field Effect Transistor (MESFETs), and Metal Oxide Silicon Field Effect
Transistor (MOSFETs). SPICE has built-in models for the semiconductor devices, and the user specifies only
the pertinent model parameter values. However, these devices are typically simple and can be described by
lumped models; that is, combinations of ordinary differential equations and algebraic equations (ODEs/AEs).
In some cases, such as in submicron devices, even for usual semiconductor devices (i.e., MOSFET), simple
modeling is not straightforward, and it is rather art than science to transfer from basic PDEs to approximated
ODEs and algebraic equations. Mechanical systems are recast into electrical systems, which can be handled
by SPICE. This can be understood more clearly by considering the analogy of a mass-spring-damper system
driven by an external force with a parallel-connected RLC circuit with a current source. In this example,
mass corresponds to capacitance, dampers to resistors, springs to inductive elements, and forces to currents.

Other devices cannot be represented by lumped models, and such an analogy may not be valid. While
SPICE is essentially an ODE solver — that is, an analog circuit simulator only — another successful code,
CODECS (acronym for Coupled Device and Circuit Simulator) provides a truly mixed-level description of
both circuits and devices. This code too was developed at UC Berkeley [Mayaram and Pederson, 1987] and
employs combinations of both ODEs and PDEs with algebraic equations. CODECS incorporates SPICE3,
the latest version of SPICE written in C [Quarles, 1989], for the circuit simulation capability. The multirate
dynamics introduced by combinations of devices and circuits is handled efficiently by a multilevel Newton
method or a full-Newton method for transient analysis, unlike the standard Newton method employed in
SPICE. CODECS is appropriate for one-dimensional and two-dimensional devices, but recent develop-
ments have produced efficient algorithms for three-dimensional devices as well [Mayaram et al., 1993].

The aforementioned simulation tools for IC design can be used for MEMS simulations, and in fact
SPICE has been used to model electrostatic lateral resonators [Lo et al., 1996]. The assumption here is that
all device components can be recast as equivalent analog circuit elements that SPICE recognizes. Clearly, this
approach can be used in some well-studied structures, such as membranes or simple microbeams, but
very rarely for microflows. However, in the last decade there has been an intense effort to produce such
models and corresponding software, such as MEMCAD [Senturia et al., 1992], which has become a com-
mercial package [Gilbert et al., 1993] for electrostatic and mechanical analysis of microstructures. Other
such packages are the SOLIDIS and IntelliCAD (IntelliSense and ISE). In these simulation approaches, the
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flow field is not simulated, but its effect is typically expressed by the equivalent of a drag coefficient that
provides damping. In some cases, as in the squeezed gas film in silicon accelerometers, an equivalent RLC
circuit can also be obtained [Veijola et al., 1995]; however, this is the exception rather than the rule. Even
the structural components are often modeled analytically, and significant effort has been devoted to con-
structing reduced-order macromodels [Hung et al., 1997; Gabbay, 1998]. These are typically nonlinear
low-dimensional models obtained from projections of full three-dimensional simulations to a few repre-
sentative modal shapes. Nonlinear function fitting is then employed so that analytical forms can be writ-
ten, and these structural models are then imported to SPICE as analog circuit equivalent elements.

This reduced-order macromodeling approach has been used with success in a variety of applications
including, for example, the electrostatic actuation of a suspended beam and elastically suspended plates
[Gabbay, 1998]. Their great advantage is computational speed, but they are limited to small displacements
and small deformations, mostly in the linear regime, and are appropriate for familiar designs only.
Unfortunately, most of the MEMS devices are operating in nonlinear regimes including electrostatic actu-
ators, flow fields, and structures. More importantly, the real impact and anticipated benefits of MEMS will
come from new designs, yet unknown, that hopefully will be pretested using full simulations where all
processes are simulated accurately without sacrificing important details of the physics. MEMS simulation
based on full-physics models may be then more appropriate for exploring new concepts, whereas macro-
modeling may be employed efficiently for familiar designs and in known operating regimes.

In the following section, we address some of the specific issues encountered in each of the coupled
domains, (i.e., fluid, electric, structure, thermal), and we analyze their corresponding computational com-
plexity and proposed algorithms for their integration.

5.1.2 Computational Complexity of MEMS Flows

Liquid and gas flows in microdevices are characterized by low Reynolds number, typically of order one
or less in channels with heights in the submillimeter range [Ho and Tai, 1998; Gad-el-Hak, 1999]. They
are unsteady due to external excitation from a moving boundary or an electric field, often driven by high-
frequency (e.g., 50 kHz) oscillators, as in the example of the MIT electrostatic comb-drive [Freeman et al.,
1998]. The domain of microflows is three-dimensional and geometrically complex, consisting of large-
aspect ratio components, abrupt expansions, and rough boundaries. In addition, microdevices interact
with larger devices resulting in fluid flow going through disparate regimes.

Accurate and efficient simulation of microflows should take into account the above factors. For example,
the significant geometric complexity of MEMS flows suggests that finite elements and boundary elements
are more suitable than finite differences for efficient discretization [Ye, Kanapka, and White, 1999]. However,
because of the nonlinear effects, either through the convection or boundary conditions, boundary element
methods are also limited in their application range despite their efficiency for linear flows [Aluru and White,
1996]. A particularly promising approach developed recently for MEMS flows makes use of meshless and
mesh-free approaches [Aluru, 1999], where particles are “sprinkled” almost randomly into the flow and
boundary. This approach effectively handles the geometric complexity of MEMS flows, but the issues of
accuracy and efficiency have not been fully resolved yet. As regards nonlinearities, one may argue that at such
low Reynolds numbers the convection effects should be neglected, but in complex geometries with abrupt
turns, the convective acceleration terms may be substantial, and thus they need to be taken into account.

The computational difficulties for liquid and gas flows are of a different type. Gas microflows are com-
pressible and can experience large density variations. In addition, for channels of a size below 10 microns 
or at subatmospheric conditions, serious rarefaction effects may be present, (see [Beskok, Karniadakis,
and Trimmer 1996] and also the chapter by A. Beskok in this volume). In this case, either modified
Navier–Stokes equations with appropriate slip boundary conditions or higher-order approximations are 
necessary to describe the governing flow dynamics. To this end, a nondimensional number, the 
Knudsen number defined as the ratio of the mean-free-path to the characteristic domain size, defines which
model and correspondingly which numerical method is appropriate for simulating gas microflows [Bird,
1994]. For submicron devices, atomistic or molecular simulations are necessary as the familiar concept of
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continuum description breaks down. The direct simulation Monte Carlo (DSMC) method, described in the
article by Beskok in this volume, is one efficient method of simulating highly rarefied flows.

On the other hand, liquid flows in microscales are “granular”; that is, they form a layering structure
very close to the wall over a distance of a few molecule diameters [Koplik and Banavar, 1995]. This is
accompanied by large density fluctuations very close to the wall leading to anomalous heat and momen-
tum transport. Liquid flows, in particular, are very sensitive to the wall type, and although such an issue
may not be important for averaged heat and momentum transport rates in flow domains of 100 microns
or greater, it is extremely important in smaller domains. This distinction suggests two possible approaches
in simulating liquid flows in microscales: a phenomenological approach using the Navier–Stokes similar
to macrodomain flows, and a molecular approach based on the molecular dynamics (MD) approach
[Koplik and Banavar, 1995; Allen and Tildesley, 1994]. The MD approach is deterministic following the
trajectories of all molecules involved, unlike the DSMC approach, which is stochastic representing colli-
sions as a random process. The drawback of the Navier–Stokes approach is that events at the molecular
level are modeled via continuum-like parameters. For example, consider the problem of routing micro-
droplets on a silicon surface, effectively altering dynamically the contact line of the microdrop. This is a
molecular level process, but in the continuum approach it is determined via a macro-domain-type for-
mulation (e.g., via gradients), which may lead to erroneous results. Accurate MD modeling of the contact
line will be truly predictive as it will take into account the wall–fluid interaction at the molecular level.
The wall type and the specific fluid type are taken into account by different potentials that describe inter-
molecular structure and force. However, such a detailed simulation requires an enormous number of
molecules (e.g., hundreds of millions of molecules), and thus it is limited to a very small region, probably
around the contact line region only. It is therefore important to develop new hybrid approaches that com-
bine the best features of both methods [Hadjiconstantinou, 1999].

In summary, geometry and surface effects, compressibility and rarefaction, unsteadiness and unfamil-
iar physics make simulation of microflows a challenging task. The true challenge, however, comes from the
interaction of the fluidic system with other system components, such as the structure, the electric field,
and the thermal field. In the following sections, we discuss this interaction.

5.1.3 Coupled-Domain Problems

In coupled-domain problems, such as flow-structure, structure-electric, or a combination of both, there are
significant disparities in temporal and spatial scales. This, in turn, implies that multiple grids and hetero-
geneous time-stepping algorithms may be needed for discretization, leading to very complicated and con-
sequently computational prohibitive simulation algorithms. Simplifications are typically made with one
of the fields represented at a reduced resolution level or by low-dimensional systems or even by equiva-
lent lumped dynamical models. For example, consider the electric activation of a cantilever microbeam
made of piezoelectric material. The emphasis may be on modeling the electronic circuit and the motion,
and thus a simple model for the motion-induced hydrodynamic damping may be constructed avoiding
full simulation of the flow around the beam.

A possible method of constructing low-order dynamical models is by projecting the results of detailed
numerical simulations onto spaces spanned by a very small number of degrees of freedom — the 
so-called nonlinear macromodeling approach (see [Gabbay, 1998] and [Senturia, Aluru, and White, 1997]).
To clarify the concept of a macromodel, we give a specific example (see [Senturia, Aluru, and White,
1997]) for a suspended membrane of thickness t deflected at its center by an amplitude d under the action
of uniform pressure force P. Let us also denote by 2a the length of the membrane, by E the Young’s mod-
ule, by ν the Poisson ratio, and by σ the residual stress. One can use analytical methods to obtain the
resulting form of the pressure-deflection relation (e.g., power series assuming a circular thin membrane).
This can be extended to more general shapes and nonlinear responses, for example:

P � � d 3
(5.1)

E
�
1 � ν

C2 f(ν)
�

a4

C1t
�
a 2
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where C1 and C2 are dimensionless constants that depend on the shape of the membrane, and f(ν) is a
slowly varying function of the Poisson ratio. This function is determined from detailed finite element
simulations over a range of length a, thickness t, and material properties ν and E. Such “best-fits” are tab-
ulated and are used in the simulation according to the specific structure considered without the need for
solving the partial differential equations governing the dynamics of the structure. They can also be built
automatically as has been demonstrated in [Gabbay, 1998]. Another type of a macromodel based on neu-
ral networks training will be presented later for a flow sensor.

Unfortunately, construction of such macromodels is not always possible, and this lack of simplified
models for the many and diverse components of microsystems makes system-level simulation a chal-
lenging task. On the other hand, model development for electronic components (transistors, resistors, capac-
itors, etc.) has reached a state of maturity. Therefore, considerable attention should be focused on models
for the nonelectronic components. This is necessary for the design and verification of complete microsys-
tems. In the remainder of this chapter, we describe an integrated approach for simulation of microsys-
tems with the emphasis being on microfluidic systems. To this end, we resort to full simulation of the
fluidic system, which involves also interactions with moving structures. To illustrate the formulation
more clearly, we present next a target simulation problem that represents the aforementioned challenges.

5.1.4 A Prototype Problem

An example of a microfluidic system is a microliquid dosing system shown schematically in Figure 5.1.
This system is made up of a micropump, a microflow sensor, and an electronic control circuit. The elec-
tronic circuit adjusts the pump flow rate so that a constant flow is maintained in the microchannel. A
realization of this system is shown in Figure 5.2, along with the details of the control circuit. The simula-
tion of the complete system requires models for the micropump, the microflow sensor, and the electronic
components shown in Figure 5.2. When low-order full-physics models are available for all components
including the fluid flow, the complete system can be simulated using a standard circuit simulator such as
SPICE [Nagel, 1975; Quarles, 1989].

In the absence of macromodels for the micropump and the microflow sensor, the typical approach for
microsystem simulation makes use of lumped-element equivalent circuit descriptions for these devices
[Tilmans, 1996]. However, such an approach has two main limitations:

� It is suitable only for open-loop systems, where there is no feedback from the output to the input
� It is applicable only for small-signal conditions

These two limitations arise in the model development process where several assumptions are made in
order to construct the lumped-element equivalent circuits. Therefore, this approach would not be suit-
able when the large-signal behavior of a closed-loop system is of interest.

To address the above problem, we present a coupled circuit/microfluidic device simulator that effi-
ciently couples the discretized Navier–Stokes equations describing a microfluidic device (numerical
model) to the solution of circuit equations. Such a capability is unique in that it allows direct and effi-
cient simulation of microfluidic systems without the need for mapping finite element descriptions into
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equivalent networks [Tilmans, 1996] or analog hardware description languages (AHDLs) [Bielefeld, Pelz,
and Zimmer, 1997].

The rest of this chapter is organized as follows: an overview of coupled circuit and device simulation
is given in section 2, followed by a description of the circuit and fluidic simulators in section 3. The details
of the coupled circuit/fluidic simulator are presented in section 4, and an illustrative example is described
in section 5. Conclusions are provided in section 6.

5.2 Coupled Circuit-Device Simulation

Coupled simulation techniques have previously been used for the simulation of a sensor system [Schroth,
Blochwitz, and Gerlach, 1995]. In this approach, the finite-element program ANSYS [Moaveni, 1999] is
coupled to an electrical simulator PSPICE [Keown, 1997]. Although such an approach has been demon-
strated to work for system simulations, the coupling is not efficient. Special coupling algorithms and
time-stepping schemes are required to enable fast simulation of microsystems. Therefore, a tight coupling
between the circuit and device simulators is necessary for simulation efficiency [Mayaram and Pederson,
1992; Mayaram, Chern, and Yang, 1993].

The coupled circuit-device simulator allows verification of microfluidic systems. It provides accurate
large- and small-signal simulation of systems even in the absence of proper macromodels for the micro-
fluidic devices. On the other hand, the coupled simulator is important for constructing and validating
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macromodels. As important effects (such as highly nonlinear or distributed behavior, compressibility, or
slip-flow) are identified, they can be implemented in the macromodels and verified for system simulation
using the coupled simulator. Furthermore, critical devices can be simulated using the full physics-based
numerical models when there are stringent accuracy requirements on the simulated results.

The concept of a coupled circuit and device simulator has proved to be extremely beneficial in the
domain of integrated circuits. Since the first of such simulators, MEDUSA [Engl, Laur, and Dirks, 1982],
became available in the early 1980s, there has been significant work addressing coupled simulation. These
activities have focused on improved algorithms, faster execution speeds, and applications. Commercial
Technology Computer Aided Design (TCAD) vendors also support a mixed circuit-device simulation
capability [Technology Modeling Associates, 1997; Silvaco International, 1995]. Since the computational
costs of these simulators are high, they are not used on a routine basis. However, there are several critical
applications in which these simulators are extremely valuable. These include simulation of Radio
Frequency (RF) circuits [Rotella et al., 1997], single-event-upset simulation of memories [Woodruff and
Rudeck, 1993], simulation of power devices [Ravanelli and Hu, 1991], and validation of nonquasistatic
MOSFET models [Park, Ko, and Hu, 1991].

The coupled circuit-device simulator for microfluidic applications is illustrated in Figure 5.3. This sim-
ulator supports compact models for the electronic components and available macromodels for microflu-
idic devices. In addition, numerical models are available for the microfluidic components that can be
utilized when detailed and accurate modeling is required. As an example, specific components such as
microvalves, micropumps, and micro-flow-sensors are shown in Figure 5.3. The coupling of the circuit and
microfluidic components is handled by imposing suitable boundary conditions on the fluid solver. This
simulator allows the simulation of a complete microfluidic system including the associated control elec-
tronics. The details of the various simulators and coupling methods are described in the sections below.

One of the biggest disadvantages of such an approach is the high computational cost involved. The main
cost comes from solving the three-dimensional time-dependent Navier–Stokes equations in complex geo-
metric domains. Thus, efficient flow solvers are critical to the success of a coupled circuit-micro-fluidic
device simulator. Any performance improvements in the solution of the Navier–Stokes equations directly
translate into a significant performance gain for the coupled simulator.
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5.3 Overview of Simulators

The circuit simulator employed here is based on the circuit simulator SPICE3f5 [Quarles, 1989] and the
microfluidic simulator on the code NεκTαr [Karniadakis and Sherwin, 1999; Kirby et al., 1999]. A brief
description of the algorithms and software structure of each of these simulators is provided in this section.

5.3.1 The Circuit Simulator: SPICE3

Electrical circuits consist of many components (resistors, capacitors, inductors, transistors, diodes, and inde-
pendent sources) that are described by algebraic and/or differential relations among the components’ cur-
rents and voltages. These relationships are called the branch constitutive relations [Sangiovanni-Vincentelli,
1981]. The circuits also satisfy conservation laws known as the Kirchhoff ’s laws; these laws result in alge-
braic equations. Therefore, a circuit is described by a set of coupled nonlinear differential algebraic equa-
tions that are both highly nonlinear and stiff, and this imposes certain limitations on the solution
methods. One of the most commonly used analyses is the time-domain transient analysis. We briefly
describe below the solution approach used for this analysis.

Time discretization: At each time-step of the transient analysis, the time derivatives are replaced by an
algebraic equation using an integration method. Typically, an implicit linear multistep method of the
backward-differentiation type suitable for stiff ODEs is used [Sangiovanni-Vincentelli, 1981]:

ν � α0νtn
� �

n

k�1

αkνtn�k
(5.2)

Linearization: Time discretization yields a system of nonlinear algebraic equations, which are typically
solved by a Newton–Raphson method. The nonlinear components are replaced by linear equivalent mod-
els for each iteration of the Newton’s method

f(νtn

j�1 � f(νtn

j ) � ∂ f(ν)/∂ν|ν j
tn

� (νtn

j�1 � νtn

j ) (5.3)

Equation solution: After time discretization and application of Newton’s method a linear system of
equations is obtained at each iteration of the Newton method. These equations are described by

Av j�1 � b (5.4)

where A ∈ �n�n, vj�1 ∈ �n, b ∈ �n, and can be solved by sparse matrix techniques [Kundert, 1990].
The time-domain simulation algorithm can be summarized in the following steps [Sangiovanni-

Vincentelli, 1981]:

1. Read circuit description and initialize data structures.
2. Increment time tn � tn�1 � h.
3. Update values of independent sources at tn.
4. Predict values of unknown variables at tn.
5. Apply integration formula (1) to capacitors and inductors.
6. Apply linearization (2) to nonlinear circuit elements.
7. Assemble linear circuit equations.
8. Solve linear circuit equations.
9. Check convergence. If not converged go to step 6.

10. Estimate local truncation error.
11. Select new time step h; rollback time if truncation error is unacceptable.
12. If tn � tstop go to step 3.

5.3.2 The Fluid Simulator: NεεκκTααr

The flow solver corresponds to a particular version of the code NεκTαr, which is a general purpose
Computational Fluid Dynamics (CFD) code for simulating incompressible, compressible, and plasma
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flows in unsteady three-dimensional geometries. The major algorithmic developments are described in
[Sherwin, 1995] and [Warburton, 1999], and the capabilities are summarized in Figure 5.4. The code uses
meshes similar to standard finite-element and finite-volume meshes consisting of structured or unstruc-
tured grids or a combination of both. The formulation is also similar to those methods, corresponding to
Galerkin and discontinuous Galerkin projections for the incompressible and compressible Navier–Stokes
equations, respectively. Field variables, data, and geometry are represented in terms of hierarchical
(Jacobi) polynomial expansions [Karniadakis and Sherwin, 1999]; both isoparametric and superparamet-
ric representations are employed. These expansions are ordered in vertex, edge, face, and interior (or bub-
ble) modes. For the Galerkin formulation, the required C 0 continuity across elements is imposed by
choosing appropriately the edge (and face in 3D) modes; at low-order expansions this formulation
reduces to the standard finite element formulation. The discontinuous Galerkin is a flux-based formula-
tion, and all field variables have L2 continuity; at low order this formulation reduces to the standard finite-
volume formulation.

This new generation of Galerkin and discontinuous Galerkin spectral/hp element methods imple-
mented in the code NεκTαr does not replace but rather extends the classical finite element and finite 
volumes that the CFD practitioners are familiar with [Karniadakis and Sherwin, 1999]. The additional
advantages are that convergence of the discretization and thus solution verification can be obtained with-
out remeshing (h-refinement) and that the quality of the solution does not depend on the quality of the
original discretization. In Figure 5.4 we summarize the major current capabilities of the general code
NεκTαr for incompressible, compressible, and even plasma flows. In particular, for microflows both the
compressible and incompressible versions are used. For gas microflows we account for rarefaction by
using velocity-slip and temperature-jump boundary conditions as described in this volume in the chap-
ter by Beskok (see also [Beskok, Karniadakis, and Trimmer, 1996; Beskok and Karniadakis, 1999]). An
extension of the classical Maxwell’s boundary condition is employed in the code in the form

Ug � Uw � (∇U)w � n̂ (5.5)
Kn

�
1 � bKn

Integrated Simulation for MEMS 5-9

Νεκταr

2d 2.5d

 Steady
domain

 Steady
domain

Incompressible Navier–Stokes

Galerkin

2d

 Steady
domain

 Navier–
Stokes

Discontinuous Galerkin

Euler

Steady
domain

Single
 fluid 2-fluidALE

Mhd

3d

Navier–
Stokes

Euler

Steady
domain

Single
 fluid

ALE

MhdALE

3d

 Steady
domain

ALE

2.5d

Compressible 

FIGURE 5.4 Hierarchy of the NεκTαr code. Note that “2.5d” refers to a three-dimensional capability with one of
the directions being homogeneous in the geometry. Also, ALE refers to moving computational domains required in
dynamic flow–structure interactions. Gaseous microflows can be simulated by either the compressible or incom-
pressible version depending on the pressure/density variations.

© 2006 by Taylor & Francis Group, LLC



Here we define the Knudsen number Kn � λ/L with λ the mean free path of the gas molecules and L the
characteristic length scale in the flow. Also, Ug is the velocity (tangential component) of the gas at the wall,
Uw is the wall velocity, and n is the unit normal vector. The constant b is adjusted to reflect the physics of the
problem as we go from the slightly rarefied regime (slip flow) to the transition regime (Kn � 1) or free
molecular regime (Kn � 5–10). For b � 0, we recover the classical linear relationship between velocity-slip
and shear stress first proposed by Maxwell. However, for b � �1 we obtain a second-order accuracy
[Beskok and Karniadakis, 1999], and in general for b 	 0 Equation (5.5) leads to finite slip at the wall
unlike the linear boundary condition (for b � 0) used in most codes. The boundary condition in
Equation (5.5) has been used with success in the entire Knudsen number regime, Kn � 0–200, [see several
examples in Beskok and Karniadakis (1999)].

One of the key points in obtaining efficiency in simulations of moving domains is the type of dis-
cretization employed in the flow solver. In NεκTαr we employ the so-called h-p version of the finite-
element method with spectral Jacobi polynomials as basis functions. Convergence is obtained via a dual path
in this approach, either by increasing the number of elements (h-refinement) or by increasing the order
of the spectral polynomial (p-refinement). In the latter case a faster convergence is obtained without the
need for remeshing. Instead, the number of degrees of freedom is increased in the modal space by increas-
ing the polynomial order (p) while keeping the mesh unchanged. It is, of course, the cost of reconstruct-
ing the mesh that is orders of magnitude higher in time-dependent simulations both in terms of
computer and human time.

Regarding the type of elements (subdomains), NεκTαr uses hybrid meshes (i.e., both structured and
unstructured meshes). For example, in three-dimensional simulations a hybrid grid may consist of tetra-
hedra, hexahedra, triangular prisms, and even pyramids. In Figure 5.5 we plot the mesh used in the sim-
ulation of the pump, and in Figure 5.6 we plot the flow field at three different time instances.

In the following section, we briefly describe how we formulate the algorithm for a compatible and effi-
cient flow–structure coupling.

5.3.2.1 Formulation for Flow–Structure Interactions

We consider the incompressible Navier–Stokes equations in a time-dependent domain Ω(t)

ui,t � ujui,j � �(pδij)j � νui, jj � fi in Ω(t) (5.6)

uj,j � 0 in Ω(t), (5.7)

where ν is the viscosity and Ji is a body force. We assume for clarity homogeneous boundary conditions;
velocity-slip boundary conditions can be included relatively easily in the Galerkin framework as mixed
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(Robin) boundary conditions. Multiplying Equation (5.6) by test functions and integrating by parts we
obtain

�
Ω(t)

νi(ui,t � ujui,j)dx � �
Ω(t)

νi,j(pδij � νui,j � νi fi)dx (5.8)

The next step is to define the reference system on which time differentiation takes place. This was accom-
plished in [Ho, 1989] by use of the Reynolds transport theorem and by using the fact that the test func-
tion νi is following the material points. Therefore, its time-derivative in that reference frame is zero,

| xp � νi,t � wjνi,j � 0,

where wj is a velocity that describes the motion of the time-dependent domain Ω(t); xp denotes the mate-
rial point. The final variational statement then becomes

�
Ω(t)

νiui dx � �
Ω(t)

[νi(uj � wj)ui,j � νiuiwj,j]dx � �
Ω(t)

[νi,j pδij � ν νi,jui,u � νi fi]dx (5.9)
d

�
dt

dνi
�
dt
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FIGURE 5.6 Close-up of the vorticity contours for Re � 30 simulation at the left valve (meshes shown on right
side). Top: τω � 0.28 corresponds to the beginning of the suction stage. Start-up vortices due to the motion of the
inlet valve can be identified. Middle: τω � 0.72, corresponding to the end of the suction stage. A vortex jet pair is vis-
ible in the pump cavity. Bottom: τω � 0.84, corresponding to early ejection stage. Further evolution of the vortex jet
and the start-up vortex of the exit valve can be identified. (Reprinted with permission from A. Beskok).
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This is the ALE formulation of the momentum equation. It reduces to the familiar Eulerian and
Lagrangian form by setting wj � 0 and wj � uj respectively. However, wj can be chosen arbitrarily to min-
imize the mesh deformation. We discuss this algorithm next.

5.3.2.2 Grid Velocity Algorithm

The grid velocity is arbitrary in the ALE formulation, and therefore great latitude exists in the choice of
technique for updating it. Mesh constraints such as smoothness, consistency, and lack of edge crossover,
combined with computational constraints such as memory use and efficiency dictate the update algo-
rithm used. In the current work, we address the problem of solving for the mesh velocity in terms of its
graph theory equivalent problem. Mesh positions are obtained using methods based on a graph theory
analogy to the spring problem. Vertices are treated as nodes, while edges are treated as springs of varying
length and tension. At each time step, the mesh coordinate positions are updated by equilibration of the
spring network. Once the new vertex positions are calculated, the mesh velocity is obtained through dif-
ferences between the original and equilibrated mesh vertex positions.

Specifically, we incorporate the idea of variable diffusivity while maintaining computational efficiency
by avoiding solving full Laplacian equations. The method we use for updating the mesh velocity is a vari-
ation of the barycenter method [Battista, Eades, Tamassia, and Tollis, 1998] and relies on graph theory.
Given the graph G � (V,E) of element vertices V and connecting edges E, we define a partition V � V0 �
V1 � V2 of V such that V0 contains all vertices affixed to the moving boundary, V1 contains all vertices on
the outer boundary of the computational domain, and V2 contains all remaining interior vertices. To cre-
ate the effect of variable diffusivity, we use the concept of layers. As is pointed in [Lohner and Yang, 1996],
it is desirable for the vertices very close to the moving boundary to have a grid velocity almost equivalent
to that of the boundary. Hence, locally the mesh appears to move with solid movement, whereas far away
from the moving boundary the velocity must gradually go to zero. To accomplish this in our formulation,
we use the concept of local tension within layers to allow us to prescribe the rigidity of our system. Each
vertex is assigned to a layer value that heuristically denotes its distance from the moving boundary.
Weights are chosen such that vertices closer to the moving boundary have a higher influence on the
updated velocity value. To find the updated grid velocity ug at a vertex ν � V2, we use a force-directed
method. Given a configuration as in Figure 5.7, the grid velocity at the center vertex is given by:

ug � �
deg(ν)

i�1

α l
i ui, �

deg(ν)

i�1

α l
i � 1,

where deg(ν) is the number of edges meeting at the vertex v and α l
i is the lth layer weight associated with

the i-th edge. This is subjected to the following constraints: ug � 0(∀ν ∈ V1), and ug(∀ν ∈ V0) is pre-
scribed to be the wall velocity. This procedure is repeated for a few cycles following an incomplete iteration
algorithm, over all ν ∈V2. (Here by incomplete we mean that only a few sweeps are performed and not
full convergence is sought.) Once the grid velocity is known at every vertex, the updated vertex positions
are determined using explicit time-integration of the newly found grid velocities.

An example of the relative speed-up gained following the graph-theory approach versus the classical
approach of employing Poisson solvers to update the grid velocity is shown in Figure 5.8. We have com-
puted the portion of CPU time devoted exclusively to the solver as a function of the spectral order
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employed in the discretization. The problem we considered involved the motion of a piezoelectric mem-
brane induced by vortex shedding caused by a bluff body in front of the membrane. We see that a two-
to three-orders of magnitude speed-up can be obtained using the graph-based algorithm.

5.3.3 The Structural Simulator

The membrane of the micropump is modeled using the linear string-beam equation as given by the fol-
lowing equation:

� � � � (5.10)

where E is the Young’s modulus of elasticity, I is the second moment of inertia, T is the axial tension, F is
the hydrodynamic forcing, R is the coefficient of structural damping, and m is the structural mass per
unit length. In this model, the coefficients are given by the physical parameters of the membrane used
within the pump, and the hydrodynamic forcing on the membrane is provided by NεκTαr.

Assume that the membrane lies in the interval [0,L]. For the micropump configuration, we have cho-
sen the boundary conditions y(0) � y(L) � 0, y�(0) � y�(L) � 0, which correspond to a fixed-hinged
membrane. Equation (5.10) combined with these boundary conditions lends itself to the use of eigen-
function decomposition for the efficient solution of the membrane motion. We begin by transforming
the problem to lie on the interval [0,1] using the linear mapping x � Lξ, ξ ∈ [0,1]. The eigenfunctions of
this system are given by

φn � sin �λ�n� ξ; �λ�n� � (n � 1)πn � 1, 2, … , �

If we assume a solution of the form

y(ξ,t) � �
N

n�1

An(t)φn(ξ),

1
�
2

F
�
m

d 2y
�
dx 2

T
�
m

d 4y
�
dx 4

EI
�
m

dy
�
dt

R
�
m

d2y
�
dt 2
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FIGURE 5.8 Comparison of CPU time for the grid velocity algorithm between the classical approach (Poisson solver)
and the new approach (graph algorithm). In the leftmost column is the order of spectral polynomial approximation.
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then by employing the Galerkin method we obtain the following evolution equation for the coefficients
An(t):

� � � λn � �λn An � �1

0

Fdξ (5.11)

We then solve this evolution equation using the Newmark scheme [Hughes, 1987], which returns the
coefficients for the displacement, velocity, and acceleration of the membrane. This information is then
returned to NεκTαr as demonstrated in Figure 5.9.

5.3.4 Differences among Circuit, Fluid, and Solid Simulators

The above descriptions suggest some differences between the various simulators. The key distinguishing
features are:

� The fluid simulator is computationally more expensive than the structure and circuit simulators.
� SPICE3 has a reliable error estimation for time discretization. Therefore, a rollback in time can be

done if the truncation error is unacceptable. As a result, SPICE3 automatically controls the simula-
tion time step to ensure an acceptable user-specified error. NεκTαr is a much more complex code
and does not have an automatic time-step control scheme for coupled fluid–structure simulation.

� SPICE3 uses implicit numerical integration methods for time-domain simulation. These methods
are efficient for circuit simulation because the circuit equations are stiff. For the fluid solver, how-
ever, explicit methods are simpler to implement and reasonably efficient. For this reason, NεκTαr
uses semiimplicit methods for the time domain integration (explicit for the advection terms and
implicit for the diffusion terms of the Navier–Stokes equations), which suffer from the standard
CFL (Courant–Friedrichs–Levy condition for the time step) restrictions. However, the flow time
step is much higher than the electronics time step due to the relevant physical time scales. Also, the
Newmark scheme for the structure is unconditionally stable.

5.4 Circuit-Micro-Fluidic Device Simulation

For coupled circuit-micro-fluidic device simulation, four different physical domains (electrical, structure
mechanical, fluid mechanical, and thermal) must be considered, as shown in Figure 5.10. These domains
are coupled to one another as described below.

In Figure 5.2 four types of coupling can be identified. These are

� Electromechanical coupling for a piezoelectric actuation of the pump membrane
� Fluid–structure coupling due to volume displacement of the pump membrane

1
�
m

T
�
m2

EI
�
mL4

dAn
�

dt

R
�
m

d2An
�

dt2
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FIGURE 5.9 Coupling between NεκTαr and the structural solver. NεκTαr provides the hydrodynamic force infor-
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motion on the fluid.
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� Fluid-thermal coupling because of the thermoresistor cooling in the fluid when an anemometer
type of microflow sensor is used

� Electrothermal thermoresistor heating due to current flow in the microflow sensor

The overall system can be simulated using different approaches. One approach is a detailed physical
simulation for each coupled domain. Another is the use of lumped-element equivalent circuits, compact,
or macromodels, and/or analog hardware description languages. A third approach is to use a combina-
tion of coupled solvers, compact models, and lumped elements. In this work, we will demonstrate this
third approach.

5.4.1 Software Integration

The interaction of the full system is based on different abstraction levels, using lumped circuit elements,
compact/macromodels, and a direct interconnection of solvers for various domains. The circuit simula-
tor SPICE3 is chosen as the controlling solver for the following reasons:

� SPICE3 has advanced time-step control.
� Models for different abstraction levels can be easily implemented in SPICE3.
� Lumped-element equivalent circuits can be readily simulated.

Relatively simple elements are implemented as lumped elements or compact models. These elements are
electromechanical transducers (piezoelectric actuator) and thermoresistors. Flow sensors are much more
complicated but often the fluid flow around sensors is relatively simple. For example, if the fluid flow in
a channel is fully developed then it has a parabolic profile for the velocity, and thus this profile (compact
model) can be used for the flow sensors as well. It is important to note that these compact models are
parameterized and can be highly nonlinear. These models are obtained by insight gained from detailed
physical level simulations, such as Navier–Stokes simulations, DSMC, and linearized solutions of the
Boltzmann equation [Beskok and Karniadakis, 1999]. The pump can also be described as a lumped ele-
ment [Klein, Matsumoto, and Gerlach, 1998]. However, these lumped-element descriptions are applica-
ble only for small variations in the fluid flow. Usually pumps operate in a nonlinear and nonsmooth
mode of fluid flow with a strong fluid–structure interaction. Therefore, a detailed physical level simula-
tion of the pump is required. A simplification can be made by employing a macromodel of the form
described in Equation (5.1), but here we employ full Navier–Stokes simulations with full dynamics.

For this reason, the following options are used:

� Electromechanical actuators, thermoresistors, and flow sensors are described as lumped elements
and/or compact models.

� The pump is modeled at the detailed physical level.
� All lumped elements and models are implemented in SPICE3.
� The pump is implemented as a direct SPICE3-NεκTαr interconnection (Figure 5.11). SPICE3

transfers the time tspice and pressure P for the membrane activation to NεκTαr and receives the flow
rate Q and the time tcall for the next call to NεκTαr.

A detailed description of this coupling is provided later.
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5.4.2 Lumped-Element and Compact Models for Devices

5.4.2.1 Model for Piezoelectric Transducers

The model for electromechanical coupling with a piezoelectric actuation of the membrane is shown in
Figure 5.12. This model forms the interface between the electrical and mechanical networks. The electrical
characteristics of the piezoelectric actuator are described by the capacitor C. The input voltage V trans-
lates into an output pressure P by virtue of the piezoelectric effect with coefficient k. This pressure is an
input argument to NεκTαr. The mechanical characteristics of the piezoelectric actuator are coupled with
the mechanical characteristics of the substrate [Klein, 1997; Timoshenko and Woinowsky-Krieger, 1970].

5.4.2.2 Compact Model for Flow Sensor

For an anemometer type flow sensor [Rasmussen and Zaghloul, 1999] shown in Figure 5.13, a macro-
model has been developed in [Mikulchenko, Rasmussen, and Mayaram, 2000]. This macromodel (Figure
5.14) is based on neural networks trained using data from detailed physical simulations.

The inputs to the neural network are the flow velocity U and the vector of geometrical and physical
parameters Θ. The results from this model are in good agreement with the simulated data for a large
range of parameters [Mikulchenko, Rasmussen, and Mayaram, 2000].

The dynamic macromodel is incorporated in SPICE3 by coupling it with a sensor circuit and a model
for thermoresistors for the heater and sensors as shown in Figure 5.15. Based on the fluid flow rate the
thermoresistor temperatures T1, T2, and T3 change, which in turn alters the resistance values and the
sensing-circuit currents and voltages.

5.4.3 Effective Time-Stepping Algorithms

In general, the flow solver can be NεκTαr implemented as one big model in SPICE3. This is accomplished
by NεκTαr from SPICE3 for each Newton iteration. However, such a coupling is extremely inefficient
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FIGURE 5.11 The SPICE3–NεκTαr interaction for the pump microsystem of Figure 5.2. SPICE3 provides the time
tspice and pressure P for the membrane actuation to NεκTαr. NεκTαr transfers the flow rate Q at time tcall for the next
call of NεκTαr by SPICE3.
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FIGURE 5.12 Lumped model for piezoelectric actuation. The voltage V is transformed into a pressure P that is used
to activate the membrane of the pump.
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because a call to NεκTαr is computationally very expensive. Furthermore, the time scales and nonlinearities
are extremely different for the circuit and fluidic devices. If one considers only the circuit element, then
a SPICE3 simulation results in nonuniform time steps and several Newton iterations for each time step.
Typical time constants for circuits are of the order of 10�12…10�6 seconds. On the other hand, fluidic
devices have a typical time constant of the order 10�4…10�1 seconds.
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FIGURE 5.13 Structure of an anemometer-type flow sensor (thermocouple). This sensor is made up of a heating
element and two sensing elements. The temperature difference between the sensors is used to measure the flow.
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FIGURE 5.14 Dynamic macromodel for the flow sensor. The steady-state solution TSS0 corresponds to a nominal
power for the heat source χ. The neural network output TSS0 is a multivariate function of the flow velocity U and the
vector of geometrical and physical parameters Θ. TSS is a linear function of the heat source χ and TSS0.
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FIGURE 5.15 Macromodel implementation in SPICE3. Based on the fluid flow rate the thermoresistor tempera-
tures T1, T2, and T3 change, which in turn alters the resistance values and the sensing-circuit currents and voltages.
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This property can be exploited to improve simulation performance by calling NεκTαr only at some of
the circuit time points following a subcycling type algorithm. Between these time points, the NεκTαr
outputs can be modeled as constant values. Further improvement in performance is possible by taking
into account the usage of semiexplicit methods for fluid simulation. In this case, the flow rate Qn for time
point tn is calculated by the explicit scheme: Qn � F(Pn�1,Vn�1,tn), where P is the vector of the pressure at
mesh points, and V is the vector of velocities at mesh points. For the SPICE3 NεκTαr interaction
described earlier, the important quantities are the distributed pressure P for the pump membrane and the
flow rate Qn. This functional relationship can be expressed as follows: Qn � f(Pn�1,Qn�1,tn).

Based on this observation, an efficient time-stepping scheme is obtained as shown in Figure 5.16. Here,
time is plotted on the horizontal axis, and the SPICE3 iterations are plotted on the vertical axis; tS,k and
tN,k are the SPICE3 and NεκTαr time points, respectively. NεκTαr selects a time step hN,i � tN,i � tN,i�1

independent of SPICE3, based on the Courant number (CFL) constraint for convection. The NεκTαr
time points tN,i are used as synchronization time points with SPICE3, whereby tN,i � tS,k. The flow rate Q
has a constant value between these synchronization time points. The membrane pressure pj,k is calculated
as a function of the circuit behavior for each SPICE3 call at time tS,k and iteration j. The pressure Pi � pM,k

at the final SPICE3 iteration M, for a synchronization time point tS,k � tN,i, is an input to NεκTαr. A
NεκTαr call is made at tN,i and a new value of Q is computed using the relation Qi�1 � f (Pi,Qi,tN,i�1). This
value is then used for the next NεκTαr time point, tN,i�1.
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FIGURE 5.16 The time-stepping scheme for SPICE3 NεκTαr coupling. Ts,k and tN,k are the SPICE3 and NεκTαr
time points respectively. Qi is a constant value for each SPICE3 iteration and at each SPICE3 time point between the
NεκTαr time points tN,i and tN,i�1. The membrane pressure pj,k is calculated as a function of the circuit behavior for
each SPICE3 call at time Ts,k and iteration j. SPICE3 selects time points based on a local truncation error estimate and
synchronizes with NεκTαr at all NεκTαr time points. The pressure pi for the final SPICE3 iteration at the synchro-
nization time point Ts,k � tN,i is used as an input to NεκTαr. NεTαr call is made at tN,i, and a new value of Q is com-
puted for the next NεκTαr time point.
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The main features of this time stepping scheme can be summarized as follows:

� NεκTαr is called from SPICE3.
� The timestep for SPICE3 is much smaller than the timestep for NεκTαr.
� NεκTαr specifies the next synchronization time point.

From this, it can be concluded that the number of NεκTαr calls are the same as that of stand-alone NεκTαr.
This is the best possible situation in terms of efficiency for the coupled SPICE3–NεκTαr simulation.

5.5 Demonstrations of the Integrated Simulation Approach

5.5.1 Microfluidic System Description

A microliquid dosing system is used as an illustrative example. This system is made up of a micropump,
a flow sensor and an electronic control circuit. The electronic circuit adjusts the pump flow rate. A sim-
plified simulation circuit is shown in Figure 5.17.

In this system, the flow rate Q determines the flow sensor velocity U for a given set of geometry param-
eters (h, d, wsens). Based on the fluid flow rate, the thermoresistor temperatures T1, T2, and T3 change,
which in turn alters the resistance values R1(T1), R2(T2), and R3(T3). The resistances R1(T1) and
R3(T3) are included in a Wheatstone-bridge arrangement with two fixed resistors R4 and R5. The volt-
age difference VR3(T3) � VR1(T1) is directly proportional to the temperature difference T3 � T1. This volt-
age difference is linearly transformed to the output voltage Vout by an operational amplifier with a
controlled gain. This output voltage determines the pressure P, which activates the pump membrane and
changes the flow rate Q. The thermoresistor of the heater (R2) is activated by the control electronics that
maintain a constant heater temperature.
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FIGURE 5.17 Description of the complete system for simulation. The pump flow rate Q determines the flow sen-
sor velocity U. This yields the temperatures for the sensor thermoresistors. The difference between the resistance val-
ues R1(T1) and R3(T3) is transformed into the voltage Vout by the control electronics, which are used to control the
pressure P for the pump membrane. This, in turn, determines the flow rate Q.
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FIGURE 5.18 External pressure for the pump membrane, inlet velocity for the microflow sensor, and the amplifier
output voltage for the simulation of the microfluidic system as a function of time.
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FIGURE 5.19 Flow sensor characteristics and its region of operation. A small change in velocity results in a large
change in ∆T, the difference of the upstream and downstream sensor temperatures.
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5.5.2 SPICE3–NεεκκTααr Integration

As mentioned earlier, NεκTαr is embedded as a subroutine in SPICE3. The interaction with SPICE3 is by
means of the model code and the simulation engine. Synchronization time points are determined by
NεκTαr and used by the SPICE3 transient analysis engine. The pump is modeled as a SPICE3 element
with NεκTαr being the underlying simulation engine. The other elements in the circuit are described by
lumped element descriptions and/or compact models.

5.5.3 Simulation Results

The simulation results from the coupled simulator are presented in Figure 5.18. In this simulation, one can
determine the pressure on the pump membrane, the flow velocity, and the output control voltage as a func-
tion of time for various component parameters. As an example, consider the microflow sensor whose char-
acteristics are shown in Figure 5.19. For the given range of flow velocity, the temperature difference
between the upstream and downstream sensor temperatures is in the range 12–17°K. This simulation
required approximately 5 minutes of CPU time on a 300 MHz Pentium II processor. Thus, the coupled
simulator is reasonably efficient and provides valuable information to the system for device developers.

5.6 Summary and Discussion

Coupled-domain simulation is necessary in MEMS applications as many different physical phenomena
are present and different processes are taking place simultaneously. Depending on the specific application
(e.g., a microsensor versus a microactuator or a more complex system), some aspects of the device need
to be simulated in detail at high resolution while others need to be accounted for by a low-dimensional
description. Nonlinear macromodels are a possibility, but they are inadequate for the microfluidic sys-
tem, which is typically highly unsteady and nonlinear. In addition, in the microdomain certain nonstan-
dard flow features have to be modeled accurately, such as velocity-slip or temperature-jump in gas flows,
viscous electrokinetic effects in liquid flows, and particle trajectories in particulate flows. To this end, we
have developed the code that can simulate flows in the microdomains and macrodomains both for liq-
uids and for gases. In addition, it includes a library of linear and nonlinear structures, such as beams,
membranes, and cables.

For the coupled-domain simulation, the main driver program is SPICE3, a popular code for circuit
simulation. In this paper, a coupled circuit and microfluidic device simulator was presented. The resulting
simulator allows simulation of a complete microfluidic system in which thermal, flow, structural, and
electrical domains are integrated. The coupling of these simulators was described and demonstrated for
a microliquid dosing system. The integrated simulator can be utilized for parametric studies and optimal
design of microfluidic systems.

The integration of different simulators required for complete MEMS simulations is a difficult problem
with challenges well beyond software integration. It involves disparate temporal and spatial scales lead-
ing to great stiffness and inefficiencies, new physical assumptions and approximations for some of the 
components, issues of numerical stability, staggered time-marching procedures, new fast solvers for cou-
pled problems, and optimization and control algorithms. Most of the mature algorithms from single dis-
ciplines are inefficient in this context, so new methods are required in order to produce a new generation
of simulation algorithms for MEMS devices. In this chapter, we have demonstrated that this is possible
by coupling two accurate codes and resolving at least at some level some of these coupling issues.
However, significant improvements can be made for specific devices. For example, for the membrane-
driven micropump presented here, convergence of the coupling algorithm could be accelerated by
inspecting the time-dependent mass-conservation equation every SPICE time step and obtaining a new
estimate of flow from

Qnew � Qold �
∆V
�∆t
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where ∆V is the change in volume due to the change in the membrane position, and ∆t is the time
between two consecutive SPICE calls. This requires solving for the structure only but not necessarily for
the entire flow field, which is the most computationally intensive task. The structure solver is very fast and
can be called as often as necessary without a serious computational overhead.
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6.1 Introduction

Simulation of microscale thermal fluidic transport is gaining importance due to the emerging technologies
of the 21st century, such as microelectromechanical systems (MEMS) and nanotechnologies. Miniaturization
of device scales has made possible for the first time the integration of sensing, computation, actuation,
control, communication, and power generation within the same microchip. The small size, light weight,
and high-durability of MEMS, combined with their mass fabrication, result in low-cost systems with a
wide variety of applications from control systems to advanced energy systems to biological, medical, and
chemical uses. Despite the diverse prospects and fast growth of MEMS, further miniaturization of device
scales presents the challenge of better understanding micron and submicron scale physics.

The microscale thermal/fluidic transport phenomenon differs from its larger scale counterparts mainly
due to the size, surface, and interface effects [Ho and Tai, 1998; Gad-el-Hak, 1999]. Reduction of the charac-
teristic device dimensions to micrometer scale drastically decreases the volume-to-surface area ratio. Hence,
the surface forces are more dominant than the body forces in such small scales. The origin of the surface
forces is atomistic and based on the short-ranged van der Waals forces and longer-ranged electrostatic,
or Coulombic, forces. Although a molecular-simulation-based approach for understanding fluid forces on

6-1

Ali Beskok
Texas A&M University

© 2006 by Taylor & Francis Group, LLC



surfaces is fundamental in nature, it is very difficult to apply to engineering problems due to the vast number
of molecules involved in the analysis; however, direct application of the well-known continuum equations is
not appropriate, either. For example, the Navier–Stokes level of constitutive relations that model the shear
stress, being linearly proportional to the strain rate, is not valid for gases when the Knudsen number Kn � 0.1,
or for liquids when the strain rate exceeds twice the molecular frequency scale [Gad-el-Hak, 1999]. Significant
differences between the thermal/fluidic transport of gas and liquid states also exist. For example, dilute gases
spend most of their time in free flight with abrupt changes in their direction and speed caused by binary inter-
molecular collisions. The liquid molecules are closely packed, however, and they experience multiple colli-
sions with large intermolecular forces. The fundamental simulation approaches for liquid and gas flows differ
from a microscopic point of view. In this chapter, we will address separately the numerical simulation meth-
ods relevant for dilute gases and liquids. However, the main emphasis of the chapter is microscale gas trans-
port modeling with the direct simulation Monte Carlo (DSMC) algorithm. Other microscopic simulation
methods, such as the Boltzmann equation approach, lattice Boltzmann method, and molecular dynamics
(MD), are briefly introduced to guide the reader to the appropriate resources in these areas.

6.2 Gas Flows

The ratio of the gas mean free path l to a characteristic microfluidic length scale h is known as the Knudsen
number, Kn � λ/h. Because the momentum and energy transfers happen with intermolecular and gas/wall
collisions, the mean free path indicates an intrinsic length scale of thermal/fluidic transport for gases. In stan-
dard pressure and temperature (STP), the mean free path for air is about 65 nm. For macroscopic devices, the
Knudsen number is very small, so the surrounding air can be treated as a continuous medium. However, in
microscales, the Knudsen number can be fairly large due to the small length scales. Momentum and energy
transport in micron and submicron scales show significant deviations from their larger scale counterparts.
For example, recent microchannel experiments show increased mass flow rates compared to the
Navier–Stokes-based continuum estimates [Arkilic et al., 1997; Harley et al., 1995; Liu et al., 1993; Pong et al.,
1994]. Similarly, in the case of magnetic disk storage units, the head floating about 50 nm above the media
exhibits an order of magnitude reduction of load capacity compared to predictions by the continuum
Reynolds equations [Fukui and Kaneko, 1990]. These deviations are explained as a function of the Knudsen
number by dividing the flow into four regimes: continuum (Kn � 0.01), slip (0.01 � Kn � 0.1), transitional
(0.1 � Kn � 10), and free-molecular (Kn � 10). Operation regimes of typical MEMS devices at standard
temperature and pressure are shown in Figure 6.1. MEMS operate in a wide variety of flow regimes covering
the continuum, slip, and early transitional flow regimes. Further miniaturization of MEMS device compo-
nents and nanotechnology applications [Drexler, 1990] corresponds to higher Knudsen numbers, making it
necessary to study the mass, momentum, and energy transport in the entire Knudsen regime.

It may be misleading to identify the flow regimes as slip and continuum. Within this text and in most
of the microscale transport literature, continuum refers to the Navier–Stokes equations subject to the 
no-slip-boundary conditions. This identification leads to two common misconceptions. First, if the
Navier–Stokes equations cannot be applied, then the continuum approximation should break down. This
is misleading, for we will see shortly that it is possible to derive conservation equations with more
advanced constitutive laws than the Navier–Stokes equations. One example of this is the Burnett equa-
tions. The second misconception is that in the slip flow regime the boundary conditions suddenly change
from no-slip to slip. This is also misleading, as the no-slip-boundary condition is just an empirical find-
ing and the Navier–Stokes equations are valid both for slip and continuum flow regimes. Hence, the slip
effects become important gradually with increased Kn. Nevertheless, the identification of flow regimes
was made for rarefied gas flows almost a century ago. For Kn � 0.1 flows, the Navier–Stokes equations
subject to the velocity-slip and temperature-jump boundary conditions should be used. The slip condi-
tions are [Kennard, 1938; Schaaf and Chambre, 1961]:

us � uw � τs � (�qs) (6.1)
Pr(γ � 1)
��γρRTw

3
�
4

1
��ρ(2RTw /π)1/2

2 � σν
�σν
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Ts � Tw � � � (�qn) (6.2)

where qn and qs are the normal and tangential heat-flux components, τs is the viscous stress component
corresponding to the skin friction, R is the specific gas constant, g is the ratio of specific heats, r is the
density, Pr is the Prandtl number, and Tw and uw are the wall temperature and velocity respectively.
The gas slip velocity and temperature near the wall (jump) are given by us and Ts respectively. The term
in the above equation proportional to (�qs) is associated with the phenomenon of thermal creep, which
can cause variations of pressure along tubes in the presence of tangential temperature gradients [Beskok 
et al., 1995; Sone, 2000; Vargo and Muntz, 1996; Vargo et al., 1998].

In a recent work, a Padé approximation of 1 was developed resulting in a velocity slip condition valid
in the entire Knudsen regime. Excluding the thermal creep terms, this new slip condition is given in the
following form [Beskok et al., 1996; Beskok and Karniadakis, 1999]:

Us � Uw � � � (6.3)

where Uw and Us are the wall and gas-slip velocity nondimensionalized with a reference velocity respec-
tively. Here, b is the general slip coefficient determined by the following procedures:

� A perturbation expansion in Kn for Kn � 1, such that Equation (6.3) is equivalent to a second-
order slip condition [Beskok et al., 1996].

� Matching the velocity profiles with the direct simulation Monte Carlo (DSMC) results in the tran-
sitional and free molecular flow regimes [Beskok and Karniadakis, 1999].

Hence the value of b is defined analytically in the slip and early transition flow regime, but in the transi-
tional and free molecular flow regimes it is an empirical parameter.

∂U
�∂n

Kn
�
1 � bKn

2 � σν
�σν

1
��
Rρ(2RTw /π)1/2

2(γ � 1)
�γ � 1

2 � σT
�σT
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In Equations (6.1) and (6.3), σν, and σT are the tangential momentum and thermal accommodation coef-
ficients respectively. The accommodation coefficients model the momentum and energy exchange of gas mol-
ecules impinging on the walls. Hence, they characterize the surface effects. For example, σν � 0.2 enhances
the apparent slip by almost an order of magnitude. The accommodation coefficients are usually determined
experimentally. Due to the difficulties of experimentation in microscales, the accommodation coefficients are
obtained by assuming slip flow and matching the value of the accommodation coefficients to maintain the
measured mass flow rate. This has resulted in σν � 0.80 for nitrogen, argon, and carbon dioxide in contact
with prime silicon crystal [Arkilic et al., 1997]. Lower accommodation coefficients are expected due to the low
surface roughness of the prime silicon crystal. However, for a general micromachined surface and gas pair, the
values of the accommodation coefficients are not known a priori. For low-pressure, rarefied gas flows, the val-
ues of the accommodation coefficients are tabulated as a function of the specific gas and surface quality [Seidl
and Steinheil, 1974]; under laboratory conditions, values as low as 0.2 have been observed [Lord, 1976]. Very
low values of sv will increase the slip on the walls considerably, even for small Knudsen number flows.

In the transitional flow regime, the constitutive laws defining the stress tensor and the heat-flux vector
must be updated for increased rarefaction effects resulting in Wood’s, Burnett’s, or Grad’s equations. It is
also possible to use the Boltzmann transport equation in this regime (see section 6.2.7). In a recent work,
Myong has developed thermodynamically consistent hydrodynamic computational models for high-
Knudsen-number gas flows, uniformly valid in all Mach numbers and satisfying the second law of ther-
modynamics [Myong, 1999].

In the free molecular flow regime (Kn � 10), the molecule–wall interactions dominate the transport
with significantly reduced intermolecular collisions. Hence, the collisionless Boltzmann equation is 
commonly used in this flow regime.

6.2.1 Molecular Magnitudes

Before studying the molecular-based numerical simulation algorithms, it is crucial to understand the com-
plexity of the molecular simulation problem. In this section, we present relationships for the number
density of molecules n, mean molecular spacing d, molecular diameter dm, mean free path λ, mean colli-
sion time tc, and mean square molecular speed �C��2�.

The number of molecules in one mole of gas is a constant known as the Avogadro’s number,
6.02252 	 1023/mole, and the volume occupied by one mole of gas at a given temperature and pressure
is a constant, regardless of the composition of the gas [Vincenti and Kruger, 1977]. This leads to the per-
fect gas relationship given by:

P � nkbT (6.4)

where P is the pressure, T is the temperature, n is the number density of the gas, and kb is the Boltzmann
constant (kb � 1.3805 	 10�23 J/K). This ideal gas law is valid for dilute gases at any pressure (above the
saturation pressure). Hence, for most microscale gas flow applications we can predict the number den-
sity of the molecules at a given temperature and pressure using Equation (6.4). At atmospheric pressure
and 0°C (standard conditions) the number density is about n � 2.69 	 1025 m�3. If all of these molecules
are placed in a 1-m cube in an equidistant fashion, the mean molecular spacing will be

δ � n�1/3 (6.5)

Under standard conditions the mean molecular spacing is δ � 3.3 	 10�9 m.
The mean molecular diameter (dm) of typical gases, based on the measured coefficient of viscosity and

the Chapman–Enskog theory of transport properties for hard-sphere molecules, is on the order of
10�10 m. For air under standard conditions, dm � 3.7 	 10�10 m, as tabulated in Bird (1994). Comparison
of the mean molecular spacing δ and the typical molecular diameter dm shows an order of magnitude 
difference. This leads to the concept of “dilute gas,” where δ/dm �� 1. For dilute gases, binary intermo-
lecular collisions are more likely than the simultaneous multiple collisions. On the other hand, dense gases
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and liquids go through multiple collisions at a given instant, making the treatment of the intermolecular
collision process more difficult. The dilute gas approximations, along with molecular chaos and equipar-
tition of energy principles, lead us to the well established kinetic theory of gases and formulation of the
Boltzmann transport equation starting from the Liouville equation. The assumptions and simplifications
of this derivation are given in Vincenti and Kruger (1977) and Bird (1994).

Momentum and energy transport in the bulk of the fluid happen with intermolecular collisions, as
does settling to a thermodynamic equilibrium state. Hence, the time and length scales associated with the
intermolecular collisions are important parameters for many applications. The distance traveled by the
molecules between the intermolecular collisions is known as the mean free path. For a simple gas of hard-
sphere molecules in thermodynamic equilibrium, the mean free path is given in the following form [Bird,
1994]:

λ � (21/2πd2
mn)�1 (6.6)

The gas molecules are traveling with high speeds proportional to the speed of sound. By simple consid-
erations, the mean-square molecular speed of the gas molecules is given by [Vincenti and Kruger, 1977]:

�C��2� � �� � �3R�T� (6.7)

where R is the specific gas constant. For air under standard conditions, this corresponds to 486 m/sec. This
value is about 3 to 5 orders of magnitude larger than the typical average speeds obtained in gas
microflows. (The importance of this discrepancy will be discussed in Section 6.2.3.) In regard to the time
scales of intermolecular collisions, we can obtain an average value by taking the ratio of the mean free
path to the mean-square molecular speed. This results in tc � 10�10 for air under standard conditions.
This time scale should be compared to a typical microscale process time scale to determine the validity of
the thermodynamic equilibrium assumption.

So far we have identified the vast number of molecules and the associated time and length scales for
gas flows. That it is possible to lump all of the microscopic quantities into time- and/or space-averaged
macroscopic quantities, such as fluid density, temperature, and velocity. It is crucial to determine the 
limitations of these continuum-based descriptions; in other words:

� How small should a sample size be so that we can still talk about the macroscopic properties and
their spatial variations?

� At what length scales do the statistical fluctuations become significant?

It turns out that a sampling volume that contains 10,000 molecules typically results in 1% statistical fluc-
tuations in the averaged quantities [Bird, 1994]. This corresponds to a volume of 3.7 	 10−22 m3 for air at
standard conditions. If we try to measure an “instantaneous” macroscopic quantity such as velocity in a
three-dimensional space, one side of our sampling cube will typically be about 72 nm. This length scale
is slightly larger than the mean free path of air λ under standard conditions. Therefore, in complex micro-
geometries where three-dimensional spatial gradients are expected, the definition of instantaneous macro-
scopic values may become problematic for Kn � 1. If we would like to subdivide this domain further to
obtain an instantaneous velocity distribution, the statistical fluctuations will be increased significantly as
the sample volume is decreased. Hence, we may not be able to define instantaneous velocity distribution
in a 72 nm3 volume. On the other hand, it is always possible to perform time or ensemble averaging of the
data at such small scales. Hence, we can still talk about a velocity profile in an averaged sense.

To describe the statistical fluctuation issues further, we present in Figure 6.2 the flow regimes and the
limit of the onset of statistical fluctuations as a function of the characteristic dimension L and the nor-
malized number density n/no. The 1% statistical scatterline is defined in a cubic volume of side L, which con-
tains approximately 10,000 molecules. Using Equation (6.5), we find that L/δ 	 20 satisfies this 
condition approximately, and the 1% fluctuation line varies as (n/no)

�1/3. Under standard 
conditions, 1% fluctuation is observed at L � 72 nm, and the Knudsen number based on this value is 
Kn 	 1. Figure 6.2 also shows the continuum, slip, transitional, and free molecular flow regimes for air at

3P
�ρ
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273 K and at various pressures. The mean free path varies inversely with the pressure. Hence, at isother-
mal conditions, the Knudsen number varies as (n/no)

�1. The fundamental question of dynamic similar-
ity of low-pressure gas flows to gas microflows under geometrically similar and identical Knudsen, Mach,
and Reynolds number conditions can be answered to some degree by Figure 6.2. Provided that there are
no unforeseen microscale-specific effects, the two flow cases should be dynamically similar. However, a
distinction between the low-pressure and gas microflows is the difference in the length scales for which
the statistical fluctuations become important.

It is interesting to note that for low-pressure rarefied gas flows the length scales for the onset of signifi-
cant statistical scatter correspond to much larger Knudsen values than do the gas microflows. For example,
Kn � 1.0 flow obtained at standard conditions in a 72 nm cube volume permits us to perform one instan-
taneous measurement in the entire volume with 1% scatter. However, at 100 pascal pressure and 273 K
temperature, Kn � 1.0 flow corresponds to a length scale of 65 mm. For this case, 1% statistical scatter in
the macroscopic quantities is observed in a cubic volume of side 0.72 µm, allowing about 90 pointwise
instantaneous measurements. This is valid for instantaneous measurements of macroscopic properties in
complex three-dimensional conduits. In large-aspect-ratio microdevices, one can always perform spanwise
averaging to define an averaged velocity profile. Also, for practical reasons one can also define averaged
macroscopic properties either by time or ensemble averaging (such examples are presented in Section 6.2.4).

6.2.2 An Overview of the Direct Simulation Monte Carlo Method

In this section, we present the algorithmic details, advantages, and disadvantages of using the direct sim-
ulation Monte Carlo algorithm for microfluidic applications. The DSMC method was invented by Graeme
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A. Bird (1976, 1994). Several review articles about the DSMC method are currently available [Bird 1978,
1998; Muntz, 1989; Oran et al., 1998]. Most of these articles present an extended review of the DSMC
method for low-pressure rarefied gas flow applications, with the exception of Oran et al. (1998), who also
address microfluidic applications.

The previous section describes molecular magnitudes and associated time and length scales. Under
standard conditions in a volume of 10 µm3, there are about 2.69 	 1010 molecules. A molecular-based
simulation model that can compute the motion and interactions of all these molecules is not possible.
The typical DSMC method uses hundreds of thousands or even millions of simulated molecules or par-
ticles that mimic the motion of real molecules.

The DSMC method is based on splitting the molecular motion and intermolecular collisions by choos-
ing a time step less than the mean collision time and tracking the evolution of this molecular process in
space and time. For efficient numerical implementation, the space is divided into cells similar to the
finite-volume method. The DSMC cells are chosen proportional to the mean free path λ. In order to
resolve large gradients in flow with realistic (physical) viscosity values, the average cell size should be 
∆xc � λ/3 [Oran et al., 1998]. The time- and cell-averaged molecular quantities are obtained as the
macroscopic values at the cell centers. The DSMC involves four main processes: motion of the particles,
indexing and cross-referencing of particles, simulation of collisions, and sampling of the flow field. The
basic steps of a DSMC algorithm are given in Figure 6.3.

The first process involves motion of the simulated molecules during a time interval of ∆t. Because the
molecules will go through intermolecular collisions, the time step for simulation chosen is smaller than
the mean collision time ∆tc. Once the molecules are advanced in space, some of them will have gone
through wall collisions or will have left the computational domain through the inflow–outflow bound-
aries. Hence, the boundary conditions must be enforced at this level, and the macroscopic properties along
the solid surfaces must be sampled. This is done by modeling the surface molecule interactions by applying
the conservation laws on individual molecules rather than using a velocity distribution function that is
commonly utilized in the Boltzmann algorithms. This approach allows inclusion of many other physical
processes, such as chemical reactions, radiation effects, three-body collisions, and ionized flow effects,
without major modifications to the basic DSMC procedure [Oran et al., 1998]. However, a priori knowl-
edge of the accommodation coefficients must be used in this process. Hence, this constitutes a weakness
of the DSMC method similar to the Navier–Stokes-based slip and even Boltzmann equation-based sim-
ulation models. The following section discusses this issue in detail.

The second process is the indexing and tracking of the particles. This is necessary because the mole-
cules might have moved to new cell locations during the first stage. The new cell location of the mole-
cules is indexed, and thus the intermolecular collisions and flow field sampling can be handled accurately.
This is a crucial step for an efficient DSMC algorithm. The indexing, molecule tracking, and data struc-
turing algorithms should be carefully designed for the specific computing platforms, such as vector super
computers and workstation architectures.

The third step is simulation of collisions via a probabilistic process. Because only a small portion of the
molecules is simulated and the motion and collision processes are decoupled, probabilistic treatment
becomes necessary. A common collision model is the no-time-counter technique of Bird (1994) that is
used in conjunction with the subcell technique where the collision rates are calculated within the cells and
the collision pairs are selected within the subcells. This improves the accuracy of the method by main-
taining the collisions of the molecules with their closest neighbors [Oran et al., 1998].

The last process is the calculation of appropriate macroscopic properties by the sampling of molecular
(microscopic) properties within a cell. The macroscopic properties for unsteady flow conditions are obtained
by the ensemble average of many independent calculations. For steady flows, time averaging is also used.

6.2.3 Limitations, Error Sources, and Disadvantages of the DSMC Approach

Following the work of Oran et al., (1998), we identify several possible limitations and error sources within
a DSMC method.
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1. Finite cell size: the typical DSMC cell should be about one-third of the local mean free path. Values
of cell sizes larger than this may result in enhanced diffusion coefficients. In DSMC, one cannot
directly specify the dynamic viscosity and thermal conductivity of the fluid. The dynamic viscosity
is calculated via diffusion of linear momentum. Breuer et al. (1995) performed one-dimensional
Rayleigh flow problems in the continuum flow regime and showed that for cell sizes larger than
one mean free path the apparent viscosity of the fluid was increased. Some numerical experimen-
tation details for this finding are also given in Beskok (1996). More recently, the viscosity and thermal
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conductivity dependence on cell size have been obtained more systematically by using the
Green–Kubo theory [Alexander et al., 1998; Hadjiconstaninou, 2000].

2. Finite time step: due to the time splitting of the molecular motion and collisions, the maximum
allowable time step is smaller than the local collision time tc. Values of time steps larger than tc

result in molecules traveling through several cells prior to a cell-based collision calculation.
The time-step and cell-size restrictions presented in items 1 and 2 are not a

Courant–Friederichs–Lewy (CFL) stability condition. The DSMC method is always stable.
However, overlooking the physical restrictions stated in items 1 and 2 may result in highly diffu-
sive numerical results.

3. Ratio of the simulated particles to the real molecules: due to the vast number of molecules and
limited computational resources, one always has to choose a sample of molecules to simulate. If
the ratio of the actual molecules to the simulated molecules gets too high, the statistical scatter of
the solution is increased. The details for the statistical error sources and the corresponding reme-
dies can be found in Oran et al. (1998), Bird (1994) and Chen and Boyd (1996). A relatively well-
resolved DSMC calculation requires a minimum of 20 simulated particles per cell.

4. Boundary condition treatment: the inflow–outflow boundary conditions can become particularly
important in a microfluidic simulation. A subsonic microchannel flow simulation may require speci-
fication of inlet and exit pressures. The flow will develop under this pressure gradient and result in a
certain mass flow rate. During such simulations, specification of back pressure for subsonic flows is
challenging. In the DSMC studies, one can simulate the entry problem to the channels by specifying
the number density, temperature, and average macroscopic velocity of the molecules at the inlet of the
channel. At the outflow, the number density and temperature corresponding to the desired back pres-
sure can be specified. This and similar treatments facilitate significantly reducing the spurious numer-
ical boundary layers at inflow and outflow regions. For high Knudsen number flows (i.e., Kn � 1) in
a channel with blockage (such as a sphere in a pipe), the location of the inflow and outflow bound-
aries is important. For example, the molecules reflected from the front of the body may reach the
inflow region with very few intermolecular collisions, creating a diffusing flow at the front of the bluff
body [Liu et al., 1998]. (The details of this case are presented in Section 6.2.4.)

5. Uncertainties in the physical input parameters: these typically include the input for molecular col-
lision cross-section models, such as the hard sphere (HS), variable hard sphere (VHS), and variable
soft sphere (VSS) models [Oran et al., 1998; Vijayakumar et al., 1999]. The HS model is usually
sufficient for monatomic gases or for cases with negligible vibrational and rotational nonequilib-
rium effects, such as in the case of nearly isothermal flow conditions.

Along with these possible error sources and limitations, some particular disadvantages of the DSMC
method for simulation of gas microflows are:

1. Slow convergence: the error in the DSMC method is inversely proportional to the square root of
the number of simulated molecules. Reducing the error by a factor of two requires increasing the
number of simulated molecules by a factor of four. This is a very slow convergence rate compared to
the continuum-based simulations with spatial accuracy of second or higher order. Therefore,
continuum-based simulation models should be preferred over the DSMC method whenever possible.

2. Large statistical noise: gas microflows are usually low subsonic flows with typical speeds of
1 mm/sec to 1 m/sec (exceptions to this are the micronozzles utilized in synthetic jets and satellite
thruster control applications). The macroscopic fluid velocity is obtained by time or ensemble aver-
aging of the molecular velocities. This difference of five to two orders of magnitude between the
molecular and average speeds results in large statistical noise and requires a very long time averaging
for gas microflow simulations. The statistical fluctuations decrease with the square root of the sam-
ple size. Time or ensemble averages of low-speed microflows on the order of 0.1 m/sec require
about 108 samples in order to distinguish such small macroscopic velocities. Fan and Shen (1999)
introduced the information preservation (IP) technique for the DSMC method, which enables
efficient DSMC simulations for low-speed flows (the IP scheme is briefly covered in Section 6.2.5).
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3. Extensive number of simulated molecules: if we discretize a rectangular domain of 1 mm 	

100 µm 	 1 µm under standard conditions for Kn � 0.065 flow, we will need at least 20 cells per
micrometer length scale. This results in a total of 8 	 108 cells. Each of these cells should contain at
least 20 simulated molecules, resulting in a total of 1.6 	 1010 particles. Combined with the number
of time-step restrictions, simulation of low-speed microflows with DSMC easily exceeds the capabili-
ties of current computers. An alternative treatment to overcome the extensive number of simulated
molecules and long integration times is utilization of the dynamic similarity of low-pressure rarefied
gas flows to gas microflows under atmospheric conditions. The key parameters for the dynamic sim-
ilarity are the geometric similarity and matching of the flow Knudsen, Mach, and Reynolds numbers.
Performing actual experiments under dynamically similar conditions may be very difficult; however,
parametric studies via numerical simulations are possible. The fundamental question to answer for
such an approach is whether or not a specific, unforeseen microscale phenomenon is missed with the
dynamic similarity approach. In response to this question, all numerical simulations are inherently
model based. Unless microscale-specific models are implemented in the algorithm, we will not be able
to obtain more physical information from a microscopic simulation than from a dynamically similar
low-pressure simulation. One limitation of the dynamic similarity concept is the onset of statistical
scatter in the instantaneous macroscopic flow quantities for gas microflows for Kn > 1 (see section
6.2.1 and Figure 6.2 for details). Here, we must also remember that DSMC utilizes time or ensemble
averages to sample the macroscopic properties from the microscopic variables. Hence, DSMC already
determines the macroscopic properties in an averaged sense.

4. Lack of deterministic surface effects: Molecule wall interactions are specified by the accommoda-
tion coefficients σν, σT. For diffuse reflection σ � 1, and the reflected molecules lose their incom-
ing tangential velocity while being reflected with the tangential wall velocity. For σ � 0 the
tangential velocity of the impinging molecules is not changed during the molecule/wall collisions.
For any other value of σ, a combination of these procedures can be applied. The molecule–wall
interaction treatment implemented in DSMC is more flexible than the slip conditions given by
Equations (6.1) and (6.2). However, it still requires specification of the accommodation coefficients,
which are not known for any gas surface pair with a specified surface root mean square (rms) rough-
ness. The tangential momentum accommodation coefficients for helium, nitrogen, argon and carbon
dioxide on single-crystal silicon were measured by careful microchannel experiments [Arkilic, 1997].

6.2.4 Some DSMC-Based Gas Microflow Results

This section presents some DSMC results applied to gas microflows.

6.2.4.1 Microchannel Flows

The DSMC simulation results for subsonic gas flows in microchannels are presented in this section. Due
to the computational difficulties explained in the previous sections, a low-aspect-ratio, two-dimensional
channel with relatively high inlet velocities is studied. The results presented in the figures are for
microchannels with a length-to-height ratio (L/h) of 20 under various inlet-to-exit-pressure ratios. The
DSMC results are performed with 24,000 cells, of which 400 cells were in the flow direction and 60 cells
were across the channel. A total of 480,000 molecules are simulated. The results are sampled (time aver-
aged) for 105 times, and the sampling is performed every ten time steps.

In the following simulations, diffuse reflection (σν � 1.0) is assumed for interaction of gas molecules
with the surfaces. Because the slip amount can be affected significantly by small variations in σν (Equation
[6.1]), the apparent value of the accommodation coefficient σν is monitored throughout the simulations
by recording the tangential momentum of the impinging (τi) and reflected (τr) gas molecules. Based on
these values, the apparent tangential momentum accommodation coefficient, σν � (τi – τr)/(τi – τw) �

0.99912 with standard deviation of σrms � 0.01603, is obtained.
The velocity profiles normalized with the corresponding average speed are presented in Figure 6.4 for

pressure-driven microchannel flows at Kn � 0.1 and Kn � 2.0. The figure also presents the molecule/cell
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refinement studies as well as predictions of the VHS and VSS models. The DSMC results are compared
against the linearized Boltzmann solutions [Ohwada et al., 1989], and excellent agreements of the VHS
and VSS models with the linearized Boltzmann solutions are observed for these nearly isothermal flows.
In regard to the molecule/cell refinement study, the number of cells and the number of simulated mole-
cules are identified for each case. The first VHS case utilized only 6000 cells with 80,000 simulated mole-
cules, and the results are sampled about 5 	 105 times. Sampling is performed every 20 time steps. The
refined VHS and VSS cases utilized 24,000 cells and a total of 480,000 molecules. The results for these are
sampled 105 times, every ten time steps. Although the velocity profiles for the low-resolution case (6000
cells) seem acceptable, the density and pressure profiles show large fluctuations.

The DSMC and µFlow (spectral-element-based, continuum computational fluid dynamics [CFD]
solver) predictions of density and pressure variations along a pressure-driven microchannel flow are
shown in Figure 6.5. For this case, the ratio of inlet to exit pressure is Π � 2.28, and the Knudsen number
at the channel outlet is 0.2. Deviations of the slip flow pressure distribution from the no-slip solution are
also presented in the figure. Good agreements between the DSMC and µFlow simulations are achieved.
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FIGURE 6.4 Velocity profiles normalized with the local average velocity in the slip and transitional flow regimes.
The DSMC predictions with the VHS and VSS models agree well with the linearized Boltzmann solutions of Ohwada
et al. (1989). The number of cells and simulated molecules are identified on each figure.
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The curvature in the pressure distribution is due to the compressibility effect, and the rarefaction negates
this curvature, as seen in Figure 6.5. The slip velocity variation on the channel wall is shown in Figure 6.6.
Overall good agreements between both methods are observed. Pan et al. (1999) used the DSMC simula-
tions to determine the slip distance as a function of various physical conditions such as the number density,
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wall temperature, and the gas mass. They determined that an appropriate slip distance is 1.125 λgw, where
the subscript gw indicates the gas-wall conditions [Pan et al., 1999].

In the transitional flow regime, Beskok and Karniadakis (1999) studied the Burnett equations for low-
speed isothermal flows. This analysis has shown that the velocity profiles remain parabolic even for large
Kn flows. To verify this hypothesis, they performed several DSMC simulations; the velocity distribution
nondimensionalized with the local average speed is shown in Figure 6.7. They also obtained an approxi-
mation to this nondimensionalized velocity distribution in the following form:

U* (y,Kn) � U(x,y)/U�(x) � ��� 
2

� � � (6.8)

�

where the extended slip condition given in Equation (6.3) is used. In the above relation, the value of
b � �1 is determined analytically for channel and pipe flows [Beskok and Karniadakis, 1999]. In Figure 6.7,
the nondimensional velocity variation obtained in a series of DSMC simulations for Kn � 0.1, Kn � 1.0,
Kn � 5.0, and Kn � 10.0 flows are presented along with the corresponding linearized Boltzmann solu-
tions [Ohwada et al., 1989]. The DSMC velocity distribution and the linearized Boltzmann solutions
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agree quite well. One can use Equation (6.8) to compare the results with the DSMC/linearized Boltzmann
data by varying the parameter b. The case b � 0 corresponds to Maxwell’s first-order slip model, and
b � �1 corresponds to Beskok’s second-order slip boundary condition. It is clear from Figure 6.7 that
Equation (6.8) with b � �1 results in a uniformly valid representation of the velocity distribution in the
entire Knudsen regime.

The nondimensionalized centerline and wall velocities for 0.01 � Kn � 30 flows are shown in Figure
6.8. The figure includes the data for the slip velocity and centerline velocity from 20 different DSMC runs,
of which 15 are for nitrogen (diatomic molecules) and 5 for helium (monatomic molecules). The differ-
ences between the nitrogen and helium simulations are negligible; thus, this velocity scaling is independ-
ent of the gas type. The linearized Boltzmann solutions [Ohwada et al., 1989] for a monatomic gas are
also indicated by triangles in Figure 6.8. The Boltzmann solutions closely match the DSMC predictions.
Maxwell’s first-order boundary condition b � 0 (shown by solid lines) predicts, erroneously, a uniform
nondimensional velocity profile for large Knudsen numbers. The breakdown of the slip flow theory based
on the first-order slip-boundary conditions is realized around Kn � 0.1 and Kn � 0.4 for wall and cen-
terline velocities respectively. This finding is consistent with the commonly accepted limits of the slip flow
regime [Schaaf and Chambre, 1961]. The prediction using b � �1 is shown by small dashed lines. The
corresponding centerline velocity closely follows the DSMC results, while the slip velocity of the model
with b � �1 deviates from DSMC in the intermediate range for 0.1 � Kn � 5. One possible reason for
this is the effect of the Knudsen layer. For small Kn flows, the Knudsen layer is thin and does not affect
the overall velocity distribution too much. For very large Kn flows, the Knudsen layer covers the channel
entirely. For intermediate Kn values, however, both the fully developed viscous flow and the Knudsen
layer coexist in the channel. At this intermediate range, approximating the velocity profile as parabolic
ignores the Knudsen layers. For this reason, the model with b � �1 results in 10% error in the slip velocity
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at Kn � 1. However, the velocity distribution in the rest of the channel is described accurately for the
entire flow regime. Based on these results, Beskok and Karniadakis (1999) developed a unified flow model
that can predict the velocity profiles, pressure distribution, and mass flow rate in channels, pipes, and arbi-
trary aspect-ratio rectangular ducts in the entire Knudsen regime, including Knudsen’s minimum effects
[Beskok and Karniadakis, 1999; Kennard, 1938; Tison, 1993].

6.2.4.2 Separated Rarefied Gas Flows

Gas flows through complex microgeometries are prone to flow separation and recirculation. Most of the
DSMC-based microflow analyses were performed in straight channels [Mavriplis et al., 1997; Oh et al.,
1997] and for smooth microdiffusers [Piekos and Breuer, 1996]. Nance et al. (1997) discuss the Monte
Carlo simulation for MEMS devices. The mainstream approach for gas flow modeling in MEMS is solu-
tion of the Navier–Stokes equations with slip models. This is more practical and numerically efficient
than utilization of the DSMC method. However, rarefied separated gas flows are not studied extensively.
To investigate the validity of slip-boundary conditions under severe adverse pressure gradients and sep-
aration, Beskok and Karniadakis (1997) performed a series of numerical simulations using the classical
backward-facing step geometry with a step-to-channel-height ratio of 0.467. The variations of pressure
and streamwise velocity along a step microchannel, obtained at five different cross-flow locations (y/h), are
presented in Figure 6.9. The values of pressure and velocity are nondimensionalized with the correspond-
ing freestream dynamic head and the local sound speed respectively. The specific y/h locations are selected
to coincide with the DSMC cell centers to avoid interpolations or extrapolations of the DSMC method.
The results show reasonable agreements of the slip-based Navier–Stokes simulations with the DSMC data.
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The flow recirculation and reattachment location at the bottom wall are predicted equally well with both
methods. The DSMC simulations utilized 28,000 cells (700 	 40) with 420,000 simulated molecules. The
solution is sampled 105 times. The continuum-based simulations are performed by 52 spectral elements
with tenth-order polynomial expansions for each direction.

6.2.4.3 Transitional Flow Past a Sphere in a Pipe

The DSMC simulations of high Kn rarefied flows at the entry of channels or pipes show diffusion of the mol-
ecules from the entry toward the free-stream region. To demonstrate this counterintuitive effect, Liu et al.
(1998) simulated flow past a sphere in a pipe with diffuse reflection from the surfaces. To incorporate the mol-
ecules diffusing out from the entry of the pipe, the computational domain for the free-stream region had to
be extended more than expected. In high Knudsen number subsonic flows, the molecules reflected from the
sphere can travel toward the pipe inlet with very few intermolecular collisions and then diffuse out. Figure
6.10 presents the velocity contours for Kn � 3.5 flow. Diffusion of the molecules toward the inflow can be
identified easily from the velocity contours. This effect was studied earlier by Kannenberg and Boyd (1996)
for transitional flow entering a channel. For Kn � 3.5 results presented in Figure 6.10, the length of the free-
stream region is equal to the length of the pipe; hence, the computational cost is increased significantly.

6.2.5 Recent Advances in the DSMC Method

This section presents recent developments in the application and implementation of the DSMC method.

6.2.5.1 Information Preservation DSMC Scheme

Fan and Shen (1999) developed an information preservation (IP) DSMC scheme for low-speed rarefied
gas flows. Their method uses the molecular velocities of the DSMC method as well as an information
velocity that records the collective velocity of an enormous number of molecules that a simulated particle
represents. The information velocity evolves with inelastic molecular collisions, and the results presented
for Couette, Poiseuille, and Rayleigh flows in the slip, transition, and free molecular regimes show very
good agreements with the corresponding analytical solutions. This approach seems to decrease the sam-
ple size and correspondingly the CPU time required by a regular DSMC method for low-speed flows by
orders of magnitude. This is a tremendous gain in computational time that can lead to the effective use
of IP DSMC schemes for microfluidic and MEMS simulations. The IP DSMC schemes are being validated
in two-dimensional, complex-geometry flows, and extensions of the IP technique for three-dimensional
flows are also being developed [Cai et al., 2000].

6.2.5.2 DSMC with Moving Boundaries

Some microflow applications require numerical simulation of moving surfaces. In continuum-based
approaches, arbitrary Lagrangian Eulerian (ALE) algorithms are successfully utilized for such applications
[Beskok and Warburton, 2000a, 2000b]. A similar effort to expand the DSMC method for grid adaptation,
including the moving external and internal boundaries, combined the DSMC method with a monotonic
Lagrangian grid (MLG) method [Cybyk et al., 1995; Oran et al., 1998].

6.2.5.3 Parallel DSMC Algorithms

Because the DSMC calculations involve vast numbers of molecules, using parallel algorithms with efficient
interprocessor communications and load balancing can have a significant impact on the effectiveness of
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FIGURE 6.10 Velocity contours for a sphere in a pipe in the transitional flow regime (Kn � 3.5). Molecules reflected
from the sphere create a diffusive layer at the entrance of the pipe [Liu et al., 1998].

© 2006 by Taylor & Francis Group, LLC



simulations. Developments in parallel DSMC algorithms are addressed by Oran et al. (1998). For example,
Dietrich and Boyd (1996) were able to obtain 90% parallel efficiency with 400 processors, simulating over
100 million molecules on a 400-node IBM SP2 computer. The computing power of their code is compa-
rable to 75 single-processor Cray C90 vector computers. Good parallel efficiencies for DSMC algorithms
can be achieved with effective load-balancing methods based on the number of molecules. This is because
the computational work of the DSMC method is proportional to the number of simulated molecules.

6.2.6 DSMC Coupling with Continuum Equations

This section provides an overview of the DSMC/Navier–Stokes and DSMC/Euler equation coupling
strategies. These equations are particularly important for simulation of gas flows in MEMS components.
If we consider a micromotor or a micro-comb-drive mechanism, gas flow in most of the device can be
simulated using the slip-based continuum models. The DSMC method should be utilized only when the
gap between the surfaces becomes submicron or when the local Kn � 0.1. Hence, it is necessary to
implement multidomain DSMC/continuum solvers. Depending on the specific application, hybrid
Euler/DSMC [Roveda et al., 1998] or DSMC/Navier–Stokes algorithms [Hash and Hassan, 1995] can be
used. Such hybrid methods require compatible kinetic-split fluxes for the Navier–Stokes portion of the
scheme [Chou and Baganoff, 1997; Lou et al., 1998] to achieve an efficient coupling. An adaptive mesh
and algorithm refinement (AMAR) procedure that embeds a DSMC-based particle method within a con-
tinuum grid has been developed; it enables molecular-based treatments even within the continuum
region [Garcia et al., 1999]. Hence, the AMAR procedure can be used to deliver microscopic and macro-
scopic information within the same flow region.

Simulation results for a Navier–Stokes/DSMC coupling procedure obtained by Liu (2001) are shown in
Figure 6.11. A structured spectral element algorithm, µFlow [Beskok, 1996], is coupled with an unstruc-
tured DSMC method, UDSMC 2-D, with an overlapping domain. Both the grid and the streamwise
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FIGURE 6.11 Streamwise velocity contours for rarefied gas flow in mixed slip/transitional regimes, obtained by a
coupled DSMC/continuum solution method. Most of the channel is in the slip flow regime, and a spectral element
method µFlow is utilized to solve the compressible Navier–Stokes equations with slip. The rest of the channel is in the
transitional flow regime, where a DSMC method with unstructured cells is utilized. (Reprinted with permission from
Liu, H.F. [2001] 2D and 3D Unstructured Grid Simulation and Coupling Techniques for Micro-Geometries and
Rarefied Gas Flows, Ph.D. thesis, Brown University.)
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velocity contours are shown in the figure; smooth transition of the velocity contours from the continuum-
based slip region to the DSMC region can be observed. The details of the coupling procedure are given
in Liu (2001).

6.2.7 Boltzmann Equation Research

Microscale thermal/fluidic transport in the entire Knudsen regime (0 � Kn � ∞) is governed by the
Boltzmann equation (BE). The Boltzmann equation describes the evolution of a velocity distribution
function by molecular transport and binary intermolecular collisions. The assumption of binary inter-
molecular collisions is a key limitation in the Boltzmann formulation making it applicable for dilute gases
only. The Boltzmann equation for a simple dilute gas is given in the following form [Bird, 1994]:

� c� � � F� � � �∞

�∞
�4π

0

n2(f * f *
1 � ff1)crσ dΩ dc�1 (6.9)

where f is the velocity distribution function, n is the number density, c� is the molecular velocity, F� is the
external force per unit mass, cr is the relative speed of class molecules with respect to class c�1 molecules,
and σ is the differential collision cross-section. The definitions of terms in Equation (6.9) follow. The first
term is the rate of change of the number of class c�1 molecules in the phase space. The second term shows
convection of molecules across a fluid volume by molecular velocity c�. The third term is convection of mol-
ecules across the velocity space as a result of the external force F�. The fourth term is the binary collision inte-
gral. The term (�ff1) describes the collision of molecules of class c� with molecules of class c�1 (resulting in
creation of molecules of class c� * and c�1

*, respectively), and it is known as the loss term. Similarly, in inverse
collisions class c�* molecules collide with class c�1

* molecules creating class c� and c�1 molecules. This is shown
by f *f *

1, known as the gain term. Assuming binary elastic collisions enables us to determine class c�* and c�1
*

conditions [Bird, 1994]. The difficulty of the Boltzmann equation arises due to the nonlinearity and com-
plexity of the collision integral terms and the multidimensionality of the equation (x, c, t).

Current numerical methods, which are usually very expensive, are applied for simple geometries, such
as pipes and channels. In particular, a number of investigators have considered semianalytical and numer-
ical solutions of the linearized Boltzmann equation to be valid for flows with small pressure and temper-
ature gradients [Aoki, 1989; Huang et al., 1966; Loyalka and Hamoodi, 1990; Ohwada et al., 1989; Sone,
1989]. These studies used HS and Maxwellian molecular models. Simplifications for the collision integral
based on the BGK model [Bhatnagar et al., 1954] are used in the Boltzmann equation studies. The BGK
model for a rarefied gas with no external forcing is given as:

� c� � � νn( fo � f ) (6.10)

where ν is the collision frequency and fo is the local Maxwellian (equilibrium) distribution. The right-hand
side of Equation (6.10) becomes zero when the flow is in local equilibrium (continuum flow) or when
the collision frequency goes to zero (corresponding to the free molecular flow). The BGK model captures
both limits correctly. However, there are justified concerns about the validity of the BGK model in the
transition flow regime. A model’s ability to capture the two asymptotic limits (Kn → 0 and Kn → ∞) is
not necessarily sufficient for its accuracy in the intermediate regimes [Bird, 1994].

Veijola et al. (1995, 1998) presented a Boltzmann equation analysis of silicon accelerometer motion
and squeeze-film damping as a function of the Knudsen number and the time-periodic motion of the
surfaces. Although the mixed compressibility and rarefaction effects make the squeeze-film damping
analysis very challenging, it has many practical applications including computer disk hard drives,
microaccelerometers, and noncontact gas buffer seals [Fukui and Kaneko, 1988, 1990]. Saripov and
Seleznev (1998) give a comprehensive theory of internal rarefied gas flows including the numerical sim-
ulation data. See this article for further theoretical and numerical details on the Boltzmann equation.

∂nf
�∂x�

∂nf
�∂t

∂nf
�∂c�
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�∂x�

∂nf
�∂t
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The wall-boundary conditions for Boltzmann solutions typically use diffuse and mixed diffuse/specular
reflections. For diffuse reflection, the molecules reflected from a solid surface are assumed to have reached
thermodynamic equilibrium with the surface. Thus, they are reflected with a Maxwellian distribution
corresponding to the temperature and velocity of the surface.

6.2.8 Hybrid Boltzmann/Continuum Simulation Methods

Solution of the Navier–Stokes equation is numerically more efficient than solution of the Boltzmann equa-
tion; therefore, it is desirable to develop coupled multidomain Boltzmann/Navier–Stokes models for simu-
lation of mixed regime flows in MEMS and microfluidic applications. Because the typical DSMC method
for this coupling results in large statistical noise, solution of the Boltzmann equation may be preferred. The
hybrid Boltzmann/Navier–Stokes simulation approach can be achieved by calculating the macroscopic fluid
properties from the Boltzmann solutions by moment methods [Bird, 1994], and using the kinetic flux-
vector splitting procedure of Chou and Baganoff (1997). Another continuum to Boltzmann coupling can be
obtained by using local Chapman–Enskog expansions to the BGK equation [Chapman and Cowling, 1970]
and evaluating the distribution function for the kinetic region [Jamamato and Sanryo, 1990].

6.2.9 Lattice Boltzmann Methods

Another approach for simulating flows in microscales is the lattice Boltzmann method (LBM), which is
based on the solution of the Boltzmann equation on a previously defined lattice structure with simplis-
tic molecular collision rules. Details of the lattice Boltzmann method are given in a review article by Chen
and Doolen (1998). The LBM can be viewed as a special finite differencing scheme for the kinetic equa-
tion of the discrete-velocity distribution function, and it is possible to recover the Navier–Stokes equations
from the discrete lattice Boltzmann equation with sufficient lattice symmetry [Frisch et al., 1986].

The main advantages of the LBM compared to other continuum-based numerical methods include
[Chen and Doolen, 1998]:

� The convection operator is linear in the phase space.
� The LBM is able to obtain both compressible and incompressible Navier–Stokes limits.
� The LBM utilizes a minimal set of velocities in the phase space compared to the continuous veloc-

ity distribution function of the Boltzmann algorithms.

With these advantages, the LBM has developed significantly within the last decade. The molecular motions
for LBM are allowed on a previously defined lattice structure with restriction on molecular velocities to
a few values. Particles move to a neighboring lattice location in every time step. Rules of molecular inter-
actions conserve mass and momentum. Successful thermal and hydrodynamic analysis of multiphase flows
including real gas effects can also be obtained [He et al., 1998; Luo, 1998; Qian, 1993; Shan and Chen,
1994]. Another useful application of the LBM is for granular flows, which can be expanded to include flow-
through microfiltering systems [Angelopoulos et al., 1998; Bernsdorf et al., 1999; Michael et al., 1997;
Spaid and Phelan, 1997; Vangenabeek and Rothman, 1996].

Lattice Boltzmann methods have relatively simple algorithms, and they are introduced as an alternative
to the solution of the Navier–Stokes equations [Frisch et al., 1986; Qian et al., 1992]. In contrast to the
continuum algorithms, which have difficulties in simulating rarefied flows with consistent slip-boundary
conditions, the lattice Boltzmann method initially had difficulties in imposing the no-slip-boundary con-
dition accurately. However, this problem has been successfully resolved [Inamuro et al., 1997; Lavallée et al.,
1991; Noble et al., 1995; Zou and He, 1997].

Rapid development of the lattice Boltzmann method with relatively simpler algorithms that can han-
dle both the rarefied and continuum gas flows from a kinetic theory point of view and the ability of the
method to capture the incompressible flow limit make the LBM a great candidate for microfluidic simu-
lations. The author is not familiar with applications of the lattice Boltzmann method specifically for
microfluidic problems.
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6.3 Liquid and Dense Gas Flows

Liquids do not have a well-advanced molecular-based theory. Similar limitations also exist for dense gases
where simultaneous intermolecular collisions can exist. The stand-alone Navier–Stokes simulations can-
not describe the liquid and dense gas flows in submicron-scale conduits. The effects of van der Waals forces
between the fluid and the wall molecules and the presence of longer range Coulombic forces and an elec-
trical double layer (EDL) can significantly affect the microscale transport [Ho and Tai, 1998; Gad-el-Hak,
1999]. For example, the streaming potential effect present in pressure-driven flows under the influence of
EDL can explain deviations in the Poiseuille number reported in the seminal liquid microflow experi-
ments of Pfahler et al. (1991).

In recent years, there has been increased interest in the development of micropumps and valves with
nonmoving components for medical, pharmaceutical, defense, and environmental-monitoring applica-
tions. Electrokinetic body forces can be used to develop microfluidic flow control and manipulation sys-
tems with nonmoving components. This section briefly reviews continuum equations for electrokinetic
phenomena and the electric double layer.

6.3.1 Electric Double Layer and Electrokinetic Effects

The electric double layer is formed due to the presence of static charges on surfaces. Generally, a dielectric
surface acquires charges when it is in contact with a polar medium or by chemical reaction, ionization,
or ion absorption. For example, when a glass surface is immersed in water, it undergoes a chemical reaction
that results in a net negative surface potential [Cummings et al., 1999; Probstein, 1994]. This influences
the distribution of ions in the buffer solution. Figure 6.12 shows the schematic view of a solid surface in
contact with a polar medium. Here a net negative electric potential is generated on the surface. Due to
this surface electric potential, positive ions in the liquid are attracted to the wall; on the other hand, the
negative ions are repelled from the wall. This results in redistribution of the ions close to the wall, keep-
ing the bulk of the liquid far away from the wall electrically neutral. The distance from the wall at which
the electric potential energy is equal to the thermal energy is known as the Debye length (λ), and this zone
is known as the electric double layer. The electric potential distribution within the fluid is described by
the Poisson–Boltzmann equation:

∇2
(ψ/ζ) � � β sin h(αψ/ζ) (6.11)

�4πh2ρe
�

Dζ
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FIGURE 6.12 Schematic diagram of the electric double layer next to a negatively charged solid surface. Here, ψ is
the electric potential, ψs is the surface electric potential, ζ is the zeta potential, and y� is the distance measured from
the wall.
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where ψ is the electric potential field, ζ is the zeta potential, ρe is the net charge density, D is the dielec-
tric constant, and α is the ionic energy parameter given as:

α � ezζ/kbT (6.12)

where e is the electron charge, z is the valence, kb is the Boltzmann constant, and T is the temperature. In
Equation (6.11), the spatial gradients are nondimensionalized with a characteristic length h. Parameter β
relates the ionic energy parameter α and the characteristic length h to the Debye–Hückel parameter
ω � 1/λ as shown below:

β � (ω h)2/α

where

ω � � ��
The electrokinetic phenomenon can be divided into four parts [Probstein, 1994]:

1. Electro-osmosis: motion of ionized liquid relative to the stationary charged surface by an applied
electric field

2. Streaming potential: electric field created by the motion of ionized fluid along stationary charged
surfaces (opposite of electro-osmosis)

3. Electrophoresis: motion of the charged surface relative to the stationary liquid, by an applied elec-
tric field

4. Sedimentation potential: electric field created by the motion of charged particles relative to a sta-
tionary liquid (opposite of electrophoresis).

6.3.2 The Electro-Osmotic Flow

The electro-osmotic flow is created by applying an electric field in the streamwise direction, where this
electric field (E�) interacts with the electric charge distribution in the channel (ρe) and creates an electro-
kinetic body force on the fluid. The ionized incompressible fluid flow with electro-osmotic body forces is
governed by the incompressible Navier–Stokes equation:

ρf � � (V� � ∇)V� � �∇P � µ∇2
V� � ρeE� (6.13)

The main simplifying assumptions and approximations are

� The fluid viscosity is independent of the shear rate; hence, the Newtonian fluid is assumed.
� The fluid viscosity is independent of the local electric field strength. This condition is an approx-

imation. Because the ion concentration within the EDL is increased, the viscosity of the fluid may
be affected; however, such effects are usually neglected for dilute solutions.

� The Poisson–Boltzmann equation, Equation (6.11), is valid; hence, the ion convection effects are
negligible.

� The solvent is continuous and its permittivity is not affected by the overall and local electric field
strength.

Based on these continuum-based equations, various researchers have developed numerical models to
simulate electrokinetic effects in microdevices [Yang et al., 1998; Ermakov et al., 1998; Dutta et al., 1999,
2000]. The EDL thickness can be as small as a few nanometers, and in such small scales the continuum
description given by the Poisson–Boltzmann equation may break down [Dutta and Beskok, 2001]. Hence,
the molecular dynamics method can be used to study the EDL effects in such small scales [Lyklema et al.,
1998].

∂V�
�
∂t

2n0e
2z2

�εkbT
1
�λ
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6.3.3 Molecular Dynamics Method

The molecular dynamics method requires simulation of motion and interactions of all molecules in a
given volume. The intermolecular interactions are described by a potential energy function, typically the
Lennart-Jones 12–6 potential given as [Allen and Tildesley, 1994]:

VLJ(r) � 4ε�cij� 
12

� dij� 
6

� (6.14)

where r is the molecular separation and σ and ε are the length and energy parameters in the pair poten-
tial respectively. The coefficients cij and dij are parameters chosen for particular fluid–fluid and fluid–sur-
face combinations [see Allen and Tildesley (1994) for details]. The first term on the right-hand side shows
the strong repulsive force felt when the two molecules are extremely close to each other, and the second
term represents the van der Waals forces. The force field is found by differentiation of this potential for
each molecule pair, and the molecular motions are obtained by numerical integration of Newton’s equa-
tions of motion. Because the motion and interactions of all molecules are simulated, MD simulations are
expensive. The computational work scales like the square of the number of the simulated molecules O
(N2). Reduction in the computational intensity can be achieved by fast multipole algorithms or by imple-
mentation of a simple cutoff distance [Gad-el-Hak, 1999]. The MD simulations are usually performed
for simple liquid molecules and for dense gases. Potential functions other than the Lennart-Jones 12–6
potential are also available. In addition to the prohibitively large number of molecules involved in the sim-
ulation, however, an intrinsic limitation of the molecular dynamics method is the insight required to
select the appropriate potential functions. For example, the electrokinetic transport simulations require
inclusion of electrostatic forces in the potential function.

6.3.4 Treatment of Surfaces

In the molecular dynamics method, the fluid–surface interactions can be handled more realistically by
including solid atoms attached to the lattice sites via a confining potential and letting them interact with
gas–liquid molecules through a Lennart-Jones potential, Equation (6.14). The solid atoms exhibit ran-
dom thermal motions corresponding to the surface temperature Twall. The desired temperature of the
simulation is maintained by controlling the outer parts of the solid-lattice structure [Koplik and Banavar,
1995a]. Using realistic atomistic surface discretization increases the number of molecules even further,
but this may become necessary to determine the surface roughness effects in microtransport. Also con-
sidering that the microfabricated surfaces can have rms surface roughness on the order of a few nanome-
ters (depending on the fabrication process), realistic molecular-based surface treatments for liquid flows
in nanoscales can be achieved using the molecular dynamics method [Tehver et al., 1998].

The molecular dynamics method is used to determine the validity range of the Newtonian fluid
approximation and the no-slip-boundary conditions for simple liquids in submicron and nanoscale
channels. Koplik et al. (1989) investigated dense gas and liquid Poiseuille flows with MD simulations. The
molecular structure of the wall is also included in these simulations, resulting in fluid–wall interactions
for smooth surfaces. Their findings for liquid flows show insignificant velocity slip effects. However, con-
siderable slip effects with decreasing density are reported for gas molecules, consistent with Maxwell’s
slip-boundary conditions given in Equation (6.1). The literature includes conflicting findings regarding
the validity of the no-slip conditions and the appropriate viscosity of liquids in nanoscale channels (see
Section 2.7 in Gad-el-Hak, 1999). In a recent study by Granick (1999), the behavior of complex liquids with
chain-molecule structures in nanoscales has been reported. Confined fluid behavior, solidification, melt-
ing, and rapid deformation of liquid thin films can also be studied by the molecular dynamics method.

MD is restricted to very small (nanoscale) volumes, and the maximum integration time is also limited
to a few thousand mean collision times. Hence, molecular simulations should be used whenever the cor-
responding continuum equations are suspected of failing or are expected to fail, as in the case of fast time-
scale processes, thin films, or interfaces and in the presence of geometric singularities [Koplik and Banavar,

σ
�
r

σ
�
r
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1995]. To apply MD to larger scale thermal/fluidic transport problems, Hadjiconstantinou and Patera
(1997) developed coupled atomistic/continuum simulation methods and extended this work to include
multifluid interfaces [Hadjiconstantinou, 1999]. Due to the computational and practical restrictions of
MD, it is crucial to develop hybrid atomistic/continuum simulation methodologies for further studies of
liquid transport in micron and nanoscales.

6.4 Summary and Conclusions

In this chapter molecular-based simulation methodologies for liquid and gas flows in micron and sub-
micron scales were presented. For simulation of gas flows, the main emphasis was given to the direct sim-
ulation Monte Carlo (DSMC) method. Its algorithmic details, limitations, advantages, and disadvantages
were presented. Although the DSMC is quite popular for analysis of high-speed rarefied gas flows, it is not
as effective for simulation of gas microflows. It suffers from slow convergence and large statistical noise,
and it requires an extensive number of simulated molecules. These disadvantages can be eliminated to some
degree by using the newly developed information preservation (IP) technique. However, the IP-DSMC is
still undergoing development and validation. An alternative to the DSMC method is solution of the
Boltzmann transport equation, which is an integro-differential equation with seven independent variables.
It is clear that the Boltzmann equation algorithms are very complicated to implement for general engi-
neering applications, but they can be used for simple geometry cases, such as in microchannels. A final
alternative for simulation of gas microflows is the lattice Boltzmann method (LBM), which has been
developed extensively within the past decade. The LBM has relatively simpler algorithms that can handle
both the rarefied and continuum gas flows from a kinetic theory point of view, and the ability of the LBM to
capture the incompressible flow limit can make this method a great candidate for microfluidic simulations.

The molecular dynamics (MD) method was introduced for liquid flows. Because MD requires modeling
of every molecule, it is computationally expensive and is usually applied to very small volumes in order
to verify the onset of the continuum behavior in liquids. MD is general enough to handle the interactions
of long-chain molecules with each other and the surfaces in very thin gaps. The wall-surface roughness
and its molecular structure can also be included in the simulations. Thus, realistic molecule–surface
interactions can be obtained using the MD method. The main drawback of MD is its prohibitively large
computational cost.

The DSMC, MD, and Boltzmann equation models are numerically more expensive than solution of
the Navier–Stokes equations. Considering that the microtransport applications cover a wide range of
length scales from submillimeter to tens of nanometers, it is numerically more efficient to implement
hybrid continuum-atomistic models, where the atomistic simulations take place only at a small section of
the entire computational domain. References to developments of hybrid schemes were given for each
model.

All numerical methods are inherently model based, including the constitutive laws and the boundary
conditions of the Navier–Stokes equations, as well as the molecular interaction models of the MD and the
DSMC methods. Although it may seem that the molecular simulation methods are more fundamental, they
require assumptions and models of more fundamental levels. For example, the molecular dynamics
method requires specification of the Lennart-Jones potentials and their coefficients. Physical insight about
a problem is of utmost importance for any model. After all, numerical models can only deliver the physics
implemented within them.
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7.1 Introduction

7.1.1 Overview

Small-scale, atmospheric-pressure internal gaseous flows have received significant attention in recent
years in connection with micro-and nanoscale science and technology [Ho and Tai, 1998; Karniadakis
and Beskok, 2001]. In addition to a number of applications of practical interest, small-scale gaseous
hydrodynamics is attractive to researchers because of the scientific challenges it poses. It is well known
[Vincenti, and Kruger, 1965; Cercignani, 1988] that as the characteristic hydrodynamic lengthscale
approaches the fluid internal lengthscale, in this case the molecular mean free path, the Navier–Stokes
description fails. Extensive discussions and additional background on this subject can be found in reviews
in this handbook (e.g., [Gad-el-Hak, 2002]) or elsewhere [Karniadakis and Beskok, 2001]. The objective
of this chapter is to present and discuss some of the recent progress in modeling small scale internal
gaseous flows of engineering interest where the Navier–Stokes description cannot be applied. This is an
area in which until recently little was known beyond the classical shear, pressure-driven, and thermal-
creep-driven duct flows, primarily because previous efforts had focused on external high-speed flows
associated with flight in the upper atmosphere. Gaining fundamental understanding in this regime is impor-
tant for facilitating the design of small-scale devices and also for educational purposes. For this reason,
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Massachusetts Institute of Technology
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particular emphasis is given here to theoretical results on basic archetypal problems which, although per-
haps simplified to some extent, can provide fundamental understanding of the flow physics.

7.1.2 Background

The failure of the Navier–Stokes description in gas flows is quantified by the Knudsen number, Kn � λ/H,
where λ is the molecular mean free path and H is a characteristic hydrodynamic length scale. When the
Knudsen number is small (Kn �� 1), transport is dominated by intermolecular collisions and can be
characterized as diffusive. Hydrodynamic gradients over length scales characterized by Kn �� 1 lead to
small nonequilibrium, which can be described by the Chapman–Enskog theory [Chapman and Cowling,
1970]; within this approximation, the gas response can be described by linear-gradient transport, which
leads to the Navier–Stokes description1 [Chapman and Cowling, 1970; Gad-el-Hak, 2002].

The system walls, however, introduce an inhomogeneity that leads to rather strong nonequilibrium
effects. In the Kn �� 1 limit, these effects remain localized to small regions of space in contact with the
walls; these regions have a thickness of the order of one mean free path and are known as Knudsen lay-
ers. At the Navier–Stokes description level, the effect of the Knudsen layers for Kn � 0.1 manifests itself
in the form of apparent hydrodynamic property slip/jump at the boundaries that can be captured by slip-
flow boundary conditions; as a result, the regime Kn � 0.1 is known as slip flow. For Kn �� 1, Knudsen
layers are present irrespectively of the characteristic system lengthscale H; however, as H grows, their
effect becomes less pronounced, as one would expect, to the extent that in the limit Kn ��� 1 their effect
is for all practical purposes negligible, and the classical no-slip boundary condition becomes an excellent
approximation.

When the Knudsen number is large (Kn → ∞), the rate of intermolecular collisions is very small com-
pared to the rate of molecule–wall collisions. As a result, transport at high Knudsen numbers is ballistic.
Ballistic transport is typically assumed to take place for Kn � 10. The regime 0.1 � Kn � 10 is known as
the transition regime and is typically the most challenging to model. In this regime, ballistic transport is
important while collisions between molecules are not negligible.

Gaseous flows beyond the Navier–Stokes regime (Kn � 0.1) are sometimes referred to as rarefied. The
origin of this terminology can be found in the rarefied gas dynamics literature [Kogan, 1969]. These flows
were first extensively studied in connection with high altitude aerodynamics in which the gas was at low
density. Perhaps some what misleading is the term noncontinuum frequently used to refer to flows for which
the Navier–Stokes description breaks down. This term is very common within the rarefied gas dynamics 
literature [Bird, 1994] and, now, the MEMS literature and may lead to confusion in a mechanics setting
where the expression noncontinuum will most likely be associated with a breakdown of the continuum
assumption. One may surmise that in rarefied gas dynamics the term noncontinuum is a result of the view
that the continuum approach culminates in the Navier–Stokes equations, and that consequently when 
the latter fails, the continuum approach fails without necessarily implying the failure of the continuum
assumption.

This chapter is dedicated to the hydrodynamics of such systems, that is, systems that cannot be mod-
eled by the Navier–Stokes description but can still be meaningfully described by hydrodynamic fields. The
view taken here is the one typically adopted within the rarefied gas dynamics community and described
in [Vincenti and Kruger, 1965]: conservation laws for mass, momentum, and energy follow naturally
from moments of the Boltzmann equation. Defining the molecular distribution function as the expected
value of a large ensemble of systems leads to a meaningful description in terms of conservation laws (in
the presence or absence of Navier–Stokes closures) for a quite wide range of conditions including very
small length and time scales.

7-2 MEMS: Introduction and Fundamentals

1In the interests of simplicity, limiting cases of this description (e.g., Stokes flow) will not be denoted separately but
will be understood to apply under the appropriate conditions.
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7.2 Flow Physics

This section discusses recent developments in modeling small-scale internal gaseous hydrodynamics. One
of its basic assumptions is that air at atmospheric pressure can be treated as a dilute gas [Bird, 1994], the
hydrodynamics of which can be described for all Knudsen numbers using the Boltzmann equation
[Cercignani, 1988, Bird, 1994]. This assumption is shown to be satisfied (albeit by a narrow margin) in
[Bird (1994)]. The theoretical developments discussed in this chapter have been aided by the direct sim-
ulation Monte Carlo (DSMC), a stochastic simulation method for solving the nonlinear Boltzmann equa-
tion. Comprehensive descriptions of this method can be found in this handbook [Beskok, 2002] or in the
monograph by the method’s inventor, Graeme Bird (1994). An augmented DSMC formulation that
extends the applicability of DSMC to gases of moderate densities where molecular size effects are not neg-
ligible has also been developed [Alexander et al., 1995] and is known as the consistent Boltzmann algo-
rithm. The majority of theoretical developments presented here use DSMC for verification purposes. In
some cases, however, DSMC provides the only solution available to the problem of interest.

Unless otherwise stated, DSMC simulations will use the hard-sphere model as a matter of computa-
tional convenience. The hard-sphere model provides acceptable models of rarefied gas flows [Cercignani,
1988], and for the purposes of this discussion it provides a good compromise between simplicity and real-
istic modeling. The mean free path of a hard sphere gas is given by

λ � (7.1)

while the first order approximations to the viscosity and thermal conductivity of the hard-sphere gas
within the Chapman–Enskog theory are given by

µ � �� (7.2)

and

κ � �� (7.3)

respectively [Chapman and Cowling, 1970]. Here m is the molecular mass, T is the gas temperature kb is
Boltzmann’s constant, n is the gas number density and σ is the hard-sphere molecular diameter. These
rational approximations to the transport coefficients are typically preferred over the more accurate infi-
nite-order approximations from which they differ by only approximately 2% [Chapman and Cowling,
1970]. One of the disadvantages of the hard-sphere model is that it predicts transport coefficients that are
proportional to T 0.5, whereas real gases exhibit a slightly higher exponent of approximately T 0.7. To rem-
edy this, collision models with variable collision cross-sections have been proposed [Bird, 1994]; one
example is the variable hard-sphere (VHS) model in which the collision cross-section is a function of the
relative velocity of the colliding molecules. The work presented here can be easily extended to these mod-
ified collision models.

One of the basic geometries that we will visit frequently in this chapter is a two-dimensional channel
such as the one shown in Figure 7.1. The two-dimensional channel geometry has been widely studied in
the context of small-scale flows due to its direct relevance to typical small-scale applications but also due
to its simplicity, which enables investigations aimed at the physics of transport at small scales. Let us
introduce the following notation that we will use throughout this chapter: the gas velocity field will be
denoted →u �

→u (x, y) � (ux(x, y), uy(x, y), uz(x, y)), while T � T(x, y), P � P(x, y) and ρ � ρ(x, y) denote the
temperature, pressure, and density fields respectively.

7.2.1 Preliminaries

In this section we will briefly review some basic results for rarefied internal flows. We will discuss the
velocity slip and temperature jump relations used to obtain Navier–Stokes solutions in the slip-flow

kbT
�
mπ

75kb
�
64σ 2

mkbT
�π

5
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�
�
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regime, and we will consider solutions of the Boltzmann equation for isothermal pressure-driven flows
for arbitrary Knudsen numbers.

7.2.1.1 Slip-Flow Boundary Conditions

Despite the failure of the Navier–Stokes description within the Knudsen layers, for Kn � 0.1 the effect of
these layers on the remainder of the flow field (within the Navier–Stokes approximation) can be captured
by a set of effective slip/jump boundary conditions. In particular, according to slip flow, the velocity of
the gas at the wall, ugas|wall, differs from the velocity of the wall uw by an amount that is proportional to
the normal velocity gradient at the wall. More precisely,

ugas|wall � uw � α λ |wall (7.4)

where σν is the momentum accommodation coefficient [Beskok and Karniadakis, 1999], and η is the
coordinate normal to the wall and pointing into the gas. The temperature jump at the wall is given by the
following analogous expression

Tgas|wall � Tw � ζ |wall (7.5)

where σT is the energy accommodation coefficient, Pr is the gas Prandtl number and γ is the ratio of
specific heats.

The coefficients α and ζ introduce corrections to the original results of Maxwell (α � ζ � 1) that were
obtained through an approximate method [Cercignani, 1988]. These coefficients are weak functions of
the interaction model [Cercignani, 1988]; for air, α and ζ are usually taken to be equal to unity, although
recent theoretical results suggest that this may lead to additional error of the order of 15%. In particular,
direct Monte Carlo simulations [Wijesinghe and Hadjiconstantinou, 2001], molecular dynamics simula-
tions and linearized solutions of the Boltzmann equation [Ohwada et al., 1989b] show that for hard
spheres and fully accommodating conditions, α � 1.11 and ζ � 1.13.

A few further comments:

1. Slip-flow theory naturally reduces to the standard no-slip boundary conditions in the limit
Kn ���1. This can be easily seen by nondimensionalizing η in equations (7.4) and (7.5) using the
characteristic lengthscale H.

2. The above slip-flow relations remain accurate for time-dependent flows evolving at hydrodynamic
timescales (for Kn � 0.1); this suggests that the hydrodynamic evolution time scales for problems
characterized by Kn � 0.1 are sufficiently long for the behavior of the Knudsen layer to be effec-
tively quasi-static. This is verified by theoretical treatments of the Boltzmann equation, at least in the
BGK approximation [Sone, 1964], where slip-flow relations equivalent (at least formally) to the
above are obtained by assuming that the evolution time scale is long compared to the molecular

dT
�
dη

λ
�
Pr

2 � σT
�σT

2γ
�γ � 1

du
�
dη

2 � σν
�σν
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collision time τc � λ/c� where c� � �8k�bT�/(�π�m�)� is the mean thermal speed. As we show in section
7.2.2.2, this quasi-static behavior seems to hold beyond the slip-flow regime and up to Kn � 0.4
where hydrodynamic evolution timescales may be as low O(5τc).

3. The above slip-flow expressions assume that the wall surface has no curvature; corrections due to
wall curvature are given in [Cercignani, 1988; Grad, 1969].

4. The velocity slip expression equation (7.4) does not include the thermal creep contribution in the
presence of a temperature gradient along the wall. A discussion of this form of velocity slip can be
found in [Fukui and Kaneko, 1988]. Thermal creep phenomena extend beyond the slip-flow
regime; thermal creep flow for the hard-sphere model and the associated thermal creep coefficient
have been characterized in [Ohwada et al., 1989a].

Unless otherwise stated, we will assume that both accommodation coefficients are equal to unity; this appears
to be a reasonable approximation for atmospheric-pressure engineering surfaces [Bird, 1994; Cercignani,
1988; Ohwada et al., 1989a].

7.2.1.2 Isothermal Pressure-Driven Flows in Two-Dimensional Channels

Isothermal pressure-driven flow in two-dimensional ducts for large Knudsen numbers was originally
studied by Knudsen (1909). This pioneering work showed the existence of a minimum in the flow rate
when it is normalized by the driving pressure difference and plotted against the average pressure in the
channel [Karniadakis and Beskok, 2001]. Following Knudsen’s work, a theoretical description of this phe-
nomenon remained for many years one of the ultimate challenges within the rarefied gas community.
Following the development of semianalytical solutions of simple models of the Boltzmann equation
[Cercignani, 1988], numerical solutions of the linearized Boltzmann equation for the more realistic hard-
sphere gas for various two-dimensional geometries were finally developed [Ohwada et al., 1989a]. For
two-dimensional channels (as in Figure 7.1) the gas response for arbitrary Knudsen numbers is typically
expressed in kinetic terms through the following expression for the bulk velocity ub

Q
.

� ubH � � H 2�� QQ
–

(7.6)

where Q
.

is the flow rate per unit depth, ub is the bulk (average over the channel width) velocity, R � kb/m
is the gas constant, and Q– � Q

–
(Kn) is a proportionality coefficient. Similarly defined Q

–
parameters have

now been tabulated for a variety of two-dimensional duct geometries [Karniadakis and Beskok, 2001].
As shown in Fig. 7.2, Q

–
(Kn) for a two-dimensional channel in the transition regime varies slowly about

its minimum value occurring at Kn � 1. Numerical solutions, such as linearized solutions of the
Boltzmann equation for hard-spheres [Cercignani, 1988; Ohwada et al., 1989a; Beskok and Karniadakis,
1999] and molecular simulations [Beskok and Karniadakis, 1999], have been shown to be in good agree-
ment with experiments [Cercignani, 1988; Beskok and Karniadakis, 1999], even when the former use sim-
pler models such as that of Maxwellian molecules.

7.2.2 Isothermal flows

7.2.2.1 Second-Order Velocity Slip

A variety of slip-flow approaches to problems of interest suggest that slip-flow theory is remarkably
robust (see also comparisons between DSMC and slip-flow solutions for a variety of problems in this
chapter), in the sense that it continues to be reasonably accurate, at least in a qualitative sense, well
beyond its expected limits of applicability. Robust slip-flow models will always be preferable to alterna-
tives such as molecular simulations or numerical solutions of the Boltzmann equation because the
numerical cost associated with solutions of the Navier–Stokes equations is negligible compared with the
cost of these alternative methods. For this reason a variety of researchers [Cercignani, 1964; Sone and
Onishi, 1978; Beskok and Karniadakis, 1999; Deissler, 1964; Aubert and Colin, 2001; Maurer et al., 2003]
have attempted to develop or evaluate slip models that can be used beyond Kn � 0.1. A review of these
approaches can be found in Karniadakis and Beskok (2001).

RT
�

2

dP
�
dx

1
�
P
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The general idea behind these approaches is a second-order slip law of the form

u|wall � uw � αλ |wall � βλ2 |wall (7.7)

which naturally extends the first-order slip concept; here β is the second-order slip coefficient. The first
rigorous approach in this subject is the one by Cercignani (1964) who, using the BGK model of the lin-
earized Boltzmann equation and the assumptions of zero wall curvature, steady flow, and no variation in
the flow direction (∂u/∂x � 0 in Figure 7.1), showed that the contributions from the Knudsen layers to
the velocity field are of order Kn2 and thus need to be taken into account when using a second-order slip
model. These findings explain why the contribution of the Knudsen layers does not need to be consid-
ered when using a first-order slip model, and also why simplistic approaches that comprise just Equation
(7.7) with β chosen to fit DSMC flow profiles do not work. This can be illustrated by considering that the
thickness of the Knudsen layer is approximately 1.5λ [Hadjiconstantinou, 2005] and thus, in a one-
dimensional flow, at Kn � 0.2 the Knudsen layers from both walls penetrate 60% of the physical domain.
Since within the slip-flow approximation the Navier–Stokes description only captures the solution out-
side the Knudsen layers, models that extract the second-order slip coefficient β by fitting the velocity pro-
file from DSMC simulation throughout the flow domain are destined to fail. In fact, the contribution of
the Knudsen layer is sufficiently large that for Kn � 0.3 direct comparison between the Navier–Stokes and
the true flowfield is impossible.

Sone and Onishi (1978) later obtained the same results as Cercignani. Despite being very useful, at least
in a qualitative sense, this model has been neglected, perhaps because the BGK model does not lead to
good agreement with experimental data.

∂2u
�∂η2

∂u
�
∂η
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flow. The solid line denotes Q

–
as determined by solution of the linearized Boltzmann equation for hard-sphere gases

[Ohwada et al., 1989a], and the dash-dotted line denotes the second-order slip model discussed in section 7.2.2.2. The
stars denote DSMC simulation results, and the dashed line a first-order slip model.
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7.2.2.2 A Second-Order Slip Model for the Hard-Sphere Gas

Recently, Hadjiconstantinou (2003a) has shown how the above theoretical results can be used to develop a
slip model for the hard-sphere gas that is a more realistic model of isothermal gaseous flows2. In one-dimen-
sional flows (∂u/∂z � ∂u/∂x � 0), this new model reduces to Equation (7.7) with α � 1.11 and β � 0.61 (in
higher dimensions the second-order term is more complex [Hadjiconstantinou, 2003a]); however, the
model also includes a method for quantitatively accounting for the contribution of the Knudsen layer;
this is discussed below. This model has been tested in a variety of low-speed one-dimensional flows, both
steady and transient, and has yielded results that are in excellent agreement with DSMC simulations. As
shown below, it also seems to provide a reasonable explanation for the recent experimental findings of
[Maurer et al., 2003], who measured the second-order slip coefficient in two-dimensional channel flow.

What sets this model apart from all other approaches is its ability to quantitatively account for the effect
of the Knudsen layers on the flow; this, in fact, holds the key to obtaining an accurate second-order slip
model. As we show below, the effect of the Knudsen layers can be accounted for such that the second-order
slip model remains quantitatively correct at least up to Kn � 0.4 and qualitatively correct well beyond that.

The contribution of the Knudsen layer can be most conveniently accounted for in an average sense
(i.e., when calculating averages over the domain). For the purposes of this discussion (Equations
[7.8]–[7.10]), let us differentiate between the true Boltzmann equation solution for the flow field and the
Navier–Stokes approximation to this solution by denoting the latter by û and recalling that û does not
contain any information about the Knudsen layer close to the walls. Then, in a one-dimensional geome-
try, according to the slip model [Hadjiconstantinou, 2005], the average (bulk) flow velocity is given by

ub � �H/2

�H/2

u dy � �H/2

�H/2
�û � χλ2 �dy (7.8)

where for a hard-sphere gas χ � 0.296.
A direct consequence of the above relation is that in Poiseuille-type flows where the velocity curvature

is a constant, experimental measurement of the flow rate (mean flow velocity) yields an effective second-
order slip coefficient β – χ (see also [Hadjiconstantinou, 2003a]). In other words, while the average value
of a Poiseuille profile subject to second-order slip of the form (7.7) is given by

ûb � �H/2

�H/2

û dy � � 	 � αKn � 2βKn2
 (7.9)

the true bulk flow speed (as inferred by an experiment measuring the flowrate) is given by equation (7.8)
which leads to

ub � �H/2

�H/2
�û � χλ2 � dy � � 	 � αKn � 2εKn2
 (7.10)

or

Q
–

� � (7.11)

with ε � β � χ � 0.31. (The above two expressions for Q� differ by less than 2%; the difference is due to
the use of slightly different approximations for the hard-sphere gas viscosity [Chapman and Cowling,
1970; Cercignani, 1964].) As shown in Figure 7.2, the above equation captures the flow rate in isothermal
pressure-driven flow very accurately up to Kn � 0.4. This is also demonstrated in section 7.2.2.4 where
the pressure-driven flow-rate is used to determine the wave propagation constant in two-dimensional
channels (under the long wavelength approximation).

Most importantly, the above model explains the findings of recent experiments [Maurer et al., 2003] on
helium and nitrogen flow in small-scale channels; these experiments find the second-order slip coefficient
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to be approximately 0.25 	 0.1. Of course, since the slip coefficient was determined by measuring the flow
rate, these experiments were in fact determining the effective second-order slip coefficient ε, which is in
good agreement with the value 0.31 given above.

We now present a calculation that further illustrates the capabilities of the above second-order slip
model. The results provide additional evidence that this model rigorously extends the slip-flow approach
into the early transition regime. Of particular importance is that the stress field is accurately captured for
arbitrary flows with no adjustable parameters up to Kn � 0.4, suggesting that any correction due to the
presence of the Knudsen layer is small; recall that at this Knudsen number, the domain half-width is
1.25λ, which is smaller than the typical size of the Knudsen layer.

Consider the following one-dimensional test problem, which is periodic in the x and z directions
(referring to Figure 7.1): both channel walls impulsively start to move parallel to their planes with velocity U
at time t � 0; the velocity is small compared to the most probable molecular velocity. Below we show a com-
parison between a Navier–Stokes solution using the second-order slip model and DSMC simulations of this
problem. Comparisons for the velocity profile as a function of position at two representative times, the aver-
age (bulk) velocity as function of time, and the shear stress τxy as a function of position at two representative
times are shown. Figure 7.3 shows that the effect of the Knudsen layer at Kn � 0.21 is already visible; how-
ever, the velocity field outside the Knudsen layer, the bulk velocity as a function of time as given by Equation
(7.8), and the shear stress throughout the physical domain are accurately captured. The comparison at
Kn � 0.42 (Figure 7.4) shows that the slip model is still reasonably accurate, although the Knudsen layers have
penetrated to the middle of the domain leading to the impression that the velocity prediction is incorrect.
However, when Equation (7.8) is used to calculate the bulk flow speed, the agreement between Navier–Stokes
and DSMC simulations is very good (Figure 7.4, middle). The agreement between the stress fields (Figure 7.4,
bottom) is also good suggesting that any correction due to the presence of the Knudsen layer is small.

This comparison also shows that the above slip model can be used in transient problems provided the
evolution time scale is long compared to the molecular collision time. Comparisons for a different one-
dimensional problem that exhibits no symmetry about the channel centerline can be found in
[Hadjiconstantinou, 2005]; the level of agreement exhibited is similar to the one observed here. This sug-
gests that the excellent agreement observed, at least in one-dimensional flows, is not limited to symmet-
ric flowfields.

Discussion of limitations: It appears that a number of the assumptions on which this model is based
do not significantly limit its applicability. For example, it would be reasonable to assume that the assump-
tion of steady flow would be satisfied by flows that appear quasi-static at some time scale. Our results
above suggest that this time scale is the molecular collision time; in other words, the slip model is valid
for flows that evolve at time scales that are long compared to the molecular collision time, which can be
satisfied by the vast majority of practical flows of interest.

The model was also derived under the assumption of flat walls and no variations in directions other
than the normal to the wall. Of course approaches based on assumptions of slow variation in the axial
direction (x in Figure 7.1), such as the widely used locally-fully-developed assumption or long wavelength
approximation, are expected to yield excellent approximations when used for two-dimensional problems.
This is verified by comparison of solutions of such problems to DSMC simulations (see section 7.2.2.4
for example) or experiments (e.g., [Maurer et al., 2003]).

Extension of the model to the case ∂u/∂z ≠ 0 within the BGK approximation has been considered by
Cercignani (see [Hadjiconstantinou, 2003a]). Validation of this and other solutions [Sone, 1969] (after
they have been appropriately modified using the approach described by the author in [Hadjiconstantinou,
2003a]) that take wall curvature3, three-dimensional flow fields and nonisothermal conditions into
account should be undertaken. The exact conditions under which Equation (7.8) can be generalized also
need to be clarified. While the contribution of the Knudsen layer can always be found by a Boltzmann
equation analysis, the value of Equation (7.8) lies in the fact that it relates this contribution to the
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3Due to wall curvature, the second-order slip coefficient for flow in cylindrical capillaries is different from flow in
two-dimensional channels.
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Navier–Stokes solution, and thus it requires no solution of the Boltzmann equation. Finally, recall that
the linearized conditions (Ma �� 1) under which the second-order model is derived imply Re �� 1 since
Ma � ReKn and Kn 
 0.1. Here Ma is the Mach number and Re is the Reynolds number, based on the
same characteristic lengthscale as Kn.
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7.2.2.3 Oscillatory Shear Flows

Oscillatory shear flows are very common in MEMS and have been characterized as being of “tremendous
importance in MEMS devices” [Breuer, 2002]. A comprehensive study of rarefaction effects on oscillatory
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shear (Couette) flows was recently conducted by Park et al. (2004). Due to the linear velocity profile
observed in the quasi-static regime (�ω�H�2/�ν� �� 1 where ν � µ/ρ is the kinematic viscosity and ω is the wave
angular frequency) Park et al. used an extended first-order slip-flow relation to describe the velocity field (in
essence the amount of slip) for all Knudsen numbers, provided the flow was quasi-static. Note that the quasi-
static assumption is not at all restrictive due to the very small size of the gap, H. This extended slip-flow rela-
tion is fitted to DSMC data and reduces to the first-order slip model Equation (7.4) for Kn � 0.1. Park et al.
also solved the linearized Boltzmann equation [Cercignani, 1964] in the collisionless (Kn → ∞) limit; they
found that in this limit the solution at the wall is identical to the steady Couette flow solution in the sense that
the value of the velocity and shear stress at the wall is the same in both cases.

The oscillatory Couette flow problem was used in [Hadjiconstantinou, 2005] as a validation test prob-
lem for the second-order slip model of section 7.2.2.2. Relatively high frequencies were used, such that
the flow was not in the quasi-static regime. The agreement obtained was excellent up to Kn � 0.4 in com-
plete analogy with the findings of the test problem presented in section 7.2.2.2.

7.2.2.4 Wave Propagation in Small-Scale Channels

In this section we discuss a theory of axial-plane wave propagation under the long wavelength approxi-
mation in two-dimensional channels (such as the one shown in Figure 7.1) for arbitrary Knudsen num-
bers. The theory is based on the observation that within the Navier–Stokes approximation wave
propagation in small-scale channels for most frequencies of practical interest is viscous dominated. The
importance of viscosity can be quantified by a narrow channel criterion δ � �2ν�/ω� /H 

 1. When δ 

 1
(whereby the channel is termed narrow) the viscous diffusion length based on the oscillation frequency
is much larger than the channel height; viscosity is expected to be dominant and inertial effects will be
negligible. This observation has two corollaries. First, because the inertial effects are negligible, the flow
is governed by the steady equation of motion, that is, the flow is effectively quasi-steady [Hadjiconstantinou,
2002]. Second, since for gases the Prandtl number is of order one, the flow is also isothermal (for a dis-
cussion see [Hadjiconstantinou and Simek, 2003]). This was first realized by Lamb [Crandall, 1926], who
used this approach to describe wave propagation in small-scale channels using the Navier–Stokes description.
Lamb’s prediction for the propagation constant using this theory is identical to Kirchhoff ’s more general
theory [Kirchhoff, 1868] when the narrow channel limit is taken in the latter.

The author has recently [Hadjiconstantinou, 2002] used the fact that wave propagation in the narrow
channel limit4 is governed by the steady equation of motion to provide a prediction for the propagation
constant for arbitrary Knudsen numbers without explicitly solving the Boltzmann equation. This is
achieved by rewriting Equation (7.6) in the form

u~b � � (7.12)

where tilde denotes the amplitude of a sinusoidally time-varying quantity. This equation locally describes
wave propagation because, as we argued above, in the narrow channel limit the flow is isothermal and
quasi static and governed by the steady-flow equation of motion. Using the long wavelength approxima-
tion, which implies a constant pressure across the channel width, allows us to integrate mass conserva-
tion, written here as a kinematic condition [Hadjiconstantinou, 2002],

� �	 

T

ρ0 (7.13)

across the channel width. Here (∂P/∂ρ)T indicates that this derivative is evaluated under isothermal con-
ditions appropriate to a narrow channel. Additionally, ρ0 is the average density, and ξ is the fluid-particle
displacement defined by

ux(x, y, t) � (7.14)
∂ξ(x, y, t)
�∂t

∂2ξ
�∂x2

∂P
�∂ρ

∂P
�∂x

dP
~

�
dx

1
�
R(Kn)
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4The narrow channel limit needs to be suitably redefined in the transition regime where viscosity loses its mean-
ing. However, the work in [Hadjiconstantinou, 2002; Hadjiconstantinou and Simek, 2003] shows that d as defined
here remains a conservative criterion for the neglect of inertia and thermal effects.
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Combining Equations (7.12) and (7.13), we obtain [Hadjiconstantinou, 2002]

iωξb � (7.15)

where ξb is the bulk (average over the channel width) fluid-particle displacement. From the above we can
obtain the propagation constant

(mm � ik)2 � (7.16)

where P0 is the average pressure, mm is the attenuation coefficient, and k is the wave number.
From Equation (7.6) we can identify

R(Kn) � (7.17)

leading to

(mm � ik)2λ2 � (7.18)

where τ � 2π/ω is the oscillation period.
This result is expected to be of very general use because the narrow channel requirement is easily sat-

isfied in the transition regime [Hadjiconstantinou, 2002]. A more convenient expression for use in the
early transition regime that does not require a lookup table (for

–
Q) can be obtained using the second-

order slip model discussed in section 7.2.2.2. Using this model we obtain

(mm � ik)2λ2 � (7.19)

which as can be seen in Figure 7.5 remains reasonably accurate up to Kn � 1 (aided by the square root
dependence of the propagation constant on R). This expression for Kn → 0 reduces to the well known
narrow-channel result obtained using the no-slip Navier–Stokes description [Rayleigh, 1896].

Figure 7.5 shows a comparison between Equation (7.19) (Equation [7.18]), DSMC simulations, and
the Navier–Stokes result. (DSMC simulations of wave propagation are discussed in [Hadjiconstantinou,
2002].) The theory is in excellent agreement with simulation results. As noted above, the second-order
slip model provides an excellent approximation for Kn � 0.5 and a reasonable approximation up to
Kn � 1. The no-slip Navier–Stokes result clearly fails as the Knudsen number increases. The theory pre-
sented here can be easily generalized to ducts of arbitrary cross-sectional shape and has been extended
[Hadjiconstantinou and Simek, 2003] to include the effects of inertia and heat transfer in the slip-flow
regime where closures for the shear stress and heat flux exist.

7.2.2.5 Reynolds Equation for Thin Films

The approach of section 7.2.2.4 is reminiscent of lubrication theory approaches used in describing the
flow in thin films [Hamrock, 1994]. In lubrication-theory-type approaches, the small transverse system
dimension allows the neglect of inertial and thermal effects; this approximation allows quasi-steady solu-
tions to be used for predicting the flow field in the film. Application of conservation of mass leads to an
equation for the pressure in the film known as the Reynolds equation. The Reynolds equation and its
applications to small-scale flows is extensively covered in a different chapter of this handbook [Breuer,
2002] and other publications [Karniadakis and Beskok, 2001]. Our objective here is to briefly discuss the
opportunities provided by the lubrication approximation for obtaining analytical solutions for arbitrary
Knudsen numbers to various MEMS problems.

Because the Reynolds equation is essentially a height (gap) averaged description, its formulation
requires only knowledge of the flow rate (average flow speed) in response to a pressure field; it can, there-
fore, be easily generalized to arbitrary Knudsen numbers in a fashion that is exactly analogous to the pro-
cedure used in section 7.2.2.4. This was realized by Fukui and Kaneko (1988), who formulated such a
generalized Reynolds equation. Fukui and Kaneko were also able to include the flow rate due to thermal

τc
�τ

96iKn2

���
1 � 6αKn � 12εKn2

τc
�τ

8i�–πKn
�

Q
–

P0
��
HQ

– �R�T�0/�2�

iωR(Kn)
�

P0

∂2ξb
�∂x2

ρ0 (∂P/∂ρ)T
��
R(Kn)
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creep into the Reynolds equation and thus account for the effects of an axial temperature gradient.
Comparison between the formulation of Fukui and Kaneko and DSMC simulations can be found in
[Alexander et al., 1994].

More recent work by Veijola and collaborators (see [Karniadakis and Beskok, 2001]) uses fits of the
quantity Q� to define an effective viscosity for integrating the Reynolds equation. It is hoped that the dis-
cussion of this chapter and section 7.2.2.2 in particular clarify the fact that the concept of an effective vis-
cosity is not very robust. For Kn 

 0.1 the physical mechanism of transport changes completely, and
there is no reason to expect the concept of linear-gradient transport to hold. Even in the early transition
regime, the concept of an effective viscosity is contradicted by a variety of findings. To be more specific,
an effective viscosity can only be viewed as a particular choice of absorbing the non-Poiseuille part of the
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flow rate (1 � 6αKn � 12εKn2) in Equation (7.10) into another proportionality constant, namely the vis-
cosity. However, section 7.2.2.2 has shown that the correct way of interpreting Equation (7.10) is that,
provided correct boundary conditions are supplied, viscous behavior extends to Kn � 0.4, with the value
of viscosity remaining unchanged. If, instead, the effective viscosity approach is adopted, the following
problems arise:

• The non-Poiseuille part of the flow rate is problem-dependent (flow5, geometry) while the viscos-
ity is not. In other words, an effective viscosity fitted from the Poiseuille flow rate in a tube is dif-
ferent from the effective viscosity fitted from the Poiseuille flow rate in a channel.

• The fitted effective viscosity does not give the correct stress through the linear constitutive law.

The effective viscosity approach has another disadvantage in the context of its application to the Reynolds
equation: it requires neglecting the effect of pressure on the local Knudsen number because the fits used
for Q– result in very complex expressions that cannot be directly integrated, unless the assumption
Kn ≠ Kn(P) is made. This approach is thus only valid for small pressure changes. Use of equation (7.11)
for Kn � 0.5, on the other hand, should not suffer from this disadvantage.

7.2.3 Flows Involving Heat Transfer

In this section we review flows in which heat transfer is important. We give particular emphasis to con-
vective heat transfer in internal flows, which has only recently been investigated within the context of rar-
efied gas dynamics. We also summarize the investigation of Gallis and coworkers on thermophoretic
forces on small particles in gas flows.

7.2.3.1 The Graetz Problem for Arbitrary Knudsen Numbers

Since its original solution in 1885 [Graetz, 1885], the Graetz problem has served as an archetypal con-
vective heat transfer problem both from a process modeling viewpoint and an educational viewpoint. In
the Graetz problem a fluid is flowing in a long channel whose wall temperature changes in a step fashion.
The channel is assumed to be sufficiently long so that the fluid is in an isothermal and hydrodynamically
fully developed state before the wall temperature changes.

The gas-phase Graetz problem subject to slip-flow boundary conditions was studied originally by
Sparrow and Lin (1962); this study, however, did not include the effects of axial heat conduction, which
cannot be neglected in small-scale flows. Here we review the solution by the author [Hadjiconstantinou
and Simek, 2002] in which the extended Graetz problem (including axial heat conduction) is solved in
the slip-flow regime, and the solution is compared to DSMC simulations in a wide range of Knudsen
numbers; the DSMC solutions serve to verify the slip-flow solution but also extend the Graetz solution
to the transition regime. The DSMC simulations were performed at sufficiently low speeds for the effects
of viscous heat dissipation to be small; this is very important since high speeds typically used in DSMC
simulations to alleviate signal-to-noise issues may introduce sufficient viscous heat dissipation effects to
render the simulation results useless. (The effect of viscous dissipation on convective heat transfer for a
model problem is discussed in the next section.)

In [Hadjiconstantinou and Simek, 2002] a complete solution of the Graetz problem in the slip-
flow regime for all Peclet [Pe � Re Pr � (ρub2H/µ)Pr] numbers was presented. The solution in
[Hadjiconstantinou and Simek, 2002] showed that in the presence of axial heat conduction characteris-
tic of small scale devices (Pe � 1), the Nusselt number defined by

NuT � (7.20)
q2H

��κ(Tw � Tb)
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5The dependence on the flow field comes from the second term in the right hand side of equation (7.8).
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is fairly insensitive to the Peclet number in the small Peclet number limit but higher (by about 10%) than
the corresponding Nusselt number in the absence of axial heat conduction (Pe → ∞). Here q is the wall
heat flux and Tb is the bulk temperature defined by

Tb � (7.21)

This solution was complemented by low-speed DSMC simulations in both the slip-flow and transition
regimes (Fig. 7.6). Comparison of the two solutions in the slip-flow regime shows that the effects of
thermal creep are negligible for typical conditions and also that the velocity slip and temperature jump
coefficients provide good accuracy in this regime. The DSMC solutions in the transition regime showed that
for fully accommodating walls the Nusselt number decreases monotonically with increasing Knudsen
number. Solutions with accommodation coefficients smaller than one exhibit the same qualitative behavior
as partially accommodating slip-flow results [Hadjiconstantinou, unpublished], namely, decreasing the
thermal accommodation coefficient increases the thermal resistance and decreases the Nusselt number,
whereas decreasing the momentum accommodation coefficient increases the flow velocity close to the wall,
which slightly increases the Nusselt number [Hadjiconstantinou and Simek, 2002]. The similarity between
the Nusselt number dependence on the Knudsen number and the dependence of the skin-friction coefficient
on the Knudsen number [Hadjiconstantinou and Simek, 2002] suggests that it may be possible to develop
a Reynolds-type analogy between the two nondimensional numbers.

7.2.3.2 Viscous Heat Dissipation and the Effect of Slip Flow

In this section we discuss recent results [Hadjiconstantinou, 2003b] concerning the effect of viscous heat
dissipation on convective heat transfer. The objective of this discussion is twofold: first, it will illustrate
that the velocity slip present at the system boundaries leads to dissipation through shear work, which

�H/2

�H/2

ρuxT dy
���H/2

�H/2

ρux dy
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needs to be appropriately accounted for in convective heat transfer calculations that include the effects of
viscous heat dissipation; second, it will provide an illustration of the effects of finite Brinkman number
on convective heat transfer. This analysis provides a means for interpreting DSMC simulations in which,
in order to alleviate signal-to-noise issues, flow velocities are artificially increased.

It can be shown [Hadjiconstantinou, 2003b] that shear work on the boundary, similarly to viscous heat
dissipation, scales with the Brinkman number Br � µub

2/κ∆T, where ∆T is the characteristic temperature
difference in the formulation. It can also be shown that shear work on the boundary can be equally
important as viscous heat dissipation in the bulk of the flow as the Knudsen number increases. Although
shear work at the boundary must be included in the total heat exchange with the system walls, it has no
direct influence on the temperature field because it occurs at the system boundaries. The discussion
below, taken from [Hadjiconstantinou, 2003b], shows how shear work at the boundary can be accounted
for in convective heat transfer calculations under the assumption of (locally) fully developed conditions.

The importance of shear work at the boundary can be seen from the mechanical energy equation writ-
ten in the general form valid for all Knudsen numbers

0 � �ux � ux � �ux � � τxy (7.22)

written here for a fully developed flow in a two-dimensional channel. Here τxy is the xy component of the
shear stress tensor. The above equation integrates to

[τxyux]
H/2
�H/2

� �H/2

�H/2

τxy dy � ub H (7.23)

and shows that the shear work at the boundary due to the slip balances the contribution of viscous dis-
sipation and flow work (uxdP/dx) inside the channel.

Thus, as shown in [Hadjiconstantinou, 2003b], if Nu is the Nusselt number based on the thermal
energy exchange between the gas and the walls, the total Nusselt number, Nut, based on the total energy
exchange with the walls (thermal plus shear work) under constant-wall-heat-flux conditions in slip flow
is given by

Nut � Nu � � Nu � 12Br 	1 � 
 (7.24)

The Nusselt number based on the thermal energy exchange between the gas and the wall in the case of
constant wall-heat-flux was found [Hadjiconstantinou, 2003b] to be given by

Nu � �

� 2Br 	1 � 

2

	 � � 	 

2



1 � � 	 


2

� ζ

(7.25)

where Br � µub
2 /(κ(Tw � Tb)), qo is the (constant) wall-heat-flux and

� (7.26)

is the normalized slip velocity at the wall.
The validity of Equation (7.24) was verified [Hadjiconstantinou, 2003b] using DSMC simulations. The

results of a comparison for Kn � 0.07 are shown in Figure 7.7. The agreement between theory and sim-
ulation is very good considering that shear work at the wall takes place within the Knudsen layer where
extrapolated Navier–Stokes fields are only approximate.

7.2.3.3 Thermophoretic Force on Small Particles

Small particles in a gas through which heat flows experience a thermophoretic force in the direction of the heat
flux; this force is a result of the net momentum transferred to the particle due to the asymmetric velocity
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distribution of the surrounding gas [Gallis et al., 2002] in the presence of a heat flux. This phenomenon
was first described by Tyndall (1870) and has become of significant interest in connection with contam-
ination of microfabrication processes by small solid particles. This problem appears to be particularly
severe in plasma-based processes that generate small particles [Gallis et al., 2002].

Considerable progress has been made in describing this phenomenon by assuming a spherical (radius R)
and infinitely conducting particle in a quiescent monoatomic gas. Provided that the particle is sufficiently
small such that it has no effect on the molecular distribution function of the surrounding gas, the ther-
mophoretic force can be calculated by integrating the momentum flux imparted by the molecules strik-
ing the particle. The particle can be considered sufficiently small when the Knudsen number based on the
particle radius, KnR � λ/R, implies a free-molecular flow around the particle, i.e. KnR 

 1. Based on
these assumptions, Gallis  et al. (2001) have also developed a general method for calculating forces on par-
ticles in DSMC simulations of arbitrary gaseous flows, provided the particle concentration is dilute. This
method is briefly discussed in section 7.3.3.

In the cases where the molecular velocity distribution function is known, such as free molecular flow
or the Navier–Stokes limit, the thermophoretic force can be obtained analytically. Performing the calcu-
lations in these two extremes and under the assumption that the particle surface is fully accommodating,
reveals that the thermophoretic force can be expressed in the following form

Fth � ψπR2q/ c� (7.27)

where ψ is a thermophoresis proportionality parameter that obtains the values ψFM � 0.75 for free-
molecular flow and ψCE � 32/(15π) � 0.679 for a Chapman–Enskog distribution for a Maxwell gas. Here
q is the local heat flux. Writing the thermophoretic force in the above form is, in fact, very instructive
[Gallis et al., 2002]. It shows that the force is only very mildly dependent on the velocity distribution func-
tion with only a change of the order of 10% observed between Kn �� 1 and Kn 

 1. These conclusions
extend to other collision models; for example, for a hard-sphere gas, ψCE � 0.698 [Gallis et al., 2002].

As a consequence of the above, the two limiting values can be used to provide bounds for the value of the
thermophoretic force on fully accommodating particles close to system walls. Using the weak dependence of
ψ on the distribution function, Gallis et al. (2002) provided an estimate of this quantity in the Knudsen layer,
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ψKN, by assuming that the distribution function can be written as a superposition of a Chapman–Enskog
(incoming and outgoing molecules) and Maxwellian distribution (outgoing molecules), with relative
proportions adjusted for accommodation effects. More specifically, they consider a wall at temperature
Tw with thermal accommodation coefficient σT . For Maxwell molecules, they find

ψKN � �σTψCE � (2 � σT)ψFM 	 
� (7.28)

which simplifies to

ψKN � [σTψCE � (2 � σT)ψFM] (7.29)

in the limit T → Tw. In other words, the presence of a Knudsen layer has a very small effect on the ther-
mophoresis parameter, with ψKN � 0.5(ψCE � ψFM) for a fully accommodating wall and ψKN � ψFM in
the specular reflection limit.

DSMC simulations (Figure 7.8) show [Gallis et al., 2002] that the deviation from ψCE increases with
proximity to the wall, as expected, and show that ψKN serves as an upper bound to the actual ther-
mophoresis parameter within the Knudsen layer; this is presumably because the assumed distribution
function overestimates the deviation from the actual distribution.

7.3 Simulation Methods Development

In this section we briefly discuss recent developments in the simulation of dilute gaseous flows. The
majority of these developments are associated with the direct simulation Monte Carlo because this is by
far the most popular simulation tool for dilute gases. We also briefly discuss continuum–DSMC hybrid
methods that provide computational savings by limiting the use of the molecular (DSMC) description
only to the regions where it is needed. The discussion presented below also applies to hybrid methods for
dense fluids; the only major difference between methods for dilute gases and dense fluids is that, in the
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latter, macroscopic boundary condition imposition on the molecular subdomain is significantly more
challenging. A more complete discussion of hybrid methods for dense fluids can be found in [Wijesinghe
and Hadjiconstantinou, 2004].

7.3.1 The Effect of Finite Discretization

DSMC has been used to capture and predict nonequilibrium gaseous hydrodynamic phenomena in all
Knudsen regimes [Bird, 1994] for more than 3 decades. However, only recently has significant progress
been made in its characterization as a numerical method and in understanding the numerical errors asso-
ciated with it.

Recently, Wagner (1992) has shown that DSMC simulations approach solutions of the nonlinear
Boltzmann equation in the limit of zero cell size and time step and infinite number of molecules. This
result essentially proves consistency. Convergence results for the transport coefficients have been recently
obtained by Alexander et al. (2000) for the cell size and by Hadjiconstantinou (2000) and Garcia and
Wagner (2000) for the time step.

Alexander et al. (2000) used the Green–Kubo theory to evaluate the transport coefficients in DSMC
when the cell size is finite but the time step is negligible. They found that because DSMC allows collisions
between molecules at a distance (as long as they are within the same cell) the transport coefficients
increase from the dilute-gas Chapman–Enskog values quadratically with the cell size. For example, for the
viscosity Alexander et al. find for cubic cells [Alexander et al., 2000]

µ � ��	1 � 
. (7.30)

where ∆x is the cell size.
In [Hadjiconstantinou, 2000], the author considered the convergence with respect to a finite time 

step when the cell size is negligible. To apply the Green–Kubo formulation, the author developed a time-
continuous analogue of DSMC because DSMC is discrete in time. Using this time-continuous analogue,
the author was able to show that the transport coefficients deviate from the dilute-gas Chapman–Enskog
values proportionally to the square of the time step. For example, for the viscosity he found

µ � ��	1 � 
, (7.31)

where ∆t is the time step and co � �2k�bT�/m� is the most probable molecular speed. This prediction for the
viscosity, and similar predictions for the thermal conductivity and diffusion coefficient were verified by
DSMC simulations by Garcia and Wagner (2000). Good agreement was found between theory and sim-
ulation as illustrated in the example of Figure 7.9. The simulations show that the theoretical predictions
are valid for small normalized time steps. As the time step increases, transport asymptotes to the colli-
sionless limit prediction.

One key to obtaining the above results for the time step error is to observe that at diffusive transport time
scales — which are long compared to the molecular collision time — DSMC dynamics (collisionless
advection, collisions, collisionless advection, …) can be thought of as symmetric in time if one views the
DSMC time step as “centered” on the middle of either the collision or the advection step. In fact, DSMC
can be “symmetrized” by starting the algorithm in the middle of a collision or advection step; this would be
necessary for second-order accuracy when DSMC is used for short-time explicit integrations of the
Boltzmann equation [Ohwada, 1998]. To observe the above convergence rates in the transport coefficients,
sampling also needs to be performed in a fashion that is consistent with the symmetry in the dynamics.
Perhaps the simplest way of performing sampling that is thus symmetric is to sample before and after the
collision part of the algorithm (e.g., see [Gallis et al., 2004]). It is noteworthy that since mass, momentum,
and energy are conserved during collisions, symmetrization of sampling is expected to affect only hydrody-
namic fluxes, and in fact only when those are measured as volume averages over cells; hydrodynamic fluxes
measured as fluxes through surfaces during the advection part of the algorithm are naturally centered.
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7.3.2 DSMC Convergence to the Chapman–Enskog Solution in 
the Kn ���� 1 Limit

Recently Gallis et al. (2004) offered more evidence that DSMC captures the nonequilibrium distribution
function corresponding to the Navier–Stokes description as predicted by the Boltzmann equation. They
performed very accurate and low-noise calculations (their statistical error estimate was 0.2%) to investi-
gate the domain of validity of the Chapman–Enskog expansion and the ability of DSMC to reproduce
this distribution under the appropriate conditions. By calculating the heat flow between two parallel
plates and concentrating in the middle region of the domain where wall (Knudsen layer) effects are neg-
ligible, they have shown that

1. DSMC is in excellent agreement with the infinite-approximation Chapman–Enskog expansion of
the distribution function in the presence of a heat flux and for all inverse-power-law molecules
investigated [Bird 1994; Gallis et al., 2004].

2. The Chapman–Enskog solution for the distribution function breaks down at Knq � 0.01 (Figure 7.10),
where Knq � q/(ρco

3) is the Knudsen number based on the heat flux magnitude q. Note that this
failure mode is different to the one associated with nonequilibrium due to the presence of walls in
the system.

3. The linear relationship between the heat flux and the temperature gradient is valid independently
of the magnitude of heat flux. Additionally, the coefficient of proportionality remains constant at
the thermal conductivity value. This fact was proven for Maxwell molecules some years ago
[Asmolov et al., 1979]. The study by Gallis et al. has verified this and demonstrated the validity of
this observation for the hard-sphere gas. Note that this observation is only valid for planar geome-
tries which are, however, quite common in MEMS.
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7.3.3 Forces on Small Spherical Particles

One of the most important challenges associated with semiconductor manufacturing is the presence of
contaminants, sometimes produced during the manufacturing process, in the form of small particles.
Understanding the transport of these particles is very important for their removal or for ensuring that
they do not interfere with the manufacturing process. Recently, Gallis and his coworkers [Gallis et al.,
2001] developed a method for calculating the force on small particles in rarefied flows simulated by
DSMC. This method is based on the assumption that the particle concentration is very small and the
observation that particles with sufficiently small radius such that KnR � λ/R 

 1 will have a very small
effect on the flow field; in this case, the effect of the flow field on the particles can be calculated from
DSMC simulations that do not include the particles themselves.

Gallis and his coworkers define appropriate Green’s functions that quantify the momentum Fδ[c~] and
energy Qδ[c~] transfer rates of individual molecules to the particle surface as a function of the molecule
mass, momentum, and energy and degree of accommodation on the particle surface. These can then be
integrated over the molecular velocity distribution function, f(c~), to yield the average force

F � �Fδ[c~]f(c~)dc� (7.32)

or heat flux

q � �Qδ[c~]f(c~)dc~ (7.33)

to the particle, where c~ � c � up, c is the molecular velocity, and up is the particle speed.
For the simple case where σv � σT � σ~, Gallis et al. [Gallis et al., 2001] find

Fδ[c~] � ρπR2c~(|c~| � σ~(π1/2/3)cp) (7.34)
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Qδ[c~] � σ~ρπR2|c~|(1/2|c~|2 � c2
p) (7.35)

where cp
2 � 2kbTp /m and Tp is the particle temperature. More complex accommodation models can also

be treated; in [Gallis et al., 2001] an extended Maxwell accommodation model is presented.
In the DSMC implementation, integration of equations (7.32) and (7.33) is achieved by summing the

contributions of molecules within a cell. This yields the force and heat flux to a particle as a function of
position. Because the force and heat flux are a function of up, the former are calculated as a function of a
number of values of the latter; the values of the force and heat flux at intermediate values of up can be
subsequently obtained by interpolation [Gallis et al., 2001].

7.3.4 Hybrid Continuum–Atomistic Methods

By limiting the molecular treatment to the regions where it is needed, a hybrid atomistic–continuum6

method allows the simulation of complex phenomena at the microscale without the prohibitive cost of a
fully molecular calculation. In this section we briefly discuss hybrid methods for multiscale hydrody-
namic applications and touch upon the main challenges in developing hybrid simulations for gaseous
flows. A more complete discussion including dense fluid flows as well as a more complete review of pre-
vious work can be found in Wijesinghe and Hadjiconstantinou (2004).

In Wijesinghe and Hadjiconstantinou (2004) it is shown that to a large extent the two major challenges
in developing a hybrid method are the choice of a coupling method and the imposition of boundary con-
ditions on the molecular simulation. Generally speaking, these two can be viewed as decoupled: the cou-
pling technique can be developed on the basis of matching two compatible and equivalent (over some
region of space) descriptions, while boundary condition imposition can be posed as the general problem
of imposing macroscopic boundary conditions on a molecular simulation. The latter is a very challeng-
ing problem that in general has not been resolved to date completely satisfactorily for the case of dense
fluids. More details on proposed approaches can be found in Wijesinghe and Hadjiconstantinou (2004).
In the case of dilute gases, accurate and robust methods for imposing boundary conditions on molecu-
lar simulations exist. These typically require extending the molecular subdomain through the artifice of
reservoir regions in which molecules are generated using a Chapman–Enskog distribution [Garcia and
Alder, 1998] that is parametrized by the Navier–Stokes flow field being imposed. More details can be
found in Wijesinghe and Hadjiconstantinou (2004).

The selection of the coupling approach between the two descriptions is the other major consideration
in developing a robust hybrid method. It is becoming increasingly clear that powerful and robust hybrid
methods can be developed by using already developed continuum–continuum coupling techniques (recall
that the molecular and continuum description can only be coupled in regions where both are valid).
Existing continuum–continuum coupling techniques have the additional advantages of being mathemat-
ically rigorous and performing optimally for the application for which they have been developed.

No general hybrid method that can be applied to all hydrodynamic problems exists. On the contrary, sim-
ilarly to Navier–Stokes numerical solution methods, hybrid methods need to be tailored to the flow physics
of the problem at hand. Perhaps the most important consideration in this respect is that of time scale decou-
pling originally discussed by Hadjiconstantinou (1999) explicit integration of the molecular subdomain at the
molecular time step to the global solution time (or steady state) is very computationally expensive if not
infeasible if the Navier–Stokes subdomain is appropriately large. This is because the molecular time step is
significantly smaller (MD–dense fluids) or at best smaller (DSMC–dilute gases) than the Courant–
Friedrich–Lewy (CFL) stability time step at typical discretization levels.

In Wijesinghe and Hadjiconstantinou (2004) it is shown that the above considerations are intimately
linked to the flow physics; compressible flow physics have characteristic timescales that scale with the
compressible CFL time step [Wesseling, 2001], which is not very different from a DSMC time step in a
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6We use the term continuum here to emphasize that these approaches are not necessarily limited to the
Navier–Stokes description and its breakdown.
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dilute gas simulation. In this manner, explicit time integration with a finite-volume-type coupling tech-
nique is possible as a natural extension of already existing Navier–Stokes solution methods (see
[Wijesinghe et al., 2003] and references therein) as long as the problem of interest is not too large. Such
approaches have reached a reasonable maturity level; recent developments include techniques that extend
the adaptive mesh refinement (AMR) concept to mesh and algorithm refinement by including the molec-
ular description as the finest level of refinement [Garcia et al., 1999; Wijesinghe et al., 2003; 2004]. The
first fully adaptive implementation is described in detail in [Wijesinghe et al., 2003; 2004].

On the other hand, incompressible flow physics have characteristic time scales that are much longer
than the CFL time step, and thus explicit integration at the molecular time step is more prohibi-
tive. Implicit methods are thus required that provide solutions without the need for explicit integration
in time. One such implicit method for steady state problems has been proposed by the author for 
liquids [Hadjiconstantinou and Patera, 1997; Hadjiconstantinou, 1999] and gases [Wijesinghe and
Hadjiconstantinou, 2002]; it is based on a domain decomposition approach known as the Schwarz alter-
nating method [Lions, 1988]. A hybrid method based on this coupling approach was recently used to sim-
ulate flow through microfluidic filters [Aktas and Aluru, 2002] yielding significant computational savings.

Important prerequisites for adaptive algorithm refinement are robust criteria for Navier–Stokes or
continuum assumption breakdown [Boyd, 2003] and a complete understanding of the effect of molecu-
lar fluctuations. The effect of statistical noise (resulting from molecular fluctuations) on the development
of robust algorithm refinement criteria is discussed in [Wijesinghe et al., 2003; 2004]. Molecular fluctu-
ations and the statistical noise associated with them are, of course, one of the major obstacles in obtain-
ing DSMC solutions of low-speed flows in fully molecular or hybrid approaches. In the case of the latter,
they may also influence the convergence/accuracy of various hybrid schemes. For this reason, the statis-
tical error due to molecular fluctuations has been studied in [Hadjiconstantinou et al., 2003] and is briefly
discussed in section 7.3.5.

One finding of this study that has significant bearing on the choice of coupling method for hybrid
approaches is that the relative statistical error in hydrodynamic flux measurement, Ef , scales as Ef � Es/Kn
with the relative statistical error in state property measurement Es for low-speed gas flows. This means
that in low-speed gas flows, using hydrodynamic fluxes to couple the Navier–Stokes and atomistic region
(which takes place in regions where Kn �� 1) is at a considerable disadvantage unless methods that are
insensitive to statistical noise are developed.

7.3.5 Statistical Noise in Low-Speed Flows

In a recent paper, [Hadjiconstantinou et al., 2003] used equilibrium statistical mechanics to characterize
the relative sampling error in hydrodynamic quantities in molecular simulations of flows close to equi-
librium as a function of the number of samples taken. They defined the relative statistical error of some
quantity Q with mean Q as EQ � σQ /Q; here σQ is the standard deviation in the error in estimating Q.
A variety of expressions for the relative statistical error for the most common hydrodynamic variables
including hydrodynamic fluxes (shear stress, heat flux) were derived; for the hydrodynamic fluxes, expres-
sions were derived when measured as volume averages and when measured as surface flux averages. The
main findings of this work can be summarized as follows:

1. The two averaging methods for hydrodynamic fluxes (volume, surface) yield comparable relative
statistical errors, provided that ∆x � co∆t. Here ∆t is the averaging time used in the flux method;
∆x is the linear dimension, in the direction normal to the flux, of the cell in which volume aver-
aging is performed.

2. For Kn �� 1, the relative error in a particular hydrodynamic flux (e.g., shear stress) is significantly
larger than the relative error in the conjugate state variable (e.g., velocity). This has significant
implications in the development of hybrid methods as explained in the previous section.

3. A simple theory for incorporating the effects of correlations in volume averaging was presented.
This theory is based on the theory of persistent random walks.

Hydrodynamics of Small-Scale Internal Gaseous Flows 7-23

© 2006 by Taylor & Francis Group, LLC



4. It was shown that not only the number of molecules per unit volume in an ideal gas is Poisson dis-
tributed but also that arbitrary number fluctuations of an infinite ideal gas in equilibrium are
Poisson distributed.

Good agreement was found with DSMC simulations of low-speed, low Knudsen number flows where sta-
tistical noise presents the biggest challenges. This is expected because the deviation from equilibrium is
small under these conditions. The results for state variables were also verified for dense fluids using
molecular dynamics simulations.

7.4 Discussion

The above discussion of various phenomena involving isothermal and nonisothermal flows seems to sug-
gest that slip flow is remarkably robust. In channel flows, slip flow seems to correctly predict average
quantities of interest (flow rates, wave propagation constants, heat transfer coefficients) even beyond its
typically acknowledged limit of applicability of Kn � 0.1 with acceptable error; moreover, in some cases
it can qualitatively describe the behavior of such average quantities well into the transition regime.
Methods that extend the range of applicability of the Navier–Stokes description are highly desirable. The
simplicity and significant computational efficiency advantage enjoyed by the Navier–Stokes description
compared to molecular approaches coupled to the effort already invested in continuum methods, make
the former the approach of choice. Despite the lack of general closure models for transport in the transi-
tion regime, analytical solutions are sometimes possible through the use of the lubrication approxima-
tion and judicious use of already existing analytical results for simple flows. Rigorous high-order slip
models such as the one presented in section 7.2.2.2 are proving to be valuable in this respect.

The direct simulation Monte Carlo has played and will continue to play a central role in the analysis of
small-scale internal gaseous flows. The statistical sampling employed by this method and the slow con-
vergence associated with it is, perhaps, the most serious limitation of DSMC. While the search for more
efficient algorithms or sampling methods continues [Sun and Boyd, 2002], parallel efforts should be
invested in developing realistic gas–surface interaction models. Unfortunately, although variable accom-
modation coefficient models exist [Cercignani and Lampis, 1971] and have been implemented in DSMC
[Lord, 1995], experimental verification of their ability to produce physically accurate results is lacking.

Although hybrid methods provide significant savings by limiting molecular solutions only to the
regions where they are needed, solution of time-evolving problems that span a large range of time scales
is still not possible if the molecular domain, however small, needs to be integrated for the total time 
of interest. New frameworks are therefore required that allow time scale decoupling or coarse grained 
time evolution of molecular simulations. For steady incompressible flows, where the time scale gap is 
large, time-scale–decoupling hybrid methods have been proposed by the author and collaborators
[Hadjiconstantinou and Patera, 1997; Hadjiconstantinou, 1999; Wijesinghe and Hadjiconstantinou, 2002].
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8.1 Introduction

Microelectromechanical systems (MEMS) are currently attracting a great deal of interest because of their
vast potential in industrial and medical applications. As a result, considerable effort is being devoted to
the design and fabrication of MEMS. MEMS refers to devices that have characteristic length between
1µm and 1 mm, that combine electrical and mechanical components, and that are fabricated using inte-
grated-circuit batch-processing technologies. A few examples of MEMS are microsensors, microactua-
tors, micromotors, microvalves, micropumps, and microducts. Fluid flows in microdevices, such as
microvalves, micropumps and microducts, are significantly different from those in macroscopic devices,
due to the microdevices’ small characteristic sizes. Hence, understanding the physics of the flows in the
microdevices is very important in their development and design.

Various regimes of fluid flows can be broadly classified into the continuum, continuum–transition,
transition, and free molecular regimes as shown in Table 8.1. For a large class of flows, Navier–Stokes
equations based on the continuum approximation are adequate to model the fluid behavior. Continuum
approximation implies that the mean free path of the molecules λ in a gas is much smaller than the char-
acteristic length L of interest (say, the body dimension); that is, the Knudsen number Kn (� λ/L) is very
small (��1). However, for a variety of flows, this assumption is not valid; the Knudsen number is 
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of O(1). In these flows, the gas is neither completely in the continuum regime nor in the rarefied (free
molecular flow) regime. Therefore, such flows have been categorized as continuum–transition or transi-
tional flows. Examples of such flows include the hypersonic flows about space vehicles in low earth orbit
[Ivanov and Gimelshein, 1998] or flows in microchannels of MEMS [Gad-el-Hak, 1999].

In high-altitude hypersonic flows, low density gives rise to high Knudsen number effects, while in microscale
flows, which usually occur at atmospheric conditions, small length scales create regions of high Knudsen num-
bers. In the case of high-altitude hypersonic flows, the shock layer thickness at the nose of a space vehicle
(shuttle) is much thicker than that predicted from the Navier–Stokes equations. In a long microchannel, the
pressure gradient is observed to be nonconstant and the experimentally measured mass flow rate is higher than
that predicted from the conventional continuum flow model [Arkilic et al., 1997; Harley et al., 1995; Liu et al.,
1993; Pong et al., 1994]. In such a microscale flow, the mean free path of the molecules can be of the same order
of magnitude as the characteristic length of the microchannel: Kn � O(1). For a microchannel defined by
ratio ε� H/L, where H and L are width and length of the channel respectively as shown in Figure 8.1,
Arkilic et al. (1997) have characterized various flow regimes depending upon the Reynolds number Re and
Mach number M of the flow as shown in Table 8.2. Tables 8.1 and 8.2 together now can be used to select an
appropriate fluid model for simulation of the flow field in a microchannel. Both low-density and microscale
effects can be local in a flow so that the entire flow is in both the continuum and transition regimes.

As shown in Table 8.1, Navier–Stokes equations are not adequate to model the flows in the continuum–
transition regime; the Boltzmann equation describes the flow in all the regimes — continuum,
continuum–transition, and free molecular. The techniques available for solving the Boltzmann equation can
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TABLE 8.1 Flow Regimes and Fluid Models

Knudsen Number Fluid Model

Kn → 0
(continuum, no molecular diffusion) Euler equations

Kn � 10�3

(continuum with molecular diffusion) Navier–Stokes equations with no-slip-boundary conditions

10�3 � Kn � 10�1

(continuum–transition) Navier–Stokes equations with slip-boundary conditions

10�1 � Kn � 10
(transition) Burnett equations with slip-boundary conditions

Moment equations
Direct Simulation Monte Carlo (DSMC)
Boltzmann equation

Kn � 10 Collisionless Boltzmann equation
(free molecular flow) DSMC

L

x

y

H u ( x, y )

L
H

� =

FIGURE 8.1 Flow in a microchannel. Relevant flow parameters: Mach number, Reynolds number, and Knudsen num-
ber are M � u�/c, Re � ρ�u�H/µ, and Kn � (πγ/2)0.5 M/Re, respectively. “ � ” denotes the average outlet conditions.
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be classified as particulate methods and moment methods. The direct simulation Monte Carlo (DSMC)
method falls in the category of particulate methods [Bird, 1994]. Moment methods derive the higher order
fluid dynamics approximations beyond Navier–Stokes equations to account for departures from thermal
equilibrium. The higher order fluid dynamic models are known as the extended hydrodynamic equations
(EHE) or generalized hydrodynamic equations (GHE). However, both classes of methods have significant
limitations — either in describing the physics or in the computational resources needed for accurate simula-
tion — for modeling flows in the continuum–transition regime. Currently, the DSMC method can be con-
sidered the most accurate and widely used technique for computation of low-density flows. However, in the
continuum–transition regime, where the densities are not low enough, the DSMC method requires a large
number of particles for accurate simulation making the technique prohibitively expensive both in terms of
computational time and memory requirements. For example, Koppenwallner (1987) has shown that the
space shuttle’s nose-up pitching moment was predicted inaccurately by the DSMC method in the contin-
uum–transition regime due to the inadequate number of particles used in modeling. The nose-up pitching
moment could be corrected by deflecting the body flap to 15 degrees — twice the amount predicted by
DSMC. A similar situation may occur in microscale flows due to the relatively high density and low velocity
requiring enormous computational power and resulting in large statistical scatter in the DSMC simulations
[Nance et al., 1998].

The majority of the computations with the DSMC method, especially in three dimensions for
Kn � O(1), are beyond the currently available computing power. As an alternative, higher order extended
or generalized hydrodynamic equations have been proposed that have the potential to perform reasonably
well in both the continuum and continuum–transition regimes. The extended hydrodynamic equations
have been derived from the Boltzmann equation using either one of the following approaches. In one
approach, higher order constitutive relations (beyond Navier–Stokes) for stress and heat transfer terms
are obtained using the Chapman–Enskog expansion of the Boltzmann equation with the Knudsen num-
ber as a parameter. In the Chapman–Enskog expansion, the first term represents the Maxwellian (equilib-
rium) distribution function f0. The first moment of the Boltzmann equation with the collision invariant
vector, with f0 as the approximation for the distribution function, results in the Euler equations. The first
two terms in the Chapman–Enskog expansion — ( f0 � Kn f1) — give a distribution function correspon-
ding to the Navier–Stokes equations representing a first-order departure from thermal equilibrium. The
first three terms ( f0 � Kn f1 � Kn2 f2) in the expansion give a distribution function, which results in the
so-called Burnett equations representing a second-order departure from the equilibrium.

Burnett equations have been a subject of considerable investigation in recent years and are the main
subject of this chapter. Higher order approximations beyond Burnett equations, the so-called super-
Burnett equations, etc., can be derived by continuing the Chapman–Enskog expansion to higher orders.
Presently, however, the complexity of the highly nonlinear Burnett stress and heat transfer terms itself is
enormously challenging both computationally and in terms of understanding the physics, so the consid-
eration of super-Burnett equations and beyond is meaningless.
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TABLE 8.2 Flow Regimes in a Microchannel for Different Knudsen Numbers

Re

M O(ε) O(1) O(1/ε)

O(ε) Kn � O(1); Kn � O(ε); Kn � O(ε2); low M
creeping microflow moderate microflow Fanno flow

O(1) Kn � O(1/ε); Kn � O(1); Kn � O(ε); transonic 
transonic free transonic microflow Fanno flow
molecular flow

O(1/ε) Kn � O(1/ε2); Kn � O(1/ε); Kn � O(1);
hypersonic free hypersonic free hypersonic Fanno 
molecular flow molecular flow (transitional) flow

Reprinted with permission from Arkilic, E.B. et al. (1997) “Gaseous Flow in Long Microchannel,”
J. MEMS 6, 167–78.
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Burnett stress and heat transfer terms contain higher than second-order derivatives. Therefore, an
additional boundary condition is necessary for the solution to the Burnett equations to be uniquely deter-
mined; different solutions can result based on the choice of boundary values [Lee, 1994]. Furthermore, it
has also been shown that the conventional Burnett equations can violate the second law of thermody-
namics at high Knudsen numbers [Comeaux et al., 1995]. Because the focus of this chapter is on Burnett
equations, they are described in detail in Section 8.2.

In another approach, the extended hydrodynamic equations are derived using the moment method,
which employs the equations of transfer instead of dealing with the distribution function. In the moment
method, the distribution function f is expanded in moments of physical variables (density, velocity, pres-
sure, temperature, etc.) and the evolution equations for moments are derived from the Boltzmann equation.
In principle, this approach should result in a set of macroscopic equations consistent with the second law of
thermodynamics, but many of the methods (for example, Grad’s 13-moment method [Grad, 1949]) result
in the entropy equation violating the Gibb’s relation [Holway, 1964; Weiss, 1996]. This problem was addressed
in the recent work of Levermore (1996) and of Levermore and Morokoff (1998) by the so-called Gaussian
closure. The Gaussian closure is based on a more elegant choice of a finite-dimensional linear subspace
and yields a hyperbolic system of moment equations. Because the hyperbolic equations are easier to solve
numerically, Groth et al. (1995) have developed some computational models based on this closure. However,
the Gaussian closure is of limited practical interest, as the primary system with ten variables admits no
heat flux. Other moment systems (for example, the 35-moment system of Brown [1996]) do not yield
numerical solutions above Mach numbers of approximately two. Furthermore, the application of the 
13- or 35-moment systems to three-dimensional problems remains computationally prohibitive at present.

Because of the physical and numerical difficulties associated with the Burnett equations and moment
equations, Myong (1999) has suggested yet another set of generalized hydrodynamic equations based on
the work of Eu (1992). Eu’s equations are based on a nonequilibrium canonical distribution function and
a cumulant expansion of the collision integral in Boltzmann equation. These equations can be considered
as the most thermodynamically consistent macroscopic equations, as the second law of thermodynamics
is satisfied to every order of approximation. It also turns out that they recover the correct behavior in both
the continuum and free molecular limits. Myong (1999) has developed a computational model based on
Eu’s evolution equations within the framework of 13 moments. This model so far has been applied to
some one-dimensional problems, but the full potential of this set of equations for calculating two- and
three-dimensional flows in the continuum–transition regime remains to be determined and will require
several years of intensive computational effort. Furthermore, the solution of Eu’s equations for a three-
dimensional problem will remain computationally prohibitive in the near future.

Because of the limitations of the DSMC method, a hybrid approach has been suggested by many inves-
tigators [Oran et al., 1998; Roveda et al., 1998]. The hybrid method couples a Euler or Navier–Stokes
solver with DSMC. The hybrid codes have been developed for problems that contain disconnected non-
equilibrium regions embedded in a continuum flow [Roveda et al., 1998]. However, the development of
a hybrid code is not simple, as two issues need to be resolved before implementation: (1) when to switch
between the two methods, and (2) how to pass information from one method to the other [Boyd et al.,
1995]. Furthermore, a conceptual inconsistency remains, as the hybrid method must recover both the
continuum and free molecular limits.

Several modifications to the original Burnett equations that have been proposed in the literature are dis-
cussed in Section 8.2. Sections 8.3 and 8.4 describe the governing equations and the wall-boundary condi-
tions, respectively. Section 8.5 deals with the linearized stability analysis of one-dimensional Burnett
equations. Section 8.6 briefly describes the numerical scheme and other computational aspects of the three-
dimensional Burnett solver. In Section 8.7, computational results are presented for one- and two-dimensional
problems. They include computations for hypersonic shock structures, blunt body flows, subsonic flow
past an airfoil, and subsonic and supersonic flow in a microchannel. Although the focus of this chapter is
on flows in microdevices, the hypersonic flow computations for blunt body flows, etc., are presented here
because traditionally the Burnett equations have been applied to compute this class of flows over the past
decade, and computational results from Navier–Stokes and DSMC simulations can be used for the purpose

8-4 MEMS: Introduction and Fundamentals

© 2006 by Taylor & Francis Group, LLC



of comparison. These solutions are instructive in providing some assessment of the accuracy and appli-
cability of Burnett equations for computing flows in the continuum–transition regime.

8.2 History of Burnett Equations

Table 8.3 briefly traces the history of Burnett equations. In 1935, Burnett (1935) developed constitutive rela-
tionships for the stress and heat transfer terms by applying the Chapman–Enskog expansion to the
Boltzmann equation for second-order departures from collisional equilibrium. These equations are referred
to as the original Burnett equations. In 1939, Chapman and Cowling (1970) replaced the material derivatives
in the original Burnett equations by spatial derivatives obtained from inviscid Euler equations. This alter-
native form of the original Burnett equations is referred to as the conventional Burnett equations. Expressing
the material derivatives in terms of the spatial derivatives was considered acceptable as the Navier–Stokes and
Burnett equations were considered to be first- and second-order corrections to the Euler equations. The use
of Euler equations to express the material derivatives retained the second-order accuracy of the Burnett
equations. For reasons unknown, the conventional Burnett equations and not the original Burnett equations
became the set of higher order constitutive relations studied during the past six decades.

Fiscko and Chapman (1988) and Zhong (1991) have employed the conventional Burnett equations to
extend the numerical methods for continuum flow into the continuum–transition regime by incorporating
the additional linear and nonlinear stress and heat transfer terms in the standard Navier–Stokes solvers. In
one of the earliest attempts to numerically solve the conventional Burnett equations, Fiscko and Chapman
(1988) solved the hypersonic shock structure problem by relaxing an initial solution to steady state. They
obtained solutions for a variety of Mach numbers and concluded that the conventional Burnett equations do
indeed describe the normal shock structure better than the Navier–Stokes equations at high Mach numbers.
However, they experienced stability problems when the computational grids were made progressively finer.
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TABLE 8.3 Brief History of Burnett Set of Equations

Equations Ref. Comments

Burnett equations Burnett (1935) Derived from Boltzmann equation by considering the 
first three terms of the Chapman–Enskog expansion;
appearance of material derivatives, D()/Dt, in 
the second-order (Burnett) flux vectors.

Conventional Burnett Chapman and Cowling (1970) Euler equations were used to express the material 
equations derivatives in terms of the spatial derivatives.

Conventional Burnett Fiscko and Chapman (1988) Encountered problem of small wavelength instability 
equations as the grids were refined.

Augmented Burnett Zhong (1991) Linearized third-order terms were added to stabilize 
equations the Burnett equations; not entirely successful for 

computing blunt body wakes and flat plate boundary layers.
Conventional Burnett Welder et al. (1993) Due to the nonlinear terms in the Burnett equations,

equations linear stability analysis alone is not sufficient to 
explain the instability at high Knudsen numbers.

Conventional Burnett Comeaux et al. (1995) Burnett equations can violate the second law of
equations thermodynamics at high Knudsen numbers.

BGK–Burnett equations Balakrishnan and Agarwal Nonlinear collision integral in the Boltzmann 
(1996) equation was simplified by representing it with the 

Bhatnagar–Gross–Krook (BGK) model; material 
derivatives expressed in terms of the spatial derivatives
using Navier–Stokes equations; linear stability 
analysis shows unconditional stability for all Knudsen 
numbers; when Euler equations are used to express 
the material derivatives, they guarantee 
unconditional stability for monatomic gases; entropy 
consistent (satisfy the Boltzmann’s H-theorem) for a wide
range of Knudsen numbers.
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In a subsequent attempt, Zhong (1991) showed that in order to maintain second-order accuracy the
conventional Burnett equations could be stabilized by adding linear third-order terms from the super-
Burnett equations to the stress and heat transfer terms in the Burnett equations. This set of equations was
termed the augmented Burnett equations. The coefficients (weights) of these linear third-order terms
were determined by carrying out a linearized stability analysis of the augmented Burnett equations. The
augmented Burnett equations did not present any stability problems when they were used to compute the
hypersonic shock structure and hypersonic blunt body flows. However, attempts at computing the flow fields
for blunt body wakes and flat-plate boundary layers with the augmented Burnett equations have not been
entirely successful. Furthermore, the ad hoc addition of the linear super-Burnett terms and their necessity
raises the question of whether the approximation used to create the conventional Burnett equations from
the original Burnett equations introduces the small wavelength instabilities. Welder et al. (1993) noted
that linear stability analysis alone is not sufficient to explain the instability of Burnett equations with
increasing Knudsen numbers as this analysis does not take into account many nonlinear terms, products
of first- and higher-order derivatives, that are present in the conventional Burnett equations. Comeaux et al.
(1995) have recently surmised that this instability may also be attributed to the fact that the conventional
Burnett equations can violate the second law of thermodynamics at high Knudsen numbers.

In order to overcome the difficulties associated with the conventional Burnett equations, Balakrishnan
and Agarwal (1996, 1997) have recently derived a new set of Burnett equations designated as
“BGK–Burnett” equations, which are entropy consistent and satisfy the Boltzmann H-theorem.
The highly nonlinear nature of the collision integral in the Boltzmann equation presents the biggest hur-
dle in devising a higher order distribution function. This problem can be circumvented by representing
the collision integral in the Bhatnagar–Gross–Krook (BGK) form [Bhatnagar et al., 1954]. This approxi-
mation assumes that any slight departure from the equilibrium distribution will eventually settle down
to the equilibrium distribution exponentially. This approximation also assumes that the gas is dilute,
hence the collision processes are predominantly binary in nature. Because only binary collisions are con-
sidered, the time taken for the nonequilibrium distribution to settle down to the equilibrium level is equal
to the reciprocal of the collision frequency. With the BGK approximation to the collision integral, the
exact closed-form analytical expression for the distribution function to any order can be obtained.

Balakrishnan and Agarwal (1997) have derived the BGK–Burnett equations by considering the first three
terms in the Chapman–Enskog expansion. In this derivation, Euler equations were used to approximate the
material derivatives in the first-order distribution function. Moments of the first-order distribution function
with the collision invariant vector yield the Navier–Stokes equations. In order to keep in step with the iter-
ative refinement technique, it was conjectured that the Navier–Stokes equations could be used to approximate
the material derivatives in the second-order distribution function. It has been shown that this formulation
ensures a positive entropy change. The BGK–Burnett equations are obtained by taking moments of this
second-order distribution function with the collision invariant vector. This set of equations contains all the
stress and heat transfer terms reported by Fiscko and Chapman (1988) and has additional terms that are sim-
ilar to the super-Burnett terms. Linearized stability analysis has shown that these additional terms make the
BGK–Burnett equations unconditionally stable for monatomic as well as polyatomic gases. In order to check
if the entropy production is positive throughout the flow field, the Boltzmann H-theorem was applied to the
second-order distribution function. It was shown that H is a monotonically decreasing function thereby
ensuring that the equations do not violate the second law of thermodynamics [Balakrishnan et al., 1997].
Thus the BGK–Burnett equations overcome the problems associated with the conventional Burnett equa-
tions — namely, violation of the second law of thermodynamics and instability at high Knudsen numbers.

8.3 Governing Equations

In this section, the augmented Burnett and BGK–Burnett equations are presented. For original and conven-
tional Burnett equations, refer to the papers by Burnett (1935) and Chapman and Cowling (1970), respec-
tively. Here, we present only the two-dimensional augmented and BGK–Burnett equations for the sake of
brevity; three-dimensional augmented Burnett equations and BGK–Burnett equations are given in Yun et al.
(1998a and 1998b).
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The governing equations for two-dimensional, unsteady, compressible, viscous flow can be written in
Cartesian coordinates as:

� � � 0 (8.1)

where

Q �  �
ρ
ρu
ρv

et
� (8.2)

In Equation (8.1), E and F are the flux vectors of the flow variables Q in the x and y directions respec-
tively. These flux vectors can be written as:

E � EI � EV

F � FI � FV

(8.3)

where EI and FI are the inviscid-flux terms and EV and FV are the viscous-flux terms given as follows:

EI � �
ρu

EV � �
0

ρu2 � p σ11

ρuv σ12

(et � p)u
�,

σ11u � σ12v � q1

� (8.4)

FI ��
ρv

FV � �
0

ρuv σ21
(8.5)ρv2 � p σ22

(et � p)v
�,

σ21u � σ22v � q2

�
The constitutive equations for a gas flow near thermodynamic equilibrium can be derived as approxi-

mate solutions of the Boltzmann equation using the Chapman–Enskog expansion. This method yields
the general constitutive relations for the stress tensor 	ij and the heat-flux vector qi as follows:

σij � σ (0)
ij � σ (1)

ij � σ (2)
ij � σ (3)

ij � … � σ (n)
ij � O(Knn�1)

(8.6)
qi � q(0)

i � q(1)
i � q(2)

i � q(3)
i � … � q(n)

i � O(Knn�1)

where n represents the order of accuracy with respect to Kn. Kn is defined as:

Kn � λ/L (8.7)

where L is the macroscopic characteristic length, and the mean free path λ is given by:

λ� (8.8)

In the case of Kn � 0, only the first terms in Equation (8.6) are important. The zeroth-order approxima-
tion (n � 0) results in the Euler equations with:

σ (0)
ij � 0 and q(0)

i � 0 (8.9)

16µ


5ρ�2π�R�T�

∂F

∂y

∂E

∂x

∂Q

∂t
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When Kn � 0.1, the first two terms in Equation (8.6) become important for the accurate representation
of the stress and heat transfer properties of the gas flow. This first-order approximation represents the
Navier–Stokes equations. The stress tensor and the heat-flux terms (n � 1) are given as:

σ (1)
11 � �µ(δ1ux � δ2vy)

σ (1)
12 � σ (1)

21 � �µ(uy � vx)

σ (1)
22 � �µ(δ1vy � δ2ux) (8.10)

q(1)
1 � �κTx

q(1)
2 � �κTy

where ( )x � ∂/∂x and ( )y � ∂/∂y. The coefficients (δ1, δ2) are (1.333, �0.666) and (1.6, �0.4) for the
augmented Burnett equations and the BGK–Burnett equations (for γ� 1.4), respectively.

As Kn becomes larger (�0.1), additional higher order terms in Equation (8.6) are required. The 
second-order approximation yields the Burnett equations that retain the first three terms in Equation
(8.6). The expression for stress and heat-flux terms (n � 2) are obtained as [Yun et al., 1998b]:

σ (2)
11 � �α1u

2
x � α2uxvy � α3v

2
y � α4uxvy � α5u

2
y � α6v

2
x � α7RTxx � α8RTyy � α9 ρxx

� α10 ρyy � α11 ρ2x � α12 Txρx � α13 T 2
x � α14 ρ2

y

� α15 Tyρy � α16 T 2
y� (8.11)

σ (2)
22 � �α1v

2
y � α2uxvy � α3u

2
x � α4uyvx � α5v

2
x � α6u

2
y � α7RTyy � α8RTxx � α9 ρyy

� α10 ρxx � α11 ρ2
y � α12 Tyρy � α13 T2

y � α14 ρ2x � α15 Txρx

� α16 T 2
x� (8.12)

σ (2)
12 � σ(2)

21 � �β1uxuy � β2uyvy � β2uxvx � β1vxvy � β3RTxy � β4 ρxy

� β5 TxTy � β6 ρxρy � β7 ρxTy � β7 Txρy� (8.13)

q(2)
1 � �γ1 Txux � γ2 Txvy � γ3uxx � γ4uyy � γ5vxy � γ6 Tyvx

� γ7 Tyuy � γ8 ρxux � γ9 ρxvy � γ10 ρyuy � γ11 ρyvx� (8.14)

q(2)
2 � �γ1 Tyuy � γ2 Tyvx � γ3vyy � γ4vxx � γ5uxy � γ6 Txuy

� γ7 Txvx � γ8 ρyvy � γ9 ρyux � γ10 ρxvx � γ11 ρxuy� (8.15)

Both the augmented Burnett and BGK–Burnett equations have the same forms of the stress tensor and heat-
flux terms in the second-order approximation; however, the two sets of equations have different values of
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the coefficients. The coefficients for the augmented Burnett equations (for a hard sphere gas) are
α1 � 1.199, α2 � 0.153, α3 � �0.600, α4 � �0.115, α5 � 1.295, α6 � �0.733, α7 � 0.260, α8 � �0.130,
α9 � �1.352, α10 � 0.676, α11 � 1.352, α12 � �0.898, α13 � 0.600, α14 � �0.676, α15 � 0.449,
α16 � �0.300, β1 � �0.115, β2 � 1.913, β3 � 0.390, β4 � �2.028, β5 � 0.900, β6 � 2.028, β7 � �0.676,
γ1 � 10.830, γ2 � 0.407, γ3 � �2.269, γ4 � 1.209, γ5 � �3.478, γ6 � �0.611, γ7 �11.033, γ8 � �2.060,
γ9 � 1.030, γ10 � �1.545, and γ11 � �1.545.

The coefficients for the BGK–Burnett equations (for γ� 1.4) are α1 � �2.24, α2 � �0.48, α3 � 0.56,
α4 � �1.20, α5 � 0.0, α6 � 0.0, α7 � �19.6, α8 � �5.6, α9 � �1.6, α10 � 0.4, α11 � 1.6, α12 � �19.6,
α13 � �18.0, α14 � �0.4, α15 � �5.6, α16 � �6.9, β1 � �1.4, β2 � �1.4, β3 � 0.0, β4 � �2.0, β5 � 2.0,
β6 � 2.0, β7 � 0.0, γ1 � �25.241, γ2 � �0.2, γ3 � �1.071, γ4 � �2.0, γ5 � �2.8, γ6 � �7.5, γ7 � �11.0,
γ8 � �1.271, γ9 � 1.0, γ10 � �3.0, and γ11 � �3.0.

The third-order approximation (n � 3) represents the super-Burnett equations; however, not all of the
third-order terms of the super-Burnett equations are used in the augmented Burnett and the
BGK–Burnett equations. In the augmented Burnett equations, the third-order terms are added on an 
ad hoc basis to obtain stable numerical solutions while maintaining second-order accuracy of the solu-
tions. The third-order terms in the augmented Burnett equations are given as [Yun et al., 1998b]:

σ (a)
11 � RT(α17uxxx � α17uxyy � α18vxxy � α18vyyy) (8.16)

σ (a)
22 � RT(α17vyyy � α17vxxy � α18uxyy � α18uxxx) (8.17)

σ (a)
12 � σ(a)

21 � RT(β8uxxy � β8uyyy � β8vxyy � β8vxxx) (8.18)

q(a)
1 � R�γ12Txxx � γ12Txyy � γ13 ρxxx � γ13 ρxyy� (8.19)

q(a)
2 � R�γ12Tyyy � γ12Txxy � γ13 ρyyy � γ13 ρxxy� (8.20)

The superscript (a) denotes the augmented Burnett terms. The coefficients in stress and heat-flux
terms are α17 � 0.2222, α18 � �0.1111, β8 � 0.1667, γ12 � 0.6875, and γ13 � �0.625.

The BGK–Burnett equations have more additional third-order terms than the augmented Burnett
equations. These are not added on an ad hoc basis but are derived from the second-order
Chapman–Enskog expansion of the BGK–Boltzmann equation. The third-order terms in the
BGK–Burnett equations are obtained as [Yun et al., 1998b]:

σ (B)
11 � RT(θ1uxxx � θ2uxyy � θ3vxxy � θ4vyyy)

� (θ1ρxuxx � θ5ρxvxy � θ6ρxuyy � θ7ρyvxx � θ8ρyuxy � θ4ρyvyy)

� (θ9u
3
x � 3θ10u

2
xvy � θ11uxv

2
y � θ4uxu

2
y � 2θ4uxuyvx

�θ4uxv
2
x � θ10v

3
y � θ12vyu

2
y � 2θ12uyvxvy � θ12v

2
xvy)

� R(θ13uxTxx � θ13uxTyy � θ14vyTxx � θ14vyTyy) (8.21)
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σ (B)
22 � RT(θ1vyyy � θ2vxxy � θ3uxyy � θ4uxxx)

� (θ1ρyvyy � θ5ρyuxy � θ6ρyvxx � θ7ρxuyy � θ8ρxvxy � θ4ρxuxx)

� (θ9v
3
y � 3θ10v

2
y ux � θ11vyu

2
x � θ4vyv

2
x � 2θ4vyvxuy

� θ4vyu
2
y � θ10u

3
x � θ12uxv

2
x � 2θ12vxuyux � θ12u

2
yux)

� R(θ13vyTyy � θ13vyTxx � θ14uxTyy � θ14uxTxx) (8.22)

σ (B)
12 � RT(θ15uxxy � uyyy � θ15vxyy � vxxx)

� (θ6ρyuxx � θ16ρyvxy � ρyuyy � ρxvxx � θ16ρxuxy � θ6ρxvyy)

� (uy � vx)(θ4u
2
x � 2θ12uxvy � 2θ7uyvx � θ7u

2
y � θ7v

2
x � θ4v

2
y)

� R(θ17uyTxx � θ17uyTyy � θ17vxTxx � θ17vxTyy) (8.23)

q(B)
1 � R�θ18Txxx � θ18Txyy � θ18 ρxTxx � θ18 ρxTyy�

� (θ19uxuxx � θ20uxvxy � θ6uxuyy � θ21vyuxx � θ22vyvxy � θ7vyuyy

� θ23uyvxx � θ24uyuxy � θ6uyvyy � θ23vxvxx � θ24vxuxy � θ6vxvyy)

� � ρx � Tx�(θ13u
2
x � 2θ14uxvy � 2θ17uyvx � θ17u

2
y � θ17v

2
x � θ13v

2
y)

� (θ18TxTxx � θ18TxTyy) (8.24)

q(B)
2 � R�θ18Tyyy � θ18Txxy � θ18 ρyTyy � θ18 ρyTxx�

� (θ19vyvyy � θ20vyuxy � θ6vyvxx � θ21uxvyy � θ22uxuxy � θ7uxvxx

� θ23vxuyy � θ24vxvxy � θ6vxuxx � θ23uyuyy � θ24uyvxy � θ6uyuxx)

� � ρy � Ty�(θ13u
2
x � 2θ14uxvy � 2θ17uyvx � θ17u

2
y � θ17v

2
x � θ13v

2
y)

� (θ18TyTxx � θ18TyTyy) (8.25)
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The superscript (B) denotes third-order stress and heat-flux terms in the BGK–Burnett equations. The θi are
given as follows for γ � 1.4: θ1 � 2.56, θ2 � 1.36, θ3 � 0.56, θ4 � �0.64, θ5 � 0.96, θ6 � 1.6, θ7 � �0.4,
θ8 � �0.24, θ9 � 1.024, θ10 � �0.256, θ11 � 1.152, θ12 � 0.16, θ13 � 2.24, θ14 � �0.56, θ15 � 3.6,
θ16 � 0.6, θ17 � 1.4, θ18 � 4.9, θ19 � 7.04, θ20 � �0.16, θ21 � �1.76, θ22 � 4.24, θ23 � 3.8, and θ24 � 3.4.

Finally, governing Equation (8.1) is nondimensionalized by a reference length and freestream variables
and is written in a curvilinear coordinate system (ξ, η) by employing a coordinate transformation:

τ� t, ξ� ξ(x, y), η� η(x, y) (8.26)

8.4 Wall-Boundary Conditions

The no-slip-/no-temperature-jump boundary conditions are employed at the wall when solving the contin-
uum Navier–Stokes equations for Kn � 0.001. In the continuum–transition regimes, the non-slip-
boundary conditions are no longer correct. First-order slip/temperature-jump boundary conditions
should be applied to both the Navier–Stokes equations and Burnett equations in the range
0.001 � Kn � 0.1. The transition regime spans the range 0.01 � Kn � 10; the second-order slip/temperature-
jump conditions should be used in this regime with the Navier–Stokes as well as the Burnett equations. The
Navier–Stokes equations are first-order accurate in Kn, while the Burnett equations are second-order
accurate in Kn. Both first- and second-order Maxwell–Smoluchowski slip/temperature-jump boundary
conditions are generally employed on the body surface when solving the Burnett equations.

The first-order Maxwell–Smoluchowski slip-boundary conditions in Cartesian coordinates are
[Smoluchowski, 1898]:

Us � 	
� �s
� � �s

(8.27)

and

Ts � Tw � 	
 � �s
(8.28)

The subscript s denotes the flow variables on the solid surface of the body. First-order Maxwell–
Smoluchowski slip-boundary conditions can be derived by considering the momentum and energy-flux
balance on the wall surface. The reflection coefficient –σ and the accommodation coefficient α– are assumed 
to be equal to unity (for complete accommodation) in the calculations presented in this chapter.

Beskok’s slip-boundary condition [Beskok et al., 1996] is the second-order extension of the Maxwell’s
slip-velocity-boundary condition excluding the thermal creep terms, given as:

Us � � � �s� (8.29)

where b is the slip coefficient determined analytically in the slip flow regime and empirically in transi-
tional and free molecular regimes.

Langmuir’s slip-boundary condition has also been employed in the literature [Myong, 1999].
Langmuir’s slip-boundary condition is based on the theory of adsorption phenomena at the solid wall.
Gas molecules do not in general rebound elastically but condense on the surface, being held by the field
of force of the surface atoms. These molecules may subsequently evaporate from the surface resulting in
some time lag. Slip is the direct result of this time lag. The slip velocity at the wall is given as:

Us � (8.30)

where β is the adsorption coefficient determined empirically or by theoretical prediction.
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In this chapter, these slip boundary conditions are applied and compared to determine their influence
on the solution.

8.5 Linearized Stability Analysis of Burnett Equations

Bobylev (1982) showed that the conventional Burnett equations are not stable to small wavelength dis-
turbances; hence, the solutions to conventional Burnett equations tend to diverge when the mesh size is
made progressively finer. Balakrishnan and Agarwal (1999) performed the linearized stability
of one-dimensional original Burnett equations, conventional Burnett equations, augmented Burnett
equations, and the BGK–Burnett equations. They considered the response of a uniform gas subjected to
small one-dimensional periodic perturbations ρ�, u�, and T�for density, velocity, and temperature respec-
tively. Burnett equations were linearized by neglecting products and powers of small perturbations, and a
linearized set of equations for small perturbation variables V� � [ρ�, u�, T�]T was obtained. They assumed
that the solution is of the form:

V� � V
–

eiωxeφt (8.31)

where φ � α� iβ, and α and β denote the attenuation and dispersion coefficients respectively. For stability,
α� 0 as the Knudsen number increases. Substitution of Equation (8.31) in the equations for small per-
turbation quantities V� results in a characteristic equation, |F(φ,ω)| � 0. The trajectory of the roots of this
characteristic equation is plotted in a complex plane on which the real axis denotes the attenuation coefficient
and the imaginary axis denotes the dispersion coefficient. For stability, the roots must lie to the left of the
imaginary axis as the Knudsen number increases. Figures 8.2 to 8.5 show the trajectory of the three roots
of the characteristic equations as the Knudsen number increases. The plots show that the Navier–Stokes equa-
tions, the augmented Burnett equations, and the BGK–Burnett equations (with γ � 1.667) are stable, but
the conventional Burnett equations are unstable. Euler equations are employed to approximate the material
derivatives in all three types of Burnett equations. The BGK–Burnett equations, however, become unstable
for γ� 1.4. On the other hand, if the material derivatives are approximated using the Navier–Stokes equa-
tions, then the conventional, augmented, and BGK–Burnett equations are all stable to small wavelength
disturbances.

Based on these observations, we have employed the Navier–Stokes equations to approximate the material
derivatives in the conventional, augmented, and BGK–Burnett equations presented in Section 8.3. For the
detailed analysis behind Figures 8.2 to 8.5, see Balakrishnan and Agarwal (1999). The linearized stability
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analysis of conventional, augmented, and super-Burnett equations has also been performed in three
dimensions with similar conclusions [Yun and Agarwal, 2000].

8.6 Numerical Method

An explicit finite-difference scheme is employed to solve the governing equations of Section 8.3. The
Steger–Warming flux-vector splitting method [Steger and Warming, 1981] is applied to the inviscid-flux
terms. The second-order, central-differencing scheme is applied to discretize the stress tensor and heat-
flux terms. Converged solutions were obtained with a reduction in residuals of six orders of magnitude.
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All the calculations were performed on a sequence of successively refined grids to assure grid independ-
ence of the solutions.

8.7 Numerical Simulations

Numerical simulations have been performed for both the hypersonic flows and microscale flows in the
continuum–transition regime. Hypersonic flow calculations include one-dimensional shock structure,
two-dimensional and axisymmetric blunt bodies, and a space shuttle re-entry condition. Microscale flows
include the subsonic flow and supersonic flow in a microchannel.

8.7.1 Application to Hypersonic Shock Structure

The hypersonic shock for argon was computed using the BGK–Burnett equations. The upstream flow
conditions were specified and the downstream conditions were determined from the Rankine–Hugoniot
relations. For purposes of comparison, the same flow conditions as in Fiscko and Chapman (1988) were
used in the computations. The parameters used were

T∞ � 300 K, P∞ � 1.01323 � 105 N/m2, γargon � 1.667, µargon � 22.7 � 10�6 kg/sec � m

The Navier–Stokes solution was taken as the initial value. This initial Navier–Stokes spatial distribu-
tion of variables was imposed on a mesh that encloses the shock. The length of the control volume enclos-
ing the shock was chosen to be 1000 � λ∞ where the mean free path based on the freestream parameters
is given by the expression λ∞�16µ/(5ρ∞�2π�R�T�∞�). This is the mean free path that would exist in the
unshocked region if the gas were composed of hard elastic spheres and had the same viscosity, density,
and temperature as the gas being considered. The solution was marched in time until the observed devi-
ations were smaller than a preset convergence criterion.

A set of computational experiments was carried out to compare the BGK–Burnett solutions with the
Burnett solutions of Fiscko and Chapman (1988). Tests were conducted at Mach 20 and Mach 35. In order to
test for instabilities to small wavelength disturbances, the grid points were increased from 101 to 501 points.
Figures 8.6 and 8.7 show variations of specific entropy across the shock wave. The BGK–Burnett equations
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show a positive entropy change throughout the flow field, while the conventional Burnett equations give
rise to a negative entropy spike just ahead of the shock as the number of grid points is increased. This spike
increases in magnitude until the conventional Burnett equations break down completely. The BGK–Burnett
equations did not exhibit any instabilities for the range of grid points considered. Figure 8.8 shows the
variation of reciprocal density thickness with Mach number. BGK–Burnett calculations compare well to
those of Woods and simplified Woods equations [Reese et al., 1995] and the experimental data of
Alsmeyer (1976). Extensive calculations for one-dimensional hypersonic shock structure using various
higher order kinetic formulations are given in Balakrishnan (1999).
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8.7.2 Application to Two-Dimensional Hypersonic Blunt Body Flow

The two-dimensional augmented Burnett code was employed to compute the hypersonic flow over a
cylindrical leading edge with a nose radius of 0.02 m in the continuum–transition regime. The grid sys-
tem (50 � 82 mesh) used in the computations is shown in Figure 8.9. The results were compared with
those of Zhong (1991).

The flow conditions for this case are as follows:

M∞ � 10, Kn∞ � 0.1, Re∞ � 167.9,

P∞ � 2.3881 N/m2, T∞ � 208.4 K, Tw � 1000.0 K

The viscosity is calculated by Sutherland’s law, µ� c1T
1.5/(T � c2). The coefficients c1 and c2 for air are

1.458 � 10�6 kg/(sec m K1/2) and 110.4 K, respectively. Other constants used in this computation for air
are γ� 1.4, Pr � 0.72 and R � 287.04 m2/(sec2 K).

The comparisons of density, velocity, and temperature distributions along the stagnation streamline are
shown in Figures 8.10, 8.11, and 8.12 respectively. The results agree well with those of Zhong (1991) for
both the Navier–Stokes and the augmented Burnett computations. Because the flow is in the continuum–
transition regime (Kn � 0.1), the Navier–Stokes equations become inaccurate, and the differences between
the Navier–Stokes and the augmented Burnett solutions are obvious. In particular, the difference between the
Navier–Stokes and Burnett solutions for the temperature distribution is significant across the shock.
Temperature and Mach number contours of the Navier–Stokes solutions and the augmented Burnett
solutions are compared in Figures 8.13 and 8.14 respectively. The shock structure of the augmented
Burnett solutions agrees well with that of Zhong (1991). The shock layer of the augmented Burnett solutions
is thicker, and the shock location starts upstream of that of the Navier–Stokes solutions. However, because
the local Knudsen number decreases and the flow tends toward equilibrium as it approaches the wall surface,
the differences between the Navier–Stokes and augmented Burnett solutions become negligible near the
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wall, especially near the stagnation point. Thus, the Maxwell–Smoluchowski slip boundary conditions can be
applied for both the Navier–Stokes and the augmented Burnett calculations for the hypersonic blunt body.

8.7.3 Application to Axisymmetric Hypersonic Blunt Body Flow

The results of the axisymmetric augmented Burnett computations are compared with the DSMC results
obtained by Vogenitz and Takara (1971) for the axisymmetric hemispherical nose. The computed results
are also compared with Zhong and Furumoto’s (1995) axisymmetric augmented Burnett solutions. The
flow conditions for this case are

M∞ � 10, Kn∞ � 0.1

� 1.0, � 0.029

T0 is the stagnation temperature. The gas is assumed to be a monatomic gas with a hard-sphere model.
The viscosity coefficient is calculated by the power law µ� µr (T/Tr)

0.5. The reference viscosity µr and the
reference temperature Tr used in this case are 2.2695 � 10�5 kg/(sec m) and 300 K, respectively. Other
constants used in this computation are γ� 1.67 and Pr � 0.67.

Tw


T0

Tw


T∞
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FIGURE 8.9 Two-dimensional computational grid (50 � 82 mesh) around a blunt body, rn � 0.02 m.
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The comparisons of density and temperature distributions along the stagnation streamline among the
current axisymmetric augmented Burnett solutions, the axisymmetric augmented Burnett solutions of
Zhong and Furumoto, and the DSMC results are shown in Figures 8.15 and 8.16, respectively. The corre-
sponding Navier–Stokes solutions are also compared in these figures. The axisymmetric augmented
Burnett solutions agree well with Zhong and Furumoto’s axisymmetric augmented Burnett solutions in
both density and temperature. The density distributions for both the Navier–Stokes and augmented
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Burnett equations show little differences from the DSMC results. The temperature distributions, however,
show that the DSMC method predicts a thicker shock than the augmented Burnett equations. The max-
imum temperature of the DSMC results is slightly higher than those of the augmented Burnett solutions.
However, the augmented Burnett solutions show much closer agreement with the DSMC results than the
Navier–Stokes solutions.
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Overall, the axisymmetric augmented Burnett solutions presented here agree well with Zhong and
Furumoto’s (1995) axisymmetric augmented Burnett solutions and describe the shock structure closer to
the DSMC results than the Navier–Stokes solutions.

As another application to the hypersonic blunt body, the augmented Burnett equations are applied to
compute the hypersonic flow field at re-entry condition encountered by the nose region of the space shuttle.
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The computations are compared with the DSMC results of Moss and Bird (1984). The DSMC method
accounts for the translational, rotational, vibrational, and chemical nonequilibrium effects.

An equivalent axisymmetric body concept [Moss and Bird, 1984] is applied to model the windward cen-
terline of the space shuttle at a given angle of attack. A hyperboloid with nose radius of 1.362 m and
asymptotic half angle of 42.5° is employed as the equivalent axisymmetric body to simulate the nose of
the shuttle. Figure 8.17 shows the side view of the grid (61 � 100 mesh) around the hyperboloid. The
freestream conditions at an altitude of 104.93 km as given in Moss and Bird (1984) are

M∞ � 25.3, Kn∞ � 0.227, Re∞ � 163.8,

ρ∞ � 2.475 � 10�7 kg/m3, T∞ � 223 K, Tw � 560 K

The viscosity is calculated by the power law. The reference viscosity µr and the reference temperature Tr

are taken as 1.47 � 10�5 kg/(sec m) and 223 K, respectively.
Figures 8.18 and 8.19 show comparisons of the density and temperature distributions along the stagna-

tion streamline between the Navier–Stokes solutions, the augmented Burnett solutions, and the DSMC
results. The differences between the augmented Burnett solutions and the DSMC results are significant in
both density and temperature distributions. In Figure 8.18, the density distribution of the DSMC results is
lower and smoother than that of the augmented Burnett solutions. In Figure 8.19, the DSMC method pre-
dicts about 30% thicker shock layer and 9% lower maximum temperature than the augmented Burnett
equations. The DSMC results can be considered to be more accurate than the augmented Burnett solutions
as the DSMC method accounts for all the effects of translational, rotational, vibrational, and chemical non-
equilibrium, while the augmented Burnett equations do not. However, the augmented Burnett solutions
agree much better with the DSMC results than the Navier–Stokes computations. The difference between
the Navier–Stokes solutions and the augmented Burnett solutions in temperature distributions is very sig-
nificant. The shock layer of the augmented Burnett solutions is almost two times thicker than the
Navier–Stokes solutions. The augmented Burnett solutions predict about 11% less maximum temperature
than the Navier–Stokes solutions.
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8.7.4 Application to NACA 0012 Airfoil

The Navier–Stokes equations are applied to compute the rarefied subsonic flow over a NACA 0012 airfoil
with chord length of 0.04 m. The grid system in the physical domain is shown in Figure 8.20. The flow
conditions are

M∞ � 0.8, Re∞ � 73, ρ∞ � 1.116 � 10�4 kg/m3, T∞ � 257 K, and Kn∞ � 0.014

Various constants used in the calculation for air are γ� 1.4, Pr � 0.72, and R � 287.04 m2/(sec2 K).
Figure 8.21 shows the density contours of the Navier–Stokes solution with the first-order Maxwell–

Smoluchowski slip-boundary conditions. These contours using the continuum approach agree well with
those of Sun et al. (2000) using the information preservation (IP) particle method. At these Mach and
Knudsen numbers, the contours from the DSMC calculations are not smooth due to the statistical scatter.
The comparison of pressure distribution along the surface between our Navier–Stokes solution with a slip-
boundary condition and the DSMC calculation [Sun et al., 2000] is shown in Figure 8.22; the agreement
between the solutions is good. Figure 8.23 compares the surface slip velocity from the DSMC, IP, and
Navier–Stokes methods as calculated by Sun et al. and by our Navier–Stokes calculation. The slip velocity
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distribution from our Navier–Stokes calculation shows good agreement with that obtained from the
DSMC and IP methods except near the trailing edge. However, our Navier–Stokes results disagree consid-
erably with those reported in Sun et al. (2000). This calculation again demonstrates that Navier–Stokes
equations with slip-boundary conditions can provide accurate flow simulation 0.001 � Kn � 0.1.

8.7.5 Subsonic Flow in a Microchannel

The augmented Burnett equations are employed for computation of subsonic flow in a microchannel
with a ratio of channel length to height of 20 (L/H � 20). For the wall boundary conditions, Beskok’s and
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Langmuir’s boundary conditions are employed and compared. The augmented Burnett solutions are also
compared with the Navier–Stokes solutions. Flow conditions at the entrance and exit of the channel are
Knin � 0.088, Knout � 0.2 and Pin/Pout � 2.28.

Figure 8.24 compares the velocity profiles at various streamwise locations. Both Navier–Stokes and aug-
mented Burnett equations using either Beskok’s or Langmuir’s boundary conditions show almost identical
velocity profiles. These velocity profiles agree well with the velocity profiles from the micro-flow calculation
by Beskok and Karniadakis (1999). Nondimensional mass flow rates along the microchannel are shown in
Figure 8.25. All the mass flow rates from both equations and both slip-boundary conditions are about 0.76
and almost constant along the channel, as should be the case. This mass flow rate is 13% higher than that
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predicted with a no-slip-boundary condition, which is 0.667. Figure 8.26 shows comparison of pressure
distribution along the centerline. Both the Navier–Stokes and the augmented Burnett equations show a
nonconstant pressure gradient along the channel. The solutions using Beskok’s slip-boundary condition
show less change in pressure gradient than those from the Langmuir’s boundary condition. Figure 8.27
compares the streamwise velocity distributions along the centerline. The streamwise velocity distributions
are almost identical except near the exit. Figure 8.28 compares the slip velocity distributions along the wall.
The slip velocity profiles obtained from both Navier–Stokes and augmented Burnett equations are 
identical when the same wall-boundary conditions are employed. However, the Beskok’s slip-boundary
condition and Langmuir’s slip-boundary condition show a large difference. The Beskok’s slip-boundary
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condition predicts lower slip velocity near the entrance and higher slip velocity near the exit. As the figures
show, there is very little difference between the Navier–Stokes solutions and the augmented Burnett solu-
tions at the entrance, but as the local Knudsen number increases toward the exit of the channel, the dif-
ference between the Navier–Stokes solutions and the augmented Burnett solutions increases as expected.

8.7.6 Supersonic Flow in a Microchannel

The Navier–Stokes equations and the augmented Burnett equations are applied to compute the super-
sonic flow in a microchannel. The geometry and grid of the microchannel are shown in Figure 8.29. As
the flow enters the channel, the tangential velocity component to the wall is retained, while the velocity
component normal to the wall is neglected at wall boundaries in the region 0 � x � 1µm. The first-order
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Maxwell–Smoluchowski slip-boundary conditions are employed at the rest of the wall boundaries. The
channel height and length are 2.4 and 12µm, respectively. The flow conditions at the entrance for the
helium flow are

M∞ � 5.0, P∞ � 1.01 � 106 dyne/cm2,

Kn∞ � 0.07, T∞ � 298 K
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Figure 8.30 compares the pressure, Mach number, and temperature contours obtained from the
Navier–Stokes and augmented Burnett equations. Solutions from the Navier–Stokes and augmented
Burnett equations do not show significant differences. These flow property contours also agree well with
the DSMC solutions obtained by Oh et al. (1997). Figure 8.31 compares the density, temperature, pres-
sure, and Mach number profiles along the centerline of the channel using the Navier–Stokes, augmented
Burnett, and DSMC formulations [Oh et al., 1997]. The profiles generally agree well with the DSMC
results. The temperature and Mach number profiles especially show very close agreement with the DSMC
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results. The augmented Burnett solutions are closer to the DSMC solutions than the Navier–Stokes solu-
tions in the temperature and Mach number profiles. Figure 8.32 compares the density, temperature, pres-
sure, and Mach number profiles along the channel wall using the Navier–Stokes, augmented Burnett, and
DSMC formulations. Both the Navier–Stokes and augmented Burnett solutions show some difference
with the DSMC solutions. Figures 8.33 and 8.34 compare the temperature and velocity profiles across the
channel at various streamwise locations using the Navier–Stokes, augmented Burnett, and DSMC for-
mulations respectively. The profiles obtained from the augmented Burnett solutions are closer to the
DSMC results than the Navier–Stokes solutions.

Unfortunately, experimental data are not available to assess the accuracy of the Navier–Stokes, Burnett,
and DSMC models for computing the microchannel flows. A substantial amount of both experimental
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and computational simulation work is needed to determine the applicability and accuracy of various
fluid models for computing high Knudsen number flow in microchannels.

8.8 Conclusions

For computing flows in the continuum–transition regime, higher order fluid dynamics models beyond
Navier–Stokes are needed. These models are known as extended, or generalized, hydrodynamics models
in the literature. Some of these models are the Burnett equations; 13-moment Grad’s equations; Gaussian
closure or Levermore moment equations; and Eu’s equations. An alternative to generalized hydrodynamic
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models is the hybrid approach, which combines a Euler or Navier–Stokes solver with the DSMC method.
Most of the generalized hydrodynamic models proposed to date suffer from the following drawbacks:
they do not capture the physics properly or they are too computationally intensive, or both. In this chap-
ter, the history of a set of extended hydrodynamics equations based on the Chapman–Enskog expansion
of Boltzmann equations to O(Kn2) known as the Burnett equations has been reviewed. The various sets
known in the literature as conventional, augmented, and BGK–Burnett equations have been considered
and critically examined. Computations for hypersonic flows and microscale flows show that both the aug-
mented and BGK–Burnett equations can be effectively applied to accurately compute flows in the con-
tinuum–transition regime. However, a great deal of additional work is needed, both experimentally and
computationally, to assess the range of applicability and accuracy of Navier–Stokes, Burnett, and DSMC
approximations for simulating the flows in transition regime.
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9.1 Introduction

Historically originating from the seminal work of Frisch, Hasslacher, and Pomeau (1986) on lattice gas
automata (LGA), the lattice Boltzmann method (LBM) has recently developed into an alternative and very
promising numerical scheme for simulating fluid flows [Chen and Doolen, 1998]. The lattice Boltzmann
algorithms are simple, fast, and very suitable for parallel computing. It is also easy to incorporate complex
boundary conditions with the LBM. The algorithms have been successfully applied to compute flows
modeled by the incompressible Navier–Stokes equations including reactive and multiphase flows.

Unlike the conventional numerical methods, which directly discretize the continuum equations of
fluid dynamics on a finite-difference, finite-volume, or finite-element mesh, the LBM derives its basis
from the kinetic theory that models the microscopic behavior of gases. The fundamental idea behind LBM
is to construct the simplified kinetic models that capture the essential physics of microscopic behavior so
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that the macroscopic flow properties (calculated from the microscopic quantities) obey the desired con-
tinuum equations of fluid dynamics. Thus LBM is based on the particle dynamics governed by a simpli-
fied model of the Boltzmann equation; the simplification is usually to the nonlinear collision integral. In
1992, a major simplification of the original LBM was achieved by Chen et al. (1992) and Qian et al. (1992)
by employing a single relaxation time approximation due to Bhatnagar, Gross, and Krook (BGK) to the
collision operator in the lattice Boltzmann equation. In this lattice BGK (LBGK) model, one solves the
evolution equations of the distribution functions of fictitious fluid particles colliding and moving syn-
chronously on a symmetric lattice. The symmetric lattice space is a result of the discretization of the par-
ticle velocity space and the condition for synchronous motions. That is, the discretizations of time and
particle phase space are coherently coupled. This makes the evolution of the lattice Boltzmann equation
very simple consisting of only two steps, collision and advection. Furthermore, the advection operator in
phase space (velocity space) is linear in contrast to the nonlinear convection terms in the macroscopic
continuum equations of fluid dynamics. Thus, this simple linear advection operator in LBM combined
with the simplified BGK collision operator results in the recovery of nonlinear macroscopic convection.
Qian et al. (1992) and others using multiple scale expansion have shown that the local equilibrium par-
ticle distribution function obtained from the BGK-Boltzmann equation can recover the Navier–Stokes
equations, and the incompressible Navier–Stokes equations can be obtained in the nearly incompressible
limit of the LBGK method.

Thus, three essential ingredients in the development of a lattice Boltzmann method for a single physics
or multiphysics fluid-flow problem must be completely specified: (1) a discrete lattice on which the fluid
particles reside, (2) a set of discrete velocities ei to represent particle advection from one node of the lat-
tice to its nearest neighbor, and (3) a set of rules for the redistribution of particles on a node to mimic
collision processes in the fluid. These rules are provided by the distribution functions fi of the particles;
the evolution of distribution functions in time (for a discrete time step ∆t) is obtained by solving the
LBGK equation. The LBGK equation for fi requires the knowledge of the equilibrium distribution func-
tion fi

(0). The discrete velocities ei are determined so that the macroscopic density and momentum satisfy
the constraints ρ � Σ

i
fi and ρV � Σ

i
fiei respectively, where V is the macroscopic-averaged fluid velocity.

Therefore, the determination of appropriate equilibrium particle distribution function for a given fluid
flow problem is essential for solving the problem by LBM.

For multiphysics problems, sometimes it is not a straightforward process to determine the distribution
function. Magneto-hydrodynamics is one such area where it has been difficult to develop the LBM in a
systematic and straightforward manner because of the difficulty in determining the distribution functions
that correspond to the MHD continuum flow equations and magnetic field equations. Nevertheless there
have been many attempts to solve the MHD equations by LBM. The earliest dates to 1988 [Chen et al., 1988]
using lattice gas automata (LGA). A summary of the previous work in lattice Boltzmann MHD is given
in Dellar (2002) and will not be repeated here. In this paper, we employ the LBGK method to compute
the slip flow in a pressure-driven microchannel flow without and with magnetic field. To allow for the
rarefaction effects (variation in Knudsen number along the length of the channel), we follow the approach
developed by Lim et al. (2002). For MHD flow in a microchannel, this paper extends the previous work
of Agarwal (2001) on lattice Boltzmann MHD for continuum flows; it combines the lattice kinetic scheme
of Dellar (2002) with the approach of Lim et al. (2002). We provide the LBGK formulation for MHD slip
flow; the formulation of Navier–Stokes slip flow is a subset of MHD formulation simply obtained by
equating the magnetic field to zero.

9.2 3-D Compressible Viscous MHD Equations

Three-dimensional viscous MHD equations in tensor notation can be written as:

� � 0 (9.1)∂ρuα
�∂xα

∂ρ
�∂t
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� � � �P � � �

�ρv� � � δαβ � � � (9.2)

� �uβBα � uαBβ� � η (9.3)

� 0 (9.4)

In Equations (1)–(4), v and η are the kinematic viscosity and magnetic resistivity of the fluid and 
are assumed constant. Note that η � , where σ is the electrical conductivity and µf is the magnetic 
permeability. Equation (9.4) is the solenoidal condition on the magnetic field. Sections 9.3 and 9.4
develop the LBGK method for solving Equations (9.1)–(9.4). In the absence of magnetic field, Equations
(9.3) and (9.4) become identically zero, and Equation (9.2) changes to the Navier–Stokes equation for a
compressible viscous fluid.

9.3 LBGK Equation and Equilibrium Particle Distribution
Function fi

0 for MHD Flow Equations

In two dimensions, as shown in Figure 9.1, we consider a square lattice with unit spacing on which each
node has eight nearest neighbors connected by eight links. Particles can reside only on the nodes and
move to their nearest neighbors along the links in unit time. There are two types of moving particles: the par-
ticles that move along the axis with velocity|ei| � 1, i � 1, 2, 3, 4 and the particles that move along the
diagonals with velocity|ei| � �2�, i � 5, 6, 7, 8. Also, there are rest particles with speed zero at each node.
The occupation of these three types of particles is described by the single particle distribution function 
fi where the subscript i indicates the velocity direction. The distribution function fi is the probability 
of finding a particle i at node x at time t with velocity ei . We assume that the particle distribution function
fi evolves according to the LBGK equation:

� ei � ∇fi � � �fi � fi
(0)�,

(9.5)

where fi
(0) is the equilibrium particle distribution function for MHD equations and τ is the single relax-

ation time that controls the rate of approach to equilibrium.

1
�τ

∂fi
�∂t

1
�σµf

∂Bα
�∂xα

∂2Bα
�∂xβ ∂xβ

∂
�∂xβ

∂Bα
�∂t

Bα Bβ
�

4π
∂um
�∂xm

2
�
3

∂uα
�∂xβ
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∂
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�
8π
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For determination of fi
(0) in Equation (9.5) for MHD flow Equations (9.1) and (9.2), Dellar (2002)

accounts for the influence of Lorentz force in the hydrodynamic equilibrium particle distribution function
(derived from the Maxwellian) by changing the second moment of the equilibrium distribution function
to include the divergence of Maxwell stress by adding appropriate magnetic field terms to the hydrody-
namic lattice Boltzmann distribution function. In our notation, the equilibrium particle distribution
function of [Dellar, 2002] in two dimensions for B � (Bx, By, 0) can be written as

fi
(0) � ρωi�1 � 3(ei � V) � (ei � V)2 � �V�2� � ωi � �ei�2�B�2 � (ei � B)2�, (9.6)

where ω0 � 4/9, ω1 � ω2 � ω3 � ω4 � 1/9, and ω5 � ω6 � ω7 � ω8 � 1/36. In the absence of magnetic
field, Equation (9.6) reduces to standard hydrodynamic LBGK equation for simulating Navier–Stokes
flows. The relaxation time τ in Equation (9.5) is related to the kinematic viscosity ν by τ � 3ν.

9.4 LBGK Equation and Equilibrium Particle Distribution
Function g(0)

i for Magnetic Induction Equation

It is not possible to construct a kinetic formulation for the magnetic induction Equation (9.3) using a
scalar distribution function. Croisille et al. (1995) introduced a vector-valued distribution function for
the magnetic field B in their development of a kinetic scheme for the MHD equations. However, their for-
mulation involves an integral equation and does not explicitly describe the equilibrium distribution func-
tion. Dellar (2002) has now developed a vector-valued particle distribution function gi that obeys the
vector LBGK equation:

� ζi � ∇gi � � �gi � g i
(0)�, (9.7)

where τm is the relaxation time related to the magnetic resistivity η by τm � 2η. Dellar (2002) has shown
that the suitable and simplest choice for g(0)

i is

g(0)
iβ � Wi�Bβ � 2ζiα �Vα Bβ � BαVβ ��, (9.8)

where W0 � 1/3 and Wi � 1/6, i � 1, 2, 3, 4 for the symmetric square lattice shown in Figure 9.1. The mag-
netic field is given by B � Σ

i
gi. Dellar (2002) also has shown that this formulation makes it possible to main-

tain ∇ � B � 0 to machine round-off error as required by Equation (9.4). A Chapman–Enskog procedure can
be applied to determine the macroscopic behavior of the model represented by Equations (9.6) and (9.8). It
can be shown that the macroscopic behavior matches Equations (9.1)–(9.3) as shown by Dellar (2002).

9.5 Solution of Coupled LBGK Equations for 
Particle Distribution Functions

LBGK Equations (9.5) and (9.7) are solved by writing the equations in fully discretized form. Again 
following Dellar (2002), these equations can be discretized for the evolution of particle distribution 
functions at time step ∆t as:

f�i (x � ei ∆t, t � ∆t) � f�i (x, t) � �f�i (x, t) � f (0)(x, t)	, and (9.9)
∆t

�τ � ∆t/2

1
�τm

∂gi
�∂t

1
�
2

9
�
2

3
�
2

9
�
2
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g��i (x � ei ∆t, t � ∆t) � g�i(x, t) � �g�i(x, t) � g(0)(x, t)	, where (9.10)

f�i (x, t) � fi (x, t) � �fi (x, t) � fi
(0)(x, t)	, and (9.11)

g�i(x, t) � gi (x, t) � �gi (x, t) � gi
(0)(x, t)	 (9.12)

From Equations (9.9)–(9.12), fi and gi can be obtained explicitly at each time step ∆t. For steady state
computations, solution can be marched in time until a specified convergence criterion is met.

9.6 Pressure-Driven Slip Flow in a Microchannel without and
with Magnetic Field

9.6.1 Analytical and Numerical Solutions

We consider the pressure-driven MHD slip flow in a long constant area microchannel as shown in 
Figure 9.2 subjected to a constant magnetic field B0 in y-direction and a constant electric field E0 in the
z-direction. Let the bar “

–
” over a flow quantity denote the average value at the exit of the channel so that,

p�, ρ� and u� are average pressure, density, and velocity respectively at the exit. Then all the relevant non-
dimensional parameters — Mach number M, Knudsen number Kn, Reynolds number Re, and Hartmann
number Ha — obtained in terms of the exit variables are also shown in Figure 9.2. The pressure at the
inlet and outlet of the channel is different, and Knudsen number becomes an important parameter to
account for rarefaction. Now we define the non-dimensional variables as ~p � (p/p�), ~ρ � (ρ /ρ� ),
~u � (u/u�), ~x � (x/L), and ~y � (y/H). The first- and second-order boundary conditions for the slip velocity
at the wall can be written as follows.

First-order Maxwell–Smoluchowki (1879) boundary condition:

~u|wall � αK �
wall

(9.13)

Second-order Beskok (1999) boundary condition:

~u|wall � α � � �
wall
� (9.14)

In Equations (9.13) and (9.14), K is the local Knudsen number and b is the slip coefficient.

∂∼u
�
∂∼y

K
�
1 � bK

∂∼u
�∂∼y

∆t
�
2τm

∆t
�
2τ

∆t
��τm � ∆t/2
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In Equations (9.13) and (9.14), α is the accommodation coefficient. α � 1 for a noncatalytic wall.
Agarwal (2005) has recently obtained an exact analytical solution for velocity along the channel as follows:

u~ � �
� � �

�� 2sinh � � � 2α KHacosh � � 	cosh (Hay∼)�1�(1 � α2K2Ha2)sinh(Ha) � 2αKHacosh(Ha) (9.15)

The solution given by Equation (9.15) is valid for both first-order Maxwell–Smoluchowki (1879) and second-
order Beskok (1999) slip boundary conditions. In Equation (9.15), K is the local Knudsen number, � (Kn/∼p)
and Kn is the Knudsen number at the outlet. The solution (9.15) as written has been obtained with first-
order boundary condition (9.13); however, if K is replaced by [K/(1 � bK)], it becomes valid for second-
order boundary condition (9.14). In the absence of magnetic field, the solution given by Equation (9.15)
is the same as given in Beskok and Karniadakis (1999).

We now compute the analytical solution give by equation (9.15) for M (Mach number at outlet) � 0.1,
Knout (Knudsen number at outlet) � 0.3, Knin (Knudsen number at inlet) � 0.088, and Pin/Pout (inlet pres-
sure/outlet pressure) � 2.28. Figure 9.3 shows the velocity profiles at three streamwise locations x~ � 0.2,
0.5, and 0.8 computed using the LBGK method and their comparison with profiles computed using the
Navier–Stokes (N–S) equations with and without slip, augmented Burnett (AB) equations with slip, and
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the analytical solution given by Beskok and Karniadakis (1999) and Equation (9.15). All the solutions 
are in excellent agreement with each other except the Navier–Stokes solution with no-slip boundary
condition, which is expected because all other methods employ the slip boundary condition. Figure 9.4
shows that the mass flow is conserved in the computations. Also the LBGK solution agrees quite well with
the Navier–Stokes (N–S) and augmented Burnett (AB) solutions with slip boundary conditions for stream-
wise velocity distribution along the centerline of the channel, pressure distribution along the centerline
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of the channel, and slip velocity distribution on the channel wall. The same computations are performed
in the presence of magnetic field for various Hartmann number Ha. Figures 9.5–9.7 show the velocity
profiles at three streamwise locations x~ � 0.2, 0.5, and 0.8 for Ha � 0.054, 5.4, and 54.0 respectively 
computed by the LBGK method and the analytical solution given by Equation (9.15). Again the agree-
ment between the two sets of solutions is excellent. These solutions have been obtained using both the no
slip (u~ � 0 at the wall) and second-order slip boundary condition.

The next section briefly describes the procedure employed in obtaining the solutions using the LBGK
method.

9.6.2 LBGK Solution Procedure

For computing the LBGK solution, a uniform lattice with equally spaced points is created by generating
a 1001 � 51grid with square cells. The following steps are followed in obtaining the LBGK solution.

1. The characteristic velocity and length scale are chosen to be u� � Mc (where c is the speed of
sound � �γ�R�T�, the flow is assumed to be isothermal) and H respectively.

2. Reynolds number at the exit is calculated from Re � 
�
π
2�γ
�� �K

M
nout
� from which the kinematic viscosity is

calculated as v � �
u�
Re

H
�.

3. The relaxation time is then determined as τ � 3v.
4. The electrical conductivity is calculated from the expression σ � � �

2
for a given Hartmann

number Ha and magnetic field B0 .
5. The relaxation time τm is then determined by τm � 2η .
6. After determining all the relevant parameters as described in steps (1)–(5), flow field is initialized

by assuming a distribution of density, velocity and magnetic field.
7. The initial values of distribution functions (as equilibrium distribution functions fi

(0) and gi
(0) at

t � 0) are then determined on the lattice from Equations (9.6) and (9.8) respectively.
8. The updating of the particle distribution functions fi and gi at subsequent time steps is done as

described in Equations (9.9)–(9.12).
9. Step 8 is repeated until the convergence of both the distribution functions is obtained.

10. The macroscopic variables are then calculated from the converged distribution functions as

ρ � Σ
i

fi , ρV � Σ
i

fiei , and B � Σ
i

gi. (9.16)

In Equation (9.16), i represents summation over all lattice points. The treatment of boundary conditions
in LBGK method is similar to that described in Lim et al. (2002).

BoH
�Ha

1
�ρv
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9.7 Conclusions

A Lattice-BGK (LBGK) formulation has been developed for incompressible Navier–Stokes and viscous
MHD flows. The method has been successfully applied to compute the slip flow in a microchannel with-
out and with magnetic field. The results show the strong potential of the LBGK method for achieving
high efficiency as well as accuracy on a lattice comparable to a finite-difference grid.
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10.1 Introduction

Nominally, microchannels can be defined as channels whose dimensions are less than 1 millimeter and
greater than 1 micron. Above 1 millimeter the flow exhibits behavior that is the same as most macroscopic
flows. Currently, microchannels have characteristic dimensions anywhere from the submicron scale to
hundreds of microns. Microchannels can be fabricated in many materials — glass, polymers, silicon,
metals — using various processes including surface micromachining, bulk micromachining, molding,
embossing, and conventional machining with microcutters. These methods and the characteristics of the
resulting flow channels are discussed elsewhere in this handbook.

Microchannels offer advantages due to their high surface-to-volume ratio and their small volumes. The
large surface-to-volume ratio leads to high rate of heat and mass transfer, making microdevices excellent
tools for compact heat exchangers. For example, the device in Figure 10.1 is a cross-flow heat exchanger
constructed from a stack of 50 14 mm � 14 mm foils, each containing 34 200 µm wide by 100 µm deep
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channels machined into the 200 µm thick stainless steel foils by the process of direct, high-precision
mechanical micromachining [Brandner et al., 2000; Schaller et al., 1999]. The direction of flow in adja-
cent foils is alternated 90°, and the foils are attached by means of diffusion bonding to create a stack of
cross-flow heat exchangers capable of transferring 10 kW at a temperature difference of 80 K using water
flowing at 750 kg/hr. The impressively high rate of heat transfer is accomplished mainly by the large surface
area covered by the interior of the microchannel: approximately 3,600 mm2 packed into a 14 mm cube.

A second example of the application of microchannels is in the area of MEMS devices for biological
and chemical analysis. The primary advantage of microscale devices in these applications are the good
match with the scale of biological structures and the potential for placing multiple functions for chemi-
cal analysis on a small area; that is, the concept of a chemistry laboratory on a chip.

Microchannels are used to transport biological materials such as (in order of size) proteins, DNA, cells,
and embryos or to transport chemical samples and analytes. Typical of such devices is the i-STAT blood
sample analysis cartridge shown in Figure 10.2. The sample is taken onboard the chip through a port and
moved through the microchannels by pressure to various sites where it is mixed with analyte and moved
to a different site where the output is read. Flows in biological devices and chemical analysis microdevices
are usually much slower than those in heat transfer and chemical reactor microdevices.

10.1.1 Unique Aspects of Liquids in Microchannels

Flows in microscale devices differ from their macroscopic counterparts for two reasons: the small scale
makes molecular effects such as wall slip more important, and it amplifies the magnitudes of certain ordi-
nary continuum effects to extreme levels. Consider, for example, strain rate and shear rate, which scale in
proportion to the velocity scale Us and inverse proportion to the length scale Ls. Thus, 100 mm/sec flow
in a 10 µm channel experiences a shear rate of the order of 104 sec�1. Acceleration scales as Us

2/Ls and is

10-2 MEMS: Introduction and Fundamentals

FIGURE 10.1 Micro heat exchanger constructed from rectangular channels machined in metal. (Reprinted with
permission from K. Schubert and D. Cacuci, Forschungszentrum, Karlsruhe.)
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similarly enhanced. The effect is even more dramatic if one tries to maintain the same volume flux while
scaling down. The flux scales as Q � UsLs

2, so at constant flux Us � Ls
�2 and both shear and acceleration

go as Ls
�3. Fluids that are Newtonian at ordinary rates of shear and extension can become non-Newtonian

at very high rates. The pressure gradient becomes especially large in small cross section channels. For
fixed volume flux, the pressure gradient increases as Ls

�4.
Electrokinetic effects occur at the interface between liquids and solids such as glass due to chemical

interaction. The result is an electrically charged double layer that induces a charge distribution in a very
thin layer of fluid close to the wall. Application of an electric field to this layer creates a body force capable
of moving the fluid as if it were slipping over the wall. The electroosmotic effect and the electrophoretic
effect (charges around particles) will be discussed in detail in a later section. Neither occurs in gases.

The effects of molecular structure are quite different in gases and liquids. If the Knudsen number
(defined as Kn � λ/Ls, where λ is the mean free path in a gas and Ls is the characteristic channel dimen-
sion) is greater than 10�3 [Janson et al., 1999, Gad-el-Hak, 1999], nonequilibrium effects may start to
occur. Modified slip boundary conditions can be used in continuum models for Knudsen numbers
between 10�1 and 10�3 [Gad-el-Hak, 1999]. As the Knudsen number continues to increase, continuum
assumptions and fluid theory are no longer applicable. Analysis of such flow requires consideration of
different physical phenomena (see the chapters on Analytical and Computational Models for Microscale
Flows in this book, Gad-el-Hak, 1999, Janson et al., 1999, Arkilic et al. 1997, and Harley et al., 1995).

Liquid Flows in Microchannels 10-3

FIGURE 10.2 (See color insert following page 10-34.) Blood sample cartridge using microfluidic channels. (Reprinted
with permission from i-Stat, East Windsor, NJ, 2000.)
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Because the density of liquids is about 1000 times the density of gases, the spacing between molecules
in liquids is approximately 10 times less than the spacing in gases. Liquid molecules do not have a mean
free path, but following Bridgman (1923), the lattice spacing δ may be used as a similar measure. The lat-
tice spacing δ is defined as [Probstein, 1994]

δ � � �1/3

, (10.1)

where V
—

1 is the molar volume and NA is Avogadro’s number. For water, this spacing is 0.3 nm. In a 1 µm
gap and a 50 µm diameter channel, the equivalent Knudsen numbers are 3 � 10�4 and 6 � 10�6 respec-
tively, well within the range of obeying continuum flow. In gases, effects such as slip at the wall occur
when the mean free path length of the molecules is more than about one-tenth the flow dimension (i.e.,
flow dimensions of order less than 650 nm in air at STP). (Note that the mean free path length of a gas is
longer than the mean spacing between its molecules; see the chapter Flow-Physics by Gad-el-Hak in this
book for a detailed discussion.) In liquids this condition will not occur unless the channels are smaller
than approximately 3 nm, and continuum hydrodynamics may provide a useful description at scales even
smaller than this because the forces of interaction between molecules in liquids are long range. For exam-
ple, Stokes’ classical result for drag on a sphere is routinely applied to particles whose diameters are well
below 100 nm. Thus, liquid flow in micro devices should be described adequately by continuum hydro-
dynamics well below dimensions of one micron.

Molecular effects in liquids are difficult to predict because the transport theory is less well developed
than the kinetic theory of gases. For this reason, studies of liquid microflows in which molecular effects
may play a role are much more convincing if done experimentally.

Liquids are generally considered incompressible. Consequently, the density of a liquid in microchannel
flow remains very nearly constant as a function of distance along the channel, despite the very large pressure
gradients that characterize microscale flow. This behavior greatly simplifies the analysis of liquid flows
relative to gas flows, wherein the large pressure drop in a channel leads to large expansion and large heat
capacity.

The large heat capacity of liquids relative to gases implies that the effects of internal heating due to viscous
dissipation are much less significant in liquid flows. The pressure drop in microchannel flow can be very
large, and since all of the work of the pressure difference against the mean flow ultimately goes into viscous
dissipation, effects due to internal heating by viscous dissipation may be significant. However they will be
substantially lower in liquids than in gases, and they can often be ignored allowing one to treat the liquid
as a constant density, constant property fluid.

The dynamic viscosity µ of a liquid is larger than that of a gas by a factor of about 100 (c.f., Table 10.1).
This implies much higher resistance to flow through the channels. The kinematic viscosity of a liquid is
typically much less than the kinematic viscosity of a gas, owing to the much higher density of liquids (c.f.
Table 10.1) qualitatively to the thermal conductivity and the thermal diffusivity.

Liquids in contact with solids or gases have surface tension in the interface. At the microscale, the surface
tension force becomes one of the most important forces, far exceeding body forces such as gravity and
electrostatic fields.

V�1�
�
NA
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TABLE 10.1 Dynamic and Kinematic Viscosities of Typical Liquids Compared to Air at 1 Atmosphere

Dynamic Viscosity µ Kinematic Viscosity Thermal Conductivity Thermal Diffusivity 
Fluid [gm/cm-s] ν [cm2/s] k [J/K s cm] κ [cm2/s]

Water @15°C 0.0114 0.0114 0.0059 0.00140
Ethyl Alcohol @ 15°C 0.0134 0.0170 0.00183 0.00099
Glycerin @15°C 23.3 18.50 0.0029 0.00098
Air @15°C 0.000178 0.145 0.000253 0.202
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Bubbles can occur in liquids for good or ill. Unwanted bubbles can block channels or substantially alter
the flow. But bubbles can also be used to apply pressure and to perform pumping by heating and cooling
the gases inside the bubble.

Particulates and droplets suspended in liquids have densities that match those of liquids more closely.
Settling is much less rapid in liquids, and suspensions have the ability to follow the accelerations of the
flow. This effect can also keep suspended impurities in suspension for much longer, thereby increasing
the probability that an impurity will introduce unwanted behavior.

Liquids can interact with solids to form an electric double layer at the interface. This is the basis for the
phenomena of electroosmosis and electrophoresis, both of which can be used to move fluid and particles
in channels. These topics will be discussed in detail in a later section. Liquids can be non-Newtonian espe-
cially at the high shear rates encountered in microchannels.

10.1.2 Continuum Hydrodynamics of Pressure-Driven Flow in Channels

The general continuum description of the flow of an incompressible, Newtonian fluid flow with variable
properties and no body forces other than gravity (i.e., no electrical forces) consists of the incompressible
continuity equation

� 0, (10.2)

and the momentum equation

ρ � � uj � � � ρbi, (10.3)

where the fluid stress is given by Stokes’ law of viscosity

τij � �pδij � µ� � �. (10.4)

Here ui is the ith component of the velocity vector u(x, t); ρ is the mass density [kg/m3]; bi is the body
force per unit mass m/s2 (often bi � gi, the gravitational acceleration), and τij is the stress tensor N/m2.
The corresponding enthalpy equation is

ρcp� � uj � � � � Φ, (10.5)

where T is the temperature, and q is the heat flux J/s m2 given by Fourier’s law of heat conduction by
molecular diffusion k,

qi � �k . (10.6)

The rate of conversion of mechanical energy into heat due to internal viscous heating, is

Φ � µ� � � . (10.7)

Consider a long parallel duct or channel with the x-direction along the axis of the channel and the coor-
dinates y and z in the plane perpendicular to the axis of the channel (Figure 10.3). The entering flow
undergoes a transient response in which the velocity and temperature profiles change in the streamwise
direction. This process continues until the flow properties become independent of the streamwise position.
In this state of fully developed velocity profile, the velocity field is unidirectional, u(x) � [u(y, z), 0, 0], and
there is no acceleration of the fluid. Thus, for fully developed flow with gravitational body force g the
equations become very simply

ρ � � � ρgx � �µ � � �µ � (10.8)
∂u
�∂z

∂
�∂z

∂u
�∂y

∂
�∂y

dp
�
dx

∂u
�∂t

∂ui
�∂xj

∂uj
�∂xi

∂ui
�∂xj

∂T
�∂xi

∂qj
�∂xj

∂T
�∂xj

∂T
�∂t

∂uj
�∂xi

∂ui
�∂xj

∂τij
�∂xj

∂ui
�∂xj

∂ui
�∂t

∂uj
�
∂xj
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ρcp � �k � � �k � � Φ. (10.9)

Lastly, if the flow is steady and the temperature and properties are constant, then the equation for
streamwise velocity profiles becomes a simple Poisson equation

� � (p � ρgxx). (10.10)

In the absence of electrokinetic effects and for shear rates less than about 1012 s�1 the appropriate bound-
ary condition is the no-slip condition

u � 0 on the boundary P. (10.11)

10.1.3 Hydraulic Diameter

Control volume analysis of fully developed flow leads naturally to the concept of the hydraulic diameter.
Figure 10.3 shows flow in a duct of arbitrary cross-section. Since the flow is fully developed and unidi-
rectional (assuming a straight duct), the acceleration is zero and control volume analysis of the momen-
tum reduces to a simple force balance in the streamwise direction,

� A � –τw P (10.12)

wherein

–τw � �
p
τw dl (10.13)

is the wall shear stress averaged around the perimeter, and the local wall shear stress is given by

τw � µ �
n�0

. (10.14)

Equation (10.12) displays the relevance of the ratio of the area A to the perimeter P. In practice, the
hydraulic diameter is defined to be

Dh � (10.15)

so that, when the cross-section is a circle, Dh equals its diameter. The hydraulic diameter provides a con-
venient way to characterize a duct with a single length scale and a basis for comparison between ducts of

4A
�
P

∂u
�∂n

1
�
P

dp
�
dx

d
�
dx

1
�µ

∂2u
�∂z2

∂2u
�∂y2

∂T
�∂z

∂
�∂z

∂T
�∂y

∂
�∂y
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�∂t
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FIGURE 10.3 Flow in a duct of arbitrary cross-section A. P is the perimeter and τw is the wall shear stress.
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different shapes. A common approximation is to also estimate the flow resistance in a duct or channel as
the resistance of a round duct whose diameter is equal to the hydraulic diameter. This approximation is
useful but subject to errors of order 10–20%. Since solution of Poisson’s equation to obtain the exact wall
shear stress is accomplished readily by numerical means, the approximation is not necessary.

10.1.4 Flow in Round Capillaries

Flow in a round tube is the archetype for all duct and channel flows. While microfabrication characteris-
tically yields channels of noncircular cross-section, the round cross-section is a useful and familiar point
of reference, and microcapillaries are not uncommon. Extensive macroscale research on pipe flows dates
back to Hagen’s (1839), Poiseuille’s (1841), and Reynolds’ (1883) original studies in the 19th century.
Independently, both Hagen (1839) and Poiseuille (1841) observed the relation between pressure head and
velocity and its inverse proportionality to the fourth power of tube diameter.

In a round capillary of radius a � D/2 and radial coordinate r, it is well known that the velocity pro-
file across a diameter is parabolic

u � umax�1 � � (10.16)

where the maximum velocity is given by

umax � �� �. (10.17)

The volume flow rate Q is given by:

Q � U�A (10.18)

where the average velocity U� defined by

U� � �
0

a
u(r)2πr dr (10.19)

is numerically equal to

U� � umax
. (10.20)

Using these relations it is easily shown that the pressure drop in a length L, ∆p � (�dp/dx)L, is given by

∆p � . (10.21)

The Darcy friction factor f is defined so that

∆p � f ρ (10.22)

(The Fanning friction factor is one-fourth of the Darcy friction factor). The Reynolds number is defined
in terms of a characteristic length scale1 Ls by

Re � . (10.23)

For a round pipe, the characteristic length scale is the diameter of the pipe D. The friction factor for lam-
inar flow in a round capillary is given by

f � . (10.24)
64
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1 In the remainder of this chapter, the characteristic length scale used in calculating Re is to be inferred from con-
text, e.g., generally Dh for a rectangular channel and D for a circular tube.
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The Poiseuille number is sometimes used to describe flow resistance in ducts of arbitrary cross-section.
It is defined by

PO � f Re/4

�� , (10.25)

where Ls used in the calculation of Re is Dh. The Poiseuille number has a value of 16 for a round capillary.
The inverse relationship between friction factor and Reynolds number has been well documented on

the macroscale. It means that the pressure drop is linearly proportional to the flow rate, Q. In the lami-
nar region there is no dependence on surface roughness.

The pressure drops due to pressure-driven flow in microchannels are quite large. For example, water
(nominally, µ � 10�3 kg/m-s) flowing at Q � 0.01 cc/sec in a D � 100 micron diameter, L � 10 mm long
tube creates a pressure drop of ∆p � 40.7 kN/m2. Under these conditions the mean velocity is
1.27 msec�1, and the Reynolds number is Re � 127. If the tube diameter is reduced to 10 microns keep-
ing all other factors constant, the mean velocity is 127 msec�1, the Reynolds number is Re � 1270, and
the pressure drop increases to 407 MN/m2, or 4070 atmospheres.

As the Reynolds number increases above 2000 in a circular duct, the flow begins to transition to tur-
bulence. At this point, the friction factor increases dramatically, and the flow resistance ultimately
becomes proportional to Q2 rather than Q.

10.1.5 Entrance Length Development

Before the flow reaches the state of a fully developed velocity profile, it must transition from the profile
of the velocity at the entrance to the microduct, whatever that is, to the fully developed limit. This tran-
sition occurs in the entrance length (Le) of the duct. In this region the flow looks like a boundary layer that
grows as it progresses downstream. Ultimately, the viscously retarded layers meet in the center of the duct
at the end of the entrance length.

The pressure drop from the beginning of the duct to a location x is given by

p0 � p(x) � �f � K(x)� (10.26)

wherein K(x) is the pressure-drop parameter given in Figure 10.4 for a circular duct and for parallel plates
[White, 1991]. The flow development is largely completed by x/D � 0.065 Re.

10.1.6 Transition to Turbulent Flow

In 1883, Reynolds found a critical value of velocity, ucrit, above which the form of the flow resistance
changes. The corresponding dimensionless parameter is the critical Reynolds number, Recrit, below which
disturbances in the flow are not maintained. Such disturbances may be caused by inlet conditions like a
sharp edge or unsteadiness in the flow source. Depending on the Reynolds number, disturbances may also
be introduced by natural transition to turbulent flow.

Reynolds found Recrit to be approximately 2000, and this value has been generally accepted. Once the
flow is fully turbulent, the empirical relationship often used to correlate friction factor and Reynolds
number for smooth pipes and initially proposed by Blasius is

f � 0.3164 Re�0.25. (10.27)

For rough pipes, the friction factor departs from the Blasius relation in the turbulent region. This depar-
ture occurs at different values of Re depending on the magnitude of the surface roughness. The Moody
chart summarizes the traditional friction factor curves and is readily available in any basic fluids textbook
[e.g., White, p. 318, 1994].
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10.1.7 Noncircular Channels

Microfluidic channels are generally formed by micromachining open channels on a planar substrate and
closing the channels by covering the substrate with a thin plate, such as a microscope slide or cover slip.
The method of attaching the plate to the substrate must be very strong for pressure-driven flows because
the pressure gradients, and hence the maximum pressures, can be very large. As an example, microchan-
nels are often cast into the surface of blocks of polydimethylsiloxane (PDMS), a transparent flexible poly-
mer commercially known as Sylgard. Closed channels are formed using a cover glass slip bonded to the
PDMS surface by oxidizing both the surface of the PDMS replica and the glass by oxygen plasma treat-
ment (70 W, 85 mTorr for 20 sec). When the two oxidized surfaces are brought into contact they bond
covalently, creating a seal that can withstand up to 5 bars. Since the surfaces of the glass and the PDMS
are each hydrophilic, filling the channels with aqueous liquids is relatively easy.

Most microfluidic channels have noncircular cross-sections whose shape is associated with the method of
fabrication. Isotropic etching in glass or silicon produces cross-sections that are anywhere from semicircular
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FIGURE 10.4 Entrance length parameter K for laminar flow in the inlet of a duct. (Reprinted with permission from
White, F.M. [1991] Viscous Flow, 2nd ed., p. 292, McGraw-Hill, New York.).
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to rectangular with rounded corners in the bottom. Anisotropic etching in Si creates shapes defined by
the crystallographic planes. A common case is Si with its 	100
 plane (Miller index) coincident with the
planar surface to be machined. The 	111
 planes are inclined at 54.74° so that anisotropic etching cre-
ates either trapezoidal cross-sections with slanted sidewalls or triangular cross-sections. Laser machining
of polymers creates roughly semicircular channels, while molding PDMS creates rectangular channels
with slightly rounded corners. The various types of microfabrication and their characteristics are dis-
cussed in great detail throughout this handbook.

Fully developed flow in noncircular ducts is found by solving the Poisson Equation (10.10). Frequently,
analytical solutions can also be found, but the numerical approach is so reliable that there is little need
for exact solutions. Developing flow in the entrance region is more difficult, but here again numerical
approaches are relatively straightforward. Table 10.2 summarizes the flow resistance for various laminar
flows. One sees that the effect of the shape of the channel is relatively weak.

As mentioned earlier, a common approximation made in analyzing flow in ducts of noncircular cross-
section is to use the results for circular ducts but replacing the hydraulic diameter of the noncircular duct
with that of the round duct. For example, this can be done to estimate the flow resistance of fully developed
flow and the resistance in the entrance region.

10.1.8 Experimental Studies of Flow-Through Microchannels

Despite the fundamental simplicity of laminar flow in straight ducts, experimental studies of microscale
flow have often failed to reveal the expected relationship between friction factor and Reynolds number.
The frictional resistance of the flow has been reported, under certain conditions, to be consistent with pre-
dictions based on conventional macroscale Hagen-Poiseuille theory [Celata et al., 2002; Flockhart and
Dhariwal, 1998; Jiang et al., 1995; Judy et al., 2002; Li et al., 2003; Liu and Garimella, 2004; Phares and
Smedley, 2004; Sharp and Adrian, 2004; Wilding et al., 1994; Wu and Little, 1983], increased as compared
to conventional macroscale predictions [Brutin and Tadrist, 2004; Celata et al., 2002; Cui et al., 2004;
Hsieh et al.; 2004; Li et al., 2003; Mala and Li, 1999; Papautsky et al., 1999a, 1999b; Peng et al., 1994; Pfund
et al., 2000; Phares and Smedley, 2004; Qu et al., 2000; Ren et al., 2001; Wu and Little, 1983] and decreased
as compared to conventional macroscale predictions [Choi et al., 1991; Peng et al., 1994; Pfahler et al.,
1990a, 1990b, 1991; Yu et al., 1995].

A brief summary is presented herein; for detailed historical summaries of the experiments that have
been conducted to investigate the behavior of fluid flow in microchannels, see the recent reviews of
microchannel fluid flows in both tabular [Sobhan and Garimella, 2001] and text format [Koo and
Kleinstreuer, 2003; Obot, 2002]. Flow resistance experiments in microscale channels or tubes have been
conducted over a large range of Reynolds numbers, geometries, and experimental conditions, and in the
subsequent discussion of results, they will be grouped according to the results of friction factor measure-
ments (follows macroscale predictions, higher than predictions, and lower than predictions).

The first experimental investigations of flow through microchannels in the early 1980s were motivated
by the interest in high-performance heat sinking. The large surface-to-volume ratios of microchannels
make them excellent candidates for efficient heat transfer devices. Tuckerman and Pease (1981) studied
flow through an array of microchannels with approximately rectangular cross-sections (height range
50–56 µm, width range 287–320 µm). Although their study focused primarily on heat transfer character-
istics, they “confirmed that the flow rate obeyed Poiseuille’s equation.” Shortly thereafter, a study of
microchannels for use in small Joule-Thomson refrigerators was performed [Wu and Little, 1983].
Significant roughnesses were present in some of these etched silicon or glass channels, but friction factors
measured in the smoothest channel showed reasonable agreement with theoretical macroscale predic-
tions. A number of other experiments also have shown general agreement with the macroscale theoreti-
cal predictions for friction factor in the flow of a Newtonian fluid in at least certain parameter ranges in
circular microtubes [Celata et al., 2002; Jiang et al., 1995; Judy et al., 2002; Li et al., 2003; Phares and
Smedley, 2004; Sharp and Adrian, 2004], rectangular microchannels [Judy et al., 2002; Liu and Garimella,
2004], and channels with other cross-sectional shapes including the trapezoidal cross-section commonly
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encountered in microfluidic applications due to anisotropic etching in the fabrication process [Flockhart
and Dhariwal, 1998; Wilding et al., 1994].

In circular fused silica microchannels with diameters from approximately 50 to 250 µm and Reynolds
numbers less than 1800, the results of more than 1500 measurements of pressure drop versus flow rate
confirm agreement between macroscale Poiseuille theory and microscale measurements of the friction
factor to within �1% systematic and �2.5% rms random error [Sharp and Adrian, 2004]. Similar agree-
ment was also obtained using a 20% solution of glycerol and 1-propanol. Good agreement between con-
ventional Poiseuille theory and experimental results has been reported for other microscale flows
including: smooth circular microtubes with diameters of 80 to 200 microns [Li et al., 2003]; circular
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TABLE 10.2 Resistance to Flow in Fully Developed Flow-Through Straight Microchannels
of Various Cross-Sectional Geometry

Cross Section f Re umax/uB

64 2.000

96 1.5000

60 —

1.000 56.15 2.137

Data from Shah, R.K., and London, A.L. (1978) Laminar Flow Forced Convection in Ducts, Adv.
in Heat Transfer series, Supp. 1, Academic Press, New York.

54.72°

2a

2b
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60°

� 0

2b
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�=b/a

z
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D=2a

56.92 2.0962

96[1 � 1.3553α � 1.9467α 2 —
� 1.7012α 3 � 0.9564α 4

� 0.2537α 5]

2b/2a
4.000 55.66 2.181
2.000 55.22 2.162
1.000 56.60 2.119
0.500 62.77 1.969
0.250 72.20 1.766
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microtubes with diameters of 130 microns and Reynolds numbers less than 600 [Celata et al., 2002]; cir-
cular and square microtubes with diameter or hydraulic diameter of 15 to 150 microns and Reynolds
numbers of 8–2300 [Judy et al., 2002]; smooth circular microtubes with diameters of 119 and 152
microns [Phares and Smedley, 2004]; and rectangular channels with hydraulic diameters from 244–974
microns [Liu and Garimella, 2004].

An increase in the frictional resistance of liquid flows in microchannels over theoretical predictions
based on conventional macroscale theory has been reported in some studies [Brutin and Tadrist, 2004;
Celata et al., 2002; Cui et al., 2004; Hsieh et al., 2004; Li et al., 2003; Mala and Li, 1999; Papautsky et al.,
1999a, 1999b; Peng et al., 1994; Pfund et al., 2000; Phares and Smedley, 2004; Qu et al., 2000; Ren et al.,
2001; Wu and Little, 1983], including increases of as much as 38% [Qu et al., 2002], 37% [Li et al., 2003],
and 27% [Brutin and Tadrist, 2003] over conventional Poiseuille theoretical predictions. Another group
of studies found the flow resistance to be less than theoretical macroscale predictions for certain condi-
tions [Choi et al., 1991; Peng et al., 1994; Pfahler et al., 1990a, 1990b, 1991; and Yu et al., 1995].

To aid in comparing the results of these studies, a normalized friction factor C* is defined as

C* � . (10.28)

The wide variability of results is illustrated in Figure 10.5. There is also wide variability in experimental
conditions, microchannel geometries, and methodology. The inconsistencies demonstrate the need for

(f Re)experimental
��
( f Re)theoretical
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FIGURE 10.5 Comparison of C* vs. Reynolds number in the literature. Symbols indicate geometry of channel and
the following data are shown: (  ) circular microtubes Sharp and Adrian (2004); (�) circular microtubes Yu et al.
(1995), Choi et al. (1991), Judy et al. (2002), Mala and Li (1999); (�) trapezoidal microchannels: Pfahler et al. (1991),
Flockhart and Dhariwal (1998), Wilding et al. (1994), Qu et al. (2000); (�) rectangular microchannels: Pfahler et al.
(1991), Pfahler et al. (1990b), Papautsky et al. (1999a), Pfund et al. (2000), Celata et al. (2002), Liu and Garimella
(2004), Hsieh et al. (2004).
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both detailed velocity measurements and careful study of potential microscale effects such as surface
roughness or electrical effects in order to conclusively understand the flow behavior in microscale channels.

10.1.9 Proposed Explanations for Measured Behavior

Thus far the explanations offered in the literature for anomalous behavior of friction factor and flow
resistance in microchannels include surface/roughness effects and electrical charge, variations in viscos-
ity, “early” transition to turbulence, entrance effects, inaccuracies in measuring channel dimensions,
microrotational effects of individual fluid molecules, and geometry effects.

The increase in frictional resistance has often been reasonably linked to surface roughness. For exam-
ple, in some studies [Li et al., 2003; Phares and Smedley, 2004; Wu and Little, 1983], experimental results
on frictional resistance agreed well with Hagen-Poiseuille theory for smooth channels, but significant
deviations were reported for flows through similar microchannels or tubes with increased surface 
roughnesses.

In macroscale theory, the surface roughness does not affect the flow resistance relationships in the lam-
inar region [White, 1994]. Flow resistance results in microscale geometries have shown both a strong
increase due to roughness [Li et al., 2003; Phares and Smedley, 2004; Wu and Little, 1983] and no effect
due to roughness [Choi et al., 1991].

In terms of viscosity effects, a roughness viscosity model (RVM) has been proposed [Mala and Li, 1999,
based on work by Merkle et al., 1974]. Assuming that surface roughness increases the momentum trans-
fer near the wall, the roughness viscosity µr as a function of r is proposed to be higher near the wall and
proportional to the Reynolds number [Mala and Li, 1999]. Implementing this roughness-viscosity model
for water flowing through trapezoidal channels, reasonable agreement with model prediction and exper-
imental results was found in most cases, but the model did not accurately depict the increased slope in
the relationship between pressure drop and Reynolds number observed in the same experiments for
Re � 500 [Qu et al., 2000]. Direct measurement of viscosity in very thin layers, or thin films, was per-
formed by Israelachvili (1986). The viscosity of water was found to retain its bulk viscosity value to within
10% even in a film as thin as 5 nm. Concentrated and dilute NaCl/KCl solutions were also tested to assess
the impact of double-layer forces on the value of viscosity near a surface. The viscosity of these dilute
NaCl/KCl solutions remained only minimally affected until the last molecular layer near the wall. Based
on these measurements, the viscosity of fluid in the wall region is not expected to vary significantly from
the bulk value even in the presence of possible charging effects, somewhat contrary to the proposed expla-
nations given by Mala and Li (1999) and Qu et al. (2000).

Other changes in viscosity are suggested to occur for liquids under extremely high pressure. A decrease
in experimental flow rate for isopropanol and carbon tetrachloride as compared to conventional Hagen-
Poiseuille theory has been reported and attributed to viscosity changes in isopropanol and carbon tetra-
chloride at pressures greater than 10 MPa, but in similar experiments any effects of high pressure on the
viscosity of water could not be conclusively established [Cui et al., 2004]. It is also possible that the very
high shear rates in these microchannels cause normally Newtonian fluids to behave in a non-Newtonian
fashion. The shear rates in Sharp and Adrian (2004) were as high as 7.2 �105 sec�1. Measuring the rheol-
ogy of fluids at very high shear rates is challenging. Using a flat plate rheometer, Novotny and Eckert
(1974) determined that the relationship between shear stress and shear rate is still linear for water at a
shear rate of 10,000 sec�1, but the possibility that anomalous effects are caused by non-Newtonian behav-
ior above shear rates of 104 sec�1 has not been adequately explored.

Electroviscous effects have been cited as a possible cause for increases in frictional resistance [Brutin
and Tadrist, 2003; Ren et al., 2001]. Interestingly, while Brutin and Tadrist (2003) ruled out effects of sur-
face roughness and attributed increases in resistance to ionic effects, Phares and Smedley (2004) ruled out
electroviscous effects and indicate that surface roughness effects are a more likely explanation for depar-
tures from conventional Poiseuille theory.

Some dependence of flow resistance on channel geometry has been observed [Papautsky et al., 1999b;
Peng et al., 1994; Pfahler et al., 1991; Qu et al., 2000]. One of the challenges of measuring the dependence
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of flow resistance on aspect ratio or thinness of one dimension is the accurate characterization of the flow
channels. Both Papautsky et al. (1999b) and Pfahler et al. (1991) acknowledge the difficulty of ensuring
accurate size measurement and the corresponding difficulty of conclusively establishing a geometrical
effect in their experiments. In at least one case, the departure from conventional macroscale theoretical
predictions is found to depend on both Reynolds number and hydraulic diameter of the trapezoidal
channels [Qu et al., 2000].

The critical Reynolds numbers for transition to turbulence in microchannel flows have been reported
or modeled for certain flow conditions as below [Hsieh et al., 2004; Mala and Li, 1999; Morini, 2004; Peng
et al., 1994; Pfund et al., 2000; Wu and Little, 1983] or consistent [Celata et al., 2002; Liu and Garimella,
2004; Sharp and Adrian, 2004] with nominal values for macroscale conduit flows, such as near 2000 for
circular pipe flow [Darbyshire and Mullin, 1995]. The ranges of critical Reynolds numbers cited in the
literature include values both dramatically lower than the nominal macroscale values, such as 240 [Hsieh
et al., 2004], 200–700 [Peng et al., 1994], 400 [Wu and Little, 1983], 300–900 [Mala and Li, 1999], and val-
ues slightly lower than nominal macroscale values [Pfund et al., 2000]. Conclusive causes of observed
early transition to turbulence have not been established, but the reported trend in the most recent exper-
iments, Hsieh et al.’s (2004) work not withstanding, has been that transition is occurring at critical
Reynolds numbers consistent with those in macroscale experiments. In earlier experiments and in Hsieh
et al.’s (2004) experiments, the early-transition observations were based primarily on data obtained from
bulk flow measurements. More recently the transitional Reynolds number range was established using
flow visualization [Liu and Garimella, 2004; Hsieh et al., 2004] and by quantifying the magnitude of spa-
tial and temporal velocity variations measured using micro-particle image velocimetry [Sharp and
Adrian, 2004]. Reports of irregular tracer motion are used to justify the conclusion that transition is
occurring at Reynolds numbers lower than Re � 470 in Hsieh et al. (2004); in contrast, the spatial and
temporal velocity variations indicated an onset of transition for Reynolds numbers of 1800–2000 in 
circular microtubes [Sharp and Adrian, 2004], and flow visualization indicated an onset of transition 
at Reynolds numbers of approximately 1800–2200 in rectangular channels [Liu and Garimella, 2003]
consistent with nominal critical Reynolds numbers of 2000–3000 in macroscale rectangular conduits,
where the critical Reynolds number in a rectangular channel can depend on aspect ratio [Hanks and Ruo,
1966].

Certainly, the inclusion or exclusion of entrance effects can affect the magnitude of the measured fric-
tion factor and is generally considered in careful experimental studies. Regardless of the geometry, to
accurately measure the dimensions of these microchannels is extremely difficult, particularly when one
of the dimensions is on the order of a couple of microns. The pressure drop in a round capillary is
inversely proportional to D4 (Equation [10.21]), so an inaccuracy of 5% in measuring D can bias resist-
ance results by 20%, enough to explain the majority of the early discrepancies between the conventional
macroscopic resistance predictions and the observed values in Figure 10.5.

The validity of the no-slip assumption for liquids in contact with a solid surface has also been brought
into question [Choi et al., 2003; Tretheway and Meinhart, 2002; 2004; Zhu and Granick, 2001], particu-
larly in the case of coated microchannels. Documented slip lengths are at most 1 mm [Tretheway and
Meinhart, 2002] and as low as tens of nm [Choi et al., 2003] and could be an additional source of error
in flow resistance experiments.

The details of other models incorporating micropolar fluid theory, cross-sectional geometry, rough-
ness, entrance, and viscous dissipation effects may be found in the literature [Koo and Kleinstreuer, 2003;
Morini, 2004; Papautsky, et al. 1999a].

10.1.10 Measurements of Velocity in Microchannels

Along with the growth of research in microdevices, rapid development of experimental techniques for
investigating flows in such devices is also underway including modification of experimental techniques
commonly applied at the macroscale and development of new techniques. Measurements of velocities in
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microchannels have been obtained using bulk flow, pointwise, and field measurements. Each technique
has certain advantages that may make it more suitable to providing a specific type of flow field informa-
tion. A brief summary is included herein. For more detailed discussions of diagnostic techniques, includ-
ing the most recent advances in acquisition and processing techniques, Nguyen and Wereley (2002, chap.
4), and Devasenathipathy et al. (2003).

The majority of flow resistance data in microscale geometries to date has been obtained through the
use of bulk flow measurements. Typical methods used to measure bulk flow rate include an in-line
flowmeter or the timed collection of fluid at the outlet and pressure taps located at the inlet and outlet or
simply at the inlet if the pressure at the outlet is known. Bulk flow measurements require neither optical
access to the microchannel nor seeding, and there are no restrictions on the geometrical parameters of
the channel. However, given the disagreement in results regarding microscale effects on flow resistance in
particular, bulk flow measurements lack sufficient detail to discern potential mechanisms causing devia-
tion from macroscale theory. Detailed measurements of flow velocity are also useful for optimizing the
design of complex microdevices for mixing, separation, reaction, and thermal control. For examples of
these devices, consult the section on applications of MEMS in this handbook.

The first micro-Particle Image Velocimetry (micro-PIV) measurements were made in a Hele-Shaw cell
[Santiago et al., 1998]. These velocity field measurements were resolved to 6.9 µm in the lateral directions
and 1.5 µm in the depth direction and demonstrated the applicability of the well-established PIV tech-
nique for microflows. Micro-PIV measurements in a rectangular glass microchannel with 200 nm fluo-
rescent tracer particles (Re 	 1) have been described in Meinhart et al. (1999). With improved acquisition
and analysis, the lateral resolution was 13.6 µm in the streamwise direction significantly better 0.9 µm in
the cross-stream direction, the direction of highest velocity variation. The first demonstration of micro-
PIV within a circular capillary was performed in a 236 µm diameter channel with Reynolds number 		 1
[Koutsiaris et al., 1999]. The seeding particles were 10 µm glass spheres, and the resolution of the meas-
urements was 26.2 µm in the cross-stream direction. The measured velocity profiles agreed well with the
predicted laminar parabolic profiles. More recently, micro-PIV has been used to study the velocity pro-
files and turbulence statistics of water flows in circular channels with D � 100–250 µm and Reynolds
numbers up to 3000 using 2 µm fluorescent particles [Sharp and Adrian, 2004].

Alternate visual methods applied to microchannel velocity measurements have been demonstrated by
numerous researchers [Brody et al., 1996; Maynes and Webb, 2002; Ovryn, 1999; Paul et al., 1998b; Taylor
and Yeung, 1993]. Molecular tagging velocimetry (MTV) was adapted to the microscale, and velocity pro-
files were obtained in circular tubes with D � 705 µm, and for Re � 600–5000 [Maynes and Webb, 2002].
The spatial resolution of these measurements was approximately 10 µm. The measured velocity profiles
were consistent with macroscale laminar predictions for Re � 2000 and show indications of transition at
a Reynolds number of approximately 2100. Relevant development issues for microscale MTV are similar
to those for PIV, namely optical access and index of refraction compensation, particularly for curved sur-
faces, and optimized detection of the tracking particles (PIV) or beams (MTV).

Particle tracking, streak quantification, or dye visualization can be implemented given optical access
and the ability to illuminate the flow [Brody et al., 1996; Devasenathipathy et al., 2002: Taylor and Yeung,
1993]. Care must be exercised in the extraction of quantitative data, particularly if there is a large depth
of field of the imaging device or optical complications due to complex microchannel geometries or if the
particles or molecules are not accurately following the flow due to charge, size, or density effects.

Novel three-dimensional measurement techniques for microchannel flows are currently in develop-
ment [Hitt and Lowe, 1999; Ovryn, 1999]. Building upon a technique already developed for the study of
microscale structures, Hitt and Lowe (1999) used confocal imaging to build a three-dimensional map of
the separation surface following a bifurcation, where the separation surface describes the interfacial
boundary between two components from different branches of the bifurcation. Using two laser-scanning
confocal microscopes, a series of thin (4.5 or 7.1 µm) horizontal slices were acquired and reconstruction
software was used to combine these slices into a three-dimensional map. Again, optical access and effects
are primary issues in the implementation of this method, and it is not suitable for unsteady flows. Ovryn
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(1999) sought to resolve and interpret the scattering pattern of a particle to determine its three-dimensional
position, and has applied this technique to laminar flow.

X-ray imaging techniques do not require optical access in the channel, though a contrast medium
detectable by X-rays must be used as the working fluid. Lanzillotto et al. (1996) obtained flow displace-
ment information from microradiograph images of emulsion flow through a 640 µm diameter tube and
iododecane flow through a silicon V-groove chip.

The level of complexity increases when electrokinetic flows are considered. A few of the earliest visual
measurements of electrokinetic flows are described in Paul et al. (1998b); Cummings (1999); and Taylor
and Yeung (1993). Paul et al. (1998b) seeded the flow with an uncaged fluorescent dye. Once the dye was
uncaged by an initial ultraviolet (UV) laser pulse, the flow was illuminated by succeeding pulses of blue
light for Charge Coupled Device (CCD) image acquisition, causing the excitation of only the uncaged dye
molecules. This technique was applied to both pressure-driven and electrokinetic flows in circular capil-
laries with diameters of the order 100 µm. Since the dye transport represents represented both convection
and diffusion, requisite care is necessary to separate the effects [Paul et al., 1998b]. This method can be
used also to acquire quantitative information regarding diffusion effects. More recently, particle tracking
techniques have been adapted to electrokinetic flows [Devasenathipathy et al., 2002].

Pointwise techniques were used to acquire early velocity measurements in microfluidic systems [Chen
et al., 1997; Tieu et al., 1995; Yazdanfar et al., 1997]. Optical doppler tomography combines elements of
Doppler velocimetry with optical coherence tomography in an effort to develop a system that can quan-
tify the flow in biological tissues [Chen et al., 1997]. Chen et al. (1997) applied the technique to a 580 µm
diameter conduit seeded with 1.7 µm particles. An approximate parabolic profile was measured in the
first test, and in the second test, it was shown that fluid particle velocities could be measured even with
the conduit submerged in a highly scattering medium, as would be the case for particles in biological tis-
sues. A similar measurement technique has been used for in vivo measurements [Yazdanfar et al., 1997].
An adaptation of laser doppler anemometry (LDA) techniques to microscale flows was demonstrated by
Tieu et al. (1995), and pointwise data were obtained in a 175 µm channel.

10.1.11 Non-Linear Channels

For practical MEMS applications, it is often useful to consider mixing or separation of components in
microchannels. Numerous designs have been proposed, including T- and H-shaped channels, zigzag-shaped
channels, 2-D and 3-D serpentine channels, and multilaminators.

For example, Weigl and Yager (1999) have designed a T-sensor for implementation of assays in
microchannels, as shown in Figure 10.6. A reference stream, a detection stream, and a sample stream have
been introduced through multiple T-junctions into a common channel. The design relied upon the dif-
ferential diffusion of different sized molecules to separate components in the sample stream. Differential
diffusion rates are also fundamental to the design of the H-filter, used to separate components [Schulte
et al., 2000]. Application of a slightly different T-channel design has been demonstrated for measurement
of diffusion coefficients of a species in a complex fluid [Galambos and Forster, 1998].

A layering approach has been implemented by Branebjerg et al. (1996), splitting the streams and relay-
ering to increase interfacial area, thus promoting mixing. Adding complexity to the flow field also has
potential to increase the amount of mixing between streams, as demonstrated by Branebjerg et al.’s (1995)
zigzag channel and the serpentine channels introduced by Liu et al. (2000). The 3-D serpentine channel
in Liu et al. (2000) was designed to introduce chaotic advection into the system and further enhance mix-
ing over a 2-D serpentine channel. A schematic of the 3-D serpentine channel is shown in Figure 10.7.

For further information on the use of nonlinear channels in microdevices, consult the applications of
MEMS section of this handbook.

10.1.12 Capacitive Effects

While liquids are incompressible, the systems through which they flow may expand or contract in
response to pressure in the liquid. This behavior can be described by analogy to flow in electrical circuits.
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In this analogy, fluid pressure corresponds to electrical voltage p � V; the volume flow rate corresponds
to electrical current Q � I; and the flow resistance through a fluid element corresponds to an electrical
resistor Rflow � Relec. Thus for capillary flow, ∆p � RflowQ, where Rflow � 8 µL/πa4 (c.f., Equation [10.21]),
whereas in the electrical analogy, ∆V � RelecI. If a fluid element is able to change its volume (expansion
of plastic tubing, flexing in pressure transducer diaphragm, etc.), fluid continuity implies that:

∆Q � Cflow (10.29)
dp
�
dt
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FIGURE 10.6 T-Sensor, self-calibrating microchemical reactor and sensor. This design allows for self-calibration
through the simultaneous flow of a reference solution on the opposite flank of the indicator stream from the sample
to be analyzed. (Reprinted with permission from Micronics, Inc., Redmond, WA, 2000.)

Stream 1

Stream 2

Outlet

FIGURE 10.7 Three-dimensional serpentine channel. (Reprinted with permission from Liu et al. [2000], personal
communication.)
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where Cflow is the capacitance of the fluid element. The corresponding electrical law is I � Celec dV/dt,
where Celec is the electrical capacitance.

It is well known in the context of electrical circuits that a resistor and capacitor in combination cause
transients whose time constant τ is proportional to RelecCelec. In a microfluidic circuit, any capacitive ele-
ment in combination with a flow resistance leads to analogous transients whose time constant is propor-
tional to RflowCflow. Since Rflow can be very large in microchannels, the time constant can be surprisingly
large, that is 103 seconds. Consequently, capacitive effects can cause significant and inconveniently long
transients.

10.1.13 Applications of Particle/Cell Manipulation in Microfluidics

A number of research efforts are underway to develop particle separation, sorting, and detection capa-
bilities in microfluidic networks with a particular emphasis on biological applications [Berger et al., 2001;
Blankenstein and Larsen, 1998; Cho and Kim, 2003; Chou et al., 2000; Glückstad, 2004; Lee et al., 2001,
2003; Mirowski et al., 2004]. Cell or particle separation and sorting techniques have been proposed using
concepts from electrokinetics [Cho and Kim, 2003; Fu et al., 2004], optical methods [Glückstad, 2004],
magnetics [Mirowski et al., 2004; Berger et al., 2001], and hydrodynamic-based manipulation
[Blankenstein and Larsen, 1998; Chou et al., 2000; Lee et al., 2001, 2003].

10.1.14 Recommended Review Papers on Microfluidics

For further information on research and development trends in microfluidics, the reader is referred to
two review papers, Stone et al. (2004) and Ho and Tai (1998).

10.2 Electrokinetics Background

The first demonstration of electrokinetic phenomena is attributed to F.F. Reuss, who demonstrated elec-
troosmotic flow of water through a clay column in a paper published in the Proceedings of the Imperial
Society of Naturalists of Moscow in 1809 [Probstein, 1994]. In the latter part of the 20th century, the main
applications of electrokinetic phenomena have been fairly wide-ranging from the dewatering of soils and
waste sludges using electric fields [Hiemenz and Rajagopalan, 1997] to the study of the stability of col-
loidal suspensions for household paint and to devices that use electrophoretic mass transfer of colloidal
suspensions to produce images on a planar substrate [Kitahara and Watanabe, 1984]. A community that
has paid particular attention to the study of mass and momentum transport using electrokinetic effects
is the developers of capillary electrophoresis (CE) devices [Khaledi, 1998; Landers, 1994; Manz et al.,
1994]. CE devices are used to separate biological and chemical species by their electrophoretic mobility,
which is roughly proportional to their mass-to-charge ratio. CE devices that employ a sieving matrix sep-
arate macromolecules based on size (e.g., DNA separations or surfactant-coated, denatured protein sep-
arations). These traditional CE systems incorporate on-line detection schemes such as ultraviolet
radiation scatter/absorption and laser-induced fluorescence [Baker, 1995; Landers, 1994].

Electrokinetics is the general term describing phenomena that involve the interaction between solid sur-
faces, ionic solutions, and macroscopic electric fields. Two important classes of electrokinetics are elec-
trophoresis and electroosmosis where the motions of particles and electrolyte liquids, respectively, occur
when an external electric field is applied to the system. Electrophoresis is the induced drift motion of col-
loidal particles or molecules suspended in liquids that results from the application of an electric field.
Electroosmosis describes the motion of electrolyte liquids with respect to a fixed wall that results when
an electric field is applied parallel to the surface. An example of electroosmosis is the liquid pumping that
occurs in a microcapillary when an electric field is applied along the axis of the capillary [Hunter, 1981;
Levich, 1962; Probstein, 1994]. Two other phenomena also classified under electrokinetics are flows with
a finite streaming potential and sedimentation potential. These phenomena are counter-examples of elec-
troosmosis and electrophoresis respectively. Streaming potential is the spontaneous generation of an 
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electric potential from a pressure-driven flow in a charged microchannel [Hunter, 1981; Scales et al.,
1992]. Sedimentation potential is the generation of an electric potential that results from the sedimenta-
tion (e.g., due to gravity) of a charged particle [Russel et al., 1999]. All of the phenomena classified under
the term electrokinetics are manifestations of the electrostatic component of the Lorentz force (on ions
and surface charges) and Newton’s second law of motion. These interactions between charged particles
and electric fields often involve electric double layers formed at liquid/solid interfaces, and an introduction
to this phenomenon is presented below. Electrokinetic flows are in general a subclass of electrohydro-
dynamic flows [Melcher, 1981; Saville, 1997], which describe the general coupling between electric fields
and fluid flow. Electrokinetic systems are distinguishable in that they involve liquid electrolyte solutions
and the presence of electrical double layers (i.e., involve electrophoresis and electroosmosis).

10.2.1 Electrical Double Layers

Most solid surfaces acquire a surface electric charge when brought into contact with an electrolyte (liq-
uid). Mechanisms for the spontaneous charging of surface layers include the differential adsorption of
ions from an electrolyte onto solid surfaces (e.g., by ionic surfactants), the differential solution of ions
from the surface to the electrolyte, and the deprotonation/ionization of surface groups [Hunter, 1981].
The most common of these in microfluidic electrokinetic systems is the deprotonation of surface groups
on the surface of materials like silica, glass, acrylic, and polyester. In the case of glass and silica, the depro-
tonation of surface silanol groups (SiOH) determines the generated surface charge density. The magni-
tude of the net surface charge density at the liquid/solid interface is a function of the local pH. The
equilibrium reaction associated with this deprotonation can be represented as

SiOH ⇔ SiO� � H� (10.30)

Models describing this reaction have been proposed for several types of glass and silica [Hayes et al., 1993;
Huang et al., 1993; Scales et al., 1992]. In practice, the full deprotonation of the glass surface, and there-
fore the maximum electroosmotic flow mobility, is achieved for pH values greater than about 9.

In response to the surface charge generated at a liquid–solid interface, nearby ions of opposite charge
in the electrolyte are attracted by the electric field produced by the surface charge, and ions of like charge
are repelled. The spontaneously formed surface charge therefore forms a region near the surface called an
electrical double layer (EDL) that supports a net excess of mobile ions with a charge opposite to that of
the wall. Figure 10.8 shows a schematic of the EDL for a negatively charged wall (e.g., as in the case of a
glass surface). The region of excess charge formed by the counterions shielding the wall’s electric field can
be used to impart a force on the bulk fluid through ion drag.
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FIGURE 10.8 Schematic of the electrical double layer (EDL): (a) Distribution of co- and counterions near a charged
wall. The Stern and Gouy–Chapman layers are shown with the Gouy–Chapman thickness roughly approximated as
the Debye length of the solution. (b) A plot of the negative potential distribution near a glass wall indicating the zeta
potential, the wall potential, and the location of the shear plane.
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As shown in Figure 10.8, counterions reside in two regions divided into the Stern and Gouy–Chapman
diffuse layers [Adamson and Gast, 1997; Hunter, 1981]. The Stern layer counterions are adsorbed onto the
wall, while the ions of the Gouy–Chapman diffuse layer are free to diffuse into the bulk fluid and therefore
available to impart work on the fluid. The plane separating the Stern and Gouy–Chapman layers is called the
shear plane. The bulk liquid far from the wall is assumed to have net neutral charge. Also in Figure 10.8 is a
sketch of the potential associated with the EDL. The magnitude of the potential is a maximum at the wall
and drops rapidly through the Stern layer. The potential at the shear plane, which is also the boundary of
the liquid flow problem, is called the “zeta potential” ζ Because of the difficulties associated with predicting
the properties of the EDL from first principles [Hunter, 1981], the zeta potential is typically viewed as an
empirical parameter determined using electroosmotic or streaming potential flow measurements.

A simple treatment of the physics of the diffuse portion of the EDL is presented here; it assumes a liq-
uid with constant properties (i.e., constant viscosity and electrical permittivity). A more detailed model
of the diffuse portion of the electrical double layer should include non-continuum effects such as finite-
ion size effects and gradients in the dielectric strength and viscosity of the fluid [Hunter, 1981]. The width
of the diffuse portion of the EDL is determined by the opposing forces of electrostatic attraction and ther-
mal diffusion. This balance between electromigration and diffusive fluxes, together with the Nernst–
Einstein equation relating ion diffusivity and mobility [Hiemenz and Rajagopalan, 1997], can be used to
show that the concentration profile is described by a Boltzmann distribution. For an EDL on a flat plate,
the Boltzmann distribution of ions of species i, ci, is

ci(y) � c∞,i exp�� �, (10.31)

where c∞, i is the molar concentration of ion i in the bulk, z is the valance number of the ion, φ is the local
potential, T is temperature, e is the charge of an electron, and k is Boltzmann’s constant. The coordinate
y is perpendicular to the wall and the origin is at the shear plane of the EDL. The net charge density in
the EDL, ρE, is related to the molar concentrations of N species using the relation

ρE � F	
N

i�1

zici, (10.32)

where F is Faraday’s constant. The net charge density can also be related to the local potential in the dif-
fuse EDL by the Poisson equation

∇2φ � � (10.33)

where ε is the permittivity of the liquid. Substituting Equations (10.31) and (10.32) into Equation
(10.33), we find that

� 	
N

i�1

zic�,i exp�� � (10.34)

For the simple case of a symmetric electrolyte with (two) monovalent ions, this relation becomes

� sinh� � (10.35)

where c� is the molar concentration of each of the two ion species in the bulk. This relation is the non-
linear Poisson–Boltzmann equation. A closed form, analytical solution of this equation for the EDL on a
flat wall is given by Adamson and Gast (1997) and Hunter (1981).

A well-known approximation to the Poisson-Boltzmann solution known as the Debye–Hückel limit is
the case where the potential energy of ions in the EDL is small compared to their thermal energy so that
the argument of the hyperbolic sine function in Equation (10.35) is small. Applying this approximation,
Equation (10.35) becomes

� (10.36)
φ(y)
�λ2

D

d2φ
�
dy 2

zeφ(y)
�

kT

2Fzic�
�ε

d2φ
�
dy2

zeφ(y)
�
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�F
�ε

d2φ
�
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kT
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where λD is the Debye length of the electrolyte defined as

λD 
 � � (10.37)

for a symmetric monovalent electrolyte. The Debye length describes the characteristic thickness of the
EDL, which varies inversely with the square root of ion molar concentration. At typical biochemical,
singly ionized buffer concentrations of 10 mM, the thickness of the EDL is therefore on the order of a few
nanometers [Hiemenz and Rajagopalan, 1997]. In analyzing electrokinetic flow in microchannels, the
Debye length should be compared to the characteristic dimension of the microchannel in order to clas-
sify the pertinent flow regime. Overbeek (1952) points out that the Debye–Hückel approximation of the
potential of the EDL holds remarkably well for values of the ratio zeφ/(kT) up to approximately 2. This
value is equivalent to a zeta potential of about 50 mV, which is within the typical range of microfluidic
applications.

Models of the physics of the EDLs can be used to extrapolate zeta potential of particles and microchan-
nels across a significant range of buffer concentration, fluid viscosity, electrical permittivity of elec-
trolytes, and field strengths given only a few measurements. One of the most difficult zeta potential
extrapolations to make is across different values of pH because pH changes the equilibrium reactions
associated with the charge at the liquid–solid interface.

A full formulation of the coupled system of equations describing electroosmotic and electrokinetic
flow includes the convective diffusion equations for each of the charged species in the system, the Poisson
equation for both the applied electric field and the potential of the EDL, and the equations of fluid
motion. A few solutions to this transport problem relevant to microfluidic systems are presented below.

10.2.2 EOF with Finite EDL

Electroosmotic flow (EOF) results when an electric field is applied through a liquid-filled microchannel
having an EDL at the channel surfaces, as described above. This applied electric field introduces an
electrostatic Lorentz body force

ρb � ρEE (10.38)

into the equation of motion for the fluid, Equation (10.3). Within the EDL, the electric field exerts a net
force on the liquid causing the liquid near the walls to move. Alternately, one can describe the effect as
simply the ion drag on the liquid associated with the electrophoresis of the ions in the EDL. The fluid in
the EDL exerts a viscous force on the rest of the (net zero charge) liquid in the bulk of the channel. For
EDLs much smaller than the channel dimension D, the fluid velocity reaches steady state in a short time
t that is on the order of D2/ν, where ν is kinematic viscosity of the fluid. The resulting bulk electroosmotic
flow is depicted schematically in Figure 10.9.

The equation of motion for steady low-Reynolds-number flow in the microchannel is given by
Equation (10.39).

∇p � µ∇2u � ρEE (10.39)

Substituting Equation (10.33) for the charge density, results in

∇2�u � φ� � . (10.40)

In Equation (10.40), the electric field, E, can be brought into the Laplace operator because
∇  E � ∇ � E � 0. Equation (10.40) is linear so that the velocities caused by the pressure gradient and
the electric field can be considered separately and then superposed as follows:

∇2�uEOF
� φ� � 0, (10.41)

εE
�µ

�p
�µ

εE
�µ

1
�2εkT

�
2z2 F2 c�
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∇2
upressure � . (10.42)

Together with Equation (10.2), these are the general equations for electroosmotic flow in a microchan-
nel. Evaluation of the pressure-driven flow component of velocity in a microchannel can leverage ana-
lytical solutions available for channels of various cross-sections [White, 1991]. The pressure gradient can
be applied externally or may arise internally because of variations in the zeta potential at the channel walls
[Anderson and Idol, 1985; Herr et al., 2000].

Now consider electroosmosis in a long straight microchannel with a finite width electrical double layer and
an arbitrary cross-section that remains constant along the flow direction (x-axis), as shown in Figure 10.10.
The applied electric field is assumed to be uniform and along the x-axis of the microchannel. For the case
where the potential at the wall is uniform, the solution to Equation (10.41) is

uEOF � φ � , (10.43)

with the zeta-potential ζ, being the value of φ at the top of the double layer. In Equation (10.43) uEOF and
E are the unidirectional velocity and unidirectional applied electric field, respectively. The general expres-
sion for the electroosmotic velocity, implicit in the potential is then

uEOF (y, z) � �1 � �. (10.44)
φ(y,z)
�ζ

�εEζ
�µ

�εEζ
�µ

εEζ
�µ

∇p
�µ
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FIGURE 10.9 Schematic of an electroosmotic flow channel with a finite EDL. The charges drawn in the figure indi-
cate net charge. The boundary layers on either wall have a thickness on the order the Debye length of the solution.
For non-overlapping EDLs, the region near the center of the channel is net neutral.
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FIGURE 10.10 Section of a long, straight channel having an arbitrary cross-section.
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To compute values for the velocity given in Equation (10.44), an expression for the potential φ(y, z) is
required. In general φ(y, z) can be computed numerically from Equation (10.34), but analytical solutions
exist for several geometries. Using the Boltzmann equation for a symmetric analyte and the Debye–
Hückel approximation discussed in the previous section, Rice and Whitehead (1965) give the solution for
electroosmosis in a long cylindrical capillary.

uEOF(r) � �1 � �. (10.45)

In Equation (10.45), Io is the zero-order modified Bessel function of the first kind; r is the radial direc-
tion; and a is the radius of the cylindrical capillary. This solution can be superposed with the solution of
Equation (10.42) for a constant pressure gradient. The resulting composite solution is

u(r) � �1 � � � �1 � �. (10.46)

Burgeen and Nakache (1964) give a general solution for electroosmotic flow between two long, parallel
plates, for a finite EDL thickness (but with nonoverlapping EDLs). For other more complex geometries
and many unsteady problems, numerical solutions for the electroosmotic flow are required
[Arulanandam and Li, 2000; Bianchi et al., 2000; Dutta et al., 2002; Myung-Suk and Kwak, 2003; Patankar
and Hu, 1998; Yao, 2003a].

However, when the Debye length is finite but much smaller than other dimensions (e.g., the width of
the microchannel) the disparate length scales can make numerical solutions difficult [Bianchi et al., 2000,
Patankar and Hu, 1998]. In many cases, EOF in complex geometries can be determined numerically using
a thin double layer assumption described in the next section.

10.2.3 Thin EDL Electroosmotic Flow

This section presents a brief analysis of electroosmotic flow in microchannels with thin EDLs. Figure 10.11
shows a schematic of an electroosmotic flow in a microchannel with zero pressure gradient. As shown in
the figure, the Debye length of typical electrolytes used in microfabricated electrokinetic systems is much
smaller than the hydraulic diameter of the channels. Typical Debye-length-to-channel diameter ratios are
less than 10�4. For low Reynolds number electroosmotic flow in a cylindrical channel in the presence of

r2

�
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�
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FIGURE 10.11 Schematic of electroosmotic flow in a glass microchannel with a thin EDL. A zero pressure gradient
plug flow is shown. The electrodes on the ends of the channel indicate the polarity of the electric field.
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a constant axial pressure gradient and a Debye length much smaller than the capillary radius, the solu-
tion of the velocity field is simply

u(r) � � � . (10.47)

This equation can be derived by evaluating Equation (10.46) in the limit of a thin EDL (i.e., a small value
of λD/a).

The zeta potential typically determines flow velocities and flow rates in common thin EDL systems. As
mentioned above, this quantity can often be interpreted as an empirically measured mobility parameter
that determines the local velocity of the flow at the top of the electrical double layer. The zeta potential
can be approximately related to the local surface charge density on the wall and the bulk fluid properties
by applying continuum field and flow theory. Theoretically, the zeta potential is defined as the value of
the electrostatic potential at the plane that separates double layer counterions that are mobile from those
that are fixed. For the case of zero applied pressure gradients, Equation (10.47) reduces to the well-known
Helmholtz-Smoluchowski relation for electroosmotic flow: u � εζE/µ [Probstein, 1994]. Other thin EDL
solutions include that of Ghosal (2002) for slowly varying zeta potential and cross-sectional area chan-
nels, and Oddy and Santiago (2004) for a rectangular channel with four different wall zeta potentials and
an applied AC electric field.

10.2.4 Electrophoresis

Many electrokinetic microfluidic systems leverage the combination of electroosmotic and electrophore-
sis to achieve biological separations and to transport charged particles (e.g., biological assay microbeads)
and ions. Because of this, we present here a short introduction to electrophoresis. Electrophoresis is the
induced drift motion of colloidal particles or molecules suspended in polar solutions that results from
the application of an electric field. Two important regimes of electrophoresis depicted in Figure 10.12 are
for the electromigration of species that that are either large or small compared to the Debye length of the
ionic solution in which they are suspended.

Electrophoresis of ionic molecules and macromolecules can be described as a simple balance between
the electrostatic force on the molecule and the viscous drag associated with its resulting motion. As a
result, the electrophoretic mobility (velocity-to-electric field ratio) of molecules is a function of the
molecule’s size/molecular weight and directly proportional to their valence number or

u � (d 		 λd) (10.48)
qE

�
3πµd

(a2 � r2)
�

4µ
dp
�
dx

εζE
�µ
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FIGURE 10.12 Two limiting limits of electrophoresis in an electrolyte. Shown are electrophoretic particles in the
electric field generated between two electrodes. On the left is the detail of a charged ion with a characteristic dimen-
sion much smaller than the Debye length of the electrolyte. On the right is a charged microsphere with a diameter
much larger than the Debye length.
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where q is the total molecule charge and d is the particle’s Stokes diameter (the diameter of a sphere of
equal drag). In comparison, the electrophoresis of relatively large solid particles such as 100–10,000 nm
diameter polystyrene spheres, clay particles, and single-celled organisms is a function of the electrostatic
forces on the surface charge, the electrostatic forces on their charge double layers, and the viscous drag
associated with both the motion of the body as well as the motion of the ionic cloud. For a wide range of
cases where the particle-diameter-to-Debye-length ratio is large so that locally the ionic cloud near the
particle surface can be approximated by the EDL relations for a flat plate, the velocity of an elec-
trophoretic particle reduces simply to

u � (d 

 λd) (10.49)

where the dimension d in the inequality condition is a characteristic dimension of the particle (e.g., its
Stokes diameter). This equation was shown by Smoluchowski (1903) to be independent of particle shape.
This is the Helmholtz-Smoluchowski equation introduced earlier (with a change of sign).

The two expressions above describing the electrophoresis of particles can be expressed in terms of a
mobility νeph equal to q/(3πµd) and εζ/µ for characteristic particle dimensions much smaller and much
larger than the Debye length, respectively. Note also that for the simple case of a fluid with uniform prop-
erties, the solution of the drift velocity of electrophoretic particles with respect to the bulk liquid are sim-
ilar (i.e., parallel and directly proportional) to lines of electric field.

Several solutions of the particle velocity and velocity field in the region of an electrophoretic particle
with a finite EDL exist [Hunter, 1981; Russel et al., 1999]. A well-known solution is that of Henry (1948)
for the flow around an electrophoretic sphere in the Debye–Hückel limit. The d 

 λd limit of Henry’s
solution results in Equation (10.49).

10.2.5 Similarity between Electric and Velocity Fields for 
Electroosmosis and Electrophoresis

The previous sections have described the solution for electroosmotic velocity field in straight, uniform
cross-section channels. In general, solving for the electroosmotic velocity field in more complex geome-
tries requires a solution of the electric field and charge density in the microchannel, together with a solu-
tion to the Navier–Stokes equations. A simplification of this flow problem first proposed by Overbeek
(1952) suggests that the electroosmotic velocity is everywhere parallel to the electric field for simple elec-
troosmotic flows at low Reynolds numbers. This concept is also discussed by Cummings et al. (2000) and
Santiago (2001). Santiago (2001) describes a set of sufficient conditions for which there exist a velocity
field solution that is similar to the electric field:

� Uniform zeta potential
� Electric double-layers thin compared to channel dimension
� Electrically insulating channel walls
� Low Reynolds number
� Low product of Reynolds and Strouhal numbers
� Parallel flow at inlets and outlets
� Uniform electrolyte properties (including temperature)

When these conditions are met, the electroosmotic streamlines exactly correspond to the electric field
lines. The approximation is applicable to systems with a microchannel length scale less than 100 µm, a
Debye length less than 10 nm, a velocity scale less than 1 mm/sec, and a characteristic forcing function
time scale greater than 10 msec [Santiago, 2001]. An important part of this similarity proof is to show the
applicability of the Helmholtz–Smoulochowski equation in describing the local velocity field at the slip
surface that bounds the internal flow of the microchannel that excludes the EDL. The Helmholtz–
Smoulochowski equation can be shown to hold for most microfluidic systems where the motion of the
EDL is dominated by the Lorentz and viscous forces. In such systems, we can consider the velocity field

εζE
�µ
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of the fluid outside of the EDL as a three-dimensional, unsteady flow of a viscous fluid of zero net charge
that is bounded by the following slip velocity condition:

uslip � Eslip (10.50)

where the subscript slip indicates a quantity evaluated at the slip surface at the top of the EDL (in prac-
tice, a few Debye lengths from the wall). The velocity along this slip surface is, for thin EDLs, similar to
the electric field. This equation and the condition of similarity also hold for inlets and outlets of the flow
domain that have zero imposed pressure-gradients.

The complete velocity field of the flow bounded by the slip surface (and inlets and outlets) can be shown
to be similar to the electric field [Santiago, 2001]. We nondimensionalize the Navier–Stokes equations by
a characteristic velocity and length scale Us and Ls, respectively. The pressure p is nondimensionalized by the
viscous pressure µUs/Ls. The Reynolds and Strouhal numbers are Re � ρLsUs/µ and St � Ls/τUs, respec-
tively, where τ is the characteristic time scale of a forcing function. The equation of motion is

ReSt � Re(u�  ∇u�) � �∇p� � ∇2u� (10.51)

Note that the right-most term in Equation (10.51) can be expanded using a well-known vector identity

∇2u� � ∇(∇  u�) � ∇ � ∇ � u�. (10.52)

We can now propose a solution to Equation (10.52) that is proportional to the electric field and of the form

u� � E (10.53)

where co is a proportionality constant, and E is the electric field driving the fluid. Since we have assumed
that the EDL is thin, the electric field at the slip surface can be approximated by the electric field at the
wall. The electric field bounded by the slip surface satisfies Faraday’s and Gauss’ laws,

∇  E � ∇ � E � 0 (10.54)

Substituting Equation (10.53) and Equation (10.54) into Equation (10.51) yields

ReSt � Re(u�  ∇u�) � �∇p� (10.55)

This is the condition that must hold for Equation (10.53) to be a solution to Equation (10.51). One lim-
iting case where this holds is for very high Reynolds number flows where inertial and pressure forces are
much larger than viscous forces. Such flows are found in, for example, high speed aerodynamics regimes
and are not applicable to microfluidics. Another limiting case applicable here is when Re and ReSt are
both small, so that the condition for Equation (10.53) to hold becomes

∇p� � 0. (10.56)

Therefore we see that for small Re and ReSt and the pressure gradient at the inlets and outlets equal to
zero, Equation (10.53) is a valid solution to the flow bounded by the slip surface, inlets, and outlets (note
that these arguments do not show the uniqueness of this solution). We can now consider the boundary
conditions required to determine the value of the proportionality constant co. Setting Equation (10.50)
equal to Equation (10.53) we see that co � εζ/η. So that, if the simple flow conditions are met, then the
velocity everywhere in the fluid bounded by the slip surface is given by Equation (10.57).

u(x, y, z, t) � � E(x, y, z, t) (10.57)
εζ
�µ

∂u�
�∂t�

co
�
Us

∂u�
�∂t�

�εζ
�µ
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Equation (10.57) is the Helmholtz–Smoluchowski equation shown to be a valid solution to the quasi-
steady velocity field in electroosmotic flow with ζ the value of the zeta potential at the slip surface. This
result greatly simplifies the modeling of simple electroosmotic flows since simple Laplace equation
solvers can be used to solve for the electric potential and then using Equation (10.57) for the velocity field.
This approach has been applied to the optimization of microchannel geometries and verified experi-
mentally [Bharadwaj et al., 2002; Devasenathipathy et al., 2002; Mohammadi et al., 2003; Molho et al.,
2001; Santiago, 2001]. An increasing number of researchers have recently applied this result in analyzing
electrokinetic microflows [Bharadwaj et al., 2002; Cummings and Singh, 2003; Devasenathipathy et al.,
2002; Dutta et al., 2002; Fiechtner and Cummings, 2003; Griffiths and Nilson, 2001; MacInnes et al., 2003;
Santiago, 2001]. Figure 10.13 shows the superposition of particle pathlines/streamlines and predicted
electric field lines [Santiago, 2001] in a steady flow that meets the simple electroosmotic flow conditions
summarized above. As shown in the figure, the electroosmotic flow field streamlines are very well approx-
imated by electric field lines.

For the simple electroosmotic flow conditions analyzed here, the electrophoretic drift velocities (with
respect to the bulk fluid) are also similar to the electric field, as mentioned above. Therefore, the time-
averaged, total (local drift plus local liquid) velocity field of electrophoretic particles can be shown to be

uparticle � �veph � �E. (10.58)
εζ
�µ
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FIGURE 10.13 Comparison between experimentally determined electrokinetic particle pathlines at a microchannel
intersection and predicted electric field lines. The light streaks show the path lines of 0.5 µm diameter particles advect-
ing through an intersection of two microchannels. The electrophoretic drift velocities and electroosmotic flow veloc-
ities of the particles are approximately equal. The channels have a trapezoidal cross-section having a hydraulic
diameter of 18 µm (130 µm wide at the top, 60 µm wide at the base, and 50 µm deep). The superposed heavy black
lines correspond to a prediction of electric field lines in the same geometry. The predicted electric field lines very
closely approximate the experimentally determined pathlines of the flow. (Reprinted with permission from
Devasenathipathy, S., and Santiago, J.G. [2000] unpublished results, Stanford University.)
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Here, we use the electrophoretic mobility νeph that was defined earlier, and εζ/µ is the electroosmotic flow
mobility of the microchannel walls. These two flow field components have been measured by
Devasenathipathy et al. (2002) in two- and three-dimensional electrokinetic flows.

10.2.6 Electrokinetic Microchips

The advent of microfabrication and microelectromechanical systems (MEMS) technology has seen an
application of electrokinetics as a method for pumping fluids on microchips [Auroux et al., 2002; Bruin,
2000; Jacobson et al., 1994; Manz et al., 1994; Reyes et al., 2002; Stone et al., 2004]. On-chip electroos-
motic pumping is easily incorporated into electrophoretic and chromatographic separations, and labo-
ratories on a chip offer distinct advantages over the traditional, freestanding capillary systems. Advantages
include reduced reagent use, tight control of geometry, the ability to network and control multiple chan-
nels on chip, the possibility of massively parallel analytical process on a single chip, the use of chip sub-
strate as a heat sink (for high field separations), and the many advantages that follow the realization of a
portable device [Khaledi, 1998; Stone et al. 2004]. Electrokinetic effects significantly extend the current
design space of microsystems technology by offering unique methods of sample handling, mixing, sepa-
ration, and detection of biological species including cells, microparticles, and molecules.

This section presents typical characteristics of an electrokinetic channel network fabricated using
microlithographic techniques (see description of fabrication in the next section). Figure 10.14 shows a
top view schematic of a typical microchannel fluidic chip used for capillary electrophoresis [Bruin, 2000;
Manz et al., 1994; Stone et al., 2004]. In this simple example, the channels are etched on a dielectric sub-
strate and bonded to a clear plate of the same material (e.g., coverslip). The circles in the schematic rep-
resent liquid reservoirs that connect with the channels through holes drilled through the coverslip. The
parameters V1 through V4 are time-dependent voltages applied at each reservoir well. A typical voltage
switching system may apply voltages with on/off ramp profiles of approximately 10,000 V/s or less so that
the flow can often be approximated as quasi-steady.

The four-well system shown in Figure 10.14 can be used to perform an electrophoretic separation by
injecting a sample from well #3 to well #2 by applying a potential difference between these wells. During
this injection phase, the sample is confined, or pinched, to a small region within the separation channel
by flowing solution from well #1 to #2 and from well #4 to well #2. The amount of desirable pinching is
generally a tradeoff between separation efficiency and sensitivity. Ermakov et al. (2000), Alarie et al.
(2000), and Bharadwaj et al. (2002) all present optimizations of the electrokinetic sample injection
process. Next, the injection phase potential is deactivated and a potential is applied between well 1 and
well #4 to dispense the injection plug into the separation channel and begin the electrophoretic separa-
tion. The potential between wells #1 and #2 is referred to as the separation potential. During the separa-
tion phase, potentials are applied at wells #2 and #3, which “retract,” or “pull back,” the solution-filled
streams on either side of the separation channel. As with the pinching described above, the amount of
“pull back” is a trade-off between separation efficiency and sensitivity. As discussed by Bharadwaj et al.
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FIGURE 10.14 Schematic of a typical electrokinetic microchannel chip. V1 through V5 represent time-dependent
voltages applied to each microchannel. The channel cross-section shown is for the (common case) of an isotropically
etched glass substrate with a mask line width of (w � 2r).

© 2006 by Taylor & Francis Group, LLC



(2002), additional injection steps (such as a reversal of flow from well #2 to #1)for a short period prior to
injection and pull back) can minimize the dispersion of sample during injection.

Figure 10.15 shows a schematic of a system that was used to perform and image an electrophoretic sep-
aration in a microfluidic chip. The microchip depicted schematically in Figure 10.15 is commercially
available from Micralyne, Inc., Alberta, Canada. The width and depth of the channels are 50 µm and
20 µm respectively. The separation channel is 80 mm from the intersection to the waste well (well #4 in
Figure 10.14). A high voltage switching system allows for rapid switching between the injection and sep-
aration voltages and a computer, epifluorescent microscope, and CCD camera are used to image the elec-
trophoretic separation. The system depicted in Figure 10.15 is used to design and characterize
electrokinetic injections; in a typical electrophoresis application, the CCD camera would be replaced with
a point detector (e.g., a photo-multiplier tube) near well #4.

Figure 10.16 shows an injection and separation sequence of 200 µM solutions of fluorescein and
Bodipy dyes (Molecular Probes, Inc., Eugene, Oregon). Images 10.16a through 10.16d are each 20 msec
exposures separated by 250 msec. In Figure 16a, the sample is injected applying 0.5 kV and ground to well
#3 and well #2, respectively. The sample volume at the intersection is pinched by flowing buffer from well
#1 and well #4. Once a steady flow condition is achieved, the voltages are switched to inject a small sam-
ple plug into the separation channel. During this separation phase, the voltages applied at well #1 and well
#4 are 2.4 kV and ground respectively. The sample remaining in the injection channel is retracted from
the intersection by applying 1.4 kV to both well #2 and well #3. During the separation, the electric field
strength in the separation channel is about 200 V/cm. The electrokinetic injection introduces an approxi-
mately 400 pL volume of the homogeneous sample mixture into the separation channel, as seen in Figure
10.16b. The Bodipy dye is neutral, and therefore its species velocity is identical to that of the electroos-
motic flow velocity. The relatively high electroosmotic flow velocity in the capillary carries both the neu-
tral Bodipy and negatively charged fluorescein toward well #4. The fluorescein’s negative electrophoretic
mobility moves it against the electroosmotic bulk flow, and therefore it travels more slowly than the
Bodipy dye. This difference in electrophoretic mobilities results in a separation of the two dyes into dis-
tinct analyte bands, as seen in Figures 10.16c and 10.16d. The zeta potential of the microchannel walls for
the system used in this experiment was estimated at �50 mV from the velocity of the neutral Bodipy dye
[Bharadwaj and Santiago, 2002]. The inherent trade-offs between initial sample plug length, electric field,
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FIGURE 10.15 Schematic of microfabricated capillary electrophoresis system, flow imaging system, high voltage
control box, and data acquisition computer.
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channel geometry, separation channel length, and detector characteristics are discussed in detail by
Bharadwaj et al. (2002). Kirby and Hasselbrink (2004) present a review of electrokinetic flow theory and
methods of quantifying zeta potentials in microfluidic systems. Ghosal (2004) presents a review of band-
broadening effects in microfluidic electrophoresis.

10.2.7 Engineering Considerations: Flow Rate and Pressure of 
Simple Electroosmotic Flows

As we have seen, the velocity field of simple electrokinetic flow systems with thin EDLs is approximately
independent of the location in the microchannel and is therefore a “plug flow” profile for any cross-sec-
tion of the channel. The volume flow rate of such a flow is well approximated by the product of the elec-
troosmotic flow velocity and the cross-sectional area of the inner capillary:

Q � � . (10.59)

For the typical case of electrokinetic systems with a bulk ion concentration in excess of about 100 µM
and characteristic dimension greater than about 10 µm, the vast majority of the current carried within
the microchannel is the electromigration current of the bulk liquid. For such typical flows, we can rewrite
the fluid flow rate in terms of the net conductivity of the solution, σ,

Q � � , (10.60)

where I is the current consumed, and we have made the reasonable assumption that the electromigration
component of the current flux dominates. The flow rate of a microchannel is therefore a function of the
current carried by the channel and otherwise independent of geometry.

εζI
�µσ

εζEA
�µ
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FIGURE 10.16 Separation sequence of Bodipy and fluorescein in a microfabricated capillary electrophoresis system.
The channels shown are 50 µm wide and 20 µm deep. The fluoresceine images are 20 msec exposures and consecutive
images are separated by 250 msec. A background image has been subtracted from each of the images, and the channel
walls were drawn in for clarity. (Reprinted with permission from Bharadwaj, R., and Santiago, J.G. [2000] unpublished
results, Stanford University.)
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Another interesting case is that of an electrokinetic capillary with an imposed axial pressure gradient.
For this case, we can use Equation (10.47) to show the magnitude of the pressure that an electrokinetic
microchannel can achieve. To this end, we solve Equation (10.47) for the maximum pressure generated
by a capillary with a sealed end and an applied voltage ∆V, noting that the electric field and the pressure
gradient can be expressed as ∆V/L and ∆p/L respectively. Such a microchannel will produce zero net flow
but will provide a significant pressure gradient in the direction of the electric field (in the case of a neg-
atively charged wall). Imposing a zero net flow condition Q � �

A

u  dA � 0 the solution for pressure gen-
erated in a thin EDL microchannel is then

∆p � � (10.61)

which shows that the generated pressure will be directly proportional to voltage and inversely propor-
tional to the square of the capillary radius. Equation (10.61) dictates that decreasing the characteristic
radius of the microchannel will result in higher pressure generation. The following section discusses a
class of devices designed to generate both significant pressures and flow rate using electroosmosis.

10.2.8 Electroosmotic Pumps

Electroosmotic pumps are devices that generate both significant pressure and flow rate using electroosmo-
sis through pores or channels. A review of the history and technological development of such electro-
osmotic pumps is presented by Yao and Santiago (2003a). The first electroosmotic pump structure
(generating significant pressure) was demonstrated by Theeuwes in 1975. Other notable contributions
include that of Gan et al. (2000), who demonstrated pumping of several electrolyte chemistries; and Paul et
al. (1998a) and Zeng et al. (2000), who demonstrated of order 10 atm and higher. Yao et al. (2003b) pre-
sented experimentally validated, full Poisson–Boltzmann models for porous electroosmotic pumps. They
demonstrated a pumping structure less than 2 cm3 in volume that generates 33 ml/min and 1.3 atm at 100 V.

Figure 10.17 shows a schematic of a packed-particle bed electroosmotic pump of the type discussed by
Paul et al. (1998a) and Zeng et al. (2000). This structure achieves a network of submicron diameter
microchannels by packing 0.5–1 micron spheres in fused silica capillaries, using the interstitial spaces in
these packed beds as flow passages. Platinum electrodes on either end of the structure provide applied
potentials on the order of 100 to 10,000 V. A general review of micropumps that includes sections on elec-
troosmotic pumps is given by Laser and Santiago (2004).

8εζ∆V
�

a2
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FIGURE 10.17 Schematic of electrokinetic pump fabricated using a glass microchannel packed with silica spheres.
The interstitial spaces of the packed bed structure create a network of submicron microchannels that can be used to
generate pressures in excess of 5000 psi.
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10.2.9 Electrical Analogy and Microfluidic Networks

There is a strong analogy between electroosmotic and electrophoretic transport and resistive electrical
networks of microchannels with long axial-to-radial dimension ratios. As described above, the electroos-
motic flow rate is directly proportional to the current. This analogy holds provided that the previously
described conditions for electric/velocity field similarity also hold. Therefore, Kirkoff ’s current and volt-
age laws can be used to predict flow rates in a network of electroosmotic channels given voltage at end-
point nodes of the system. In this one-dimensional analogy, all of the current, and hence all of the flow,
entering a node must also leave that node. The resistance of each segment of the network can be deter-
mined by knowing the cross-sectional area, the conductivity of the liquid buffer, and the length of the
segment. Once the resistances and applied voltages are known, the current and electroosmotic flow rate
in every part of the network can be determined using Equation (10.60).

10.2.10 Electrokinetic Systems with Heterogenous Electrolytes

The previous sections have dealt with systems with uniform properties such as ion-concentrations
(including pH), conductivity, and permittivity. However, many practical electrokinetic systems involve
heterogeneous electrolyte systems. A general transport model for heterogenous electrolyte systems (and
indeed for general electrohydrodynamics) should include formulations for the conservation of species,
Gauss’ law, and the Navier–Stokes equations describing fluid motion [Castellanos, 1998; Melcher, 1981;
Saville, 1997]. The solutions to these equations can in general be a complex nonlinear coupling of these
equations. Such a situation arises in a wide variety of electrokinetic flow systems. This section presents a
few examples of recent and ongoing work in these complex electrokinetic flows.

10.2.10.1 Field Amplified Sample Stacking (FASS)

Sensitivity to low analyte concentrations is a major challenge in the development of robust bioanalytical
devices. Field amplified sample stacking (FASS) is one robust way to carry out on-chip sample precon-
centration. In FASS, the sample is prepared in an electrolyte solution of lower concentration than the
background electrolyte (BGE). The low-conductivity sample is introduced into a separation channel oth-
erwise filled with the BGE. In these systems, the electromigration current is approximately nondivergent
so that ∇  (σE�) � 0, where σ is ionic conductivity. Upon application of a potential gradient along the
axis of the separation channel, the sample region is therefore a region of low conductivity (high electric
field) in series with the BGE region(s) of high conductivity (low electric field). Sample ions migrate from
the high-field–high-drift-velocity of the sample region to the low-field–low-drift-velocity region and
accumulate, or stack, at the interface between the low and high conductivity regions.

The seminal work in the analysis of unsteady ion distributions during electrophoresis is that of
Mikkers et al. (1979), who used the Kohlrausch regulating function (KRF) [Beckers and Bocek, 2000;
Kohlrausch, 1897] to study concentration distributions in electrophoresis. There have been several review
papers on FASS, including discussions of on-chip FASS devices, by Quirino et al. (1999), Osborn et al.
(2000), and Chien (2003). FASS has been applied by Burgi and Chien (1991), Yang and Chien (2001), and
Lichtenberg et al. (2001) to microchip-based electrokinetic systems. These three studies demonstrated
maximum signal enhancements of 100-fold over nonstacked assays. More recently, Jung et al. (2003)
demonstrated a device that avoids electrokinetic instabilities associated with conductivity gradients and
achieves a 1,100-fold increase in signal using on-chip FASS. Recent modeling efforts include the work of
Sounart and Baygents (2001), who developed a multicomponent model for electroosmotically driven
separation processes. They performed two-dimensional numerical simulations and demonstrated that
nonuniform electroosmosis in these systems causes regions of recirculating flow in the frame of the mov-
ing analyte plug. These recirculating flows can drastically reduce the efficiency of sample stacking.
Bharadwaj and Santiago (2004) present an experimental and theoretical investigation of FASS dynamics.
Their model analyzes dispersion dynamics using a hybrid analysis method that combines area-averaged,
convective-diffusion equations with regular perturbation methods to provide a simplified equation set
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for FASS. They also present model validation data in the form of full-field epifluorescence images quan-
tifying the spatial and temporal dynamics of concentration fields in FASS.

The dispersion dynamics of nonuniform electroosmotic flow FASS systems results in concentration
enhancements that are a strong function of parameters such as electric field, electroosmotic mobility, dif-
fusivity, and the background electrolyte-to-sample conductivity ratio γ. At low γ and low electroosmotic
mobility, electrophoretic fluxes dominate transport and concentration enhancement increases with γ. At γ
and significant electroosmotic mobilities, increases in γ increase dispersion fluxes and lower sample con-
centration rates. The optimization of this process is discussed in detail by Bharadwaj and Santiago (2004).

10.2.10.2 Isotachophoresis

Isothachopheresis [Everaerts et al., 1976] uses a heterogenous buffer to achieve both concentration and
separation of charged ions or macromolecules. Isotachophoresis (ITP) occurs when a sample plug con-
taining anions (or cations) is sandwiched between a trailing buffer and a leading buffer such that all the
sample anions (cations) are slower than the anion (cation) in the leading buffer and faster than all the
anion (cation) in the trailing buffer. When an electric field is applied in this situation, all the sample
anions (cations) will rapidly form distinct zones that are arranged by electrophoretic mobility. In the case
where each sample ion carries the bulk of the current in its respective zone, the KRF states that the final
concentration of each ion will be proportional to its mobility. Because all anions (cations) migrate in distinct
zones, current continuity ensures that they migrate at the same velocity (hence the name isotachophoresis),
resulting in characteristic translating conductivity boundaries. Isotachophoresis in a transient manner is
used as a preconcentration technique prior to capillary electrophoresis; this combination is often referred
to as ITP-CE [Hirokawa, 2003]. Isotachophoresis and ITP-CE in microdevices has been described by
Kaniansky et al. (2000), Vreeland et al. (2003), Wainright et al. (2002), and Xu et al. (2003).

10.2.10.3 Isoelectric Focusing

Isoelectric focusing (IEF) is another electrophoretic technique that utilizes heterogenous buffers to
achieve concentration and separation [Catsimpoolas, 1976; Righetti, 1983]. Isoelectric focusing usually
employs a background buffer containing carrier ampholytes (molecules that can be either negatively
charged, neutral, or positively charged depending on the local pH). The pH at which an amphoteric mol-
ecule is neutral is called the isoelectric point, or pI. Under an applied electric field, the carrier ampholytes
create a pH gradient along a channel or capillary. When other amphoteric sample molecules are intro-
duced into a channel with such a stabilized pH gradient, the samples migrate until they reach the loca-
tion where the pH is equal to the pI of the sample molecule. Thus IEF concentrates initially dilute
amphoteric samples and separate them by isoelectric point. Because of this behavior, IEF is often used as
the first dimension of multidimensional separations. IEF and multidimensional separations employing
IEF have been demonstrated in microdevices by Hofmann et al. (1999), Woei et al. (2002), Li et al. (2004),
Macounova et al. (2001), and Herr et al. (2003).

10.2.10.4 Temperature Gradient Focusing

Another method of sample stacking is temperature gradient focusing (TGF), which uses electrophoresis,
pressure-driven flow, and electroosmosis to focus and separate samples based on electrophoretic mobil-
ity. In TGF, an axial temperature gradient applied axially along a microchannel produces a gradient in
electrophoretic velocity. When opposed by a net bulk flow, charged analytes focus at points where their
electrophoretic velocity and the local, area-averaged liquid velocity sum to zero. The method has been
demonstrated experimentally by Ross and Locascio (2002). A review of various various electrofocusing
techniques is given by Ivory (2000).

10.2.10.5 Electrothermal Flows

A fifth important class of heterogenous electrolyte electrokinetic flows are electrothermal flows. These flows
are generated by electric body forces in the bulk liquid of an electrokinetic flow system with finite temperature
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gradients. These flows were first described by Ramos et al. (1998) and have been analyzed by Ramos et al.
(1999) and Green et al. (2000a, 2000b). Work in this area is summarized in the book by Morgan and
Green (2003). These researchers were interested in steady flow-streaming-like behavior observed in microflu-
idic systems with patterned AC electrodes. The devices were designed for dielectrophoretic particle con-
centration and separation. Secondary flows in these systems are generated by the coupling of AC electric
fields and temperature gradients. This coupling creates body forces that can cause order 100 micron per sec-
ond liquid velocities and dominate the transport of particulates in the device. Experimental validation of
these flows has been presented by Green et al. (2000b) and Wang et al. (2004). The latter work used two-
color micron-resolution PIV (Santiago, 1998) to independently quantify liquid and particle velocity fields.

Ramos et al. (1998) presented a linearized theory for modeling electrothermal flows. Electrothermal
forces result from net charge regions in the bulk of an electrolyte with finite temperature gradients.
Temperature gradients are a result of localized Joule heating in the system and affect both local electrical
conductivity σ and the dielectric permittivity ε. In the Ramos model, ion density is assumed uniform and
the temperature field (and therefore the conductivity and permittivity fields) is assumed known and
steady. The latter assumptions imply a low value of the thermal Peclet number (Probstein, 1994) for the
flow. The general body force on a volume of liquid in this system, f�e can be derived from the divergence
of the Maxwell stress tensor (Melcher, 1981) and written as

f�e � ρEE� � 0.5|E�|2 ∇ε

Ramos et al. (1998) assume a linear expansion of the form E� � E�o � E�1, where E�o is the applied field (sat-
isfying ∇  E�o � 0) and E�1 is the perturbed field, such that |Eo| 

 |E1|. Assuming a sinusoidal applied
field of the form E�o(t) � Re[EE�oexp(jωt)], and substituting this linearization into an expression of the con-
servation of electromigration current (∇  (σ E� � 0), yields

∇  E�1 � ,

where higher order terms have been neglected. The (steady, nonuniform) electric charge density is then
ρE � ∇ε 

–
Eo � ε∇ 

–
E1. This charge density can be combined with the relation for f�e above to solve for

motion of the liquid using the Navier–Stokes equations. Note that this model assumes steady conductiv-
ity and permittivity fields determined solely by a steady temperature field. The electric body force field is
therefore uncoupled from the motion of the liquid.

10.2.10.6 Electrokinetic Flow Instabilities

Electrokinetic instabilities are a sixth interesting example of complex electrokinetic flow in heterogenous
electrolyte systems. Electrokinetic instabilities (EKI) are produced by an unsteady coupling between elec-
tric fields and conductivity gradients. Lin et al. (2004) and Chen et al. (2004) present the derivation of a
model for generalized electrokinetic flow that builds on the general electrohydrodynamics framework
provided by Melcher (1981). This model results in a formulation of the following form:

� v  ∇σ � ∇2σ,

∇  (σE�) � 0,

∇  εE� � ρE,

∇  v � 0,

Re� � v  ∇v� � �∇p � ∇2v � ρE E�.

The first equation governs the development of the unsteady, nonuniform electrolyte conductivity, σ, and
is derived from a summation of the charged species equations. The second equation is derived from a

∂v
�∂t

1
�
Rae

∂σ
�∂t

�(∇σ � jω∇ε)  E�o
��σ � jωε
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COLOR FIGURE 9.6 Velocity profiles for MHD flow in a microchannel. Knin � 0.088, Knout � 0.3, Pin/Pout � 2.28,
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COLOR FIGURE 9.7 Velocity profiles for MHD flow in a microchannel. Knin � 0.088, Knout � 0.3, Pin/Pout � 2.28,
ε � H/L � 0.05, α � 1, M � 0.1, Ha � 54, E0 � 0.

COLOR FIGURE 10.2 Blood sample cartridge using microfluidic channels. (Reprinted with permission from i-Stat,
East Windsor, NJ, 2000.)
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COLOR FIGURE 10.18 Time evolution of electrokinetic flow instability: (a) Experimental data of instability mix-
ing of HEPES buffered 50 µS/cm (red) and 5 µS/cm (blue) conductivity streams [Lin et al., 2004]. At time t � 0.0 sec,
a static electric field of E � 50,000 V/m is applied in the (horizontal) streamwise direction perpendicular to the ini-
tial conductivity gradients. Image area is 1 mm in the vertical direction and 3.6 mm in the streamwise direction.
Channel depth (into the page) is 100 µm. Small amplitude waves quickly grow and lead to rapid stirring of the ini-
tially distinct buffer streams. (b) Reproduction of dynamics from simplified, 2-D nonlinear numerical computations.
The numerical model well reproduces features of the instability observed in experiments, including wave number and
time scale. Details of this model are given by Lin et al. [2004].

COLOR FIGURE 11.2 Theory and measurements of Couette damping in a tuning fork gyro (Kwok et al. [2005]).
Note that in the high Knudsen number limit, the free molecular approximation predicts the damping more closely,
but that the slip-flow model, though totally inappropriate at this high Kn level, is not too far from the experimental
measurements.
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COLOR FIGURE 11.5 Solutions to the squeeze-film equation for a rectangular plate. The stiffness and damping
coefficients are presented as functions of the modified squeeze number, which includes a correction due to first-order
rarefaction effects [Blech, 1983; Kwok et al., 2005].

COLOR FIGURE 11.6 Schematic of the MIT Microengine, showing the air path through the compressor, combus-
tor, and turbine. Forward and aft thrust bearings located on the centerline hold the rotor in axial equilibrium, while
a journal bearing around the rotor periphery holds the rotor in radial equilibrium.

COLOR FIGURE 11.13 Geometry of a wave bearing, with the clearance greatly exaggerated for clarity [Piekos, 2000].
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COLOR FIGURE 15.8 Localized controller gains relating the state estimate x̂ inside the domain to the control forcing
u at the point {x � 0, y � �1, z � 0} on the wall. Visualized are a positive and negative isosurface of the convolution
kernels for (left) the wall-normal component of velocity and (right) the wall-normal component of vorticity.
(Högberg, M., Bewley, T.R., and Henningson, D.S. (2003) “Linear Feedback Control and Estimation of Transition in
Plane Channel Flow,” J. Fluid Mech. 481, pp. 149–75. Reprinted with permission from Elsevier Science.)
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COLOR FIGURE 15.9 Localized estimator gains relating the measurement error (y � ŷ) at the point {x � 0,
y � �1, z � 0} on the wall to the estimator forcing terms v inside the domain. Visualized are a positive and negative
isosurface of the convolution kernels for (left) the wall-normal component of velocity and (right) the wall-normal
component of vorticity. (Högberg, M., Bewley, T.R., and Henningson, D.S. (2003) “Linear Feedback Control and
Estimation of Transition in Plane Channel Flow,” J. Fluid Mech. 481, pp. 149–75. Reprinted with permission from
Elsevier Science.)
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(a) � = 10 (b) � = 0.5 (c) � = 0.025

COLOR FIGURE 15.12 Example of the spectacular failure of linear control theory to stabilize a simple nonlinear
chaotic convection system governed by the Lorenz equation. Plotted are the regions of attraction to the desired 
stationary point (blue) and to an undesired stationary point (red) in the linearly controlled nonlinear system, and
typical trajectories in each region (black and green, respectively). The cubical domain illustrated is Ω � (�25, 25)3 in
all subfigures. For clarity, different viewpoints are used in each subfigure. (Reprinted with permission from Bewley,
T.R. (1999) Phys. Fluids 11, 1169–86. Copyright 1999, American Institute of Physics.)

COLOR FIGURE 15.11 Visualization of the coherent structures of uncontrolled near-wall turbulence at Re� � 180.
Despite the geometric simplicity of this flow (see Figure 15.1), it is phenomenologically rich and is characterized by
a large range of length scales and time scales over which energy transport and scalar mixing occur. The relevant spec-
tra characterizing these complex nonlinear phenomena are continuous over this large range of scales, thus such flows
have largely eluded accurate description via dynamic models of low state dimension. The nonlinearity, the distributed
nature, and the inherent complexity of its dynamics make turbulent flow systems particularly challenging for suc-
cessful application of control theory. (Simulation by Bewley, T.R., Moin, P., and Temam, R. (2001) J. Fluid Mech.
Reprinted with permission of Cambridge University Press.)
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COLOR FIGURE 15.14 Performance of optimized blowing/suction controls for formulations based on minimizing
Jo(φ), case c (see Section 15.9.1.2), as a function of the optimization horizon T�. The direct numerical simulations of
turbulent channel flow reported here were conducted at Reτ � 100. For small optimization horizons (T� � O(1),
sometimes called the “suboptimal approximation”), approximately 20% drag reduction is obtained, a result that can
be obtained with a variety of other approaches. For sufficiently large optimization horizons (T� � 25), the flow is
returned to the region of stability of the laminar flow, and the flow relaminarizes with no further control effort
required. No other control algorithm tested in this flow to date has achieved this result with this type of flow actua-
tion. (From Bewley, T.R., Moin, P., and Temam, R. (2001) J. Fluid Mech., to appear. Reprinted with permission of
Cambridge University Press.)
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COLOR FIGURE 15.20 A MEMS tile integrating sensors, actuators and control logic for distributed flow control
applications. (Developed by Professors Chih-Ming Ho, UCLA, and Yu-Chong Tai, Caltech.)
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COLOR FIGURE 15.22 Future interdisciplinary problems in flow control amenable to adjoint-based analysis:
(a) minimization of sound radiating from a turbulent jet (simulation by Prof. Jon Freund, UCLA), (b) maximization
of mixing in interacting cross-flow jets (simulation by Dr. Peter Blossey, UCSD) [Schematic of jet engine combustor
is shown at left. Simulation of interacting cross-flow dilution jets, designed to keep the turbine inlet vanes cool, are
visualized at right.], (c) optimization of surface compliance properties to minimize turbulent skin friction, and 
(d) accurate forecasting of inclement weather systems.
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conservation of net charge in the limit of fast charge relaxation. As discussed in detail by Lin et al. (2004),
the relaxed charge assumption is consistent with the net neutrality approximation and leads to the con-
dition that electromigration current is at all times conserved. The third equation is Gauss’ law, and the
last two are the Navier–Stokes equations describing fluid velocity with an electrostatic body force of the
form ρEE�. Electrokinetic flow instabilities associated with electrokinetic flows with conductivity gradients
arise from a coupling of these equations. This coupling results in an electric body force (per unit volume)
of the form (εE�  ∇σ)E�, which occurs in regions where local electric field is parallel to the conductivity
gradient. Electrokinetic flows become unstable when the ratio of the characteristic electric body force to
the viscous force in the flow exceeds a critical value [Chen et al., 2004; Lin et al., 2004]. These flows are
unstable even in the limit of vanishing Reynolds number.

Electrokinetic instabilities have been experimentally demonstrated, for various geometric configura-
tions by Oddy et al. (2001), Lin et al. (2004), and Chen et al. (2002, 2004). Figure 10.18 shows both an
experimental visualization and a numerical model of a temporal instability in a microchannel with a con-
ductivity gradient initially orthogonal to the applied electric field [Oddy, 2001]. Chen et al. (2004) show,
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FIGURE 10.18 (See color insert following page 10-34.) Time evolution of electrokinetic flow instability: (a) Experi-
mental data of instability mixing of HEPES buffered 50 µS/cm (red) and 5 µS/cm (blue) conductivity streams [Lin et al.,
2004]. At time t � 0.0 sec, a static electric field of E � 50,000 V/m is applied in the (horizontal) streamwise direction
perpendicular to the initial conductivity gradients. Image area is 1 mm in the vertical direction and 3.6 mm in the
streamwise direction. Channel depth (into the page) is 100 µm. Small amplitude waves quickly grow and lead to rapid
stirring of the initially distinct buffer streams. (b) Reproduction of dynamics from simplified, 2-D nonlinear numeri-
cal computations. The numerical model well reproduces features of the instability observed in experiments, including
wave number and time scale. Details of this model are given by Lin et al. [2004].
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in a slightly different geometry with much shallower channel (11 micron depth), a convective electroki-
netic instability in which spatial growth of disturbances is observed. In both of these experiments thresh-
old electric fields are observed above which the flow becomes unstable and rapid stirring and mixing
occur. Together, the work of Lin et al. (2004) and Chen et al. (2004) describes the basic mechanism behind
electrokinetic instabilities and identifies the critical electric Rayleigh numbers that govern the onset of the
instability. Lin et al. (2004) present linear models for temporal electrokinetic instabilities, a nonlinear
numerical model of the instability, and validation experiments in a long, thin microchannel structure.
Chen et al. (2004) also present experimental results and describe the convective nature of the instability.
The latter work identifies the electroviscous-to-electroosmotic-velocity ratio as the critical value that
demarcates the boundary between convective and absolute instability.

In general, electrokinetic instabilities and flows with unsteady, nonuniform body forces due to cou-
plings between electric fields and conductivity and permittivity gradients are directly relevant to a vari-
ety of on-chip electrokinetic systems. Such complex flow systems include field amplified sample stacking
devices [Bharadwaj and Santiago, 2004; Chien, 2003; Jung et al., 2003]; low-Reynolds number micromix-
ing [Oddy et al., 2001]; multidimensional assay systems [Herr et al., 2003]; and dielectrophoretic devices
[Morgan and Green, 2003]. In general, this complex coupling of applied field and heterogenous elec-
trolyte properties may occur in any electrokinetic system with imperfectly specified sample chemistry.

10.2.11 Practical Considerations

A few practical considerations should be considered in the design, fabrication, and operation of electro-
kinetic microfluidic systems. These considerations include the dimensions of the system, the choice of
liquid and buffer ions, the field strengths used, and the characteristics of the flow reservoirs and inter-
connects. A few examples of these design issues are given here.

In the case of microchannels used to generate pressure, Equation (10.60) shows that a low liquid con-
ductivity is essential for increasing thermodynamic efficiency of an electrokinetic pump because Joule
heating is an important contributor to dissipation [Yao and Santiago, 2003a; Zhao and Liao, 2002]. In
electrokinetic systems for chemical analysis, on the other hand, the need for a stable pH requires a finite
buffer strength, and typical buffer strengths are in the 1–100 mM range. The need for a stable pH there-
fore often conflicts with a need for high fields [Bharadwaj et al., 2002] to achieve high efficiency separa-
tions because of the effects of Joule heating of the liquid.

Joule heating of the liquid in electrokinetic systems can be detrimental in two ways. First, temperature
gradients within the microchannel cause a nonuniformity in the local mobility of electrophoretic parti-
cles because the local viscosity is a function of temperature. This nonuniformity in mobility results in a
dispersion associated with the transport of electrophoretic species [Bosse and Arce, 2000; Grushka et al.,
1989; Knox, 1988]. The second effect of Joule heating is the rise in the absolute temperature of the buffer.
This temperature rise results in higher electroosmotic mobilities and higher sample diffusivities. In
microchip electrophoretic separations, the effect of increased diffusivity on separation efficiency is some-
what offset by the associated decrease in separation time. In addition, the authors have found that an
important limitation to the electric field magnitude in microchannel electrokinetics is that elevated tem-
peratures and the associated decreases in gas solubility of the solution often result in the nucleation of gas
bubbles in the channel. This effect of driving gas out of solution typically occurs well before the onset of
boiling and can be catastrophic to the electrokinetic system because gas bubbles grow and eventually
break the electrical circuit required to drive the flow. This effect can be reduced by outgassing of the solu-
tion and is, of course, a strong function of the channel geometry, buffer conductivity, and the thermal
properties of the substrate material.

Another important consideration in any microfluidic device is the design and implementation of
macro-to-micro fluidic interconnects. Practical implementations of fluidic interconnects span a wide
range of complexity. One common practice (though rarely mentioned in publications) is to simply glue
(e.g., with epoxy and by hand) trimmed plastic pipette tips or short glass tubes around the outlet port on
a fluidic chip to form an end-channel reservoir. Some systems, such as those described by Gray et al.
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(1999) for silicon microfluidic chips, incorporate especially microfabricated structures for integrated,
low-dead-volume connections. Krulevitch (2002) describes a set of interconnects applicable to silicone
rubber fluidic systems. Still other systems use Nanoport interconnect fittings commercially available from
Upchurch Scientific. Fluidic interconnects are clearly an area that would benefit from an informed review
of the various advantages and disadvantages of common schemes. These factors include ease of assembly,
typical fabrication yield, dead volume, ability to deal with electrolytic reaction products, and pressure
capacity.

Lastly, an important consideration in electrokinetic experiments is the inadvertent application and/or
generation of pressure gradients in the microchannel. Probably the most common cause of this is a mis-
match in the height of the fluid level at the reservoirs. Although there may not be a mismatch of fluid level
at the start of an experiment, the flow rates created by electroosmotic flow may eventually create a fluid
level mismatch. Also, the fluid level in each reservoir, particularly in reservoirs of 1 mm diameter or less,
may be affected by electrolytic gas generation at each electrode. Because electroosmotic flow rate scales as
channel diameter squared, whereas pressure-driven flow scales as channel diameter to the fourth power,
this effect is greatly reduced by decreasing the characteristic channel diameter. Another common method
of reducing this pressure head effect is to increase the length of the channel for a given cross-section. This
length increase, of course, implies an increase in operating voltages to achieve the same flow rate. A sec-
ond source of pressure gradients is a nonuniformity in the surface charge in the channel. An elegant
closed-form solution for the flow in a microchannel with arbitrary axial zeta potential distribution is pre-
sented by Anderson and Idol (1985). Herr et al. (2000) visualized this effect and offered a simple analyt-
ical expression to the pressure-driven flow components associated with zeta potential gradients in fully
developed channel flows.

10.3 Summary and Conclusions

In microchannels, the flow of a liquid differs fundamentally from that of a gas, primarily due to the effects
of compressibility and potential rarefaction in gases. Significant differences from continuum macroscale
theories have been observed. If experiments are performed with sufficient control and care in channels
with dimensions of the order of tens of microns or larger, the friction factors measured in the range of
accepted laminar flow behavior (i.e., Re 	 2000) agree with classical continuum hydrodynamic theory to
within small or negligible differences [Sharp and Adrian, 2004], and the transition to turbulence occurs
at or near the nominally accepted values for both rectangular and circular microchannels [Liu and
Garimella, 2004; Sharp and Adrian, 2004].

The possibility cannot be ruled out, however, that some physical effects such as roughness or electrical
charge effects are causing a deviation from conventional flow results in certain experiments. Observed
differences may also be due to imperfections in the flow system of the experiment, and because imper-
fections may well occur in real engineering systems, it is essential to understand the sources of the
observed discrepancies in order to avoid them, control them, or factor them into the designs.
Measurement techniques for liquid flows are advancing quickly, both as macroscale methods are adapted
to these smaller scales and as novel techniques are being developed. Further insight into phenomena pres-
ent in the microscale flows, including those due to imperfections in channels or flow systems, is likely to
occur rapidly given the evolving nature of the measurement techniques. Complex, nonlinear channels can
be used efficiently to design for functionality.

Electrokinetics is a convenient and easily controlled method of achieving sample handling and sepa-
rations on a microchip. Because the body force exerted on the liquid is typically limited to a region within
a few nanometers from the wall, the resulting profiles, in the absence of imposed pressure-gradients, are
often plug-like for channel dimensions greater than about 10 µm and ion concentrations greater than
about 10 µM. For simple electroosmotic flows with thin EDLs, low Reynolds number, uniform surface
charge, and zero imposed pressure gradients, the velocity field of these systems is well approximated by
potential flow theory. This significant simplification can, in many cases, be used to predict and optimize
the performance of electrokinetic systems. Further, electrokinetics can be used to generate large pressures
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(
20 atm) on a microfabricated device. In principle, the handling, rapid mixing, and separation of
solutes in less than 1 pL sample volumes should be possible using electrokinetic systems built with cur-
rent microfabrication technologies.
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11.1 Introduction

As microengineering technology continues to advance, driven by increasingly complex and capable
microfabrication and materials technologies, the need for more sophistication in MEMS design will
increase. Fluid film lubrication has been a critical issue from the outset of MEMS development, particu-
larly in the prediction and control of viscous damping in vibrating devices such as accelerometers and
gyros. Much attention has been showered on the development of models for accurate prediction of vis-
cous damping and on the development of fabrication techniques for minimizing the damping, which
destroys the quality, or Q-factor, of a resonant system. In addition to the development and optimization
of these oscillatory devices, rotating devices — micromotors, microengines, etc. — have also captured the
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11-2 MEMS: Introduction and Fundamentals

attention of MEMS researchers since the early days of MEMS development, and there have been several
demonstrations of micromotors drive by electrostatic forces [Bart et al., 1988; Mehregany et al., 1992;
Nagle and Lang, 1999; and Sniegowski and Garcia, 1996].

For the most part these motors were very small, with rotors of the order of 100 microns in diameter,
and although they had high rotational speeds (hundreds of thousands of revolutions per minute), their
tip speeds and rotational energy, which scales with tip speed, was quite small. Tip speeds of 1 meter per
second are typical. In addition, the focus of these projects was the considerable challenge of fabricating a
freely moving part and integrating the drive electrodes. Lubrication and protection against wear were low
priority. The demonstrated engines relied on dry-rubbing bearings in which the rotor was held in place
by a bushing, but there was no design or integration of a lubrication system. The low surface speeds of
these engines meant that they could operate for long times using this primitive bearing, however, failure
was observed frequently due to rotor and bearing wear.

As MEMS devices become more sophisticated and have more stringent design and longevity require-
ments, the need for more accurate and extensive design tools for lubrication has increased. In addition,
the energy density of MEMS is increasing. Devices for power generation, propulsion, and so forth are
actively under development. In such devices the temperatures and stresses are stretched to the material
limits. Hence, the requirement for protection of moving surfaces becomes more than a casual interest —
it is critical for the success of a “power-MEMS” device.

11.1.1 Objectives and Outline

The objective of this chapter is to briefly summarize some the issues associated with lubrication in
MEMS. Lubrication is a vast topic. Our focus is to review the essential features of lubrication theory and
design practice, and to highlight the difficulties that arise in the design of a lubrication system for MEMS
devices. A key feature of MEMS is that the fabrication, material properties, and mechanical and electri-
cal design are all tightly interwoven and cannot be separated. For this reason, some attention is devoted
to the important issue of how a successful lubrication system is influenced by manufacturing constraints
and material properties.

One should always remember that MEMS is a rapidly developing, expanding, and maturing manufac-
turing technology. The range of geometric options, available materials, and dimensional control is con-
tinually developing and improving. This chapter focuses on the current state of the art in MEMS
fabrication. For this reason this chapter favors silicon-based fabrication processes and the constraints that
lithographic-based batch fabrication techniques place on lubrication system design and performance.

Examples are drawn from several sources. In the sections on translational and squeeze-film damping,
examples are drawn from the extensive literature associated with accelerometer and gyro design. For
rotating system lubrication, we draw heavily on the MIT Microengine project [Epstein et al., 1997],
which, to our knowledge, is the only MEMS device to date with rotating elements that use a fluid film
lubrication system. This device is described in some detail later in the chapter, and the analysis and 
examples of thrust bearings and journal bearings are drawn from that device.

11.2 Fundamental Scaling Issues

11.2.1 The Cube-Square Law

The most dominant effect that changes our intuitive appreciation of the behavior of microsystems is the
so-called “cube-square law.” This law states that volumes scale with the cube of the typical length scale,
while areas (including surface areas) scale with the square of the length scale. Thus, as a device shrinks,
surface phenomena become relatively more important than volumetric phenomena. The most important
consequence of this phenomena is that the device mass and inertia become negligibly small at the micro-
and nano-scales. For lubrication, this phenomena means that the volumetric loads that require support,
like the weight of a rotor, quickly become negligible. As an example, consider the ratio of the weight of a

© 2006 by Taylor & Francis Group, LLC



microfabricated rotor (a cylinder of density ρ, diameter D, and length L) compared to the pressure (p)
acting on its projected surface area. This can be expressed as a non-dimensional load parameter:

ζ � ∝ (11.1)

from which it can be seen that the load parameter decreases linearly as the device shrinks. For example,
the load parameter due to the rotor mass for the MIT Microengine, which is a relatively large MEMS
devices (measuring 4 mm in diameter and 300 microns deep), is approximately 10�3. The benefits of this
scaling are that orientation or the freely suspended part becomes effectively irrelevant and that unloaded
operation is easy to accomplish. In addition, since the gravity loading is negligible, the primary forces that
one needs to support are pressure-induced loads and in a rotating device loads due to rotational imbal-
ance. This last load is very important and will be discussed in more detail in connection to rotating lubri-
cation requirements. The chief disadvantage of the low natural loading is that unloaded operation is often
undesirable (in hydrodynamic lubrication where a minimum eccentricity is required for journal bearing
stability), and in practice, gravity loading is often used to advantage. Therefore a scheme for applying an
artificial load needs to be developed. This is discussed in more detail later in the chapter.

11.2.2 Applicability of the Continuum Hypothesis

A common concern in microfluidic devices is the appropriateness of the continuum hypothesis as the
device scale continues to fall. At some scale, the typical inter-molecular distances will be comparable to
the device scales and the use of continuum fluid equations becomes suspect. For gases, this is measured
by the Knudsen number (Kn) — the ratio of the mean free path to the typical device scale. Numerous
experiments [Arkilic et al., 1997, 1993; Breuer et al., 2001] have determined that non-continuum effects
become observable when Kn reaches approximately 0.1 and that continuum equations become meaning-
less (the “transition flow regime”) at Kn of approximately 0.3. For atmospheric temperature and pressure,
the mean free path of air is approximately 70 nm. Thus, atmospheric devices with features smaller than
approximately 0.2 microns will be subject to non-negligible non-continuum effects. In many cases, such
small dimensions are not present, and the fluidic analysis can safely use the standard Navier–Stokes equa-
tions (this is the case for the microengine).

Nevertheless, in applications where viscous damping is to be avoided (for example in high-Q resonat-
ing devices such as accelerometers or gyroscopes) the operating gaps are typically quite small (perhaps a
few microns), and the gaps serve as both a physical standoff and a sense-gap where capacitive sensing is
accomplished. In such examples one must work with the small dimension, and in order to minimize vis-
cous effects, the device is packaged at low pressures where non-continuum effects are evident. For small
Knudsen numbers, the Navier–Stokes equations can be used with a single modification — the boundary
condition is relaxed from the standard non-slip condition to that of a slip-flow condition where the 
velocity at the wall is related to the Knudsen number and the gradient of velocity at the wall:

uw �λ �
w

(11.2)

where σ is the tangential momentum accommodation coefficient (TMAC) which varies between 0 and 1.
Experimental measurements [Breuer et al., 2001] indicate that smooth native silicon has a TMAC of
approximately 0.7 in contact with several commonly used gases.

Despite the fact that the slip-flow theory is valid only for low Kn, it is often used incorrectly with great
success at much higher Knudsen numbers. Its adoption beyond its range of applicability stems primarily
from the lack of any better approach short of solving the Bolzmann equation or Direct Simulation Monte
Carlo (DSMC) computations [Beskok and Karniadakis, 1994; Cai et al., 2000]. For many simple geome-
tries, the “extended” slip-flow theory works much better than it should and provides quite adequate results
[Kwok et al., 2005]. This theory is demonstrated in the sections on Couette and squeeze-film damping
later in the chapter.
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11.2.3 Surface Roughness

Another peculiar feature of MEMS devices is that the surface roughness of the material used can become
a significant factor in the overall device geometry. MEMS surface finishes are quite varied, ranging from
atomically smooth surfaces found on polished single-crystal silicon substrates to the rough surfaces left
by different etching processes. The effects of these topologies can be important in several areas for microde-
vice performance. Probably the most important effect is the way in which the roughness can affect struc-
tural characteristics such as crack initiation, yield strength, etc., although this will not be explored in this
chapter. Secondly, the surface finish can affect fluidic phenomena such as the energy and momentum
accommodation coefficient, and consequently, the momentum and heat transfer. Lastly, the surface char-
acteristics (not only the roughness, but also the surface chemistry and affinity) can strongly affect its
adhesive force. This is not treated in detail in this discussion, although it is mentioned briefly at the end
of the chapter in connection with tribology issues in MEMS.

11.3 Governing Equations for Lubrication

With the proviso that the continuum hypothesis holds for micron-scale devices (perhaps with a modified
boundary condition), the equations for microlubrication are identical to those used in conventional
lubrication analysis and can be found in any standard lubrication textbook [Hamrock, 1984]. We present
the essential results here, but the reader is referred to more complete treatments for full derivations and
a detailed discussion of the appropriate limitations.

Starting with the Navier–Stokes equations, we can make a number of simplifying assumptions appro-
priate for lubrication problems. These are itemized here:

Inertia: The terms representing transfer of momentum due to inertia may be neglected. This arises
because of the small dimensions that characterize lubrication geometries and MEMS in particular.
In very high speed devices such as the MIT Microengine, inertial terms may not be as small as one
might like, and corrections for inertia may be applied. However, preliminary studies suggest that these
corrections are small [Piekos, 2000].

Curvature: Lubrication geometries are typically characterized by a thin fluid film with a slowly varying
film thickness. The critical dimension in such systems is the film thickness, and this is assumed to
be much smaller than any radius of curvature associated with the overall system. This assumption is
particularly important in rotating systems where a circular journal bearing is used. Assuming that
the radius of the bearing R is much larger than the typical film thickness c (i.e., c/R �� 1) greatly
simplifies the governing equations.

Isothermal: Because volumes are small and surface areas are large, thermal contact between the fluid and
the surrounding solid is very good in a MEMS device. In addition, common MEMS materials are good
thermal conductors. For both these reasons, it is safe to assume that the lubrication film is isothermal.

With these restrictions, the Navier–Stokes equations, the equation for the conservation of mass, and
the equation of state for a perfect gas may be combined to yield the Reynolds equation [Reynolds, 1886],
written here for two-dimensional films:

0 � �� � � �� � � � � � � �
� ρ(wa � wb) � ρua � ρva � h (11.3)

where x and y are the coordinates in the lubrication plane: ua etc. are the velocities of the upper 
and lower surfaces. An alternate and more general version may be derived [Burgdorfer, 1959] by non-
dimensionalization with the film length and width (l and b), the minimum clearance hmin, a characteristic
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shearing velocity ub, and a characteristic unsteady frequency ω. In addition, gas rarefaction can be incor-
porated for low Knudsen numbers by assuming a slip-flow wall boundary condition:

�(1 � 6K)PH3 � � A2 �(1 � 6K)PH3 � � Λ � σ (11.4)

where

A � ; Λ � ; σ � (11.5)

A is the film aspect ratio, Λ is the bearing number, and σ is the squeeze number representing unsteady effects.
Solution of the Reynolds equation is straightforward, but not trivial. A chief difficulty is that gas films

are notoriously unstable if they operate in the wrong parameter space. In order to determine the stabil-
ity or instability of the numerically-generated solution, both the steady Reynolds equation and its
unsteady counterpart need to be addressed with some accuracy. These issues are discussed more by Piekos
and Breuer (1998) and others.

11.4 Couette-Flow Damping

The viscous damping of a plate oscillating in parallel motion to a substrate has been a problem of tremen-
dous importance in MEMS devices, particularly in the development of resonating structures such as
accelerometers and gyros. The problem arises because the proof mass, which may be hundreds of microns
in the lateral dimension, is typically suspended above the substrate with a separation of only a few microns.

A simple analysis of Couette-flow damping for rarefied flows is easy to demonstrate by choosing a
model problem of a one-dimensional proof mass (i.e., ignoring the dimension perpendicular to the plate
motion). This is shown schematically in Figure 11.1.

The Navier–Stokes equations for this geometry reduce to:

� µ (11.6)

in which only viscous stresses due to the velocity gradient and the unsteady terms survive. This can be
solved using separation of variables and employing a slip-flow boundary condition [Arkilic and Breuer,
1993] yielding the solution the drag force experienced by the moving plate:

D � � � (11.7)

where

β � �� (11.8)
ωh2

�µ
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���
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FIGURE 11.1 Schematic of Couette-flow damping geometry. The upper plate vibrates with a proscribed amplitude
and frequency. For most MEMS geometries and frequencies, the unsteadiness can usually be neglected.
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is a Stokes number, representing the balance between unsteady and viscous effects, and DR is a correction
due to slip flow at the wall:

DR � 2Knβ(sinh β � sin β) � 2Kn2β2(cosh β � cos β) (11.9)

A typical MEMS geometry might have a plate separation of one micron and an operating frequency of
10 kHz. With these parameters, the Stokes number is very small (approximately 0.1), and the flow may be
considered quasi-steady to a high degree of approximation. In addition, the rarefaction effects, indicated
by DR, are also vanishingly small at atmospheric conditions.

11.4.1 Limit of Molecular Flow

Although the slip-flow solution is limited to low Knudsen numbers, the damping due to a gas at high
degrees of rarefaction can be computed using a free-molecular flow approximation. In such cases the 
friction factor on a flat plate is given by Rohsenow and Choi (1961).

Cf � �� (11.10)

where γ is the ratio of specific heats and M is the Mach number. It is important to recognize that the
damping (and Q) in this case is provided, not only by the flow in the gap, but also by the flow above the
vibrating plate. However, it is unlikely that the fluid damping provides the dominant source of damping
at such extremely low pressures. More likely, damping derived from the structure (e.g., flexing of the sup-
port tethers, non-elastic strain at material interfaces, etc.) will take over as the dominant energy-loss
mechanism. Kwok et al. (2005) compared the continuum, slip-flow, and free molecular flow models for
Couette damping with data obtained by measuring the “ring down” of a tuning fork gyroscope fabricated
by Draper Laboratories. Figure 11.2 shows the measurements and theory confirming the functional
behavior of the damping as the pressure drops (Kn increases) and the unexpected accuracy of these rather
simple models. Although the trends are well-predicted, the absolute value of the Q-factor is still in error
by a factor of two, suggesting that more detailed computations are still of interest.
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FIGURE 11.2 (See color insert following page 10-34.) Theory and measurements of Couette damping in a tuning
fork gyro (Kwok et al. [2005]). Note that in the high Knudsen number limit, the free molecular approximation pre-
dicts the damping more closely, but that the slip-flow model, though totally inappropriate at this high Kn level, is not
too far from the experimental measurements.
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11.5 Squeeze-Film Damping

Squeeze-film damping arises when the gap size changes in an oscillatory manner squeezing the trapped
fluid (Figure 11.3). Fluid, usually air, is trapped between the vibrating proof mass and the substrate result-
ing in a squeeze film, which can significantly reduce the quality factor of the resonator. In some cases this
damping is desirable, but as with the case of Couette-flow damping, it is often parasitic, and the MEMS
designer tries to minimize its effects and maximize the resonant Q-factor of the device. Common methods
for alleviating squeeze-film effects are to fabricate breathing holes (“chimneys”) throughout the proof mass
which relieve the build up of pressure and to package the device at low pressure. Both of these solutions have
drawbacks. The introduction of vent holes reduces the vibrating mass, necessitating an even larger structure,
while the low-pressure packaging adds considerable complexity to the overall device development and
cost. Figure 11.4 illustrates a high-performance tuning fork gyroscope fabricated by Draper Laboratories.

11.5.1 Derivation of Governing Equations

The analysis of the squeeze-film damping is presented in the following section. The Reynolds equations
may be used as the starting point. However, a particularly elegant and complete solution was published
by Blech (1983) for the case of the continuum flow and was extended by Kwok et al. (2005) to the case of
slip-flow and flows films with vent holes. This analysis is summarized here.

Lubrication in MEMS 11-7

h(t ) = h0(1 + � sin �t )

FIGURE 11.3 Schematic of squeeze-film damping between parallel plates. As with Couette damping, for most prac-
tical embodiments of MEMS, the damping is quasi-steady.

FIGURE 11.4 Photograph of a typical microfabricated vibrating proof mass used in a high-performance tuning
fork gyroscope. (Reprinted with permission of M. Weinberg at Draper Laboratories.)
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The Navier–Stokes equations are written for the case of a parallel plate vibrating sinusoidally in a pro-
scribed manner in the vertical direction. If we assume that the motion, subsequent pressure, and velocity
perturbations are small, a perturbation analysis yields the classical squeeze-film equation derived by
Blech, with an additional term due to the rarefaction:

�ΨH3 � � �6KH2 � � σ (11.11)

where the variables have been non-dimensionalized, so that H represents the film gap, normalized by the
nominal film gap H � h(x, y, t)/ho; Ψ is the pressure, normalized by ambient pressure Ψ � P(x, y, t)/P0;
X and Y are the coordinates, normalized by the characteristic plate geometry X � x/Lx, Y � y/Ly; T is
time, normalized by the vibration frequency T � ωt; and the squeeze number σ is defined as before:

σ � (11.12)

Assuming small amplitude, harmonic forcing of the gap H � 1 � ε sin T, and a harmonic response of
the pressure, we can derive a pair of coupled equations describing the in-phase (Ψ0) and out-of-phase
(Ψ1) pressure distributions in the gap representing stiffness and damping coefficients, respectively:

� Ψ1 � � 0

� Ψ0
� 0 (11.13)

Note that these equations represent the standard conditions with the adoption of a modified squeeze
number, σm � σ/(1 � 6K). The solutions are achieved either by manual substitution of Fourier sine and
cosine series or by direct numerical solution. The results for rectangular plates with no vent holes are
shown in Figure 11.5.
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FIGURE 11.5 (See color insert following page 10-34.) Solutions to the squeeze-film equation for a rectangular plate.
The stiffness and damping coefficients are presented as functions of the modified squeeze number, which includes a
correction due to first-order rarefaction effects [Blech, 1983; Kwok et al., 2005].
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11.5.2 Effects of Vent Holes

The equations as previously derived are made more useful by extending them to account for the presence
of vent holes in the vibrating proof mass. In such cases the boundary condition at each vent hole is no
longer atmospheric pressure (Ψ0 � Ψ1 � 0), but rather an elevated pressure proscribed by the pressure
drop through the “chimney” which vents the squeeze film to the ambient. Kwok et al. (2005) demonstrate
that this can be incorporated into the previous model (in the limit of low squeeze number) by a modi-
fied boundary condition for the squeeze-film equations for Ψ0:

Ψ � � 32 � �
3

�1 � � �
2

���1 � 8

1

�σ (11.14)

12� �
4

This boundary condition has three components: a geometric component dependent on the plate thick-
ness t, length Lx, hole size Lh, and nominal gap size h0; a rarefaction component (here based on the hole
size); and a time-dependent component — the squeeze number σ. Note that as the thickness of the plate
decreases and the chimney pressure drop falls, the boundary condition approaches zero. Similarly, as the
open area fraction of the plate increases (more venting), the boundary condition approaches that of the
ambient. This boundary condition can be applied at the chimney locations and can accurately simulate
the squeeze-film damping of perforated micromachined plates.

11.5.3 Reduced-Order Models for Complex Geometries

Most devices of practical interest have geometries that are too complex to enable full numerical simula-
tion of the kind described previously. Reduced-order models are of great value in such cases. Many such
models have been developed, including those based on acousto-electric models [Veijola et al., 1995]. In
the case of squeeze-film damping in the limit of low squeeze numbers, such models reduce to solution of
a resistor network that models the pressure drops associated with each segment of the squeeze film. This
is effectively a finite-element approach to the problem. Instead of modeling a large number of elements,
as is generally the case in a numerical solution, a relatively small number of discrete elements can be used,
if higher-order solutions can be employed to connect each element together. Kwok et al. (2005) demon-
strate this approach and model the damping associated with an inclined plate with vent holes. More com-
plex numerical solution techniques based on boundary integral techniques have also been presented
[Aluru and White, 1998; Kanapka and White, 1999] providing a good balance between solution fidelity
and required computing power.

11.6 Lubrication in Rotating Devices

Rotating MEMS devices bring a new level of complexity to MEMS fabrication and to the lubrication con-
siderations. As discussed in the introduction, many rotors and motors have been demonstrated with dry-
rubbing bearings, and the success of these devices is due to the low surface speeds of the rotors. However,
as the surface speed increases in order to get high power densities, the dry rubbing bearings are no longer
an option, and true lubrication systems need to be considered. An example of “Power-MEMS” develop-
ment is provided by a project initiated at the Massachusetts Institute of Technology in 1995 to demon-
strate a fully functional microfabricated gas turbine engine [Epstein et al., 1997]. The baseline engine,
illustrated in Figure 11.6, consists of a centrifugal compressor, fuel injectors (hydrogen is the initial fuel,
although hydrocarbons are planned for later configurations), a combustor operating at 1600 K, and a
radial inflow turbine. The device is constructed from single crystal silicon and is fabricated by extensive
and complex fabrication of multiple silicon wafers that are fusion bonded in a stack to form the complete
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device. An electrostatic induction generator may also be mounted on a shroud above the compressor to
produce electric power instead of thrust [Nagle and Lang, 1999]. The baseline MIT Microengine has at
its core a “stepped” rotor consisting of a compressor with an 8 mm diameter and a journal bearing and
turbine with a diameter of 6 mm. The rotor spins at 1.2 million r/min.

FIGURE 11.6 (See color insert following page 10-34.) Schematic of the MIT Microengine, showing the air path
through the compressor, combustor, and turbine. Forward and aft thrust bearings located on the centerline hold the
rotor in axial equilibrium, while a journal bearing around the rotor periphery holds the rotor in radial equilibrium.

Forward thrust bearing

D

L

�

R

c

Main
turbine
air path

High pressure
plenum Low pressure

plenum

Aft thrust
bearing

Journal
bearing

Rotor

High pressure
plenum

Low pressure
plenum

Aft thrust
bearing

Forward thrust
bearing

Journal
bearing

Rotor

Main flow path

Axis of
rotation

FIGURE 11.7 Illustrating schematic and corresponding SEM of a typical microfabricated rotor, supported by axial
thrust bearings and a radial journal bearing.
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Key to the successful realization of such a device is the ability to spin a silicon rotor at high speed in a
controlled and sustained manner. The key to spinning a rotor at such high speeds is the demonstration
of efficient lubrication between the rotating and stationary structures. The lubrication system needs to be
simple enough to be fabricated but with sufficient performance and robustness to be of practical use in the
development program and in future devices. Figure 11.7 illustrates a microbearing rig that was fabricated
to develop this technology. The core of the rotating machinery has been implemented but without the
substantial complications of the thermal environment that the full engine brings. The rig consists of a
radial inflow turbine mounted on a rotor and embedded inside two thrust bearings that provide axial sup-
port. A journal bearing located around the disk periphery provides radial support for the disk as it rotates.

11.7 Constraints on MEMS Bearing Geometries

11.7.1 Device Aspect Ratio

Perhaps the most restrictive aspect of microbearing design is that MEMS devices are limited to rather shal-
low etches, resulting in devices with low aspect ratio. Even with the advent of deep reactive ion etchers
(DRIE) in which the ion etching cycle is interleaved with a polymer passivation step, the maximum prac-
tical etch depth that can be achieved while maintaining dimensional control is about 500 microns. Even
this has an etch time of about nine hours, which makes its adoption a very costly decision. In compari-
son, typical rotor dimensions are a few millimeters. The result is that microbearings are characterized by
very low aspect ratios (Length/Depth, or L/D). In the case of the MIT microturbine test rig, the journal
bearing is nominally 300 microns deep while the rotor is 4 mm in diameter, yielding an aspect ratio of
0.075. To put this in perspective, commonly available design charts [Wilcox, 1972] present data for val-
ues of L/D as low as 0.5 or perhaps 0.25. Prior to this work there was no data for lower L/D. The impli-
cations of the low aspect ratio bearings are that the task becomes supporting a disk rather than a shaft.

The low aspect ratio bearings do not have terrible performance by any standard. The key features of
the low L/D bearings are:

The load capacity is reduced compared to conventional designs. This is because the fluid leaking out of
the ends relieves any tendency for the bearing to build up a pressure distribution. For a given geom-
etry and speed, a short bearing supports a lower load per unit length than its longer counterpart.

The bearing acts as an incompressible bearing over a wide range of operation. Pressure rises, which
might lead to gas compressibility, are minimized by the flow leaking out of the short bearing.
Incompressible behavior (without the usual fluid cavitation that is commonly assumed in incom-
pressible liquid bearings) can be observed to relatively high speeds and eccentricities.

11.7.2 Minimum Etchable Clearance

It is reasonable to question why one could not fabricate a 300 micron long “shaft”, but with a much
smaller diameter, to greatly enhance the L/D. For example, a shaft with a diameter of 300 microns would
result in a reasonable value for L/D. This raises the second major constraint on bearing design by current
microfabrication technologies — that of the minimum etchable clearance.

In the current microengine manufacturing process, the bearing and rotor combination is defined by a
single deep and narrow etch, currently 300 microns deep and about 12 microns in width. No foreseeable
advance in fabrication technology will make it possible to significantly reduce the minimum etchable
clearance, and this has considerable implications for bearing design. In particular, if one were to fabricate
a bearing with a diameter of 300 microns in an attempt to improve the L/D ratio, the result would be a
bearing with a clearance to radius c/R of 12/300, or 0.04. For a fluid bearing, this is two orders of magni-
tude above conventional bearings and has several detrimental implications.

The most severe implication is the impact on the dynamic stability of the bearing. The non-dimensional
mass of the rotor depends on (c/R) raised to the fifth power [Piekos, 2000]. Bringing the bearing into the
center of the disk and raising the c/R by a factor of 10 results in a mass parameter increasing by a factor
of 105. This increase in effective mass has severe implications for the stability of the bearing.
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11-12 MEMS: Introduction and Fundamentals

These reasons and others not enumerated here make the implementation of an inner-radius bearing
less attractive. Therefore, the constraint of small L/D is unassailable as long as one requires that the
microdevice be fabricated in situ. If one were to imagine a change in the fabrication process such that the
rotor and bearing could be fabricated separately and subsequently assembled reliably, this situation would
be quite different. In such an event, the bearing gap is not constrained by the minimum etch dimension
of the fabrication process, and almost any “conventional” bearing geometry could be considered and
would probably be superior in performance to the bearings discussed here. Such fabrication could be
considered for a “one-off” device, but does not appear feasible for mass production, which relies on the
monolithic fabrication of the parts. Lastly, the risk of contamination during assembly — a common con-
cern for all precision-machined MEMS — effectively rules out piece-by-piece manufacture and assembly
and constrains the bearing geometry as described.

11.8 Thrust Bearings

Thrust bearings support any axial loads generated by rotating devices such as turbines, engines, or
motors. Current fabrication techniques require that the axis of rotation in MEMS devices lie normal to
the lithographic plane. This lends a significant advantage in the design and operation of thrust bearings
because the area available for the thrust bearing is relatively large as defined by lithography, while the
weight of the rotating elements will be typically small due to the cube-square law and the low thicknesses
of microfabricated parts. For these reasons, thrust bearings are one area of microlubrication where solu-
tions abound and problems are relatively easily dealt with.

Two thrust bearing options exist: (a) hydrostatic (externally-pressured) thrust bearings, in which the
fluid is fed from a high-pressure source to a lubrication film, and (b) hydrodynamic, where the support-
ing pressure is generated by a viscous pump fabricated on the surface of the thrust bearing itself (see
Figure 11.9). Hydrostatic bearings are easy to operate and relatively easy to fabricate. These have been suc-
cessfully demonstrated in the MIT Microengine program [Frechette et al., 2005; Liu et al., 2003]. The
thrust bearing in Figure 11.8 shows an scanning electron micrograph (SEM) of the fabricated device cut
though the middle to reveal the plenum, restrictor holes, and the bearing lubrication gap, which is
approximately 1 micron wide. Key to the successful operation of hydrostatic thrust bearings is the accurate

FIGURE 11.8 Close-up cutaway view of micro thrust bearing showing the pressure plenum (on top), the feed-holes,
and the bearing gap (faintly visible). (SEM reprinted with permission of Lin et al. [1999].)
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manufacture of the restrictor holes, maintenance of sharp edges at the restrictor exit, and careful control
of the dimension of the lubrication film. In an initial fabrication run, the restrictor holes were fabricated
2 microns larger than specified. While the bearing operated, its performance was well below its design
peak because of the off-design restrictor size. Current specifications of the fabrication protocols control
the restrictor size carefully, ensuring close to optimal operation.

Hydrodynamic or spiral groove bearings (SGBs), illustrated in Figure 11.9, were first analyzed in detail
forty years ago [Muijderman, 1966] but have not received much attention due to their low load capacity
compared to hydrostatic thrust bearings and due to complex manufacturing requirements.

SGBs operate by using the rotor motion against a series of spiral grooves etched in the bearing to vis-
cously pump fluid into the lubrication gap. This process creates a high-pressure cushion on which the rotor
can ride. The devices typically have relatively low load capacity, which has limited their use in macroscopic
applications. The load capacity becomes more than adequate at microscales due to favorable cube-square
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scaling. Thus, they gain considerable advantage when compared with conventional hydrostatic thrust
bearings as the scale and Reynolds number decreases. In addition, the fabrication of the multitude of
shallow spiral features, which is an expensive task for a traditional SGB, is ideally suited for lithographic
fabrication technologies such as MEMS.

Figure 11.9 illustrates the bearing stiffness for a particular single-point design for the MIT microrotor
rotating at design speed (2.4 million r/min) and supported by matched forward and aft spiral groove bear-
ings. The stiffness at full speed is quite impressive and superior to comparable hydrostatic bearings, but
the SGB do suffer at lower speeds since the bearing stiffness is roughly proportional to rotational speed.
For this design, the lift-off speed (the speed at which the film can support the weight of the rotor and the
pressure distribution associated with the turbine flow) is only a few thousand r/min, and the dry rubbing
endured during startup will be minimal. SGBs also have the strong advantage that the two matched spi-
ral groove bearings, forward and aft, naturally balance each other with no supply pressures to maintain
or adjust, and the removal of the thrust bearing plena and restrictor holes considerably simplifies the
overall device fabrication. This simplification allows for the use of two fewer wafers in the wafer-bonded
stack, which is a considerable advantage from the perspective of manufacturing process cost and yield. A
hybrid bearing consisting of both hydrostatic and hydrodynamic bearings has been recently successfully
demonstrated [Wong et al., 2004] up to a speed of approximately 450,000 r/min.

11.9 Journal Bearings

Journal bearings, which are used to support radial loads in a rotating machine, have somewhat unusual
requirements in MEMS. These requirements derive from the extremely shallow structures that are cur-
rently fabricated. Rotating devices tend to be disk-shaped, and their corresponding journal bearings are
characterized by very low aspect ratios which are defined as the ratio of the bearing height to its radius.
In addition, the minimum etchable gap allowed by current fabrication techniques results in a paradoxically
large bearing clearance — a 10 micron gap over a 2 mm radius rotor, or a c/R of 1/200. This bearing clear-
ance is large in comparison to conventional journal bearings, which typically have c/R ratios that are
smaller by a factor of 10.

Journal bearings can operate in two distinct modes: hydrodynamic and hydrostatic. Typically any oper-
ating condition will contain aspects of both modes. These modes are discussed in the following sections.

11.9.1 Hydrodynamic Operation

Hydrodynamic operation occurs when the rotor is forced to operate at an eccentric position in the bear-
ing housing. As a result, a pressure distribution develops in the gap to balance the viscous stresses that
arise due to the rotor motion. This pressure distribution supports the rotor statically against the applied
force and dynamically to suppress random excursions of the rotor due to vibration, etc. Hydrodynamic
operation has the advantage of requiring no external supply of lubrication fluid. However, it has two dis-
tinct drawbacks: it requires a means to load the rotor to an eccentric position, and insufficient eccentric-
ity results in instability (the so-called “fractional speed whirl”) and likely failure. Both of these issues are
particularly difficult in the case of MEMS bearings.

11.9.1.1 Static Journal Bearing Behavior

Figure 11.10 shows the static behavior of a MEMS journal bearing. This figure presents the load capacity
ζ and the accompanying attitude angle (the angle between the applied load and the eccentricity vector)
as functions of the bearing number and the operating eccentricity. The geometry considered here is for a
low-aspect ratio bearing (L/D � 0.075) typical of a deep reactive ion etched rotor such as the MIT 
microengine. The bearing number is defined as:

Λ � � �
2

(11.15)
R
�
c

6µω
�

p
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where µ is the fluid viscosity, ω the rotation rate, p the ambient pressure, and R/c the ratio of the radius
to clearance. For a given bearing geometry, Λ can be interpreted as operating speed.

Several aspects of these results should be noted. The load capacity is quite small when compared with
bearings of higher L/D. This is because for very short bearings, the applied load simply squeezes the fluid
out of the bearing ends, and consequently it is difficult to develop any significant restoring force. The
same mechanism is responsible for the load lines being straight. Straight load lines indicate that little

Lubrication in MEMS 11-15

100

10−1

10−2

10−3

10−4

10−5

10−1 100 101

	

Λ

� = 0.8

� = 0.6

� = 0.4

� = 0.2

Λ

90

70

50

30

10

10−1 100 101
0

φ 
(d

eg
)

� = 0.8

� = 0.8

� = 0.9

FIGURE 11.10 Static performance (eccentricity and attitude angle vs. bearing number) for a journal bearing with
L/D � 0.075. Notice that the load lines are almost constant (linear), indicating the absence of compressibility effects.
This is also indicated by the attitude angle, which remains close to 90 degrees except at very high eccentricities [Piekos
and Breuer, 1998].

© 2006 by Taylor & Francis Group, LLC



11-16 MEMS: Introduction and Fundamentals

compressibility of the fluid is taking place, which usually results in a “saturation” of the load parameter at
higher values of the bearing number. Again, this is because any tendency to compress the gas is alleviated
by the fluid venting at the bearing edge. The behavior of the attitude angle, which maintains a high angle
(close to π/2) over a wide range of bearing numbers and eccentricities, illustrates this point. This value of the
attitude angle corresponds to the analytic behavior of a Full-Sommerfeld incompressible short bearing [Orr,
1999]. This value is a good approximation for such short bearings at low to moderate eccentricities when the
eccentricity remains below approximately 0.6. Below 0.6, compressibility finally becomes important. This
incompressible behavior is much more extensive than conventional gas bearings of higher aspect ratio and
has profound ramifications, particularly with respect to the dynamic properties of the system.

11.9.1.2 Journal Bearing Stability

The stability of a hydrodynamic journal bearing has long been recognized as troublesome and is foreshad-
owed by the static behavior shown in Figure 11.10. The high attitude angle suggests that the bearing spring
stiffness is dominated by cross stiffness as opposed to direct stiffness. Thus, any perturbation to the rotor
will result in its motion perpendicular to the applied force. If this reaction is not damped, the rotor will enter
a whirling motion. This is precisely what is observed, and gas bearings are notorious for their susceptibility
to fractional-speed whirl. The instability is suppressed by the generation of more damping and increased
direct stiffness, both of which are obtained by increasing the loading and the static eccentricity of the rotor.

Figure 11.11 shows a somewhat unusual presentation of the stability boundaries for a low-aspect ratio
MEMS journal bearing. The vertical axis shows the non-dimensional mass of the rotor M	 which is defined as:

M	 � � �
5

(11.16)

This is the “mass” which appears in the non-dimensionalized equations of motion for the rotor and it is
fixed for a given geometry. Close inspection of Figure 11.11 indicates that M	 does changes very slightly
with speed. This is because of the elastic expansion of the rotor due to centrifugal forces, the variation in
the ambient pressure at different speeds, and temperature effects on viscosity. The horizontal axis of
Figure 11.11 shows the bearing number, which can be interpreted as speed, for a fixed bearing geometry.
The contours on the graph represent the stability boundary at fixed eccentricity. Stable operation lies
above each line. For a fixed M	 at low bearing number (i.e., speed), a minimum eccentricity must be
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FIGURE 11.11 Stability boundaries for a typical microbearing plotted vs. bearing number (speed for a fixed geom-
etry). The dotted line represents an operating line for a microbearing which has almost constant M	 (varying only due
to centrifugal expansion of the rotor at high speeds [Piekos, 2000]).
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obtained to ensure stability. As the speed increases, this minimum eccentricity remains almost constant
(the lines are horizontal) until a particular speed at which the lines break upward, and the minimum
eccentricity required for stability starts to drop as indicated by Figure 11.10, as Λ increases, the load
required to maintain a fixed eccentricity increases linearly due to the stiffening of the hydrodynamic bear-
ing. The key feature of this chart is that the minimum eccentricities are very high and suggest that stable
operation requires running very close to the wall. This is troublesome. The high eccentricities are driven
by high values of the mass parameter M	 which is due to the relatively high value of the clearance-to-
radius ratio (c/R) and the short length L. The low aspect ratio (L/D) also contributes to high minimum
eccentricities. At high speeds, the problem becomes less severe, because the high speed allows the bearing
to generate sufficient direct stiffness. Even at these points, the eccentricity is very high and might not be
manageable in practical operation.

Orr (1999) has demonstrated on a scaled-up experimental rig that matches the microengine geometry
that stable high-eccentricity operation is possible for extended periods of time. His experiments achieved
46,000 r/min which, when translated to the equivalent speed at the microscale, correspond to approxi-
mately 1.6 million r/min. In order to accomplish this high eccentricity operation, he noted that the rotor
system must (a) have very good axial thrust bearings to control axial and tipping modes of the rotor sys-
tem, and (b) be well-balanced. A rotor with imbalance of more than a few percent could not be started
from rest. Piekos (2000) also explored the tolerance of the microbearing system to imbalance and found
that it was surprisingly robust to imbalance of several percent. His computations were achieved assuming
that the rotor was at full speed and then carefully subjected to imbalance. In practice, the imbalance will
exist at rest, and the rotor is stable at full speed but unable to accelerate to that point. This “operating line”
issue is discussed in more detail by Savoulides et al. (2001) who explored several options for accelerating
microbearings from rest under both hydrodynamic and hydrostatic modes of operation.

Figure 11.12 illustrates a convenient summary of the trade-offs for design of a hydrodynamic MEMS
bearing. This figure presents the variation of the low-speed minimum eccentricity asymptote, or worst-
case eccentricity, as a function of the mass parameter M	 and other geometric factors (L/D, clearance, c,

Lubrication in MEMS 11-17

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

W
or

st
-c

as
e 

ec
ce

nt
ric

ity

10−4 10−3 10−2 10−1 100 101 102

M

Stable

2R, L, (1/2)C
d = 0.8 µm

2R, L, C
d = 0.8 µm

R, L, (1/2)C
d = 0.9 µm

2R, L, (1/2)C
d = 1.4 µm

R, 2L, C
d = 1.6 µm

R, 2L, 2C
d = 1.5 µm

2R, 2L, 2C
d = 1.3 µm

R, L, C
d = 0.9 µm

L/
D =

 0
.0

37
5

L/
D

 =
 0

.0
75

L/
D

 =
 0

.1
5

Unstable

FIGURE 11.12 Tradeoff chart for microbearing design. For a given length-to-diameter (L/D) and a given 
M
—

, the worst-case (i.e., low-speed) eccentricity is shown for a variety of geometric perturbations. In general, lower
eccentricities are preferred. (Reprinted with permission from Piekos [2000].)

© 2006 by Taylor & Francis Group, LLC
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etc.). Notice that the worst-case eccentricity improves as the L/D increases and the M	 decreases. However, the
physical running distance from the wall is actually increased slightly by running at a higher eccentricity
with a larger bearing gap. In all cases, the stable eccentricity is alarmingly high, and other alternatives
need to be sought for simpler stable operation.

11.9.2 Advanced Journal Bearing Designs

One prospect for further improvement in the journal bearing performance is the incorporation of wave
bearings [Dimofte, 1995] as illustrated in Figure 11.13. These bearing geometries suppress the sub-
synchronous whirl due to the excitation of multi-synchronous pressure perturbations imposed by the
bearing geometry. The geometric complexity of the wave bearing is no problem for lithographic manu-
facturing processes that are used for MEMS. This alleviates many of the reservations and costs that might
inhibit their adoption. Because the MEMS constraint is the minimum gap dimension, the wave bearing
in a MEMS machine can be implemented only by selectively enlarging the bearing gap. Piekos (2000) ana-
lyzed the performance of the wave bearing for the microengine geometry and found (Figure 11.14) that
while the load capacity is diminished, the stability is enhanced and the load required to maintain stable
operation (i.e., to achieve the minimum stable eccentricity) is reduced considerably with the introduc-
tion of a wave geometry. In microbearings the load capacity is usually sufficient, and the wave bearing is
attractive as a stabilizing mechanism.

Rotor imbalance, which is increasingly becoming a first-order issue, can only be contained with excess
load capacity, and this tradeoff is not clear. The adoption and testing of wave bearing geometries are
scheduled to be explored as part of our development program.

11.9.3 Side Pressurization

Due to the small mass of the rotor in a MEMS device, any eccentricity required to enable stable hydro-
dynamic operation must be applied using some other means. Typically, this requires the use of a pressure
distribution introduced around the circumference of the bearing. This pressure distribution loads the
bearing preferentially to one side. Such a scheme is illustrated in Figure 11.15 for the MIT Microengine.

FIGURE 11.13 (See color insert following page 10-34.) Geometry of a wave bearing, with the clearance greatly exag-
gerated for clarity [Piekos, 2000].
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The aft side of the rotor is divided into two plena isolated by seals. Each plenum can be separately pres-
surized. The pressure in each plenum forces an axial flow through the journal bearing to the forward side
(which is assumed to be at a uniform pressure), and thus establishes two differing pressure distributions
on the high- and low-pressure sides of the rotor. As a result, the axial flow through the bearing generates
a hydrostatic stiffness mechanism and an associated hydrostatic critical frequency. These results are dis-
cussed in the following section.

11.9.4 Hydrostatic Operation

Although hydrodynamically lubricated bearings with low aspect ratio are predicted to operate success-
fully and have been demonstrated on a scaled-up level [Orr, 1999], there are a number of issues that make

Lubrication in MEMS 11-19

10−1

10−2

10−3

ζ

Stable
Circular

Sample operating line

�w = 0.2

�w = 0.4

�w = 0.6

Unstable

20 40 60 80 100
% speed

FIGURE 11.14 Effect of wave bearing amplitude on journal bearing stability as a function of rotor speed. The 
dotted line shows a typical operating line for a microengine [Piekos, 2000].

Main
turbine
air path

High side
pressure

Low side 
pressure

�

Rotor

FIGURE 11.15 Schematic of the pressure-loading scheme used in the microengine to provide a side load to the rotor
during hydrodynamic operation. The side load is developed by applying a differential pressure to the two plena
located on the aft side of the rotor.

© 2006 by Taylor & Francis Group, LLC



11-20 MEMS: Introduction and Fundamentals

them undesirable in a practical MEMS rotor system. The primary difficulty is that, in order to satisfy the
requirements of sub-synchronous stability, the rotor needs to operate at very high eccentricity (made
unavoidable due to the low aspect ratio of the journal). For a MEMS device this means operating 1–2
microns from the wall. This is hard to control, particularly with the limited available instrumentation for
MEMS devices. An alternative mode of operation is to use a hydrostatic lubrication system. In this mode,
fluid is forced from a high-pressure source through a series of restrictors, all of which impart a fixed
resistance. The fluid then flows through the lubrication passage (the bearing gap). If the rotor moves to
one side, the restrictor and lubrication film act as a pressure divider such that the pressure in the lubri-
cation film rises, forcing the rotor back towards the center of the bearing. The advantages of using hydro-
static lubrication in MEMS devices are that:

The rotor tends to operate near the center of the housing, and small clearances are avoided. This is safer,
more tolerant of any motion induced by rotor imbalance, and results in lower viscous resistance.

Because the hydrostatic system is a zero-eccentricity based system, no position information about the
rotor is needed. This greatly simplifies instrumentation requirements.

There are significant disadvantages to a hydrostatic system, including:

Pressurized air needs to be supplied to the bearing. This requires supply channels, which complicate
the fabrication process and come with a system cost: the high-pressure air must come from some-
where. In a turbomachinery application, bleed air from the compressor could be used.

Since the bearing gaps are relatively large due to minimum etchable dimensions previously discussed,
the mass flow through hydrostatic systems can be substantial and might be impractical in anything
but demonstration experiments.

Fabrication constraints make the manufacture of effective flow restrictors very difficult. Flow restric-
tors need to have very well controlled dimensions, sharp edges, and other specific geometric features.
Only the simplest restrictors can be implemented without undue cost and effort, severely limiting
the hydrostatic design.

Orr (1999) demonstrated a novel method for achieving hydrostatic lubrication for journal bearings with
low aspect ratio. The mechanism relies on the small pressure differences that exist between the forward and
aft sides of the rotor. The mechanism also relies on the flow resistance to the pressure differences being
small enough such that an axial flow will ensue for a short bearing of the kind seen in MEMS devices.

As the flow enters the bearing channel, boundary layers develop along the wall eventually merging to
form the fully developed lubrication film. This boundary layer development (Figure 11.16) acts as an
inherent restrictor. If the rotor moves off the centerline and disturbs the axisymmetric symmetry of the flow,
a restoring force is generated. This source of hydrostatic stiffness supports the bearing at zero eccentricity

Boundary
layers

Rotor

W

FIGURE 11.16 Schematic illustrating the origin of the axial-through-flow hydrostatic mechanism.
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and is effective even when the rotor is not moving. The conventional inherent restriction of the flow entering
the lubrication channel also enhances the stiffness. The stiffness coupled with the rotor mass defines a nat-
ural frequency which was measured by Orr (1999). The presence of this frequency led to the discovery of
the axial-through-flow mechanism. Simple theory [Orr, 1999] was also able to predict the frequency in a
scaled-up experimental facility with reasonable accuracy (Figure 11.17).

There is a severe gap in our ability to accurately predict and account for all the hydrostatic lubrication
phenomena in a real microrotor. Experiments conducted at the microscale [Frechette et al., 2005] demon-
strate successful operation at high speeds (1.4 million r/min) despite theoretical predictions of failure.
Experimental measurements suggest that the natural frequency is higher than predicted by the simple axial-
through-flow theory of Piekos (2000) and that the damping is sufficient to operate at critical speed ratios
(rotor frequency, scaled by the natural frequency of the hydrostatic system) greater than 10. Conventional
analysis [Orr, 1999] suggests that the instability occurs at critical speed ratios of 2. This discrepancy suggests
that the real bearing exhibits significantly higher damping than is accounted for by the theory, perhaps
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deriving from the turbine which drives the rotor or some other source of fluid damping not yet considered.
The resolution of these discrepancies need more attention and will be aided greatly by improved models and
more detailed measurements of the microrotor in operation.

11.10 Fabrication Issues

A key challenge to the successful operation of a high-speed microbearing is the accurate fabrication of
bearing geometries. Two aspects of this challenge need to be considered: the need to hold design toler-
ances in any given fabrication process, and the ability to manufacture multiple devices with good unifor-
mity in a single fabrication run.

The issue of achieving design tolerances is a matter of process maturity. The attention paid to the
maintenance of tight tolerances and small details is the hallmark of a well-established fabrication process.
The microengine process is very complex and continually advances the state of the art in micromachin-
ing complexity. Almost any fabrication run that results in a freely rotating turbine should be considered
a manufacturing triumph. From the standpoint of the success of the system, we must have much more
stringent manufacturing requirements. The bearing designs are sensitive to critical dimensions such as
the bearing-rotor gap and the size of restrictor holes for hydrostatic injectors. The failure to hold these
dimensions within a specified tolerance can make the difference between a device that operates with a
lubricated film and one that grinds the rotor and stator surface until failure. The very first version of the
microbearing rig ran in this mode with occasional demonstrations of lubricated operation. Subsequent
designs and builds have paid attention to dimensional accuracy, and the fabrication protocols are quite
mature so that this precision is ensured from one build to the next.

11.10.1 Cross-Wafer Uniformity

Typically, multiple microengines are fabricated in parallel on a single silicon wafer. In addition to the
accurate manufacture of critical dimensions on a single microengine die, the importance of manufactur-
ing uniformity from one die to the next on a single wafer is vital. Manufacturing unity is a major obstacle
to device yield. It is very common for a given process to exhibit cross-wafer variations. For example, a
shallow plasma etch into a silicon substrate might show a variance of as much as 10% from one side of
the wafer to the other because of variations in the plasma that are intrinsic to the fabrication tool. All fab-
rication processes will exhibit such variations, and any microfabrication process needs to identify and
accommodate these variations. Should the variations be unacceptably large, either the fabrication tool
needs to be improved, or a different processing path needs to be considered. This need is a common driver
throughout both the MEMS and microelectronics industry. This industry also desires greater process uni-
formity as feature size diminishes and processing moves to larger and larger wafers.

As previously discussed, there are several critical etches that need to be controlled to a high degree of
precision for microbearing design. The difficulty in maintaining cross-wafer uniformity results in some
operational devices on the wafer (typically from the center of the wafer, where the process was initially
honed to precision). Many devices from the wafer edge are out of specification and will not operate sat-
isfactorily. At this stage, most of the uniformity issues have been addressed. However, two items are still
troublesome. The deep reactive ion etcher being a relatively new tool exhibits a fairly significant variation
in etch rate between the center and edge of a wafer. This variation results in a gradient in etch depth that
is particularly severe on devices lying on the wafer periphery (3 microns variation across a 4 mm rotor
wheel). This gradient contributes to a mass imbalance of as much as 25% of the bearing gap, rendering the
bearing inoperable at high speed. The imbalance force increases with the square of the rotational speed.

The second continuing difficulty is that of front-to-back mask alignment during fabrication. It is
common during the fabrication process for a single silicon wafer to be patterned on both the front and
back surfaces. For example, the rotor has the turbine blades patterned from one side and the bearing gap
patterned from the other side. Any slight misalignment between the lithography on the front and back sur-
faces of the wafer will result in an offset of front and back features which, as with the etch-depth gradient,
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leads to a rotor imbalance. Currently, mask alignment of critical features, primarily the rotor blades and
the bearing gap, must be maintained to within 0.5 microns or better in order to ensure operable rotors
from every die on the wafer. This is an extremely tight, but achievable, tolerance, and work continues to
improve the alignment even further and to improve process design to minimize imbalance.

11.10.2 Deep Etch Uniformity

The last issue for fabrication precision is that of deep etch uniformity. Any high-speed bearing depends
critically on the straightness and parallelism of the sidewalls that constitute the bearing and rotor sur-
faces. This is particularly true for hydrodynamic operation at high eccentricity. In the drive to generate
deep trenches so that the bearing aspect ratio is minimized, the quality of the bearing etch is often com-
promised. These two issues, the etch depth and the etch quality, constantly pull against each other. Their
relative advantages need to be weighed against each other in any final design.

Figure 11.18 shows typical non-uniform etch profiles for DRIE. This figure illustrates two common phe-
nomena: etch bow, where the trench widens in the middle, and etch taper, where the trench widens (usu-
ally) at the bottom. The effects of these non-uniformities have been analyzed computationally [Piekos and
Breuer, 2002]. As one might expect, the static performance of the bearing (load capacity) is degraded by
the blow-out, particularly in the case of the tapered bearing where fluid pressure cannot accumulate in the
gap but rather leaks out the enlarged end. The bowed bearing, because of its concave curvature, tends to
hold the pressure more successfully, and the loss in load capacity is typically less severe. As mentioned ear-
lier, load capacity is less of an issue in microbearings, and it is the effect on hydrodynamic stability that is
of most interest. Figure 11.19 summarizes the effects of bow and taper on hydrodynamic operation. This
figure shows the minimum stable eccentricity as a function of bearing number (i.e., speed, for a fixed bear-
ing geometry) for different levels of bow and taper. The effects of taper are most severe, and considerable
effort has been placed in the fabrication process design to minimize bearing taper.

11.10.3 Material Properties

One of the key benefits realized at the microscale is the improvement in strength-related material prop-
erties. This is particularly true in silicon-based MEMS where the baseline structural material is single-
crystal silicon, which can be fabricated to have very good mechanical properties. The strength of brittle
materials is controlled primarily by flaws and to some extent by grain boundaries, both of which become
smaller or non-existent in a single-crystal material with surfaces defined by microfabrication processes.
The device size becomes comparable with the flaw distribution such that the incidence of “super-strong”
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FIGURE 11.18 SEMs of bearing etches, illustrating typical manufacturing non-uniformities. The left-hand SEM
shows an etch with a bow in the center. The right-hand SEM shows an etch with a taper. (SEM reprinted with 
permission of A. Ayon.)
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devices increases in microscale systems. Silicon is a light material with a density (2330 kg/m3) lower than
that of aluminum (2700 kg/m3). The strength-to-weight ratio of silicon micromachined structures is
unparalleled, which is a key for high-speed rotating machinery. Despite its high specific strength silicon
is a very brittle material. For a high speed rotating system, such as a turbine, this can be problematic since
an impact or touchdown at any appreciable speed is likely to result in a catastrophic failure rather than
an elastic rebound or more benign plastic deformation. Figure 11.20 shows a photograph of a microtur-
bine rotor that crashed during a high-speed test run. The importance of robust bearings is emphasized
because the material is extremely unforgiving.

11.11 Tribology and Wear

When lubrication fails, tribology and wear become important as the focus shifts from the prevention of
contact to the mitigation of its effects. Tribology has been a subject of technical and industrial importance
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FIGURE 11.19 Degradation of hydrodynamic stability due to bow (left frame) and taper (right frame), as
indicated by the minimum eccentricity required for hydrodynamic stability at a given bearing number (speed) [Piekos
and Breuer, 2002].
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since the industrial revolution, and a certain level of accomplishment was achieved that allows the design
and operation of complex machinery in difficult environments. With the advent of microengineering and
the development of the atomic force microscope, the field has defined a new set of problems and has wit-
nessed a rebirth of focus on the micro- and nano-scale processes associated with friction and wear. This
chapter does not address the progress in micro- and nano-tribology, however, a few general comments
are made that are valuable in practical MEMS devices.

11.11.1 Stiction

A common problem associated with the failure of MEMS devices is that of stiction in which two surfaces
touch and stick together due to the high surface energies. The problem is exacerbated by the use of wet-
etching during fabrication and by the relatively smooth surfaces (and thus high contact areas) associated
with MEMS materials. Many lubricants have been used to mitigate the problem. Self-assembling mono-
layers (SAMs), such as perfluoro-decyl-trichlorosilane, coat the surface with a monolayer of a long mol-
ecule that adheres to the surface at one end and is hydrophobic at the other end thus preventing stiction.
Other lubricants are also under investigation such as Fomblin-Zdol, which is used in the hard-disk indus-
try to protect the disk surface during head crashes and can be vapor-deposited during manufacture.
Other remedies include the intentional design of textured surfaces, or standoffs, to prevent large areas
coming into direct contact.

11.11.2 The Tribology of Silicon

Since most MEMS devices are silicon-based, the tribology of silicon has received considerable attention
in the past several years. Silicon is not a very desirable bearing material [Gardos 2001] and exhibits high
wear rates, high coefficients of friction, and poor stiction characteristics. Surface treatments (e.g., silicon
carbide, and fluorocarbon (Teflon™-like) materials) and appropriate design have improved matters con-
siderably. Most MEMS have not yet been designed with significant surface motions that require either
supporting lubrication films or protective coatings. This is likely to change as fabrication processes enable
more complex devices with higher power-densities and more challenging lubrication and wear require-
ments. The lifetime and reliability requirements of MEMS are becoming more severe because devices are
being developed for space, medical, and national defense applications. All of these applications have
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FIGURE 11.20 Photograph of the remains of a silicon rotor after experiencing a high-speed crash. The instant frac-
ture of the rotor (largely along crystallographic planes) is visible.
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unique and stringent requirements for predicting lifetime, wear, and failure, and so this oft-neglected cor-
ner of the industry will receive the attention it deserves.

11.12 Conclusions

In this chapter, we have focused on some of the key issues that face the design, manufacture, and opera-
tion of microdevices that need to operate with minimal friction or wear. Many of the issues in Couette
and squeeze-film lubrication have been successfully addressed. Fundamental surface models (such as gas
accommodation coefficients) are still unknown, and reliable prediction methods are just becoming avail-
able. Stiction issues remain problematic although they are managed in an engineering manner. Increased
understanding of surface science is needed to solve this problem.

Rotating MEMS devices need much more development before they can be reliably manufactured and
used. Even with dramatic advances in lubricant and surface treatment technologies, high-speed operation
will likely require gas bearings which have always offered high-speed, low wear operation with the atten-
dant cost of a narrow and treacherous window of stable operation. Many of the commonly held assump-
tions and design rules that have guided previous fluid film bearings in conventional machinery have been
revisited due to the consequences of scaling and the current limitations in microfabrication technology.

Future research needs to focus attention in many areas. On the manufacturing side, the single largest
obstacle to trouble-free production of gas bearings for high-speed rotors and shafts is the issue of preci-
sion microfabrication. Macroscopic systems, with typical scale of 1 meter, need precision manufacturing
in places with sub-millimeter tolerances. Microdevices with typical dimensions of 1 mm will need toler-
ances of 1 micron or less. The ability to manufacture with such precision will require much improved
understanding of micromachining technologies such as etching and deposition so that cross-device and
cross-wafer uniformities can be improved.

At the level of lubrication technologies, the new parameter regimes that are exposed by microfabri-
cated systems (very low aspect ratios, relatively large clearances, insignificant inertial properties, etc.)
need to be further explored and understood. Despite the low Reynolds numbers, inertial losses are criti-
cally important for hydrostatic lubrication mechanisms and need to be better understood and predicted.
Similarly, the coupled fluid-structure interactions at high eccentricities and the interactions between
hydrodynamic and hydrostatic mechanisms need to be more fully explored. Fundamental issues of fluid
and solid physics need to be addressed as the scale continues to shrink. Gas surface interactions, momen-
tum and energy accommodation phenomena, and the effects of surface contamination (whether deliber-
ate or accidental) need to be rigorously studied so that the macroscopic behavior can be predicted with
some certainty. These issues will become more important as manufacturing scales decrease further and
as continuum assumptions become more problematic.
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12.1 Introduction

Various aspects of fluid mechanics in microelectromechanical systems (MEMS), such as flows in micro-
configurations, flow transducers, and flow control by microsystems were reviewed by Ho and Tai (1998).
However, the issue of thin liquid films and their dynamics in the context of microelectromechanical sys-
tems was not included in the scope of that important work. This chapter intends to fill this gap.

Thin liquid films are encountered in a variety of phenomena and technological applications [Myers,
1998]. On large scale they emerge in geophysics as gravity currents under water or as lava flows [Huppert
and Simpson, 1980; Huppert, 1982]. On the engineering scale liquid films serve in heat and mass trans-
fer processes to control fluxes and to protect surfaces, and their various applications arise in paints, coat-
ings, and adhesives. They also occur in foams [Schramm, 1994; Prud’homme and Khan, 1996], emulsions
[Ivanov, 1988; Edwards et al., 1991], and detergency [Adamson, 1990]. In biological applications they
appear as membranes, as linings of mammalian lungs [Grotberg, 1994], or as tear films in the eye
[Sharma and Ruckenstein, 1986]. On the microscale in MEMS, thin liquid films are used to produce insu-
lating coating of solid surfaces, to form stable liquid bridges at specified locations, to create networks of
microchannels on patterned microchips [Herminghaus et al., 1999, 2000], and to design fluid micro-
reactors [Ichimura et al., 2000].

12-1

Alexander Oron
Technion — Israel Institute of
Technology

© 2006 by Taylor & Francis Group, LLC

• E



The presence of the deformable interface between the liquid and the ambient (normally gaseous, but pos-
sibly also another liquid) phases engenders various kinds of dynamics driven by one or usually several
physical factors simultaneously. Liquid films may undergo, spontaneously or under the influence of exter-
nal factors, diverse profound changes in their shapes. These changes are related to different kinds of insta-
bility that might interact. Such interactions might lead either to a mutual enhancement or quenching of
each other, so that the overall film dynamics may be rather complex. The film can rupture when its local
depth vanishes and dewet the solid, leading to holes in the liquid that expose the substrate to the ambient
gas. In this case, the continuous character of the film changes if droplets of liquid are detached from the film.
Changes in structure might occur in flows with contact lines leading to wavy fronts, fingered patterns, or
rivulets. Liquid films might be isothermal or subjected to the influence of a temperature field which normally
alters their dynamics. Liquid films might also undergo phase changes, such as mass loss by evaporation,
mass gain by condensation or solidification. Liquid films exhibit many fascinating examples of behavior,
and some of them are presented below.

Sharma and Reiter (1996) studied experimentally the process of spontaneous dewetting of thin (less
than 60 nanometers thick) polystyrene films on various coated silicon wafers and found a wealth of types
of pattern formation. Different stages of dewetting identified in their experiments were: (1) rupture of
the film and emergence of holes; (2) expansion of the holes, their coalescence and formation of polygo-
nal cellular pattern where most of the liquid gathers in the ridges (see also [Reiter, 1998]); (3) disintegra-
tion of liquid ridges into isolated and ultimately spherical drops. Also fingering instability of the hole rim
during hole expansion was observed on low wettability coatings, which resulted in the emergence of sep-
arate drops (see also [Elbaum and Lipson, 1994]). The growth rate of the initial disturbance, the time of
rupture, the number density of holes, and the size of the polygons depend only on the solid substrate and
is independent of the coating. The contact angle, which strongly depends on the choice of the coating
layer, affects the generation of droplets via the fingering instability, which is faster for larger contact
angles. Also, the size of spherical drops forming as a result of the breakup of the liquid ridges depends on
the contact angle. Figure 12.1 reproduced from Sharma and Reiter (1996) displays the final pattern estab-
lished by a 45 nanometers thick liquid polysterene film on a coated silicon wafer, where the average con-
tact angle for this combination of solid and liquid was about 22°. The pattern presented in Figure 12.1
consists of spherical droplets of various sizes aligned along the polygonal structure obtained as a result of
the evolution of an initially uniform film that went through all of the stages previously mentioned.
Problems associated with dewetting of solid surfaces by liquid films are discussed in the section on
isothermal films.

12-2 MEMS: Introduction and Fundamentals

FIGURE 12.1 Photograph of the final polygonal pattern of spherical droplets for an initially flat polysterene film of
the mean thickness of 45 nanometers on a coated silicon wafer. For reference, the length of the bar is 70 microns.
(Reprinted with permission from Sharma and Reiter (1996).)
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Thiele et al. (1998) carried out experiments with thin (�10 nanometers) volatile films consisting of a
collagen solution in acetic acid in various conditions of ambient humidity. For low ambient humidity and
thus a high evaporation rate, the pattern of very small holes along with several large ones was observed
suggesting that the former emerged because of the polar interactions with the short residence time, while
the latter nucleated because of defects, like dust particles or imperfections of the substrate. However,
when the humidity was high and therefore the evaporation rate was low, the pattern of a homogeneous
polygonal network with large spacing was found. The large size of the polygons was explained by the long
residence time, during which holes created by nucleation were able to open up. The effects associated with
evaporation are discussed in the section dedicated to phase changes.

Figure 12.2 reproduced from Herminghaus et al. (2000) displays the patterns generated by condensa-
tion of water on a spatially heterogeneous solid poorly wetted (hydrophobic) silicone rubber substrate
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FIGURE 12.2 Water condensation on hydrophilic (magnesium fluoride) stripes of an elsewhere hydrophobic (sili-
cone rubber) substrate. (a) Low-condensate-volume regime: the parallel channels of condensed water have a constant
cross-section and a small contact angle. Several droplets are also seen on the hydrophobic domains of the substrate.
(b) High-condensate-volume regime: some of the liquid channels develop a single drop, when the contact angle
exceeds a certain critical value. If two drops are in a close proximity, they merge to form a microbridge between the
two neighboring microchannels. (Reprinted with permission from Herminghaus et al. (2000).)
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with well wetted (hydrophilic) magnesium fluoride stripes. Figure 12.2(a) shows the intermediate stage
of water condensation, in which the liquid phase forms parallel microchannels with a certain contact
angle θ at the edges of the stripes where the liquid appears to be pinned. The cross-section of these
microchannels is position-independent and represents a circular cap. Several drops of the condensate
between the hydrophilic stripes are also observed in Figure 12.2(a). When the process of water condensation
proceeds further the contact angle θ increases beyond a certain value, and the microchannels undergo
morphological change. As a result, droplets emerge on some of the microchannels, one per channel, as
seen in Figure 12.2(b). When such droplets develop near each other, they merge to create a bridge as seen
in the bottom left corner of Figure 12.2(b). These fundamental phenomena can guide the liquid into the
desired location(s) on the substrate with a specially designed wettability pattern [Herminghaus et al., 2000].

Figure 12.3 reproduced from Herminghaus et al. (2000) shows the time evolution (from top to bottom) of
deposition of water condensing onto curved wettable patches of different width in its corners. This width
increases from channel (a) to channel (e). When water condenses and gradually fills the channels, the behav-
ior of the liquid depends solely on the width of the corner. If the latter is large, as in the case (e), the drop
develops in the corner. However, if it is small as in the case (a), the uniform channel configuration becomes
unstable and a droplet develops in the straight part before it occurs in the corner. In the intermediate range
(b)–(d) the corner first develops a structure similar to the case (a), but it suddenly and discontinuously
moves into the corner when a critical value of capillary pressure is attained. In such a configuration the con-
tact area of the liquid with the hydrophilic patch of the substrate is maximized. If the corners are sufficiently
close to each other, two droplets will merge to produce a microbridge between the two neighboring
microchannels similar to what is shown in Figure 12.2.

VanHook et al. (1997) carried out experiments to study the thermocapillary convection produced
by variations of surface tension in bilayer systems containing silicone oil films of 0.007 to 0.027 cm thick
and overlying gas gap. Figure 12.4 reproduced from VanHook et al. (1997) shows some of their represen-
tative results. The dominant feature for thinner films was the emergence of a drained spot, Figure 12.4(a),
or the emergence of a localized elevated structure with a peak touching the upper lid, Figure 12.4(b).
The drained spot may contain in certain circumstances isolated droplets trapped inside it. All these are
manifestations of the long-wave instability of the film. This and other effects will be discussed in the 
section dedicated to thermal effects. However, along with long-wave features of the system other pheno-
mena were observed for generally thicker films. Figure 12.4(c, d) show these short-wave phenomena 
(i.e., whose length scale is comparable with the mean thickness of the layer) displayed the formation of
hexagons or a combination of hexagons with the emergence of a dry spot. Mathematical treatment of such
short-wave phenomena will not be considered here. Rupture of thin liquid films and following it growth
of the dry spot are frequent features associated with various physical mechanisms. Figure 12.5 reproduced
from VanHook et al. (1997) shows such an evolution of a local depression to the stage of film rupture and
later to the growth and saturation of the dry spot driven by the thermocapillary effect (see the section on
thermal effects).

A low-cost high-yield passive alignment method, known as controlled collapse chip connection or as
a C4 process, was designed [Goldmann, 1969] and used in optoelectronic packaging, where alignment
accuracies at the submicron level are required [Wale and Edge, 1990; Lin et al., 1995]. Such precision
alignment techniques, as illustrated in Figure 12.6 reproduced from Salalha et al. (2000), are employed
for coupling fibers and wave guides to devices such as lasers and photo detectors, and are being actively
developed and improved. These techniques use molten solder and are based on the restoring force 
arising from surface tension that drives the misaligned solder joint to become well-aligned and minimizes
the total interfacial energy of the system. The final well-aligned configuration is then fixed by cooling
down and solidifying the solder. Figure 12.6(a) presents such a misaligned layout of the two chips with
four solder joints seen as dark circles. The misalignment is illustrated by the position of the center of
the cross with respect to the point between the four squares. Figure 12.6(b) is a close-up of the area 
designated by the large circle on Figure 12.6(a) and presents the initial position of the misaligned system,
which moves through the intermediate state, Figure 12.6(c), to its final well-aligned position, Figure
12.6(d). Figure 12.6(e) displays the final cross-section of the solder between the two chips. Note that 
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the alignment process presented here takes place in the time range of a second. A similar mechanism,
by which a hard contact lens centers itself over the cornea in a human eye, was discussed by Moriarty and
Terrill (1996).

The centrifugal spinning of volatile solutions is a convenient and efficient means of coating planar
solids with thin films. This process, known as spin coating, has been widely used in many technological
processes, such as deposition of dielectric layers onto silicon wafers in the microelectronic industry, for-
mation of ultrathin antireflective coatings for deep UV lithography, and others. Two important stages of

Physics of Thin Liquid Films 12-5

FIGURE 12.3 Deposition of water onto a patterned surface with hydrophilic microchannels with corners. The width
of the channel in the corner region increases from channel (a) to channel (e). Time and therefore the volume of the
condensate increase from top to bottom. When a microchannel undergoes a morphological change of its shape, the
drop moves to the corner to maximize the contact area with the hydrophilic part of the substrate. (Reprinted with
permission from Herminghaus et al. (2000).)
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FIGURE 12.4 Infrared images of various states as seen in the experiments. The temperature increases with increas-
ing brightness, so warm depression regions are white (except in (c)) and cool elevated regions are dark. Each image
has its own brightness, so temperatures in different images cannot be compared. (a) A localized depression (dry spot)
with a helium gas layer and d � 0.025 cm. (b) A localized elevation (high spot) with an air gas layer and d � 0.037 cm.
(c) A dry spot with hexagons in the surrounding region and d � 0.025 cm. (d) Hexagons with an air gas layer and
d � 0.045 cm. For more detail refer to the source. (Reprinted with permission from VanHook et al. (1997).)

t = 0:00 min 10:30 min 13:50 min

t = 15:30 min 17:10 min 20:15 min

FIGURE 12.5 The evolution of a localized depression and formation of a dry spot in silicone oil of depth
d � 0.0267 � 0.0008 cm and helium in the gas layer. At t � 0 (an arbitrary starting point) there is negligible defor-
mation of the interface. The liquid layer begins to form a localized depression (the white circle), and in 15 minutes
the interface has ruptured (hmin → 0) and formed a dry spot. The dry spot continues to grow for several more min-
utes before saturating. Bright (dark) regions are hot (cool) because they are closer (farther) to (from) the heater. All
images have the same intensity scaling. (Reprinted with permission from VanHook et al. (1997).)
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the process are usually considered. The first stage occurs shortly after the liquid volume is delivered to the
disk surface rotating usually at the speed of 1000–10,000 r/min. At the beginning of this stage the liquid
film is relatively thick (usually greater than 500 microns). The film thins mainly because of radial drainage
under the influence of centrifugal forces. Inertial forces are important and can lead to the appearance of
instabilities of the spinning film. The second stage occurs when the film has thinned to the point where
inertia is no longer important (film thickness usually less than 100 microns), and the flow slows down
considerably, but deformations of the fluid interface may still be present because of the instabilities that
appeared during the first stage. The film continues to thin mainly because of solvent evaporation until the
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FIGURE 12.6 Photographs of C4 bonding based on self-alignment mechanism. (a) Layout of the chip (4 mm by
4 mm) which consists of four solder joints made of 63Sn37Pb. The upper chip is not aligned with the lower one, as
can be seen from the position of the upper cross relative to four squares at the lower chip. Initial misalignment is 150
microns. (b) An enlarged picture of one of the solder joints at the initial moment. (c) An intermediate stage. (d) The
final position. (e) A side view showing the cross-section of the solder joint at the final stage. (Reprinted with permis-
sion from Salalha et al. (2000).)
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solvent becomes depleted, and the film solidifies and ceases to flow. Such problems are discussed in the
sections on isothermal films and phase changes.

Numerous applications relevant for MEMS involve the dynamics of liquid films or drops. This area is in
constant progress and new exciting developments are often reported in the literature. Knight et al. (1998)
describes a new method of enhancement and control of nanoscale fluid jets. They demonstrated this method
with a design of a continuous-flow mixer capable of mixing flow rates of nanoliters per second within the time
scale of 10 microseconds. Such a mixer can be useful in nanofabrication techniques and serve as an essen-
tial part of a microreactor built on a chip.

Spatially controlled changes in the chemical structure of a solid substrate can guide a deposited liquid
along the substrate. Ichimura et al. (2000) reported their experimental results showing the possibility of
reversible guidance of liquid motion by light irradiation of a photoresponsive solid substrate. Asymmetric
irradiation of the solid surface with blue light led to movement of a 2 microliter olive oil droplet with a
typical speed of 35 microns/sec. A similar irradiation with a homogeneous blue light stopped the movement
of the droplet completely. The speed of the droplet and the direction of its movement were adjustable to
the conditions of such irradiation. The phenomenon described has a potential applicability in design of
microreactors and microchips.

Schaeffer et al. (2000) proposed a new technique of creating and replicating lateral structures in films
on submicron length scales. This technique is based on the fact that lateral gradients of the electric field
applied in the vicinity of the film interface induce variations of surface tension and thus lead to the elec-
trocapillary effect. The electrocapillary effect is similar to the thermocapillary effect previously mentioned
and is addressed more thoroughly in the section on thermal effects. The electrocapillary effect triggering
the electrocapillary instability of the film results in formation of ordered patterns on the film interface
and focusing of the interfacial troughs and peaks in the desired locations following the master pattern of
the electrodes. Schaeffer et al. (2000) reported the replication of patterns of lateral dimensions of order
140 nanometers while employing this technique. A complete investigation of the electrocapillary insta-
bility of thin liquid films has not yet appeared in the literature. Lee and Kim (2000) presented a liquid
micromotor and liquid–metal droplets rotating along a microchannel loop driven by continuous elec-
trowetting (CEW) phenomenon based on the electrocapillary effect. They identified and developed key
technologies to design, manufacture, and test the first MEMS devices employing CEW.

A mathematical treatment of this and other phenomena must consider that the interface of the film lying
or flowing on a solid surface is partially or entirely a free boundary whose configuration evolving both tem-
porally and spatially must be determined as an integral part of the solution of the governing equations.
This renders the problem too difficult and often almost intractable analytically, which might lead researchers
to rely on computing only. Computing also becomes complicated because of the free-boundary character
of the problem which requires a careful design of adequate numerical methods.

Another property of such mathematical problems is their strong inherent nonlinearity, which is present
in both governing equations and boundary conditions. This nonlinearity of the problem presents another
complexity. Consideration of coupled phenomena, such as those previously mentioned, requires compact
description of simultaneous instabilities that interact in intricate ways. This compact form must be tract-
able and, at the same time, complex enough to retain the main features of the problem at hand.

The most appropriate analytical method of dealing with the above complexities is to analyze only long
scale phenomena, in which the characteristic lateral length scales are much larger than the average film thick-
ness, the flow-field and temperature variations along the film are much more gradual than those normal to
it, and the time variations are slow. Similar theories arise in a variety of areas of classical physics: shallow-water
theory for water waves, lubrication theory in viscous flows, slender-body theory in aerodynamics, and in
dynamics of jets [e.g., Yarin, 1993]. In all of these examples, a geometrical disparity is used to practically
separate the variables and to simplify the analysis. In thin viscous films, most rupture and instability phe-
nomena occur on long scales, and a long-wave approach explained later is very useful.

The long-wave theory approach is based on the asymptotic reduction of the governing equations and
boundary conditions to a simplified system, which consists often, but not always, of a single nonlinear
partial differential equation formulated in terms of the local thickness of the film varying in time and
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space. The rest of the unknowns (i.e., the fluid velocity, pressure, temperature, etc.) are determined 
via functionals of the solution of this differential equation usually called evolution equation. The notori-
ous complexity of a free-boundary problem thus is removed. The corresponding penalty is, however,
the presence of the strong nonlinearity in the evolution equation(s) and the higher-order spatial derivatives
(usually up to the fourth) appearing there. A simplified linear stability analysis of the problem can 
be carried out based on the resulting evolution equation. A weakly nonlinear analysis of the problem 
is also possible through that equation. However, the fully nonlinear analysis that allows one to study
finite-amplitude deformations of the film interface must be performed numerically. Numerical solution
of the evolution equation is incomparably less difficult than that of the original, free-boundary problem.

Several encouraging verifications of the long-wave theory versus the experimental results have appeared
in the literature. Burelbach et al. (1990) carried out a series of experiments in an attempt to check the
long-wave theory of Tan et al. (1990) for steady thermocapillary flows induced by non-uniform heating
of the solid substrate. The measured steady shapes were favorably tested against theoretical predictions
for layers less than 1 mm thick under moderate heating conditions. However, the relative error was large
for conditions near rupture, where the long-wave theory is formally invalid [Burelbach et al., 1988], but
in all other cases the predicted and measured values of the minimal film thickness agreed within 20%.
The theory (see Equation (3.6) of [Tan et al., 1990]) also predicts rupture when the parameter L exceeds
a certain critical value and predicts steady patterns otherwise. Experimental results (see Figure 1 of
[Burelbach et al., 1990]) show that L is an excellent qualitative indicator of whether the film ruptures.

VanHook et al. (1995, 1997) performed experiments on the onset of the long-wavelength insta-
bility in thin layers of silicone oil of varying thickness, aspect ratios, and transverse temperature 
gradients across the layer. A formation of “dry spots” at randomly varying locations was found above the 
critical temperature difference across the layer in qualitative agreement with corresponding numerical
simulations. The experimental support for the theoretical results is discussed in various sections of this
chapter.

Another test for the validity of an asymptotic theory, such as the long-wave theory presented here, is
the comparison between the numerical solutions for the full free-boundary problem in its original form
and the solutions obtained for the corresponding long-wave evolution equations. Due to the difficulty 
of carrying out direct numerical simulations previously discussed, the number of such comparative studies
is quite limited. Krishnamoorthy et al. (1995) performed a full-scale direct numerical simulation of the
governing equations to study the rupture of thin liquid films because of thermocapillarity and found very
good qualitative agreement with the results arising from the solution of the corresponding evolution
equation, except for times prior to rupture. Oron (2000b) found even better agreement at rupture between
his results and the direct simulations of the Navier–Stokes equations of Krishnamoorthy et al. (1995).
There has been a long debate in the literature about the validity of fingered structures of the film interface
often arising from the solution of the evolution equations and whether they are artifacts of the asymptotic
reduction applied. Direct solution of the Navier–Stokes equations [Krishnamoorthy et al., 1995] provides
convincing evidence supporting the validity of the evolution equations even in the domain where some
assumptions leading to their derivation are violated.

The analysis of thin liquid films has progressed significantly in recent years. In the review article by
Oron et al. (1997) such analyses were unified into a simple framework in which the special cases naturally
emerged. In this chapter the physics of thin liquid films is reviewed with emphasis on the phenomena 
of considerable interest for MEMS. The theory of drop spreading, despite its importance, is not included
here. Refer to other reviews [de Gennes, 1985; Leger and Joanny, 1992; Oron et al., 1997] for more detailed
information.

The general evolution equation describing the general dynamics of thin liquid films is derived following
Oron et al. (1997) and is discussed in the next section. The topic addressed in the second section is
isothermal films, where the physical effects discussed are viscous, surface tension, gravity, and centrifugal
forces along with van der Waals interactions. The third section examines the influence of thermal effects
on the dynamics of liquid films. The fourth section considers the dynamics of liquid films undergoing
phase changes, such as evaporation and condensation.
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12.2 The Evolution Equation for a Liquid Film on a 
Solid Surface

We now describe the long-wave approach and apply it to a flow of a viscous liquid in a film. The film is
supported below by a solid horizontal plate and is bounded above by an interface separating the liquid
and a passive gas and slowly evolving in space and time, as given by its equation z � h (x, y, t). Assume
the possibility of external interfacial forces Π with the components {Π3, Π1, Π2} in the normal and 
tangential to the film surface directions, respectively, determined by the vectors

n � , t1 � , t2 � . (12.1)

The components of the vectors n, t1, t2 in Equation (12.1) are specified in the order of x-, y-, and z- direc-
tions, where x and y are the spatial coordinates in the given solid plane and z is normal to the latter and
directed across the film. The presence of a conservative body force determined by the potential φ acting on
the liquid phase, such as gravity, centrifugal, or van der Waals force, is accounted for as well. We note that
the vectors t1, t2 are not orthogonal, but it is sufficient for our later application that (n, t1) and (n, t2) con-
stitute pairs of orthogonal vectors. The letter subscripts denote the partial derivatives with respect to the
corresponding variable.

The liquid considered in this work is assumed to be a simple Newtonian incompressible viscous fluid
whose dynamics are well described by the Navier–Stokes and mass conservation equations, provided that
the length scales characteristic for the flow domain are within the continuum range exceeding several molec-
ular spacings. The mass conservation and Navier–Stokes equations for such a liquid in three dimensions
have the form

ux � vy � wz � 0,
ρ(ut � uux � vuy � wuz) � �px � µ(uxx � uyy � uzz) � φx,
ρ(vt � uvx � vvy � wvz) � �py � µ(vxx � vyy � vzz) � φy, (12.2)

ρ(wt � uwx � vwy � wwz) � �pz � µ(wxx � wyy � wzz) � φz,

where ρ, µ are, respectively, the density and kinematic viscosity of the liquid; u, v, w are the respective
components of the fluid velocity vector v in the directions x, y, z; t is time; and p is pressure.

The classical boundary conditions between the liquid and the solid surface supporting it are those of
no-penetration w � 0 and no-slip u � 0, v � 0. These conditions are appropriate for the continuous
films to be considered. Problems with a contact line, where the liquid on a solid surface spreads or recedes
will not be examined in this chapter. The reader interested in this topic is referred to the review papers by
de Gennes (1985), Leger and Joanny (1992), and Oron et al. (1997).

The boundary conditions at the solid surface are therefore

w � 0, u � 0, v � 0 at z � 0. (12.3)

At the film surface z � h(x, y, t) the boundary conditions are formulated in the vector form [e.g.,
Wehausen and Laitone, 1960]:

ht � v � ∇*h � w � 0, (12.4a)
T � n � �2H~σn � ∇sσ � Π, (12.4b)

where T is the stress tensor of the liquid,Π is the prescribed forcing at the interface, H
~

is the mean curvature
of the interface determined from

2H
~

� ∇* � n � � , (12.5)
hxx(1 � h2

y) � hyy(1 � h2
x) � 2hxhyhxy

����
(1 � h2

x � h2
y)

3/2

{0, 1, hy}
�
�1��� h�2

y�
{1, 0, hx}
�
�1��� h�2

x�
{�hx, �hy, 1}
��
�1��� h�2

x� �� h�2
y�

12-10 MEMS: Introduction and Fundamentals

© 2006 by Taylor & Francis Group, LLC



∇* � (∂/∂x, ∂/∂y, ∂/∂z) is the gradient operator and ∇s is the surface gradient with respect to the inter-
face z � h(x, y, t). Note that in Equation (12.4) the “dot” represents both the inner product of two vectors
and the product of a tensor and a vector, respectively.

Equation (12.4a) is the kinematic boundary condition formulated in the absence of interfacial mass
transfer and represents the balance between the normal component of the liquid velocity at the interface
and the velocity of the interface itself. An appropriate change should be made in Equation (12.4a) to
accommodate the phenomena of evaporation or condensation (see the section on phase changes). Equation
(12.4b), which constitutes the balance of interfacial stresses in the absence of interfacial mass transfer, has
three components. The physical meaning of its two tangential components is that the shear stress at the
interface is balanced by the sum of the respective Πi, i � 1, 2 and the surface gradient of surface tension σ. The
normal component of Equation (12.4b) states that the difference between the normal interfacial stress and
Π3 exhibits a jump equal to the product of twice the mean curvature of the film interface and surface ten-
sion. This jump is known in the literature as the capillary pressure. When the external force Π is zero, and
the fluid has zero viscosity or the fluid is static v � 0, then T � n � n � �p, and Equation (12.4b) reduces to
the well-known Young–Laplace equation. This equation describes, for instance, the excess pressure in an
air bubble gauged to the external pressure, as twice the surface tension divided by the bubble radius (see e.g.,
[Landau and Lifshitz, 1987]). The subsequent derivations closely follow those made by Oron et al. (1997)
when explicitly extended into three dimensions.

Projecting Equation (12.4b) onto the directions n, t1, t2, respectively, yields

�p � � 2
~
Hσ � Π3,

µ[(uz � wx)(1 � h2
x) � (vz � wy)hxhy � (uy � vx)hy � 2(ux � wz)hx] �

�Π1 � �(1 � h2
x � h2

y)
1/2,

(12.6)

µ[�(uz � wx)hxhy � (vz � wy)(1 � h2
y) � (uy � vx)hx � 2(vy � wz)hy] �

�Π2 � �
∂
∂
σ
y
��(1 � h2

x � h2
y)

1/2.

Let us now introduce scales appropriate for thin films where the transverse length scale is much smaller
than the lateral ones. Assume length scales in the lateral directions, x and y, to be defined by wavelength
λ of the interfacial disturbance on a film of mean thickness d. The film is referred to as thin film if the
interfacial distortions are much longer than the mean film thickness, that is,

ε � �λ
d

� �� 1. (12.7)

The z-coordinate (normal to the solid substrate) is normalized with respect to d, while the coordinates x, y
are scaled with λ or equivalently d/ε. Thus the dimensionless z-coordinate is defined as

ς � , (12.8a)

while the dimensionless x- and y-coordinates are given by

ξ � , η � . (12.8b)

It is assumed that in the new spatial variables no rapid variations occur as ε → 0, then

, , � O(1). (12.8c)
∂

�∂ς
∂

�
∂η

∂
�
∂ξ

εy
�
d

εx
�
d

z
�
d

∂σ
�
∂x

2µ[ux(h2
x � 1) � vy(h2

y � 1) � hxhy(uy � vx) � hx(uz � wx) � hy(vz � wy)]
��������

1 � h2
x � h2

y
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If the lateral components of the velocity field u, v are assumed to be of order one and U0 denotes the charac-
teristic velocity of the problem, the dimensionless fluid velocities in the x- and y- directions are defined as

U � , V � . (12.8d)

Then the continuity Equation (12.2) requires that the z-component of the velocity field w is small, and
the dimensionless fluid velocity in the z-direction is defined as

W � (12.8e)

We stress that the characteristic velocity U0 is not specified here for the sake of generality. The freedom
of choosing this value is thus given to the user. We just note one of the possible choices but not the unique
one U0 � µ/ρd, which is known in the literature as a “viscous velocity.”

Time is scaled in the units of λ/U0, so that the asymptotically long-time behavior of the film is con-
sidered. The dimensionless time is therefore defined via

τ � (12.8f)

Finally, because of the assumed slow lateral variation of the film interface, one expects locally parallel flow
in the liquid, so that the pressure gradient is balanced with the viscous stress px � µuzz, and the dimen-
sionless interfacial stresses, body-force potential and pressure are defined, respectively, as

(Π1, Π2, Π3) � (Π̂1, Π̂2, εΠ̂3), (Φ, P) � (φ, p). (12.8g)

Notice that pressure is asymptotically large similar to the situation arising in the lubrication effect
[Schlichting, 1968].

If all these dimensionless variables are substituted into the governing system of Equations (12.2)–(12.5),
the following scaled system is obtained:

Uξ � Vη � Wς � 0, (12.9a)
εR(Uτ � UUξ � VUη � WUς) � �Pξ � Uςς � ε 2(Uξξ � Uηη) � Φξ, (12.9b)
εR(Vτ � UVξ � VVη � WVς) � �Pη � Vςς � ε 2(Vξξ � Vηη) � Φη, (12.9c)

ε 3R(Wτ � UWξ � VWη � WWς) � �Pς � ε 2Wςς � ε 4(Wξξ � Wηη) � Φς. (12.9d)

At ς � 0:

W � 0, U � 0, V � 0. (12.10)

At ς � H:

W � Hτ � UHξ � VHη, (12.11a)

� P � Π̂3 � , (12.11b)

(Uς � ε2Wξ)(1 � ε2H2
ξ) � ε2(Vς � ε2Wη)HξHη � ε2(Uη � Vξ)Hη � 2ε2(Uξ � Wς) Hξ

� (Π̂1 � Σξ)[1 � ε2(H2
ξ � H2

η)]1/2, (12.11c)

S�ε3[Hξξ(1 � ε2H2
η) � Hηη(1 � ε2H2

ξ) � 2ε2HξHηHξη]
������

[1 � ε 2(H2
ξ � H2

η)]3/2

2ε2[Uξ(ε2 H2
ξ � 1) � Vη(ε2 H2

η � 1) � ε2HξHη(Uη � Vξ) � Hξ(Uς � Wξ) � Hη(Vς � Wη)]
����������

1 � ε2 (H2
ξ � H2

η)

εd
�
µU0

d
�
µU0

εU0t
�

d

w
�
εU0

v
�
U0

u
�
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(Vς � ε2Wη)(1 � ε2H2
η) � ε2(Uς � ε2Wξ)HξHη � ε2(Uη � Vξ)Hξ � 2ε2(Vη � Wς)Hη

� (Π̂2 � Ση)[1 � ε2 (H2
ξ � H2

η)]1/2. (12.11d)

Here H � h/d is the dimensionless thickness of the film and Σ � εσ/µU0 is the dimensionless surface ten-
sion normalized with respect to its characteristic value. The Reynolds number R and the inverse capillary
number S� are defined by

R � , S� � . (12.12)

The continuity Equation (12.9a) is now integrated in ς across the film from 0 to H (ξ,η, τ), and
Equations (12.10) and (12.11a) are used along with integration by parts to obtain

Hτ � �H

0

U dς � �H

0

V dς � 0. (12.13)

Equation (12.13) is a more convenient form of the kinematic condition because only two of three com-
ponents of the fluid velocity field appear explicitly. It also warrants conservation of mass in a domain with
a deflecting upper boundary.

The solution of the governing Equations (12.2)–(12.5) is sought in the form of expansion of the
dependent variables into asymptotic series in powers of the small parameter ε :

U � U(0) � εU(1) � ε2U(2) � …, V � V(0) � εV (1) � ε2V(2) � …,

W � W(0) � εW(1) � ε2W(2) � …, P � P(0) � εP(1) � ε2P(2) � ….
(12.14)

One way to approximate the solution of the governing system is to assume that R, S� � O(1) as ε→ 0.
Under this assumption the inertial terms, measured by εR, are one order of magnitude smaller than the
dominant viscous terms, consistent with the local-parallel-flow assumption. The surface tension terms, meas-
ured by S�ε3, are two orders of magnitude smaller and would be lost. It is essential to retain surface-tension
effects at leading order, so it is assumed that capillary effects are strong relative to those of viscosity and

S� � Sε�3. (12.15)

It is then assumed that R, S � O(1), as ε→ 0.
Equations (12.14) and (12.15) are substituted into Equations (12.9)–(12.11) and (12.13), and the

resulting equations are sorted with respect to the powers of ε. At leading order in ε the governing system
becomes, after omitting the superscript “zero” in U(0), V(0), W(0), and P(0),

Uς ς � (P � Φ)ξ, (12.16a)
Vς ς � (P � Φ)η, (12.16b)

(P � Φ)ς � 0, (12.16c)
Hτ � UHξ � VHη � W � 0, (12.16d)

Uξ � Vη � Wς � 0 (12.16e)

with the boundary conditions at ς � 0:

W � 0, U � 0, V � 0, (12.17)

and at ς � H:

P � �Π̂3 � S(Hξξ � Hηη),
Uς � Π̂1 � Σξ, (12.18)
Vς � Π̂2 � Ση.

∂
�
∂η

∂
�
∂ξ

σ
�
U0µ

U0dρ
�
µ
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We note here that Equations (12.16)–(12.18) are linear with respect to the variables U, V, W, P. The only
nonlinearity of this problem is associated, as seen from Equation (12.19) in conjunction with the 
kinematic condition Equation (12.16d), with the local film thickness H(ξ,η, τ). Solving Equations
(12.16)–(12.18) yields

U � � ς2 � Hς 	(Φ � Π̂3|ς�H � S∇2H)ξ � ς(Π̂1 � Σξ),

V � � ς2 � Hς 	(Φ � Π̂3|ς�H � S∇2H)η � ς(Π̂2 � Ση), (12.19)

W � ��ς

0

(Uξ � Vη)dς, P � �Π̂3|ς�H �S∇2H.

If Equation (12.19) is substituted into the mass conservation Equation (12.13), one obtains the appro-
priate evolution equation for the interface,

Hτ � ∇ � [H2(Π̂* � ∇Σ)] � ∇ � {H3[∇(Π̂3 � Φ|ς�H) � S∇∇2H]} � 0, (12.20)

where Π̂* � (Π̂1, Π̂2) is the tangential projection of the dimensionless vector Π̂, ∇ ≡ (∂/∂ξ, ∂/∂η) and 
∇2 
 ∂ 2/∂ξ2 � ∂ 2/∂η2.

In two dimensions (∂/∂η � 0) this evolution equation reduces to

Hτ � [H2(Π̂1 � Σξ)]ξ � {H3[(Π̂3 � Φ|ς�H)ξ � SHξξξ]}ξ � 0. (12.21)

In these equations the location of the film interface H � H(ξ, η, τ) is unknown and is determined from
the solution of the corresponding partial differential equation. When such a solution is obtained, the
components of the velocity and the pressure fields can be determined from Equation (12.19).

The physical significance of the terms becomes apparent when Equations (12.20) and (12.21) are writ-
ten in the original dimensional variables:

µht � ∇� � [h2(Π* � ∇�σ)] � ∇� � {h3[∇�(Π3 � φ|z�h) � σ∇� ∇�2h]} � 0, (12.22)

with ∇� 
 (∂/∂x, ∂/∂y), ∇�2 
 (∂2/∂x2 � ∂2/∂y2) and

µht � [h2(Π1 � σx)]x � {h3[(Π3 � φ |z�h)x � σhxxx]}x � 0. (12.23)

The first term in Equations (12.22) and (12.23) represents the effect of viscous damping, while the next ones
account, respectively, for the effects of the imposed tangential interfacial stress, non-uniformity of surface
tension, the imposed normal interfacial stress, body forces, and surface tension on the dynamics of the film.

In the following examples, two- and three-dimensional cases are examined. Unless specified, only dis-
turbances periodic in x and y are discussed. Thus, λ is the wavelength of these disturbances, and 2πd/λ is
the corresponding dimensionless wavenumber. In accordance with this, Equations (12.20)–(12.23) are
normally solved with periodic boundary conditions. These equations whether in two or three dimensions
are of fourth order in each of the spatial variables, and therefore four boundary conditions are needed 
to define a well-posed mathematical problem. These four boundary conditions imply periodicity of the
solution H and its first, second, and third derivatives with respect to the corresponding spatial variable.
At the same time, Equations (12.20)–(12.23) are of first order in time, thus one initial condition is needed
to complete the well-posed statement of the problem. This initial condition representing the location of
the film interface at t � 0 or τ � 0 is usually taken as a small-amplitude random or sinusoidal distur-
bance on top of the uniform state given by H � 1. In two dimensions it can be written by

H(τ � 0, ξ) � 1 � δ sin(ξ � ϕ) or H(τ � 0, ξ) � 1 � δ rand(ξ), (12.24)
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where δ �� 1, ϕ is a phase, and rand(ξ) is a random function uniformly distributed in the interval (�1, 1).
An extension of Equation (12.24) can be obtained in the three-dimensional case.

12.3 Isothermal Films

We now examine the dynamics of films whose temperature remains unchanged and phase changes do 
not occur.

12.3.1 Constant Surface Tension and Gravity

Consider the simplest case in which the film is supported from below by a solid surface and subjected to
the influence of gravity and constant surface tension. In this case one has Σξ � Ση � Π̂1 � Π̂2 � Π̂3 � 0
and Φ � Gς, so that in two dimensions Equation (12.21) becomes

Hτ � G(H3Hξ)ξ � S(H3Hξξξ)ξ � 0, (12.25a)

where G is the unit-order positive gravity number

G � .

The second term of Equation (12.25a) accounts for the influence of gravity, while the third one describes
the effect of the capillary forces. The dimensional version of Equation (12.25a) is obtained from Equation
(12.23) as

µht � ρg(h3hx)x � σ(h3hxxx)x � 0. (12.25b)

In the absence of surface tension Equation (12.25b) is a nonlinear (forward) diffusion equation so that
one can envision that no disturbance to h � d experiences growth in time. Surface tension acts through
a fourth-order (forward) dissipation term only enhancing stabilization of the interface, so that no insta-
bilities would occur in the case described by Equation (12.25b) for G 	 0.

To formally assess these intuitive observations one can investigate the stability properties of the uni-
form film h � d perturbing it by a small disturbance h
periodic in x (i.e. h � d � h
 with h
 �� d).
Substituting this into Equation (12.25b) and linearizing it with respect to h
, one obtains the linear-
stability equation for the uniform state h � d. Since this equation has coefficients independent of t and
x, one can seek separable solutions of the form

h
 � h
0 exp(ikx � ωt), h
0 � const,

which constitute a complete set of “normal modes” and can be used to represent any disturbance by means
of the Fourier series. Here k is the wavenumber of the disturbance in the x direction. If these normal modes
are substituted into the linear-stability equation, one obtains the following characteristic equation for ω :

µω � � (ρgd2 � σa2)a2, (12.26)

where a � kd is the non-dimensional wavenumber and ω is the growth rate of the perturbation. In 
general, the amplitude of the perturbation will decay if the real part of the growth rate Re(ω) is negative,
and will grow if Re(ω) is positive. Purely imaginary values of ω will correspond to translation along the
x-axis and give rise to traveling-wave solutions. Finally, zero values of Re(ω) will correspond to neutral
perturbations.
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Two remarks are now in order. First, the linear stability analysis is carried out here in the dimensional
form, but it could be done in the same way in the dimensionless form when its starting point would be
Equation (12.25a). Second, the linear stability analysis is carried out here in the two-dimensional case.
The same can be done in the three-dimensional case with respect to the normal modes

h
 � h
0 exp(ikxx � ikyy � ωt), h
0 � const,

where kx, ky are, respectively, the wavenumbers in the x and y directions. As in the physical problem at hand,
the symmetry is such that the spatial variables x and y are interchangeable and the characteristic equation for
ω will be identical to Equation (12.26), but now k � (k2

x � k2
y)

1/2 is the total wavenumber of the disturbance.
Equation (12.26) describes the rate of film leveling since ω � 0 for any value of the dimensionless

wavenumber a and the rest of the parameters. If at time t � 0 a small bump is imposed on the interface,
Equation (12.26) describes how it will relax to zero and the interface will return to h � d.

The overall rate of film leveling can be estimated by the maximal value of the growth (decay in the case
at hand) rate ω, as given by Equation (12.26). If the lateral size of the film is L, the fastest decaying mode is
the longest available one so that its wavenumber is k � 2π /L. Thus the rate of disturbance decay is given by

ωm � � �ρg � �,

so the amplitude of the disturbance will reach the value of, say a thousandth of the initial amplitude at the
time of t � (ln 0.001)/ωm. However, this is only an estimate based on the linear stability analysis, and the
effect of nonlinearities on the rate of film leveling can be found only from the solution of Equation (12.25).

Equations (12.25a, b) with the obvious change in the sign of the gravity term in each of these also apply
to the case of a film on the underside of a plate. This case is known in the literature as the Rayleigh–Taylor
instability [Chandrasekhar, 1961] of a thin viscous layer. To study the stability properties of such a sys-
tem one replaces g by –g in Equation (12.26) and finds that

µω � (ρ|g|d2 � σ a2)a2. (12.27)

The film is linearly unstable if

a2 � a2
c 
 
 Bo,

that is, if the perturbations are so long that the nondimensional wavenumber is smaller than the square
root of the Bond number Bo, which measures the relative importance of gravity and capillary effects. The
value of ac is often called the (dimensionless) cutoff wavenumber for neutral stability. The cutoff
wavenumber is defined in a way that all perturbations with the wavenumber larger than ac are damped,
while those with the wavenumber smaller than ac are amplified.

We point out that Equations (12.25) constitute the valid limit to the governing set of equations and
boundary conditions when the Bond number Bo is asymptotically small. This follows from the relation-
ships G � εBoS�, G � O(1), and the large value of S�, as assumed in Equation (12.15).

The case of Rayleigh–Taylor instability was studied by Yiantsios and Higgins (1989, 1991) for a thin
film of a light fluid atop the plate and overlain by a large body of a heavy fluid, and by Oron and Rosenau
(1992) for a thin liquid film on the underside of a plane. It was found that evolution of an interfacial dis-
turbance of small amplitude leads to rupture of the film, that is, at certain location(s) the local thickness
of the film is driven to zero.

The dimensionless wavenumber of the fastest growing mode is determined for a film of an infinite lateral
extent from Equation (12.27) as a � �B�o/�2�, and its growth rate is determined from Equation (12.27) as

ωm � .

Thus the time of film rupture can be estimated by t � (ln d/h
0)/ωm.
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Yiantsios and Higgins (1989) showed that Equation (12.25a) with G � 0 admits several steady solutions.
These consist of various numbers of sinusoidal drops separated by “dry” spots of zero film thickness, as
shown in Figure 8 in Yiantsios and Higgins (1989). The examination of an appropriate free energy func-
tional [Yiantsios and Higgins, 1989] suggests that multi-drop states are energetically less preferred than a
one-drop state. These analytical results were partially confirmed by numerical simulations. As found in
the long-time limit, the solutions can asymptotically approach multi-humped states with different ampli-
tudes and spacings. This suggests that terminal states depend upon the choice of initial data [Yiantsios
and Higgins, 1989]. If the overlying semi-infinite fluid phase is more viscous than the thin liquid film, the
process of the film rupture slows down in comparison with the single-fluid case.

Note that Equation (12.25a) with G � 0 was also derived and studied by Hammond (1983) in the con-
text of capillary instability of a thin liquid film on the inner side of a cylindrical surface when gravity was
neglected. The gravitational term was due to the destabilizing effect of the capillary forces arising from
longitudinal (along the axis of the cylinder) disturbances. Hammond (1983) also showed that the film
ruptures, but the process of rupture is infinitely long.

The three-dimensional version of the problem of the Rayleigh–Taylor instability was considered by
Fermigier et al. (1992) using the weakly nonlinear analysis. Formation of patterns of different symmetries
and transition between these patterns were experimentally studied. Axially symmetric cells and hexagons
were preferred. Droplet detachment was observed at the final stage of the experiment as a manifestation
of a film rupture. The growth of an axisymmetric drop is shown in Figure 5 in Fermigier et al. (1992).
A theoretical study of the Rayleigh–Taylor instability in an extended geometry [Fermigier et al., 1992] on
the basis of the long-wave equation showed the tendency of the hexagonal structures to emerge as a pre-
ferred pattern in agreement with their own experimental observations.

Saturation of the Rayleigh–Taylor instability of a thin liquid film, and therefore prevention of its rup-
ture by an imposed advection in the longitudinal (parallel to the interface) direction, is discussed by
Babchin et al. (1983). Similarly, capillary instability of an annular film saturates because of a through flow
[Frenkel et al., 1987].

Stillwagon and Larson (1988) considered the problem of a film leveling under the action of capillary
force on a substrate with topography given by z � λ(x). Using the approach previously described, they
derived the evolution equation that for the case of zero gravity reads

µhτ � σ[h3 (h � λ)xxx]x � 0 (12.28)

Numerical solutions of Equation (12.28) showed a good agreement with their own experimental data.
At short times there is film deplanarization because of the emergence of capillary humps, but these relax
at longer times.

12.3.2 van der Waals Forces and Constant Surface Tension

Because of very small typical length scales of MEMS applications (and particularly of liquid film thick-
ness) that go down into the range of fractions of a micrometer, new physics related mainly to intermole-
cular forces is considered. These fundamental types of forces acting on interatomic or intermolecular
distances can affect the dynamics of macroscopic thin liquid films. Some of them, like weak and strong
interactions, are short-range (i.e., much beyond the validity limits of continuum theory considered here).
Others, like electromagnetic and gravitational forces, are of a long range and will be thus of a great impor-
tance for the subject of the current review.

Israelachvili (1992) presents a classification of electromagnetic forces into three categories. The first cat-
egory consists of purely electrostatic forces arising from the Coulomb interaction. These forces include
interactions between charges, dipoles, etc. The second category consists of polarization forces that stem from
the dipole moments induced in totally neutral particles by the electric fields associated with other neighbor-
ing particles and permanent dipoles. These forces include interactions in a solvent medium. The third 
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category consists of forces of quantum mechanics origin. Such forces lead to chemical bonding and to repul-
sive steric interactions. Among these forces is the force which acts, similar to the gravitational force, between
all kinds of particles whether charged or neutral. This force is called “dispersion force” or “London force.”
The origin of the dispersion force is explained by the following consideration: in an electrically neutral parti-
cle whose time-averaged dipole moment vanishes, an instantaneous dipole moment does not vanish accord-
ing to time-varying relative distribution of negative and positive charges. Such an instantaneous dipole
moment gives rise to a dipole moment in the neighboring neutral particles, and the interaction between these
dipoles induces the force with a non-vanishing time-averaged value. These dispersion forces are long-range
forces acting at the distances from several angstroms to several hundred angstroms. They play, as we see later,
a very important role in the dynamics of ultrathin liquid films whose average thickness is in this range and
in various phenomena such as wetting and adhesion. The dispersion forces can be either attractive or repul-
sive affecting the properties of good or poor wetting of solids by liquids. The presence of other bodies alters
the dispersion interaction between the molecules, thus the dispersion force is strictly non-additive. As shown
in Table 6.3 of Israelachvili (1992), the dispersion force constitutes in many cases, except for highly polar
water molecules, the main contribution to the total intermolecular force called van der Waals force. Various
types of potentials describing the forces acting between molecules were reviewed by Israelachvili (1992).

Dzyaloshinskii et al. (1959) developed a theory for van der Waals interactions in which an integral 
representation is given for the excess Helmholtz free energy of the layer as functions of the frequency-
dependent dielectric properties of the materials in the layered system.

The potential φ of the van der Waals forces is frequently specified in terms of the excess intermolecular
free energy ∆G. These two values are related each to other via

φ � . (12.29)

It follows in this case from Equation (12.22) in the 3-D case and Equation (12.23) in the 2-D case that
the film is unstable to infinitesimal disturbances only if

� 0 or equivalently � 0. (12.30)

It follows from Equation (12.30) that the film is unstable only if the potential φ has a decreasing branch
or ∆G displays a negative curvature, both as functions of the film thickness h.

In the special case of an apolar film with parallel boundaries and non-retarded forces,

φ � φr � A
h�3/6π, (12.31a)

where φr is an additive reference value for the body-force potential omitted hereafter and A
 is the dimen-
sional Hamaker constant [Dzyaloshinskii et al., 1959]. When A
 	 0, there is negative disjoining pressure
(referred to sometimes as conjoining pressure), and a corresponding attraction of the two interfaces
(solid–liquid and liquid–gas) toward each other causes the instability of the flat state of the film surface
and eventually its breakup. When the disjoining pressure is positive A
 � 0 the interfaces repel each other,
and the flat state of the film surface is energetically preferred.

The literature provides various forms for the potential φ accounting for more complex physical situa-
tions. Mitlin (1993), Mitlin and Petviashvili (1994), Khanna and Sharma (1997), and others used the 
6–12 Lennart-Jones potential for van der Waals interactions between the solid and the apolar liquid

φ � A
3h
�3 � A
9 h�9 (12.31b)

with positive dimensional Hamaker coefficients A
j. In this case the two interfaces of the film are mutually
attracting when the separation distance is relatively large. This drives the instability of the flat state of the film
surface. On the other hand, the two interfaces of the film are mutually repelling when the separation distance
is relatively short. This leads to a final saturation of the amplitude of the interfacial undulation.

∂2∆G
�
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∂φ
�
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If the solid substrate is coated with a layer of thickness δ, the potential of the intermolecular pairwise
interactions between the solid, coating, passive air, and apolar liquid phases is given by [Bankoff, 1990;
Hirasaki, 1991; Sharma and Reiter, 1996; Khanna et al., 1996; Oron and Bankoff, 1999]

φ � A
3h
�3 �Â
3(h � δ)�3, (12.31c)

where A
3 � (A
LL � A
cL)/6π, A�
3 � (A
sL � A
cL)/6π with A
ij being the Hamaker constant related to the interac-
tion between the phases i and j, A
ij � Aii


1/2Ajj

1/2[Israelachvili, 1992], and subscripts s, c, and L correspon-

ding, respectively, to solid, coating, and liquid phases.
Oron and Bankoff (1999) derived the potential topologically similar to the Lennart-Jones potential

Equation (12.31a) but with different exponents

φ � A
3h
�3 � A
4h

�4 (12.31d)

to model the simultaneous action of the attractive (A
3 	 0) long-range and repulsive (A
4 	 0) (relatively)
short-range van der Waals interactions and their influence on the dynamics of the film. To obtain the
potential Equation (12.31d), Equation (12.31a) was expanded into the Taylor series in h under assumption
of δ �� d with �A
3 	 0, A
3 � �A
3 	 0, and only two leading terms of this expansion were kept. Thus the coef-
ficients A
3 A
4 are specified by the properties of the three phases. The potential of the form Equation
(12.31d) is also appropriate for liquid films on a rough solid substrate [Teletzke et al., 1987; Mitlin, 2000].

A combination of long-range apolar (van der Waals) and shorter-range polar intermolecular interac-
tions gives rise to the generalized disjoining pressure expressed by the potential

φ � A
3h
�3 � Sp exp(�h/λ)/λ , (12.31e)

where Sp, λ are dimensional constants [Williams, 1981; Sharma and Jameel, 1993; Jameel and Sharma,
1994; Paulsen et al., 1996; Sharma and Khanna, 1998; and others] that are, respectively, the strength of the
polar interaction and its decay length λ called the correlation length for polar interaction. The polar com-
ponent of the potential is repulsive if Sp 	 0 and is attractive if Sp � 0. Sharma and Jameel (1993) classi-
fied films with polar and apolar components into four groups: type I systems with both polar and apolar
attractive forces (A
3 	 0, Sp � 0), type II systems with apolar attractions and polar repulsions(A
3 	 0,
Sp 	 0), type III systems with both polar and apolar repulsions (A
3 � 0, Sp 	 0), and type IV systems with
apolar repulsions and polar attractions (A
3 � 0, Sp � 0). Films of type I are always unstable and their
dynamics are in many ways similar to that of apolar films described by the potential Equation (12.31a),
while those of type III are always stable. Films of type II and IV display ranges of stability and instability
according to the sign of the derivative ∂φ/∂h. See the instability criterion Equation (12.30).

12.3.2.1 Homogeneous Substrates

Scheludko (1967) observed experimentally spontaneous breakup of ultrathin, static films and proposed that
negative disjoining pressure is responsible. He also used linear stability analysis to calculate a critical
thickness of the film below which breakup occurs, while neglecting the presence of electric double layers.
Since then a great deal of scientific activity has focused on the phenomenon.

The dynamics of ultrathin liquid films and the process of dewetting of solid surfaces have attracted a
special interest during the last decade. Progress and development of both experimental techniques such
as ellipsometry, X-ray reflectometry, and atomic force microscopy (AFM), and computational techniques
along with the availability and affordability of fast computers helped to advance the study of the pertinent
phenomena. The main interest is centered about the pattern formation and the quest for the dominant
mechanisms driving the film evolution. In the context of the latter issue the polemics are ongoing
between the two candidates, namely thin film instability arising from the interaction between the inter-
molecular and capillary forces called sometimes in the literature “spinodal dewetting” or “a spinodal
mode,” and nucleation of holes from impurities or defects. It should be noted that most if not all of the
experiments with dewetting recorded in the literature were carried out on liquid polymer films, while the
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theory is currently available for simple Newtonian liquids. The reasons for using polymer films in terms of
controllability of the experiments were discussed by Sharma and Reiter (1996) and Reiter et al. (1999b).

Bischof et al. (1996) performed experiments on ultra-thin (�40 nanometers) metal (gold, copper, and
nickel) films on a fused silica substrate irradiated by a laser and turned into the liquid phase. Isolated
holes, coalesced holes, and the typical rims surrounding them were observed. Little humps were found in
the center of many holes, and the mechanism of heterogeneous hole nucleation was suggested to be
responsible for formation of these. However, along with this mechanism, growing film surface deformations
were detected, and thus the mechanism of spinodal dewetting is also in effect. The characteristic size of
film surface deformations is well-correlated with the wavelength of the most amplified linear mode pro-
portional to d2. Similar conclusions about the dominance of the nucleation mechanism were drawn later
by Jacobs et al. (1998). Experimental evidences of spinodal dewetting were given by Brochard-Wyart and
Daillant (1990), Reiter (1992), Sharma and Reiter (1996), Xie et al. (1998), Reiter et al. (1999b, 2000), and
others. Reiter et al. (2000) showed for the first time that the spinodal length and time scales are consis-
tent with the results of their experiments. Independent molecular dynamics simulations [Koplik and
Banavar, 2000] support the spinodal character of dewetting.

Khanna et al. (2000) presented the first real time experimental observation of the pattern formation in
thin unstable polydimethylsiloxane (PDMS) films placed on a coated silicon wafer and bounded by aque-
ous surfactant solutions. The process of film disintegration (“self-destruction”) was described by the fol-
lowing sequence of stages: self-organization of the pattern and selective amplification of the interfacial
disturbance, breakup of the film and formation of isolated circular holes, lateral expansion of the holes
and emergence of long liquid ridges, and lastly breakup of the ridges into droplets standing on an equi-
librium film plateau and ripening of the droplet structure.

Muller-Buschbaum et al. (1997) studied the process of dewetting of thin polysterene films on silicon wafers
covered with an oxide layer of different thicknesses and observed the emergence of “nano-dewetting
structures” inside the dewetted areas. These structures in the form of troughs of about 70 nanometers in
diameter confirmed that the dewetted areas were neither completely dry nor covered with a flat ultrathin
layer of the liquid. Such patterns were detected along with micrometer-size drops usually observed in
similar situations on top of oxide layers that were 24 angstroms thick but were not present on thinner
oxide layers where only drops emerged. The dependence of the mean drop size as well as the trough diam-
eter on the initial thickness of the film was in agreement with theoretical predictions based on the
assumption of spinodal dewetting [Muller-Buschbaum et al., 1997].

Consider now a film under the influence of van der Waals forces and constant surface tension only,
so that Π1 � Π2 � Π3 � σx � σy � 0. As we see shortly the planar film is unstable when A
 	 0 and 
stable when A
 � 0. In two dimensions Equation (12.23) in the case at hand becomes [Williams and
Davis, 1982]

µht � A
(h�1hx)x � σ(h3hxxx)x � 0. (12.32a)

Its dimensionless version reads

Hτ � A(H�1Hξ)ξ � S(H3Hξξξ)ξ � 0, (12.32b)

where

A �

is the scaled dimensionless Hamaker constant. Here the characteristic velocity was chosen as U0 � v/d.
If Equation (12.32a) is linearized around h � d the following characteristic equation for ω

µω � � �
2

� � σda2� (12.33a)
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is obtained. It follows from Equation (12.33a) that there is instability for A
 	 0, driven by the long-range
molecular forces, and stabilization is due to surface tension. The cutoff wavenumber ac is given then by

ac � � �
1/2

, (12.33b)

which reflects that an initially corrugated interface has its thin regions thinned further by van der Waals
forces while surface tension cuts off the small scales. Instability is possible only if 0 � a � ac, as seen by
combining Equations (12.33a) and (12.33b):

µω � (a2
c � a2). (12.34)

Similar results were obtained in the linear stability analysis presented by Jain and Ruckenstein (1974). On
the periodic infinite domain of wavelength λ � 2π/k, the linearized theory predicts that the film is always
unstable since all wave numbers are available to the system. In an experimental situation the film resides
in a container of finite width, say L. The solution obtained from the linear stability theory for 0 � ξ � L
would show that only perturbations of the non-dimensional wavenumber lower than ac, see Equation
(12.34), and those of small enough wavelength that “fit” in the box (i.e., λ � L) are unstable. Hence no
instability would occur by this estimate if 2πd/L 	 ac. It is inappropriate to seek a “global” critical thick-
ness from the theory but only a critical thickness for a given experiment, since the condition depends on
the system size L.

The evolution of the film interface as described by Equation (12.32) with periodic boundary condi-
tions and an initial linearly unstable perturbation of the uniform state leads to the rupture of the film in
a finite (non-dimensional) time τR [Williams and Davis, 1982]. This rupture manifests itself by the fact
that at a certain time the local thickness of the film becomes zero. The time of rupture of the film of an
infinite lateral extent can be estimated from the linear stability theory by

tR � ln� �.

However, the rate of film thinning, measured as the rate of decrease of the minimal thickness of the film,
explosively increases with time and becomes much larger than the disturbance growth rate given by
Equation (12.33a) according to the linear theory. This phenomenon was found numerically from the solu-
tion of Equation (12.32b) [Williams and Davis, 1982] and analytically by weakly nonlinear theory [Sharma
and Ruckenstein, 1986; Hwang et al., 1993]. Hwang et al. (1997) studied the three-dimensional version of
this problem using the natural extension of Equation (12.32b). They confirmed film rupture and found
that it occurs pointwise and not along a line. Moreover, the rupture time in the three-dimensional case 
is shorter than in the two-dimensional case.

Burelbach et al. (1988) used numerical analysis to show that, in a certain time range near the rupture
point, surface tension has a minor effect, and therefore the local behavior of the interface is governed by
the backward diffusion equation

Hτ � A(H�1Hξ)ξ � 0. (12.35)

Looking for separable solutions for Equation (12.35) in the form H (ξ, τ) � T(τ) X(ξ), Oron et al. (1997)
used the known temporal asymptotics [Burelbach et al., 1988] and found that [also, Rosenau, 1995]

H(ξ, τ) � A (τR � τ)sec2 � �, (12.36)

where τR is the time of rupture and b is the constant which should be determined from the matching with
the far-from-rupture solution. The minimal thickness of the film close to the rupture point is therefore
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expected to decrease linearly with time. This allows the long-wave analysis to be extrapolated closer to the
point where adsorbed layers and moving contact lines appear. However, the solution Equation (12.35) is
not expected to be valid very close to the rupture point, where the film progresses toward rupture and the
fluid velocities diverge. Recently, the existence of infinite sets of similarity solutions in which both van der
Waals and surface tension forces are equally important near rupture was shown [Zhang and Lister, 1999;
Witelski and Bernoff, 1999, 2000]. These solutions have the same form in both two-dimensional and
axisymmetric cases

H(ξ,τ) � (τR � τ)1/5 g[ξ(τR � τ)�2/5], (12.37)

where g is a function to be determined. Among this infinite set of self-similar solutions the fundamental
solution stable to linear perturbations was identified as the only asymptotic behavior observed in the
direct numerical solution of Equation (12.32b) [Witelski and Bernoff, 1999; Zhang and Lister, 1999]. It
is described by the function g the least oscillatory one among the possible solutions of the corresponding
ordinary differential equation. The point rupture is the preferred mode of film rupture in three dimensions
[Witelski and Bernoff, 2000].

Several authors [Kheshgi and Scriven, 1991; Mitlin, 1993; Sharma and Jameel, 1993; Jameel and Sharma,
1994; Mitlin and Petviashvili, 1994; Oron and Bankoff, 1999] have considered the dynamics of thin liquid
films in the process of dewetting a solid surface. The effects important for a meaningful description of the
process are gravity, capillarity, and if necessary, the use of a generalized disjoining pressure, which contains
a sum of intermolecular attractive and repulsive potentials. The generalized disjoining pressure of the Mie
type is destabilizing (attractive) or stabilizing (repulsive) for the film of a larger (smaller) thickness, still within
the range of several hundreds of angstroms [Israelachvili, 1992] where van der Waals interactions are effec-
tive. Equations (12.21) and (12.23) can be rewritten in the situation considered, respectively, in the form

Hτ � [H3(GH � SHξξ � Φ)ξ]ξ � 0, (12.38a)

µht � [h3(ρgh � σhxx � φ)x]x � 0. (12.38b)

Linearizing Equation (12.38b) around h � d, one obtains

µω � � a2d�ρg � d � �. (12.39)

It follows from Equation (12.39) that the necessary condition for linear instability is

d � �ρg, (12.40)

that is, the destabilizing effect of the van der Waals force has to be stronger than the leveling effect of gravity.
Kheshgi and Scriven (1991) studied the evolution of the film using Equation (12.38a) with the potential

Equation (12.31a) and found that smaller disturbances decay because of the presence of gravity leveling,
while larger ones grow and lead to film rupture propelled by van der Waals force. Mitlin (1993) and Mitlin
and Petviashvili (1994) discussed possible stationary states for the late stage of solid-surface dewetting
with the potential Equation (12.31b) and drew the formal analogy between the latter and the Cahn theory
of spinodal decomposition [Cahn, 1961]. Sharma and Jameel (1993) and Jameel and Sharma (1994) fol-
lowed the film evolution as described by Equations (12.38) and (12.31e) with no gravity (G � 0) and
concluded that thicker films break up, while thinner ones undergo “morphological phase separation” that
manifests itself in creation of steady structures of drops separated by ultra-thin practically flat liquid films
(holes). Similar patterns of morphological phase separation were also observed by Oron and Bankoff (1999)
in their study of the dynamics of thin spots near film breakup. Figure 2 in Oron and Bankoff (1999) shows
typical steady-state solutions for Equation (12.38a) with the potential Equation (12.31d) and G � 0 for
different sets of parameters.
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Khanna and Sharma (1998) used the Lennart-Jones potential Equation (12.31b) to study the three-
dimensional dynamics of an apolar liquid film on a solid substrate. Their investigation based on the
dimensionless evolution equation

Hτ � ∇ � (H3∇Φ) � S∇ � (H3∇∇2H) � 0 (12.41)

showed that in the case of A
9d
6 �� A
3 the corresponding film evolution displays the formation of steep

holes. These holes are axisymmetric when the size of the periodic domain slightly exceeds the critical wave-
length. However, they are non-axisymmetric with uneven rims surrounding the holes for larger domains.

Sharma and Khanna (1998) studied the film dynamics governed by Equation (12.41) with the potential
Equation (12.31e) that engenders short-range polar repulsion, intermediate-range van der Waals attraction,
and long-range polar repulsion. The linear and weakly nonlinear analyses fail to predict the structure of
the emerging patterns. The former, however, can successfully predict the length scale of the resulting pattern.
Two characteristic morphologically different patterns were found and in both of them the true dewetting
does not occur. A microfilm covering the solid surface emerges and persists instead. The first pattern is
typical for the films whose thickness is closer to the upper critical thickness. In this case the film undergoes
the stages of reorganization into a pattern of a length scale corresponding to the fastest growing linear
mode, emergence of circular holes with rims uneven in height, coalescence of the holes, and slow evolution
into circular drops standing on top of a flat microfilm. The second pattern typical for relatively thin films
of initial thickness near the lower critical thickness does not exhibit formation of circular holes and
instead produces droplets that tend to be circular subject to the capillary forces. This type of a film evo-
lution seems to be less frequent but was also observed in the experiments of Xie et al. (1998). The flat
microfilm covering the substrate emerges after the formation of isolated drops. Finally, a stable state that
consists of a single circular drop standing on a flat equilibrium film is reached. In the intermediate range
of the initial film thickness, the patterns consisting of holes, ridges, and drops coexist when the number
of each of these depends on the initial film thickness. As will be discussed later, all kinds of structures that
contain holes, drops, and ridges may coexist on heterogeneous substrates [Konnur et al., 2000].

Sharma et al. (2000) attributed the type of film dewetting to the relative position of the average thickness
of the film d and the location of the minimum of the function ∂φ/∂h. When the film is thicker than the
thickness corresponding to the minimum of ∂φ/∂h, the film dewets by formation of holes. In the opposite
case, dewetting sets in by formation of liquid ridges which break up further into droplets. In either case,
ripening of the droplet structure takes place, and larger droplets grow at the expense of smaller ones.

Oron (2000c) studied the evolution of a film on a coated solid substrate as described by Equation
(12.41) with the potential Equation (12.31d) given in dimensionless form as Φ � A3H�3 � A4H

�4, where
A3 and A4 are positive non-dimensional Hamaker constants. As noted previously, this potential acts as
long-range van der Waals attraction and short-range repulsion, both apolar. The evolution of a small-
amplitude disturbance of a flat initial state H � 1 leads to self-organization of the surface, emergence of
holes, their expansion, coalescence, and formation of polygonal network of liquid ridges on top of the
essentially flat microlayer. Later the liquid ridges break up into isolated drops and ridges that pump their
liquid by means of the capillary forces into the largest drop making the latter bigger and more circular.
The existence of a “thick” microlayer facilitates a relatively free liquid flow along the coated substrate and
the accumulation of the liquid in an isolated drop standing on a plateau minimizing the free energy of
the system. Finally, a steady state is reached, where a circular drop persists when standing on a flat equi-
librium film, as seen in Figure 12.7. The film evolution described follows the typical sequence of events
as described in the experiments by Khanna et al. (2000).

Reiter et al. (1999a) carried out theoretical and experimental studies of the dynamics of films on wet-
table solid surfaces and in contact with an ambient phase of varying physicochemical composition. By
exchanging the ambient phase it is possible to vary the total Hamaker constant of the system and even to
change its sign, thus turning the initially stable configuration into the unstable one. Experiments with
PDMS films on a silicon wafer with alternating air and water ambient phases provide an example of such
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a system [Reiter et al., 1999a, b]. When in contact with air, the film remained flat and did not exhibit any
evidence of instability. However, while in contact with water instability sets in, and the film, whose initial
thickness ranged between 30 and 110 nanometers, finally reached the state in which small droplets stood
on top of a thin wetting layer. This phenomenon was studied theoretically [Reiter et al., 1999a] using a
three-dimensional evolution Equation (12.41) with the potential topologically similar to that of Equation
(12.31b). Qualitative agreement between theory and experiments was quite good. However, as noted by
Reiter et al. (1999a), even quantitative agreement between the two could be achieved but for “unexpectedly
high effective Hamaker constant.” The reason for that is still unclear.

12.3.2.2 Heterogeneous Substrates

A study of the dynamics of thin liquid films on a heterogeneous substrate can be motivated by the presence
of dust particles or other impurities, oxidized or rough patches, or varying chemical composition leading
to non-uniform wettability properties of the solid surface underlying the film. These and other types of
heterogeneity of the substrate may be present unintentionally or created deliberately to achieve a certain goal.

The governing equation studied in this context is Equation (12.41). In contrast with the case of the
homogeneous substrate where the potential of the intermolecular forces depends solely on the film thick-
ness Φ � Φ(H), in the current case the potential explicitly depends on the lateral spatial coordinates. This
dependence enters the equations via spatial variation of the Hamaker coefficients.

A series of papers [Lenz and Lipowsky, 1998; Herminghaus et al., 1999, 2000; Gau et al., 1999; Lenz,
1999; Lipowsky et al., 2000] examined the morphological transitions of liquid layers on heterogeneous
structured substrates. Lenz and Lipowsky (1998) showed by minimization of the total interfacial free
energy that for a domain containing a hydrophilic patch confined between the hydrophobic ones, three

12-24 MEMS: Introduction and Fundamentals

FIGURE 12.7 The stages of evolution of a non-evaporating film as described by Equation (12.41) with the poten-
tial Equation (12.31d). The first four consecutive snapshots are given in the form of a contour plot, while the last one
is in the form of surface plot. Each image has its own brightness, so the film thickness in different images cannot be
compared. A polygonal network of liquid ridges qualitatively similar to the experimental observations made by
Sharma and Reiter (1996) is seen in the snapshots (b)–(d.) Bright and dark shades correspond to elevations and
depressions, respectively. (Reprinted with permission from Oron (2000c).)
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different regimes depending on the volume of the droplet are possible. Figure 12.8 demonstrates these
regimes. In the regimes (1) and (3), the respective contact angles are prescribed a priori by the phases cho-
sen and satisfy the Young equation. The regime (2) is characterized by the droplet volume and the con-
tact angle spanning over the range between the respective values of regimes (1) and (3). In the limiting
case of perfectly wettable hydrophilic and non-wettable hydrophobic patches, the regime (2) is only pos-
sible. In the case of a two-dimensional square periodic lattice of N circular hydrophilic patches sur-
rounded by hydrophobic domains, the equilibrium state for a low total liquid volume consists of N identical
droplets, all of them covering their own hydrophilic patch similar to regime (1) for the case of an isolated
patch. As the total volume of the liquid increases, the droplets grow and the system undergoes transition
to a heterogeneous equilibrium state that consists of one large drop and N � 1 small identical drops.
More complex heterogeneous states were unstable [Gau et al., 1999]. If the total volume of the liquid
increases beyond a certain value, a third equilibrium state that represents a single completely wetting layer
covering the whole system becomes possible. The transition to this equilibrium state is possible from
either of the aforementioned states. For striped periodic domains, all of the three equilibria states found
in the previous case persist. However, a new kind of transition from the homogeneous state to the film state
exists here. This transition consists of the stages where identical droplets span over several hydrophilic
patches and the hydrophobic ones in between.

Gau et al. (1999) performed a series of experiments with liquid microchannels created by hydrophilic
stripes of about 40 microns wide and further condensation of water onto the substrate. When the total
amount of condensed water was low, the microchannels had a shape of cylindrical caps of a constant cross-
section with a small contact angle θ between the liquid and the solid. However, when the total volume of water
exceeded a certain value, the straight channels underwent instability, which led to the formation of a single
bulge on each of the stripes. Moreover, when the bulges on two neighboring channels were in close proxim-
ity, they merged to form a big drop or microbridge between the channels. Gau et al. (1999) found theoreti-
cally that the cylindrical cap configuration with the contact angle θ is linearly stable for θ � 90° and unstable
to long-wave disturbances for θ 	 90°, provided that the wavelength of the disturbance is sufficiently large

λ 	 λc � � 	
1/2

aγ ,

where aγ is the width of the hydrophilic stripe. The presence of this instability disallows the emergence of long
homogeneous liquid channels with a contact angle larger than 90°. The onset of the instability occurs at
θ� 90°, and the wavelength of the critical disturbance is infinite. This explains the formation of a single bulge
on the microchannel [Herminghaus et al., 2000]. The precise shape of the configuration of liquid microchan-
nels with bulges was numerically calculated by Gau et al. (1999) using minimization of the total free energy.
A very good agreement was found between the experimental and theoretical results.

Konnur et al. (2000) and Kargupta et al. (2000) studied the three-dimensional dynamics of liquid crystal
films using Equation (12.41) with the potential Equation (12.31e) with different sets of fixed positive values
a3, Sp, λ on the patches of the substrate. They reported a new mechanism of film instability associated
with the substrate heterogeneity. This mechanism is driven by the pressure gradient generated by the 
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FIGURE 12.8 Equilibrium states of the droplets on a heterogeneous substrate that consists of alternating hydro-
philic and hydrophobic patches. These equilibria depend on the droplet volume.

© 2006 by Taylor & Francis Group, LLC



spatial variation of φ and directed from the less to the more wettable domains on the solid. The potential
Equation (12.31e) employed by Konnur et al. (2000) prescribes instability for both relatively thin and
thick films, while films in the intermediate range are stable. They found that the presence of heterogeneity
is able to destabilize even spinodally stable films, speed up the rupture process of the film, and produce
spatially complex and locally ordered patterns. Destabilization of spinodally stable films arises even when
the heterogeneous patch is much smaller than the spinodal length scale determined as the wavelength of
the fastest growing linearly unstable disturbance. The true rupture can occur for spinodally stable films
if the local thickness of the film is reduced by the heterogeneous mechanism to the value where the spin-
odal instability condition is met, and both of the mechanisms propel the film to rupture. The evolution
of an initially flat film typically exhibits such morphological patterns as: a lack of surface deformations
prior to the formation of a hole, emergence of a non-growing hole on a perfectly wetted substrate or in
a spinodally stable film, formation of a “castle-moat” pattern with a central drop surrounded by a ring-
like depression or hole, and formation of locally ordered structures with alternating depressions and rims
[Konnur et al., 2000; Kargupta et al., 2000]. The heterogeneous mechanism was strong for relatively thick
films, and its time scale was several orders of magnitude lower than that of the spinodal mechanism.
Kargupta et al. (2000) considered also the two-dimensional dynamics of the film on a substrate with a
heterogeneous patch of varying size. They found that the presence of heterogeneity always causes the
emergence of local interfacial depression, which can evolve into film rupture when the length of the patch
becomes sufficiently large. The rupture time rapidly decreases when the patch length increases beyond
the critical length and becomes independent of the patch length when the latter is large. Kargupta et al.
(2001) also considered drying of thin isothermal liquid films on heterogeneous substrates. They found
that the rate of dewetting can be increased by evaporation, and the latter induces the formation of a large
number of ring-like patterns containing satellite holes. Theoretical results of Kargupta and Sharma (2001)
were recently confirmed experimentally when the pattern size is larger than the spinodal wavelength on
a homogeneous surface [Sehgal et al., 2002]. Brusch et al. (2002) studied the process of dewetting two-
dimensional films with the diffuse interface on a heterogeneous substrate with a sinusoidal modulation
of the disjoining pressure via the investigation of possible steady states. Scenarios of the emergence of
both pinning and coarsening patterns were discussed. They found that pinning is possible when the het-
erogeneity is of a larger periodicity than that of the critical dewetting mode. Large domains of coexistence
of both types of patterns were also found. Patterning of thin liquid films by templating on heterogeneous
substrates was investigated by Kargupta and Sharma (2002a, b, c), (2003); and Sharma et al. (2003).

12.3.2.3 Flow on a Rotating Disc

Reisfeld et al. (1991) considered the isothermal, axisymmetric flow of an incompressible viscous liquid
on a horizontal rotating disk. Cylindrical polar coordinates r, θ, z are used in the frame of reference rotat-
ing with the disk. The film interface is located at z � h(r, t). In the coordinate system chosen, outward
unit normal vector n and unit tangent vector t are

n � , t � �
(1

(1

�

, 0

h

, h
2
r)

r)
1/2� .

The hydrodynamic equations analogous to Equation (12.2), taking into account both the centrifugal
forces and Coriolis acceleration, are written in the vector form as

∇ � v � 0, ρ[vt � (v � ∇)v] � �∇p � µ∇2v � ρ[g � 2ω  v � ω  ω  v],

where ω is the angular-velocity vector with the components (0, 0, ϖ). The boundary conditions are given
by Equation (12.4) formulated in cylindrical polar coordinates with ∇sσ � 0 and Π � 0.

The characteristic length scale in the horizontal direction is chosen as the radius of the rotating disk R� and
the velocity scale is taken as U0 � ρϖ 2R�d2/µ. A small parameter � is defined in accord with Equation (12.7)
as ε � d/R�. The dimensionless parameters of the problem are the Reynolds number R as given in

(�hr, 0, 1)
��
(1 � h2

r)
1/2
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Equation (12.12), the scaled inverse capillary number S given by Equations (12.12) and (12.15), and the
Froude number F,

F � .

Using the procedures previously outlined, one obtains at leading order the following evolution equation

Hτ � �r2H3 � SrH3� (rHr)r	
r


r

� 0. (12.42)

The terms describing the effect of inertia and gravity appeared in the terms of first order in ε and thus
were omitted. However, they may be retained to investigate the dynamics of the rotating film in the first
phase of the process, including inertia and amplification of kinematic waves [Reisfeld et al., 1991].
Equation (12.42) models the combined effect of capillary forces and centrifugal drainage, neither of
which describes any kind of instability.

For most spin coating applications, S is very small and the corresponding term may be neglected,
although it may be very important in planarization studies where the leveling of liquid films on rough
surfaces is investigated. Equation (12.42) can be thus simplified

Hτ � (r2H3)r � 0. (12.43)

This simplified equation can then be used for further analysis. Looking for flat basic states H � H(τ),
Equation (12.43) is reduced to the ordinary differential equation which is to be solved with the initial
condition H(0) � 1. The film thins because of centrifugal drainage according to the solution

H(τ) � �1 � τ�
�1/2

,

which predicts a decrease of the thickness to zero at the infinite time. The cases where inertia was taken into
account were considered in [Reisfeld et al., 1991] where linear stability analysis of flat base states was given.

Stillwagon and Larson (1990) considered the spin coating process and leveling of a non-volatile liquid
film over an axisymmetric, uneven solid substrate. For a given local dimensionless height of the substrate
λ(r), their equation derived from the Cartesian version valid for capillary leveling of a film in a trench
resembles Equation (12.42) and reads

Hτ � [α r̂2H3 � Ŝr̂H3(Hξξξ � λξξξ)]ξ � 0, (12.44)

where r̂, ξ are, respectively, the radial coordinate and the radial distance from the trench, both scaled with
the trench width. α is the ratio of the width and the location of the trench. Equation (12.44) can be fur-
ther simplified under assumption that the width of the trench is small compared to its radial position and
can be brought to the form

Hτ � [H3 � Ω�2H3(Hξξξ � λξξξ)]ξ � 0, (12.45)

where Ω2 is the ratio between the centrifugal and capillary forces. Stillwagon and Larson (1990) calculated
quasi-steady-state solutions close to the trench solving the time-independent version for Equation (12.44)

H3(Hξξξ � λξξξ) � Ω2H3 � Ω2, (12.46)

where the right-hand-side term arises from the condition of uniformity of the film far from the trench.
Experiments with liquid films reported in Stillwagon and Larson (1990) demonstrate quantitative agree-
ment between measured film profiles and those obtained from Equation (12.46).
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Wu et al. (1999) and Wu and Chou (1999) used Equation (12.46) to study the degree of planarization
for periodic uneven substrates expressed as the ratio between the amplitude of the deformed film inter-
face and the average thickness of the film. They showed that this value is independent of Ω and slightly
varies with the trench spacing for large Ω. This value decreases with the increase of spacing for small fixed
values of Ω.

Chou and Wu (2000) studied the effect of air shear on the process of film planarization. Similar to the case
considered in Equation (2.31) in Section IIC of Oron et al. (1997), where the term proportional to the
imposed shear stress multiplied by hhx arises in the evolution equation, air shear produces the advective term
proportional to H2, which has to be added to the expressions in the square brackets of the left-hand side of
Equations (12.44) and (12.45). Corresponding additional terms will appear in Equation (12.46). Chou and
Wu (2000) studied such an extended Equation (12.46) and found that the shear stress enhances the ampli-
tude of the film interface, and thus opposes film planarization during spin coating for both isolated and periodic
features of the substrate.

Peurrung and Graves (1993) considered three-dimensional quasi-steady states in spin coating over
topography using the natural extension of Equation (12.45) into three dimensions. Their theoretical and
experimental results agree qualitatively, both showing the emergence of wake-like structures at the down-
stream side of the protrusion with crests extending along each of the corners and the depression near the
center.

12.4 Thermal Effects

One of the best known fluid flows under the influence of heat transfer is the buoyancy or Rayleigh con-
vection [Chandrasekhar, 1961] of a stagnant liquid layer lying on a horizontal solid surface triggered by
heating from below and a subsequent establishing of unstable density stratification. This convection sets
in when the temperature difference across the layer exceeds a certain critical value, which is proportional
among other physical parameters of the system to the third power of the layer thickness d. Due to the fact
that the range of very small values of the film thickness is of a major interest in the context of MEMS, the
Rayleigh effect is much weaker than the thermocapillary or Marangoni effect addressed next. The latter
scales with the first power of d in contrast with d3 in the case of the Rayleigh effect.

12.4.1 Thermocapillarity, Surface Tension, and Gravity

The thermocapillary or Marangoni effect (e.g., see [Davis, 1987] accounts for the emergence of interfacial
shear stresses because of the variation of surface tension with temperature ϑ,σ � σ (ϑ), which is, in most
cases, monotonically decreasing. Such a shear stress is mathematically expressed by ∇sσ [Edwards et al.,
1991]. In order to incorporate the thermocapillary effect into the equations, one needs to add an energy
equation and the appropriate boundary conditions related to heat transfer to the governing system
Equations (12.2)–(12.4).

The energy equation in three dimensions and the boundary conditions have the form

ρc(ϑt � uϑx � vϑy � wϑz) � kth(ϑxx � ϑyy � ϑzz) � q., (12.47)

ϑ � ϑ0 at z � 0, (12.48a)

kthn � ∇ϑ � αth(ϑ � ϑ�) � 0 at z � h(x, y, t) (12.48b)

Here c is the specific heat of the fluid, kth is its thermal conductivity,ϑ0 is the temperature of the rigid sub-
strate assumed to be uniform, and q

.
is the rate of internal heat generation. The boundary condition

Equation (12.48b) is Newton`s cooling law, and αth is the heat-transfer coefficient describing the rate of
heat transfer from the liquid to the ambient gas phase held at the constant temperature ϑ∞.
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Turning to the two-dimensional case, scaling the temperature by

Θ � (12.49)

and substituting scales Equation (12.8) into Equations (12.47) and (12.48) yields

εRP(Θτ � UΘξ � WΘς ) � ε2Θξξ � Θξξ � 2Qf(ς), (12.50)

Θ � 1 at ς � 0, (12.51a)

Θς � ε2ΘξHξ � BΘ(1 � ε2Hξ
2)1/2 � 0 at ς � H, (12.51b)

where P and B are, respectively, the Prandtl and Biot numbers, Q is the dimensionless measure of the rate
of internal energy generation defined by

P � , B � , Q � , (12.52)

where ϑr is the reference temperature chosen as ϑr �ϑ0 � ϑ∞ if ϑ0 	 ϑ∞ and as ϑr �ϑ0 if ϑ0 � ϑ∞.
Furthermore, f(ς) expresses the dependence of the rate of internal energy generation on the vertical coor-
dinate ς.

Begin first with the case of no internal heat generation q. � 0 leading to Q � 0. Expand the temperature
Θ in a perturbation series in ε along with the expansions Equations (12.14), and substitute these into the
system given by Equations (12.50) and (12.51). Assume again that R � O(1) and let P, B � O(1), so that
the convective terms in Equation (12.50) are delayed to next order, that is, declaring that conduction in the
liquid is dominant, and the conductive heat flux at the interface balances the heat loss to the environment.

At leading order in ε the governing system for Θ(0) consists of condition Equation (12.51a),

Θςς � 0, (12.53)

and

Θς � BΘ � 0 at ς � H, (12.54)

where the superscript “zero” has been dropped. The solution to this system is

Θ � 1 � and Θi � , (12.55)

where Θi � Θ(τ, ξ) is the surface temperature in order to substitute it into Equation (12.21).
It is now required to determine the thermocapillary stress Σξ. By the chain rule

Σξ � M� �(Θξ � HξΘς) 
 �M , (12.56a)

where

γ (H) � �(dΣ/dΘ)Θ�Θi
,

(12.56b)
M �

is the Marangoni number, and the sign change is inserted because dΣ/dΘ is negative for most common
materials. Here ∆σ is the change of surface tension over the temperature domain between the characteristic
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temperatures, usually ϑ∞ and ϑ0. To be more precise, if ϑ∞ � ϑ0 (heating at the bottom of the layer), then
∆σ 	 0 for standard fluid pairs with surface tension decreasing with temperature. For heating at the interface
side, ϑ∞ 	 ϑ0 and ∆σ � 0. The shear stress condition, Equation (12.18b), has at leading order in � the form

Uς � M � 0 at ς � H. (12.57)

Thus, in this case �Π1 � �Π3 � Φ � 0, Equation (12.21) becomes

Hτ � MB� 	ξ � S(H3Hξξξ)ξ � 0. (12.58)

If gravity forces are to be included, Φ � gς, Equation (12.58) becomes

Hτ � �� MB � GH3	Hξ
ξ

� S(H3Hξξξ)ξ � 0. (12.59)

For the most ubiquitous case in which surface tension is a linearly-decreasing function of temperature
σ � σ (ϑ), the value (dΣ/dΘ) � const and γ(H) � 1. Equations (12.58) and (12.59) with γ (H) � 1 appeared
in Davis (1983) for B �� 1 and in Kopbosynov and Pukhnachev (1986); Bankoff and Davis (1987);
Burelbach et al. (1988); Oron and Rosenau (1992); Deissler and Oron (1992); VanHook et al. (1995);
and Oron (2000b).

For B �� 1, Equation (12.59) in dimensional form becomes

µht � (h2hx)x � ρg(h3hx)x � σ(h3hxxx)x � 0. (12.60)

Linearization of Equation (12.60) around the state h � d yields the characteristic equation

µω � � � ρgd � a2�a2. (12.61)

Equation (12.61) shows that if g 	 0 (gravity acting towards the base of the film), gravity has a stabilizing
effect (similar to that described in the section on isothermal films), while thermocapillarity has a desta-
bilizing effect on the interface. Equation (12.61) shows that the gravitational stabilization is enhanced
with the thickness of the film. The dimensionless cutoff wavenumber ac is given in this case by

ac � � B � Bo�
1/2

. (12.62)

Thermocapillary destabilization of a film can be explained by examining the behavior of an initially
deformed interface in the linear temperature field produced by the heat transfer at the interface. The depres-
sion lies in the region of higher temperature than its neighbors. Therefore, if surface tension is a decreas-
ing function of temperature, interfacial stresses proportional to the surface gradient of the surface tension
[e.g., Levich, 1962; Landau and Lifshitz, 1987] drive the interfacial liquid away from it. Because the liquid
is viscous, it is dragged away from the depression causing it to deepen further. Hydrostatic and capillary forces
cannot prevent this deepening, and the film proceeds to zero thickness (ruptures) at some location.

Studies of Equation (12.58) with γ (H) � 1 [Oron and Rosenau, 1992] reveal that evolution of a small-
amplitude initial data usually results in rupture of the film qualitatively similar to that displayed in Figure 11 of
Oron and Rosenau (1992). The three-dimensional version of Equation (12.58) was studied by VanHook et al.
(1995), and the results were tested against their experiments. The existence of a ruptured region predicted by
Equation (12.58) was qualitatively confirmed by the experiment. However, the theoretical predictions of the insta-
bility threshold were about 50% higher than the experimental data. Becerril et al. (1998) recently addressed
this discrepancy in terms of side-walls effects and deflected initial interface shapes.

VanHook et al. (1997) developed a “two-layer” theory modeling the dynamics of systems containing
superposed layers of a liquid and a passive gas confined between two horizontal rigid differentially heated

∆σ
�
σ

3
�
2

σ
�
3d

1
�
3

αth∆σ
�

2kth

1
�
3

1
�
3

αth∆σ
�

2kth

1
�
3

1
�
3

H2γ(H)
��
(1 � BH)2

1
�
2

1
�
3

H2γ (H)Hξ
��
(1 � BH)2

1
�
2

γ(H)Hξ
��
(1 � BH)2

12-30 MEMS: Introduction and Fundamentals

© 2006 by Taylor & Francis Group, LLC



surfaces. This approach takes into consideration the change in the temperature profile in the air due to
deformation of the interface. The two-layer setting leads to the thermal problem containing Equation
(12.53) formulated in each layer with the boundary conditions of temperature and heat flux continuity
at the liquid–gas interface. Two new parameters arise from the solution of this thermal problem

η � , F � , (12.63)

where dg is the thickness of the gas layer and kth,g is its thermal conductivity. The parameter η replaces the
Biot number in the “one-layer” model described above.

In the case at hand the dimensionless interfacial temperature is

Θi � 1 � , (12.64)

and the corresponding dimensionless evolution equation in the standard case of γ (H) � 1 in two dimen-
sions is obtained in the form [VanHook et al., 1997]

Hτ � �� M(1 � F) � GH3	Hξ
ξ

� S(H3Hξξξ)ξ � 0. (12.65)

Equation (12.65) reduces to the “one-layer” model Equation (12.59) when F � �η/(1 � η) that corresponds
to d/dg → 0. For one-layer systems the parameter F is always non-positive, while for two-layer systems F
is usually positive. For both of these cases F 	 �1. The solutions of Equation (12.65) were of two distinct
types, namely “dry spots” that represent rupture at the bottom solid surface, see Figure 12.4(a), and “high
spots” that represent rupture at the top solid surface by the elevated film interface, see Figure 12.4(b). Dry
spots emerge for F � 1/2, while high spots form when F 	 1/2. The transition between these two different
kinds of solutions, which depend on the value of the Bond number Bo and the initial condition, occurs
in the vicinity of F � 1/2 [VanHook et al., 1997]. As in the “one-layer” theory reviewed earlier, steady
non-ruptured states of the system were not found. The experimental results of VanHook et al. (1997)
qualitatively agree for certain liquid depths with a “two-layer” model.

In the case of “negative gravity,” g � 0, that is, when the film is on the underside of the solid plane, the
Rayleigh–Taylor instability (heavy fluid overlying light fluid) enhances the thermocapillary instability and
broadens the band of linearly unstable modes:

ac � � B � Bo�
1/2

. (12.66)

Stabilization of the Rayleigh–Taylor instability by thermocapillarity was investigated [Oron and
Rosenau, 1992; Deissler and Oron, 1992] for two- and three-dimensional cases, respectively. They found
that negative thermocapillarity, that is, with ∆σ � 0, corresponding to heating at the interface side or
cooling at the rigid bottom, in conjunction with surface tension can lead to saturation of the Rayleigh–Taylor
instability and to formation of steady drops. The experimental confirmation of such saturation was
recently obtained by Burgess et al. (2001).

We now turn to the case where the q.-term is present in Equation (12.47). Its presence stands for the
effect of internal energy generation, which might be induced by irradiation of the film and further
absorption of the radiation energy within the non-scattering liquid phase. In this context the solid sub-
strate is assumed to be black, that is, absorbing all radiation penetrating through the liquid film. Oron
and Peles (1998) considered the simplified case of spatially uniform energy absorption, f(ς) 
 1. In this
situation the solution of the thermal problem Equations (12.50) and (12.51) is given by

Θ � Θ0 �1 � � � Q ��ς2 � ς� and Θi � (Θ0 � QH2), (12.67)
B
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where Θ0 � 1 if ϑ0 � ϑ∞, and Θ0 � 0 if ϑ0 � ϑ∞. The corresponding evolution equation of the film
obtained upon calculation of the corresponding value of Σξ using Equation (12.67) and its substitution
into Equation (12.21) with gravity neglected and γ (H) � 1 is

Hτ � M�H2 Hξ	ξ � S(H3Hξξξ)ξ � 0. (12.68)

The main result found by Oron and Peles (1998) was that internal heat generation stabilizes the inter-
face via the thermocapillary effect associated with it. In the simplest case where the temperature of the solid
is equal to the saturation temperature ϑ0 � ϑ∞ (i.e.,Θ0 � 0). This follows directly from the fact that the inter-
facial temperature Θi is an increasing function of the film thickness H. The effect of stabilization becomes
apparent because at leading order the heat transfer in a thin liquid film is one-dimensional across it, and
the energy input from absorption of radiation energy in the thicker part of the film is greater than in its thin-
ner part. Thus, the interfacial temperature at the depression is lower than at the crest of the interface, and
the thermocapillary stress drives the liquid into the depression promoting stabilization of the interface.
All this is different from the standard case discussed in the literature where internal energy generation is
absent. In the latter case of Q � 0 and Θw � 1, the interfacial temperature decreases with H, and insta-
bility of the spatially uniform state of the interface is thus triggered. When the internal heat generation is
sufficiently large, Q � 1, the film becomes unconditionally stable. When the film is linearly unstable, the
range of unstable modes narrows with the increase of Q for a fixed value of B [Oron and Peles, 1998].

Oron (2000a) considered thin liquid films with an optically smooth non-reflective deformed interface
irradiated with monochromatic beam of a specified wavelength λ. The intensity of radiation iλ of such a
beam normally impinging on the optically smooth non-reflective interface was shown in the absence of
emission by the irradiated liquid phase to decay exponentially with the distance from the flat liquid surface
[Siegel and Howell, 1992]

iλ(z) � iλ(z0)e�Kλ (z0�z), (12.69)

where z0 is the location of the film surface and Kλ is the extinction coefficient of the given liquid assumed
to be constant. The extinction coefficient is a property of the medium and in general varies with its tem-
perature, pressure, and the wavelength of the incident radiation.

Equation (12.69) is often referred as to Bouguer’s [Siegel and Howell, 1992] or Beer`s law. The attenuation
of the radiation intensity is associated with the absorption and scattering of energy. The extinction coef-
ficient is in general represented as a sum of the absorption and scattering components Kλ � aλ � as,λ. In
the case of a vanishing scattering as,λ � 0, Kλ � aλ, and the optical thickness κλ of a liquid film of a uni-
form thickness d can be defined as

κλ 
 aλd � d/Lm,

where Lm is the mean penetration length of the incident radiation by the wave of the wavelength λ.
Assuming that the film is non-scattering, the solid surface underneath is non-reflecting and the intensity
of absorbed radiation is equal to the intensity of internal heat sources, the latter is expressed [Oron,
2004a] by

q.(z) � q. exp[�aλ(h � z)],

where h represents the location of the interface and q. � iλ(z0)aλ is the constant representing the rate of
energy absorption at the film interface. Note that the intensity of the heat sources q.(z) varies also with x,
y, t when aλ � 0. By comparing the value of the optical thickness of the film with unity, one can examine
the following limiting cases: (a) if κλ �� 1, the radiation passes through the film, and such a film is called
optically thin or transparent; (b) if κλ 		 1, the radiation penetrates only into a very thin boundary layer
adjacent to the film interface, and in this case the film is called optically thick or opaque.
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Solving the thermal problem given by Equations (12.50) and (12.51) with f(ς) � exp[�β (H � ς)],
constant aλ, and β � aλ d a non-dimensional attenuation coefficient, yields the interfacial temperature in
the form

Θi � �Θ0 � (e�βH � βH � 1)	. (12.70)

The corresponding evolution equation of the film obtained upon calculation of the term Σξ based on
Equation (12.70) and its substitution into Equation (12.21) with gravity neglected and γ (H) � 1 is

Hτ � ��(1 �

H

B

2

H)2��BΘ0 � ((β � BH)(1 � e�βH) � βBHe�βH)	Hξ
ξ

� (H3 Hξξξ)ξ � 0. (12.71)

As in the case of uniform heat generation, Oron (2000a) found for irradiated films following the
Bouguer’s law that an increase of the radiation intensity leads to stabilization of the interface because of
the appropriate change in the profile of the interfacial temperature. In the presence of heating across the
film, Θ0 � 1, there exists a critical value of Q � Qc depending on the Biot number B, such that the film
becomes linearly stable when Q 	 Qc , and remains linearly unstable when Q � Qc , albeit the rate of the
disturbance growth slows down in comparison with the case of Q � O. This critical value Qc is obtained
from the linear stability analysis as

Qc � [(1 � βB�1)(1 � e�β) � βe�β]�1. (12.72)

This critical value tends to its limiting value of Qc � B/(2 � B) for optically thin films β �� 1, which is
the limit of the spatially uniform absorption, and to Qc � �B/2 for optically thick films, β 		 1.

It was experimentally discovered that dilute aqueous solutions of long-chain alcohols exhibit non-
monotonic dependence of surface tension on temperature [Legros et al., 1984; Legros, 1986]. This depen-
dence can be approximated quite well by the quadratic polynomial

σ(ϑ) � δ(ϑ � ϑm)2, (12.73a)

where δ is constant and ϑm is the temperature corresponding to the minimal surface tension. In this case,

γ (H) ∝ ��ϑϑm

0 �

�

ϑ
ϑ

∞

∞
� � �. (12.73b)

The instability (called QM instability) arising from the variation of surface tension given by Equation
(12.73a) was studied by Oron and Rosenau (1994). In contrast with the case of the standard thermocap-
illary instability described by Equation (12.58) with γ (H) � 1, evolution of QM instability may result in
a non-ruptured steady state. Figure 4 in Oron and Rosenau (1994) displays such a state along with the
streamlines of the flow field obtained from solving Equation (12.58) with γ (H) given by Equation (12.73b).
The intersections of the Θ0-line with the film interface in Figure 4 of Oron and Rosenau (1994) correspond
to the locations of the minimal surface tension. The existence of these creates surface shear stresses acting
in opposite directions, as shown by the arrows on the graph, and leads to film stabilization.

12.4.2 Liquid Film on a Thick Substrate

The methods described in the previous sections can be easily implemented in the case of a liquid film
lying on top of a solid slab of thickness that is small compared to the characteristic wavelength of the
interfacial disturbance [Oron et al., 1996]. In this case the thermal conduction equation in the solid has
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to be solved simultaneously with the energy equation in the liquid. This coupled thermal problem is written
at leading order in ε as

Θw,ςς � 0, � � ς � 0, (12.74)

Θςς � 0, 0 � ς � H

with the boundary conditions

Θw � Θ, �kth,wΘw,ς � �kthΘς at ς � 0,

Θw � 1 at ς � � , (12.75)

where Θw and dw/d are the dimensionless temperature the thickness of the solid slab scaled with d, and kth,w

is its thermal conductivity. The upper equations in Equation (12.75) express the conditions of continuity of
both the temperature and heat flux at the solid–liquid boundary, while the lower equation in Equation
(12.75) prescribes a uniform temperature at the bottom of the solid substrate. The last boundary condi-
tion is taken at the film interface and at leading order in ε, it is given by Equation (12.54). Appropriate
extension has to be made in the case of a volatile liquid (see the section on phase changes).

Solution of Equations (12.74) and (12.75) results in

Θ � 1 � , Θw � 1 � (12.76a)

with κ� � κth,w /kth, which implies the interfacial temperature in the form

Θi � �1 � B�H � �	
�1

. (12.76b)

Comparing the expressions for the interfacial temperatures Θi, as given by Equations (12.55) and
(12.76b), in addition to the thermal resistance due to each conduction and convection at the interface in
the former case, the latter contains a thermal resistance owing to conduction in the solid. The evolution
equation, analogous to Equation (12.58), will have the same form except for the change in the denomi-
nator of the second term containing an additional additive term

a 
 (12.77)

This additional term represents the ratio between the values of the thermal conductive resistance of the
solid and the liquid.

Using Equations (12.76) one can derive the expressions for the temperatures along the gas–liquid (GL)
and solid–liquid (SL) interfaces: ΘGL 
 Θ(ς � H) and ΘSL 
 Θw(ς � 0). When the film ruptures (i.e.,
H � 0), the values for ΘGL and ΘSL are equal if

a � � 0 (12.78)

However, the temperature singularity ΘGL �ΘSL emerges at the rupture point when a � 0. Equation (12.78)
is the sufficient condition to be satisfied in order to relieve this singularity [Oron et al., 1996]. If it is satisfied

lim
H→0

lim
a→0

ΘGL � lim
H→0

lim
a→0

ΘSL � 0,

and the singularity is removed. The problematic case of a → 0 materializes if the substrate is of a negli-
gible thickness.
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12.5 Change of Phase: Evaporation and Condensation

12.5.1 Interfacial Conditions

We now consider the case of an evaporating (condensing) thin film of a simple liquid lying on a heated
(cooled) plane surface held at constant temperature ϑ0 which is higher (lower) than the saturation tem-
perature at the given vapor pressure. It is assumed that the speed of vapor particles is sufficiently low, so
that the vapor can be considered an incompressible fluid.

The boundary conditions appropriate for phase transformation at the film interface z � h are now for-
mulated. The mass conservation equation at the interface is given by the balance between the liquid and
vapor fluxes through the interface

j � ρυ(vυ � vi) � n � ρf (vf � vi) � n, (12.79a)

where j is the mass flux due to evaporation; ρυ and ρf are, respectively, the densities of the vapor and the
liquid; vυ and vf are the vapor and liquid velocities at z � h; and vi is the velocity of the interface. Equation
(12.79a) provides the relationship between the normal components of the vapor and liquid velocities at
the interface. The tangential components of both of the velocity fields are equal at the interface:

(vf � vυ) � tm � 0, m � 1, 2. (12.79b)

The boundary condition that expresses the stress balance and extends Equation (12.4b) to the case of
phase transformation reads [Delhaye, 1974; Burelbach et al., 1988]

j(vf � vυ) � (T � Tυ) � n � 2H
~σ(ϑ)n � ∇sσ, (12.80a)

where Tυ is the stress tensor in the vapor phase and temperature dependence of surface tension is
accounted for.

The energy balance at z � h is given by [Delhaye, 1974; Burelbach et al., 1988]

j�L � υ2
υ,n � υ2

f,n� � (kth∇ϑ � kth,υ∇ϑυ) � n � 2µ(ef � n) � vf,r � 2µυ(eυ � n) � vυ,r � 0, (12.80b)

where L is the latent heat of vaporization per unit mass; kth,υ, µυ, ϑυ are, respectively, the thermal con-
ductivity, viscosity, and the temperature of the vapor; vυ,r � vυ � vi, vf,r � vf � vi are the vapor and liq-
uid velocities relative to the interface, respectively; υυ,n � vυ,r � n, vf,n � vf,r � n are the normal components
of the latter; and ef , eυ are the rate-of-deformation tensors in the liquid and the vapor, respectively. In
Equation (12.80b) the first term represents the contribution of the latent heat, the combination of the
second and the third terms represents the interfacial jump in the momentum flux, the combination of the
fourth and the fifth terms represents the jump in the conductive heat flux at both sides of the interface,
while the combination of the last two terms is associated with the viscous dissipation of energy at both
sides of the interface.

Since ρυ/ρf �� 1, typically of order 10�3, it follows from Equation (12.79a) that the magnitude of the
normal velocity of the vapor relative to the interface is much greater than that of the liquid. Hence, the
phase transformation causes large accelerations of the vapor at the interface where the back reaction,
called the vapor recoil, represents a force exerted on the interface. During evaporation (condensation) the
troughs of the deformed interface are closer to the hot (cold) plate than the crests, so they have greater
evaporation (condensation) rates j. The dynamic pressure at the vapor side of the interface is much larger
than that at the liquid side,

ρυυ2
υ,n � 		 ρfυ2

f,n � . (12.81)
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Momentum fluxes are thus greater in the troughs than at the crests of surface waves. Vapor recoil is a
destabilizing factor for the interface dynamics for both evaporation (j 	 0) and condensation (j � 0)
[Burelbach et al., 1988]. Scaled with j2, see Equation (12.84), the vapor recoil is only important for appli-
cations where very high mass fluxes are involved.

Vapor recoil generally exerts a reactive downward pressure on a horizontal evaporating film. Bankoff
(1961) introduced the effect of vapor recoil in the analysis of the film boiling. In this analysis the liquid
overlays the vapor layer generated by boiling and leads to the Rayleigh–Taylor instability of an evaporating
liquid–vapor interface above a hot horizontal wall. In this case the vapor recoil stabilizes the film boiling
because the reactive force is greater for the wave crests approaching the wall than for the troughs.

To obtain a closure for the system of governing equations and boundary conditions, an equation relating
the dependence of the interfacial temperature ϑi and the local pressure in the vapor phase is added
[Plesset and Prosperetti, 1976; Palmer, 1976; Sadhal and Plesset, 1979]. Its linearized form is

~
Kj � ϑi � ϑs 
 ∆ϑi, (12.82)

where

~
K � � �

1/2

,

ϑs is the absolute saturation temperature, α̂ is the accommodation coefficient, Rυ is the universal gas constant,
and Mw is the molecular weight of the vapor [Palmer, 1976; Plesset and Prosperetti, 1976; Burelbach et al.,
1988]. Note that the absolute saturation temperature ϑs serves now as the reference temperature instead of
ϑ∞ in the normalization, Equation (12.49). When ∆ϑi � 0, the phases are in thermal equilibrium with each
other, and in order for net mass transport to take place, a vapor pressure driving force must exist, given for
ideal gases by kinetic theory [Schrage, 1953]. The latter is represented in the linear approximation by the
parameter 

~
K [Burelbach et al., 1988]. Departure from ideal behavior is addressed in the parameter 

~
K by

the presence of an accommodation coefficient α̂ depending on interface/molecule orientation and steric
effects which represents the probability of a vapor molecule sticking upon hitting the liquid–vapor interface.

The set of the boundary conditions Equations (12.80) can be simplified to what is known as a “one-
sided” model for evaporation or condensation [Burelbach et al., 1988] in which the dynamics of the liq-
uid are decoupled from those of the vapor. This simplification is possible because of the assumption of
smallness of density, viscosity, and thermal conductivity of the vapor with respect to the respective prop-
erties of the liquid. The vapor dynamics are ignored in the one-sided model, and only the mass conser-
vation and the effect of vapor recoil stand for the presence of the vapor phase.

The energy balance Equation (12.80b) becomes

�kth∇ϑ � n � j�L � �, (12.83)

suggesting that the heat flux conducted to the interface in the liquid is converted to latent heat of evapo-
ration and the kinetic energy of vapor particles.

The stress balance at the interface Equation (12.80a) is reduced and now rewritten explicitly for the
components of the normal and tangential stresses as

� � T � n � n � 2H
~σ(ϑ),

T � n � t � ∇sσ � t.
(12.84)

In Equation (12.84) the j2-term stands for the contribution of vapor recoil. Finally, the remaining bound-
ary conditions Equations (12.79) and (12.82) are unchanged.
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The procedure of asymptotic expansions outlined in the beginning of this chapter is used again to
derive the pertinent evolution equation. The dimensionless mass balance Equation (12.13) is modified by
the presence of the non-dimensional evaporative mass flux, J � jdL/kth(ϑ0 � ϑs)

EJ � (�Hτ � UHξ � VHη � W)(1 � H2
ξ)

�1/2, (12.85a)

or at leading order of approximation

Hτ � Qξ
(x) � Qη

(y) � EJ � 0, (12.85b)

where Q(x) (ξ,η, τ) � �H

0
U dς, Q(y)(ξ,η, τ) � �H

0

V dς are the components of the scaled volumetric flow rate

per unit width parallel to the wall. The parameter E in Equation (12.85) is an evaporation number

E � ,

which represents the ratio of the viscous time scale tv � d 2/v to the evaporative time scale, te � ρd 2L/kth

(ϑ0 � ϑs) [Burelbach et al., 1988].
The dimensionless versions of Equations (12.82) and (12.83) are:

KJ � Θ at ς � H,
Θς � �J at ς � H, (12.86)

where

K �
~
K .

In the lower equation in Equation (12.86) the kinetic energy term is neglected. For details refer to
Burelbach et al. (1988). Equations (12.18), (12.19), (12.53), and (12.86) pose the problem whose solution
is substituted into Equation (12.85b) to obtain the sought evolution equation. The general dimensionless
evolution Equation (12.21) will then contain an additional term EJ, which arises from the mass flux
because of evaporation and condensation now expressed via the local film thickness H.

A different approach to theoretically describe the rate of evaporative flux j in the isothermal case is
known in the literature [Sharma, 1998; Padmakar et al., 1999]. This approach is based on the extended
Kelvin equation that accounts for the local interfacial curvature and the disjoining and conjoining pressures,
both entering the resulting expression for the evaporative mass flux j. It was shown by Padmakar et al. (1999)
that their evaporation model admits the emergence of a flat adsorbed layer remaining in equilibrium with
the ambient vapor phase, and thus in this state the evaporation rate from the film vanishes. This adsorbed
layer, however, is usually several molecular spacings thick, which is beyond the resolution of continuum
theory.

12.5.2 Evaporation/Condensation Only

We first consider the case of an evaporating or condensing thin liquid layer lying on a rigid plane held at
constant temperature. Mass loss or gain is retained, while all other effects are neglected.

Solving first Equation (12.53) along with boundary conditions Equations (12.51a) and (12.86) and
eliminating the mass flux J from the latter yields the dimensionless temperature field and the evaporative
mass flux through the interface

Θ � 1 � , J � . (12.87)
1

�
H � K

ς
�
H � K

kth
�
dL

kth(ϑ0 � ϑs)
��

ρνL
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An initially flat interface will remain flat as evaporation or condensation proceeds. If surface tension,
thermocapillary, and convective thermal effects are negligible (i.e., M � S � εRP � 0), it will give rise to
a scaled evolution equation of the form

Hτ � � 0, (12.88)

where E� � ε�1E, positive in the evaporative case and negative in the condensing one. K, the scaled inter-
facial thermal resistance, is equivalent to the inverse Biot number B�1. On the physical grounds, K � 0
represents a temperature jump from the liquid surface temperature to the uniform temperature of the
saturated vapor ϑs. This jump drives the mass transfer. The conductive resistance of the liquid film is pro-
portional to H, and the total thermal resistance, assuming infinite thermal conductivity of the solid, is
given by (H � K)�1. For a specified temperature difference ϑ0 � ϑs Equation (12.88) represents a volu-
metric balance whose solution, subject to the initial condition H (τ � 0) � 1, is

H � �K � [(K � 1)2 � 2E�τ]1/2. (12.89)

In the case of evaporation E� 	 0 and when K � 0, the film vanishes in a finite time τe � (2K � 1)/2E�, and
the rate of disappearance of the film at τ � τe is finite

�τ � τe
� � .

For K � 0, the value of dH/dτ remains finite, because as the film thins the interface temperature ϑi, nom-
inally at its saturation value ϑs, increases to the wall temperature. If K � 0 however, the problem becomes
singular. In this case the thermal resistance vanishes, and the mass flux will increase indefinitely if a finite
temperature difference ϑ0 � ϑs is sustained. The speed of the interface at rupture becomes infinite as well.

Burelbach et al. (1988) showed that the interfacial thermal resistance K � 10 for a 10 nanometers thick
water film. Since K is inversely proportional to the initial film thickness, K � 1 for d � 100 nanometers,
so that H/K � 1 at this point. However, H/K � 10�1 at d � 30 nanometers, so that the resistance to con-
duction is small compared to the interfacial transport resistance. Shortly after, van der Waals forces
become appreciable.

12.5.3 Evaporation/Condensation, Vapor Recoil, Capillarity, and
Thermocapillarity

The dimensionless vapor recoil gives an additional normal stress at the interface determined by the j2-term
in Equation (12.84), Π̂3 � �3–

2
E�2D�1J 2, where D is a unit-order scaled ratio between the vapor and 

liquid densities

D � ε�3 .

This stress can be calculated using Equation (12.87). The resulting scaled evolution equation for an evap-
orating film on an isothermal horizontal surface neglecting the thermocapillary effect and body forces is
obtained using the combination of Equations (12.21) and (12.88) with Π1 � 0, Σξ � 0 [Burelbach et al.,
1988]:

Hτ � � �E�2D�1� �
3

Hξ	
ξ

� S(H3Hξξξ)ξ � 0. (12.90)

Since usually te 		 tv, E� can be a small number and can be used as an expansion parameter for slow eva-
poration compared to the non-evaporating base state [Burelbach et al., 1988] appropriate to very thin
evaporating films.

1
�
3

H
�
H � K

E�
�
H � K
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�
ρ

3
�
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K

dH
�
dτ

E��
H � K
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Taking into account van der Waals forces and thermocapillarity, the complete evolution equation for a
thin heated or cooled film on a horizontal plane surface was given by Burelbach et al. (1988) in the form

Hτ � � ��AH�1 � E�2D�1� �
3

� KM�P
�1� �

2

	Hξ
ξ

� S(H3Hξξξ)ξ � 0 (12.91)

with M� � εM. Here the first term represents the rate of volumetric change; the second one the mass
loss/gain; the third, fourth, and fifth ones the attractive van der Waals, vapor recoil, and thermocapillary
terms, all destabilizing; while the sixth term describes the stabilizing capillary force. This was the first full
statement of the possible competition among various stabilizing and destabilizing effects on a horizontal
plate, with scaling making them present at the same order. Other effects such as gravity may be included
in Equation (12.91). Joo et al. (1991) extended the work to an evaporating (condensing) liquid film drain-
ing down a heated (cooled) inclined plate.

Oron and Bankoff (1999) studied the two-dimensional dynamics of an evaporating ultrathin film on
a coated solid surface when the potential Equation (12.31d) was used. Three different types of the evolu-
tion of a volatile film were identified. One type is related to low evaporation rates associated with rela-
tively small E� 	 0 when holes covered by a liquid microlayer emerge, and the expansion of such holes is
governed mainly by the action of the attractive molecular forces. These forces impart the squeeze effect
to the film and, as a result of this, the liquid flows away from the hole. In this stage the role of evapora-
tion is secondary. Figure 12.9 displays such an evolution of a volatile liquid film. Following the nucleation
of the hole and during the process of surface dewetting, one can identify the formation of a large ridge,
or drop, on either side of the trough. The former grows during the evolution of the film until the drops
at both ends of the periodic domain collide. A further recession of the walls of the dry spot leads to the
formation of a single large drop that flattens and ultimately disappears, according to Equation (12.89).
The stages of the film evolution shown in Figure 12.9(a) are very similar to that sketched in Figure 3 of
Elbaum and Lipson (1995). This type of evolution also resembles the results obtained by Padmakar et al.
(1998) for the isothermal film subject to hydrophobic interactions and to evaporation driven by the dif-
ference between the equilibrium vapor pressure and the pressure in the vapor phase. Such films thin uni-
formly to a critical thickness and then spontaneously to dewet the solid substrate by the formation of
growing dry spots when the solid was partially wetted. In the completely wetted case, thin liquid films evolved
to an array of islands that disappeared by evaporation to a thin equilibrium flat film. Two other regimes
corresponding to intermediate and high evaporation rates were discussed in Oron and Bankoff (1999).

An important phenomenon was found in the last stage of the evolution of an evaporating film where
the latter finally disappears by evaporation: prior to that the film equilibrates, so that its disappearance is
practically uniform in space. The film equilibration is caused by the “reservoir effect,” which is driven by
the difference in disjoining pressures and manifests itself by feeding the liquid from the large drops into
the ultrathin film that bridges between them.

Oron and Bankoff (2001) studied the dynamics of condensing thin films on a horizontal coated solid
surface. In the case of a relatively fast condensation, where the initial depression of the interface rapidly
fills up because of the enhanced mass gain there, the film equilibrates and grows uniformly in space
according to Equation (12.89). Note that E� � 0. When condensation is relatively slow, the evolution of
the film exhibits several distinct stages. The first stage, dominated by attractive van der Waals forces, leads
to the opening of a hole covered by a microlayer, as shown in the first three snapshots of Figure 12.10(a).
This is accompanied with continuous condensation with the highest rate of mass gain attained in the
microlayer region corresponding to the smallest thickness H in Equation (12.87). However, opposite to
the evaporative case [Oron and Bankoff, 1999], where the “reservoir effect” arising from the difference
between the disjoining pressures causes feeding of the liquid from the large drops into the microlayer and
film equilibration, in the condensing case the excess liquid is driven from the microlayer into the large
drops. This effect is referred to as the “reversed reservoir effect.” The thickness of the microlayer remains
nearly constant because of local mass gain by condensation compensating for the impact of the reverse
reservoir effect. The first stage of the film evolution terminates in the situation where the size of the hole

1
�
3

H
�
H � K

H
�
H � K

E�
�
H � K
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is the largest. The receding of the drops stops due to the increase of the drop curvature and buildup of
the capillary pressure that comes to balance with the squeeze effect of the attractive van der Waals forces.
From this moment the hole closes driven by condensation, as shown in Figure 12.10(a, b). Once the hole
closes, the depression fills up rapidly, the amplitude of the interfacial disturbance decreases, and the film
tends to flatten out. The film then grows uniformly in space following the solution Equation (12.89) with
negative E�.

Oron (2000c) studied the three-dimensional evolution of an evaporating film on a coated solid surface
subject to the potential Equation (12.31d). The main stages of the evolution repeat those mentioned pre-
viously in the case of a non-volatile film in the section on isothermal films, except for the stage of disap-
pearance accompanied by the reservoir effect. Because of the reservoir effect, the minimal film thickness
decreases very slowly during the stage of film equilibration.

12.5.4 Flow on a Rotating Disc

Reisfeld et al. (1991) considered the axisymmetric flow of an incompressible viscous volatile liquid on a
horizontal, rotating disk. The liquid was assumed to evaporate because of the difference between the
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secutive times (not necessarily equidistant). (Reprinted with permission from Oron and Bankoff (1999).)

© 2006 by Taylor & Francis Group, LLC



vapor pressures of the solvent species at the fluid–vapor interface and in the gas phase. This situation is
analogous to the phase two of spin coating process.

The analysis is similar to what is done in the section on isothermal films, but now with an additional
parameter describing the process of evaporation, which for a prescribed evaporative mass flux j is defined as

E � .

Using the procedures outlined in the section on isothermal films, one obtains at leading order the fol-
lowing evolution equation

Hτ � E � r�r2H3 � SrH3� (rHr)r	
r


r

� 0. (12.92)
1
�
r

1
�
3

2
�
3

3j
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Equation (12.92) models the combined effect of local mass loss, capillary forces and centrifugal drainage,
none of which describe any kind of instability.

For most spin coating applications S is very small, and the corresponding term may be neglected,
although it may be very important in planarization studies where the leveling of liquid films on rough
surfaces is investigated. Therefore, Equation (12.92) can be simplified

Hτ � E � r(r2H3)r � 0. (12.93)

This simplified equation can then be used for further analysis. Looking for flat basic states H � H(τ),
Equation (12.93) is reduced to the ordinary differential equation which is to be solved with the initial
condition H(0) � 1. In the case of E 	 0, both evaporation and drainage cause thinning of the layer.
Equation (12.93) describes the evolution in which the film thins monotonically to zero thickness in a
finite time in contrast with an infinite thinning time by centrifugal drainage only. Explicit expressions for
H(τ) and for the time of film disappearance are given in Reisfeld et al. (1991). In the condensing case
E � 0 drainage competes with condensation to thin the film. Initially the film thins due to drainage until
the rate of mass gain because of condensation balances the rate of mass loss by drainage. At this point the
film interface reaches its steady location H � |E|1/3. The cases where inertia is taken into account are con-
sidered in Reisfeld et al. (1991), where linear stability analysis of flat base states is given.

Experiments with volatile rotating liquid films [Stillwagon and Larson, 1990] showed that the final
stage of film leveling was affected by an evaporative shrinkage of the films. Therefore, they suggested sep-
arating the analysis of the evolution of evaporating spinning films into two stages with fluid flow domi-
nating the first stage and solvent evaporation dominating the second one [Stillwagon and Larson, 1992].

12.6 Closing Remarks

In this chapter the physics of thin liquid films is reviewed and various examples of their dynamics relevant
for MEMS are presented, some of them with reference to the corresponding experimental results. The
examples discussed examine isothermal, non-isothermal with no phase changes, and evaporating and
condensing films under the influence of surface tension, gravity, van der Waals, and centrifugal forces. The
long-wave theory has been proven to be a powerful tool for the research of the dynamics of thin liquid films.

However, there exist several optional approaches suitable for a study of the dynamics of thin liquid
films. Direct numerical simulation of the hydrodynamic equations (Navier–Stokes and continuity)
[Scardovelli and Zaleski, 1999] mentioned briefly in the introduction represents one of these options. A
variety of methods were developed to carry out such simulations: techniques based on Finite Elements
Method (FEM) [Ho and Patera, 1990; Salamon et al., 1994; Krishnamoorthy et al., 1995; Tsai and Yue,
1996; Ramaswamy et al., 1997], techniques based on the boundary-integral method [Pozrikidis, 1992,
1997; Newhouse and Pozrikidis, 1992; Boos and Thess, 1999], surface tracking technique [Yiantsios and
Higgins, 1989], and others. Another optional approach is that of molecular dynamics (MD) simulations
[Allen and Tildesley, 1987; Koplik and Banavar, 1995, 2000]. Refer directly to these works for more detail.

A new approach treating the film interface as a diffuse rather than a sharp one, as presented in this
chapter, was recently developed [Pismen and Pomeau, 2000] and applied to various physical situations
[Pomeau, 2001; Pismen, 2001; Bestehorn and Neuffer, 2001; Thiele et al., 2001a, b; 2002a, b; 2003].

Lastly, new frontiers in the investigation of the dynamics of thin liquid films were recently discussed in
the special issue of “European Physical Journal E, Vol. 12(3), 2003”. An attempt was made to bridge
between numerous theoretical and experimental results in order to explain the main mechanism(s) liable
to rupture of a film. Open questions, controversial approaches, and contradictory conclusions were all in
the focus of the discussion [Ziherl and Zumer, 2003; van Effenterre and Valignat, 2003; Morariu et al.,
2003; Kaya and Jérôme, 2003; Bollinne et al., 2003; Sharma, A., 2003; Thiele, 2003; Stöckelhuber, 2003;
Richardson et al., 2003; Müller-Buschbaum, 2003; Green and Ganesan, 2003; Oron, 2003; Manghi and
Aubouy, 2003; Reiter, 2003].
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13.1 Introduction

Many microdevices involve fluid flows. Microducts, micronozzles, micropumps, microturbines, and
microvalves are examples of small devices with gas or liquid flow. Designing similar devices for two-phase
flows is desirable, and one can envision many attractive applications, if microreactors and microlaboratories
could include immiscible liquid–liquid and gas–liquid systems. Miniature evaporative and distillation
units, bubble generators, multiphase extraction and separation units, and many other conventional multi-
phase chemical processes could be fabricated at microscales. Efficient multiphase heat exchangers could
be designed for microelectromechanical systems (MEMS) devices to minimize joule or frictional heating
effects. Even for the current generation of microlaboratories using electrokinetic flow, multiphase flow has
many advantages. Drops of organic samples could be transported by flowing electrolytes, thus extending the
electrokinetic concept to a broader class of samples. Gas bubbles could be used as spacers for samples in
a channel or act as a piston to produce pressure-driven flow on top of the electrokinetic flow. Flow valves and
pumps that employ air bubbles, like those in the ink reservoirs of ink jet printers, are already being tested
for microchannels. Drug-delivery and diagnostic devices involving colloids, molecules, and biological cells
are also active areas of research.

Before multiphase flow in microchannels becomes a reality, several fundamental problems that arise
from the small dimension of the channels must be solved. Most of these problems originate from the large
curvature of the interface between two phases in these small channels. Furthermore, the menisci along the
channel often have opposite curvatures that give rise to large capillary pressure drops of opposite signs.
This makes it difficult to sustain a pressure gradient in the same direction along the channel. Another
related problem concerns three-phase contact lines that can exist at these menisci. Contact-line resistance is
often negligible in macroscopic flows. The contact-line region, defined by intermolecular and capillary forces,
is small compared to the macroscopic length scales. However, in microchannels, the contact-line region
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is comparable in dimension to the channel size. As a result, the large stress in that region (the classical
contact-line logarithm stress singularity) can dominate the total viscous dissipation [Kalliadasis and
Chang, 1994; Veretennikov et al., 1998; Indeikina and Chang, 1999]. Hence, it is inadvisable to have contact
lines in microchannels unless one is prepared to apply enormous pressure or electric potential driving
forces. One fluid should wet the channel or capillary walls while the other is dispersed in the form of bub-
bles. Due to the small channel dimension, the bubbles usually have a free radius larger than the channel
radius — it is typically difficult to generate colloid-size bubbles smaller than the channel. This chapter
addresses several fundamental issues in the transport of these “large” bubbles and suggests the most realistic
and attainable conditions for such multiphase microfluidic flows.

13.2 Fundamentals

Schematics of a bubble immersed in a wetting liquid within a capillary of radius R are shown in Figure 13.1.
The dimensionless coordinate r is scaled by the capillary radius R. If the bubble is not translating, the cap-
illary pressure drop across the bubble cap is of order σ/R, where s is the interfacial tension. In contrast, the
pressure drop necessary to drive a liquid slug of length l at speed U in the same channel is of order Ul µ/R2.
Hence, the slug length l scales as RCa�1 where Ca � µU/σ is the capillary number. In microchannels, Ca
ranges from 10�8 to 10�4 (for aqueous solutions moving at 10�4 to 1 mm/sec), thus the equivalent slug
length l is many orders of magnitude higher than R. Equivalently, the capillary pressure across the static
meniscus can drive a liquid slug of length R at the astronomically large dimensionless speed of Ca � 1.
For electrokinetic flow, such speeds can be achieved only by an electric field of more than 104 V/cm. The
capillary pressure across a static meniscus in a capillary, sometimes called the invasion pressure, is the
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required pressure to insert a meniscus in the capillary. After the bubble is set into motion, the required
pressure to sustain its motion is less than σ/R but is still significant.

The thickness of the wetting film around a moving bubble in a capillary and the pressure drop across the
wetting film were first studied by Bretherton (1961). For capillary radii R smaller than the capillary length
(σ/∆ρg)1/2, which is about 1 mm for aqueous solutions, buoyancy effects are negligible, and the bubble is
axisymmetrically placed within the capillary. The flat annular film around the bubble allows only uni-
directional longitudinal flow. This lubrication limit stipulates that the pressure be constant across the film
and determined by the local interfacial curvature, the sum of the axial and azimuthal curvatures of the
axisymmetric bubble. Pressure variation is only in the longitudinal direction. For pressure-driven mobile
bubbles, the flat annular film at the middle of the drop indicates that no pressure gradient is present and
that there is no flow in the film. Liquid flow only occurs at the transition regions near the caps where the
film is no longer flat in the longitudinal direction. Near the front cap, the azimuthal curvature decreases
behind the tip, and the resulting capillary pressure gradient drives fluid into the annular film. The reverse
happens near the back cap to pick up the stagnant liquid laid down by the front cap. Unlike the usual
symmetric Stokes flow, the flow around the two caps are not mirror images of each other in 
this free-surface problem. If they were reflectively symmetric, the net pressure drop across the bubble
would be zero, which is impossible for a translating bubble. The same negative bulk pressure gradient
results in pressure-driven liquid flow before and after the bubble. The capillary pressure gradients 
at the two caps are in opposite directions relative to this bulk gradient. As a result, the two caps are not
mirror images of each other, and the capillary pressure across the back cap must be smaller than that at
the front cap.

Simple scaling arguments determine the pressure drop across the bubble and the thickness of the sur-
rounding film. The leading order estimate of capillary pressure drops at both caps is identical at 2σ/R, and
the axial curvature at the tips is 1/R. The axial curvature at the surrounding annular film is d2h/dx2, where
h is the interfacial thickness measured from the capillary wall and x is the longitudinal direction. (The
azimuthal curvature gradient scales as hx and is negligible compared to the axial curvature gradient hxxx

in the short transition region.) Balancing the axial curvature d2h/dx2 to 1/R reveals that the ratio of the
length of the transition region scales as the square root of the film thickness, with both lengths small com-
pared to the capillary radius R. The pressure gradient in the transition regions provided by the capillary
pressure drives a liquid flow at the speed U of the bubble. Balancing the viscous dissipation estimate
µU/h2 with dp/dx and using the above scalings for each quantity, we conclude that the ratio of h2 to the
transition length x is of order Ca. Reconciling this with the relative scalings imposed by curvature matching,
we obtain the classical Bretherton scalings — the film thickness scales as RCa2/3 while the transition
regions near the cap are of the order of RCa1/3 long, with Ca �� 1. The total viscous dissipation due to the
flow at the caps is the integral of µ times the normal gradient of the flow field at the wall over the transi-
tion length. This is the capillary pressure required to balance the dissipation. Using the previous scaling, this
capillary pressure is of the order (σ/R)Ca2/3. Due to the asymmetry of the two caps, this capillary pressure
is different at the two caps. The difference in the pressure drop across the two caps is then of the order
(σ/R)Ca2/3.

Using this new estimate for the pressure drop, we conclude that the equivalent slug length l scales as
RCa�1/3. Equivalently, in a train of translating bubbles spaced by continuous liquid slugs, the pressure
drop across each bubble roughly corresponds to a liquid slug of length RCa�1/3, or 10 to 1000 times the
capillary radius. Hence, the pressure drop required to drive most bubble trains occurs at the bubble caps.
Even without contact-line resistance, pressure-driven multiphase transport in microchannels is expected
to require orders of magnitude higher pressure drops. In the next section, we estimate this pressure drop with
and without Marangoni traction introduced by surfactants, and we sketch the effects of drop viscosity
and noncircular capillaries. It is unlikely that we can achieve pressure-driven multiphase flow under realistic
conditions. The following section shows that electrokinetically driven multiphase flow is achievable and
demonstrates that bubble speed can reach as high as the electrokinetic speed of pure liquids. Such flows occur
under very specific conditions, which are described in some detail. We conclude with some conjectures on
other multiphase microfluidics.
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13.3 The Bretherton Problem for Pressure-Driven Bubble/
Drop Transport

The previous scaling arguments can be made more precise with matched asymptotics. Using a local Cartesian
coordinate for the thin-film region, the usual lubrication analysis yields the following longitudinal velocity
profile:

u(y) � � � yh� (13.1)

The normal coordinate y is measured from the capillary wall. The pressure p is independent of y and is
equal to �σhxx, the axial curvature of the film. Hence, integrating over the film thickness, one obtains the
flow rate q � ��

σ
3
h
µ

3

���
∂
∂

3

x
h
3�. The cubic power dependence arises from the parabolic profile of u(y) in Equation

(13.1). Mass balance over the entire film cross section yields:

� � (13.2)

In a frame moving with the bubble speed U, the time derivative is converted into �Uhx in the moving frame.
Integrating from the flat-film region where the third derivative vanishes into the transition region yields:

3� �(h � h�) � h3hxx (13.3)

Scaling h by the unknown flat-film thickness h� and scaling the x coordinate by h�/(3Ca)1/3, we obtain the
Bretherton equation:

HXXX � (13.4)

This nonlinear equation for H describes the transition regions of both caps. However, the front one
corresponds to X → �, while the back one corresponds to X → ��. The two asymptotic behaviors are
not identical, indicating that the two caps are not mirror images. Nevertheless, as H blows up in both
infinities, its third derivative must vanish according to Equation (13.4), and one expects quadratic
blowup in both directions. These quadratic asymptotes must then be matched to the outer cap solutions.
As h blows up, viscous effects become negligible and the outer caps are, to the leading order, just static
solutions of the Laplace–Young equation. Without gravitational effects, these axisymmetric solutions are
just spherical caps of radius R that make quadratic contact with the wall.

Linearizing about H � 1, the behavior away from the flat film is governed by three eigenvalues, 1 and
��

1
2

� � �
�

2

3�� i. There is only monotonic blowup in the positive X direction due to a lone positive real eigenvalue.
A numerical integration of Equation (13.4) yields the front cap asymptote:

H(X → �) � α�X2 � γ�X � β� (13.5)

The second coefficient can be changed due to an arbitrary shift of X but the quadratic coefficient is universal.
We then choose the origin of X until γ� vanishes. Equivalently, we can vary H � 1 with HX � HXX � 0

for the initial condition in our forward integration of Equation (13.4). This one-parameter iteration yields:

α� � 0.32171 β� � 2.898 (13.6)

Hence, the asymptotic curvature of the annular film toward the front cap is HXX � 2α� or, in the origi-
nal dimensional coordinate:

hxx � HXX � (13.7)
2α�(3Ca)2/3
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This must match with the front spherical cap of radius R that makes the quadratic tangent with the cap-
illary. Matching Equation (13.7) to this quadratic contact, we obtain the leading order estimate of the film
thickness:

h�/R � 0.6434(3Ca)2/3 (13.8)

The back matching is more intricate. We note first that the complex eigenvalues suggest that the back
film is undulating. A pronounced dimple due to this undulation is evident in the back profiles of Figure 13.1
computed by Lu and Chang (1988). This film oscillation is indeed confirmed by the photographs of Friz
(1965). The arbitrary phase between these two complex modes must be specified. This extra degree 
of freedom is not present for the positive direction with only one real eigenvalue. Due to the quadratic
contact of the back cap, we again iterate on the origin of X to obtain the back asymptote:

H(X → ��) � α�X2 � β� (13.9)

Because of the extra degree of freedom in the phase of the two complex conjugate modes, both α� and β�

are functions of the phase, thus the pair (α�, β�) is a one-parameter family. To the leading order, this
asymptote must also match a sphere of radius R that makes tangential contact with the capillary. Hence,
α� � α� � 0.32171. For this value of α�, the corresponding value of β� is β� � �0.8415. (This is the
most accurate estimate obtained by Chang and Demekhin, 1999. It is slightly different from many earlier
values, including Bretherton’s.)

The capillary pressure drops at the two caps arise from the β� terms. Consider the two spherical caps
of radius R	 � R(1 � ε) different from the capillary radius R. Then, the expansion of the cap near the
contact point, �

dh

d

(

x

0)
� � 0, is:

h � � Rε (13.10)

Matching this expansion of the outer cap solution near the capillary to the two asymptotes of the inner
film solutions, Equations (13.5) and (13.9), the front cap has a radius smaller than R, and the back cap
has a larger radius. The difference is of order Ca2/3, the scalings for H in both equations. Hence, the pres-
sure drop across the entire bubble is the difference in the two cap capillary pressures σ/R	:

∆p/(σ/R) � � � 2(ε� � ε�)

� 2(β� � β�)(h�/R) � 10.0Ca2/3 (13.11)

The scaling of this pressure drop is consistent with the order-of-magnitude arguments of the previous 
section. The unit-order coefficients are now specified by this classical matched asymptotic analysis. We note
that an inner X ln X asymptotic behavior needs to be matched to similar expansions in the outer solution
[Kalliadasis and Chang, 1996]. Such high-order matching becomes important only when contact lines appear.

13.3.1 Corrections to the Bretherton Results for Pressure-Driven Flow

At higher values of Ca, between 0.01 and 0.1, the film thickness and pressure drop across the bubble must
be solved numerically instead of by matched asymptotics. This effort was carried out by Reinelt and Saffman
(1985) and Lu and Chang (1988). The pressure drop can be correlated up to Ca � 0.1 as [Ratulowski and
Chang, 1989]:

∆ρ/(σ/R) � 10.0Ca2/3 � 12.6Ca0.95 (13.12)

However, the capillary number rarely exceeds 10�4 in microfluidics, and the Bretherton results of the pre-
vious section are usually adequate.

2
�
1 � ε�

2
�
1 � ε�

x2

�
R
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Bretherton finds his film thickness prediction to be smaller than the measured values at low Ca, exactly
where the matched asymptotic analysis is most valid. This is confirmed by a series of experiments sum-
marized by Ratulowski and Chang (1990), who attribute the deviation to Marangoni effects of surfactant
contaminants that are most pronounced at the thin films of low Ca. The film thickness is determined only
by how the front cap lays down a thin film by its capillary pressure. In this region, the film interface is
stretched considerably, and the interfacial surfactant concentration decreases from the cap to the film.
The film surface tension is then larger than the cap, and this Marangoni traction drags additional liquid
into the film to thicken it.

For soluble surfactants, a complex model involving bulk-interface transport must be constructed to
account for this new mechanism. For insoluble surfactants, a correction can be obtained almost trivially.
In the limit of very small Ca, this traction approaches infinity, and the free surface in the transition region
can be treated as a deformable but rigid interface that is laid onto the stagnant film. The velocity at the
rigid interface vanishes, and the parabolic velocity of Equation (13.1) becomes:

u(y) � � � � � (13.13)

The flow rate q is then corrected by the factor of 4 due to the interface traction. The same correction yields
a factor of 4 to the left-hand side of the Bretherton equation, Equation (13.3). Simply scale Ca by 4 and
the same dimensionless Equation (13.4) results. Hence, in the limit of low Ca, soluble surfactants will correct
the film thickness by a factor of 42/3. This asymptote is approached by the experimental data in Figure 13.2
at low Ca. Ratulowski and Chang show that these asymptotic values at infinite traction are also the 
maximum values attainable for other more complex surfactant transport at low Ca. The correction to

yh
�2

y2

�2

∂3h
�
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FIGURE 13.2 The film thickness of a bubble translating in various surfactant solutions. The capillary number Ca is
a dimensionless speed, and the film thickness is scaled by the capillary radius. The theoretical curves correspond to
different surfactant equilibrium constants between the interface and the bulk. At low Ca, they all approach the same
asymptote derived in the text.
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pressure drop is more intricate because it requires the resolution of the entire bubble. Because the sur-
factants accumulate at the back cap (or near a stagnation point near the back cap), correction requires a
model for surfactant accumulation. Such a model was constructed by Park (1992) who then showed that
the pressure drop across the bubble now has a Ca1/3 scaling due to the accumulation. The pressure drop,
increases by a factor of Ca1/3 in the presence of surfactants.

One particularly interesting phenomenon concerning Marangoni effect is remobilization [Stebe et al.,
1991] at high bulk surfactant concentrations when the entire interface can saturate even as it is being
stretched. The Marangoni traction vanishes, and the mobile limit is again attained. This strategy reduces the
pressure drop by only a factor of order unity and does not change the basic scalings.

For bubble trains whose bubbles are separated by thin lamellae instead of spherical caps (see Figure 13.3),
Ratulowski and Chang (1989) show that the pressure drop remains constant to the leading order, while
the film thickness decreases as adjacent bubbles are compressed (larger contact radius rc in Figure 13.3.
Geometric considerations clarify that a larger compression between adjacent bubbles will decrease the
film thickness. An expansion of the Laplace–Young equation for the lamellae about zero contact radius
shows that the film thickness is related to the free bubble thickness at rc � 0 by:

h�(rc) � (1 � rc)h�(0) (13.14)

Because the lamella is a constant curvature axisymmetric surface, its contribution to the curvatures of
both asymptotes of the thin annular film is identical. The pressure drop across the bubble is independent
of the contact radius.

Schwartz et al. (1986) examine drop transport and find that the thickness and pressure drop increase
monotonically with respect to the viscosity ratio between the drop and the wetting fluid. The maximum
occurs at infinitely large viscosity, corresponding to a solid drop, and the maximum is found to be larger
than Bretherton’s result by a factor of 22/3. The difference between this correction factor and the
Marangoni correction is a result of the differing films. The latter corresponds to a stationary rigid film
while the former corresponds to a translating film. The Bretherton scaling results are robust estimates for
circular capillaries. These estimates are only slightly corrected by Marangoni tractions due to surfactants,
drop viscosity, and even bubble spacing.

The Bretherton scaling arguments break down for noncircular channels. Ratulowski and Chang (1989)
examined the square channel numerically. Because the bubble caps of isolated bubbles are axisymmetric,
contact must be made with the wall at low Ca, which is estimated to be at Ca � 0.04. Below this level,
contact lines are expected, and the liquid does not wet the channel wall. Thus, favorable operating con-
ditions only exist for Ca larger than 0.04, and the numerical results show that the film thickness and pres-
sure drop show peculiar scaling:

h� � 0.69 � 0.10 ln Ca ∆p/(σ/R) � 3.14Ca0.14 (13.15)

The radius R corresponds to a cylindrical capillary with the same cross-section area.
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FIGURE 13.3 Schematic of a bubble train. The contact radius rc represents the degree of compression.
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Estimates for other channel geometries have not been computed, but the formulation by Ratulowski
and Chang can be used. Solve the following two-dimensional unit cell equation for each dimensionless
bubble radius r, scaled with respect to R:

∇2ψ � �1 (13.16)

This fundamental solution is solved within a cross section of the straight capillary with a Dirichlet
boundary condition at the capillary wall and Neumann condition at the circular interface with the
dimensionless radius r. The flow rate–capillary pressure relation then becomes:

q � �K � K(r) (13.17)

The permeability constant K(r) is the cross-section average of the previous fundamental solution multiplied
by the factor σR4/µ. A higher order version of the curvature can be used in place of the second derivative
of r. To avoid contact between bubble and capillary, the capillary cross-section geometry must be nearly
axisymmetric. As a result, one does not expect the pressure drop to be significantly different from
Bretherton’s estimate for circular capillaries, despite the difference in Ca scaling.

13.4 Bubble Transport by Electrokinetic Flow

The large pressure drop required to drive multiphase microchannel flow suggests the electrokinetic driv-
ing force is more desirable. If the electrokinetic flow behind the bubble is larger than that of the sur-
rounding film, a high-pressure region can build up behind the bubble to drive it with the previously
mentioned capillary pressure mechanism. The task is reducing the flow around the bubble without cut-
ting the current required to drive the fluid. It is much easier to build the back pressure with electrokinetic
flow than with pressure-driven flow behind the bubble because the required driving force is not as large.
This is in direct contrast to single-phase channel flow where the hydrodynamic stress of the electrokinetic
flow is confined to the thin double layer. As a result, the efficiency of single-phase electrokinetic flow is
much lower than that of pressure-driven flow.

This design consideration requires some knowledge of electrokinetic flow [Russel et al., 1989;
Probstein, 1994]. Electrokinetic flow occurs when the dielectric channel wall contains some surface
charges that attract co-ions of opposite charge in the solution to a thin double layer of thickness λ. Also
known as the Debye length, λ, ranges from 10 nm to microns depending on the bulk electrolyte concen-
tration. The counter-ion concentration increases from the bulk value toward the wall within this double
layer, while the co-ion decreases from its bulk value. Both bulk values are identical due to charge
neutrality, therefore a net charge exists within the thin double layer. The total amount of this charge is
determined through ionization equilibrium by the surface charge on the capillary.

Within the double layer, the potential φ is governed by the Poisson equation:

� (13.18)

The charge density is ρ, and the potential is set to zero at the bulk when y approaches infinity. The poten-
tial at the surface is called the zeta potential ζ. Due to the Boltzmann distributions of the co-ion and counter-
ion, the counter-ion concentration increases much faster than the co-ion concentration decreases toward
the wall. As a result, the total ion concentration in the double layer exceeds that in the bulk by a factor of
exp(ζ/kT), as seen in Figure 13.4. The charge density ρ also increases from zero at the bulk to a value at
the wall equal to the bulk concentration multiplied by exp(ζ/kT). Hence, at low ζ/kT, Equation (13.18)
indicates that the scaling for λ is inversely proportional to the square root of the bulk ion concentration.
By integrating Equation (13.18) over the double layer, its total charge scales linearly with respect to the
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potential gradient at the wall. The latter quantity scales as ζ/λ. One concludes that, for a given 
capillary–electrolyte pair, the zeta potential ζ scales as λ, inversely as the square root of the bulk 
electrolyte concentration.

In the presence of a tangential electric field E, there is a net body force on the electrolyte that scales as
Eρ. This body force vanishes in the neutral bulk but accelerates the ions in the double layer to large
speeds. These streaming ions drag the entire fluid body in the capillary along with them. The body force
is concentrated in the thin double layer and acts like a surface force. The entire bulk liquid translates
rigidly with a uniform tangential velocity, assuming there is no external pressure gradient. The momen-
tum transfer in y for the tangential velocity field involves the viscous dissipation term (µd2u/d2y) balanced
by the body force Eρ. Because this is in the same form as the Poisson equation, one sees that u scales lin-
early with respect to the electric potential φ but approaches a constant value away from the double layer.
This asymptote is called the electrokinetic velocity:

uc � � (13.19)

The constants ε0 and ε are the dielectric permittivities that we have omitted in the previous scaling 
arguments.

Because the electrokinetic velocity is flat away from the thin double layer (see Figure 13.4), the flow
rate scales as the cross-section area, or R2. For pressure-driven flow, the flow rate scales as the square of
the area, or R4. The electrokinetic velocity is independent of R, whereas the velocity of pressure-driven
flow scales as the second power of R. Electrokinetic flow is much less efficient than pressure-driven flow,
but electrokinetic flow is easier to scale up and down in microfluidic designs.

Unfortunately, the same flat electrokinetic velocity profile now serves to prevent cessation of film flow.
By simple current–voltage calculation in the longitudinal direction, the local electric field E is shown to
scale as the inverse of the cross-section area of the electrolyte across the capillary. By Equation (13.19),

ε0εζcE�µ
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FIGURE 13.4 Electrokinetically driven bubble transport. The electrolyte ion concentration profile C0 is shown with
the velocity profiles Uf for both negative and positive zeta potentials at the bubble interface. The bubble translates with
bubble speed Ub and the liquid with electrokinetic velocity Ueo.
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the electrokinetic velocity scales the same way. However, the flow rate scales as the electrokinetic velocity
times the cross-section area and is independent of the cross-section area. The flow rate behind the bubble
is the same as the flow rate in its surrounding film. As a result, there is no back pressure buildup, and the
electrolyte simply flows around the bubble. This is observed when air bubbles are driven electrokinetically
in a KCl/H2SO4 electrolyte (about 10�2 and 10�6 mol/L each) in a 5-cm-long glass capillary with a 1.0-mm
inner diameter and with a voltage drop of 30 to 70 V [Takhistov et al., 2000]. At these conditions, the elec-
trokinetic velocity of the electrolyte is 0.1 to 1.0 mm/sec, yet the bubble remains stationary as the electrolyte
flows past it.

There are several possible means of breaking the flow rate invariance to cross-section area in order to
reduce the film flow. One can endow the interface with traction by using finite viscosity drops or interfacial
surfactants so that the film profile is no longer flat. The longitudinal electric field in the film can be reduced
by lowering the electrolyte concentration such that the thickened double-layer thickness approaches that
of the film. As a result, the higher ion concentration within the double layer can increase the film conduc-
tivity beyond the bulk value. More intriguingly, one can use an ionic surfactant to endow a double layer at
the interface that has a different charge from the capillary double layer. The velocity at the interface is not zero
in the moving frame but is negative (see Figure 13.4). This could effectively reduce the film flow to zero.

The surfactants act as a valve to film flow that requires no pressure expenditure and film flow leakage.
The bubble front does not produce a pressure drop that counters the one in the back of the bubble. In
contrast, the Bretherton problem in pressure-driven bubble flow requires a near-cancellation of these
pressure drops, resulting in the small pressure buildup of Equation (13.12) and a similarly small bubble
velocity. Takhistov et al. (2002) have experimentally established this major advantage of displacing air
bubbles with electrokinetic flow.

Because the glass capillary surface of Takhistov et al.’s experiment has a positive charge such that its
double layer contains a negative charge, an anionic surfactant, sodium dodecyl sulfate (SDS), tests the
previous idea. Most glass surfaces are negatively charged, but the charge is reversed through chemical
treatment to allow an interfacial double layer of the opposite charge. About 10�5 mol/L of the surfactant is
added and, after some equilibration time, the bubbles begin to move. In Figure 13.5, the measured bubble
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FIGURE 13.5 Electrokinetically driven bubble speed as a function of a concentration-normalized electric field for
the KCl electrolyte of indicated concentrations. The unnormalized data scatter over 5 decades and are collapsed by
the theory.
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speed Ca is recorded as a function of the electrolyte concentration, applied field, and the surfactant con-
centration. The last quantity is presented as a concentration-normalized field obtained from an electro-
kinetic theory [Takhistov et al., 2000]. Bubble speeds approaching the liquid electrokinetic velocity
(without bubble) of Ca � 10�4 are observed, indicating a complete cessation of film flow. Figure 13.6
shows a more specific set of data in dimensional quantities, showing a robust 0.14-mm/sec bubble speed.

There are limitations to such electrokinetically driven bubble flow in micochannels. The interfacial zeta
potential endowed by the surfactants is a strong function of the electrolyte concentration due to the
strong screening effects near the anions of the surfactants [Schultz, 1984]. At high concentrations, the
interface double layer can become negligibly thin. As a result, the film velocity approaches a flat profile,
and the bubble speed approaches zero. At very low bulk electrolyte concentrations, the Debye thickness
approaches the film thickness. As a result, the ion concentration and conductivity in the film increase by
a factor of exp(ζ/kT). Because ζ is large at low concentrations, film conductivity increases significantly.
This reduces the field strength E and further reduces the film flow. However, because the interfacial and
capillary double layers are oppositely charged, their increased thickness and coulombic attraction to each
other will eventually collapse the entire film. The experimental data for different KCl concentrations
shown in Figure 13.7 demonstrates these limits. Bubble speeds approach zero at high concentrations, and
this phenomenon suggests that interfacial traction provided by the surfactants is negligible. Therefore, a
wide but finite window of electrolyte concentration exists where multiphase microfluidic flow can be
achieved with an electrokinetic driving force.

The Bretherton analysis is extended to electrokinetic flow [Takhistov et al., 2000]. The theory now includes
the electrolyte concentration dependence of the zeta potential and the important interfacial double layer.
The resulting theoretical predictions collapse the data in Figure 13.5 and provide accurate estimates
of the data in Figures 13.6 and 13.7. Also included in the theory are the transients necessary to establish a
steadily translating bubble. Surfactant adsorption equilibration at the interface and capillary double-layer
equilibration are just two of the important transients that must be considered for the design of
microdevices.

13.5 Future Directions

Electrokinetic flow is the only means of overcoming the large capillary forces involved in transporting
bubbles in microchannels. Electrokinetic displacement of bubbles in a circular capillary is possible only
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FIGURE 13.6 Raw bubble speed data Uo as a function of applied voltage and bubble length lb normalized by the 
capillary diameter d. The bubble speed approaches that of the electrolyte electrokinetic velocity without bubble 
before dropping to zero abruptly at a critical voltage of 80 V.
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within certain windows of operation. For noncircular channels, current and flow leakage at the corners
are additional concerns. Such leaks must be prevented to have complete cessation of film flow. Further
complications arise at channel junctions or constrictions where bubbles may break up or coalesce. Jet
streaming of small drops from the front tip of a bubble being sheared in front of a constriction has also
been observed. Most of these phenomena must be carefully avoided in the device design.

The rapid ion motion in the double layers of electrokinetic flow has certain desirable applications. We
observed charge separation along the bubble that is sufficient to break up the bubble. This observation
might suggest a means of electrophoretic bubble motion and bubble breakup in microreactors. The same
polarization also induces bubble coalescence. Streaming potentials with opposite flows is another possi-
bility but a rather difficult task because of the capillary pressure. Evaporation and condensation phenom-
ena are also profoundly different in microchannels due to capillary forces. The DC field used to drive the
electrokinetic flow can produce bubbles via electrode reactions that sustain the DC current. This mechanism
could be used to generate the bubbles, as is done in some bubble pumps. In most cases, however, the elec-
trodes should be separated from the microchannel by high-permittivity membranes to prevent bubble
penetration. Biological cells with internal and external charges and of the same dimension as the
microchannels exhibit a rich spectrum of electrophoretic, electrokinetic, and stress-induced adsorption
dynamics in microfluidics. These and other known and new phenomena of ionic flow await future studies
for applications in microdevice designs.
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14.1 Introduction

This chapter reviews the fundamentals of linear and nonlinear control. This topic is particularly impor-
tant in microelectromechanical systems (MEMS) applications for two reasons. First, as electromechani-
cal systems, MEMS devices often must be controlled in order to be used in an effective manner. Second,
important applications of MEMS technology are controls-related because of the utility of MEMS devices
in sensor and actuator technologies. Because the area of control is far too vast to be entirely presented 
in one chapter, this chapter outlines a variety of techniques used for control system synthesis and 
analysis, provides at least a brief description of their mathematical foundation, discusses the advan-
tages and disadvantages of the techniques, and provides references for the reader. The material varies from 
the basic (e.g., root locus design) to relatively advanced material (e.g., sliding mode control) to 
cutting-edge research (hybrid systems). Some examples are provided, and many references to the litera-
ture are provided to help the reader find additional examples of a particular analysis or synthesis 
technique.

This chapter is divided into three sections, all of which consider the stability and performance of a 
control system. The term performance includes: the qualitative nature of any transient response of
the system, the reference signal tracking properties of the system, and the long-term or steady-state per-
formance of the system. The first section considers classical control, which is the study of single-input,
single-output (SISO) linear control systems. This section relies heavily upon mathematical techniques
from complex variable theory, and outlines what is typically covered in an undergraduate controls course.
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The second section considers so-called “modern control,” which is the study of multi-input, multi-
output (MIMO) control systems in state space. This section also includes what is sometimes called 
“post-modern control” [Zhou, 1996], which is a study of robust system performance and stability in the
presence of unmodeled system dynamics. Finally, the third section considers nonlinear control
techniques. Model-free control techniques based upon concepts from soft computing are outlined in
Chapter 16. Nonlinear, open-loop control techniques are not covered in this chapter. (For recent advances
in this area, refer to Lafferriere and Sussmann [1993], Bullo et al. [2000], and Goodwine and Burdick
[2000].)

14.2 Classical Linear Control

Classical linear control relies heavily upon mathematical techniques from complex variable theory. This
reliance is a historical consequence of the importance of frequency analyses of feedback amplifiers, which
motivated much of the development of classical control theory. In addition, this reliance is a consequence
of the fact that convolution in the time domain is simple multiplication in the frequency domain, which
greatly simplifies the analysis of the natural input–output and “block diagram” structure of many control
systems. Good references include Dorf (1992), Franklin et al. (1994), Gajec and Lelic (1996), Kuo (1995),
Ogata (1997), Raven (1995), and Shinners (1992).

14.2.1 Mathematical Preliminaries

The main mathematical tool in classical linear control theory is the Laplace transform, which transforms
the linear ordinary differential equation (ODE) into an algebraic equation, thus reducing the task of solv-
ing an ODE into simple algebra. The Laplace transform of a function f(t) is defined as:

L[f(t)] � F(s) ��∞

0
e�st f(t)dt (14.1)

and the inverse Laplace transform of F(s) as:

L�1[F(s)] � f(t) � �c�jω

c�jω
F(s)e st ds, for t � 0 (14.2)

A discussion of important mathematical details concerning convergence and the proper lower limit of
integration is found in Ogata (1997). Evaluating the integrals in the definition of the Laplace transform
and the inverse Laplace transform is rarely necessary because extensive tables of Laplace transform pairs
are readily available. A few Laplace transform pairs for typical functions are listed in Table 14.1. More
complete tables can be found in any undergraduate text on classical control theory such as the references
listed previously.

Important properties of the Laplace transform are as follows:

1. Real differentiation: L[ f(t)] � sF(s) � f(0).

2. Linearity: L[αf1(t) � βf2(t)] � αF1(s) � βF2(s).

3. Convolution: L[�t

0
f1(t � τ)f2(τ)dτ] � F1(s)F2(s).

4. Final value theorem: If all the poles of sF(s) are in the left half of the complex plane, then 
lim
t→∞

f(t) � lim
s→0

sF(s).

A basic result from the first three properties is that to solve a linear ODE, one can take the Laplace trans-
form of each side of the equation, which converts the differential equation into an algebraic equation in s.
Then algebraically solve the expression for the Laplace transform of the dependent variable, and take the
inverse Laplace transform of the resulting function.

d
�dt

1
�
2πj
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Example

As a simple example, consider the differential equation:

x.. � x � 0

x(0) � 0 (14.3)

x.(0) � 1

Taking the Laplace transform of the equation yields:

s2X(s) � sx(0) � x.(0) � X(s) � 0 (14.4)

Algebraic manipulation gives:

X(s) � (14.5)

Consequently, from the table of Laplace transform pairs:

x(t) � sin(t) (14.6)

For more examples, see Ogata (1997), Raven (1995), Kuo (1995), and Franklin et al. (1994).
Due to the convolution property of Laplace transforms, a convenient representation of a linear control

system is the block diagram illustrated in Figure 14.1. In such a block diagram, each block contains the
Laplace transform of the differential equation representing that component of the control system that
relates the block’s input to its output. Arrows between blocks indicate that the output from the preceding
block is transferred to the input of the subsequent block. The output of the preceding block multiplies
the contents of the block to which it is an input. Simple algebra will yield the overall transfer function of
a block diagram representation for a system.

1
�
s2 � 1

Fundamentals of Control Theory 14-3

TABLE 14.1 Laplace Transform Pairs for Basic Functions

F(t) F(s)

1 Unit impulse, δ(t) 1

2 Unit step, 1(t)

3 t

4 tn, n � 1, 2, 3, …

5 e�at

6 tne�at

7 sin ωt

8 cos ωt

9 e�atcos bt

10 e�atsin bt
b

��
(s + a)2 + b2

s + a
��
(s + a)2 + b2

s
�
s2 + ω 2

ω
�
s2 + ω 2

n!
�
(s + a)n+1

1
�
s � a

n!
�
sn�1

1
�
s2

1
�
s
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Example

The transfer function for the system illustrated in Figure 14.2 can be computed by observing that:

E(s) � R(s) � Y(s)S(s) (14.7)

and

Y(s) � E(s)C(s)A(s)P(s) (14.8)

which can be combined to yield

� (14.9)

A more complete exposition on block diagram algebra can be found in any of the previously cited
undergraduate texts. Note that the numerator and denominator of the transfer function will typically be
polynomials in s. The denominator is called the characteristic equation for the system. As entry 5 in Table
14.1 shows, if the characteristic polynomial has any roots with a positive real part, then the system will be
unstable because it will correspond to an exponentially increasing solution. Given a reference input R(s),
determine the response of the system by multiplying the transfer function by the reference input, and 
perform a partial fraction expansion (i.e., expand):

Y(s) � � � � … � (14.10)

where each term in the sum on the right-hand side of the equation is similar to one of the entries in Table
14.1. The contribution to the response of each individual term can be determined by referring to a
Laplace transform table and can be superimposed to determine the overall solution:

y(t) � y1(t) � y2(t) � … � yn(t) (14.11)

where each term in the sum is the inverse Laplace transform of the corresponding term in the partial 
fraction expansion.

Cn
�
s � pn

C2
�
s � p2

C1
�
s � p1

R(s)C(s)A(s)P(s)
���
1 � C(s)A(s)P(s)S(s)

C(s)A(s)P(s)
���
1 � C(s)A(s)P(s)S(s)

Y(s)
�
R(s)
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+

FIGURE 14.1 Typical block diagram representation of a control system.
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A(s)

−
+ 

FIGURE 14.2 Generic block diagram including transfer functions.
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Example

For the block diagram in Figure 14.2 if C(s) � , A(s) � 1, P(s) � , S(s) � 1 and R(s) �

(a unit step input), then:

Y(s) �

� �

� � �

� � � (14.12)

where ωd � ωn�1��ζ 2�. Referring to Table 14.1 of Laplace transform pairs and assuming that ζ � 1,

y(t) � 1 � e�ζωnt�cos(ωdt) � sin(ωdt)� (14.13)

14.2.2 Control System Analysis and Design

Control system analysis and design consider primarily stability and performance. The stability of a 
system with the closed-loop transfer function (note that in such a case a controller has already been 
specified):

T(s) � (14.14)

is determined by the roots of the denominator, or characteristic equation. It is possible to determine
whether the system is stable without actually computing the roots of the characteristic equation. A nec-
essary condition for stability is that each of the coefficients ai appearing in the characteristic equation be
positive. Because this is a necessary condition, if any of the ai are negative, then the system is unstable, but
the converse is not necessarily true. Even if all the ai are positive, the system may still be unstable. Routh
(1975) devised a method to check necessary and sufficient conditions for stability.

The method is to construct the Routh array, defined as follows:

Row n sn: 1 a2 a4 …

Row n�1 sn�1: a1 a3 a5 …

Row n�2 sn�2: b1 b2 b3 …

Row n�3 sn�3: c1 c2 c3 …

� � � � � �

Row 2 s2: * *

Row 1 s1: *

Row 0 s0: *

b0s
m � b1s

m�1 � … � bm
���

sn � a1s
n�1 � … � an

ζ
�
�1��� ζ�2�

ωd
��
(s � ζωn)2 � ωd

ζωn
�ωd

s � ζωn
��
(s � ζωn)2 � ωd

1
�
s

ζωn
��
(s � ζωn)2 � ωd

s � ζωn
��
(s � ζωn)2 � ωd

1
�
s

s � 2ζωn
��
s2 � 2ζωns � ω 2

n

1
�
s

ω 2
n

��
s(s2 � 2ζωns � ω 2

n )

1
�
s

ω2
n

�
s � 2ζωn

1
�
s
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in which the ai are from the denominator of Equation (14.14). bi and ci are defined as:

The basic result is that the number of poles in the right-half plane (i.e., unstable solutions) is equal 
to the number of sign changes among the elements in the first column of the Routh array. If they are all
positive, the system is stable. When a zero is encountered, it should be replaced with a small positive con-
stant ε which will then be propagated to lower rows in the array. The result can be obtained by taking the
limit as ε → 0.

Example

Construct the Routh array and determine the stability of the system described by the transfer function:

� (14.15)

The Routh array is

s4: 1 9 8

s3: 4 10 0

s2: � 26 � 32 0 (14.16)

s1: � 33 0 0

s0: � 40.6 0 0

The system is stable because there are no sign changes in the elements in the first column of the array.
One aspect of performance concerns the steady-state error exhibited by the system. For example, from

the time-domain solution of the previous example, as t → ∞, y(t) → 1. However, the final value theorem
can be used to determine this without actually solving for the time-domain solution.

Example

Determine the steady-state value for the time-domain function y(t) if its Laplace transform is given by
Y(s) � ω2

n /s(s2 � 2ζωns � ω2
n). Because all the solutions of s2 � 2ζωns � ω2

n � 0 have a negative real part,
all the poles of sY(s) lie in the left half of the complex plane. Therefore, the final value theorem can be
applied to yield:

lim
t→∞

y(t) � lim
s→0

sY(s) � lim
s→0

s � 1 (14.17)

which is identical to the limit of the time-domain solution as t → ∞.

ω 2
n

��
s(s2 � 2ζωns � ω 2

n)

�(0 � 1056)
��

26

�(128 � 260)
��

4

�(0 � 32)
��

1
�(10 � 36)
��

1

1
���
s4 � 4s3 � 9s2 � 10s � 8

Y(s)
�
R(s)
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b1 � �

det� �
a1

a2

a3

1
a1

b2 � �

det� �
a1

a4

a5

1
a1

b3 � �

det� �
a1

a6

a7

1
a1

c1 � �

det� �
b1

a3

b2

a1

b1

c2 � �

det� �
b1

a5

b3

a1

b1

c3 � �

det� �
b1

a7

b4

a1

b1
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14.2.2.1 Proportional–Integral–Derivative (PID) Control

Perhaps the most common control implementation is so-called proportional–integral–derivative (PID)
control, where the commanded control input (the output of the “controller” box in Figures 14.1 and 14.2)
is equal to the sum of three terms: one term proportional to the error signal (the input to the “controller”
box in Figures 14.1 and 14.2), the next term proportional to the derivative of the error signal, and the
third term proportional to the time integral of the error signal. From Figure 14.2, C(s) � KP � (KI/s) �

Kds, where KP is the proportional gain, KI is the integral gain, and Kd is the derivative gain. A simple analy-
sis of a second-order system shows that increasing KP and KI generally increases the speed of the response
at the cost of reducing stability. Increasing Kd generally increases damping and stability of the response.
With KI � 0, there may be a nonzero steady-state error, but when KI is nonzero, the effect of the integral
control effort is to typically eliminate steady-state error.

Example — PID Control of a Robot Arm

Consider a robot arm illustrated in Figure 14.3. Linearizing the equations of motion about θ � 0 (the
configuration in Figure 14.3) gives:

Iθ
..

� mgθ � u (14.18)

where I is the moment of inertia of the arm, m is the mass of the arm, θ is the angle of the arm, and u is
a torque applied to the arm. For PID control,

u � Kp(θdesired � θactual) � Kd(θ
.
desired � θ

.
actual) � KI�t

0
(θdesired � θactual)dt (14.19)

If I � 1 and m � 1/g, the block diagram representation for the system is illustrated in Figure 14.4. Thus,
the closed-loop transfer function is

T(s) � (14.20)

Figure 14.5 illustrates the step response of the system for proportional control (KP � 1, KI � 0,
Kd � 0), PD control (KP � 1, KI � 0, Kd � 1), and PID control (KP � 1, KI � 1, Kd � 1). Note that for
proportional and PD controls, there is a final steady-state error that is eliminated with PI control. (Also
note that both of these facts could be verified analytically using the final value theorem.) Finally, note that

Kds
2 � Kps � KI

���
s3 � Kds

2 � (Kp � I)s � KI
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FIGURE 14.3 Robot arm model.
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the system response for pure proportional control is oscillatory, whereas with derivative control the
response is much more damped.

The subjects contained in the subsequent sections consider controller synthesis issues. For PID con-
trollers, tuning methods exist. Refer to the undergraduate texts cited previously or to the papers by Ziegler
and Nichols (1942, 1943).

14.2.2.2 The Root Locus Design Method

As mentioned previously in the discussion of PID control, various rules of thumb can be determined to
relate system performance to changes in gains, however, a systematic approach is more desirable. Because
pole locations determine the characteristics of the response of the system (recall the partial fraction
expansion), one natural design technique is to plot how pole locations change as a system parameter or
control gain is varied [Evans, 1948, 1950]. Because the real part of the pole corresponds to exponential
solutions, if all the poles are in the left-half plane, the poles closest to the jω-axis will dominate the 
system response. If we focus a second-order system of the form:

H(s) � (14.21)ω 2
n

��
s2 � 2ζωns � ω 2

n
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the poles of the system are as illustrated in Figure 14.6. The terms ωn, ωd, and ζ are the natural frequency,
the damped natural frequency, and the damping ratio, respectively. Multiplying H(s) by 1/s (unit step),
and performing a partial fraction expansion give:

Y(s) � � � (14.22)

so the time response for the system is

y(t) � 1 � e�ζωnt �cos ωdt � sin ωdt� (14.23)

where ωd � ωn�1��ζ2� and 0 � ζ � 1. Figure 14.7 illustrates plots of the response for various values of ζ.
Referring to the previous equation and Figure 14.7, if the damping ratio is increased, the oscillatory
nature of the response is increasingly damped.

ζ
�
�1��� ��2�

ζωn
���
(s � ζωn)2 � ω 2

n (1 � ζ2)

s � ζωn
���
(s � ζωn)2 � ω 2

n(1 � ζ2)
1
�
s
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FIGURE 14.6 Complex conjugate poles, natural frequency, damped natural frequency, and damping ratio.
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Because the natural frequency and damping are directly related to the location of the poles, one effec-
tive approach to designing controllers is picking control gains based upon desired pole locations. A root
locus plot is a plot of pole locations as a system parameter or controller gain is varied. Once the root locus
has been plotted, pick the location on the root locus with the desired pole locations to give the desired
system response. There is a systematic procedure to plot the root locus by hand (refer to the cited under-
graduate texts), and computer packages such as Matlab (using the rlocus() and rlocfind() func-
tions) make it even easier. Figure 14.9 illustrates a root locus plot for the previously noted robot arm with
the block diagram as the single gain K is varied from 0 to ∞ as illustrated in Figure 14.8. Note that for 
the usual root locus plot, only one gain can be varied at a time. In the previous example, the ratio of the
proportional, integral, and derivative gains was fixed, and a multiplicative scaling factor was varied in the
root locus plot.

Because the roots of the characteristic equation start at each pole when K � 0 and approach each 0 of
the characteristic equation as K → ∞, the desired K can be determined from the root locus plot by find-
ing the part of the locus that most closely matches the desired natural frequency ωn and damping ratio ζ
(recall Figure 14.7).

Typically, control system performance is specified in terms of time-domain conditions, such as rise
time, maximum overshoot, peak time, and settling time, all of which are illustrated in Figure 14.10.
Rough estimates of the relationship between the time-domain specifications and the natural frequency
and damping ratio are given in Table 14.2 [Franklin et al., 1994].
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Example

Returning to the robot arm example, assume the desired system performance has a system rise time
less than 1.4 sec, a maximum overshoot less than 30%, and a 1% settling time less than 10 sec. From the
first row in Table 14.2, the natural frequency must be greater than 1.29. From the third and fourth rows,
the damping ratio should be greater than approximately 0.4. Figure 14.11 illustrates the root locus plot,
the pole locations and corresponding gain, and K (rlocfind() is the Matlab command for retrieving
the gain value for a particular location on the root locus). These results provide a damping ratio of
approximately .45 and a natural frequency of approximately 1.38. Figure 14.12 illustrates the step
response of the system to a unit step input verifying these system parameters.

14.2.2.3 Frequency Response Design Methods

An alternative approach to controller design and analysis is the so-called frequency response method.
Frequency response controller design techniques have two main advantages. They provide good controller

Fundamentals of Control Theory 14-11

TABLE 14.2 Time-Domain Specifications as a
Function of Natural Frequency, Damped Natural
Frequency, and Damping Ratio

Rise time: tr 	 

Peak time: tp 	 

Overshoot: Mp � e�πζ/�1��ζ2�

Settling time (1%): ts �

Note: Results are from Franklin et al. (1994).
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FIGURE 14.10 Time domain control specifications.
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design even with uncertainty with respect to high-frequency plant characteristics, and using experimental
data for controller design purposes is straightforward. The two main tools are Bode and Nyquist plots (see
[Bode, 1945] and [Nyquist, 1932] for first-source references), and stability analyses are considered first.

A Bode plot is a plot of two curves. The first curve is the logarithm of the magnitude of the response
of the open-loop transfer function with respect to unit sinusoidal inputs of frequency ω. The second
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curve is the phase of the open-loop transfer function response as a function of input frequency ω. Figure
14.13 illustrates the Bode plot for the transfer function:

G(s) � (14.24)

As the frequency of the sinusoidal input is increased, the magnitude of the system response decreases. The
phase difference between the sinusoidal input and system response starts near �90° and
approaches �270° as the input frequency becomes large.

An advantage of Bode plots is that they are easy to sketch by hand. Because the magnitude of the sys-
tem response is plotted on a logarithmic scale, the contributions to the magnitude of the response due to
individual factors in the transfer function add together. Due to basic facts related to the polar represen-
tation of complex numbers, the phase contributions of each factor add as well. Recipes for sketching Bode
plots by hand can be found in any undergraduate controls text, such as Franklin et al. (1994), Raven
(1995), Ogata (1997), and Kuo (1995).

For systems where the magnitude of the response passes through the value of 1 only one time and for
systems where increasing the transfer function gain leads to instability (the most common, but not exclu-
sive, scenario), the gain margin and phase margin can be determined directly from the Bode plot to pro-
vide a measure of system stability under unity feedback. Figure 14.13 also illustrates the definition of gain
and phase margin. Positive gain and phase margins indicate stability under unity feedback. Conversely,
negative gain and phase margins indicate instability under unity feedback. The class of systems for which
Bode plots can be used to determine stability are called minimum phase systems. A system is minimum
phase if all of its open-loop poles and zeros are in the left-half plane.

Bode plots also determine the steady-state error under unity feedback for various types of reference
inputs (steps, ramps, etc.). In particular, if the low-frequency asymptote of the magnitude plot has a slope

1
��
s3 � 25s2 � s
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of zero and if the value of this asymptote is denoted by K, then the steady-state error of the system under
unity feedback to a step input is

lim
t→∞ 

e � (14.25)

If the slope of the magnitude plot at low frequencies is �20 dB/decade and if the value where the asymp-
tote intersects the vertical line ω � 1 is denoted by K, then the steady-state error to a ramp input is

lim
t→∞

e � (14.26)

Example

Consider the system illustrated in Figure 14.2 where C(s) � A(s) � S(s) � 1 and P(s) � (1/2)/(s � 1).
Figure 14.14 illustrates the Bode plot for the open-loop transfer function P(s) � (1/2)/(s � 1). The low-
frequency asymptote is approximately at �6, so 20 log K � �6 ⇒ K ≈ 0.5012 ⇒ yss ≈ 0.6661, where yss �

lim
t→∞

p(t). Figure 14.15 illustrates the unity feedback closed-loop step response of the system, verifying that the
steady-state value for y(t) is the same as computed from the Bode plot.

A Nyquist plot is a more sophisticated means to determine stability and is not limited to cases where
only increasing gain leads to system instability. A Nyquist plot is based on the well-known result from
complex variable theory called the principle of the argument. Consider the (factored) transfer function:

G(s) �
�

i

(s � zi)

�
j

(s � pj)
(14.27)

By complex variable theory, ∠G(s) � Σiθi � Σiϕj, where θi are the angles between s and the zeros zi,
and φj are the angles between s and the poles pj. Thus, a plot of G(s) as s follows a closed contour (in the
clockwise direction) in the complex plane will encircle the origin in the clockwise direction the same
number of times that there are zeros of G(s) within the contour minus the number of times that there are

1
�
K

1
�
1 � K
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poles of G(s) within the contour. Therefore, an easy check for stability is to plot the open loop G(s) on a
contour that encircles the entire left-half complex plane. Assuming that G(s) has no right-half plane poles
(poles of G(s) itself, in contrast to poles of the closed-loop transfer function), an encirclement of �1 by
the plot will indicate a right-half plane zero of 1 � G(s), which is an unstable right-half plane pole of the
unity feedback closed-loop transfer function:

(14.28)

Figure 14.16 illustrates the Nyquist plot for a unity feedback system with open-loop transfer function
given by:

G(s) � (14.29)

which is stable under unity feedback. Figure 14.17 illustrates a Nyquist plot for a system that is unstable
under unity feedback.

14.2.2.4 Lead–Lag Compensation

Lead–lag controller design is another popular compensation technique. In this case, the compensator (the
C(s) block in Figure 14.2) is of the form:

C(s) � Kβ (14.30)

where α � 1 and β � 1. The first fraction is the lead portion of the compensator and can provide
increased stability with an appropriate choice for A. The second term is the lag compensator and provides
decreased steady-state error. Figure 14.18 plots the Bode plot for a lead compensator for various values of
the parameter A. Because the lead compensator shifts the phase plot up, by an appropriate choice of the
parameter A, the crossover point where the magnitude plot crosses through the value of 0 dB can be
shifted to the right, increasing the gain margin.

Bs � 1
�βBs � 1

As � 1
�αAs � 1

1
��
(s � 1)(s � 1)

G(s)
�
1 � G(s)
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Example

Figure 14.19 plots the Bode plot for the compensated system:

G(s) � (14.31)

where A � 0, 1 and α � 0.5. The magnitude crossover point has been shifted to the left, increasing the
gain margin. In a similar manner, unstable systems (which would originally have negative gain and phase
margins) can possibly be stabilized.

Lag compensation works in a similar manner to increase the magnitude plot for low frequencies, which
decreases the steady-state error for the system. Lead and lag controllers can be used in series to increase
stability and decrease steady-state error. Systematic approaches for determining the parameters α, β, A,
and B can be found in the references, particularly Franklin et al. (1994).

14.2.3 Other Topics

Various other topics are typically considered in classical control but will not be outlined here. Such top-
ics include, but are not limited to, systematic methods for tuning PID regulators, lead–lag compensation,
and techniques for considering and modeling time delay. Interested readers should consult the references,
particularly Franklin et al. (1994), Ogata (1997), Kuo (1995), and Raven (1995).

14.3 “Modern” Control

In contrast to classical control, which is essentially a complex-variable, frequency-based approach for
SISO systems, modern control is a time-domain approach that is amenable to MIMO systems. The basic

1
��
s3 � 25s2 � s

As � 1
�αAs � 1
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tools are from the theory of ODEs and matrix algebra. The topics outlined in this section are the pole
placement, linear quadratic regulator (LQR) problems, and the basics of robust control.

14.3.1 Pole Placement

First, a multistate but single-input control system will be examined. Consider a control system written in
state space:

x. � Ax � Bu (14.32)

where x is the 1 � n state vector, u is the scalar input, A is an n � n constant matrix, and B is an n � 1
constant matrix. If we assume that the control input u can be expressed as a combination of the current
state variables (called full state feedback), we can write:

u � �k1x1 � k2x2 � … � knxn � �Kx (14.33)

where K is a row vector comprised of each of the gains ki. Then, the state-space description of the 
system becomes:

x. � (A � BK)x (14.34)

so that the solution of this equation is

x(t) � e(A�BK)tx(0) (14.35)
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where e(A�BK)t is the matrix exponential of the matrix A � BK defined by:

e(A�BK)t � I � (A � BK)t � � � … (14.36)

Basic theory from linear algebra and ODEs [Hirsch and Smale, 1974] indicates that the stability and
characteristics of the transient response will be determined by the eigenvalues of the matrix A � BK. If:

rank[B|AB|A2B|A3B| … |An�1B] � n (14.37)

then it can be shown that the eigenvalues of A � BK can be placed arbitrarily as a function of the 
elements of K. Techniques to solve the problem by hand by way of a similarity transformation exist (see
the standard undergraduate controls books), and Matlab has functions for the computations as well.

Example — Pole Placement for Inverted Pendulum System

Consider the cart and pendulum system illustrated in Figure 14.20. In state-space form the equations
of motion are:

� ��� � � ��� � u (14.38)

Setting M � 10, m � 1, g � 9.81, and l � 1 and letting u � �k1x � k2x
.
� k3θ � k4θ

.
if the desired pole

locations for the system are at:

λ1 � �1 � i

λ2 � �1 � i

λ3 � �8
(14.39)

λ4 � �9

the Matlab function place() can be used to compute the values for the corresponding ki. For this 
problem, the gain values are:

k1 � 122.32

k2 � 151.21

k3 � �849.77
(14.40)

k4 � �38.79

0

�
M

1
�

0

�
�

lM

1
�

x
.
x
θ
θ
.

0 1 0 0

0 0 �
�

M

gm
� 0

0 0 0 1

0 0 �
�(m

lM

� M)g
� 0

x
.
x
θ.
θ

d
�
dt

(A � BK)3t3

��
3!

(A � BK)2t2

��
2!
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With initial conditions x(0) � 0.25, x.(0) � 0, θ(0) � 0.25 and θ
.
(0) � 0, Figure 14.21 illustrates the

response of the system. Note that the cart position x initially moves in the “wrong” direction in order to
compensate for the pendulum position.

14.3.2 The Linear Quadratic Regulator (LQR)

The LQR problem is not limited to scalar input problems and seeks to find a control input:

u � �Kx(t) (14.41)

for the system:

x. � Ax � Bu (14.42)

that minimizes the performance index:

J � �∞

0
(xTQx � uTRu)dt (14.43)

where Q and R are positive definite, real symmetric matrices. By the second method of Lyapunov [Khalil,
1996; Sastry, 2000], the control input that minimizes the performance index is:

u � �R�1BTPx(t) (14.44)

where R and B are from the performance index and equations of motion, respectively, and P satisfies the
reduced matrix Riccati equation:

ATP � PA � PBR�1BTP � Q � 0 (14.45)
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Example — LQR for Inverted Pendulum System

For the same cart and pole system as in the previous example with:

Q �� � (14.46)

(which weights all the states equally) and R � 0.001, the optimal gains (computed via the Matlab lqr()
function) are:

k1 � 31.62

k2 � 145.75

k3 � �95.53

k4 � �21.65 (14.47)

and the response of the system with initial conditions x(0) � 0.25, x.(0) � 0, θ(0) � 0.25 and θ
.
(0) � 0 is

illustrated in Figure 14.22. If the Q matrix is modified to provide a heavy weighting for the θ state:

Q �� � (14.48)

Figure 14.23 illustrates the system response. Note that the pendulum angle goes to zero very rapidly but
at the “expense” of a slower response and greater deviation for the cart position.
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14.3.3 Basic Robust Control

The main idea motivating modern robust control techniques is explicitly incorporating plant uncertainty
representations into system modeling and control synthesis methods. The material here outlines the pres-
entation in Doyle et al. (1992), and the more advanced material is from Zhou (1996). Modern robust 
control is a very involved subject and only the briefest outline is provided here.

Consider the unity feedback SISO system illustrated in Figure 14.24, where P and C are the plant and
controller transfer functions; R(s) is the reference signal; Y(s) is the output; D(s) and N(s) are external dis-
turbances and sensor noise, respectively; E(s) is the error signal; and U(s) is the control input.

Define the loop transfer function L � CP and the sensitivity function:

S � (14.49)

which is the transfer function from the reference input R(s) to the error E(s) which provides a measure
of the sensitivity of the closed loop (or complementary sensitivity) transfer function:

T � (14.50)

to infinitesimal variations in the plant P. Given a (frequency-dependent) weighting function W1(s), a 
natural performance specification (relating tracking error to classes of reference signals) is

PC
�
1 � PC

1
�
1 � L
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||W1S||∞ � 1 (14.51)

where ||�||∞ denotes the infinity norm. An easy graphical test for the performance specification is that the
Nyquist plot of L must always lie outside a disk of radius |W1| centered at �1.

To incorporate plant uncertainty into the model, consider a nominal plant P and perturbed plant P
~

where P and P
~

differ by some multiplicative or other type of uncertainty. Let W2 be a stable transfer func-
tion and ∆ be a variable stable transfer function satisfying ||∆||∞ � 1. Common uncertainty models are
constructed by appropriate combinations of P, ∆, and W. It is shown that the system is internally stable
(this is a stronger definition than simple input–output stability; see [Doyle et al., 1992]) for the condi-
tions shown in Table 14.3.

Recall that the nominal performance condition was ||W1S||∞ � 1. The robust performance condition
is a combination of the two (for the (1 � ∆W2)P perturbation):

|||W1S| � |W2T |||∞ � 1 (14.52)

Other robust performance measures for various types of uncertainty are found in Doyle et al. (1992) and
Zhou (1996).

Recall that W1 is the performance specification weighting function and W2 is the plant uncertainty
transfer function. Consider the following facts:

1. Plant uncertainty is greatest for high frequencies.
2. It is only reasonable to demand high performance for low frequencies.

Typically,

|W1| � 1 � |W2| (14.53)

for low frequencies, and

|W1| � 1 � |W2| (14.54)

for high frequencies (it can be shown that the magnitude of either W1 or W2 must be less than 1). By 
considering the relationship between L, S, and T, the following is derived:

|W1| �� 1 � |W2| ⇒ |L| � (14.55)

and

|W1| � 1 �� |W2| ⇒ |L| � (14.56)

Loopshaping [Bower and Schultheiss, 1961; Horowitz, 1963] controller design is the task of determining
an L (and hence C) that satisfies the low-frequency performance criterion as well as the high-frequency

1 � |W1|
�

|W2|

|W1|
�
1 � |W2|
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TABLE 14.3 Internal Stability Conditions

Perturbation Condition

(1 � ∆W2)P ||W2T||∞ � 1

P � ∆W2 ||W2CS||∞ � 1

||W2PS||∞ � 1

||W2S||∞ � 1
P

�
1 � ∆W2

P
��
1 � ∆W2P
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robustness criterion. The task is to design C so that the magnitude versus frequency plot of L appears as
in Figure 14.25. In the figure, the indicated low-frequency performance bound is a plot of:

(14.57)

for low frequencies, and the high-frequency stability bound is a plot of:

(14.58)

for high frequencies.
Two more aspects of this problem have been developed in recent years. The first concerns optimality,

and the second concerns multivariable systems. For both aspects of these recent developments, refer to
the comprehensive book by Zhou (1996).

14.4 Nonlinear Control

Aside from the developments of robust optimal control briefly outlined in the previous section, the area
of most recent development in control theory has been nonlinear control. Nonlinear control does not
ignore nonlinear effects via linearization, the nonlinearities in the control system are either expressly rec-
ognized or are even exploited for control purposes. Much, but not all, development in nonlinear control
uses tools from differential geometry. While the control techniques will be outlined here, the basics of
differential geometry will not, and the interested reader is referred to Abraham et al. (1988), Boothby
(1986), Isidori (1996), and Nijmeijer and van der Schaft (1990) for details.

The general nonlinear model considered here is of the form:

x. � f(x) � �
n

i�1

gi(x)ui (14.59)

1 � |W1|
�

|W2|

|W1|
�
1 � |W2|
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where x is a 1 � n vector, the f(x) and gi(x) are smooth vector fields, and the ui are scalar control inputs.
Note that this is not the most general form for nonlinear systems, as the ui are assumed to enter the 
equations in an affine manner (i.e., they simply multiply the gi(x) vector fields). For some aerodynamic
problems, this assumption may not be true.

14.4.1 SISO Feedback Linearization

In contrast to the standard Jacobian linearization of a nonlinear control system, feedback linearization is
a technique to construct a nonlinear change of coordinates which converts a nonlinear system in the orig-
inal coordinates to a linear system in the new coordinates. Whereas the Jacobian linearization is an
approximation of the original system, a feedback linearized system is exactly the original system. SISO
systems will be considered first, followed by MIMO systems. References for feedback linearization are
Isidori (1996), Nijmeijer and van der Schaft (1990), Krener (1987), Khalil (1996), and Sastry (2000).
Developmental papers or current research in this area are considered in Slotine and Hedrick (1993),
Brockett (1978), Dayawansa et al. (1985), Isidori et al. (1981a; 1981b), and Krener (1987).

Consider the nonlinear system:

x. � f(x) � g(x)u

y � h(x)
(14.60)

where the function h(x) is called the output function. Let Lfh denote the Lie derivative of the function h
with respect to the vector field f, which is defined in coordinates as:

Lfh(x) � �
n

i�1

(x)fi(x) (14.61)

where

x �� � and f �� � (14.62)

so it is simply the directional derivative of h along f. Because the system evolves according to the state
equations, the time derivative of the output function y. is simply the directional derivative of the output
function along the control system:

y. � h
.
� x. � (f(x) � g(x)u) � Lf�guh � Lfh � Lghu (14.63)

The relative degree of a system is defined as follows: a SISO nonlinear system is said to have strict rel-
ative degree γ at the point x if:

1. LgL
i
f h(x) ≡ 0 i � 0, 1, 2, … , γ � 2 (14.64)

2. LgLf
γ�1h(x) � 0 (14.65)

In the case where γ � n, the system is full state feedback linearizable, and it is possible to construct the
following change of coordinates where the original coordinates xi are mapped to a new set of coordinates

∂h
�∂x

∂h
�∂x

f1(x)
f2(x)

�
fn�1(x)
fn(x)

x1

x2

�
xn�1

xn

∂h
�∂xi
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ξi as follows:

ξ1 � h(x)

ξ2 � ξ
.
1 � h

.
� Lfh

ξ3 � ξ
.
2 � h

..
� Lf

2h (14.66)

�
ξn � ξ.

.
n�1 � Lf

γ�1h

Computing derivatives, the control system becomes:

ξ.
.
1 � ξ2

ξ.
.

2 � ξ3

�
ξ.
.
n�1 � ξn (14.67)

ξ.
.
n � Lγ

f
h � LgLf

γ�1hu

or, setting

u � (�Lf
γ
h � v) (14.68)

the system is

ξ
.
1 � ξ2

ξ
.
2 � ξ3

�
ξ
.

n�1 � ξn (14.69)

ξ
.

n � v

which is both linear and in controllable canonical form. One approach to determine an appropriate v to
stabilize the system or track desired values of h(x) is pole placement (i.e., v � �Kξ). Note that the over-
all approach is to determine an output function h that could be differentiated n times before the control
input appeared. This approach essentially constructs a system known as a chain of integrators, as the
derivative of the ith state in the ξ variables is equal to the (i � 1)th state variable.

There are two main limitations to feedback linearization approaches. The first is that not all systems 
are feedback linearizable, although analytical tests exist to determine whether a particular system is lin-
earizable. Second, determining the output function h(x) involves solving a system of partial differential
equations.

Example — SISO Full State Feedback Linearization

Consider the following system as a mathematical example of the computations involved in feedback 
linearization:

� ��� ��� �u � f(x) � g(x)u (14.70)

0
0
0
1

x3

x4

x1 � x2 � x3

x1 � x3

x
.
1

x
.
2

x
.
3

x
.
4

1
�
LgLf

γ�1
h
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with output function y � h(x) � x1. The system has a relative degree equal to 4, so the system is full state
feedback linearizable and the coordinate transformation is given by:

ξ1 � h(x) � x1

ξ2 � Lf h(x) � x3

ξ3 � L2
f h(x) � x1 � x2 � x3 (14.71)

ξ4 � L3
f h(x) � x1 � x2 � 2x3 � x4

The above equations and the fact that the system has a relative degree of 4 is verified by the following
detailed calculations:

Lgh(x) � Lgx1 � [1 0 0 0]� �� 0,

LgLf h(x) � Lglf x1 � Lg[1 0 0 0] � �� Lgx3 � [0 0 1 0]� �� 0,

LgL
2
f h(x) � LgL

2
f x1 � LgLf x3 � Lg[0 0 1 0]� � (14.72)

� Lg(x1 � x2 � x3) � [1 1 1 0]� �� 0,

LgL
3
f h(x) � LgL

3
f x1 � LgLf (x1 � x2 � x3) � Lg[1 1 1 0]� �

� Lg(x1 � x2 � 2x3 � x4) � [1 1 2 1]� �� 1

Therefore, a controller of the form:

u � (�L4
f h � v)

� (�(3x1 � 2x2 � 2x3 � x4) � k1x1 � k2x3 � k3(x1 � x2 � x3) � k4(x1 � x2 � 2x3 � xer4)) (14.73)

with the gains ki picked via pole placement, for example, will allow the system to track trajectories of the
output function h(x) � x1.

So far, this section has considered full state feedback linearization where the relative degree of a system
is equal to the dimension of its state space. Partial feedback linearization is also possible where the 
relative degree is less than the dimension of the state space. However for such systems, an analysis of the

1
�
LgL

3
f h

0
0
0
1

x3

x4

x1 � x2 � x3

x1 � x3

0
0
0
1

x3

x4

x1 � x2 � x3

x1 � x3

0
0
0
1

x3

x4

x1 � x2 � x3

x1 � x3

0
0
0
1
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stability of the zero dynamics is necessary. In particular, if the relative degree γ � n, then the change of
coordinates is typically expressed in the form:

ξ1 � h(x)

ξ2 � ξ
.
1 � h

.
� Lfh

ξ3 � ξ
.
2 � h

..
� L2

f h

�
ξγ � ξ

.
γ�1 � L

f
γ�1 h (14.74)

η1 � η1(x)

η2 � η2(x)

� 
ηn�γ � ηn�γ(x)

where the ηi are chosen so that the matrix:

� � (14.75)

is full rank. The dynamics of the system in the new coordinates will be of the form:

ξ
.
1 � ξ2

ξ
.
2 � ξ3

�

ξ
.
γ � b(ξ, η) � a(ξ, η)u (14.76)

η. 1 � q1(ξ, η)

�

η. n�γ � qn�γ(ξ, η)

The zero dynamics are the dynamics expressed by the η equations, the stability of which must be 
considered independently of the linearized ξ equations. Refer to texts by Isidori (1996), Khalil 
(1996), Nijmeijer and van der Schaft (1990), and Sastry (2000) for the relevant details.

14.4.2 MIMO Full-State Feedback Linearization

The MIMO feedback linearization is a slight extension of the SISO feedback linearization by which the
SISO linearization construction is repeated for m output functions for a system with m control inputs:

x
.
� f(x) � g1(x)u1 � g2(x)u2 � … � g(x)mum

y1 � h1(x)

y2 � h2(x) (14.77)

�

ym � hm(x)

dh(x)
dLf h(x)

�
dL

f
γ�1h(x)

dη1(x)
�

dηn�γ (x)
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The vector relative degree is defined as a combination of relative degrees for each of the output functions.
Considering the jth output yj,

y
.
j � Lfhj � Lg

1
hju1 � Lg

2
hju2 � … � Lg

m
hjum (14.78)

If Lgi
hj  0 for each i, then the inputs do not appear in the derivative. Now let γj be the smallest integer

such that LgLf
γ

j
�1hj � 0 for at least one i. Define the matrix:

A(x) �� � (14.79)

The system has vector relative degree γ1, γ2, … , γm at x if Lgi
Lk

f h1  0 0 � k � γi�2 for i � 1, … , m and
the matrix A(x) is nonsingular.

14.4.3 Control Applications of Lyapunov Stability Theory

Lyapunov theory for autonomous differential equations states that if x � 0 is an equilibrium point for 
a differential equation x. � f(x), and there exists a continuously differentiable function, V(x) � 0 except
for V(0) � 0 and V

.
(x) � 0 and in some domain containing zero where:

V
.
(x) � �

n

i�1

x
.
i � �

n

i�1

fi(x) (14.80)

then the point x � 0 is an asymptotically stable equilibrium point for the differential equation. The utility
of Lyapunov theory in control is that controller synthesis techniques can be designed to ensure the neg-
ative definiteness of a Lyapunov function to ensure stability or boundedness of the system trajectories.

As fully described in Khalil (1996), the main applications of Lyapunov stability theory to control 
system design are Lyapunov redesign, backstepping, sliding mode control, and adaptive control. The 
basic concepts of all of these will be briefly outlined here.

Lyapunov redesign is an instance of nonlinear robust control design. However, there is a severe restric-
tion upon how the uncertainties are expressed in the equations of motion with a corresponding restric-
tion on the types of systems that are amenable to this technique. In particular, consider the system:

x
.
� f(t, x) � G(t, x)u � G(t, x)δ(t, x, u) (14.81)

where f and G are known; δ is unknown but is bounded by a known, but not necessarily small, function.
The main restriction here is that the uncertainty enters the system in exactly the same manner as the con-
trol input. In order to use Lyapunov redesign, a stabilizing control law exists for the nominal system
(ignoring δ), and a Lyapunov function for the nominal system must be known. (Note that one nice aspect
of the feedback linearization discussed previously is that if a controller is designed using that technique,
a Lyapunov function is straightforward to determine because of the simple form of the equations of
motion after the nonlinear coordinate transformation.) Because of the way that the uncertainty enters the
system, it is easy to modify the nominal control law to compensate for the uncertainty. References con-
cerning Lyapunov redesign include Corless (1993), Corless and Heitmann (1981), Barmish et al. (1983),
and Spong and Vidyasager (1989).

Backstepping is a recursive controller design procedure where the entire control system is decomposed
into smaller, simpler subsystems for which it may be easier to design a stabilizing controller. By consider-
ing the appropriate way to modify a Lyapunov function after each smaller subsystem is designed, a stabi-
lizing controller for the full system may be obtained. The main restriction for this technique is a
limitation on the structure of the equations of motion (a type of hierarchical structure is required).
Extensions of this procedure to account for certain system uncertainties also have been developed.
For references, see Krstic et al. (1995), Qu (1993), and Slotine and Hedrick (1993).
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The basic idea in sliding mode control is to drive the system in finite time to a certain submanifold of
the configuration space, called the sliding manifold, upon which the system should indefinitely evolve.
Because the sliding manifold has a lower dimension than the full state space for the system, a lower order
model describes the evolution of the system on the sliding manifold. If a stabilizing controller is designed
for the sliding manifold, the problem reduces to designing a controller to drive the system to the sliding
manifold. The advantage of sliding mode control is that it is very robust with respect to system uncer-
tainties. One disadvantage is that it is a bit mathematically quirky as there are discontinuities in the con-
trol law when switching from the full state of the system to the sliding manifold. Additionally,
“chattering,” wherein the system constantly alternates between the two sides of the submanifold, is a com-
mon problem. See Utkin (1992) and DeCarlo et al. (1988) for overviews of the approach.

Finally, there is vast literature in the area of adaptive control. In adaptive control, some system per-
formance index is measured, and the adaptive controller modifies adjustable parameters in the controller
in order to maintain the performance index of the control system close to a desired value (or set of desired
values). This is desirable in cases where system parameters are unknown or change with time.
Representative references concerning adaptive control include Anderson et al. (1986), Ioannou and Sun
(1995), Krstic et al. (1995), Landau et al. (1998), Narendra and Annaswamy (1989), and Sastry and
Bodson (1989).

14.4.4 Hybrid Systems

Hybrid systems are systems characterized by both continuous and discrete dynamics. Examples of hybrid
systems include, but are not limited to, digital computer-controlled systems, distributed control systems
governed by a hierarchical logical interaction structure, multi-agent systems (such as the air traffic man-
agement system [Tomlin, 1998]), and systems characterized by intermittent physical contact [Goodwine
and Burdick, 2000]. Recent papers considering modeling and control synthesis methods for such com-
plicated systems include Alur and Henzinger (1996), Antsaklis et al. (1995, 1997), Branicky et al. (1998),
Henzinger and Sastry (1998), and Lygeros et al. (1999).

14.5 Parting Remarks

This chapter provides a brief overview of the fundamental concepts in analysis and design of control sys-
tems. This chapter includes an outline of classical linear control including stability concepts (the Routh
array) and controller design techniques (root locus and lead-lag synthesis). Additionally, more recent
advances in control including pole placement, the LQR, and the basic concepts from robust control are
outlined and examples are provided. Finally, recent developments in nonlinear control, including feed-
back linearization (for both single-input, single-output and multi-input, multi-output systems), are out-
lined along with basic approaches using Lyapunov stability theory.
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As traditional scientific disciplines individually grow toward their maturity, many new opportunities for
significant advances lie at their intersection. For example, remarkable developments in control theory in
the last few decades have considerably expanded the selection of available tools which may be applied to
regulate physical and electrical systems. When combined with microelectromechanical systems (MEMS)
techniques for distributed sensing and actuation, as highlighted elsewhere in this handbook, these tech-
niques hold great promise for several applications in fluid mechanics, including the delay of transition and
the regulation of turbulence. Such applications of control theory require a very balanced perspective in
which one considers the relevant flow physics when designing the control algorithms and, conversely, takes
into account the requirements and limitations of control algorithms when designing both reduced-order
flow models and the fluid-mechanical systems to be controlled. Such a balanced perspective is elusive,
however, as both the research establishment in general and universities in particular are accustomed only
to the dissemination and teaching of component technologies in isolated fields. To advance, we must not
toss substantial new interdisciplinary questions over the fence for fear of them being “outside our area;”
rather, we must break down these very fences that limit us and attack these challenging new questions with
a Renaissance approach. In this spirit, this chapter surveys a few recent attempts at bridging the gaps
between the several scientific disciplines comprising the field of flow control, in an attempt to clarify the
author’s perspective on how recent advances in these constituent disciplines fit together in a manner that
opens up significant new research opportunities.

15.1 Introduction

Flow control is perhaps the most difficult grand challenge application area for MEMS technology.
Potentially, it is one of the most rewarding because a common feature in many fluid systems is the existence
of natural instability mechanisms by which a small input, when coordinated correctly, can lead to a large
response in the overall system. As one of the key driving application areas for MEMS, it is appropriate to
survey recent developments in the fundamental framework for flow control in this handbook.

The area of flow control plainly resides at the intersection of disciplines, incorporating essential and
nontrivial elements from control theory, fluid mechanics, Navier–Stokes mathematics, numerical methods,
and fabrication technology for “small” (millimeter-scale), self-contained, durable devices which can integrate
the functions of sensing, actuation, and control logic. Recent developments in the integration of these dis-
ciplines, while grounding us with appropriate techniques to address some fundamental open questions,
hint at the solution of several new questions. To follow up on these new directions, it is essential to have a
clear vision of how recent advances in these fields fit together and to know where the significant unresolved
issues at their intersection lie.

This chapter attempts to elucidate the utility of an interdisciplinary perspective to this type of problem
by focusing on the control of a prototypical and fundamental fluid system: plane channel flow. The control
of the flow in this simple geometry embodies a myriad of complex issues and interrelationships. These issues
and relationships require us to draw from a variety of traditional disciplines. Only when these issues and
perspectives are combined is a complete understanding of the state of the art achieved and a vision of where
to proceed identified.
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Though plane channel flow will be the focus problem we discuss here, the purpose of this work goes well
beyond simply controlling this particular flow with a particular actuator/sensor configuration. At its core, the
research effort we describe is devoted to the development of an integrated, interdisciplinary understanding
that allows us to synthesize the necessary tools to attack a variety of flow control problems in the future.
The focus problem of control of channel flow is chosen not simply because of its technological relevance
or fundamental character, but because it embodies many of the important unsolved issues encountered in the
assortment of new flow control problems that will inevitably follow. The primary objective of this work is
to lay a solid, integrated footing upon which these future efforts may be based.

To this end, this chapter will describe mostly the efforts with which the author has been directly involved,
in an attempt to weave the story that threads these projects together as part of the fabric of a substantial
new area of interdisciplinary research. Space does not permit complete development of these projects;
rather, the chapter will survey a selection of recent results that bring the relevant issues to light. Refer to the
appropriate full journal articles for all of the relevant details and careful placement of these projects in
context with the works of others. Space limitations also do not allow this brief chapter to adequately
review the various directions all my friends and colleagues are taking in this field. Rather than attempt such
a review and fail, refer to a host of other recent reviews which span only a fraction of the current work being
done in this active area of research. For an experimental perspective, refer to several other chapters in this
handbook and to the recent reviews of Ho and Tai (1996, 1998), McMichael (1996), Gad-el-Hak (1996),
and Löfdahl and Gad-el-Hak (1999). For a mathematical perspective, refer to the recent dedicated volumes
compiled by Banks (1992), Banks et al. (1993), Gunzburger (1995), Lagnese et al. (1995), and Sritharan
(1998) for a sampling of recent results in this area.

15.2 Linearization: Life in a Small Neighborhood

As a starting point for the introduction of control theory into the fluid-mechanical setting, we first con-
sider the linearized system arising from the equation governing small perturbations to a laminar flow.
From a physical point of view, such perturbations are quite significant because they represent the initial
stages of the complex process of transition to turbulence. Therefore, their mitigation or enhancement has
a substantial effect on the evolution of the flow.

An enlightening problem that captures the essential physics of many important features of both tran-
sition and turbulence in wall-bounded flows is that of plane channel flow, as illustrated in Figure 15.1.
Assume the walls are located at y � �1. We begin our study by analyzing small perturbations {u, v, w, p}
to the (parabolic) laminar flow profile U(y) in this geometry, which are governed by the linearized incom-
pressible Navier–Stokes equation:

� � � 0, (15.1a)

u· � U u� U�v � � � ∆u, (15.1b)

v· � U v � � � ∆v, (15.1c)

w· � U w � � � ∆w. (15.1d)

Equation (15.1a), the continuity equation, constrains the solution of Equations (15.1b) to (15.1d), the
momentum equations, to be divergence free. This constraint is imposed through the ∇p terms in the
momentum equations, which act as Lagrange multipliers to maintain the velocity field on a divergence-free
submanifold of the space of square-integrable vector fields. In the discretized setting, such systems are

1
�
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called descriptor systems or differential-algebraic equations and, defining a state vector x and a control
vector u, may be written in the generalized state-space form:

Ex· � Ax � Bu. (15.2)

If the Navier–Stokes Equation (15.1) is put directly into this form, E is singular. This is an essential fea-
ture of the Navier–Stokes equation that necessitates careful treatment in both simulation and control
design to avoid spurious numerical artifacts. A variety of techniques exist to express the system of
Equations (15.1) with a reduced set of variables or spatially distributed functions with only two degrees
of freedom per spatial location, referred to as a divergence-free basis. In such a basis, the continuity equa-
tion is applied implicitly, and the pressure is eliminated from the set of governing equations. All three
velocity components and the pressure (up to an arbitrary constant) may be determined from solutions
represented in such a basis. When discretized and represented in the form of Equation (15.2), the
Navier–Stokes equation written in such a basis leads to an expression for E that is nonsingular.

For the geometry indicated in Figure 15.1, a suitable choice for this reduced set of variables, which is
convenient in terms of the implementation of boundary conditions, is the wall-normal velocity v and the
wall-normal vorticity, ω �

∆ ∂u/∂z � ∂w/∂x. Taking the Fourier transform of Equation (15.1) in the stream-
wise and spanwise directions and manipulating these equations and their derivatives leads to the classical
Orr–Sommerfeld/Squire formulation of the Navier–Stokes equation at each wavenumber pair {kx, kz}:

∆̂v̂
·

� {�ikxU∆̂� ikxU � � ∆̂(∆̂/Re)}v̂ , (15.3a)

ω̂
·

� {�ikzU�}v̂ � {�ikxU � ∆̂/Re}ω̂, (15.3b)

where the hats (ˆ) indicate Fourier coefficients and the Laplacian now takes the form ∆̂�
∆ ∂2/∂y2 � k2

x � k2
z.

Particular care is needed when solving this system; to invert the Laplacian on the LHS of Equation
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FIGURE 15.1 Geometry of plane channel flow. The flow is sustained by an externally applied pressure gradient in
the x direction. This canonical problem provides an excellent testbed for the study of both transition and turbulence
in wall-bounded flows. Many of the important flow phenomena in this geometry, in both the linear and nonlinear
setting, are fundamentally three dimensional. A nonphysical assumption of periodicity of the flow perturbations in
the x and z directions is often assumed for numerical convenience, with the box size chosen to be large enough that
this nonphysical assumption has minimal effect on the observed flow statistics. It is important to evaluate critically the
implications of such assumptions during the process of control design, as discussed in detail in Sections 15.4 and 15.5.
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(15.3a), the boundary conditions on v must be accounted for properly. By manipulating the governing
equations and casting them in a derivative form, we effectively trade one numerical difficulty (singular-
ity of E) for another (a tricky boundary condition inclusion to make the Laplacian on the LHS of
Equation (15.3a) invertible).

Note the spatially invariant structure of the present geometry: every point on each wall is, statistically
speaking, identical to every other point on that wall. Canonical problems with this sort of spatially invari-
ant structure in one or more directions form the backbone of much of the literature on flow transition
and turbulence. It is this structure that facilitates the use of Fourier transforms to completely decouple
the system state {v̂, ω̂} at each wavenumber pair {kx, kz} from the system state at every other wavenumber
pair, as indicated in Equation (15.3). Such decoupling of the Fourier modes of the unforced linear system
in the directions of spatial invariance is a classical result upon which much of the available linear theory
for the stability of Navier–Stokes systems is based. As noted by Bewley and Agarwal (1996), taking the
Fourier transform of both the control variables and the measurement variables maintains this system
decoupling in the control formulation, greatly reducing the complexity of the control design problem to
several smaller, completely decoupled control design problems at each wavenumber pair {kx, kz}, each of
which requires spatial discretization in the y direction only.

Once a tractable form of the governing equation has been selected, to pose the flow control problem
completely, several steps remain:

� the state equation must be spatially discretized,
� boundary conditions must be chosen and enforced,
� the variables representing the controls and the available measurements must be identified and

extracted,
� the disturbances must be modeled, and
� the “control objective” must be precisely defined.

To identify a fundamental yet physically relevant flow control problem, the decisions made at each of
these steps require engineering judgment. Such judgment is based on physical insight concerning the flow
system to be controlled and how the essential features of such a system may be accurately modeled. An
example of how to accomplish these steps is described in some detail by Bewley and Liu (1998). In short,
we may choose:

� a Chebyshev spatial discretization in y,
� no-slip boundary conditions (u � w � 0 on the walls) with the distribution of v on the walls (the

blowing/suction profile) prescribed as the control,
� skin friction measurements distributed on the walls,
� idealized disturbances exciting the system, and
� an objective of minimizing flow perturbation energy.

As we learn more about the physics of the system to be controlled, there is significant room for improve-
ment in this problem formulation, particularly in modeling the structure of relevant system disturbances
and in the precise statement of the control objective.

Once the previously mentioned steps are complete, the present decoupled system at each wavenumber
pair {kx, kz} may finally be manipulated into the standard state-space form:

x· � Ax � B1w � B2u, (15.4)

y � C2x � D21w,

with

B1 �
∆ (G1 0), C2 �

∆ G2
�1C, D21 �

∆ (0 αI), w �
∆ � �,

where x denotes the state, u denotes the control, y denotes the available measurements (scaled as dis-
cussed below), and w accounts for the external disturbances (including the state disturbances w1 and the

w1

w2
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measurement noise w2, scaled as discussed below). Note that Cx denotes the raw vector of measured vari-
ables, and G1 and αG2 represent the square root of any known or expected covariance structure of the
state disturbances and measurement noise, respectively. The scalar α 2 is identified as an adjustable
parameter that defines the ratio of the maximum singular value of the covariance of the measurement noise
divided by the maximum singular value of the covariance of the state disturbances; without loss of gen-
erality, we take σ–(G1) � σ–(G2) � 1. Effectively, the matrix G1 reflects which state disturbances are strongest,
and the matrix G2 reflects which measurements are most corrupted by noise. Small a implies relatively
high overall confidence in the measurements, whereas large α implies relatively low overall confidence in
the measurements.

Not surprisingly, there is a wide body of theory surrounding how to control a linear system in the standard
form of Equation (15.4). The application of one popular technique (to a related two-dimensional problem),
called proportional–integral (PI) control and generally referred to as “classical” control design, is presented
in Joshi et al. (1997). The application of another technique, called H � control and generally referred to as
“modern” control design, is laid out in Bewley and Liu (1998). The application of a related modern control
strategy (to the two-dimensional problem), called loop transfer recovery (LTR), is presented in Cortelezzi
and Speyer (1998). More recent publications by these groups further extend these seminal efforts.

It is useful to understand the various theoretical implications of the control design technique chosen.
Ultimately, however, flow control is the design of a control that achieves the desired engineering objective
(transition delay, drag reduction, mixing enhancement, etc.) to the maximum extent possible. The theo-
retical implications of the particular control technique chosen are useful only to the degree to which they
help attain this objective. Engineering judgment, based on an understanding of the merits of the various
control theories and based on the suitability of such theories to the structure of the fluid-mechanical
problem of interest, guides the selection of an appropriate control design strategy. In the following sec-
tion, we summarize the H ∞ control design approach, illustrate why this approach is appropriate for the
structure of the problem at hand, and highlight an important distinguishing characteristic of the present
system when controls computed via this approach are applied.

15.3 Linear Stabilization: Leveraging Modern Linear 
Control Theory

As only a limited number of noisy measurements y of the state x are available in any practical control
implementation, it is beneficial to develop a filter that extracts as much useful information as possible
from the available flow measurements before using this filtered information to compute a suitable con-
trol. In modern control theory, a model of the system itself is used as this filter, and the filtered informa-
tion extracted from the measurements is simply an estimate of the state of the physical system. This
intuitive framework is illustrated schematically in Figure 15.2. By modeling (or neglecting) the influence
of the unknown disturbances in Equation (15.4), the system model takes the form:

x̂
·

� Ax̂ � B1ŵ � B2u � v, (15.5a)

ŷ � C2x̂ � D21ŵ, (15.5b)

where x̂ is the state estimate, ŵ is a disturbance estimate, and v is a feedback term based on the difference
between the measurement of the state y and the corresponding quantity in the model, ŷ, such that:

v � L(y � ŷ). (15.5c)

The control u, in turn, is based on the state estimate x̂ such that:

u � Kx̂. (15.6)
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Equation (15.4) is referred to as the “plant,” Equation (15.5) is referred to as the “estimator,” and Equation
(15.6) is referred to as the “controller.” The estimator and the controller, taken together, will be referred
to as the “compensator.” The problem at hand is to compute linear time-invariant (LTI) matrices K and
L and some estimate of the disturbance, ŵ, such that:

1. the estimator feedback v forces x̂ toward x, and
2. the controller feedback u forces x toward zero,

even as unknown disturbances w both disrupt the system evolution and corrupt the available measure-
ments of the system state.

15.3.1 The H∞∞ Approach to Control Design

Several textbooks describe in detail how the H∞ technique determines K, L, and ŵ for systems of the form
Equations (15.4) to (15.6) in the presence of structured and unstructured disturbances w. Refer to the
seminal paper by Doyle et al. (1989), the more accessible textbook by Green and Limebeer (1995), and
the more advanced texts by Zhou et al. (1996) and Zhou and Doyle (1998) for derivation and further dis-
cussion of these control theories. Refer to Bewley and Liu (1998) for an extended discussion in the con-
text of the present problem. To summarize this approach briefly, a cost function J describing the control
problem at hand is defined that weighs together the state x, the control u, and the disturbance w such that:

J �
∆ E[x*Qx � � 2u*u � γ 2w*w] �

∆ E[z*z � γ 2w*w], (15.7a)

where

z �
∆ C1x � D12u, C1 �

∆ � �, D12 �
∆ � �. (15.7b)

The matrix Q, shaping the dependence on the state in the cost function x*Qx, may be selected to numer-
ically approximate any of a variety of physical properties of the flow, such as the flow perturbation energy,

0
�I

Q1/2

0
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FIGURE 15.2 Flow of information in a modern control realization. The plant, forced by external disturbances, has
an internal state x which cannot be observed. Instead, a noisy measurement y is made, with which a state estimate x̂
is determined. This state estimate is then used to determine the control u to be applied to the plant to regulate x to
zero. Essentially, the full equation for the plant (or a reduced model thereof) is used in the estimator as a filter to
extract useful information about the state from the available measurements.
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its enstrophy, the mean square of the drag measurements, etc. The matrix Q may also be biased to place
extra penalty on flow perturbations in a specific region in space of particular physical significance. The
choice of Q has a profound effect on the final closed-loop behavior, and it must be selected with care.
Based on our numerical tests to date, cost functions related to the energy of the flow perturbations have
been the most successful for the purpose of transition delay. To simplify the algebra that follows, we have
set the matrices R and S shaping the u*Ru and w*Sw terms in the cost function equal to I. As shown in
Lauga and Bewley (2000), it is straightforward to generalize this result to other positive-definite choices
for R and S. Such a generalization is particularly useful when designing controls for a discretization of a
partial differential equation (PDE) in a consistent manner such that the feedback kernels converge to con-
tinuous functions as the computational grid is refined.

Given the structure of the system defined in Equations (15.4) to (15.6) and the control objective
defined in Equation (15.7), the H∞ compensator is determined by simultaneously minimizing the cost
function J with respect to the control u and maximizing J with respect to the disturbance w. In such a
way, a control u is found that maximally attains the control objective even in the presence of a disturbance
w that maximally disrupts this objective. For sufficiently large γ and a system that is both stabilizable and
detectable via the controls and measurements chosen, this results in finite values for u, v, and w, the mag-
nitudes of which may be adjusted by variation of the three scalar parameters �, α, and γ, respectively.
Reducing �, modeling the “price of the control” in the engineering design, generally results in increased
levels of control feedback u. Reducing α, modeling the “relative level of corruption” of the measurements
by noise, generally results in increased levels of estimator feedback v. Reducing γ, modeling the “price”
of the disturbance to nature (in the spirit of a noncooperative game), generally results in increased 
levels of disturbances w of maximally disruptive structure to be accounted for during the design of the
compensator.

The H∞ control solution [Doyle et al., 1989] may be described as follows: a compensator that mini-
mizes J in the presence of that disturbance which simultaneously maximizes J is given by:

K � � B*2 X, L � � ZYC *2, ŵ � B*1Xx̂, (15.8)

where

X � Ric� A B1B*1 � B2B*2�,

�C *1C1 �A*

Y � Ric� A* C*1C1 � C*2C2�,

�B1B*1 �A

Z � �1 � �
�1

,

where Ric (	) denotes the positive-definite solution of the associated Riccati equation [Laub, 1991]. The
simple structure of the above solution, and its profound implications in terms of the performance and
robustness of the resulting closed-loop system, is one of the most elegant results of linear control theory.
The following comments touch on a few of the more salient features of this result.

Algebraic manipulation of Equations (15.4) to (15.8) leads to the closed-loop form:

x̃
·

� Ãx � B̃w,
(15.9)

z � C̃x̃,

YX
�γ 2

1
�α2

1
�γ 2

1
�
� 2

1
�γ 2

1
�γ 2

1
�α 2

1
�
� 2
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where

x̃ � � �,

Ã � � �,

B̃ � � �,

C̃ � (C1 � D12K � D12K).

Taking the Laplace transform of Equation (15.9), it is easy to define the transfer function Tzw(s) from w(s)
to z(s) (the Laplace transforms of w and z) such that:

z(s) � C̃ (sI � Ã)
�1

B̃w(s) �
∆

Tzw(s)w(s).

Norms of the system transfer function Tzw(s) quantify how the system output of interest z responds to
disturbances w exciting the closed-loop system.

The expected value of the root mean square (rms) of the output z over the rms of the input w for dis-
turbances w of maximally disruptive structure is denoted by the �–norm of the system transfer function,

�Tzw�� �
∆

sup
ω

σ� [Tzw(jω)].

H � control is often referred to as “robust” control, as �Tzw��, reflecting the worst-case amplification of dis-
turbances by the system from the input w to the output z, is in fact bounded from above by the value of
γ used in the problem formulation. Subject to this �–norm bound, H � control minimizes the expected
value of the rms of the output z over the rms of the input w for white Gaussian disturbances w with 
identity covariance, denoted by the 2–norm of the system transfer function:

�Tzw�2 �
∆ ��

2

1

π� ��

��

trace[Tzw(jω)*Tzw(jω)]dω�
1/2

.

Note that �Tzw�2 is often cited as a measure of performance of the closed-loop system, whereas �Tzw�� is
often cited as a measure of its robustness. Further motivation for consideration of control theories related
to these particular norms is elucidated by Skogestad and Postlethwaite (1996). Efficient numerical algo-
rithms to solve the Riccati equations for X and Y in the compensator design and to compute the transfer
function norms �Tzw�2 and �Tzw�� quantifying the closed-loop system behavior are well developed and are
discussed further in the standard texts.

For high-dimensional discretizations of infinite dimensional systems, it is not feasible to perform a
parametric variation on the individual elements of the matrices defining the control problem. The con-
trol design approach taken here represents a balance of engineering judgment in the construction of the
matrices defining the structure of the control problem {B1, B2, C1, C2} and parametric variation of the
three scalar parameters involved {�, α, γ } to achieve the desired trade-offs between performance, robust-
ness, and the control effort required. This approach retains a sufficient but not excessive degree of flexi-
bility in the control design process. In general, intermediate values of the three parameters {�, α, γ } lead
to the most suitable control designs.

H2 control (also known as linear quadratic Gaussian control, or LQG) is an important limiting case of H�

control. It is obtained in the present formulation by relaxing the bound γ on the infinity norm of the closed-
loop system, taking the limit as γ → � in the controller formulation. Such a control formulation focuses
solely on performance (i.e., minimizing �Tzw�2). As LQG does not provide any guarantees about system
behavior for disturbances of particularly disruptive structure (�Tzw��), it is often referred to as “optimal”

B1

B1 � LD21

�B2K
A � LC2 � γ �2B1B1*

A � B2K
�γ �2B1B1*

x
x � x̂
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control. Though one might confirm a posteriori that a particular LQG design has favorable robustness
properties, such properties are not guaranteed by the LQG control design process. When designing a large
number of compensators for an entire array of wavenumber pairs {kx, kz} via an automated algorithm, as is
necessary in the current problem, it is useful to have a control design tool that inherently builds in system
robustness, such as H�. For isolated low-dimensional systems, as often encountered in many industrial
processes, a posteriori robustness checks on hand-tuned LQG designs are often sufficient.

It is also interesting that certain favorable robustness properties may be assured by the LQG approach
by strategies involving either:

1. setting B1 � (B2 0) and taking α → 0, or
2. setting C1 � (C2

0) and taking � → 0.

These two approaches are referred to as loop transfer recovery (LQG/LTR), and are further explained in Stein
and Athans (1987). Such a strategy is explored by Cortelezzi and Speyer (1998) in the two-dimensional set-
ting of the current problem. In the present system, both B2 and C2 are very low rank because there is only a
single control variable and a single measurement variable at each wall in the Fourier-space representation of
the physical system at each wavenumber pair {kx, kz}. However, the state itself is a high-dimensional approx-
imation of an infinite-dimensional system. It is beneficial in such a problem to allow the modeled state dis-
turbances w1 to input the system, via the matrix B1, at more than just the actuator inputs, and to allow the
response of the system x to be weighted in the cost function, via the matrix C1, at more than just the sensor
outputs. The LQG/LTR approach of assuring closed-loop system robustness, however, requires us to sacrifice
one of these features in the control formulation, in addition to taking α → 0 or � → 0, to apply one of the two
strategies listed above. It is noted here that the H� approach, when soluble, allows for the design of compen-
sators with inherent robustness guarantees without such sacrifices of flexibility in the definition of the con-
trol problem of interest, thereby giving significantly more latitude in the design of a “robust” compensator.

The names H2 and H� are derived from the system norms �Tzw�2 and �Tzw�� that these control theories
address, with the symbol H denoting the particular “Hardy space” in which these transfer function norms
are well defined. It deserves mention that the difference between �Tzw�2 and �Tzw�� might be expected to
be increasingly significant as the dimension of the system is increased. Neglecting, for the moment, the
dependence on ω in the definition of the system norms, the matrix Frobenius norm (trace[T*T]1/2) and
the matrix 2–norm σ– [T] are “equivalent” up to a constant. Indeed, for scalar systems these two matrix
norms are identical, and for low-dimensional systems their ratio is bounded by a constant related to the
dimension of the system. For high-dimensional discretizations of infinite-dimensional systems, however,
this norm equivalence is relaxed, and the differences between these two matrix norms may be substantial.
The temporal dependence of the two system norms �Tzw�2 and �Tzw�� distinguishes them even for low-
dimensional systems. For high-dimensional systems, the important differences between these two system
norms are even more pronounced, and control techniques such as H� that account for both such norms
might prove to be beneficial. Techniques (such as H�) that bound �Tzw�� are especially appropriate for the
present problem, as transition is often associated with the triggering of a “worst-case” phenomenon,
which is well characterized by this measure.

15.3.2 Advantages of Modern Control Design for Non-Normal Systems

Matrices A arising from the discretization of systems in fluid mechanics are often highly “non-normal,”
which means that the eigenvectors of A are highly nonorthogonal. This is especially true for transition in
a plane channel. Important characteristics of this system, such as O(1000) transient energy growth and large
amplification of external disturbance energy in stable flows at subcritical Reynolds numbers, cannot be
explained by examination of its eigenvalues alone. Discretizations of Equation (15.3), when put into the
state-space form of Equation (15.4), lead to system matrices of the form:

A � � �. (15.10)
L      0
C      S
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For certain wavenumber pairs (specifically, those with kx � 0 and kz � O(1)), the eigenvalues of A are real
and stable, the matrices L and S are quite similar in structure, and σ– (C) is disproportionately large.

To illustrate the behavior of a system matrix with such structure, consider a reduced system matrix of the
previous form but where L, C, and S are scalars. Specifically, compare the two stable closed-loop system
matrices:

A1 � � �,

A2 � � �.

Both matrices have the same eigenvalues. However, the eigenvectors of A1 are orthogonal, whereas the
eigenvectors of A2 are

ξ1 � � � and ξ2 � � �.

Even though its eigenvalues differ by 10%, the eigenvectors of A2 are less than 0.06° from being exactly
parallel. It is in this sense that we define this system as being “non-normal” or “nearly defective.” This
severe nonorthogonality of the system eigenvectors is a direct result of the disproportionately large cou-
pling term C. Compensators that reduce C will make the eigenvectors of A2 closer to orthogonal without
necessarily changing the system eigenvalues.

The consequences of nonorthogonality of the system eigenvectors are significant. Though the “energy”
(the Euclidean norm) of the state of the system x· � A1x uniformly decreases in time from all initial con-
ditions, the “energy” of the state of the system x· � A2x from the initial condition x(0) � ξ1 � ξ2 grows by
a factor of over a thousand before eventually decaying due to the stability of the system. This is referred
to as the transient energy growth of the stable non-normal system and is a result of the reduced destruc-
tive interference exhibited by the two modes of the solution as they decay at different rates. In fluid
mechanics, transient energy growth is thought to be an important linear mechanism leading to transition
in subcritical flows, which are linearly stable but nonlinearly unstable [Butler and Farrell, 1992].

The excitation of such systems by external disturbances is well described in terms of the system norms
�Tzw�2 and �Tzw��, which (as described previously) quantify the rms amplification of Gaussian and worst-
case disturbances by the system. For example, consider a closed-loop system of the form of Equation (15.9)
with B̃ � C̃ � I. Taking the system matrix Ã � A1, the norms of the system transfer function are
�Tzw�2 � 9.8 and �Tzw�� � 100. Alternatively, taking the system matrix Ã � A2, the 2–norm of the system
transfer function is 48 times larger and the �–norm is 91 times larger, though the two systems have identi-
cal closed-loop eigenvalues. Large system-transfer-function norms and large values of maximum transient
energy growth are often highly correlated because they both are a result of nonnormality in a stable system.

Graphical interpretations of �Tzw�2 and �Tzw�� for the present channel flow system are given in Figures
15.3 and 15.4 by examining contour plots of the appropriate matrix norms of Tzw(s) in the complex plane
s. Recall that Tzw(s) �

∆
C̃(sI � Ã)�1B̃, therefore these contours approach infinity in the neighborhood of

each eigenvalue of Ã. Contour plots of this type have recently become known as the pseudospectra of an
input/output system and have become a popular generalization of plots of the eigenvalues of Ã in recent
efforts to study nonnormality in uncontrolled fluid systems [Trefethen et al., 1993]. For the open-loop
systems depicted in these figures, we define Ã � A, B̃ � B1, and C̃ � C1. The severe non-normality of the
present fluid system for Fourier modes with kx � 0 is reflected by the elliptical isolines surrounding each
pair of eigenvalues with nearly parallel eigenvectors in these pseudospectra, a feature that is much more
pronounced in the system depicted in Figure 15.3 than in that depicted in Figure 15.4. The severe non-
normality of the system depicted in Figure 15.3 is also reflected by its much larger value of �Tzw��. As 
{Ã, B̃, C̃} may be defined for either the open-loop or the closed-loop case, this technique for analysis of
non-normality extends directly to the characterization of controlled fluid systems.

0
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0.001
1.000

�0.01 0   
1       �0.011

�0.01 0     
0      �0.011

Model-Based Flow Control for Distributed Architectures 15-11

© 2006 by Taylor & Francis Group, LLC



The H� control technique is based on minimizing the 2–norm of the system transfer function while
simultaneously bounding the �–norm of the system-transfer function. In the current transition problem,
our control objective is to inhibit the (linear) formation of energetic flow perturbations that can lead to
nonlinear instability and transition to turbulence. It is natural that control techniques such as H�, which
are designed upon the very transfer function norms that quantify the excitation of such flow perturbations
by external disturbances, will have a distinct advantage for achieving this objective over control techniques
that account for the eigenvalues only, such as those based on the analysis of root-locus plots.

15-12 MEMS: Introduction and Fundamentals

Isocontours of s [Tzw(s)] in the complex plane. The peak value of this matrix norm on the jv axis
is defined as the system norm Tzw and corresponds to the solid isoline with the smallest value.�

Tzw 2Isocontours of (trace[T *T ])1/2 in the complex plane s. The system norm is related to the 
inetegral of the square of this matrix norm over the jv axis.

FIGURE 15.3 Graphical interpretations (a.k.a.“pseudospectra”) of the transfer function norms �Tzw�� (a) and �Tzw�2

(b) for the present system in open loop, obtained at kx � 0, kz � 2, and Re � 5000. The eigenvalues of the system
matrix A are marked with an �. All isoline values are separated by a factor of 2, and the isolines with the largest value
are those nearest to the eigenvalues. For this system, �Tzw�� � 2.6 � 105.
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(a) Isocontours of s [Tzw(s)]. (b)Isocontours of (trace[T *T ])1/2

FIGURE 15.4 Pseudospectra interpretations of �Tzw��(a) and �Tzw�2 (b) for the open loop system at kx � �1,
kz � 0, and Re � 5000. For plotting details, see Figure 15.3. For this system, �Tzw�� � 1.9 � 104.

15.3.3 Effectiveness of Control Feedback at Particular Wavenumber Pairs

The application of the modern control design approach described in Section 15.3.1 to the 
Orr-Sommerfeld/Squire problem laid out in Section 15.2 was explored extensively in Bewley and Liu
(1998) for two particular wavenumber pairs and Reynolds numbers. The control effectiveness was quan-
tified using several different techniques, including eigenmode analysis, transient energy growth, and
transfer function norms. The control was remarkably effective and the trends with {�, α, γ } were all as
expected. Refer to the journal article for complete tabulation of the results. One of the most notable fea-
tures of this paper is that the application of the control resulted in the closed-loop eigenvectors becom-
ing significantly closer to orthogonal, as illustrated in Figure 15.5. Note especially the high degree of
correlation between the second and third eigenvectors of Figure 15.5a, and how this correlation is dis-
rupted in Figure 15.5b. This was accompanied by concomitant reductions in both transient energy
growth and the system transfer function norms in the controlled system. The nearly parallel nature of the
pairs of eigenvectors {ξ2, ξ3}, {ξ4, ξ5}, {ξ6, ξ7}, and {ξ8, ξ9} in the uncontrolled case (Figure 15.5a) is also
reflected by the elliptical isolines surrounding the corresponding eigenvalues illustrated by the pseu-
dospectra of Figure 15.3.

Note the nonzero value of v̂ at the walls in Figure 15.5b; this reflects the wall blowing/suction applied
as the control. Note also that half of the eigenvectors in Figure 15.5a have zero v̂ components. These are
commonly referred to as the Squire modes of the system and are decoupled from the perturbations in v̂
because of the block of zeros in the upper-right corner of A. Such decoupling is not seen in Figure 15.5b
because the closed-loop system matrix A � B2K is full.
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15.4 Decentralization: Designing for Massive Arrays

As illustrated in Figures 15.6 and 15.7, there are two possible approaches for experimental implementa-
tion of linear compensators for this problem:

1. a centralized approach, applied in Fourier space, or
2. a decentralized approach, applied in physical space.

Both of these approaches may be used to apply boundary control (such as distributions of blowing/
suction) based on wall information (such as distributions of skin friction measurements). Both
approaches may be used to implement the H� compensators developed in Section 15.3, LQG/LTR com-
pensators, PID feedback, or a host of other types of control designs. However, there are important differ-
ences in terms of the applicability of these two approaches to physical systems. The pros and cons of these
approaches are now presented.

15.4.1 Centralized Approach

The centralized approach is simplest in terms of its derivation, as most linear compensators in this geom-
etry are designed in Fourier space, leveraging the spatially invariant structure of this system mentioned
previously and the complete decoupling into Fourier modes which this structure provides [Bewley and
Agarwal, 1996]. As indicated in Figure 15.6, implementation of this approach is straightforward. This
type of experimental realization was recommended by Cortelezzi and Speyer (1998) in related work.
There are two major shortcomings of this approach:

1. The approach requires an online two-dimensional fast Fourier transform (FFT) of the entire mea-
surement vector and an online two-dimensional inverse FFT (iFFT) of the entire control vector.

2. The approach assumes spatial periodicity of the flow perturbations.

With regard to point 1, it is important to note that the expense of centralized computations of two-
dimensional FFTs and iFFTs will grow rapidly with the size of the array of sensors and actuators. Specificly,
the computational expense is proportional to Nx Nz log(Nx Nz). This will rapidly decrease the bandwidth
possible as the array size (and the number of Fourier modes) is increased for a fixed speed of the central
processing unit (CPU). Communication of signals to and from the CPU is also an important limiting factor
as the array size grows. Thus, this approach does not extend well to massive arrays of sensors and actuators.

With regard to point 2, it is important to note that transition phenomena in physical systems, such as
boundary layers and plane channels, are not spatially periodic, though it is often useful to characterize the

FIGURE 15.5 The nine least stable eigenmodes of the closed-loop system matrix A � B2K for kx � 0, kz � 2, and
Re � 5000. Plotted are the nonzero part of the ω̂ component of the eigenvectors (solid) and the nonzero part of the v̂
component of the eigenvectors (dashed) as a function of y from the lower wall (bottom) to the upper wall (top). In
(a), the dashed line is magnified by a factor of 1000 with respect to the solid line; in (b), the dashed line is magnified
by a factor of 300. The eigenvectors become significantly closer to orthogonal by the application of the control. (From
Bewley, T.R., and Liu, S. (1998) J. Fluid Mech. 365, 305–49. Reprinted with permission of Cambridge University Press.)
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FIGURE 15.6 Centralized approach to the control of plane channel flow in Fourier space.

FIGURE 15.7 Decentralized approach to the control of plane channel flow in physical space.

solutions of such systems with Fourier modes. The application of Fourier-space controllers that assume
spatial periodicity in their formulation to physical systems that are not spatially periodic will be cor-
rupted by Gibb’s phenomenon, the well-known effect in which a Fourier transform is spoiled across all
frequencies when the data one is transforming are not themselves spatially periodic. To correct for this
phenomenon in formulations based on Fourier-space computations of the control, windowing functions
such as the Hanning window are appropriate. Windowing functions filter the signals coming into the
compensator such that they are driven to zero near the edges of the physical domain under consideration,
thus artificially imposing spatial periodicity on the non-spatially-periodic measurement vector.

15.4.2 Decentralized Approach

The decentralized approach, applied in physical space, is not as convenient to derive. Riccati equations of
the size of the entire discretized three-dimensional system pictured in Figure 15.1 and governed by
Equation (15.1), represented in physical space appear numerically intractable.

However, if such a problem could be solved, one would expect that the controller feedback kernels relat-
ing the state estimate x̂ inside the domain to the control forcing u at some point on the wall should decay
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quickly as a function of distance from the control point, as the control authority of any blowing/suction hole
drilled into the wall on the surrounding flow decays rapidly with distance in a distributed viscous system.

Similarly, the estimator feedback kernels relating measurement errors (y � ŷ) at some point on the
wall to the estimator forcing terms v on the system model inside the domain should decay quickly as a
function of distance from the measurement point, as the correlation of any two flow-perturbation vari-
ables is known to decay rapidly with distance in a distributed viscous system.

Finally, due to the spatially invariant structure of the problem at hand, the control and estimation kernels
for each sensor and actuator on the wall should be identical, though spatially shifted.

In other words, the physical-space kernels sought to determine the control and estimator feedback are
spatially localized convolution kernels. If their spatial decay rate is rapid enough (e.g., exponential), then
we will be able to truncate them at a finite distance from each actuator and sensor while maintaining a
prescribed degree of accuracy in the feedback computation, resulting in spatially compact convolution
kernels with finite support.

With such spatially compact convolution kernels, decentralized control of the present system becomes
possible, as illustrated in Figure 15.7. In such an approach, several tiles are fabricated, each with sensors,
actuators, and an identical logic circuit. The computations on each tile are limited in spatial extent, with
the individual logic circuit on each tile responsible for the (physical-space) computation of the state esti-
mate only in the volume immediately above that tile. Each tile communicates its local measurements and
state estimates with its immediate neighbors, with the number of tiles over which such information prop-
agates in each direction depending on the tile size and spatial extent of the truncated convolution kernels.
By replication, we can extend such an approach to arbitrarily large arrays of sensors and actuators. Though
additional truncation of the kernels will disrupt the effectiveness of this control strategy near the edges of
the array, such edge effects are limited to the edges in this case (unlike Gibbs’ phenomenon) and should
become insignificant as the array size is increased.

15.5 Localization: Relaxing Nonphysical Assumptions

As discussed previously, though the physical-space representation of the three-dimensional linear system is
intractable in the controls setting, the (completely decoupled) one-dimensional systems at each wavenum-
ber pair {kx, kz} in the Fourier-space representation of this problem are easily managed. Remarkably, these
two representations are completely equivalent. Performing a Fourier transform (which is simply a linear
change of variables) of the entire three-dimensional system (including the state, the controls, the mea-
surements, and the disturbances) block diagonalizes all of the matrices involved in the three-dimensional
physical-space control problem. With such block-diagonal structure, the constituent H� control problems
at each wavenumber pair {kx, kz} may be solved independently and, once solved, reassembled in physical
space with an inverse Fourier transform. If the numerics are handled properly, this approach is equiva-
lent to solving the three-dimensional physical-space control problem directly.

Recent theoretical work on this problem by Bamieh et al. (2000), and related work by D’Andrea and
Dullerud (2000), further support the notion that an array of H� compensators developed at each wavenum-
ber pair, when inverse-transformed back to the physical domain, should in fact result in spatially localized
convolution kernels with exponential decay. This exponential decay, in turn, allows truncation of the ker-
nels to any prescribed degree of accuracy. Thus, if the truncated kernels are allowed to be sufficiently large
in streamwise and spanwise extent, favorable closed-loop system properties, such as robust stability and
reduced system transfer function norms, may be retained. Until very recently, however, it has not been
possible to obtain such kernels for Navier–Stokes systems, due to an assortment of numerical challenges.

In Högberg and Bewley (2000), spatially localized convolution kernels for both the control and esti-
mation of plane channel flow have finally been obtained. The technique used was based on that described
previously, deriving (in our initial efforts) H2 compensation at an array of wavenumber pairs {kx, kz} and
then inverse-transforming the lot, with special attention paid to the details of the control formulation and
the numerical method. In particular, a numerical discretization technique not plagued by spurious eigen-
values was chosen, and the control formulation was slightly modified such that the time derivative of the
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blowing/suction velocities is penalized in the cost function. The resulting localized kernels are illustrated
in Figures 15.8 and 15.9. Such kernels facilitate the decentralized control implementation discussed in
Section 15.4.2 and depicted in Figure 15.7, paving the way for experimental implementation with mas-
sive arrays of tiles integrating sensing, actuating, and the control logic.

The control convolution kernels shown in Figure 15.8 angle away from the wall in the upstream direction.
Coupled with the mean flow profile indicated in Figure 15.1, this accounts for the convective delay which
requires us to anticipate flow perturbations on the interior of the domain with actuation on the wall
somewhere downstream. The estimation convolution kernels shown in Figure 15.9, on the other hand,
extend well downstream of the measurement point. This accounts for the delay between the motions of
the convecting flow structures on the interior of the domain and the eventual influence of these motions
on the local drag profile on the wall; during this time delay, the flow structures responsible for these
motions convect downstream. The upstream bias of the control kernels and the downstream bias of the
estimation kernels, though physically tenable, were not prescribed in the problem formulation. A poste-
riori study of the streamwise, spanwise, and wall-normal extent, the symmetry, and the shape of such
control and estimation kernels provides us with a powerful new tool with which the fundamental physics
of this distributed fluid-mechanical system may be characterized.

The localized convolution kernels illustrated in Figures 15.8 and 15.9 are approximately independent of the
size of the computational box in which they were computed, so long as this box is sufficiently large. Thus,
when implementing these kernels, we may effectively assume that they were derived in an infinite-sized box,
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relaxing the nonphysical assumption of spatial periodicity used in the problem formulation and modeling
the physical situation of spatially evolving flow perturbations in a spatially invariant geometry and mean flow.

The localized convolution kernels illustrated in Figures 15.8 and 15.9 are also approximately inde-
pendent of the computational mesh resolution with which they were computed, when this computational
mesh is sufficiently fine. A computational mesh sufficient to resolve the flow under consideration also
adequately resolves these convolution kernels.

15.5.1 Open Questions

As we have shown, the framework for decentralized H� control of the fully resolved transition problem in
the geometry depicted in Figure 15.1 is now established. Obtaining spatial localization of the convolution
kernels in physical space was the final remaining conceptual and numerical hurdle to be overcome. This
work paves the way for decentralized application of such compensation with massive arrays of identical con-
trol tiles integrating sensing, actuation, and the control logic (Figure 15.7). Though in some sense “com-
plete,” this effort has also exposed several fundamental open questions, which are now briefly discussed.

For a given choice of the matrices {B1, B2, C1, C2} and design parameters {�, α, γ � γ0} selected, decen-
tralized H� compensators may be determined using the procedure previously described, and performance
and robustness benchmarks may be obtained via simulation. As a final step in the control design process,
explore how much the computational effort required by the logic on each tile may be reduced without
significant degradation in the closed-loop system behavior. This can lead to a significant reduction in the
number of floating point operations per second required by the logic circuit on each tile. However, as 
is discussed in Section 15.6, compensator reduction in the decentralized setting remains a significant
unsolved problem; standard reduction strategies developed for finite, closed systems are not applicable
and new research is motivated.

With the decentralized linear control framework established and prototypical numerical examples solved,
we are now in a position to explore the effectiveness of compensators computed via this framework to the
finite-amplitude perturbations that actually lead to transition and to the “large” amplitude perturbations of
fully developed turbulence, in the nonlinear equations of fluid motion. An extensive analytical and numeri-
cal study within this framework is underway. Issues regarding our preliminary efforts in this direction are
briefly reviewed in Section 15.7. As emphasized in the introduction, such a study should be guided by an
interdisciplinary perspective to be maximally successful. Specifically, such a study should fully incorporate the
known or postulated linear mechanisms leading to transition or, in the case of turbulence, the linear mecha-
nisms thought to be at least partially responsible for sustaining the turbulent cascade of energy. In addition,
this effort motivates the development of new analytical tools that might help clarify the types of state distur-
bances and flow perturbations that are particularly important in such phenomena. Armed with such an
understanding, large benefits might be realized in the compensator design because the modeling of the struc-
ture of the state disturbances exciting the system G1 and the weighting on the flow perturbations of interest
in the cost function Q are important design criteria. In fact, we fully expect that the transfer of information
between our physical understanding of fundamental flow phenomena and our knowledge of how to control
such phenomena will be a two-way transfer. Such a strategy promises to provide powerful new tools for
obtaining fundamental physical understanding of classical problems in fluid mechanics while we gain new
insight in how to modify these phenomena by the action of control feedback.

A host of other canonical flow control problems, including the control of spatially developing bound-
ary layers, bluff-body flows, and free shear layers, should also be amenable to linear control application
using the framework outlined here. A few such extensions are discussed briefly in Section 15.8.

15.6 Compensator Reduction: Eliminating 
Unnecessary Complexity

Strategies for the development of reduced-order decentralized compensators of the present form remain
a key unsolved issue. With the H2/H� approach, as described previously, a physical-space state estimate in
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the volume immediately above each tile must be updated online by the logic circuit on each tile as the
flow evolves. However, it is not necessary for the compensator to compute an accurate state estimate as
an intermediate variable; indeed, our only requirement is that, based on whatever filtered information the
dynamic compensator does extract from the noisy system measurements, suitable controls may be deter-
mined to achieve the desired closed-loop system behavior. It should be possible to reduce substantially
the complexity of the dynamic compensator and still achieve this more modest objective.

There are two possible representations in which the complexity of the compensator can be reduced: in
Fourier space (where the compensator is designed) or in physical space (where the decentralized com-
pensation is applied).

15.6.1 Fourier-Space Compensator Reduction

At any particular wavenumber pair {kx, kz}, there is one actuator variable at each wall, one sensor variable
at each wall, and a spatial discretization in y of the state variables across the domain stretching between
these walls. Because of the complete decoupling of the control problem into separate Fourier modes, the
system model used in the estimator at each particular wavenumber pair is not referenced by the com-
pensator at any other wavenumber pair. Thus, the compensators at each wavenumber pair are completely
decoupled and may be reduced independently. At certain wavenumber pairs, it might be important to
retain several degrees of freedom in the dynamic compensator, while at other wavenumber pairs, it might
be possible to retain significantly fewer degrees of freedom without significant degradation in the closed-
loop system behavior. Several existing compensator reduction strategies are well suited to this problem,
and their application in this setting is straightforward. Cortelezzi and Speyer (1998) successfully applied
the balanced truncation technique of open-loop model reduction in this Fourier-space framework to
facilitate the design of a reduced-complexity dynamic compensator.

As mentioned earlier, it is the nonorthogonality of the entire set of system eigenvectors that leads to the
peculiar (and important) possibilities for energy amplification in these systems, so compensator reduction
techniques mindful of the relevant transfer function norms are necessary. In addition, as eloquently
described by Obinata and Anderson (2000), it is most appropriate when designing low-order compen-
sators for high-order plants to reduce the compensator while accounting for how it performs in the closed
loop. An assortment of closed-loop compensator reduction techniques are now available and should be
tested in future work.

In the setting of designing a decentralized compensator, there is an important shortcoming to per-
forming standard compensator reductions in Fourier space. As the compensator reduction problem is
independent at each wavenumber pair, we might be left with a different number of degrees of freedom in
the reduced-order compensator at each wavenumber pair, leaving us with a dynamical system model that
is impossible to inverse transform back into the physical domain. Even if we restrict the compensator
reduction algorithm to reduce to the same number of degrees of freedom at each wavenumber pair (a
restrictive assumption that should be unnecessary), there appears to be no appropriate strategy currently
available to coordinate this reduction process across all wavenumbers in a consistent manner such that
the inverse transform of the reduced dynamic model is spatially localized. Without such coordination, it
seems inevitable that the ordering and representation of the various modes of this dynamic model will
be scrambled during the process of compensator reduction at each wavenumber pair, resulting in an
inverse-transform back in physical space that does not exhibit the spatial localization which is essential to
facilitate decentralized control.

15.6.2 Physical-Space Compensator Reduction

As an alternative to Fourier-space compensator reduction, one might consider instead the reduction of
the physical-space model and its associated localized convolution kernels. This has several advantages
linked to the fact that this is the actual compensation to be computed on each tile. The first advantage is
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that spatial localization will be retained, as compensator reduction is applied after the localized kernels
are obtained. Another important advantage is that this setting allows us to keep more degrees of freedom
in the dynamical system model to represent streamwise and spanwise fluctuations of the state near the
wall than we retain to represent the behavior of the state on the interior of the domain. This effectively
relaxes the restrictive assumption referred to in the previous paragraph. Such an emphasis on resolving
the state near the wall is motivated by inspection of the convolution kernels plotted in Figures 15.8 and
15.9, in which it is clear that the details of the flow near the wall are of increased importance when com-
puting the feedback.

However, the system model simulated on each individual tile is not self-contained, due to the inter-
connections with neighboring tiles indicated in Figure 15.7. Thus, if one reduces the system model above
a single tile, all neighboring tiles that reference this state estimate will be affected. As the system model is
not self-contained, as it was in the Fourier-space case, existing compensator reduction approaches are not
applicable.

An important observation, however, is that the structure of the system model carried by each tile is
identical. Due to the repeated structure of the model represented on the array, it is sufficient to optimize
the system model carried by a single tile. The repeated structure of the distributed physical-space model
should make the compensator reduction problem tractable. This fundamental problem of reducing dis-
tributed, interconnected dynamic compensators in the decentralized closed-loop setting remains, as yet,
unsolved.

15.6.3 Nonspatially Invariant Systems

Finally, it should be stated that the Fourier-space decoupling leveraged at the outset of this problem for-
mulation has been one of the key ingredients that have permitted accurate solution of well-resolved
canonical flow control problems to date. The linear control technique we have used to solve these control
problems involves the solution of matrix Riccati equations, which are accurately soluble for state dimen-
sions only up to O(103). As we move to more applied flow control problems in which such Fourier-space
decoupling is either more restrictive or not available, if we continue to use Riccati-based control approaches,
creative new compensator reduction strategies will be required. We might need to apply “open-loop”
model reduction strategies (in advance of computing the control feedback and closing the loop) to make
manageable the dimension of the Riccati equations to be solved in the compensator formulation. As men-
tioned earlier, it is most appropriate when designing low-order compensators for high-order plants to
reduce the compensator while accounting for how it performs in the closed loop. Unfortunately, extremely
high-order discretizations of nonspatially invariant PDE systems will not likely afford us this luxury, as
such systems do not decouple (via Fourier transforms) into constituent lower-order control problems
amenable to matrix-based compensator design strategies.

15.7 Extrapolation: Linear Control of Nonlinear Systems

Once a decentralized linear compensator of the present form is developed, a verification of its utility for
the transition problem may be obtained by applying it to the laminar flow depicted in Figure 15.1 with
either finite-amplitude (but sufficiently small) initial flow perturbations or finite-amplitude (but suffi-
ciently small) applied external disturbances. The resulting finite-amplitude flow perturbations are gov-
erned by the fully nonlinear Navier–Stokes equation and have been simulated in well resolved direct
numerical simulations (DNS) with the code benchmarked in Bewley et al. (2001). Representative simu-
lations are shown in Figure 15.10, indicating that linear compensators can indeed relaminarize perturbed
flows that would otherwise proceed rapidly towards transition to turbulence. With the framework pre-
sented here, extensive numerical studies promise to significantly extend our fundamental understanding
of the process of transition and how this process may be inhibited by control feedback.

It is also of interest to consider the application of decentralized linear compensation to the fully non-
linear problem of a turbulent flow, such as that shown in Figure 15.11. The first reason to try such an
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FIGURE 15.10 Evolution of oblique waves (left) and an initially random flow perturbation (right) added to a lam-
inar flow at Re � 2000, with and without decentralized linear control feedback. The magnitude of the initial flow per-
turbations in these simulations greatly exceed the thresholds reported by Reddy et al. (1998) that lead to transition to
turbulence in an uncontrolled flow (by a factor of 225 for the oblique waves and by a factor of 15 for the random ini-
tial perturbation). Solid lines indicate the energy evolution in the controlled case, dashed lines indicate the energy
evolution in the uncontrolled case. Both of the uncontrolled systems lead quickly to transition to turbulence, whereas
both of the controlled systems relaminarize. For the controlled cases, initial perturbations with greater energy fail to
relaminarize, whereas initial perturbations with less energy relaminarize earlier. (Högberg, M., Bewley, T.R., and
Henningson, D.S. (2003) “Linear Feedback Control and Estimation of Transition in Plane Channel Flow,” J. Fluid
Mech. 481, pp. 149–75. Reprinted with permission from Elsevier Science.)

FIGURE 15.11 (See color insert following page 10-34.) Visualization of the coherent structures of uncontrolled
near-wall turbulence at Re � 180. Despite the geometric simplicity of this flow (see Figure 15.1), it is phenomeno-
logically rich and is characterized by a large range of length scales and time scales over which energy transport and
scalar mixing occur. The relevant spectra characterizing these complex nonlinear phenomena are continuous over this
large range of scales, thus such flows have largely eluded accurate description via dynamic models of low state dimen-
sion. The nonlinearity, the distributed nature, and the inherent complexity of its dynamics make turbulent flow sys-
tems particularly challenging for successful application of control theory. (Simulation by Bewley, T.R., Moin, P., and
Temam, R. (2001) J. Fluid Mech. Reprinted with permission of Cambridge University Press.)
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(a) � = 10 (b) � = 0.5 (c) � = 0.025

FIGURE 15.12 (See color insert following page 10-34.) Example of the spectacular failure of linear control theory
to stabilize a simple nonlinear chaotic convection system governed by the Lorenz equation. Plotted are the regions of
attraction to the desired stationary point (blue) and to an undesired stationary point (red) in the linearly controlled
nonlinear system, and typical trajectories in each region (black and green, respectively). The cubical domain illustrated
is Ω � (�25, 25)3 in all subfigures. For clarity, different viewpoints are used in each subfigure. (Reprinted with
permission from Bewley, T.R. (1999) Phys. Fluids 11, 1169–86. Copyright 1999, American Institute of Physics.)

approach is simply because we can: linear control theory leads to implementable control algorithms and
grants a lot of flexibility in the compensator design. Nonlinear turbulence control strategies, though
currently under active development (see Sections 15.9 to 15.13), are much more difficult to design and
implement and require substantial further research before they will provide implementable control
strategies as flexible and powerful as those which we currently have at our disposal in the linear setting.

There is some evidence in the fluids literature that applying linear control feedback to turbulence
might be at least partially effective. Though the significance of this result has been debated in the fluid
mechanics community, Farrell and Ioannou (1993) have clearly shown that linearized Navier–Stokes sys-
tems in plane channel flows, when excited with the appropriate stochastic forcing, exhibit behavior rem-
iniscent of the streamwise vortices and streamwise streaks that characterize actual near-wall turbulence.
The present linear control framework (perhaps restricted to a finite horizon) should be able to exploit
whatever information the linearized Navier–Stokes equation actually contains about the mechanisms sus-
taining these turbulence structures. Though the life cycle of the near-wall coherent structures of turbu-
lence appears to involve important nonlinear phenomena [see, e.g., Hamilton et al., 1995], that in itself
does not disqualify the utility of linear control strategies to effectively disrupt critical linear terms of this
nonlinear process. Recent numerical experiments by Kim and Lim (2000) support this idea by conclu-
sively demonstrating the importance of the coupling term C in the linearized system matrix A (see
Equation (15.10)) for maintaining near-wall turbulence in nonlinear simulations.

To understand the possible pitfalls of applying linear feedback to nonlinear systems, a low-order non-
linear convection problem governed by the Lorenz equation was studied by Bewley (1999). As with the
problem of turbulent channel flow, but in a low-order system easily amenable to analysis, control feed-
back was determined with linear control theory by linearizing the governing equation about a desired
fixed point. Once a linear controller was determined by such an approach, it was then applied directly to
the fully nonlinear system. The result is depicted in Figure 15.12.

For control feedback determined by linear control theory with a large weighting �, on the control
effort, direct application of linear feedback to the full nonlinear system stabilizes both the desired state
and an undesired state, indicated by the two trajectories marked in Figure 15.12a. An unstable manifold
exists between these two states, indicated by the contorted surface shown. Any initial state on one side of
this manifold will converge to the desired state, and any initial state on the other side of this manifold will
converge to the undesired state.
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As seen in Figures 15.12b and c, as the weighting on the control effort �, is turned down and the desired
stationary state is stabilized more aggressively, the domain of convergence to the undesired stabilized state
remains large. This undesired state is “aggravated” by the enhanced control feedback, moving farther from
the origin. The undesired state eventually escapes to infinity for sufficiently small �, indicating instability of
the nonlinear system from a wide range of initial conditions even though the desired stationary point is
endowed with a high degree of linear stability. Implication: strong linear stabilization of a desired system
state (such as laminar flow) will not necessarily eliminate undesired nonlinear system behavior (such as
turbulence) in a chaotic system.

Some form of nonlinearity in the feedback rule was required to eliminate this undesired behavior. One
effective technique is to apply a switch such that the linear control feedback is turned on only when the
state x(t) is within some sufficiently small neighborhood of the desired stabilized state x� in the linearly
controlled system. The chaotic dynamics of the uncontrolled Lorenz system will bring the system into this
neighborhood in finite time, after which control may be applied to “catch” the system at the desired equi-
librium state.

Thus, even in this simple model problem, linear feedback can have a destabilizing influence if applied
outside the neighborhood for which it was designed. For the full Navier–Stokes problem, though a certain
set of linear feedback gains might stabilize the laminar state, on the “other side of the manifold” might lie
a turbulent state aggravated by the same linear controls. Application of linear control to nonlinear chaotic
systems must therefore be done with vigilance, lest nonlinearities destabilize the closed-loop system, as
shown here. The easy fix for this low-order model problem (that is, simply turn off the control until the
chaotic dynamics bring the state into a neighborhood of the desired state) might not be available for the
(high-dimensional) problem of turbulence because fully turbulent flows appear to remain at all times far
from the laminar state.

In our preliminary attempts at applying the decentralized compensators previously developed to tur-
bulence, we have succeeded in reducing the drag of a fully developed turbulent flow by 25% with state-
feedback controllers, as shown in Figure 15.13. Interestingly, for the choice of control parameters selected
here, there is no evidence of an aggravated turbulent state. A 25% drag reduction, though significant, is
comparable to the drag reductions obtained with a variety of other ad hoc control approaches in this
flow. We are actively pursuing modification of this linear control feedback to improve upon this result.
Interdisciplinary considerations, such as those involved in the design of linear compensation for the
problem of transition, are essential in this effort. Specifically, the (unmodeled) nonlinear terms in the
Navier–Stokes equation provide insight as to the structure of the disturbances, G1, to be accounted for in
the linear control formulation to best compensate for their unmodeled effects. Additionally, the coherent
structures of fully developed near-wall turbulence, believed to be a major player in the self-sustaining
nonlinear process of turbulence generation near the wall, provide a phenomenological target that may be
exploited in the selection of the weighting on the flow perturbations Q in the cost function.

15.8 Generalization: Extending to Spatially Developing Flows

Extension of the decentralized linear control framework developed here to a large class of slightly nonpar-
allel flows is heuristic but straightforward. To accomplish this, the parabolic mean flow profile U(y) indi-
cated in Figure 15.1 is replaced with an appropriate “quasi-one-dimensional” profile, such as the Blasius
boundary layer profile. As long as the mean flow profile evolves slowly enough in space (as compared to
the wavelengths of the significant instabilities in the problem), it may be assumed to be constant in space
for the purpose of developing the linear control feedback. Such an assumption of slow spatial divergence
forms the foundation of the study of local and global modes used in the characterization of absolute and
convective instabilities [Huerre and Monkewitz, 1990] and has proven to be a powerful concept. For the
appropriate flows, we believe this concept is also appropriate in the context of the development of con-
trol feedback.

Implementation of the decentralized control concept in this setting is a heuristic extension of the approach
presented in Figure 15.7. Gradual variations in the mean flow are accounted for by local extension of the
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mean flow profile in the compensator derivation for each tile, gradually scaling the compensation rules
from one tile to the next as the flow develops downstream. For example, we may consider developing this
strategy for the laminar boundary layer (LBL) solutions of the Falkner–Skan–Cooke family, found by
solving the ordinary differential equation (ODE)

f �� � ff � � β(1 � f�
2
) � 0

with f(0) � f�(0) � 0 and f�(�) → 1 and defining

U � U0 f�(η) and V � ��[η f�(η) � f (η)].

Cases of interest include the Blasius profile, modeling a zero-pressure-gradient, flat-plate LBL with

U0 � U∞, β � 0, η � y��,
U0
�
2vx

vU0
�
2x
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FIGURE 15.13 Evolution of fully developed turbulence at REτ � 100 with and without decentralized linear control
feedback. This flow has approximately the same mass flux as the laminar flow at Re � 2000. (Top) Energy of flow per-
turbation. (Middle) Drag (note approximately 25% reduction in the controlled cases). (Bottom) Control effort used.
The uncontrolled energy and drag are the (upper) solid lines in the top and middle figures. A gain scheduling
approach is used to tune the control feedback gains to the instantaneous mean flow profile. (Högberg, M., Bewley,
T.R., and Henningson, D.S. (2003) “Linear Feedback Control and Estimation of Transition in Plane Channel Flow,”
J. Fluid Mech. 481, pp. 149–75. Reprinted with permission from Elsevier Science.)
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the Falkner–Skan profile, modeling a nonzero-pressure-gradient LBL or wedge flow by taking

U0 � Kxm, β � , η � y��,

and the Falkner–Skan–Cooke profile, which models the addition of sweep to the leading edge by solving
the supplemental ODE

g�� fg� � 0

with g(0) � 0 and g(�) → 1 and defining W � W� g(η). The self-similarity of the LBL profiles might lead
to simplified parameterizations of the convolution kernels for the control and estimation problems.
Extension of this approach to a variety of other spatially developing flows (self-similar or otherwise)
should also be straightforward.

15.9 Nonlinear Optimization: Local Solutions for 
Full Navier–Stokes

Given an idealized setting of full state information, no disturbances, and extensive computational
resources, significant finite-horizon optimization problems may be formulated and (locally) solved for
complex nonlinear systems using iterative, adjoint-based, gradient optimization strategies. Such opti-
mization problems can now be solved for high-dimensional discretizations of turbulent flow systems,
incorporating the full nonlinear Navier–Stokes equation, locally minimizing cost functionals represent-
ing a variety of control problems of physical interest within a given space of feasible control variables.
The mathematical framework for such optimizations will be reviewed briefly in Section 15.9.1 and is
described in greater detail by Bewley et al. (2001).

The optimizations obtained via this approach are only “local” over the domain of feasible controls
(that is, unless restrictive assumptions are made in the formulation of the control problem). Thus, the
performance obtained via this approach usually cannot be guaranteed to be “globally optimal.” However,
the performance obtained with such nonlinear optimizations often far exceeds that possible with other
control design approaches (see, e.g., Figure 15.14). In addition, this approach is quite flexible because it can
iteratively improve high-dimensional control distributions directly, as is illustrated below. Alternatively,
this approach can optimize open-loop forcing schedules, shape functions, or the coefficients of practical,
implementable, and possibly nonlinear feedback control rules. Thus, interest in adjoint-based optimiza-
tion strategies for turbulent flow systems goes far beyond that of establishing performance benchmarks
via predictive optimizations of the control distribution itself. Establishing such benchmarks is only a first
step toward a much wider range of applications for adjoint-based tools in turbulent flow systems.

The general idea of this approach, often referred to as model predictive control, is well motivated by
comparing and contrasting it to massively parallel brute-force algorithms recently developed to play the
game of chess. The goal when playing chess is to capture the other player’s king through an alternating
series of discrete moves with the opponent; at any particular turn, a player has to select one move out of
at most 20 or 30 legal alternatives.

To accomplish its optimization, a computer program designed to play the comparatively “simple” game of
chess, such as Deep Blue [Newborn, 1997], must, in the worst case, plan ahead by iteratively examining a
tree of possible evolutions of the game several moves into the future [Atkinson, 1993], a strategy based
on “function evaluations” alone. At each step, the program selects the move that leads to its best expected
outcome, given that the opponent is doing the same in a truly noncooperative competition. The version
of Deep Blue that defeated Garry Kasparov in 1997 was able to calculate up to 200 billion moves in the
three minutes it was allowed to conduct each turn. Even with this extreme number of function evalua-
tions at its disposal on this relatively simple problem, the algorithm was only about an even match with
Kasparov’s human intuition.

(m � 1)U0
��

2vx

2m
�
1 � m
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An improved algorithm compared to those based on function evaluations alone, suitable for optimiz-
ing the present problem in a reasonable amount of time, is available because we know the equation gov-
erning the evolution of the present system, and we can state the problem of interest as a functional to be
minimized. Taking these two facts together, we may devise an iterative procedure based on gradient infor-
mation, derived from an adjoint field, to optimize the controls for the desired purpose on the prediction
horizon of interest in an efficient manner. Only by exploiting such gradient information can the high-
dimensional optimization problem at hand (up to O(107) control variables per optimization horizon in
some of our simulations) be made tractable.

15.9.1 Adjoint-Based Optimization Approach

15.9.1.1 Governing Equation

The problem we consider here is the control of a fully developed turbulent channel flow with full flowfield
information and copious computational resources available to the control algorithm. The flow is gov-
erned by the incompressible Navier–Stokes equation inside a three-dimensional rectangular domain
(Figure 15.15) with unsteady wall-normal velocity boundary conditions φ applied on the walls as the control.
Three vector fields are first defined: the flow state q, the flow perturbation state q�, and the adjoint state q*:

q(x, t) � � �, q�(x, t) � � �, q*(x, t) � � �.

Each of these vector fields is composed of a pressure component and a velocity component, all of which
are continuous functions of space x and time t. The velocity components themselves are also vectors, with
components in the streamwise direction x1, the wall-normal direction x2, and the spanwise direction x3.
Partial differential equations governing all three of these fields will be derived in due course, and the motiva-
tion for introducing q� and q* will be given as the need for these fields arises in the control derivation. Only
after the optimization approach has been derived completely in differential form is it discretized in space

p*(x, t)
u*(x, t)

p�(x, t)
u�(x, t)

p(x, t)
u(x, t)
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FIGURE 15.14 (See color insert following page 10-34.) Performance of optimized blowing/suction controls for
formulations based on minimizing Jo(φ), case c (see Section 15.9.1.2), as a function of the optimization horizon T�.
The direct numerical simulations of turbulent channel flow reported here were conducted at Reτ � 100. For small
optimization horizons (T� � O(1), sometimes called the “suboptimal approximation”), approximately 20% drag
reduction is obtained, a result that can be obtained with a variety of other approaches. For sufficiently large opti-
mization horizons (T� � 25), the flow is returned to the region of stability of the laminar flow, and the flow relami-
narizes with no further control effort required. No other control algorithm tested in this flow to date has achieved this
result with this type of flow actuation. (From Bewley, T.R., Moin, P., and Temam, R. (2001) J. Fluid Mech., to appear.
Reprinted with permission of Cambridge University Press.)
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and time. An alternative strategy, discretizing the state equation in space before determining the adjoint
operator, is discussed in Section 15.9.2.

The governing equation is written as

N (q) � F in Ω,
u � �φn on Γ�

2, (15.11)
u � u0 at t � 0,

where N (q) is the (nonlinear) Navier–Stokes operator

N (q) �� �
∂
∂

u

xj

j
�

�
∂
∂
u

t
i� � �

∂
∂
u

x
ju

j

i� � v � �∂
∂
x

p

i

��,

F is a forcing vector accounting for an externally applied mean pressure gradient driving the flow in the
streamwise direction, and n is the unit outward normal to the boundary ∂Ω. The boundary conditions
on the state q are periodic in the streamwise and spanwise directions. A wall-normal control velocity 
φ is distributed over the walls as indicated, and is constrained to inject zero net mass such that ∀t,
∫
Γ�

2

φdx � ∫
Γ�

2

φdx � 0. Initial conditions on the velocity u0 of fully developed turbulent channel flow are
prescribed.

15.9.1.2 Cost Functional

As in the linear setting, an essential step in the framing of the nonlinear optimization problem is the rep-
resentation of the control objective as a cost functional to be minimized. Several cases of physical interest
may be represented by a cost functional of the generic form

J0(φ) � �T

0

�
Ω

|C1u|2dx dt � �
Ω

|C2u(x, T)|2dx � �T

0

�
Γ

�
2

C3v 	 r dx dt � �T

0

�
Γ

�
2

|φ|2 dx dt.

Four cases of particular interest are:

a. C1 � d1I and C2 � C3 � 0 ⇒ regulation of turbulent kinetic energy;
b. C1 � d2∇ � and C2 � C3 � 0 ⇒ regulation of the square of the vorticity;
c. C2 � d3I and C1 � C3 � 0 ⇒ terminal control of turbulent kinetic energy;
d. C3 � d4I and C1 � C2 � 0 ⇒ minimization of the time-averaged skin friction in the direction r

integrated over the boundary of the domain, where r is a unit vector in the streamwise direction.

�2

�
2

∂u
�∂n

1
�
2

1
�
2

∂2ui
�∂x 2

j
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FIGURE 15.15 Channel flow geometry. The interior of the domain is denoted Ω and the boundaries of the domain
in the xi direction are denoted �i

�. Unsteady wall-normal velocity boundary conditions are applied on the walls ��
2 as

the control, with periodic boundary conditions applied in the streamwise direction x1 and spanwise direction x3. An
external pressure gradient is applied to induce a mean flow in the x1 direction.
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All four of these cases, and many others, may be considered in the current framework, and the extension
to other cost functionals is straightforward. The dimensional constants di (which are the appropriate
functions of the kinematic viscosity, the channel width and the bulk velocity), as well as �, are included
to make the cost functional dimensionally consistent and to account for the relative weight of each indi-
vidual term.

In both the chess problem and the turbulence problem, the further into the future one can optimize
the problem the better (Figure 15.14). However, both problems get exponentially more difficult to optimize
as the prediction horizon is increased. Because only intermediate-term optimization is tractable, representing
the final objective in the cost functional is not always the best approach. In the chess problem, though the
final aim is to capture the other player’s king, it is most effective to adopt a mid-game strategy of estab-
lishing good board position and achieving material advantage. Similarly, if the turbulence control objec-
tive is reducing drag, Bewley et al. (2001) found that it is most effective along the way to minimize a
finite-horizon cost functional related to the turbulent kinetic energy of the flow because the turbulent
transport of momentum is responsible for inducing a substantial portion of the drag in a turbulent flow.
In a sense, turbulence is the “cause” and high drag is the “effect,” and it is most effective to target the
“cause” in the cost functional when optimizations on only intermediate prediction horizons are possible.

In addition, a smart optimization algorithm allows for excursions in the short term if it leads to a long-
term advantage. For example, in chess, a good player is willing to sacrifice a lesser piece if, by so doing, a
commanding board position is attained or a restoring exchange is forced a few moves later. Similarly, by
allowing a turbulence control scheme to increase (temporarily) the turbulent kinetic energy of a flow, a
transient may ensue which, eventually, effectively diminishes the strength of the near-wall coherent struc-
tures. Bewley et al. (2001) found that terminal control strategies, aimed at minimizing the turbulence
only at the end of each optimization period, have a decided advantage over regulation strategies, which
penalize excursions of, for example, the turbulent kinetic energy over the entire prediction horizon.

15.9.1.3 Gradient of Cost Functional

As suggested by Abergel and Temam (1990), a rigorous procedure may be developed to determine the
sensitivity of a cost functional J to small modifications of the control φ for nonlinear problems of this
sort. To do this, consider the perturbation to the cost functional resulting from a small perturbation to
the control φ in the direction φ�. (This control perturbation direction φ� is arbitrary and scaled to have
unit norm.) Define J� as the Fréchet differential [Vainberg, 1964] of a cost functional J such that

J� �
∆ lim

�→0 �
∆ �T

0

�
Γ�

2

φ� dt dx.

The quantity J� is the cost functional perturbation due to a control perturbation εφ� scaled by the inverse
of the control perturbation magnitude ε in the limit that ε → 0. The above relation, considered for arbi-
trary φ�, also defines the gradient of the cost functional J with respect to the control φ, which is written
DJ(φ)/Dφ.

In the current approach, the cost functional perturbation J� defined previously will be expressed as a
simple linear function of the direction of the control perturbation φ� through the solution of an adjoint
problem. By the above formula, such a representation then reveals the gradient direction DJ(φ)/Dφ directly.
With this gradient information, the control φ is updated on (0, T] in the direction that, at least locally
(i.e., for infinitesimal control updates), most effectively reduces the cost functional. The finite distance the
control is updated in this direction is then found by a line search routine, which makes this iteration pro-
cedure stable even when controlling nonlinear phenomena. The flow resulting from this modified control
is then computed according to the (nonlinear) Navier–Stokes Equation (15.11). The sensitivity of this new
flow to further control modification is computed, and the process is repeated. Upon convergence of this
iteration, the flow is advanced over the interval (0, T1], where T1 � T, and an iteration for the optimal
control over a new time interval (T1, T1 � T] begins anew.

DJ(φ)
�D(φ)

J(φ � εφ�) � J(φ)
���ε
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The cost functional perturbation J� resulting from a control perturbation in the direction φ� is given by

J�0(φ) � �T

0

�
Ω

C*1 C1u 	 u�dx dt � �
Ω

(C*2C2u 	 u�)t�T dx ��T

0

�
Γ

�

2

vC*3r 	 dx dt

� � 2 �T

0

�
Γ

�

2

φφ�dx dt �
∆ �T

0

�
�

�

2

φ�dx dt,

where u� is the Fréchet differential of u, as defined in the following subsection. Adjoint calculus is used
simply to re-express the integrals involving u� as a linear function of φ�. Once this is accomplished, φ� is
factored out of the integrands and, as the equation holds for arbitrary φ�, an expression for the gradient
DJ0(φ)/Dφ is identified.

15.9.1.4 Linearized Perturbation Field

Now consider the linearized perturbation q� to the flow q resulting from a perturbation φ� to the control
φ. Again, the quantity q� may be defined by the limiting process of a Fréchet differential such that

q� �
∆ lim

ε→0
.

For the purpose of gaining physical intuition, the quantity q�, previously described as a differential quantity,
may instead be defined as the small perturbation to the state q arising from a small control perturbation
φ� to the control φ. In such derivations, the notations δφ and δq, denoting small perturbations to φ and q,
are used instead of the differential quantities φ� and q�. The two derivations are roughly equivalent, though
the present derivation does not assume that primed quantities are small.

The equation governing the dependence of the linearized flow perturbation q� on the control pertur-
bation φ� may be found by taking the Fréchet differential of the state Equation (15.11). The result is

N �(q)q� � 0 in Ω,
u� � �φ�n on Γ�

2, (15.12)
u� � 0 at t � 0,

where the linearized Navier–Stokes operation N �(q)q� is given by

N�(q)q� �	 �
∂
∂
u

x

�

j

j
�

�
∂
∂
u

t

�i
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∂
xj
�(uj u�i � u�j ui) � v�
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∂

2

x
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∂
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x
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.

The operation N �(q)q� is a linear operation on the perturbation field q�, though the operator N �(q)q� is
itself a function of the solution q of the Navier–Stokes problem. Equation (15.12) thus reflects the linear
dependence of the perturbation field q� in the interior of the domain on the control perturbation φ� at
the boundary. However, the implicit linear relationship q� � q�(φ�) given by this equation is not yet
tractable for expressing J�0 in a simple form from which DJ0(φ)/Dφ may be deduced. For the purpose of
determining a more useful relationship with which we may determine DJ0(φ)/Dφ, we now appeal to an
adjoint identity.

15.9.1.5 Statement of Adjoint Identity

This subsection derives the adjoint of the linear partial differential operator N �(q)q�. For readers not
familiar with this approach, a review of the derivation of an adjoint operator for a very simple case in the
present notation is given in Appendix A of Bewley et al. (2001). The adjoint derivation presented below

q�(φ � εφ�) � q(φ)
���ε

DJ0(φ)
�D(φ)

∂u�
�∂n

1
�
2

1
�
2
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extends in a straightforward manner to more complex equations, such as the compressible Euler equa-
tion, as shown in Appendix B of Bewley et al. (2001) (again, using the same notation). Such generality
highlights the versatility of the present approach.

Define an inner product over the domain in space-time under consideration such that

〈q*, q�〉 � �T

0

�
Ω

q* 	 q�dx dt

and consider the identity

〈q*, N �(q)q�〉 � 〈N �(q)*q*, q�〉 � b. (15.13)

Integration by parts may be used to move all differential operations from q� on the left-hand side of
Equation (15.13) to q* on the right-hand side, resulting in the derivation of the adjoint operator

N �(q)*q* �� �
∂
∂
u

x

*

j

j
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��
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*i� � uj��
∂
∂
u

x

*

j

i� � �
∂
∂
u

x

*

i

j
�� � v �

∂
∂

2

x

u
2
i

*i� � �
∂
∂
p

x

*

i

�
�,

where, again, the operation N �(q)*q* is a linear operation on the adjoint field q*, and the operator N �(q)*
is itself a function of the solution q of the Navier–Stokes problem. From the integrations by parts, we also
get several boundary terms:

b � �
Ω

(u*j u�i)
t�T

t�0
dx � �T

0

�
Ω

nj	u*i (uju�i � u�j ui) � p*u�j � v�u*i � u�i � � u*j p�
dx dt.

The identity Equation (15.13) is the key to expressing J� in the desired form. An adjoint field q* is first
defined using the operator N �(q)* together with appropriate forcing on an interior equation with appro-
priate boundary conditions and initial conditions. There is some flexibility which we exploit to obtain a
simple expression of J�. Combining this definition of q* with the definitions of q in Equation (15.11)
and q� in Equation (15.12), the identity Equation (15.13) reveals the desired expression, as is now shown.

15.9.1.6 Definition of Adjoint Field

Consider an adjoint state defined (as yet, arbitrarily) by

N �(q)*q* � � 0

C *1 C1u� in Ω,

u* � C*3 r on Γ�
2, (15.14)

u*� C*2 C2u at t � T,

where the adjoint operation N �(q)* is derived in the previous subsection. Note by Equation (15.14) that,
depending on where the cost functional weighs the flow perturbations (see Section 15.9.1.2), the adjoint
problem may be driven by the initial conditions, by the boundary conditions, or by the RHS of the adjoint
PDE itself. Note also that the adjoint “initial” conditions are defined at t � T and are thus best referred
to as “terminal” conditions. With this definition, the adjoint field must be marched backward in time over
the optimization horizon. Because of the sign of the time derivative and viscous terms in the adjoint oper-
ator N �(q)*, this is the natural direction for this time march. However, as both the adjoint operator
N �(q)* and the RHS forcing on Equation (15.14) are functions of q, computation of the adjoint field q*
requires storage of the flow field q on t � [0, T], which itself must be computed with a forward march.
This storage issue presents one of the numerical complications that preclude solution of the present opti-
mization problem for large optimization intervals T. However, this storage issue is not insurmountable

∂u*i
�∂xj

∂u�i
�∂xj
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for intermediate values of T � � O(100). The adjoint problem Equation (15.14), though linear, has com-
plexity similar to that of the Navier–Stokes problem, Equation (15.11), and may be solved with similar
numerical methods.

15.9.1.7 Identification of Gradient

The identity Equation (15.13) is now simplified using the equations defining the state field Equation
(15.11), the perturbation field Equation (15.12), and the adjoint field Equation (15.14). Due to the judicious
choice of the forcing terms driving the adjoint problem, the identity Equation (15.13) reduces (after some
manipulation) to

�T

0

�
Ω

C*1 C1u 	 u�dx dt � �
Ω

(C*2C2u 	 u�)t�T dx � �T

0

�
Γ

�
2

vC*3r 	 dx dt � �T

0

�
Γ

�
2

P*φ�dx dt.

Using this equation, the cost functional perturbation J�0 may be rewritten as

J�0(φ; φ�) � �T

0

�
Γ

�
2

(p* � � 2φ)φ� dx dt �
∆ �T

0

�
Γ

�
2

φ�dx dt.

Because φ� is arbitrary, we may identify (weakly) the desired gradient as

� p* � � 2φ.

The desired gradient DJ0(φ)/Dφ is a simple function of the solution of the adjoint problem proposed in
Equation (15.14). Specifically, in the present case of boundary forcing by wall-normal blowing and suc-
tion, the gradient is a simple function of the adjoint pressure on the walls.

In fact, this simple result hints at the more fundamental physical interpretation of what the adjoint
field actually represents: The adjoint field q*, when properly defined, is a measure of the sensitivity of the
terms of the cost functional that appraise the state q to additional forcing of the state equation.

There are exactly as many components of the adjoint field q* as there are components of the state PDE
on the interior of the domain. Also note that the adjoint field may take nontrivial values at the initial time
t � 0 and on the boundaries Γ�

2. Depending upon where the control is applied to the state Equation
(15.11), (i.e., on the RHS of the mass or momentum equations on the interior of the domain, on the
boundary conditions, or on the initial conditions), the adjoint field will appear in the resulting expres-
sion for the gradient accordingly.

To summarize, the forcing on the adjoint problem is a function of where the flow perturbations are
weighed in the cost functional. The dependence of the gradient DJ(φ)/Dφ on the resulting adjoint field,
however, is a function of where the control enters the state equation.

15.9.1.8 Gradient Update to Control

A control optimization strategy using a steepest descent algorithm may now be proposed such that

φ k � φ k�1 � α k

over the entire time interval t � (0, T], where k indicates the iteration number and α k is a parameter of
descent that governs how large an update is made, which is adjusted at each iteration step to be the value
that minimizes J. This algorithm updates φ at each iteration in the direction of maximum decrease of J.
As k → �, the algorithm should converge to some local minimum of J over the domain of the control φ
on the time interval t � (0, T]. Convergence to a global minimum will not in general be attained by such
a scheme and that, as time proceeds, J will not necessarily decrease.

DJ0(φ k�1)
��

Dφ

DJ0(φ)
�D(φ)

DJ0(φ)
�D(φ)

∂u�
�∂n
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The steepest descent algorithm previously described illustrates the essence of the approach, but is usu-
ally not very efficient. Even in linear low-dimensional problems, for cases in which the cost functional has
a long, narrow “valley,” the lack of a momentum term from one iteration to the next tends to cause the
steepest descent algorithm to bounce from one side of the valley to the other without turning to proceed
along the valley floor. Standard nonlinear conjugate gradient algorithms [e.g., Press et al., 1986] improve
this behavior considerably with relatively little added computational cost or algorithmic complexity, as
discussed further in Bewley et al. (2001).

As mentioned previously, the dimension of the control in the present problem (once discretized) is quite
large, which precludes the use of second-order techniques based on the computation or approximation of
the Hessian matrix ∂2J /∂φi∂φj or its inverse during the control optimization. The number of elements in
such a matrix scales with the square of the number of control variables and is unmanageable in the present
case. However, reduced-storage variants of variable metric methods [Vanderplaats, 1984], such as the
Davidon–Fletcher–Powell (DFP) method, the Broydon–Fletcher–Goldfarb–Shanno (BFGS) method, and the
sequential quadratic programming (SQP) method, approximate the inverse Hessian information by outer
products of stored gradient vectors and thus achieve nearly second-order convergence without storage of the
Hessian matrix itself. Such techniques should be explored further for very large-scale optimization problems.

15.9.2 Continuous Adjoint vs. Discrete Adjoint

Direct numerical simulations (DNS) of the current three-dimensional nonlinear system necessitate care-
fully chosen numerical techniques involving a stretched, staggered grid, an energy-conserving spatial dis-
cretization, and a mixture of implicit and multistep explicit schemes for accurate time advancement, with
incompressibility enforced by an involved fractional step algorithm. The optimization approach previ-
ously described, which will be referred to as “optimize then discretize” (OTD), avoids all of these cum-
bersome numerical details by deriving the gradient of the cost functional in the continuous setting,
discretizing in time and space as the final step before implementation in numerical code. The remarkable
similarity of the flow and adjoint systems allows both to be coded with similar numerical techniques. For
systems which are well resolved in the numerical discretization, this approach is entirely justifiable and
yields adjoint systems which are easy to derive and implement in numerical code.

Unfortunately, many PDE systems, such as high-Reynolds-number turbulent flows, are difficult or impos-
sible to simulate with sufficient resolution to capture accurately all of the important dynamic phenomena of
the continuous system. Such systems are often simulated on coarse grids, usually with some “subgrid-scale
model” to account for the unresolved dynamics. This setting is referred to as large eddy simulation (LES),
and a variety of techniques are currently under development to model the significant subgrid-scale effects.

There are important unresolved issues concerning how to approach large eddy simulations in the opti-
mization framework. If we continue with the OTD approach, in which the optimization equations are
determined before the numerical discretization is applied, it is not yet clear at what point the LES model
should be introduced. Professor Scott Collis’ group (Rice University) has modified the numerical code of
Bewley et al. (2001) to study this issue; Chang and Collis (1999) report on their preliminary findings.

An alternative approach to the OTD setting, in which one spatially discretizes the governing equation
before determining the optimization equations, may also be considered. After spatially discretizing the
governing equation, this approach, which will be referred to as “discretize then optimize” (DTO), follows
an analogous sequence of steps as the OTD approach presented previously, with these steps now applied
in the discrete setting. Derivation of the adjoint operator is significantly more cumbersome in this dis-
crete setting. In general, the processes of optimization and discretization do not commute, and thus the
OTD and DTO approaches are not necessarily equivalent even upon refinement of the space/time grid
[Vogel and Wade, 1995]. However, by carefully framing the discrete identity defining the DTO adjoint
operator as a discrete approximation of the identity given in Equation (15.13), these two approaches can
be posed in an equivalent fashion for Navier–Stokes systems.

It remains the topic of some debate whether or not the DTO approach is better than the OTD approach
for marginally resolved PDE systems. The argument for DTO is that it clearly is the most direct way to
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optimize the discrete problem actually being solved by the computer. The argument against DTO is that
one really wants to optimize the continuous problem, so gradient information that identifies and exploits
deficiencies in the numerical discretization that can lead to performance improvements in the discrete
problem might be misleading when interpreting the numerical results in terms of the physical system.

15.10 Robustification: Appealing to Murphy’s Law

Though optimal control approaches possess an attractive mathematical elegance and are now proven to pro-
vide excellent results in terms of drag and turbulent kinetic energy reduction in fully developed turbulent
flows, they are often impractical. One of the most significant drawbacks of this nonlinear optimization
approach is that it tends to “over-optimize” the system, leaving a high degree of design-point sensitivity. This
phenomenon has been encountered frequently in, for example, the adjoint-based optimization of the shape
of aircraft wings. Overly optimized wing shapes might work quite well at exactly the flow conditions for
which they were designed, but their performance is often abysmal at off-design conditions. To abate such
system sensitivity, the noncooperative framework of robust control provides a natural means to “detune” the
optimized results. This concept can be applied easily to a broad range of related applications. The noncoop-
erative approach to robust control, one might say, amounts to Murphy’s law taken seriously: If a worst-case dis-
turbance can disrupt a controlled closed-loop system, it will.

When designing a robust controller, therefore, one might plan on a finite component of the worst-case
disturbance aggravating the system, and design a controller suited to handle this extreme situation. A con-
troller designed to work in the presence of a finite component of the worst-case disturbance will also be
robust to a wide class of other possible disturbances which, by definition, are not as detrimental to the con-
trol objective as the worst-case disturbance. This concept leads to the H� control formulation discussed
previously in the linear setting, and can easily be extended to the optimization of nonlinear systems.

Based on the ideas of H � control theory presented in Section 15.3, the extension of the nonlinear opti-
mization approach presented in Section 15.9 to the noncooperative setting is straightforward. A distur-
bance is first introduced to the governing Equation (15.11). As an example, consider disturbances that
perturb the state PDE itself such that

N (q) � F � B1(ψ) in Ω.

(Accounting for disturbances to the boundary conditions and initial conditions of the governing equa-
tion is also straightforward.) The cost functional is then extended to penalize these disturbances in the
noncooperative framework, as was also done in the linear setting

Jr(ψ, φ) � J0 � �T

0

�
Ω

|ψ|
2

dx dt.

This cost functional is simultaneously minimized with respect to the controls φ and maximized with respect
to the disturbances ψ (Figure 15.16). The parameter γ is used to scale the magnitude of the disturbances
accounted for in this noncooperative competition, with the limit of large γ recovering the optimal
approach discussed in Section 15.9 (i.e., ψ → 0). A gradient-based algorithm may then be devised to
march to the saddle point, such as the simple algorithm given by:

φ k � φ k�1 � α k ,

ψ k � ψ k�1 � β k .
DJr(ψ k�1;φ k�1)
��

Dψ

DJr(ψ k�1; φ k�1)
��

Dφ

γ 2

�
2
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The robust control problem is considered to be solved when a saddle point (ψ–, φ–) is reached; such a solu-
tion, if it exists, is not necessarily unique.

The gradients DJr(ψ; φ)/Dφ and DJr(ψ; φ)/Dψ may be found in a manner analogous to that leading
to DJ0(φ)/Dφ discussed in Section 15.9. In fact, both gradients may be extracted from the single adjoint
field defined by Equation (15.14). Thus, the additional computational complexity introduced by the non-
cooperative component of the robust control problem is simply a matter of updating and storing the
appropriate disturbance variables.

15.10.1 Well-Posedness 

Based on the extensive mathematical literature on the Navier–Stokes equation, Abergel and Temam (1990)
established the well-posedness of the mathematical framework for the optimization problem presented
in Section 15.9. This characterization was generalized and extended to the noncooperative framework of
Section 15.10 in Bewley et al. (2000).

Because the inequalities currently available for estimating the magnitude of the various terms of the
Navier–Stokes equation are limited, the mathematical characterizations in both of these articles are quite
conservative. In our numerical simulations, we regularly apply numerical optimization techniques to con-
trol problems that are well outside the range over which we can mathematically establish well-posedness.
However, such mathematical characterizations are still quite important because they give us confidence
that, for example, if �, and γ are at least taken to be large enough, a saddle point of the noncooperative
optimization problem will exist. Once such mathematical characterizations are derived, numerically
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FIGURE 15.16 Schematic of a saddle point representing the neighborhood of a solution to a robust control prob-
lem with one scalar disturbance variable ψ and one scalar control variable φ. When the robust control problem is
solved, the cost function Jr is simultaneously maximized with respect to ψ and minimized with respect to φ, and a sad-
dle point such as (ψ–, φ–) is reached. An essentially infinite- dimensional extension of this concept might be formulated
to achieve robustness to disturbances and insensitivity to design point in fluid-mechanical systems. In such approaches,
the cost Jr is related to a distributed disturbance ψ and a distributed control φ through the solution of the
Navier–Stokes equation.
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determining the values of �, and γ for which solutions of the control problem may still be obtained is
reduced to a simple matter of implementation.

15.10.2 Convergence of Numerical Algorithms

Saddle points are typically more difficult to find than minimum points, and particular care needs to be
taken to craft efficient but stable numerical algorithms for finding them. In the approach described pre-
viously, sufficiently small values of α k and β k must be selected to ensure convergence. Fortunately, the
same mathematical inequalities used to characterize well-posedness of the control problem can also be
used to characterize convergence of proposed numerical algorithms. Such characterizations lend valuable
insight when designing practical numerical algorithms. Preliminary work in the development of such
saddle point algorithms is reported by Tachim Medjo (2000).

15.11 Unification: Synthesizing a General Framework

The various cost functionals considered previously led to three possible sources of forcing for the adjoint
problem: the right-hand side of the PDE, the boundary conditions, and the initial conditions. Similarly,
three different locations of forcing may be identified for the flow problem. As illustrated in Figures 15.17
and 15.18 and discussed further in Bewley et al. (2000), the various regions of forcing of the flow and
adjoint problems together form a general framework that can be applied to a wide variety of problems in
fluid mechanics including both flow control (e.g., drag reduction, mixing enhancement, and noise control)
and flow forecasting (e.g., weather prediction and storm forecasting). Related techniques, but applied to
the time-averaged Navier–Stokes equation, have also been used extensively to optimize the shapes of air-
foils [see, e.g., Reuther et al., 1996].

By identifying a range of problems that all fit into the same general framework, we can better under-
stand how to extend, for example, the idea of noncooperative optimizations to a full suite of related prob-
lems in fluid mechanics. Though advanced research projects must often be highly focused and specialized
to obtain solid results, the importance of making connections of such research to a large scope of related
problems must be recognized to realize fully the potential impact of the techniques developed.

15.12 Decomposition: Simulation-Based System Modeling

For the purpose of developing model-based feedback control strategies for turbulent flows, reduced-
order nonlinear models of turbulence that are effective in the closed-loop setting are highly desired. Recent
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FIGURE 15.17 Schematic of the space–time domain over which the flow field q is defined. The possible regions of
forcing in the system defining q are: (1) the right-hand side of the PDE, indicated with shading, representing flow con-
trol by interior volume forcing (e.g., externally applied electromagnetic forcing by wall-mounted magnets and elec-
trodes); (2) the boundary conditions, indicated with diagonal stripes, representing flow control by boundary forcing
(e.g., wall transpiration); and (3) the initial conditions, indicated with checkerboard, representing optimization of the
initial state in a data assimilation framework (e.g., the weather forecasting problem).
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work in this direction, using proper orthogonal decompositions (POD) to obtain these reduced-order 
representations, is reviewed by Lumley and Blossey (1998).

The POD technique uses analysis of a simulation database to develop an efficient reduced-order basis for
the system dynamics represented within the database [Holmes et al., 1996]. One of the primary challenges
of this approach is that the dynamics of the system in closed loop (after the control is turned on) is often
quite different than the dynamics of the open-loop (uncontrolled) system. Thus, development of simulation-
based reduced-order models for turbulent flows should probably be coordinated with the design of the
control algorithm itself to determine system models that are maximally effective in the closed-loop setting.
Such coordination of simulation-based modeling and control design is largely an unsolved problem. A
particularly sticky issue is that, as the controls are turned on, the dynamics of the turbulent flow system
are nonstationary (they evolve in time). The system eventually relaminarizes if the control is sufficiently
effective. In such nonstationary problems, it is not clear which dynamics the POD should represent (of the
flow shortly after the control is turned on, of the nearly relaminarized flow, or of something in between), or
if in fact several PODs should be created and used in a scheduled approach in an attempt to capture several
different stages of the nonstationary relaminarization process.

Reduced-order models that are effective in the closed-loop setting need not capture the majority of the
energetics of the unsteady flow. Rather, the essential feature of a system model for the purpose of control
design is that the model capture the important effects of the control on the system dynamics. Future control-
oriented modeling efforts might benefit by deviating from the standard POD mindset of simply attempting
to capture the energetics of the system dynamics, instead focusing on capturing the significant effects of the
control on the system in a reduced-order fashion.

15.13 Global Stabilization: Conservatively Enhancing Stability

Global stabilization approaches based on Lyapunov analysis of the system energetics have been explored
recently for two-dimensional channel-flow systems (in the continuous setting) by Balogh et al. (2001). In
the setting considered there, localized tangential wall motions are coordinated with local measurements
of skin friction via simple proportional feedback strategies. Analysis of the flow at Re � 0.125 motivates
such feedback rules, indicating appropriate values of proportional feedback coefficients that enhance the
L2 stability of the flow. Though such an approach is very conservative, rigorously guaranteeing enhanced
stability of the channel-flow system only at extremely low Reynolds numbers, extrapolation of the feed-
back strategies so determined to much higher Reynolds numbers also indicates effective enhancements of
system stability, even for three-dimensional systems up to Re � 2000 (A. Balogh, pers. comm.).

An alternative approach for achieving global stabilization of a nonlinear PDE is the application of
nonlinear backstepping to the discretized system equation. Boškovic and Krstic (2001) report on recent
efforts in this direction (applied to a thermal convection loop). Backstepping is typically an aggressive
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FIGURE 15.18 Schematic of the space–time domain over which the adjoint field q* is defined. The possible regions
of forcing in the system defining q*, corresponding exactly to the possible domains in which the cost functional can
depend on q, are: (1) the right-hand side of the PDE, indicated with shading, representing regulation of an interior
quantity (e.g., turbulent kinetic energy); (2) the boundary conditions, indicated with diagonal stripes, representing reg-
ulation of a boundary quantity (e.g., wall skin friction); and (3) the terminal conditions, indicated with checkerboard,
representing terminal control of an interior quantity (e.g., turbulent kinetic energy).
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approach to stabilization. One of the primary difficulties with this approach is that proofs of convergence
to a continuous, bounded function upon refinement of the grid are difficult to attain due to increasing
controller complexity as the grid is refined. Significant advancements are necessary before this approach
will be practical for turbulent flow systems.

15.14 Adaptation: Accounting for a Changing Environment

Adaptive control algorithms, such as least mean squares (LMS), neural networks (NN), genetic algorithms
(GA), simulated annealing, extremum seeking, and the like, play an important role in the control of fluid-
mechanical systems when the number of undetermined parameters in the control problem is fairly small
(O(10)) and individual “function evaluations” (i.e., quantitative characterizations of the effectiveness of the
control) can be performed relatively quickly. Many control problems in fluid mechanics are of this type,
and are readily approachable by a wide variety of well-established adaptive control strategies. A significant
advantage of such approaches over those discussed previously is that they do not require extensive analysis
or coding of localized convolution kernels, adjoint fields, etc., but may instead be applied directly “out of the
box” to optimize the parameters of interest in a given fluid-mechanical problem. This also poses a bit of a
disadvantage, however, because the analysis required during the development of model-based control strate-
gies can sometimes yield significant physical insight that black-box optimizations fail to provide.

To apply the adaptive approach, one needs an inexpensive simulation code or an experimental apparatus
in which the control parameters of interest can be altered by an automated algorithm. Any of a number of
established methodological strategies can then be used to search the parameter space for favorable closed-
loop system behavior. Given enough function evaluations and a small enough number of control parameters,
such strategies usually converge to effective control solutions. Koumoutsakos et al. (1998) demonstrate
this approach (computationally) to determine effective control parameters for exciting instabilities in a
round jet. Rathnasingham and Breuer (1998) demonstrate this approach (experimentally) for the feed-
forward reduction of turbulence intensities in a boundary layer.

Unfortunately, due to an effect known as “the curse of dimensionality,” as the number of control parame-
ters to be optimized is increased, the ability of adaptive strategies to converge to effective control solutions
based on function evaluations alone is diminished. For example, in a system with 1000 control parameters, it
takes 1000 function evaluations to determine the gradient information available in a single adjoint com-
putation. Thus, for problems in which the number of control variables to be optimized is large, the con-
vergence of adaptive strategies based on function evaluations alone is generally quite poor. In such
high-dimensional problems, for cases in which the control problem of interest is plagued by multiple
minima, a blend of an efficient adjoint-based gradient optimization approach with GA-type management
of parameter “mutations” or the simulated annealing approach of varying levels of “noise” added to the
optimization process might prove to be beneficial.

Adaptive strategies are also quite valuable for recognizing and responding to changing conditions in
the flow system. In the low-dimensional setting, they can be used online to update controller gains directly
as the system evolves in time (for instance, as the mean speed or direction of the flow changes or as the
sensitivity of a sensor degrades). In the high-dimensional setting, adaptive strategies can be used to identify
certain critical aspects of the flow (such as the flow speed), and based on this identification, an appropriate
control strategy may be selected from a look-up table of previously computed controller gains.

The selection of what level of adaptation is appropriate for a particular flow control problem of interest
is a consideration that must be guided by physical insight of the particular problem at hand.

15.15 Performance Limitation: Identifying Ideal
Control Targets

Another important, but as yet largely unrealized, role for mathematical analysis in the field of flow con-
trol is in the identification of fundamental limitations on the performance that can be achieved in certain
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flow control problems. For example, motivated by the active debate surrounding the proposed physical
mechanism for channel-flow drag reduction illustrated in Figure 15.19, we formally state the following,
as yet unproven, conjecture:

Conjecture: The lowest sustainable drag of an incompressible constant mass-flux channel flow, in
either two or three dimensions, when controlled via a distribution of zero-net mass-flux blowing/suction
over the channel walls, is exactly that of the laminar flow.

By “sustainable drag” we mean the long-time average of the instantaneous drag, given by:

D� � lim
(T→�) �T

0

�
�

�
2

v dx dt

Proof (by mathematical analysis) or disproof (by counterexample) of this conjecture would be quite sig-
nificant and lead to greatly improved physical understanding of the channel flow problem. If proven to
be correct, it would provide rigorous motivation for targeting flow relaminarization when the problem
one actually seeks to solve is minimization of drag. If shown to be incorrect, our target trajectories for
future flow control strategies might be substantially altered.

Similar fundamental performance limitations may also be sought for exterior flow problems, such as
the minimum drag of a circular cylinder subject to a class of zero-net control actions, such as rotation or
transverse oscillation (B. Protas, pers. comm.).

15.16 Implementation: Evaluating Engineering Trade-Offs

We are still some years away from applying the distributed control techniques discussed herein to micro-
electromechanical systems (MEMS) arrays of sensors and actuators, such as that depicted in Figure 15.20.
One of the primary hurdles to bringing us closer to actual implementation is that of accounting for prac-
tical designs of sensors and actuators in the control formulations, rather than the idealized distributions
of blowing/suction and skin-friction measurements that we have assumed here. Detailed simulations,
such as that shown in Figure 15.21, of proposed actuator designs are essential for developing reduced-
order models of the effects of the actuators on the system of interest to make control design for realistic
arrays of sensors and actuators tractable.

By performing analysis and control design in a high-dimensional, unconstrained setting, as discussed
in this chapter, it is believed that we can obtain substantial insight into the physical characteristics of

∂u1
�∂n

�1
�

T
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Bulk flow

FIGURE 15.19 An enticing picture: fundamental restructuring of the near-wall unsteadiness to insulate the wall
from the viscous effects of the bulk flow. It has been argued [Nosenchuck, 1994; Koumoutsakos, 1999] that it might
be possible to maintain a series of so-called “fluid rollers” to effectively reduce the drag of a near-wall flow. Such rollers
are depicted in the figure above by indicating total velocity vectors in a reference frame convecting with the vortices
themselves; in this frame, the generic picture of fluid rollers is similar to a series of stationary Kelvin–Stuart cat’s eye
vortices. A possible mechanism for drag reduction might be akin to a series of solid cylinders serving as an effective
conveyor belt, with the bulk flow moving to the right above the vortices and the wall moving to the left below the vor-
tices. It is still the topic of some debate whether or not a continuous flow can be maintained in such a configuration
by an unsteady control in such a way as to sustain the mean skin friction below laminar levels. Such a control might
be implemented either by interior electromagnetic forcing (applied with wall-mounted magnets and electrodes) or by
boundary controls such as zero-net mass-flux blowing/suction.
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highly effective control strategies. Such insight naturally guides the engineering trade-offs that follow to
make the design of the turbulence control system practical. Particular traits of the present control solu-
tions in which we are especially interested include the times scales and the streamwise and spanwise
length scales that are dominant in the optimized control computations (which shed insight on suitable
actuator bandwidth, dimensions, and spacing) and the extent and structure of the convolution kernels
(which indicate the distance and direction over which sensor measurements and state estimates should
propagate when designing the communication architecture of the tiled array).

It is recognized that the control algorithm finally to be implemented must be kept fairly simple for its
realization in the on-board electronics to be feasible. We believe that an appropriate strategy for determining
implementable feedback algorithms that are both effective and simple is to learn how to solve the high-
dimensional, fully resolved control problem first, as discussed herein. This results in high-dimensional
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Microflap actuator

Shear-stress sensor

Sensor electronics

FIGURE 15.20 (See color insert following page 10-34.) A MEMS tile integrating sensors, actuators and control logic
for distributed flow control applications. (Developed by Professors Chih-Ming Ho, UCLA, and Yu-Chong Tai, Caltech.)

FIGURE 15.21 Simulation of a proposed driven-cavity actuator design (Professor Rajat Mittal, University 
of Florida). The fluid-filled cavity is driven by vertical motions of the membrane along its lower wall. Numerical 
simulation and reduced-order modeling of the influence of such flow-control actuators on the system of interest will
be essential for the development of feedback control algorithms to coordinate arrays of realistic sensor/actuator 
configurations.
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compensator designs that are highly effective in the closed-loop setting. Compensator reduction strate-
gies combined with engineering judgment may then be used to distill the essential features of such well-
resolved control solutions to implementable feedback designs with minimal degradation of the
closed-loop system behavior.

15.17 Discussion: A Common Language for Dialog

It is imperative that an accessible language be developed that provides a common ground upon which 
people from the fields of fluid mechanics, mathematics, and controls can meet, communicate, and develop
new theories and techniques for flow control. Pierre-Simon de Laplace (quoted by Rose, 1998) once said

Such is the advantage of a well-constructed language that its simplified notation often becomes
the source of profound theories.

Similarly, it was recognized by Gottfried Wilhelm Leibniz (quoted by Simmons, 1992) that

In symbols one observes an advantage in discovery which is greatest when they express the
exact nature of a thing briefly … then indeed the labor of thought is wonderfully diminished.

Profound new theories are still possible in this young field. We have not yet homed in on a common lan-
guage in which such profound theories can be framed. Such a language needs to be actively pursued. Time
spent on identifying, implementing, and explaining a clear “compromise” language that is approachable
by those from the related “traditional” disciplines is time well spent.

In particular, care should be taken to respect the meaning of certain “loaded” words which imply spe-
cific techniques, qualities, or phenomena in some disciplines but only general notions in others. When
both writing and reading papers on flow control, one must be especially alert, as these words are some-
times used outside of their more narrow, specialized definitions, creating undue confusion. With time, a
common language will develop. In the meantime, avoiding the use of such words outside of their spe-
cialized definitions, precisely defining such words when they are used, and identifying and using the exist-
ing names for specialized techniques already well established in some disciplines when introducing such
techniques into other disciplines, will go a long way toward keeping us focused and in sync as an extended
research community.

There are, of course, some significant obstacles to the implementation of a common language. For
example, fluid mechanicians have historically used u to denote flow velocities and x to denote spatial
coordinates, whereas the controls community overwhelmingly adopts x as the state vector and u as the
control. The simplified two-dimensional system that fluid mechanicians often study examines the flow in
a vertical plane, whereas the simplified two-dimensional system that meteorologists often study examines
the flow in a horizontal plane. Thus, when studying three-dimensional problems such as turbulence,
those with a background in fluid mechanics usually introduce their third coordinate z in a horizontal
direction, whereas those with a background in meteorology normally have “their zed in the clouds.”
Writing papers in a manner conscious to such different backgrounds and notations, elucidating, moti-
vating, and distilling the suitable control strategies, the relevant flow physics, the useful mathematical
inequalities, and the appropriate numerical methods to a general audience of specialists from other fields
is certainly extra work. However, such efforts are necessary to make flow control research accessible to the
broad audience of scientists, mathematicians, and engineers whose talents will be instrumental in
advancing this field in the years to come.

15.18 The Future: A Renaissance

The field of flow control is now poised for explosive growth and exciting new discoveries. The relative
maturity of the constituent traditional scientific disciplines contributing to this field provides us with key
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FIGURE 15.22 (See color insert following page 10-34.) Future interdisciplinary problems in flow control amenable
to adjoint-based analysis: (a) minimization of sound radiating from a turbulent jet (simulation by Prof. Jon Freund,
UCLA), (b) maximization of mixing in interacting cross-flow jets (simulation by Dr. Peter Blossey, UCSD) [Schematic
of jet engine combustor is shown at left. Simulation of interacting cross-flow dilution jets, designed to keep the tur-
bine inlet vanes cool, are visualized at right.], (c) optimization of surface compliance properties to minimize turbu-
lent skin friction, and (d) accurate forecasting of inclement weather systems.

elements that future efforts in this field may leverage. The work described herein represents only our first,
preliminary steps towards laying an integrated, interdisciplinary footing upon which future efforts in this
field may be based. Many technologically significant and fundamentally important problems lie before us,
awaiting analysis and new understanding in this setting. With each of these new applications come significant
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new questions about how best to integrate the constituent disciplines. The answers to these difficult ques-
tions will only come about through a broad knowledge of what these disciplines have to offer and how
they can best be used in concert. A few problems that might be studied in the near future in the present
interdisciplinary framework are highlighted in Figure 15.22.

Unfortunately, there are particular difficulties in pursuing truly interdisciplinary investigations of fun-
damental problems in flow control in our current society because it is impossible to conduct such inves-
tigations from the perspective of any particular traditional discipline alone. Though the language of
interdisciplinary research is in vogue, many university departments, funding agencies, technical journals,
and college professors fall back on the pervasive tendency of the twentieth-century scientist to categorize
and isolate difficult scientific questions, often to the exclusion of addressing the fundamentally interdis-
ciplinary issues. The proliferation and advancement of science in the twentieth century was, in fact,
largely due to such an approach; by isolating specific and difficult problems with single-minded focus
into narrowly defined scientific disciplines, great advances could once be achieved. To a large extent, how-
ever, the opportunities once possible with such a narrow focus have stagnated in many fields, though we
are left with the scientific infrastructure in which that approach once flourished. To advance, we must
courageously lead our research groups outside of the various neatly defined scientific domains into which
this infrastructure injects us, and pursue the significant new opportunities appearing at their intersection.
University departments and technical journals can and will follow suit as increasingly successful interdis-
ciplinary efforts, such as those in the field of flow control, gain momentum. The endorsement that pro-
fessional societies, technical journals, and funding agencies might bring to such interdisciplinary efforts
holds the potential to significantly accelerate this reformation of the scientific infrastructure.

To promote interdisciplinary work in the scientific community at large, describing oneself as working
at the intersection of disciplines X and Y (or, where they are still disjoint, the bridge between such disci-
plines) needs to become more commonplace. People often resort to the philosophy “I do X … oh, and I
also sometimes dabble a bit with Y,” but the philosophy “I do X * Y,” where * denotes something of the
nature of an integral convolution, has not been in favor since the Renaissance. Perhaps the primary rea-
son for this is that X and Y (and Z, W, …) have gotten progressively more and more difficult. By special-
ization (though often to the point of isolation), we are able to “master” our more and more narrowly
defined disciplines. In the experience of the author, not only is it often the case that X and Y are not
immiscible, but the solution sought may often not be formulated with the ingredients of X or Y alone. To
advance, the essential ingredients of X and Y must be crystallized and communicated across the artificial
disciplinary boundaries. New research must then be conducted at the intersection of X and Y. To be suc-
cessful in the years to come, we must prepare ourselves and our students with the training, perspective,
and resolve to seize the new opportunities appearing at such intersections with a Renaissance approach.
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16.1 Introduction

Many important applications of micro-electro-mechanical systems (MEMS) devices involve the control of
complex systems, be they fluid, solid, or thermal. For example, MEMS were used for microsensors and
microactuators [Subramanian et al., 1997; Nagaoka et al., 1997]. They were also used in conjunction with
optimal closed-loop control to increase the critical buckling load of a pinned-end column and for structural
stability [Berlin et al., 1998]. Another example entails using MEMS sensors placed on an enclosure wall to
actively control noise inside the enclosure from exterior noise sources. Varadan et al. (1995) used them for
the active vibration and noise control of thin plates.Vandelli et al. (1998) developed a MEMS microvalve array
for fluid flow control. Nelson et al. (1998) applied control theory to the microassembly of MEMS devices.

Solving the problem of control of other complex systems, such as fluid flows and structures, using these
techniques appears to be promising. Ho and Tai (1996, 1998) reviewed the applications of MEMS to flow con-
trol. Gad-el-Hak (1999) discussed the fluid mechanics of microdevices, and Löfdahl and Gad-el-Hak (1999)
provided an overview of the applications of MEMS technology to turbulence and flow control. Sen and Yang
(2000) reviewed applications of artificial neural networks and genetic algorithms to thermal systems.

A previous chapter outlined the basics of control theory and some of its applications. Apart from the tra-
ditional approach, another perspective can be taken towards control, that of artificial intelligence (AI).
This is a body of diverse techniques that were recently developed in the computer science community to
solve problems that could not be solved, or were difficult to solve, by other means. AI is often defined as
using a computer to mimic how a human being would solve a given problem. The objective here is not
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to discuss AI but to point out that some of the techniques developed in the context of AI can be trans-
ported to applications that involve MEMS. If the latter is the hardware of the future, the former might be
the software. AI encompasses a broad spectrum of computational techniques and methods which are based
on heuristics rather than algorithms. Thus, they are not guaranteed to work, but have a high probability
of success. AI imitates nature as a general characteristic, though the difference between computers and
nature is so vast that the analogy is far from perfect.

There are some specific techniques within AI, collectively known as soft computing (SC), that have
matured to the point of being computationally useful for complex engineering problems. SC includes arti-
ficial neural networks, genetic algorithms, fuzzy logic, and related techniques in probabilistic reasoning.
SC techniques are especially useful for complex systems. For purposes of this discussion, complex systems
are defined as those that can be broken into a number of subsystems. These subsystems are individually sim-
ple and may be analytically or numerically computed but together cannot be analyzed in real time for con-
trol purposes. The physical phenomena behind these complex systems might not be known, or the system
might not be possible to model mathematically. Often the model equations, as in the case of turbulent
fluid flow, are too many or too difficult to permit analytical solutions or rapid numerical computations.

The objective of this chapter is to describe the basic SC techniques that can be applied to control problems
relevant to MEMS. The following sections describe the artificial neural network, genetic algorithms, and
fuzzy logic methodologies. The descriptions are introductory so that readers can decide whether the tech-
nique is useful for their own application. SC techniques are tools and, as such, work much better in some
circumstances than in others. Caution must always be used. Some of the applications that are reported in
the literature give an idea of the kind of problems that can be approached.

Several excellent books and texts include information on the general subject of SC. Aminzadeh and
Jamshidi (1994), Yager and Zadeh (1994), Bouchon-Meunier et al. (1995), and Jang et al. (1997) cover broad
aspects of SC. Schalkoff (1997) and Haykin (1999) deal with artificial neural networks. Fogel (1999) pro-
vides an outline of evolutionary programming. Goldberg (1989) presents an exposition on genetic algo-
rithms, and Mordeson and Nair (1988) introduce the topic of fuzzy logic. Books covering more specific
areas include those on the application of SC to robotic systems by Jain and Fukuda (1998) and those on
neuro-fuzzy systems by Buckley and Feuring (1999) and Pal and Mitra (1999).

16.2 Artificial Neural Networks

One of the most common SC-based techniques is an artificial neural networks (ANN). Excellent introduc-
tory texts including those by Schalkoff (1997) and Haykin (1999), entail the history and mathematical back-
ground of ANN. The technique has been applied to diverse fields such as philosophy, psychology, business
and economics, and science and engineering. What all these applications have in common is complexity,
for which the ANN is particularly suitable.

16.2.1 Background

Inspiration for the ANN comes from the study of biological neurons in humans and other animals. These
neurons learn from experience and are also able to handle and store information that is not precise [Eeckman,
1992]. Each neuron in a biological network of interconnecting neurons receives input signals from other
neurons and, if the accumulation of inputs exceeds a certain threshold, puts out a signal that is sent to
other neurons to which it is connected. The decision to fire or not represents the ability of the ANN to
learn and store information. In spite of the analogy between the biological and computational neurons,
there are significant differences that must be remembered. Though the biological processes in a neuron
are slower, the connections are massively parallel as compared to its computational analogue, which is
limited by the speed of the currently available hardware.

Artificial neural networks are designed to mimic the biological behavior of natural neurons. Each arti-
ficial neuron (or node) in this network has connections (or synapses) with other neurons and has an input
and output characteristic function. An ANN is composed of a number of artificial neurons. Each interneural

16-2 MEMS: Introduction and Fundamentals

© 2006 by Taylor & Francis Group, LLC



connection is associated with a certain weight, and each neuron is associated with a certain bias. Training,
which is also called the learning process, is central to the use of an ANN. Training uses existing data to find
a suitable set of weights and biases.

Many different ANN structures and configurations have been proposed as well as various training method-
ologies [Warwick et al., 1992]. The configuration we discuss in some detail is the multilayer ANN operating
in the feedforward mode, and we will use the backpropagation algorithm for training. This combination
has been useful for many engineering and control purposes [Zeng, 1998]. The ANN, once trained, works
as an input–output system with multiple inputs and outputs. Learning is accomplished by adjusting the
weights and biases so that the training data are reproduced.

16.2.2 Feedforward ANN

Figure 16.1 shows a feedforward ANN consisting of a series of layers, each with a number of neurons. The
first and last layers are for input and output, respectively, while the ones in between are the hidden layers.
The ANN is said to be fully connected when any neuron in a given layer is connected to all the neurons in
the adjacent layers.

Though notation in this subject is not standard, we will use the following. The jth neuron in the ith
layer will be written (i, j). The input of the neuron (i, j), is xij, its output is yij , its bias is θij, and wi,j

i�1,k is the
synaptic weight between neurons (i �1, k) and (i, j). A number of parameters determine the configura-
tion: I is the total number of layers, and Ji is the number of neurons in the ith layer. There are J1 input val-
ues and J1 output values to the ANN.

Each neuron processes the information between its input and output. The input of a neuron is the sum
of all the outputs from the previous neurons modified by the respective internodal synaptic weights and
a bias at the neuron. Thus, the relation between the output of the neurons (i � 1, k) for k � 1, …, Ji�1 in
one layer and the input of a neuron (i, j) in the following layer is:

xi,j � θi,j � �
Ji�1

k�1

wi,j
i�1,k yi�1,k (16.1)

The input and output of the neuron (i, j) are related by:

yi,j � φi,j(xi,j) for i �1 (16.2)
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and

yi,j � xi,j for i � 1 (16.3)

The function φi,j(x), called the activation function, plays a central role in the processing of information by
the ANN. When the input signal is small, the neuron suppresses the signal altogether, resulting in a small
output. When the input exceeds a certain threshold, the neuron fires and sends a signal to all the neurons
in the next layer. Several appropriate activation functions have been used, the most popular being the
logistic sigmoid function:

φi,j (x) � (16.4)

where c is a parameter that determines the steepness of the function. This function has several useful
characteristics because it is an approximation to the step function that simulates the operation of firing
and not firing but with continuous derivatives, and because its output always lies between 0 and 1.

16.2.3 Training

Once the configuration of an ANN is fixed, the weights between the neurons and the bias at each neuron
define its input–output characteristics. The weights determine the relative importance of each one of the
signals received by a neuron from those of the previous layer, and the bias is the propensity for the com-
bined input to trigger a response from the neuron. The training process is the adjustment of the weights
and biases to reproduce a known set of provided input–output values.

Though there are many methods in use, the backpropagation technique is a widely used deterministic
training algorithm for this type of ANN [Rumelhart et al., 1986]. This method is based on the minimization
of an error function by the method of steepest descent. Descriptions of this algorithm exist in many recent
texts on ANN (for instance, Rzempoluck [1998]), and only a brief outline is given here. Initial values are
assigned to the weights and biases and, for a given input to the ANN, the output is determined. The synap-
tic weights and biases are iteratively modified until the output values differ little from the target outputs.

In the backpropagation method, an error δI,j is quantified for the last layer by:

δI,j � (yT
I,j � yI,j)yI,j(1 � yI,j) (16.5)

where yT
I,j is the target output for the jth neuron of the last layer. This equation comes from a finite-difference

approximation of the derivative of the sigmoid function. After all the δΙ,j have been calculated, the com-
putation moves back to the layer I � 1. There are no target outputs for this layer, so the value,

δI�1,k � yI�1,k(1 � yI�1,k) �
JI

j�1

δI,j wI,j
I�1,k (16.6)

is used instead. A similar procedure is used for all the inner layers until layer 2 is reached. After all these
errors have been determined, changes in the weights and biases are calculated from:

∆w I,j
i�1,k � λδi, jyi�1,k (16.7)

∆θi, j � λδi, j

for i � I, where λ is the learning rate. From this the new weights and biases are determined.
In one cycle of training, a new set of synaptic weights and biases is determined for all training data after

which the error defined by:

E � �
JI

j�1

(yT
I, j � yI, j)

2 (16.8)

is calculated. The error of the ANN at the end of each cycle can be based on a maximum or averaged 
value for the output errors. The process is repeated over many cycles with the weights and biases being

1
�
2

1
��
1 � exp(�x/c)
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continuously updated throughout the training runs and cycles. The training is terminated when the error
is low enough to be satisfactory in some pre-determined sense.

16.2.4 Implementation Issues

Several choices must be made to construct a suitable ANN for a given problem, and these choices are fairly
important to achieve good results. There is no general theoretical basis for these choices, and experience
combined with trial and error are the best guides.

16.2.4.1 Configuration

The first choice that must be made in using an ANN is its configuration (i.e., the number of layers and the
number of neurons in each layer). Though the accuracy of prediction sometimes becomes better (at other
times, it picks up additional noise) as the number of layers and neurons becomes larger, the number of
cycles to achieve this accuracy also increases. It is possible to do some optimization by beginning with one
hidden layer as a starting point and then adding more neurons and layers while checking the prediction error
[Flood and Kartam, 1994]. Practical considerations dictate a compromise between accuracy and compu-
tational speed. Many users prefer only one hidden layer, and it is unusual to go beyond two or three 
hidden layers.

There are other suggestions for choosing the parameters of the ANN. Karmin (1990) used a relatively
large ANN reduced in size by removing neurons that do not significantly affect the results. In the so-called
radial-Gaussian system, hidden neurons are added to the ANN in a systematic way during the training process
[Gagarin et al., 1994]. It is also possible to use evolutionary programming to optimize the ANN config-
uration [Angeline et al., 1994]. Some authors, for example, Thibault and Grandjean (1991), present 
studies of the effect of varying these parameters.

16.2.4.2 Normalization

The data that the ANN handles are usually dimensional and thus have to be normalized. Furthermore,
the slope of the sigmoid function φi,j(x) used as the activation function becomes smaller as x → �∞. To
use the central part of the function, it is desirable to normalize all physical variables. In other words, the range
between the minimum and maximum values in the training data is linearly mapped into a restricted range
such as [0.15, 0.85] or [0.1, 0.9]. The exact choice is somewhat arbitrary, and the operation of the ANN is
not very sensitive to these values.

16.2.4.3 Learning Rate

The learning rate λ is another parameter that must be arbitrarily assumed. If the learning rate is large, the
changes in the weights and biases in each step will be large. The ANN will learn quickly, but the training
process could be oscillatory or unstable. Small learning rates lead to a longer training period to achieve
the same accuracy. The learning rate is usually around 0.4 and is determined by trial and error. Other pos-
sibilities also exist [Kamarthi et al., 1992].

16.2.4.4 Initial Values

Initial values of weights and biases are assigned at the beginning of the training process. Both the final
values reached after training and the number of cycles needed to reach a reasonable convergence depend on
these initial values. One method is assigning the values in a random fashion, though Wessels and Barnard
(1992), Drago and Ridella (1992), and Lehtokangas et al. (1995) have suggested other methods for deter-
mining the initial assignment. Sometimes, the ANN is trained or upgraded on new data for which the old
values can be used as the initial weights and biases.

16.2.4.5 Training Cutoff

Training is repeated until a certain criterion is reached. A simple criterion is a fixed number of cycles. It is also
common to specify the minimum in the error-number of cycles curve as the end of training. This has a pos-
sible pitfall in that there may be a local minimum, beyond which the error may decrease some more.
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16.2.5 Neurocontrol

The ANN described up to now is a static input–output system; that is, given an input vector, the ANN is
able to predict an output. For purposes of real-time control, the procedure must be extended to variables that
are changing in time. This means that time t must also be a variable for both training and predictions. There
are two ways in which this can be done: either the time t or a time step ∆t between predictions can be addi-
tional inputs to the ANN. The latter procedure, which is convenient for microprocessor applications, has
an advantage because the initial values that are not really relevant to a control system after a long time quickly
become irrelevant. The time step ∆t in this procedure may be constant or may vary according to the needs
of the prediction as time goes on.

The ANN can be trained as before. The trained ANN predicts values of variables at an instant t � ∆t
if the values at t are given. The dynamic simulation can be introduced into a prediction-based controller
to control the behavior of a system.

16.2.6 Heat Exchanger Application

The previous sections discussed the general procedures and methodology of ANNs. In this section, we
apply the method to the specific problem of heat exchangers. A heat exchanger is an example of a system that
is complex. Though the physical phenomena are well known, in the face of turbulence, secondary flows,
developing flows, complicated geometry, property variations, conduction along walls, etc., it becomes impos-
sible to compute the desired operating variables for prediction (Pacheco-Vega, 2001). Computing in real
time for control purposes is even more difficult. ANNs can be used for this purpose. Much of the work
reported here is in Díaz (2000).

The heat exchanger used in tests is schematically shown in Figure 16.2. The experiments were carried
out in a variable-speed, open wind-tunnel facility [Zhao, 1995]. Hot water flows inside the tubes of the heat
exchanger, and room air is drawn over the outside of the tubes. The flow rates of air and water and the 
temperatures of the two fluids going in and out are measured.
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16.2.6.1 Steady State

For a given heat exchanger, the heat transfer rate Q
.

under steady-state conditions depends on the flow
rates of air and water, m.

a and m.
w, respectively, and their inlet temperatures, T in

a and T in
w, respectively. From

the heat transfer rate, secondary quantities such as the fluid outlet temperatures, T a
out and T w

out, respec-
tively, are determined. For the present experiments, a total of 259 runs were made, of which data for only
197 runs were used for training, while the rest were used for testing the predictions. For each test run the
six quantities, Q

.
, m.

a, m.
w, T in

a, T in
w, T a

out and T w
out were measured or determined from measurements. The

work here is described in detail in Díaz et al. (1999).
From the data an ANN was trained. This network had four inputs, m.

a, m.
w, T in

a and T in
w, and a single

output. Many different configurations and numbers of training cycles were tried. Good results were found
for a 4–5–5–1 (i.e., four layers with 4, 5, 5, and 1 neurons in each layer, respectively) configuration trained for
200,000 cycles. The trained ANN was tested on the dataset provided for the purpose. Figure 16.3 shows the
results of the ANN prediction,Q

.
p
ANN, plotted against the actual measurement, Q

.
e. The 45° line that is shown is

an exact prediction; the dotted lines represent errors of �10%. Figure 16.3 also shows the prediction of a
power-law correlation for the same data, Q

.
p
cor [Zhao, 1995]. The ANN does a better job than the correlation.

16.2.6.2 Thermal Neurocontrol

The same heat exchanger was used to develop the neurocontrol methodology. Dynamic data were obtained
by varying the water inlet temperatures by changing the heater settings while keeping the other variables
constant. Training data were obtained from experiments in which the water inlet temperature was varied
in small increments of 5.56°C from 32.2°C up to 65.6°C. Díaz et al. (2001a) provides further details.
A nonlinear system may be controlled in many different ways. The method chosen for neurocontrol testing
is shown in Figure 16.4. An inverse-ANN controller, C, controls the heat exchanger, while a forward ANN,
M, models the plant, P. The controller is trained as a dynamic ANN. The desired control objective was to
keep the outlet air temperature T a

out constant.
In the first test, the system was subjected to a step change in the set temperature. The system was stabilized

around T a
out � 32°C, after which the set temperature was suddenly changed to 36°C. Figure 16.5 shows

how the neurocontroller behaved as compared to conventional PID (proportional–integral–derivative)
and PI (proportional–integral) controllers. All the controllers work properly, but the neurocontroller has
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fewer oscillations. In a second test, we looked at the disturbance rejection ability of the controller. At
steady operation, the water flow is completely shut down for a short interval between t � 40 s and t � 70 s.
Figure 16.6 shows how the system variables respond to PID and neurocontrol during and after the dis-
turbance pulse. In the neurocontroller, oscillations are quickly damped out.

The procedure previously outlined in which the ANN simulates the plant to be controlled is fairly
straightforward. Other special aspects should be examined further.

16.2.6.2.1 Stabilization of Feedback Loop
(See [Díaz et al., 2001b].) The static ANN, once incorporated into the feedback loop, may lead to a
dynamical system that is unstable. In order to avoid this possibility, the ANN has to be trained not only
to make accurate predictions but also to give dynamical stability to the loop. Because the weights are not
unique, it is possible to come up with an algorithm that does both. The stabilization algorithm was
designed and tested on the heat exchanger facility. Figure 16.7 shows the behavior of two controllers C1

and C2 , where the former is a stable controller and the latter is unstable. In each case, the air flow rate is
being controlled, and the air outlet temperature is shown as a function of time. The stable controller
works well, while in the unstable case the air flow rate is increased as far as possible without achieving the
desired result.

16.2.6.2.2 Adaptive Neurocontrol
(See [Díaz et al., 2001c].) The major advantage of neurocontrollers is that they can be adaptive. The ANN
can go through a process of retraining if its predictions are not accurate due to change in system charac-
teristics. The adaptive controller is tested in two different ways. The first is a disturbance on the water side,
shown in Figure 16.8; va in the figure is the air velocity. Initially, the neurocontroller keeps the system close
to T a

out � 34°C. From t � 100 s to t � 130 s, the water is shut off. The neurocontroller tries to control
until t � 110 s, at which point it hands off to a backup PID controller while it adapts to the new circum-
stances. Then, once it is able to make reasonable predictions, it resumes control at t � 170 s. The second test
is a sudden reduction of inlet area of the wind tunnel test facility, shown in Figure 16.9. The controller
keeps T a

out at 34°C, and then half of the inlet is suddenly blocked at t � 150 s. The neurocontroller adapts
until it learns the behavior of the new system, and finally at t � 240 s it resumes control of the system.
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16.2.6.2.3 Optimal Control
For systems where there is more than one variable to be controlled, it is often required that they be con-
trolled under an optimizing constraint. For thermal systems, for example, it may be possible to require
that the system use the least energy at the new setpoint. Figure 16.10 shows the neurocontroller being
used in this mode with the water and air flow rates being the control variables. In this case, the ANN has
been provided information about the energy consumption of the following components of the facility: the
hydraulic pump, the fan, and the electric heater. We first let the controller stabilize T a

out at 34°C. Around
t � 130 s, the energy minimization routine turns on, and the controller adjusts both the water and air
flow rates to minimize energy usage while keeping T a

out roughly at its set value.
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16.2.7 Other Applications

Many other applications of neurocontrol have been reported in the literature, including inflow-
related problems. Gad-el-Hak (1994) gave an overview of the problem of flow control in turbulent
boundary layers. Control was attempted by Jacobson and Reynolds (1993). Lee et al. (1997) used ANNs
for turbulence control for drag reduction purposes. Suzuki and Kasagi (1997) were able to use ANNs 
for the optimal control of vortex shedding behind a square cylinder, minimizing the angular motion 
of the cylinder at the same time. Chan and Rad (2000) used ANNs for the purpose of real-time flow 
control.

16.2.8 Concluding Remarks

The implementation of ANN procedures in a complex problem is straightforward. It relieves the neces-
sity of having a first-principles model that may not be available for relatively new devices, such as those
based on MEMS. Predictions can be made and systems can be controlled on the basis of available infor-
mation without the need for models. The ANN is also extremely adaptable to changing circumstances.

16.3 Genetic Algorithms

Evolutionary algorithms change, or evolve, as they do their work. The genetic algorithm (GA) is a specific
type of search technique based on the Darwinian evolutionary principles of natural selection to attain its
objective of optimization. Optimization is fundamental to many applications in engineering, including
the design of systems. Although analysis permits the prediction of the behavior of a given system, opti-
mization is the technique that searches among all possible designs of the system to find the one that is the
best for the application. Optimization is also intimately related to the control problem where parameters
have to be chosen. The configuration of neural networks has to be selected, and the constants of PID 
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control have to be set. The importance of this problem has given rise to a wide variety of techniques that
help search for the optimum. In this context, local and global optima must be distinguished. If one visu-
alizes a multivariable function with many peaks, any one of these is a local maximum, while only one is
the highest.

Genetic algorithms are described in monographs by Goldberg (1989), Michalewicz (1992), Mitchell
(1997), and Man et al. (1999). GAs are generally used for the purpose of global optimization. They are not
gradient-based and are an alternative to other global optimization techniques such as simulated anneal-
ing. Because local gradient information is not used, a GA usually finds the global optimum as opposed to
a local one, a characteristic that is often useful. The fact that gradients are not used may be significant in
problems in which the variables to be optimized are functions of discrete quantities and their derivatives
are not possible.

Robustness, a central characteristic for the survival of natural species, is also a feature of genetic
algorithms. Goldberg (1989) compared the genetic algorithm from this perspective with other search
techniques. Methods based on the calculus, such as equating to zero the derivatives of a function to obtain
the extrema, are indirect. In a direct method, the iteration moves in a direction determined by the local
gradient of the function. Both these methods are local and depend on the local existence of derivatives.
Another class of methods is based on evaluation of a function at every point on a fine but finite grid. For
most practical applications this approach is too time consuming. In yet another class of techniques, ran-
domness is used. Simulated annealing and genetic algorithms are examples of these techniques. They
search from a population of points rather than from a single point. They use only the function rather than
its derivative, and they use probabilistic rather than deterministic rules. The search using many points
makes the method global rather than local.

16.3.1 Procedure

There are many variants of the genetic algorithm procedure. A simple approach is described here, but it
is not the only one. We can illustrate the GA procedure by finding the maximum of a function f(x) within
a given domain x ∈ U ⊂ �n. In a gradient-based method, the slope of the tangent plane at a given value
of x indicates which way to “go up” within an iterative procedure. The GA does not work this way. For
simplicity, in the following we will assume that U � [a, b] ⊂ �, though the method can be easily gener-
alized to higher dimensions. Furthermore, we will map the interval [a, b] to [0, 2c �1]. This way, the inde-
pendent variable x can be represented by a binary string of length c running from 000…000 up to
111…111. The example function chosen for maximization is f(x) � x(1 � x).

Step 1: We begin by randomly selecting r candidate numbers within the desired domain (i.e., x1, … , xr).
This is the first generation. An example is shown in Table 16.1, where we have taken r � 10 and c � 6.
The second column shows the numbers in decimal form, the third column the same numbers in binary form,
and the fourth the normalized binary version of the same. The function f(xi) for each number which, in
the context of this algorithm, is called the fitness is indicated in the fifth column. The reason for this name
is that, the higher the fitness is, the closer xi is to its value where f(xi) is a maximum. In other words, we
seek the value of x for which f(x) is the fittest. The maximum fitness of the members of this generation is
0.2469 for xi � 0.4444. The last column is the normalized fitness s(xi), the values of the previous column
divided by the sum of the fitnesses; thus, s(xi) � f(x)/Σf (xi).

Step 2: From the first generation of numbers, pairs of parents are chosen which then give rise to
offspring that form the next generation. To visualize the process we draw a pie chart, shown in Figure 16.11,
with slices that have angles proportional to the normalized fitness s(xi). To form parents, pairs of numbers
are randomly selected from the chart as if it were a roulette wheel. Of course, the numbers with larger nor-
malized fitnesses have the higher probability of being selected. The result of such a selection process is shown
in the second column of Table 16.2 as generation G � 1/4. These are then shuffled to produce column
G � 1/2. The first two entries in this column are a set of parents, the next two another set, and so on.

Step 3: Each pair of parents produces a pair of offspring by crossover, which can be done in different
ways. We have randomly chosen a point along the two binary strings that form the parents and have 
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interchanged the part of the string beyond this point. This is a single-point crossover. An example is
shown in Figure 16.12, where the crossover point is in the middle of the string and the numbers 011100
and 011001 produce the offspring 011001 and 011100. The crossover point in the other pairs might be
different. The final result of crossover between the parents is column G � 3/4.

Step 4: The column G � 1 is obtained from G � 3/4 by mutation. This is obtained by selecting a ran-
domly chosen bit and changing it from 0 to 1, or vice versa. Figure 16.12 shows that one bit in the fourth
number changed. This procedure gives a new generation with members that are generally fitter (i.e., give

16-14 MEMS: Introduction and Fundamentals

TABLE 16.1 Binary, Decimal, and Normalized Forms of the First Generation
of Candidate Numbers and Their Absolute and Normalized Fitnesses.

i xi(d) xi(b) xi(d, n) f(xi)(d) s(xi)(d)

1 18 010010 0.2857 0.2041 0.1096
2 53 110101 0.8413 0.1335 0.0717
3 43 101011 0.6825 0.2167 0.1164
4 11 001011 0.1746 0.1441 0.0774
5 22 010110 0.3492 0.2273 0.1221
6 46 101110 0.7302 0.1970 0.1058
7 28 011100 0.4444 0.2469 0.1326
8 42 101010 0.6667 0.2222 0.1194
9 25 011001 0.3968 0.2394 0.1286
10 61 111101 0.9683 0.0307 0.0165

Note: b � binary, d � decimal, n � normalized.
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FIGURE 16.11 “Old” fitness.
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TABLE 16.2 From One Generation to the Next.

G � 0 G � 1/4 G � 1/2 G � 3/4 G � 1

010010 011100 011100 011001 011001
110101 010110 011001 011100 011100
101011 011001 010110 010110 010110
001011 101010 010110 010110 010010
010110 010010 101010 101001 101001
101110 101011 011001 011010 011010
011100 011100 010010 010010 010010
101010 010110 101010 101010 101010
011001 011001 101011 101010 101010
111101 010110 011100 011101 011101

0  1  1  1  0  0 0  1  1  0  0  1

0  1  1  0  0  1 0  1  1  1  0  0

(b)

0  1  0  1  1  0
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(a)

FIGURE 16.12 (a) Crossover and (b) mutation in a genetic algorithm.
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a value of the function that is closer to the maximum). The new pie-chart of the normalized fitness,
Figure 16.13, shows much more uniformity in fitnesses since the “unfit” have disappeared. The maximum
fitness of this generation turns out to be f(xi) � 0.2484 at xi � 0.4603 compared to the value of f(xi) �

0.2469 at xi � 0.4444 for the previous generation. The process of finding a new generation is repeated
several times until some criterion is satisfied. This criterion could be one of the following: a desired num-
ber of cycles have been completed, the maximum fitness of the generation does not change much, or the
value of x at which this maximum fitness is obtained does not change significantly.

Some programming details need to be taken care of in actual implementation. Parameters such as the
number of members of a generation and the length of a binary string must be decided. In addition, a finite
probability for crossover and mutation must be prescribed. The crossover does the bulk of the work in select-
ing the new generation. Although the probability of mutation is generally kept small, it is vital because
mutation enables a possible solution to break out of the neighborhood of a local optimum and go some-
where else that may turn out to have a better local optimum. It is also common to keep the best of each
generation in the next to make sure that the fitness of the generation is nondecreasing. The algorithm
itself is probabilistic so that it cannot be guaranteed to find the global optimum. In fact, every time it is
run, the exact results obtained will be different.

Figure 16.14 shows the result of running a GA code (written by A. Pacheco-Vega) to continue the
process indicated in Tables 16.1 and 16.2. The probability of crossover is taken to be unity, and that of
mutation is 0.03. The abscissa shows the distribution of the population x1, … , xr at a generation number
G indicated in the ordinate. The initial population at G � 0 is indicated by 10 different crosses (the exact
values are different from those in Tables 16.1 and 16.2 because of the generation of different random
numbers). In the following generations, some of the crosses overlap as numbers may repeat themselves
within a population. The code has been terminated after 50 generations. A certain crowding of the pop-
ulation around the correct value x � 0.5 is observed as well as the presence of values relatively far from
it. This is a consequence of the global nature of the search and is a characteristic of the GA. In addition,
even at G � 50 the value of xi that gives the highest value of the function is close to the correct value but
is not exact.
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16.3.2 Heat Exchanger Application

This SC technique is applied to the heat exchanger described before. The optimization problem here is to
find the best correlation that fits experimental data. A set of N � 214 experimental runs provided the
database. In each case, the heat rate Q

.
is found as a function of the two flow rates mw and ma as well as

the two inlet fluid temperatures Iin
a and Iw

in. Details are in Pacheco-Vega et al. (1998).
There are two resistances to the flow of heat by convection: on the inside with water and on the out-

side with air. The conventional way of handling data is determining correlations for the inner and outer
heat transfer coefficients. For example, power-law relations of the form Nu � aRen between the Nusselt
and Reynolds numbers, Nu and Re, respectively, on both sides of the tube wall are often assumed. There
are then four constants to determine: a1, a2, n1, and n2. One possible procedure is to minimize the root
mean square (rms) error SU (a1, a2, n1, n2) in total thermal resistance to heat transfer between prediction
and data in the least-square sense. The total resistance is the sum of the air-side and water-side resistances.

This procedure leads to a large number of local minima due to the nonlinearity of the function to be
minimized. Figure 16.15 shows a pair of such minima. In the figure, a section of the error surface SU (a1, a2,
n1, n2) that passes through two local minima A and B is shown. The coordinate z is a linear combination
of a1, a2, n1, and n2 such that it is zero at A and unity at B, and the ordinate is the rms error. The values
SU of the two correlations obtained at A and at B are very similar, and the heat rate predictions for the result-
ing correlations are also almost equally accurate. However, a1, a2, n1, n2, and the predictions of the ther-
mal resistances on either side are very different. This shows the importance of using global minimization
techniques for nonlinear regression analysis. If the GA is used to find the global minimum, the point A is
the global minimum. The correlation (not shown) found as a result of the global search is the best that
fits the assumed power laws and is closest to the experimental data.

16.3.3 Other Applications

Many other applications of GAs to optimization and control problems include optimization of a control
scheme by Seywald et al. (1995), Michalewicz et al. (1992), Perhinschi (1998), and Tang et al. (1996b). Reis
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et al. (1997) and Kao (1999) have used the GA to find the optimal location of control valves in a piping net-
work. Gaudenzi et al. (1998) optimized the control of a beam using the technique. Several workers have
applied the method to the motion of robots [Nakashima et al., 1998; Nordin et al., 1998]. Katisikas et al.
(1995) and Tang et al. (1996a) used the genetic algorithm for active noise control. Nagaya and Ryu (1996)
controlled the shape of a flexible beam using a shape memory alloy, and Keane (1995) optimized the
geometry of structures for vibration control. Dimeo and Lee (1995) controlled a boiler and turbine using
the genetic algorithm. Sharatchandra et al. (1998) used the GA for shape optimization of a micropump.
Kaboudan (1999) used genetic algorithms for time-series prediction. Luk et al. (1999) developed a GA-based
fuzzy logic control of a solar power plant using distributed collector fields. Additional applications of GAs
combined with other SC techniques have been used for optimization of the control process [Matsuura et al.,
1995; Trebi-Ollennu and White, 1997; Rahmoun and Benmohamed, 1998; Ranganath et al., 1999; Lin and
Lee, 1999].

16.3.4 Final Remarks

There are two main advantages when using a genetic or evolutionary approach to optimization. One is
that the methods seek the global optimum. The other advantage is that they can be used in discrete systems,
in which derivatives do not exist or are meaningless. Examples of this are piping networks and position-
ing of electronic components. As with all tools, the reader must evaluate the advantages and disadvantages
in terms of specific applications.

16.4 Fuzzy Logic and Fuzzy Control

16.4.1 Introduction

Fuzzy sets and fuzzy logic date back to Lotfi Zadeh’s [Zadeh, 1965, 1968a, 1968b, 1971] work concerning
complex systems. Fuzzy sets and fuzzy logic have been present in controls applications since the late 1970s
[Mamdani, 1974; Mamdani and Assilian, 1975; Mamdani and Baaklini, 1975]. Fuzzy logic and its appli-
cation to feedback control is comprised of two components. First, fuzzy logic is not model based so it can
be applied to systems for which developing analytical models, either from first principles or from some
identification techniques, is impractical or expensive. Second, it provides a convenient mechanism for
application to feedback control of human (or expert) intuition regarding how a system should be con-
trolled. This section outlines basic fuzzy set definitions, fuzzy logic concepts, and their primary applica-
tion to control systems. First, an illustrative controls application of fuzzy logic is presented in complete
detail. The example is followed by a more complete exposition of the mathematics of fuzzy logic intended
to provide the reader with a complete set of tools with which to approach a fuzzy control problem.

16.4.2 Example Implementation of Fuzzy Control

This section first introduces a typical structure of fuzzy controllers by presenting an example of a common
fuzzy control application — namely, to stabilize the inverted pendulum system illustrated in Figure 16.16
where the control input is a force of magnitude u. In this problem, only the pendulum angle is stabilized.
This is accomplished via linguistic variables and fuzzy if–then rules such as:

1. If the pendulum angle is zero and the angular velocity is zero, then the control force should be
zero.

2. If the pendulum angle is positive and small and the angular velocity is zero, then the control force
should be positive and small.

3. If the pendulum angle is positive and large and the angular velocity is zero, then the control force
should be positive and large.
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4. If the pendulum angle is positive and small and the pendulum angular velocity is negative and small,
then the control force should be zero.

The linguistic variables are the angle error and the angular velocity. These rules are better expressed in
tabular form in Table 16.3. The first enumerated rule is expressed in the third column and third row of
the table. The second rule is in the third column and fourth row. The third rule is in the third column and
fifth row. The fourth rule is in the second column and fourth row. These rules were determined by intu-
ition. For example, whether the second column and second row should be “negative small” or “negative
large” is determined by experience, guesswork, or tuning.

The next basic element of the fuzzy controller is the fuzzy set, which basically encapsulates the notion
of to what degree the angle is “zero,”“negative small,” etc. Figure 16.17 illustrates the fuzzy sets that define the
fuzzy state of the angle of the pendulum system. In the figure, if the pendulum angle is �7.5°, then the
degree of membership in the “negative small” fuzzy set is 0.5, and the degree of membership in the “zero”
fuzzy set is also 0.5. The degree of membership in the other fuzzy sets is 0. Figures 16.18 and 16.19 illus-
trate similar fuzzy sets that are defined for the angular velocity and the control force, respectively.

Figure 16.20 illustrates the overall control structure. First, a sensor measures the state (θ, θ
.
). Second,

the state is “fuzzified” by computing the degree of membership of the state in each of the fuzzy sets, Ai,
used in the if–then rules. Third, the if–then rules in the rule base are evaluated in parallel, and the output
of each rule is the fuzzy set (control force), which has the shape of the fuzzy set associated with the output
of the if–then rule but is “capped” or “cut off” at the degree of membership of the state in the associated
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FIGURE 16.16 Pendulum system.

TABLE 16.3 Fuzzy Logic Rules to Determine Control Force

Angular Velocity

Negative Large Negative Small Zero Positive Small Positive Large
Error (1) (2) (3) (4) (5)

(1) Negative large Negative large Negative large Negative large Negative small Zero
(2) Negative small Negative large Negative large Negative small Zero Positive small
(3) Zero Negative large Negative small Zero Positive small Positive large
(4) Positive small Negative small Zero Positive small Positive large Positive large
(5) Positive large Zero Positive small Positive large Positive large Positive large
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fuzzy set. If there is a logical operation, such as “and” in the antecedent (the “if” part) of the rule, then
the minimum of the degree of membership in each of the fuzzy sets is used.

As a concrete example of this “fuzzy inference,” consider the case where the pendulum angle is �20°
and the angular velocity is �22.5°/s. The fuzzy state of the angle of the system is determined according to
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Figure 16.21, where the state of the system is represented by a 0.25 degree of membership in the “negative
large” fuzzy set, and a 0.75 degree of membership in the “negative small” fuzzy set. Figure 16.22 shows the
velocity is characterized by a 0.5 degree of membership in both the “positive large” fuzzy set and the “pos-
itive small” fuzzy set.

Now, the output of each rule will be the corresponding force fuzzy set, but modified so that its maxi-
mum value is capped to be the minimum degree of membership of the two elements of the antecedent
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part of each rule. In particular, only four of the rules listed in the table will evaluate to nonzero values —
namely, the top two rows in the last two columns of Table 16.3. Considering the “negative large” position and
“positive small” velocity first, the “negative small” force output will be capped at 0.25, which is the degree of
membership in the “negative large” position fuzzy set which is less than the 0.5 membership of the angular
velocity in the “positive small” fuzzy set. In the “negative large” position and “positive large” velocity, the out-
put will again be capped at 0.25, as similarly, it is less than the 0.5 membership of the angular velocity in the
“positive large” fuzzy set. In the cases of “negative small” position and “positive small” velocity, as well as “neg-
ative small” position and “positive large” velocity, the output of the “zero” and “positive small” output force
fuzzy sets will both be capped at 0.5. Once the outputs from each if–then rule are computed, they are aggre-
gated into one large fuzzy set. In this aggregation, if two of the fuzzy outputs overlap, then (opposite to the
“and” combination for the fuzzy rules) the maximum of the two sets is taken. Returning to the example,
Figure 16.23 illustrates the aggregation of the four rules for the angle of �20° and angular velocity
of �22.5°/s.“Defuzzification” is necessary to have a crisp output force, and Figure 16.24 demonstrates a com-
mon technique to compute the value of the crisp output as the centroid of the aggregated fuzzy output set.

Simulating such a system is straightforward using Matlab. If the pendulum mass is 0.1 kg, the cart mass
2.0 kg, the length of the pendulum 0.5 m, and the values of the membership functions are as illustrated
in Figure 16.25, the response of the cart and pendulum system is illustrated in Figures 16.26 and 16.27.
Figure 16.26 illustrates the response of the pendulum angle, and Figure 16.27 illustrates the velocity of the
pendulum. Figure 16.28 illustrates the control effort. Because the cart position was not controlled, its
steady-state response is actually a constant, nonzero velocity. Figure 16.29 illustrates the “response surface”
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(i.e., the plot of the function defining the control force computed by the fuzzy controller as a function of
the two input variables).

The remainder of this section outlines the mathematical foundations of fuzzy logic which allow the
reader to adapt this example for a particular application. Note that in the pendulum example, the “and”
conjunction, the aggregation of the outputs, and the means to defuzzify the output were all implemented
in certain, specific ways. These are not necessarily the only or best implementations. The mathematical
outline will consider in more general terms fuzzy statements such as, “If A and B, then C” or “If A or B, then
C,” which will lead to a list of possible alternative implementations of such a fuzzy inference system. Which
type of implementation is best may be application dependent, although the previous procedure is the 
predominant approach to fuzzy control.
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16.4.3 Fuzzy Sets and Fuzzy Logic

16.4.3.1 Introduction

This section introduces fuzzy sets, fuzzy logic, and their mathematical foundations. First, this section con-
siders the concept of a membership function, and more specifically, whether an element belongs to a set
or whether membership in a set is a matter of degree. Instead of either belonging or not belonging to a
crisp set, an element can partially belong to a “fuzzy” set. Several examples of fuzzy sets are provided, and
the properties of traditional crisp sets are compared with the analogous properties of fuzzy sets. There is
a “crisp” aspect to the normal definition of fuzzy sets because the membership function returns a crisp
value. Fuzzy sets can be generalized to have fuzzy-valued membership functions. After defining fuzzy sets
and outlining their properties, operations on fuzzy sets such as the complement, intersection, etc. are
defined and contrasted with the analogous operations on crisp sets. Finally, fuzzy arithmetic and fuzzy
logic are introduced as well as the notion of an additive fuzzy system, which is the basic framework used
in most fuzzy controls (in fact, the pendulum example above used this type of inference system).

16.4.3.2 Fuzzy vs. Crisp Sets

The traditional notion of a set is called a crisp set. Examples of crisp sets include:

1. The set of integers {…, �2, �1, 0, 1, 2, …}
2. The set of all people taller than 5
8�

3. Closed or open intervals of real numbers between a and b: [a, b], (a, b), respectively
4. A set defined by explicitly listing its elements, such as the set containing the letters a, b, and c: {a, b, c}.

Unless otherwise indicated, crisp sets are not considered ordered. Crisp sets can be distinguished from
fuzzy sets because in crisp sets an element either is a member of the set or is not a member of the set.
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Mathematically, one can define a membership function m which maps from a universal set U which is the
set of all possible elements, to the set {0, 1}, where for set A and element x ∈ U:

m : U → {0, 1} (16.9)

That is, the membership function returns a 1 if x is a member of A, and returns 0 if x is not a member of A.
Crisp sets have a list of standard properties related to concepts in classical logic. In particular, if the fol-

lowing operations are defined:

1. Complement: A– � U � A � {x � U|x � A}
2. Union: A � B � {x � U|x � A or x � B}
3. Intersection: A � B � {x � U|x � A and x � B}

then verifying the following partial list of fundamental properties of crisp sets is straightforward:

1. Involution: A–
–

� A
2. Contradiction: A � A– � φ
3. Excluded middle: A � A– � U

Having defined the membership function as a mapping from the universal set to the set containing zero
and one, it is natural to consider a generalization of the mapping. Instead of considering the membership
function as a binary mapping, the membership function for a fuzzy set is a mapping to the interval [0, 1]:

m : U → [0, 1] (16.10)

Now the mapping returns a value anywhere in the range between and including zero and one which encap-
sulates the notion that membership can be a matter of degree. This notion of degree enables fuzzy sets to
express transitions between membership in sets where the transition is gradual (as opposed to crisp).

A prototypical example is temperature and whether the temperature on any given day is hot or cold. There
is the set of hot days and the set of cold days. If these sets were crisp, they would require sharp boundaries.
For example, if the temperature is above 80°F, it is hot; otherwise, it is not hot. Similarly, if the temperature is
below 45°F, it is cold; otherwise, it is not cold. Such a rigid mathematical treatment of the notions of hot and
cold is not appealing because humans are inclined to treat the transition to and from the set of hot and cold
temperatures as gradual. A more appealing notion is that a given temperature may have a degree of mem-
bership in the set of hot days having a value of zero, one, or some value between zero and one. These values
in between zero and one represent the transition from a day being not hot to the day being hot.

Membership functions have been described only as a mapping from the universal set to the interval from
zero to one. Figure 16.30 illustrates several examples of typical membership functions. The membership
function illustrated in the upper left figure is an example of a membership function that may model cold
where the variable x represents temperature. For low temperatures, the value of the membership function
is one, illustrating that the temperature is cold. High temperatures do not belong to the set of cold days, hence
the value of the membership function is zero. Between the two extremes is a transition period where the
temperature only partially belongs to the set of cold days. The figure in the upper right-hand corner is the
analogous membership function for the set of hot days. Other fuzzy sets may require that only values within
a certain range have a significant degree of membership in the fuzzy set. Possible examples of such mem-
bership functions are illustrated in the bottom two figures, which could represent warm days.

An interesting feature of all the examples of fuzzy sets presented above is that the membership func-
tions are crisp values; that is, m(x) is a crisp number. Depending on the application, requiring m to return
a crisp value may be overly precise. Fuzzy sets can be generalized by defining membership functions to
return a range of values instead of a crisp value. In particular,

m : U → I([0, 1]) (16.11)

where I represents the family of all closed intervals of real numbers in [0, 1] that the shaded portion in Figure
16.31 illustrates. Note that further generalization is possible because interval valued membership functions
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can be generalized to have their intervals be fuzzy. Further generalizations are subsequently possible in a
recursive fashion. Refer to Klir and Yuan (1995) for complete details.

16.4.3.3 Operations on Fuzzy Sets

Analogous to operations on crisp sets, a variety of operations can be defined on fuzzy sets. Adopting the
standard notational shortcut where:

A(x) � m(x) (16.12)

where m(x) is the membership function that defines the fuzzy set A. We define the “standard” fuzzy com-
plement, intersection, and union as follows:

1. Complement: A–(x) � 1 � A(x)
2. Intersection: (A � B)(x) � min[A(x), B(x)]
3. Union: (A � B)(x) � max[A(x), B(x)]
4. Subsethood: A � B ⇔ A(x) � B(x)

where each operation holds for all x. It is important to note that these are not the only ways to define these
operations, although they are the typical ways. The intersection can also be defined in other common ways:

(A � B)(x) � A(x)  B(x),
(A � B)(x) � max[0, A(x) � B(x) � 1]

(A � B)(x) ��a if b � 1 (16.13)

b if a � 1
0 otherwise

Soft Computing in Control 16-27

x

1

x

1

x

1

x

m
(x

)
m

(x
)

m
(x

)
m

(x
)

1

FIGURE 16.30 Examples of membership functions. (Adapted with permission from Klir, G.J., and Yuan, B., 1995.)

x

m
(x

)

1

FIGURE 16.31 Fuzzy set defined by a fuzzy membership function.

© 2006 by Taylor & Francis Group, LLC



The union also can be defined by:

(A � B)(x) � A(x) � B(x) � A(x)  B(x),
(A � B)(x) � min[1, A(x) � B(x)],

(A � B)(x) ��a if b � 0 (16.14)
b if a � 0
0 otherwise

For a more complete, axiomatic development, and a list of further possible definitions of intersections
and unions of fuzzy sets, see Klir and Yuan (1995). In the more mathematical literature, intersections may
be called t-norms, and unions may be called t-conorms. Most properties associated with crisp sets still
hold for fuzzy sets, except for the properties of contradiction and excluded middle. The equality condi-
tions of contradiction and excluded middle for crisp sets are replaced by subset conditions for fuzzy sets:

1. Contradiction: A � A– � φ
2. Excluded Middle: A � A– � U

16.4.4 Fuzzy Logic

Fuzzy sets and their operations and properties provide the mathematical foundation for fuzzy logic, which
is the basis for fuzzy control and other applications of fuzzy logic. Because feedback control is based upon
measuring state variables, an important type of fuzzy set for fuzzy control is defined by a membership func-
tion whose domain is the set of real numbers:

m : � → [0, 1] (16.15)

which provides the degree to which a given variable is “close” to a specified value. Arithmetic operations
on fuzzy numbers can then be defined as follows:

1. Addition: (A � B)(z) � supz min[A(x), B(y)],
z � x � y

2. Subtraction: (A � B)(z) � supz min[A(x), B(y)],
z � x � y

3. Multiplication: (A � B)(z) � supz min[A(x), B(y)],
z � x  y

4. Division: (A � B)(z) � supz min[A(x), B(y)],
z � x/y

This arithmetic basis provides the foundation for the application of linguistic variables in fuzzy control
algorithms. A linguistic variable is a fuzzy number that represents some sort of linguistic concept such as
“very cold,” “cold,” “chilly,” “comfortable,” “warm,” “hot,” or “very hot.” An example of a linguistic variable
was previously illustrated in the pendulum example where the elements of the state of the pendulum (θ, θ

.
)

were described in linguistic terms such as “negative large,”“positive small,” etc. Linguistic variables, or fuzzy
numbers, allow linguistic terms to represent the approximate condition of the state of the system. As illus-
trated in the pendulum example, linguistic variables are an effective means to “translate” human expertise
germane to a controls application into appropriate fuzzy rules used in a fuzzy controller.

Developing the standard additive model [Kosko, 1997] using the Mamdani inference system illustrates
best the inference system typically used in fuzzy controllers. This model is the framework underlying
most fuzzy controllers and is the framework of the previous pendulum controller example. Figure 16.20
illustrates the standard additive model [Kosko, 1997].

A set of if–then rules, which require some basic fuzzy logic and inference, are central to this system.
Considering the linguistic variables that correspond to the fuzzy numbers representing the state of the
pendulum, there are basic (or primary) terms, “negative,” “zero,” and “positive,” and two hedges, “small”
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and “large.” For other applications, different primary terms can be used, as well as different hedges, such as
“very,” “more,” “less,” “extremely,” etc.

Several operators on fuzzy numbers are useful for implementing a fuzzy inference system. In particu-
lar, a fuzzy number can be concentrated or dilated according to:

Ak(x) � (A(x))k (16.16)

where A is the concentration operator if k � 1 or the dilation operator if k � 1 that can be used to rep-
resent the linguistic hedges “very” and “more or less,” respectively. The operator “not” and the relations
“and” and “or” are related to the definitions of complement, intersection, and union as follows:

1. Not A ¬A(x) � A–(x) � 1 � A(x)
2. A and B (A and B)(x) � (A � B)(x)
3. A or B (A or B)(x) � (A � B)(x)

Note that the definitions of “and” and “or” are not unique, as the definitions of the complement, inter-
section, and union are not unique. Thus, any of the possible definitions of intersection and union can be
used to implement the logical “and” or logical “or.”

An example of one way to evaluate the multiconditional approximate reasoning inference system in the
standard additive model typical for fuzzy controllers is as follows: given a measured state variable, x, it may
be “fuzzified” to account for measurement uncertainty. (Such a fuzzification was not considered in the pen-
dulum example — in that case, the degree of membership of the crisp state value was used). As Figure 16.32
illustrates, if a measurement from a sensor is x, then the fuzzified set X(x) may be defined to account for
sensor uncertainty, where the shape of the membership function defining the fuzzy set X(x) depends upon
the type of uncertainty expected from the sensor. The degree of consistency between the fuzzified state mea-
surement and a fuzzy set Ai is computed as the height of the intersection between X(x) and Ai(x). This is
essentially determining the degree to which “if X is Ai” is satisfied. Because there are various means to com-
pute the intersection of two fuzzy sets, the value of this degree of consistency will depend upon the definition
of intersection used. In particular, if the standard intersection is used, then the degree of consistency is
given by:

ri(X) � supx min[X(x), Ai(x)] (16.17)

where the “min” function computes the standard intersection, and the “sup” function determines its 
maximum value, as Figure 16.33 illustrates for two arbitrary fuzzy sets. Note that this is a generalization of
using the degree of membership of a crisp value. The degree of membership is the supremum of the inter-
section of the line representing the crisp value of the variable and the fuzzy set, as Figure 16.21 illustrates.

Soft Computing in Control 16-29

x x +�x−�

1

X
(x

)

FIGURE 16.32 Fuzzifying a crisp variable.

X(x) A(x)

r(x)

FIGURE 16.33 Degree of consistency between fuzzy sets X(x) and A(x).

© 2006 by Taylor & Francis Group, LLC



Having determined the degree to which “if X is Ai” is satisfied, the result of “then Y is Bi” must be deter-
mined. The most common (and most effective) technique was illustrated in the pendulum example. This
technique lets the resulting fuzzy set, B
, be determined according to B
 � min[ri, B] which is simply the
“clipping” approach illustrated in the pendulum example.

The formulation to do so is as follows: given an if–then rule, if “X is A, then Y is B,” where X and Y are
fuzzy sets representing the state of linguistic variables, the task is to determine the application of this rule
to a fuzzy set A
 which is not necessarily identical to A to determine the appropriate conclusion, B
, as
illustrated in the following list:

Rule: If X is A, then Y is B.
Fact: X is A
.
Conclusion: Y is B
.

The “min” operator used to determine the degree of consistency neither satisfies the rules of classical
(Boolean) logic when reduced to the crisp case [Terano, 1992], nor does it satisfy all the axioms that may be
generated as reasonable extensions of the classical case [Klir and Yuan, 1995]. Possibilities other than the
“min” operator as fuzzy implications include max[1 � A(x), min[A(x), B(y)]] (due to Zadeh), or min
[1, 1 � A(x) � B(x)] (the Lukasiewicz implication). A list of such fuzzy implications, as well as a full
exposition regarding their properties, can be found in Klir and Yuan (1995) or Jang et al. (1997). A more
basic presentation is in Terano (1992) or Jang et al. (1997). From a controls perspective, note that “very
good results are obtained” from the more general implications, but that Mamdani (1974), attempting to
actually control a steam engine, “obtained excellent results from the max–min compositions” illustrated. A
complete and rigorous exposition of fuzzy logic is based upon considerations of fuzzy relations and fuzzy
implications, which are beyond the scope of this section.

The final step is defuzzification, where there are various alternative approaches to the centroid method
presented in the pendulum example. In addition to the centroid, the following are possible methods for
defuzzification:

1. Bisector of area
2. Mean of the maximum
3. Smallest of maximum
4. Largest of maximum

Figure 16.34 illustrates these concepts.

16.4.5 Alternative Inference Systems

The Mamdani inference system considered so far in this presentation is not the only inference system used
in fuzzy control applications. In particular, the so-called TSK fuzzy model (named for Takagi, Sugeno and
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Kang [Jang et al., 1997]) is an alternative model which has an advantage because it does not require
defuzzification of the output, which can be computationally costly.

In particular, in the TSK model, fuzzy rules are of the form “if X is A and Y is B, then z � f (x, y).” In con-
trast to the Mamdani model, the output of the rules is a function, as opposed to a fuzzy set. For the pen-
dulum example, possible TSK rules may include:

1. If the pendulum angle is zero and the angular velocity is zero, then u � 0.
2. If the pendulum angle is positive and small and the angular velocity is zero, then u � 0.5θ.
3. If the pendulum angle is positive and large and the angular velocity is zero, then u � 0.7θ.
4. If the pendulum angle is positive and small and the pendulum angular velocity is negative and

small, then u � 0.4θ � 0.6θ
.
.

Defuzzification of the outputs is not required, but the outputs from each of the rules still need to be com-
bined. Two possible alternatives are often employed: weighted average and weighted sum.

For the weighted average, if z1 and z2 are the output functions for two rules, and r1 and r2 are the degrees
of consistency between the input data and antecedent fuzzy sets, A1 and A2, then the output is computed as:

u � (16.18)

If the weighted sum is used, then simply:

u � r1z1 � r2z2 (16.19)

A final control paradigm briefly summarized here is model-based fuzzy control, which considers the
design of fuzzy rules given the (nonlinear) model of the system to be controlled, which is in contrast with
the heuristic approach of the traditional fuzzy logic control paradigm outlined above. The advantage of
this approach is that it makes use of analytical model information that may be available but is completely
ignored in the standard fuzzy control paradigm.

At least two different forms of model-based fuzzy control paradigms exist: the so-called Takagi–Sugeno
fuzzy logic controllers (TSFLCs) and sliding-mode fuzzy logic controllers (SMFLCs). For TSFLCs, rules are
determined by considering the dynamics of the system in various “fuzzy regimes” of the state space and
then determining appropriate (linear) control laws at the center of each of these fuzzy regimes. SMFLC
rules are determined by considering the distance between the state vector and a desired “sliding surface.”
For further details, refer to Palm et al., 1997.

16.4.6 Other Applications

Although feedback control is the primary application of fuzzy logic, it certainly is not the exclusive appli-
cation. Other applications include identification and classification techniques such as handwriting recog-
nition, robotics, intelligent agents, and database information retrieval [Yen and Langari, 1999]. Additional
identification and classification techniques include nonlinear system identification and adaptive noise
cancellation [Jang et al., 1997], modeling [Babuska, 1998], PID controller tuning [Yen and Langari, 1999],
process control and analysis [Ruan, 1997], and traffic control [Dubois, 1980].

16.5 Conclusions

We reviewed some of the major soft computing (SC) techniques used for complex systems. Due to limita-
tions of space, SC is described only in outline. The purpose is to show the way the methods work, the possi-
ble range of applications, and to introduce these new technologies. SC techniques are not model based so
they are most suitable for applications in which first-principles-based approaches either are not possible
or are too slow. There are many such instances in the control area for which soft computing is especially
appropriate. As MEMS devices are in the frontiers of hardware, many of the issues are still not completely

r1z1 � r2z2
��

r1 � r2
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clear, and the model equations cannot always be computed quickly enough for real-time control purposes.
It is possible, that SC techniques could lend a hand to the use of these devices in real applications.
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