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Preface

‘Smart technology’ is a term extensively used in all
branches of science and engineering due to its immense
potential in application areas of very high significance to
mankind. This technology has already been used in
addressing several remaining challenges in aerospace,
automotive, civil, mechanical, biomedical and commu-
nication engineering disciplines. This has been made
possible by a series of innovations in developing materi-
als which exhibit features such as electromechanical/
magnetomechanical coupling. In other words, these
materials could be used to convert one form of energy
(say electrical) to another (mechanical, e.g. force, vibra-
tion, displacement, etc.). Furthermore, this phenomenon
is found to be reciprocal, paving the way for fabricating
both sensors and actuators with the same materials. Such
a system will also include a control mechanism that
responds to the signals from the sensors and determines
the responses of the actuators accordingly.

Researchers the world over have devised various ways
to embed these components in order to introduce ‘smart-
ness’ in a system. Originally introduced in larger systems
in the bulk form, this science is increasingly leaning
towards miniaturization with the popularization of micro
electromechanical systems (MEMS). One of the reasons
for this is the stringent lightweight constraints imposed
on the system design. Although there have been sporadic
efforts on various facets of the technology, to the best of
these authors’ knowledge, there is currently no single
book dealing with diverse aspects such as design, mod-
eling and fabrication of both bulk sensors and actuators
and MEMS.

The use of MEMS in smart systems is so intensely
intertwined that these technologies are often treated as
two ‘faces of the same coin’. The engineering of smart
systems and MEMS are areas for multidisciplinary
research, already laden with myriad technological issues
of their own. Hence, the books presently available in the
literature tend to separate the basic smart concepts,
design and modeling of sensors and actuators and

MEMS design and fabrication. Evidently, the books
presently available do not address modeling of smart
systems as a whole. With smart systems technology
branching towards several newer disciplines, it is essen-
tial and timely to consolidate the technological advances
in selected areas.

In this present book, it is proposed to give a unified
treatment of the above concepts ‘under a single umbrella’.
This book can be used as a reference material/textbook for
a graduate level course on Smart Structures and MEMS. It
should also be very useful to practicing researchers in all
branches of science and engineering and interested in
possible applications where they can use this technology.
The book will present unified schemes for the design and
modeling of smart systems, address their fabrication and
cover challenges that may be encountered in typical
application areas.

Material for this book has been taken from several
advanced short courses presented by the authors in
various meetings throughout the world. Valuable com-
ments from the participants of these courses have helped
in evolving the contents of this text and are greatly
appreciated. We are also indebted to various researchers
for their valuable contributions cited in this book. We
would like to indicate that this text is a compilation of the
work of many people. We cannot be held responsible for
the designs and development methods that have been
published but are still under further research investiga-
tion. It is also difficult to always give proper credit to
those who are the originators of new concepts and the
inventors of new methods. We hope that there are not too
many such errors and will appreciate it if readers could
bring the errors that they discover to our attention. We
are also grateful to the publisher’s staff for their support,
encouragement and willingness to give prompt assistance
during this book project.

There are many people to whom we owe our sincere
thanks for helping us to prepare this book. However,
space dictates that only a few of them can receive



xii Preface

formal acknowledgement. However, this should not be
taken as a disparagement of those whose contributions
remain anonymous. Our foremost appreciation goes to
Dr V.K. Aatre, Former Scientific Advisor to the Defence
Minister, Defence Research and Development Organi-
zation (DRDO), India and to Dr S. Pillai, Chief Con-
troller of Research and Development, DRDO, for their
encouragement and support along the way. In addition,
we wish to thank many of our colleagues and students,
including K.A. Jose, A. Mehta, B. Zhu, Y. Sha, H. Yoon,
J. Xie, T. Ji, J. Kim, R. Mahapatra, D.P. Ghosh, C.V.S.

Sastry, A. Chakraboty, M. Mitra, S. Jose, O. Jayan and
A. Roy for their contributions in preparing the manu-
script for this book. We are very grateful to the staff
of John Wiley & Sons, Ltd, Chichester, UK, for their
helpful efforts and cheerful professionalism during this
project.

Vijay K. Varadan
K. J. Vinoy
S. Gopalakrishnan
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Introduction to Smart Systems

1.1 COMPONENTS OF A SMART SYSTEM

The area of smart material systems has evolved from the
unending quest of mankind to mimic mechanical systems
of natural origin. The indispensable common objective in
all such initiatives has been to develop technologies to
produce non-biological systems that would achieve opti-
mum functionality widely observed in biological systems
through emulation of their adaptive capabilities and
integrated design.

Smart materials are usually attached or embedded into
structural systems to enable these structures to sense
disturbances, process the information and evoke reaction
at the actuators, possibly to negate the effect of the
original disturbance. Thus, smart materials respond to
environmental stimuli and for that reason are also called
responsive materials. Since these smart material systems
should mimic naturally occurring systems, the general
requirements expected in these nonliving systems that
integrate the functions sensing, actuation, logic and
control include:

e A high degree of reliability, efficiency and sustain-
ability of whole systems

e High security of infrastructures, even in extreme

ambience

Full integration of all functions of the system

Continuous health and integrity monitoring

Damage detection and self recovery

Intelligent operational management system.

As one would notice, the materials involved in imple-
menting this technology are not necessarily novel, but the
smart systems technology has been accelerating at a
tremendous pace in recent years. This has indeed been
inspired by several innovative concepts developed around

the world. The prime movers for this technology have
been the military and aerospace industries. Some of the
‘proof-of-concept’ programs have addressed structural
health monitoring, vibration suppression, shape control
and multifunctional structural aspects for spacecraft,
launch vehicles, aircraft and rotorcraft. These demonstra-
tions have focused on showing potential system-level
performance improvements using smart technologies in
realistic aerospace systems. Civil engineering structures,
including bridges, runways and buildings, that incorpo-
rate this technology have also been demonstrated. Smart
system design envisages the integration of the conven-
tional fields of mechanical engineering, electrical engi-
neering and computer science/information technology at
the design stage of a product or a system.

The concept of ‘self-healing materials’ has received
wide attention in recent years. For example, self-heal-
ing plastics may use materials that have the ability to
heal cracks as and when these occur. Shape memory
alloys (SMAs) in composites can stop propagating
cracks by imposing compressive forces, resulting
from stress-induced phase transformation. SMAs have
also been used in spectacle frames to repair bends.
Current research aims at developing adaptive, ‘self-
repairing materials’ and structures that can arrest
dynamic crack propagation, heal cracks, restore struc-
tural integrity and stiffness and reconfigure themselves
to serve even more functions.

Before we head any further with this discussion, some
clarifications regarding the terminology is called for.
Several of these (e.g. smart, adaptive, intelligent and
active) are sometimes used almost interchangeably to
represent the type of materials and structures described
above. Before we formally define a smart system, we
would like to quote (Webster’s) dictionary meanings of
these terms [1]:

Smart Material Systems and MEMS: Design and Development Methodologies

© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-09361-7
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4 Smart Material Systems and MEMS

e Active: producing or involving action or move-
ment.

e Adaptive: showing or having a capacity for or ten-
dency toward adaptation.

e Smart: making one smart; mentally alert; bright,

knowledgeable.
e Intelligent: having or indicating a high or satisfactory
degree of intelligence and mental capa-
city; revealing or reflecting good judg-
ment or sound thought; skillful.
the elements, constituents or substances
of which something is composed or can
be made.
the aggregate of elements of an entity in
their relationships to each other.
a group of devices or artificial objects or
an organization forming a network espe-
cially for distributing something or ser-
ving a common purpose.

e Material:

e Structure:

e System:

In the present context, a smart material is one whose
electrical, mechanical or acoustic properties or their
structure, composition or functions change in a specified
manner in response to some stimulus from the environ-
ment. This response should be repetitive. However, the
means by which the objectives are met could be many.
Recall that dimensions of most materials change when
heated; but then what distinguishes a smart material from
the rest? This is one in which we design the material so
that such changes occur in a specific manner. In addition,
some other objective can also be accomplished based on
it. Hence, the main objective in the area of smart
materials is to identify materials which would respond
to external stimuli that most materials are unresponsive
to. Furthermore, one would want to maximize such
response, at least one or two orders of magnitude better
than the rest of the materials.

Being responsive to external stimuli is probably not
sufficient to call a material smart. To define this more
precisely, a structure or material system may be consid-
ered smart if it somehow evaluates the external stimuli
and take some action based on them. This action may be
to neutralize the effects of the external stimuli or to
perform a function (completely different). This definition
requires the system to have sensor(s), a feedback con-
troller and actuator(s). The selection of sensors may be
based on the type of stimuli expected, the controller may
consist of information processing and storage units,
while the actuator may depend on the type of function
expected of the system. Materials or material systems
that can be ‘programmed’ (possibly by tailoring their

composition) to behave in a certain way in response to an
external stimulus may be called smart. These systems
should:

e monitor environmental and internal conditions

e process the sensed data according to an internal
algorithm

e decide whether to act based on the conditions(s)
monitored

e implement the required action (if warranted)

e repeat the steps continuously.

As with any other engineering problem, systems
designed with the above objectives should also have a
high degree of reliability, efficiency and sustainability
[2]. It should be possible to integrate such a system to
existing platforms by replacing ‘dumb’ counterparts with
little or no modifications to the rest of the platform. Thus,
the technology areas that require urgent attention have
been in developing new sensing and actuation materials
and devices, and control techniques. In addition, another
area that holds immense potential is in self-detection,
self-diagnostic, self-corrective and self-controlled func-
tions of smart material systems [2].

Some examples of smart system components are given
in Table 1.1. These materials are usually embedded in
systems to impart smartness. As this list indicates, most
materials involved in smart systems are not new, while
the smart system technology in itself is new. Smart
systems are the result of a design philosophy that
emphasizes predictive, adaptive and repetitive system
responses. The improvements in the technology and
widespread availability of cost-effective digital signal
processors (DSPs) and microcontroller chips have a
major influence on the accelerated growth in the smart
systems market.

Brief descriptions of the materials included in Table 1.1
are given in the following.

Piezoelectric materials These are ceramics or poly-
mers which can produce a linear change of shape in
response to an applied electric field. The application of
the field causes the material to expand or contract
almost instantly. These materials have already found
several uses in actuators in various diverse fields of
science and technology. The converse effect has
also been observed, which has led to their use as
Sensors.

Electrostrictive materials These materials can also
change their dimensions significantly on the application
of an electric field; the effect is reciprocal as well.
Although the changes thus obtained are not linear in
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Table 1.1 Examples of materials used in smart systems.

Development stage Material type Examples
Widely commercialized Shape memory alloys NITINOL
Polymers:
piezoelectric PZT-5A, 5SH
electrostrictive PMN-PT
Early commercialization Magnetostrictive materials Terfenol-D

or under development

Fiber-optic sensor systems —

Conductive polymers —
Chromogenic materials and systems:
thermochromic —
electrochromic —

Controllable fluids:
Electrorheological —
Magnetorheological —

Early research and development

Biomimetic polymers and gels —

Fullerenes and carbon nanotubes

either direction, these materials have also found wide-
spread application in medical and engineering fields.

Magnetostrictive materials These are quite similar to
electrostrictive materials, except for the fact that they
respond to magnetic fields. The most widely used
magnetostrictive material is TERFENOL-D, which is
made from the rarest of the rare earth elements, i.e.
terbium. This material is highly non-linear and has the
capability to produce large strains, which in turn can
produce large ‘block forces’. These materials are also
used in similar applications to those of electrostrictive
materials.

Rheological materials While the materials described
above are all solids, rheological materials are in the
liquid phase. These can change state instantly through
the application of an electric or magnetic charge. These
fluids may find applications in brakes, shock absorbers
and dampers for vehicle seats.

Thermoresponsive materials Shape memory alloys
(SMAs) are another widely used type of smart materials,
which change shape in response to changes in tempera-
ture. Once fabricated into a specified shape, these mate-
rials can retain/regain their shape at certain operating
temperatures. They are therefore useful in thermostats
and in parts of automotive and air vehicles.

Electrochromic materials Electrochromism is the abil-
ity of a material to change its optical properties (e.g.
color) when a voltage is applied across it. These are used
as antistatic layers, electrochrome layers in liquid crystal
displays (LCDs) and cathodes in lithium batteries.

Fullerenes These are spherically caged molecules with
carbon atoms at the corner of a polyhedral structure
consisting of pentagons and hexagons. These are usually
embedded in polymeric matrices for use in smart systems.

Biomimetic materials Most physical materials avail-
able contrast sharply with those in the natural world
where animals and plants have the clear ability to adapt
to their environment in real time. Some of the interesting
features of the natural world include the ability of plants
to adapt their shape in real time (for example, to allow
leaf surfaces to follow the direction of sunlight) and
limping (essentially a real-time change in the load path
through the structure to avoid overload of a damaged
region). The materials and structures involved in natural
systems have the capability to sense their environment,
process this data and respond instantly. It is widely
accepted that living systems have much to teach us on
the design of future man-made materials. The field of
biomimetic materials explores the possibility of engi-
neering material properties based on biological materials
and structures.

Smart gels These are gels that can shrink or swell by
several orders of magnitude (even by a factor of 1000).
Some of these can also be programed to absorb or release
fluids in response to a chemical or physical stimulus.
These gels are used in areas such as food, drug delivery
and chemical processing.

In addition to having sensing and/or actuation proper-
ties, smart materials should also have further favorable
characteristics [2]:
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Sensors Actuators
(PZT, PVDF, Fiber Structure (SMAs, PZT,
optics, etc.) Magneto strictive, etc.)

\

Control system

Figure 1.1 Building blocks of a typical smart system.

e Technical properties (e.g. mechanical, behavioral,
thermal, electrical).

e Technological properties (e.g. manufacturing, form-
ing, welding abilities, thermal processing).

e Economic aspects (e.g. raw material and production
costs, availability).

e Environmental characteristics (e.g. toxicity, pollution,
possibility of reuse or recycling).

Similar to a smart material, a smart structure would
also require sensors, actuators and a controller, as
shown in the schematic given in Figure 1.1. However,
unlike smart material systems, the number of possible
environmental stimuli monitored in this context is very
limited and may include vibrations, cracks, etc. One
distinctive feature of smart structures is that actuators
and sensors can be embedded at discrete locations

inside the structure. One such example where this can
be done is the laminated composite structure. Further-
more, in many applications the behavior of the entire
structure itself is coupled with the surrounding med-
ium. These factors necessitate a coupled modeling
approach to analyze smart structures. The functions
and descriptions of the various components of a smart
structure are summarized in Table 1.2.

1.1.1 ‘Smartness’

As described above, a smart system is one that can assess
a situation, determine if any responses are required and
then perform these responses. In this context, ‘smartness’
may be characterized by self-adaptability, self-sensing,
memory and decision making. Both active and passive
systems have been used in this context. Usually, active
sensors and actuators have been favored in designing
smart structures. This is based on the requirement to
generate the power required to perform responses. In
recent years, the concept of passive smartness has come
to the fore. Some characteristics of passive smartness
are that it is pervasive and continuous in the structure,
and there is no need for external intervention, and in
addition, there is no requirement for a power source. This
has a particular relevance to large-scale civil engineering
infrastructures. Passive smartness can be derived from

Table 1.2 Purposes of the various components of a smart structure (adapted from Akhras [2].

Unit Equivalent in biological Purpose Description
systems
Sensor Tactile sensing Data acquisition Collect the required raw data
needed for appropriate
sensing and monitoring
Data bus 1 Sensory nerves Data transmission Forward the raw data to the local

Control system Brain

Data bus 2 Motor nerves

Actuator Muscles

Command and
control unit

Data instructions

Action devices

and/or central command
and control units

Manage and control the whole
system by analyzing the data,
reaching the appropriate
conclusion and determining
the actions required

Transmit the decisions and the
associated instructions to the
members of the structure

Take the action by triggering the
controlling devices/units
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the unique intrinsic properties of the material used to
build the structure. One common example is an SMA
embedded in aerospace composites. Such structures are
designed to prevent crack propagation.

We will now try to define smartness by borrowing
some definitions from the observations of the Research
Theory and Development — Smart Adaptive Systems
(RTD - SAS) Technology Committee and the EUropean
Network on Intelligent TEchnologies (EUNITE) for
Smart Adaptive Systems in the context of artificial
intelligence, that ‘smart’ implies that intelligent techni-
ques must be involved in the adaptation of a system for it
to be considered a ‘smart adaptive system’ [3]. Accord-
ing to this, the accepted formal definition of ‘adaptive’
has three-levels of meanings, as follows:

(1) Adaptation to a changing environment

(2) Adaptation to a similar setting without explicitly
being ‘ported’ to it

(3) Adaptation to a new/unknown application.

In the first case, the system must adapt itself to a drifting
(over time, space, etc.) environment, applying its intelli-
gence to recognize the changes and react accordingly.
This is probably the easiest concept of adaptation for
which examples abound, e.g. control of non-stationary
systems (drifting temperature).

In the second case, the emphasis is more on the change
of the environment itself rather than on a drift of some
features of the environment. Examples include systems
that must be ported from one situation to another without
explicitly changing any of their main parameters.
Another example could be aerospace structures built to
prevent crack formations and civil engineering structures
that can withstand earthquakes.

The third level is the most futuristic one, but several of
its research objectives have been addressed. For example,
in the ‘machine-learning’ field, starting from very little
information on the problem, it is now possible to build a
system through incremental learning. Although this may

be the ultimate aim of most smart systems, such a level of
smartness has not been observed in any man-made
system.

1.1.2 Sensors, actuators, transducers

As discussed previously, smart systems should respond to
internal (intrinsic) and environmental (extrinsic) stimuli.
To do this, they should have sensors and actuators
embedded in them. Let’s first look at the dictionary
meaning of these terms (Merriam Webster’s Dictionary
online [1]:

o Transducer A device that is actuated by power from
one system and supplies power, usually in another
form, to a second system.

e Sensor A device that responds to a physical stimulus
(as heat, light, sound, pressure, magnetism or a
particular motion) and transmits a resulting impulse
(as for measurement or operating a control).

e Actuator One that actuates, e.g. a mechanical device
for moving or controlling something.

Some of these devices commonly encountered in the
context of smart systems are listed in Table 1.3.

1.1.3 Micro electromechanical systems (MEMS)

The emphasis here is to reduce the overall size of the
system. Miniaturization can result in faster devices with
improved thermal management. Energy and materials
requirements during fabrication can be reduced signifi-
cantly, thereby resulting in cost/performance advantages.
Arrays of devices are possible within a small space. This
has the potential for improved ‘redundancy’. Another
important advantage of miniaturization is the possibility
of integration with electronics, thereby simplifying sys-
tems and reducing the power requirements. Microfabri-
cation employed for realizing such devices has improved
reproducibility. The devices thus produced will have

Table 1.3 Some examples of sensors and actuators used in smart systems.

Device Physical quantity Example Technology
Sensor Acceleration Accelerometer PZT MEMS
Angular rate Gyroscope Fiber optic
Position LVDT Electromagnetic
Transducer Crack detection Ultrasonic transducer PZT
Actuator Movement Thermal Shape memory alloy
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increased selectivity and sensitivity, a wider dynamic
range and improved accuracy and reliability.

Smart micro electromechanical systems (MEMS) refer
to collections of microsensors and actuators which can
sense their environments and have the ability to react to
changes in such environments with the use of a micro-
circuit control. They include, in addition to conventional
microelectronics packaging, integrating antenna struc-
tures for command signals into micro electromechanical
structures for desired sensing and actuating functions.
These systems may also need micro-power supply,
micro-relay and micro-signal processing units. Micro-
components make the systems faster, more reliable,
cheaper and capable of incorporating more complex
functions.

At the beginning of the 1990s, micro electromechani-
cal systems (MEMS) emerged with advancements made
in the development of integrated circuit (IC) fabrication
processes, by which sensors, actuators and control func-
tions are co-fabricated in silicon. Since then, remarkable
progress has been achieved in MEMS under strong
capital promotions from both government and industries.
In addition to the commercialization of some less-
integrated MEMS devices, such as micro-accelerometers,
inkjet printer heads, micro-mirrors for projection, etc.,
the concepts and feasibility of more complex MEMS
devices have been proposed and demonstrated for appli-
cations in such varied fields as microfluidics, aerospace,
biomedical, chemical analysis, wireless communications,
data storage, display, optics, etc. [4,5]. Some branches of
MEMS, appearing as micro-optoelectromechanical sys-
tems (MOEMS), micro-total analysis systems (UTAS),
etc., have attracted a great deal of research interests since
their potential applications market. By the end of the
1990s, most of the MEMS devices with various sensing
or actuating mechanisms were fabricated by using silicon
bulk micromachining, surface micromachining and
LIGA! processes [6,7]. Three-dimensional microfabrica-
tion processes incorporating more materials have been
recently presented for MEMS when some specific appli-
cation requirements (e.g. biomedical devices) and micro-
actuators with higher output powers were called for
[4,8,9].

Micromachining has become the fundamental technol-
ogy for fabrication of MEMS devices and, in particular,
miniaturized sensors and actuators. Silicon micro-
machining is the most mature of the micromachining

'LIGA — German acronyn for Lithographie, Galvanoformung,
Abformung (lithography, galvanoforming, molding).

technologies and allows for the fabrication of MEMS that
have dimensions in the sub-millimeter range. It refers to
fashioning microscopic mechanical parts out of a silicon
substrate or on a silicon substrate, making the structures
three-dimensional and bringing new principles to the
designers. By employing materials such as crystalline
silicon, polycrystalline silicon and silicon nitride, etc., a
variety of mechanical microstructures, including beams,
diaphragms, grooves, orifices, springs, gears, suspensions
and a great diversity of other complex mechanical
structures, has been conceived.

Silicon micromachining has been the key factor for the
fast progress of MEMS in the last decade of the 20th
Century. This refers to the fashioning of microscopic
mechanical parts out of silicon substrates and, more
recently, other materials. It is used to fabricate such
features as clamped beams, membranes, cantilevers,
grooves, orifices, springs, gears, suspensions, etc. These
can be assembled to create a variety of sensors. Bulk
micromachining is the most commonly used method but
it is being replaced by surface micromachining which
offers the attractive possibility of integrating the
machined device with microelectronics which can be
patterned and assembled on the same wafer. Thus,
power supply circuitry and signal processing using
ASICs (Application Specific Integrated Circuits) can be
incorporated. It is the efficiency of creating several such
complete packages using existing technology that makes
this an attractive approach.

Micro devices can also be fabricated by using stereo
lithography of polymeric multifunctional structures.
Stereo lithography is a ‘poor man’s’ LIGA for fabricating
high-aspect-ratio MEMS devices in UV-curable semi-
conducting polymers. With proper doping, a semicon-
ducting polymer structure can be synthesized. By using
stereo lithography, it is now possible to make three-
dimensional microstructures of high aspect ratio. Ikuta
and Hirowatari [10] demonstrated that a three-
dimensional microstructure of polymers and metal is
feasible by using a process named the /H Process, also
known as Integrated Harden Polymer Stereo Lithogra-
phy. Using a UV light source, an XYZ-stage, a shutter,
lens and microcomputer, they have shown that micro
devices, such as spring, verious valve and electrostatic
microactuators, can be fabricated. In the case of difficulty
with the polymeric materials, some of these devices can
be micromachined in silicon and the system architecture
can be obtained by photoforming or hybrid processing
[11-13]. Photoforming or photofabrication employs an
optical method, such as stereo lithography, a photo mask
layering process and the IH process which involves
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solidification of the photochemical resin by light expo-
sure. Takagi and Nakajima [14] proposed new concepts
of ‘combined architecture’ and ‘glue mechanism’ by
using the photoforming process to fabricate complicated
structures by combining components, each of them made
by its best fabrication process. Batch processing of such
hybrid silicon and polymer devices thus seems feasible.

The combined architecture may also result in sheets of
smart skins with integrated sensors and actuators at the
pm to mm scale. For some applications (say airfoil
surfaces), the smart skin substrate has to be flexible to
conform to the airfoil shape and at the same time it has to
be compatible with the IC processing for sensor and
smart electronics integration. It has been proposed by
Carraway [15] that polyimide is an excellent material for
use as the skin because of its flexibility and IC processing
compatibility. The control loop between the sensors and
actuators employs multifunctional materials which pro-
vide electrical functionality at selected locations using
conductive polymers and electrodes that are connected to
on-site antennas communicating with a central antenna.
A related and difficult problem, and one which has been
largely unaddressed is the method for telemetry of the
data. In some applications, stresses and strains to which
the structure is subjected to may pose a problem for
conventional cabling. In others, environmental effects
may affect system performance. Advances in conformal
antenna technology coupled with MEMS sensors/actua-
tors appear to be an efficient solution. The integration of
micromachining and microelectronics on one chip results
in so-called smart sensors. In the latter, small sensor
signals are amplified, conditioned and transformed into a
standard output format. They may include a micro
controller, digital signal processor, application specific
integrated circuit (ASIC), self test, self-calibration and
bus interface circuits simplifying their use and making
them more accurate and reliable.

Many basic MEMS devices have a diaphragm, micro-
bridge or cantilever structure. Special processing steps,
commonly known as micromachining, are needed to
fabricate these. For a given application, it may be
necessary to have integrated MEMS employing one or
more of the basic structures. These three structures
provide some feasible designs for microsensors and
actuators that eventually perform the desired task in
most smart structures. However, the main issues with
respect to implementing these structures are the choice of
materials and the micromachining technologies to fabri-
cate such devices.

To address the first issue, we note that in all of the
three structures proposed the sensing and actuation occur

as a result of exciting a piezoelectric layer by the
application of an electric field. This excitation brings
about sensing and actuation in the form of expansion in
the diaphragm, or in the free-standing beam in the
microbridge structure, or in the cantilever beam. In the
former two cases, the expansion translates into upward
curvature in the diaphragm or in the free-standing beam,
hence resulting in a net vertical displacement from the
unexcited equilibrium configuration. In the cantilever
case, however, upon the application of an electric field
the actuation occurs by a vertical upward movement of
the cantilever tip. Evidently, in all three designs the
material system structure of the active part (diaphragm,
free-standing beam or cantilever beam) in the microac-
tuator must comprise at least one piezoelectric layer as
well as conducting electrodes for the application of an
electric field across this layer. Piezoelectric force is used
for actuation for many of the applications mentioned
above. Micromachining is employed to fabricate the
membranes, cantilever beams and resonant structures.

1.1.4 Control algorithms

As mentioned earlier, a smart system consists of a
sensor, an actuator and a control system. The desired
operations on a smart system are performed by an
actuator by taking the instructions given by the control
systems. These instructions are given to the actuator
using a suitable control law that is driven by a set of
control algorithms. The main objective of the control
system is to inject a control force onto the system to
perform the desired operation. These control forces can
be injected into the system by using the coupling
characteristics of smart materials. That is, for example,
if we use a PZT actuator, in the absence of any
mechanical disturbance, the passing of a voltage on
the actuator causes the smart system to expand (or
contract). These strains can be converted into forces to
perform the desired operations such as vibration reduc-
tions in structural systems, shape control of aerofoil
cross-sections in an aircraft, etc. The control algorithms
necessarily direct the type of operations that a system
has to perform to get the desired results.

The control law that drives a smart system could be
‘open-loop’ or ‘closed-loop’. In an open-loop system, the
system is injected with a known parameter (for example,
a known voltage in the case of a PZT actuator or a known
value of AC current in the case of a magnetostrictive
actuator) to generate the control forces for meeting the
target application. Such a control system is not suitable in
the real-world, wherein the uncertainties are so much that
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it is not always possible to quantify the value of the
parameter that is required to meet the control objective.
As opposed to the open-loop control, closed-loop control
to a great extent can work better in a non-deterministic
framework. The closed-loop control can be of two cate-
gories, namely the ‘feed forward’” and ‘feed back’, wherein
the later is more easily realizable and hence extensively
used in real-world application.

A closed-loop control system can be designed in many
ways. The most common design essentially takes the
sensed response and feeds it back to the actuator to
obtain the desired control objective. The responses that
are fed back to the actuator in structural applications
could be displacements, velocities or accelerations. Such
a controller design is called a Proportional, Proportional-
Integral (PI) or Proportional-Integral-Differential (PID)
controller.

1.1.5 Modeling approaches

The development of mathematical model for analysis
depends on the following:

e The size of the smart system — Macro or micro
system.

e The type of applications, such as vibration control,
structural health monitoring etc.

o The constitutive behavior of the smart material,
namely linear or non-linear.

e The frequency content of the input loading, that is,
low-frequency or high-frequency loading.

e Small-deformation and large-deformation problems.

The most common method of modeling the macro
structure is by the well-established Finite Element
Method (FEM). This method can also handle effectively
the material and geometrical non-linearities. However,
FEM is limited to problems wherein the frequency
content of input excitation is band-limited. However for
problems involving, say, the structural health monitoring
of smart laminated composite structures, one has to inject
a pulse having a very high frequency content (of the
order of kHz and higher) to detect the presence of small
damages. This problem essentially transforms from a
dynamics to a wave-propagation problem. For such
problems, FEM is unsuitable from a computational view-
point due to the limitation that the element size should be
of the order of the wavelengths. In such situations, one
can use wave-based Spectral Element Modeling (SEM).
The main disadvantage with SEM, however, is that it is
not as versatile as FEM in modeling arbitrary geometries.

Hence, one has to judiciously choose the type of model-
ing to suit the problem on hand.

Modeling of a microsystem can also be handled by
FEM. Many researchers have designed many new MEMS
by using FEM. Modeling through techniques such as
FEM are based on a continuum analysis. However, one
has to clearly understand that beyond a certain size of the
system, the continuum analysis assumption breaks down.
In most MEMS devices that are reported in the literature,
the sizes are such that the continuum assumption does
hold and hence one can still use FEM to model these
devices.

1.1.6 Effects of scaling

For the modeling of nano-scale devices, one has to bring
in the effect of scale. Nano-scale devices are of the order
of 10-100 nanometers in size. In most cases, at these
sizes the continuum assumptions break down. A classic
example is the analysis of single-wall or multi-wall
carbon nanotubes. Analysis of such systems can be
performed either by molecular dynamic modeling or
quasi-continuum modeling, although there are a few
reports that state that the results of continuum modeling
are reasonable.

The effects of scale become more profound when these
nanotubes are embedded in, say, composites. It is well
known that these nanotubes have enormous stiffness and
hence can resist the deformation significantly. This
cannot be effectively captured if one resorts to single-
scale modeling. Therefore, one should adopt a multi-
scale modeling approach. That is, in a small region of the
nanotubes, one has to adopt a nano-scale modeling
approach, such as a molecular dynamics model, and
‘lump’ the effects of this onto a macro-model of the
composites. Multi-scale modeling is an open area of
research worldwide and many researchers are working
towards breaking the size barrier and to come up with an
effective way of incorporating the effects of scale on the
modeling technique.

1.1.7 Optimization schemes

Optimization schemes forms an essential part in the
modeling of a smart system. These schemes are neces-
sary whenever constraints arise in designing a smart
system. Most of the smart sensors/actuators are very
expensive and these have to be located judiciously on
the system, keeping cost in mind and at the same time
maximizeing the efficiency of the system by meeting the
required control objective.
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For all optimization problems, an objective function is
required. For example, for the placement of sensors and
actuators in a structure, the main objective is to increase
the sensitivity of the sensors. This sensitivity can be
increased if it can effectively measure higher strains (and
hence the stresses). Thus, the objective function for this
problem will be to locate regions of higher strains and
minimum stress gradients.

There are two major optimization schemes that are
reported in the literature. One is the gradient-based
optimization, where the assumption is made that the
optimal solution to the problem lies in a space
wherein the gradient of a variable (such as displace-
ment, strains, stress, etc.) is minimum. This is the most
common approach. The second approach is based on
a genetic algorithm, wherein all probable solutions
are assumed and eliminated by using the concept of
Darwin’s Theory of Evolution, namely ‘survival of the
fittest’.

1.2 EVOLUTION OF SMART MATERIALS
AND STRUCTURES

The field of smart materials and structures is interdisci-
plinary between science and technology and combines
the knowledge of physics, mathematics, chemistry, com-
puter sciences, with material, electrical and mechanical
engineering. It implements human creativity and innova-
tive ideas to serve human society for such tasks as
making a safer car, a more comfortable airplane, a self-
repair water pipe, etc. Smart structures can help us to
control the environment better and to increase the energy
efficiency of devices.

Smart structures are usually systems containing
multifunctional components that can perform sensing,
control and actuation. Key materials used to construct
these structures are called smart materials. The ‘smart-
ness’ of these is gauged by their responsiveness (large
change in amplitude) and agility (speed of response).
Materials used in these applications may include
single-phase or functional composite materials, and
smart structures.

Single-phase materials used in this context have
one or more large anomalies associated with phase-
transition phenomena. Functional composites are gen-
erally designed to use nonfunctional materials to
enhance functional materials or to combine several
functional materials to make a multifunctional compo-
site. Examples include donor-doped BaTiO; ceramics
that are typically used for sensing temperature.

A magnetic probe is a multifunctional composite in
which a magnetostrictive material is integrated with a
piezoelectric material to produce a large magnetoelectric
effect. The magnetostrictive material will produce shape
deformation under a magnetic field, and this shape
deformation produces a stress on the piezoelectric mate-
rial which generates electric charge.

As mentioned earlier, smart structures involve sen-
sors, actuators and a control system. Apart from the use
of better functional materials as sensors and actuators,
an important part of a ‘smarter’ structure is to develop
an optimized control algorithm that could guide the
actuators to perform required functions after sensing
changes.

Active damping is one of the most studied areas
using smart structures. A number of active damping
schemes with guaranteed stability have been developed
by using collocated actuators and sensors (i.e. physi-
cally located at the same place and energetically con-
jugated, such as force and displacement). These
schemes are categorized on the basis of feedback type
in the control procedure, i.e. velocity, displacement or
acceleration.

Although several natural materials (such as piezoelec-
tric, electrostrictive and magnetostrictive materials) are
classified as smart materials, these usually have limited
amplitude responses and must be operated in a limited
temperature range. Chemical and mechanical methods
may be used to tailor their properties for a particular
smart structure design.

The shape memory effect in materials was first
observed in the 1930s by Arne Olander while working
with an alloy of gold and cadmium. This Au—Cd alloy
was plastically deformed when cold but returned to its
original configuration when heated. The shape memory
properties of nickel-titanium alloys were discovered in
the early 1960s. Although pure nickel-titanium has
very low ductility in the martensitic phase, the proper-
ties can be modified significantly by the addition of
a small amount of a third element. These groups of
alloys are known as Nitinol™ (Nickel-Titanium-
Naval-Ordnance-Laboratories). Ni-Ti SMAs are less
expensive, easier to work with and less hazardous
than previous SMAs.

Commercial products based on SMAs began to appear
in the 1970s. Initial applications for these materials were
in static devices such as pipe fittings. Later SMA devices
have also been used in sensors and actuators. In order to
perform well in these devices, the SMA must experience
a cycle of heating, cooling and deformation within a
short time span.
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Ferroelectric SMAs offer the possibility of introdu-
cing strain magnetically. This effect was discovered in
the 1990s on SMAs with high magnetocrystalline
anisotropy and high magnetic moment (e.g. Ni,MnGa).
These materials produce strain of up to 6 % at room
temperature.

The piezoelectric effect was initially observed by
Pierre and Jacques Curie in 1880. They discovered a
connection between the macroscopic piezoelectric phe-
nomena and the crystallographic structure in crystals of
sugar and Rochelle salt. The reverse effect of materials
producing strain when subjected to an electric field was
first mathematically deduced from fundamental thermo-
dynamic principles by Lippmann in 1881. Several natu-
rally occurring materials were shown to display these
effects. Nickel sonar transducers using this effect came to
be used in the World War I.

This application triggered intense research and devel-
opment into a variety of piezoelectric (ceramic) formula-
tions and shapes. Since then, several sonar transducers,
circuits, systems and materials have been reported. The
second generation of piezoelectric applications was
developed during World War II. It was discovered that
certain ceramic materials, known as ‘ferroelectrics’,
showed dielectric constants up to 100 times larger than
common-cut crystals and exhibited similar improvements
in piezoelectric properties. Soon, the barium titanate and
lead zirconate titanate families of piezoceramics were
developed. Some of these began to be used in structural
health monitoring and vibration damping. Polymeric
materials, such as poly (vinylidene fluoride) (PVDF),
have also been shown to exhibit similar characteristics.
Intense research is still going on to produce useful and
reasonably priced actuators, which are low in power
consumption and high in reliability and environmental
ruggedness.

The electrostrictive effect is similar to piezoelectri-
city and converts the electrical pulse into a mechanical
output; yet electrostriction is caused by electric
polarization and has a quadratic dependence. The
main difference between electrostrictive and piezoelec-
tric materials is that the former doesn’t show sponta-
neous polarization and hence no hysteresis, even at
very high frequencies. Electrostriction occurs in all
materials, but the induced strain is usually too small
to be utilized practically. Electrostrictive ceramics,
based on a class of materials known as ‘relaxor
ferroelectrics’, show strains comparable to those of
piezoelectric materials (strain ~0.1 %) and have
already found application in many commercial
systems. New materials such as carbon nanotubes

have also been shown to have significant electrostric-
tive properties.

The magnetostrictive effect was first reported in iron
in the 1840s by James P. Joule. The inverse effect was
discovered later by Villari. Other materials, such as
cobalt and nickel, also showed small strains. Some of
the first sonars were built on this principle. Large-scale
commercialization of this effect began with the discovery
of ‘giant’ magnetostriction in rare-earth alloys during the
1960s. These showed 0.2-0.7 % strain, which is two
orders of magnitude higher than nickel. An alloy of
these materials, ‘Terfenol-D’ (named after its constitu-
ents, terbium, iron and dysprosium, and place of inven-
tion, the Naval Ordnance Laboratory (NOL) exhibits
relatively large strains (0.16-0.24 %) at room tempera-
ture and at relatively small applied fields. Terfenol-D has
now become the leading magnetostrictive material for
engineering use. The development of polymer matrix
Terfenol-D particulate composites has further overcome
some of the limitations of ‘pure’ Terfenol-D.

‘Field-responsive’ fluids were also known to exist
since the 19th Century. The effective viscosity of some
pure insulating liquids was found to increase when an
electric field is applied. This phenomenon, originally
termed the ‘electro-viscous effect’, later came to be
called the electro-rheological (ER) effect. These materi-
als usually consist of suspensions of solid semiconduct-
ing materials (e.g. gelatin) in low-viscosity insulating oils
(e.g. silicone oil).

In some ER compositions, both Coulomb and
viscous damping can be achieved so that a vibration
damper can be fabricated. The limitations of most ER
fluids include the relative low yield stress and its
temperature-dependence, the sensitivity of ER fluids to
impurities (which may alter the polarization mechan-
isms) and the need for high-voltage power supplies
(which are relatively expensive).

The magnetorheological (MR) effect was discovered
by J. Rabinow in the late 1940s. However, due to
some difficulties in using MR fluids in actual appli-
cations, these have not yet become popular. One of
the difficulties was the low ‘quality’ of the early MR
fluids which caused the inability of the particles to
remain suspended in the carrier liquid. Recently, MR
fluids have found new potential in engineering appli-
cations (e.g. vibration control), due to their higher
yield stress and the lower voltage requirement (com-
pared to ER fluids). These have also been commercially
exploited for an active suspension system for auto-
mobiles and controllable fluid brakes for fitness
equipment.
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1.3 APPLICATION AREAS FOR SMART
SYSTEMS

Developments in the areas of smart materials and struc-
tural systems have centered around the natural human
instinct of ‘mimicking nature’. Although the technology
is yet far from this goal, several systems with consumer,
aerospace and military applications have been produced
in recent years. As one can imagine, new possibilities
emerge as time goes by. Hence, readers are cautioned
that the items described below should not be construed as
representing an exhaustive list.

Reduction of vibrations in sporting goods. To increase
the users’ comfort, several new smart sporting goods
(e.g. tennis rackets, golf clubs, baseball bats, skis, etc.)
are available on the market.

Noise control in vehicles. Composites of piezoelectric
ceramic fibers are used reduce noise in vehicles, shaking
in helicopter rotor blades or vibrations in air conditioner
fans and automobile dashboards.

Aerospace applications. Demonstrated aerospace
applications of smart structures include the spatial high
accuracy position encoding and control system (SHAPE-
CONS) and Frangibolt (used to deploy solar arrays,
antennas and satellites from a launch vehicle) in the
Clementine mission.

In addition, several military applications have been
envisaged for smart materials and structures. In the
battlefield, soldiers may wear clothing made of special
tactile material that can detect signals from the human
body to determine bullet wounds. This information can
then be used to analyze the nature of the wound, decide
on the urgency to react and possibly take some action to
stabilize the situation.

There are several potential locations for the use of
smart materials and structures in aircraft. Ground, marine
or space smart vehicles will be a feature of future military
operations. These manned or unmanned carriage systems,
equipped with sensors, actuators and sophisticated controls,
can improve surveillance and target identification and
improve battlefield awareness. These smart vehicles
could even be constructed using stealth technologies for
their own protection. The B-2 stealth bomber or the F-117
stealth fighter are good examples of this technology.
Smart systems are also needed for the quick and reliable
identification of space or underwater stealth targets. Smart
systems may also be used to improve the performance of
otherwise ‘dumb’ systems. Examples of applications in
many diverse areas are presented in Table 1.4.

In the future, it may even be possible to develop
structures that are smart enough to communicate directly

with the human brain using MEMS-based devices. Smart
noses, tongues, etc. have already been developed by
various groups. Newer sensors may even extend human
sensing capabilities, such as by enabling us to detoct
more scents, hear beyond our normal frequency range,
and see what we cannot normally see (using IR). There is
also significant scope for developing newer capabilities
in the domain of smart structures. It can be expected that
we will see further smarter materials and structures being
developed in the near future.

1.4 ORGANIZATION OF THE BOOK

This book is divided into fifteen chapters, describing
fundamentals, design principles, modeling techniques,
fabrication methods and applications of smart material
systems and MEMS. The first two chapters of the
book deal with the fundamental concepts of smart
systems and their constituent components. Preliminary
concepts of these materials will be introduced, along with
important characteristics expected of them, in Chapter 2.

In the second part of the book, the design principles
for sensors and actuators are discussed in detail. Here,
we first begin with the design philosophy behind some
commonly available sensors, such as accelerometers,
gyroscopes, pressure sensors and chemical and biosen-
sors. The design issues of bulk sensors made from
piezoelectric, magnetostrictive and ferroelectric materi-
als are also given in Chapter 3. This is followed
(Chapter 4) by the basic design principles of several
actuators. Chapter 5 is devoted to examples describing
the design principles of sensors and actuators, wherein
the principles behind developing components with
SMAs, piezoelectric, electrostrictive and magnetostric-
tive materials are given.

Chapters 69 dwell on a detailed account of modeling
of smart systems. First, the theory of elasticity and
composites are introduced, which serve as prerequisites
for the advanced techniques that follow. Next, the com-
plete theory and application of finite element (FE)
modeling is given, including an introduction to varia-
tional methods, various element formulations and equa-
tion solutions for both discretized statics and dynamics
equations of motion in Chapter 7. Following this, the
basic concepts of wave propagation and spectral finite
element modeling is introduced, which are used to study
wave propagation in isotropic and composite structures.
This is followed, in Chapter 8, by the modeling of smart
sensors and actuators, where the approach is demon-
strated by using a number of examples. The last chapter
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Table 1.4 Applications of smart systems in various areas.

Application

System

Use

Machine tools

Photolithography

Process control

Health Monitoring

Consumer electronics

Helicopters and
aircraft

Submarines

Automotive

In Buildings

Piezoceramic transducers

Vibration control during the process
using piezoceramic transducers

Shape memory alloys

Fiber-optic sensors

Piezoceramic and MEMS accelerometers
and rotation-rate sensors; quartz,
piezoceramic and fiber-optic gyros;
piezoceramic transducers

Piezoceramic stack actuators; PZT
and MEMS accelerometers;
magnetostrictive mounts

Piezoceramic pick-ups and error
sensors; PZT audio resonators and
analog voice coils; digital signal
processor chips

Piezoceramic actuators

Electrochromics (sol—gel, sputtered
and vacuum-evaporated oxides;
solution-phase reversible organic redox
systems); suspended particles;
dispersed liquid crystals; reversible
electrodeposition

Piezo yaw-axis rotation sensors
(antiskid, antilock braking); ceramic
ultrasonic ‘radar’ (collision avoidance,
parking assist); MEMS accelerometers
(air bag controls); electronic stability
controls (four-wheel independent
auto braking)

Piezopolymer IR sensors; rain
monitors; occupant identification;
HVAC sensors; air pollution sensors
(CO and NO,)

IR, vision and fiber-optic
sensors and communications
systems

To control ‘chatter’ and thereby improve
precisioln and increase productivity

In the manufacture of smaller
microelectronic circuits

For shape control, e.g. in aerodynamic
surfaces

To monitor the ‘health’ of fiber-
reinforced ceramics and metal-matrix
composites and in structural
composites

For shake-stabilization of hand-held
video cameras

Vibration and twist control of
helicopter rotor blades and
adaptive control of
aircraft control surfaces

Active noise control

Acoustic signature suppression of
submarine hulls

Chromogenic mirrors and windows

Smart comfort control systems

For improved safety, security and energy
control systems; smart windows to
reduce heating, ventilation and air
conditioning costs
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Table 1.4 (Continued)

Application System

Use

Biomechanical and

biomedical systems gels

Piezoceramic and other ultrasonic

sensors and actuators

Computer industry Piezoceramic and MEMS

accelerometers and rotation rate

Shape memory alloys and polymer

To develop artificial muscles; active
control of in vivo drug-delivery
devices (insulin pumps)

Catheter guide wires; surgical tools;
imaging devices

For smart read/write head micropositioners
in next-generation data storage devices

sensors; quartz, piezoceramic and

fiber-optic gyros

bimorph-type piezo-positioner and

asperity-detector arms

Piezo-accelerometers to provide

error-anticipating signals

For high-density disk drives

To correct for head-motion-related
read/write errors

in this part (Chapter 9) deals with control techniques
required for smart actuation.

Next, we present a complete ‘bird’s eye view’ of the
various fabrication techniques used for both bulk and
microsensors and actuators. Building on the fundamental
concepts from the earlier chapters, details of the bulk and
surface micromachining concepts for the silicon-based
processing of MEMS sensors and actuators are presented
in Chapter 10. The techniques used to fabricate polymer-
based systems, such as microstereolithography and
micromolding, are also included in Chapter 11, opening
up new opportunities, especially with regard to 3-dimen-
sional microstructures. Due to their delicate nature, these
microstructures are required to be packaged and inte-
grated with the electronics. Chapter 12 is devoted
entirely to these aspects. In addition, several examples
of sensors and actuators fabricated by the above routes
are included in Chapter 13.

The last two chapters of this book deal with some
practical applications where smart technologies includ-
ing microsystems are used to solve some real-world
problems. Implementation issues in structural, vibration
and noise-control applications are described in Chapters
14 and 15.
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Processing of Smart Materials

2.1 INTRODUCTION

Smart microsystems are a collection of microsensors and
actuators which can sense their environment and have the
ability to react to changes in that environment with the
use of a microcircuit control. The system may also need
micro-power supply and microelectronics for signal
processing. These components make the system efficient,
faster, more reliable, cheaper, less power consuming and
capable of incorporating more complex functions. Yet,
the critical functional components of smart systems are
sensors and actuators. A number of novel materials have
been developed in recent years for use in these compo-
nents.

Silicon-based micro-fabrication has been the key
factor for the rapid developments in MEMS. During
the 1980s, micro electromechanical systems (MEMS)
spun off from the developments in integrated circuit
(IC) fabrication processes, enabling co-fabrication of
sensors, actuators and control functions on silicon chips.
Since then, remarkable research advances have been made
in this area. Presently, most MEMS devices are fabri-
cated by bulk micromachining, surface micromachining,
and LIGA processes on silicon wafers [1-3]. Three-
dimensional micro-fabrication processes, incorporating
layers of more materials, were recently reported for
MEMS in some specific application areas (e.g. biome-
dical devices) and micro-actuators with higher output
powers [4-9]. Many micro devices are also fabricated by
using semiconductor processing technologies or stereo
lithography on the polymeric multifunctional structures
[10,11]. The combined architecture may also result in
sheets of ‘smart skins’ with integrated sensors and
actuators at the pm to mm scale. For example, in airfoil
surfaces, the smart skin substrate has to be flexible enough
to conform to the airfoil shape and at the same time

compatible with the IC processing procedure for sensor
and smart electronics integration.

A knowledge of the relevant properties of materials is
essential in establishing their role in various devices.
MEMS materials include metals, semiconductors, cera-
mics, polymers and composites. Some of the common
materials which are used are listed in Table 2.1. In
several MEMS devices, substrates are primarily used
for mechanical support only. In many others, these
facilitate IC compatibility. Thin film materials can have
several roles in micro systems. For example, they could
form structural or sacrificial layers in surface microma-
chined components. Dielectric thin films are usually
polymeric, ceramic or silicon-based materials. In general,
these thin film materials can have multiple functions. For
example, ‘poly-silicon’ and metal films are used as
conductors (layouts/electrodes), as well as structural
layers. Sometimes, the same material may have opposing
functions in different devices. For example, SiO, is
usually used as a sacrificial material but it is also used
as a structural or efch stop layer in other cases. Some of
these terminologies will be defined later in this chapter,
while the chapter in general focuses on introducing some
well-known processing approaches for these materials.

2.2 SEMICONDUCTORS AND THEIR
PROCESSING

Semiconductor substrates are essential starting points in
the fabrication of MEMS-based smart microsystems.
Their electrical properties are essential in ‘building’ the
necessary electronics, while their mechanical properties
allow fabrication of several structural components. Semi-
conductors are commonly inorganic materials, often
made from elements in the fourth column (Group IV)

Smart Material Systems and MEMS: Design and Development Methodologies
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Table 2.1 Materials used in MEMS
and microelectronics.
Functional class Type of material Example
Substrate Semiconductor Si, GaAs,
InP
Ceramic MgO, alumina,
sapphire
Plastic Plexiglass
Glass —
Thin films Dielectric Si0,, SizNy,
PMMA
Metal Al, Au, Ag, Pd,
Pt, Cu, Ti;
alloys
Functional PZT, STO, BST
ceramic
Semiconductor Si
Poly-silicon —
Packages Plastic —
Ceramic —
Metal —

of the Periodic Table. The most important among these
elements is silicon, since this can be modified in several
ways to change its electrical, mechanical and optical
properties. The use of silicon in solid-state electronics
and microelectronics has shown a spectacular growth
since the early 1970s. Other semiconductor materials,
from Group IV elements in the Periodic Table, are
germanium and carbon (diamond). Semiconductor mate-
rials can also be made from a combination of elements
from either Group III and Group V or Group II and Group
VI. Examples of these ‘compound semiconductors’ are
gallium arsenide and zinc telluride.

The name ‘semiconductor’ is given to these materials
because at certain regimes of temperatures they are able
to exhibit good electrical conduction properties, while
outside of these temperature regimes they behave as
insulators. The crystal structures of semiconductors are
explained based on the cubic crystalline system. In the
diamond lattice, each atom has four nearest neighbors. In
GaAs, one of the two arrays is composed entirely of Ga
atoms, while the other array is composed of As atoms.
This particular class of the diamond structure is called
the zinc blende structure. In both elemental and com-
pound semiconductors, there is an average of four
valence electrons per atom. Each atom is thus held in
the crystal by four covalent bonds with two electrons
participating in each bond. In a ‘perfect’ semiconductor
crystal at a temperature of absolute zero, the number of
available electrons would exactly fill the inner atomic
shells and the covalent bonds. At temperatures above
absolute zero, some of these electrons gain enough
thermal energy to break loose from these covalent
bonds and become free electrons. The latter are respon-
sible for electrical conduction across the semiconductor
crystal. The physical properties of some selected semi-
conductor crystals are given in Table 2.2.

By themselves, these semiconductors are of little use
in electronics and are usually doped with donor and
acceptor impurities for the fabrication of active com-
ponents and circuits. Semiconductor materials are said
to be ‘doped’ when traces of impurities are added to
them. These doped semiconductors are referred to as
extrinsic semiconductors, in contrast to intrinsic (undoped)
semiconductor materials. Diffusion and ion implanta-
tion are the two key processes used to introduce con-
trolled amounts of dopants into semiconductors. These
two processes are used to selectively dope the semicon-
ductor substrate to produce either an n-type or a p-type
region.

Table 2.2 Typical physical properties of some common semiconductors.

Property Crystalline silicon Poly-silicon Germanium GaAs
Density (kg/m") 2330 2320 5350 5316
Melting point (°C) 1410 — 937 1238
Electrical conductivity (10° x S/cm) 4x 1073 1 3x 107 ~1073
Energy band gap (eV) 1.1 1.1 0.67 1.35
Thermal conductivity (W/m/K) 168 150 60 370
Dielectric constant 11.7 — 16.3 12
Young’s modulus (GPa) 190 161 — —
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Table 2.3 Electrical, mechanical and thermal
properties of crystalline silicon.

Property Parameter Value
Electrical Minority- 30-300 ps
carrier lifetime
Resistivity 0.005-50 Q2 cm
(B-doped)
Resistivity 1-50 Q2 cm
(P-doped)
Resistivity 0.005-10Q2 cm
(Sb-doped)
Mechanical Density 2.3 gm/cm’®
Dislocations < 500/cm?
Yield strength 7 % 10° N/m?
Young’s modulus 1.9 x 10" N/m?
Thermal Thermal 1.57W/cm °C
conductivity
Thermal 2.33 x 107%/°C
expansion

Apart from being the most important material for
microelectronics and integrated circuit technology, sili-
con and its compounds and their technologies are the
‘cornerstones’ for MEMS and nanofabrication. For this
reason, we will be concentrating on silicon and using it to
demonstrate the general properties of semiconductor mate-
rials. Table 2.3 lists the relevant mechanical, electrical and
thermal properties of single-crystalline silicon. It may be
recalled that silicon has several sensory properties. For
example, it exhibits piezo resistivity, thermal variation and
optical properties. In addition, silicon also has excellent
mechanical properties. For example, Si has a better yield
strength than steel, a lower density than aluminum, a better
hardness than steel, and a Young’s modulus approaching
that of steel.

2.2.1 Silicon crystal growth from the melt

To demonstrate the methods of growing semiconductors,
we will consider the crystal growth of silicon in detail
first. Basically, the technique used for silicon crystal
growth from the melt is the Czochralski technique.
This starts from a pure form of sand (SiO,), known as
quartzite, which is placed in a furnace with different
carbon-releasing materials, such as coal and coke. Sev-
eral reactions then take place inside the furnace and the
net reaction that results in silicon is as follows:

SiC + SiO; —— Si + SiO (gas) + CO (gas) (2.1)

The silicon so-produced is known as metallurgical-grade
silicon (MGS) which contains up to 2% of impurities.
Subsequently, the silicon is treated with hydrogen chloride
to form trichlorosilane (SiHCls):

Si + 3HCl —— SiHCl; (gas) + H, (gas) (2.2)

SiHCl; is a liquid at room temperature. Fractional
distillation of the SiHCI; removes the impurities and the
purified liquid is reduced in a hydrogen atmosphere to
yield electronic-grade silicon (EGS) by the following
reaction:

SiHCl; + H, —— Si + 3HC1 (2.3)

EGS is a polycrystalline material of remarkably high
purity and is used as the raw material for preparing high-
quality Si wafers. The Czochralski technique employs
the apparatus shown in Figure 2.1. To grow a crystal,
the EGS is placed in the crucible and the furnace is heated
above the melting temperature of silicon. An appropriately
oriented seed crystal (e.g. [100]) is suspended over the
crucible in a seed holder. The seed is then lowered into
the melt. Part of it melts but the tip of the remaining
seed crystal still touches the liquid surface. The seed is
next gently withdrawn, and progressive freezing at the
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Figure 2.1 Schematic of the Czochralski crystal puller: CW,
clockwise; CCW, counter-clockwise.
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solid-liquid interface yields a large single crystal. Absolute
control of temperatures and pull rate is required for high-
quality crystals. A typical pull rate is a few millimeters per
minute.

High-resistivity silicon can only be produced by
using the float-zone crystal growth method, which does
not use a crucible during crystal growth. However, the
Czochralski method does use a quartz crucible during
crystal growth and oxygen from the crucible unintention-
ally dopes the material. The oxygen dopant behaves
as an n-type impurity and impedes high resistivity. The
float-zone method is usually carried out in an inert gaseous
atmosphere, keeping a polycrystalline rod and a seed
crystal vertically face-to-face. Both are partially melted
by high-frequency inductive heating at the (molten-zone)
liquid phase. This molten zone is gradually moved
upwards while rotating the seed crystal until the entire
polycrystalline rod has been converted in to a single
crystal. This process has the advantage that there is no
physical contact with the crucible. This method is diffi-
cult to carry out for producing large wafer sizes and is
thus less used.

After a crystal is grown, the seed is removed from the
other end of the ingot, which is then left to solidify. Next,
the surface is ground so that the diameter of the material
is defined. After this, one or more flat regions are ground
along the length of the ingot to mark the specific crystal
orientation of the ingot and the ‘conductivity type’ of the
material (Figure 2.2). Finally, the ingot is sliced by a
diamond saw into wafers. Such slicing determines four
wafer parameters, i.e. surface orientation, thickness,
taper (which is defined as the variation in wafer thickness
from one end to another) and bow (i.e. surface curvature
of the wafer, measured from the center of the wafer to its
edge).

2.2.2 Epitaxial growth of semiconductors

In many situations, it may not be feasible to start with a
silicon substrate to build a smart system. Instead, one

p-type p-type n-type n-type
[111] [100] [111] [100]
@ ¢ Primary flat
/ (in all types)
~__ T
Secondary flat

Figure 2.2 Crystal orientation and dopant types in commercial
silicon wafers.
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Figure 2.3 Schematic of the vapour phase epitaxy process used
to produce silicon layers.
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could start with other possibilities and grow silicon films
on the substrate by epitaxial deposition to ‘build the
necessary electronics’. The method for growing a silicon
layer on a substrate wafer is known as an epitaxial
process where the substrate wafer acts as the seed crystal.
Epitaxial processes are different from crystal growth
from the melt in that the epitaxial layer can be grown
at a temperature much lower than the melting point.
Among various epitaxial processes, vapor phase epitaxy
(VPE) is the most common.

A schematic of the VPE apparatus is given in Figure 2.3,
and shows a horizontal susceptor made from graphite
blocks. The susceptor mechanically supports the wafer
and being an induction-heated reactor it also serves as
the source of thermal energy for the reaction.

Several silicon sources can be used, e.g. silicon tetra-
chloride (SiCly), dichlorosilane (SiH,Cl,), trichlorosilane
(SiHCl3) and silane (SiHy). The typical reaction tempera-
ture for silicon tetrachloride is ~1200°C. The overall
reaction, in the case of silicon tetrachloride, is reduction
by hydrogen, as follows:

SiCly (gas) + 2H, (gas) —— Si (solid) + 4HCI (gas)
(2.4)

A competing reaction which occurs simultaneously is:

SiCly (gas) + Si (solid) —— 2SiCl, (gas)  (2.5)
In Equation (2.4), silicon is deposited on the wafer,
whereas in Equation (2.5) silicon is removed (etched).
Therefore, if the concentration of SiCl, is excessive,
etching rather than growth of silicon will take place.
An alternative epitaxial process for silicon layer growth
is molecular beam epitaxy (MBE) which is an epitaxial
process involving the reaction of a thermal beam of silicon
atoms with a silicon wafer surface under ultra-high vacuum
conditions (~ 1071 torr). MBE can achieve precise con-
trol in both chemical composition and impurity profiles
when introduced intentionally. Single-crystal multilayer
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structures with dimensions of the order of atomic
layers can be made by using MBE. The solid source
materials are placed in evaporation cells to provide an
angular distribution of atoms or molecules in a beam.
The substrate is heated to the necessary temperature
and is often continuously rotated to improve the growth
homogeneity.

2.3 METALS AND METALLIZATION
TECHNIQUES

Metals are used in MEMS and microelectronics due to
their good conductivities, both thermal and electrical.
Metals are somewhat strong and ductile at room tem-
perature and maintain good strength, even at elevated
temperatures. Hence, they could also be used to form
useful structures.

While thin metal films have been used in IC chips for a
long time (primarily due to their electrical conductiv-
ities), thick metal film structures are required for some
MEMS devices [12]. Thick metal films are generally
used as structural materials in MEMS devices or as mold
inserts for polymers in ceramic micromolding. Micro-
electroplating and photoforming are used to build such
thick metal structures [13,14]. Nickel, copper and gold
can be electroplated to form these thick films, while
three-dimensional stainless steel micro-parts can be fab-
ricated by a process known as photoforming [8]. However,
in most instances a layer of metal is first deposited by a
process known as metallization.

Metallization is a process whereby metal films are
formed on the surface of a substrate. These metallic films
are used for interconnections, ohmic contacts, etc.
Hence, their continuity, uniformity and surface properties
are critical in the device performance. Metal films can be
formed by using various methods, with the most impor-
tant being physical vapor deposition (PVD). The latter is
performed under vacuum by using either an evaporation
or sputtering technique. In these, physical mechanisms,
such as evaporation or impact, are used as the means of
deposition —unlike in CVD where a chemical reaction is
taking place under ‘favorable conditions’. In evaporation,
atoms are removed from the source by thermal energy
while in sputtering, the impact of gaseous ions is the
cause of such removal.

The evaporation rate is a function of the vapor pressure
of the metal. Hence, metals that have a low melting
point (e.g. 660 °C for aluminum) are easily evaporated,
whereas refractory metals require much higher tempera-
tures (e.g. 3422 °C for tungsten) and can cause damage to

polymeric or plastic samples. In general, evaporated
films are highly disordered and have large residual
stresses; thus, only thin layers of the metal can be
evaporated. The chemical purity of the evaporated films
depends on the level of impurities in the source and
contamination of the source from the heater, crucible or
support materials and are also due to residual gases
within the chamber [14]. In addition, the deposition
process is relatively slow—at a few nanometers per
second.

Sputtering is a physical phenomenon involving the
acceleration of ions via a potential gradient and the
bombardment of a ‘target’ or cathode. Through momen-
tum transfer, atoms near the surface of the target metal
become volatile and are transported as a vapor to a
substrate. A film grows at the surface of the substrate
via deposition. Sputtered films tend to have better uni-
formity than evaporated ones and the high-energy plasma
overcomes the temperature limitations of evaporation.
Most elements from the Periodic Table can be sputtered,
as well as inorganic and organic compounds. Refractory
materials can be sputtered with ease. In addition, materi-
als from more than one target can be sputtered at the
same time. This process is referred to as ‘co-sputtering’
and can be used to form ‘compound thin films’ on the
substrate. The sputtering process can, however, be used
to deposit films with the same stoichiometric composi-
tion as the source and hence allows the utilization of
alloys as targets [14]. Sputtered thin films have better
adhesion to the substrate and a greater number of grain
orientations than evaporated films.

The structures of sputtered films are mainly amor-
phous and their stress and mechanical properties are
sensitive to specific sputtering conditions. Some atoms
of the inert gas can be trapped in the film, hence causing
anomalies in the mechanical and structural characteris-
tics. Therefore, the exact properties of a thin film vary
according to the precise conditions under which it was
grown. The deposition rate is proportional to the square
of the current density and is inversely proportional to the
spacing between the electrodes.

Metallo-organic chemical vapor deposition (MOCVD)
is a relatively low temperature (200-800 °C) process for
the epitaxial growth of metals on semiconductor sub-
strates. Metallo-organics are compounds where each
atom of the element is bound to one or many carbon
atoms of various hydrocarbon groups. For precise control
of the deposition, high-purity materials and very accurate
controls are necessary [15]. However, due to the high
cost, this approach is used only where high-quality metal
films are required.
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In addition to several elemental metals, various alloys
have also been developed for MEMS. CoNiMn thin films
have been used as permanent magnet materials for
magnetic actuation. NiFe permalloy thick films have
been electroplated on silicon substrates for magnetic
MEMS devices, such as micromotors, micro-actuators,
microsensors and integrated power converters [14]. TiNi
shape memory alloy (SMA) films have been sputtered
onto various substrates in order to produce several well-
known SMA actuators [16]. Similarly, TbFe and SmFe
thin films have also been used for magnetostrictive
actuation [17].

2.4 CERAMICS

Ceramics are another major class of materials widely
used in smart systems. These generally have better
hardness and high-temperature strength. The thick cera-
mic film and three-dimensional (3D) ceramic structures
are also necessary for MEMS for special applications.
Both crystalline as well as non-crystalline materials are
used in the context of MEMS. For example, ceramic
pressure microsensors have been developed for pressure
measurement in high-temperature environments [16],
silicon carbide MEMS for harsh environments [18], etc.
In addition to these structural ceramics, some functional
ceramics, such as ZnO and PZT, have also been incor-
porated into smart systems.

New functional microsensors, micro-actuators and
MEMS can be realized by combining ferroelectric thin
films, having prominent sensing properties such as pyro-
electric, piezoelectric and electro-optic effects, with
micro devices and microstructures. There are several
such ferroelectric materials including oxides and non-
oxides and their selection depends on a specific applica-
tion. Generally, ferroelectric oxides are superior to ferro-
electric non-oxides for MEMS applications. One useful
ferroelectric thin film studied for microsensors and
RF-MEMS is barium strontium titanate [19]. Hence, as
a typical example, we will concentrate on this material
and its preparation method in this section.

Barium strontium titanate (BST) is of interest in
bypass capacitors, dynamic random access memories
and phase shifters for communication systems and adap-
tive antennas because of its high dielectric constant. The
latter can be as high as 2500 at room temperature. For
RF-MEMS applications, the loss tangent of such materials
should be very low. The loss tangent of BST can be
reduced to 0.005 by adding a small percentage (1-4 %)

of Fe, Ni and Mn to the material mixture [20-22]. The
(Ba—Sr)TiOs series, (Pb—Sr)TiO3 and (Pb—Ca)TiO; mate-
rials and similar titanates, having their Curie temperatures
in the vicinity of room temperature, are well suited for
MEMS phase shifter applications. The relative phase shift
is obtained from the variation of the dielectric constant
with DC biasing fields.

Ferroelectric thin films of BST have usually been
fabricated by conventional methods, such as RF sputter-
ing [23], laser ablation [24], MOCVD [25] and hydro-
thermal treatment [25]. Even though sputtering is widely
used for the deposition of thin films, it has the potential
for film degradation by neutral and negative-ion bom-
bardment during film growth. For BST, this ‘re-sputtering’
can lead to ‘off-stoichiometric’ films and degradation of
its electrical properties. In a recent study, Cukauskas et al.
[26] have shown that inverted cylindrical magnetron
(ICM) REF sputtering is superior for BST. This fabrication
set-up is discussed in the next section.

2.4.1 Bulk ceramics

As a high dielectric constant and low loss tangent are the
prime characteristics of ceramic materials such as barium
strontium titanate (BST), a ceramic composite of this
material is usually fabricated as the bulk material. It is
known that the Curie temperature of BST can be changed
by adjusting the Ba:Sr ratio. Sol-gel processing is
sometimes adopted to prepare Ba;_,Sr,TiOs for four
values of x, i.e. 0.2, 0.4, 0.5 and 0.6. The sol-gel method
offers advantages over other fabrication technique for better
mixing of the precursors, homogeneity, purity of phase,
stoichiometry control, ease of processing and controlling
composition. The sol-gel technique is one of the most
promising synthesis methods and is now being exten-
sively used for the preparation of metal oxides in ‘bulk’,
‘thin film’ and ‘single crystal’ forms. The advantage of
the sol-gel method is that metal oxides can easily be
doped accurately to change their stoichiometric compo-
sition because the precursors are mixed at the ‘molecular
level’ [27].

Titanium tetraisopropoxide (Ti(O-Cs;H;),) and cata-
lyst are mixed in the appropriate molar ratio with
methoxyethanol solvent and refluxed for 2h at 80C.
Separate solutions of Ba and Sr are prepared by dissol-
ving the 2,4-pentadionate salts of Ba and Sr in methox-
yethanol. Mild heating is required for complete
dissolution of the salts. The metal salt solution is then
slowly transferred to the titania sol and the solution is
refluxed for another 6h. The sol is then hydrolyzed to
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4 M concentration in water. It is important to note that
direct addition of water leads to precipitation in the sol.
Therefore, a mixture of water/solvent has to be prepared
and then added to the sol drop-by-drop. The resultant sol
is refluxed for 2h to complete the hydrolysis. This sol
was kept in an oven at 90 °C to obtain the xerogel and
then heated at 800 °C for 30 min in air to obtain the BST
powder. If necessary, the latter can be mixed at an
appropriate wt% with metal oxides e.g. Al,O; and
MgO, in an ethanol slurry. Then, 3wt % of a binder
(e.g. an acrylic polymer) is added to the slurry and the
mixture ball-milled using a zirconia grinding medium.
Ball-milling is performed for 24h and the material is
then air-dried and properly sieved to avoid any agglom-
eration. The final powder is pressed at a pressure of
8 tonnes in a suitable sized mold. The composites are
then fired under air, initially at 300 °C for 2 h and finally
at 1250°C for 5h. The heating and cooling rate of the
furnace is typically 1°C/min. The structure of the
Ba;_,Sr, TiO3 is determined by using X-ray diffraction
(XRD) so that a pure phase of the BST can be analyzed.
The dielectric constants were measured at 1 MHz at room
temperature by a two-probe method using an impedance
analyzer (HP 4192A).

Metal oxides are used to fabricate composites of
Ba;_,Sr, TiO;3 in order to vary its electronic properties.
Investigations, carried out by varying the weight ratio of
BST from 90 to 40 % in its composites with Al,O5; and
MgO, indicate that the dielectric constant decreases
with increasing metal oxide content. The dielectric
constant of a BST composite with MgO is observed to
be higher than its composite with Al,O3. It is assumed
that the addition of metal oxides plays an important
role in affecting the grain boundaries of Ba;_,Sr, TiOs,
which leads to an increase in dielectric loss. The com-
posite of Ba;_,Sr, TiO3; with alumina offers a low dielec-
tric constant and low loss in comparison to MgO and
hence is usually preferred for low-loss applications. It is
concluded from these measurements that if we select a
weight of metal oxide less than 10 %, then the loss tangent
and the dielectric constant can be ‘tailored’ for the desired
range [21].

2.4.2 Thick films

Tape casting is a basic fabrication process which can
produce materials that are the backbone of the electronics
industries where the major products are capacitor dielec-
trics, thick and thin film substrates, multilayer circuitry
(ceramic packing) and piezoelectric devices. Particles

can be formed into dense, uniformly packed ‘green-
ware’ by various techniques, such as sedimentation, slip
casting, (doctor-blade) tape casting and electrophoretic
deposition. Tape casting is used to form sheets —thin, flat
ceramic pieces that have large surface areas and low
thickness. Therefore, tape casting is a very specialized
ceramic fabrication technique.

The doctor-blade process basically consists of sus-
pending finely divided inorganic powders in aqueous or
non-aqueous liquid systems composed of solvents, plas-
ticizers and binders to form a slurry that is then cast onto
a moving carrier surface. For a given stacking sequence,
the strength is controlled by critical micro-cracks, whose
severity is very sensitive to casting parameters such as
the particle size of the powder, the organic used and
the temperature profile. In this forming method, a large
volume of binder (up to 50%) has to be added to the
ceramic powder to achieve rheological properties appro-
priate for processing. This large volume of binder has to
be removed before the final sintering can take place.
There is usually a difference in firing shrinkage between
the casting direction and the cross-casting direction for
the tape.

Titanium tetraisopropoxide (Ti(O-CsH5)4) (1 mol) and
triethanolamine (TEA) (molar ratio of 1 with respect to
Ti(O-C3;H7)4) were mixed in appropriate molar ratios
with methoxyethanol solvent (100 ml) and refluxed for
2h at 80°C. Separate solutions of 0.65mol of Ba and
0.35mol of Sr were prepared by dissolving the 2,4-
pentadionate salts of Ba and Sr in methoxyethanol to
achieve x = 0.35. Mild heating was required for com-
plete dissolution of the salts. The metal salt solution was
then slowly transferred to the titania sol, and the solution
refluxed for another 6h. The sol was then hydrolyzed
with a particular concentration of water (molar ratio of 2
with respect to Ti(O-C3H7)4). A water/solvent mixture
has to be prepared and then added to the sol drop-by-drop
to avoid precipitation. The resultant sol was refluxed for
another 6h to allow complete hydrolysis. This sol was
then kept in an oven at 90 °C for 6-7 days in order to
obtain the xerogel. Finally, the xerogel was calcined at
900 °C for 30 min in air.

BST powder can also be prepared by a ‘conven-
tional’ method. In this approach, oxides of barium,
strontium and titanate were used at appropriate molar
ratios for achieving a value of x of 0.35. These oxides
were mixed with 100 ml of ethyl alcohol in a plastic
container and ball-milled for 24 h with zirconia balls.
The slurry from the container was transferred into
a beaker and dried in an oven at 80°C for 2 days in
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air. The dried powder was calcined at 900°C for
30 min.

A tape-casting technique is used to fabricate ceramic
multilayered BST tape. BST powder obtained by one of
the above methods was mixed with 10 wt% of ethanol
and 10 wt% of methyl ethyl ketone (MEK); 1 wt% of fish
oil was then added to the mixture. Calvert et al. [28] have
reported that fish oil is far superior than triglycerides due
to the polymeric structure induced by oxidation. The
mixture is ball-milled in a plastic jar with a zirconia

medium for 24 h. ‘Santicizer’ (4 wt%), used as a plasti-
cizer, was added to the resultant slurry, followed by
4wt% of Carbowax 400 (poly(ethylene glycol)) along
with 0.73 wt% of cyclohexanone. ‘Acryloid’ (13.9 wt%)
was added to the slurry as a binder. The slurry was ball-
milled for another 24 h and then tape-cast and ‘de-aired’.
The tape-cast BST was punched and stacked to produce
multiple layers. The tapes were then pressed at a pressure
of 35MPa and a temperature of 70°C for 15min. A
schematic of this process is shown in Figure 2.4
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Figure 2.4 Flow chart for thick film fabrication using the doctor-blade process.
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2.4.3 Thin films

Thin films of ceramic materials can be fabricated by
using several different approaches. In this section, we
will first describe RF sputtering. Due to its similarity
with the thick film and bulk processing techniques
described above, the sol-gel process for thin films is
also presented here.

2.4.3.1 Inverted cylindrical magnetron (ICM)
RF sputtering

Figure 2.5 illustrates the ICM sputter gun set-up [26].
This consists of a water-cooled copper cathode, which
houses the hollow cylindrical BST target, surrounded by
a ring magnet concentric with the target. A stainless steel
thermal shield is mounted to shield the magnet from the
thermal radiation coming from the heated table. The
anode is recessed in the hollow-cathode space. The latter
aids in collecting electrons and negative ions, hence
minimizing ‘re-sputtering’ the growing film. Outside
the deposition chamber, a copper ground wire is attached
between the anode and the stainless steel chamber. A DC
bias voltage could be applied to the anode to alter the
plasma characteristics in the cathode/anode space. The
sputter gas enters the cathode region through the space
surrounding the table.

By using the above set-up, Cukauskas et al. [26] were
able to deposit BST films at temperatures ranging from
550 to 800 °C. The substrate temperature was maintained
by two quartz lamps, a type-K thermocouple and a
temperature controller. The films were deposited at
135W to a film thickness of 7000 A and cooled to
room temperature at 1atm of oxygen before removing
them from the deposition unit. This was then followed by
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Figure 2.5 Schematic of the ICM sputter gun set-up [26].

annealing the films in 1atm of flowing oxygen at a
temperature of 780 °C for 8h in a tube furnace.

2.4.3.2 Sol-gel processing technique

The sputtering techniques described above and other
methods, such as laser ablation, MOCVD and hydro-
thermal treatment, require much work, time and high
costs of instrumentations, which lead to a high cost for
the final product. However, large areas of homogenous
films can be obtained by relatively low temperature heat
treatment. The sol-gel method is a technique for produ-
cing inorganic thin films without processing in vacuum,
and offers high purity and ensures homogeneity of the
components at the ‘molecular level’ [29].

In the sol-gel method, the precursor solution of barium
strontium titanates is prepared from barium 2-ethyl hex-
anoate, strontium 2-ethyl hexanoate and titanium tetraiso-
propoxide (TTIP). Methyl alcohol is used as a solvent,
along with acetyl acetonate. A known amount of barium
precursor is dissolved in 30ml of methyl alcohol and
refluxed at a temperature of about 80 °C for 5 h. Strontium
2-ethyl hexanoate is added to this solution and refluxed for
a further 5 h to obtain a yellow-colored solution. Acetyla-
cetonate is added to the solution as a chelating agent, which
prevents any precipitation. This solution is stirred and
refluxed for another 3 h. Separately, a solution of titanium
isopropoxide (TTIP) is prepared in 20 ml of methyl alco-
hol; this solution is added to the barium strontium solution
drop-by-drop and finally refluxed for 4 h at 80 °C. Water is
added to the BST solution drop-by-drop in order to initiate
hydrolysis. This solution is refluxed for another 6h with
vigorous stirring under a nitrogen atmosphere.

For thin-film deposition and characterization, one
could use a substrate such as platinized silicon or a
ceramic. The substrate is immersed in methanol and
dried by nitrogen gas to remove any dust particles. The
precursor solution is coated on the substrate by spin
coating. The latter is carried out by using a spinner
rotated at a rate of 3100 rpm for 30s. After coating on
the substrate, the films are kept on a hot plate for 15 min
to dry and pyrolyze the organics. This process can be
repeated to produce multilayer films if needed. In such
cases repeated heating after every spin coat is required in
order to successfully ‘burn off’ the organics trapped in
the films. This improves the crystallinity and leads to a
dense sample after multiple coating. To obtain thicker
films, many depositions are required. The films are then
annealed at 700 °C for 1h in air. The annealing tempera-
ture and duration has a significant effect in the film
orientation and properties [30,31].
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2.5 SILICON MICROMACHINING
TECHNIQUES

Micromachining is the fundamental technology for the
fabrication of micro electromechanical (MEMS) devices,
in particular, miniaturized sensors and actuators having
dimensions in the sub-millimeter range. Silicon micro-
machining is the most mature of the micromachining
technologies. This process refers to the fashioning of
microscopic mechanical parts out of a silicon substrate
or on a silicon substrate, thus making the structures
three dimensional and hence bringing in new avenues to
designers. By employing materials such as crystalline
silicon, polycrystalline silicon and silicon nitride, a variety of
mechanical microstructures, including beams, diaphragms,
grooves, orifices, springs, gears, suspensions and numerous
other complex mechanical structures, have been fabricated
[32-36].

Silicon micromachining has been a key factor for
the vast progress of MEMS towards the end of the
20th Century. Silicon micromachining comprises two
technologies: bulk micromachining, in which structures
are etched into a silicon substrate, and surface micro-
machining in which the micromechanical layers are formed
from layers and films deposited on the surface. Yet another
but less common method, i.e. LIGA 3D micro-fabrication,
has been used for the fabrication of high-aspect ratio and
three dimensional microstructures for MEMS.

Bulk micromachining, which originated in the 1960s,
has matured as the principal silicon micromachining
technology and has since been used in the successful
fabrication of many microstructures. Presently, bulk
micromachining is employed to fabricate the majority
of commercial devices—pressure sensors, silicon valves
and acceleration sensors. The term ‘bulk micromachin-
ing’ arises from the fact that this type of micromachining
is used to realize micromechanical structures within the
bulk of a single-crystal silicon wafer by selectively
removing the wafer material. The microstructures fabri-
cated by using bulk micromachining may vary in thick-
ness from sub-microns to the full thickness of a wafer
(200 to 500 pm), with the lateral size ranging from microns
to the full diameter of a wafer (usually 75 to 200 mm).

The bulk micromachining technique allows selective
removal of significant amounts of silicon from a substrate
to form membranes on one side of the wafer, a variety
of trenches, holes or other structures. In addition to an
etch process, bulk micromachining often requires wafer
bonding and buried-oxide-layer technologies [37]. How-
ever the use of the latter in bulk micromachining is still
in its infancy. In recent years, a vertical-walled bulk

micromachining techniques, known as single crystal
reactive etching and metallization (SCREAM) which is
a combination of anisotropic and isotropic plasma etching,
has also been used [36].

Since the beginning of the 1980s, significant interest
has been directed towards micromechanical structures
fabricated by a technique called surface micromachining.
This approach does not shape the bulk silicon, but instead
builds structures on the surface of the silicon by depositing
thin films of ‘sacrificial layers’ and ‘structural layers’ and
by eventually removing the sacrificial layers to release the
mechanical structures. More details on the processing steps
involved in the fabrication of MEMS components using
these techniques will be discussed in Chapter 10. The
dimensions of these surface-micromachined structures
can be several orders of magnitude smaller than bulk-
micromachined structures. The resulting ‘2%2-dimensional’
structures are mainly located on the surface of the silicon
wafer and exist as a thin film —hence the ‘half dimension’.
The main advantage of surface-micromachined structures
is their easy integration with IC components, since the
same wafer surface can also be processed for IC elements.
Surface micromachining can therefore be used to build
monolithic MEMS devices.

2.6 POLYMERS AND THEIR SYNTHESIS

Polymers are very large molecules (macromolecules)
made up of a number of small molecules. These small
molecules which connect with each other to build up the
polymer are referred to as monomers and the reaction by
which they connect together is called polymerization.
Recently, a considerable effort is being focused on the
use of polymers in microelectronics and micro electro-
mechanical systems (MEMS). Features that make them
particularly attractive are moldability, conformability,
ease in deposition in the form of thin and thick films,
semiconducting and even metallic behavior in selected
polymers, a choice of widely different molecular struc-
tures and the possibility of piezoelectric and pyroelectric
effects in the polymer side-chain.

For several MEMS devices, the polymers need to have
conductive and possibly piezoelectric or ferroelectric
properties. For these polymers to be used for polymeric
MEMS, they should have the following:

e Strong interfacial adhesion between the various poly-
mer layers.

e Suitable elastic moduli to support the deformation
required in MEMS.
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e Excellent overall dimension stability.
e [ong-term environmental stability.

In addition, their processing should help attachment of
nanoceramics and/or conductive phases and formation of
a uniform coating layer. Furthermore, many of these
polymers provide a large strain under an electric field
and thus can be used as actuators for MEMS-based
devices such as micro pumps.

Polymer processing techniques include photopolymer-
ization, electrochemical polymerization and vacuum
polymerization, either stimulated by electron bombard-
ment or initiated by ultraviolet irradiation, or microwave-
assisted polymerization. These methods are also widely
used for processing and curing thin and thick polymer
films on silicon-based electronic components.

Two types of polymers are employed for microma-
chining polymeric MEMS devices: structural polymers
and sacrificial polymers. The structural polymer is
usually a UV-curable polymer with a urethane acrylate,
epoxy acrylate or acryloxysilane as the main ingredient.
Its low viscosity allows easy processing through auto-
matic equipment or by manual methods without the need
to add solvents or heat to reduce the viscosity. It also
complies with all volatile organic compound (VOC)
regulations. It has excellent flexibility and resistance to
fungus, solvents, water and chemicals. The structural
polymer may be used as a backbone structure for build-
ing the multifunctional polymer described below.

It should be pointed out here that the above structural
polymers can also be used to construct sensing and
actuating components for MEMS. Polymer strain gauges
and capacitors can serve as sensing elements for piezo-
resistive and capacitive microsensors [38]. Another impor-
tant point is that as the wafer polymer micro-fabrication
process is being developed for polymer micro devices, the
batch fabrication of polymereric MEMS will not be a
serious concern.

The sacrificial polymer is an acrylic resin containing
50 % silica and is modified by adding crystal violet, as
given in Varadan and Varadan [38]. This composition is
UV-curable and can be dissolved with 2 mol/l of caustic
soda at 80 °C. In principle, this process is similar to the
surface micromachining technique used for silicon
devices. However, the process yields 3D structures.

Since only limited sensing and actuation mechanisms
can be obtained using structural polymers by themselves,
a large variety of functional polymers have been used for
MEMS [39]. Some of these functional polymers are listed
in Table 2.4. Such polymers used in smart systems may
contain several functional groups. A ‘Functional group’ is

Table 2.4 Functional polymers for MEMS.

Polymer Functional Application
property
PVDF Piezoelectricity ~ Sensor/actuator
Polypyrrole Conductivity Sensor/actuator/
electric/connection
Fluorosilicone Electrostrictivity Actuator [40]
Silicone Electrostrictivity Actuator [40]
Polyurethane  Electrostrictivity Actuator [40]

defined as the atom or group of atoms that defines the
structure of a particular family of organic compounds and,
at the same time, determines their properties. Some
examples of functional groups are the double bond in
alkenes, triple bond in alkynes, the amino (-NH,) group,
the carboxyl (-COOH) group, the hydroxyl (~OH) group,
etc. ‘Functionality’ can be defined as the number of such
functional groups per molecule of the compound.

Many polymers used in MEMS are biocompatible and
are thus useful for many medical devices. Applications of
these include implanted medical delivery systems, che-
mical and biological instruments, fluid delivery in
engines, pump coolants and refrigerants for local cooling
of electronic components.

Functional polymer-solid powder composites with
magnetic and magnetostrictive properties have also
been developed for micro devices. For example, the
polymer-bonded Terfenol-D composites showed excel-
lent magnetostrictivity, useful for micro-actuation [41].
The polyimide-based ferrite magnetic composites have
been used as polymer magnets for magnetic micro-
actuators [42].

In addition to being used as sensing and actuating
materials, polymers have also been used for electronics
materials. Polymer transistors have been developed.
Therefore, integrating polymer sensors, actuators and
electronics into polymeric MEMS will be practical for
some special applications.

2.6.1 Classification of polymers

Polymers can be classified, based on their structure (linear,
branched or cross-linked), by the method of synthesis,
physical properties (thermoplastic or thermoset) and by
end-use (plastic, elastomer, fiber or liquid resin).

A linear polymer is made up of identical units
arranged in a linear sequence. This type of polymer has
only two functional groups. Branched polymers are those
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Figure 2.6 The various kinds of branching in polymers:
(a) short; (b) long; (c) star.

in which there are many side-chains of lined monomers
attached to the main polymer chain at various points.
These side-chains could be either short or long (Figure 2.6).
When polymer molecules are linked with each other
at points, other than their ends, to form a network, the
polymers are said to be cross-linked (Figure 2.7). Cross-
linked polymers are insoluble in all solvents, even at
elevated temperatures.

Based on their physical properties, polymers may be
classified as either thermoplastic or thermoset. A poly-
mer is said to be a thermoplastic if it softens (flows)
when it is squeezed, or pulled, by a load, usually at a high
temperature, and hardens on cooling. This process of
reshaping and cooling can be repeated several times.
High-density polyethylene (HDPE) or low-density poly-
ethylene (LDPE), poly(vinyl chloride) (PVC) and nylon are
some examples of thermoplastic polymers.

Thermoset polymers, on the other hand, can flow easily
and can be molded when initially produced. Once they are
molded in to their shape, usually by applying heat and
pressure, these materials become very hard. This process
of the polymer becoming an infusible and insoluble mass
is called ‘curing’. Reheating such a thermosetting polymer
just results in the degradation of the polymer and will
distort the object made. Epoxy and phenol formaldehyde
are some examples of thermosetting polymers.

Depending upon their final use, polymers can be
classified as plastic, elastomer, fiber or liquid resin.
When a polymer is formed into hard and tough articles
by the application of heat and pressure, then it is used as

Figure 2.7 [Illustration of cross-linking in polymers.

a plastic. When a polymer is vulcanized into rubbery
materials, which show good strength and elongation, it is
used as an elastomer. Fibers are polymers drawn into
long filament-like materials, whose lengths are at least
100 times their diameters. When the polymer is used in
the liquid form, such as in sealants or adhesives, they are
called liquid resins.

2.6.2 Methods of polymerization

There are basically two methods by which polymers can
be synthesized, namely ‘addition’ or ‘chain’ polymeriza-
tion and ‘condensation’ or ‘step-growth’ polymerization.
When molecules just add on to form the polymer, the
process is called ‘addition’ or ‘chain’ polymerization. The
monomer in this case retains its structural identity, even
after it is converted into the polymer, i.e. the chemical
repeat unit in the polymer is the same as the monomer.
When molecules react with each other (with the elimina-
tion of small molecules such as water, methane, etc.),
instead of simply adding together, the process is called
step-growth polymerization. In this case, the chemical
repeat unit is different from the monomer.

2.6.2.1 Addition polymerization

Compounds containing a reactive double bond usually
undergo addition polymerization, also called chain poly-
merization. In this type of polymerization process, a
low-molecular-weight monomer molecule with a double
bond breaks the double bond so that the resulting free
valencies will be able to bond to other similar molecules
to form the polymer. This polymerization takes place in
three steps, namely, initiation, propagation and termina-
tion. This can be induced by a free-radical, ionic or
coordination mechanism. Depending on the mechanism,
there are therefore three types of chain polymerization,
namely, free radical, ionic (cationic and anionic) and
coordination polymerization. The coordination polymer-
ization mechanism is excluded in this present discussion
due to its specialized nature.

2.6.2.2 Free-radical polymerization

There are three steps in polymerization: initiation, pro-
pagation and termination. In this type of polymerization,
the initiation is brought about by the free radicals
produced by the decomposition of initiators, where the
latter break down to form free radicals. Each component
has an unpaired (lone) electron and is called a free
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radical. This radical adds to a molecule of the monomer
and in doing so generates another free radical. This
radical adds to another molecule of the monomer to
generate a still larger radical, which in turn adds to yet
another molecule of monomer, and the process continues.

The decomposition of the initiator to form these free
radicals can be induced by heat, light energy or catalysts.
Peroxides, many azo compounds, hydroperoxides and
peracids are the most commonly used initiators. The
latter can also be decomposed by UV light. The rate of
decomposition in this case depends mainly on the inten-
sity and wavelength of radiation and not so much on the
temperature. A polymerization reaction initiated by UV
light falls under the category of photoinitiated polymer-
ization. The reaction in such a case may be expressed as
follows

PI+hv — R} (2.6)
where PI represents the photoinitiator, and R is the
reactive intermediate from the UV cleavage of PI.

UV curing is therefore based on photoinitiated
polymerization which is mediated by photoinitiators.
These photoinitiators are required to absorb light in the
UV-visible spectral range, generally 250-550 nm, and
convert this light energy into chemical energy in the
form of reactive intermediates, such as free radicals
and reactive cations, which subsequently initiates the
polymerization.

During the propagation step, the radical site on the
first monomer unit reacts with the double bond of a
‘fresh’ monomer molecule, which results in the linking
up of the second monomer unit to the first and the
transfer of the free radical onto the second monomer
molecule. This process, involving the attack on a fresh
monomer molecule, which in turn keeps adding to the
growing chain, is called propagation. The chain keeps
propagating as far as the monomer is available. This step
can also end when the free-radical site is ‘killed’ by some
impurities or by the termination process.

The propagation step can be represented as follows:

M +M—— M} (2.7)

where M represents the monomer molecule, and
M ...M; represent reactive molecules.

The last step in the polymerization reaction is called
termination. In this step, any further addition of the mono-
mer units to the growing chain is stopped and the growth
of the polymer chain is inhibited. The decomposition of
the initiator results in the formation of a large number of

Table 2.5 Examples of monomers polymerized
by using free-radical polymerization.

Monomer Structure

Ethylene CH,=CH,
Butadiene CH,=CH-CH=CH,
Styrene CH,=CH-Cg4H5;
Vinyl chloride CH,=CH-Cl
Vinylidene chloride CH,—CCl,

Acrylic acid
Methyl methacrylate

CH,=CH-COOH
CH,—C(CH;)COOCH;

free radicals. Depending on factors such as temperature,
time and monomer and initiator concentrations, there exists
a chance when the growing chains collide against each
other. This can occur in two ways:

e Termination by combination — the chain terminates by
the simple formation of a bond between two radicals.

e Termination by disproportionation — a proton is trans-
ferred and a double bond is formed.

These reactions can be represented as follows:

M; +M; —— M.y, (combination)

M; + M} —— M, + M, (disproportionation)

where M, is the stable polymer molecule containing x + y
monomer units, while M, and M, are also stable polymer
molecules with x and y monomer units, respectively.
Some common monomers that can be polymerized by
using free-radical polymerization are listed in Table 2.5.

2.6.2.3 Cationic polymerization

Ionic polymerization involves the breaking down of the
n-electron pair of the monomer. This is not done by free
radicals but by either a positive or negative ion. If the
active site has a positive charge (i.e. a carbonium ion),
then it is called cationic polymerization. Monomers
which have an electron-donating group are the most
suitable for cationic polymerization, for example, alkyl
vinyl ethers, vinyl acetals, isobutylene, etc.

Initiation in this case can be achieved by using proto-
nic acids and Lewis acids. The latter usually require a
‘co-catalyst’ such as water or methyl alcohol. Here, a
proton is introduced into the monomer. This proton pulls
the m-electron pair towards it and this is how the positive
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charge moves to the other end of the monomer, hence
resulting in the formation of a carbonium ion:

CXC)
C+XH=—=HXC (ion-pair formation) (2.10)

HXC+M—— HMXC (initiation) (2.11)
where C is the catalyst, XC the co-catalyst and M the
monomer.

Propagation of the cationic polymerization reaction
occurs as the carbonium ion attacks the n-electron pair of
the second monomer molecule. The positive charge is
then transferred to the farther end of the second mono-

mer, and thus a chain reaction is started:

@ O D O
HMXC+M—— HMMXC (propagation) (2.12)

Termination can occur by anion—cation recombination,
resulting in an ester group. Termination can also occur by
splitting of the anion. This occurs by reaction with trace
amounts of water:

o O ]
HM,MXC +M — HM,M + HXC (termination)

(2.13)

® O D 0
HM, MXC —— HM,M + HXC

(chain transfer to monomer) (2.14)

2.6.2.4 Anionic polymerization

If the active site has a negative charge (i.e. a carbanion),
then the process is called anionic polymerization. Mono-
mers capable of undergoing anionic polymerization are
isoprene, styrene and butadiene.

Initiation takes place in the same way as in cationic
polymerization, except that here a carbanion is formed.
The general initiators used in this case are the alkyl
and aryl derivatives of alkali metals such as triphenyl
methyl potassium and ethyl sodium. Propagation then
proceeds with the transfer of the negative charge to
the end of the monomer molecule. Termination is not
always a spontaneous process, and unless some impu-
rities are present or some strongly ionic substances
are added, termination does not occur. So, if an inert
solvent is used and if impurities are avoided, the reac-
tion proceeds up until all of the monomer is consumed.
Once this is achieved, the carbanions at the end of the
chain still remain active and are considered as ‘living’;
polymers synthesized by using this method are known

as ‘living polymers’. This technique is useful for pro-
ducing block copolymers.

® 0

IA—— I A (ion- pair formation) (2.15)

(initiation) (2.16)
(propagation) (2.17)
@ 00
I+HA —— AM,MH + A

o
AM, M (termination)

(2.18)

where IA is the initiator and HA is a protonating agent,

2.6.2.5 Step-growth polymerization

Step polymerizations are carried out by the stepwise
reaction between the functional groups of the monomers.
In such polymerizations, the size of the polymer chains
increases at a relatively slow rate from monomer to
dimer, trimer, tetramer, pentamer and so on:

Monomer + Monomer (Dimer)
Dimer + Monomer (Trimer)
Dimer + Dimer (Tetramer)
Trimer + Dimer (Pentamer)
Trimer + Trimer (Hexamer)

Any two molecular species can react with each other
throughout the course of the polymerization until, even-
tually, large polymer molecules consisting of large num-
bers of monomer molecules have been formed. These
reactions take place when monomers containing more than
two reactive functional groups react. Typical condensation
polymers include polyamides, polyesters, polyurethanes,
polycarbonates, polysulfides, phenol formaldehyde, urea
formaldehyde and melamine formaldehyde.

When a pair of bifunctional monomers (dicarboxylic
acid/diamine or dialcohol/dihalide) undergoes polycon-
densation, it is called an AA-BB-type polycondensation:

nA—A+nB-B —— A+AB+; B + byproduct
(2.19)
When a single bifunctional monomer undergoes

self-condensation, it is known as an A-B type polycon-
densation.

nA—B —— B-{+AB-._ A +byproduct  (2.20)
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(b)

Figure 2.8 Illustration of the formation of networks in polymers with a functionality greater than two: (a,b) functional groups are at
the ends of the line segments; (c) a chain of a trifunctional polymer; (d) a network of a tetrafunctional polymer.

If in the AA-BB type of polycondensation, one of the
monomers has a functionality of three or more, it forms a
3D network. Figure 2.8 illustrates the formation of net-
works in polymers with a functionality of three or higher,
while Table 2.6 shows some examples of functionality in
monomer compounds.

Some of the common monomers that can be polymer-
ized by using step-growth polymerization are listed in
Table 2.7.

2.7 UV RADIATION CURING
OF POLYMERS

Radiation curing refers to radiation as an energy source
to induce the rapid conversion of specially formulated
100 % reactive liquids into solids by polymerizing and
cross-linking functional monomers and oligomers (usually
liquid) into a cross-linked polymer network (usually
solid) [43].

The radiation energy could be from electron beams,
X-rays, y-rays, plasmas, microwaves and, more commonly,
ultraviolet (UV) light. UV radiation curing has also been
extensively used in MEMS, photoresist patterning and
building flexible polymer structures (both planar and

three-dimensional) (UV-LIGA, microstereolithography,
etc.). Advantages of using radiation curing include the
following:

e It has a high processing speed and hence a high
productivity.

o The processes are very convenient and economical,
plus since most comprise ‘one pack compositions’,
they can be dispensed automatically.

e There is very low heat generation and so heat-sensitive
substrates can be used.

e Lower energy and space requirements than conven-
tional curing systems.

e Since the organic emission levels are very low, this
treatment is ‘eco-friendly’.

e Low capital costs, especially if UV is used as the
curing ‘stimulant’.

2.7.1 Relationship between wavelength
and radiation energy

Typical average energies from the homolytic cleavage of
selected chemical bonds in organic molecules are shown
in Table 2.8 [44]. The radiation wavelengths that can
potentially break these bonds are given by Planck’s theory.

Table 2.6 Functionality of some monomer compounds.

Compound Chemical formula Functional Number of Functionality
group functional groups
Ethyl alcohol CH;CH,OH -OH 1 Monofunctional
Hexamethylene H,NCH,(CH,)4,CH,NH, -NH, 2 Bifunctional
diamine
Maleic acid HOOCCH,CH(OH)COOH —-COOH, -OH 3 Trifunctional
Gallic acid HOOCC¢H,(OH)3 —-COOH, -OH 4 Tetrafunctional
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Table 2.7 Some of the polymers that can be
prepared by using step-growth polymerization.

Planck developed his theory of ‘black-body radiation’
on the basis of a postulate that radiation possessed

Polymer Chemical formula

particulate properties and that the particles, or photons,
of radiation of a specific frequency, v, had associated

(0]

—[NH—%—(CH2)5}7

Polycarbonate { @— @—
-

Nylon 6

O
I

Poly(butylene
terephthalate)

with them a fixed energy, ¢, given by the relationship
e=hv, where h is known as the Planck constant
(6.626076 x 1073*Js) and v = ¢/4, in which c is the
speed of light (3 x 103m/s) and / is the wavelength.
Figure 2.9 illustrates the relevant ranges in the electro-
magnetic spectrum. This shows that photons at wave-
lengths within the UV range possess enough energy to
break the bonds listed in the table and these undergo
rearrangements to form polymer networks [45].

Table 2.8 Energies and corresponding wavelengths

for the homolytic fission of typical chemical bonds [44].

2.7.2 Mechanisms of UV curing

UV curing is based on photoinitiated polymerization,
which is mediated by photoinitiators. These absorb
UV light and convert the (light) energy into chemical

energy in the form of reactive intermediates, such as
free radicals and reactive cations, which subsequently

Bond Energy kcal/mol / (nm)
c=C 160 179
c-C 85 336
C-H 95-100 286-301
c-0 80-100 286-357
C-Cl 60-86 332-477
C-Br 45-70 408-636
0-0 35 817
O-H 85-115 249-336

initiate the polymerization. Typical photopolymer for-
mulations contain a photoinitiator system, monomers
and oligomers (or a polymer or polymers) to provide
specific physical and/or processing properties. They
may also contain a variety of additives to modify the
physical properties of the light-sensitive compositions
or the final properties of the cured photopolymers.

The photopolymerization reactions fall into two cate-

107% 10*1072 10
I I

gories, i.e. radical photopolymerization and cationic

102 10* 10° 10% 10'° 10"
A N R I

Cosmic Gamma X-rays

Infrared ‘Hertzian’ Radio
rays waves

waves

200 300 400 500 600 700 800 900
Vacuum UV FarUV ~ Near UV Visible | | Near IR
Range for UV curing

Figure 2.9 The electromagnetic spectrum (wavelengths in nanometers) [11].
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photopolymerization. Generally, acrylates are associated
with free-radical polymerization while epoxies are typi-
cal of cationic curing. The most commonly used reactive
monomeric materials are low-molecular-weight unsatu-
rated acrylate or methacrylate monomers that can be
made to cross-link with the use of a radical-generating
photoinitiator. The practical applications of cationic-
initiated cross-linking of monomeric materials with
epoxy and/or vinyl ether functionalities have signifi-
cantly increased with the development of new UV-
sensitive, high-efficiency photoinitiators which generate
cationic species (e.g. strong acids). Table 2.9 gives a
comparison of the characteristics of cationic and free-
radical curing, showing their relative merits and demer-
its. In this table, moisture inhibition refers to the ability
of a formulation to cure in the presence of atmospheric
moisture, while post-irradiance cure refers to curing
taking place after the light source has been removed.
For free-radical curing in air, surface curing lags behind
bulk curing, which is known as ‘oxygen inhibition’. This
lag results from competition at the surface between
oxygen molecules and free radicals for the monomer
sites. A through cure of cationic systems is recommended
since free radicals have a limited lifetime.

Once the photoinitiator (PI) absorbs light, it is raised to
an electronically excited state, PI". The lifetimes of the
PI* states are short, generally less than 107%s. During
this time, the PI” state may be affected by the one of the
following possibilities: (i) it may decay back to the PI
state with the emission of light and/or heat; (ii) it may
attain a (further) excited state following quenching by
oxygen, monomer or other quenching agents; (iii) it
may disintegrate by a chemical reaction, yielding the
initiator species, Rq [46].

Table 2.9 Comparison of free-radical curing versus
cationic curing [45].

Property Free-radical Cationic
curing curing
Cure speed Faster Slower
Oxygen inhibition Yes No
Adhesion ‘Problems’ Excellent
Toxicity Skin irritation Acceptable
Moisture inhibition No Yes
Post-irradiation cure No Yes
Formulation latitude Good Limited
Through cure Fair Good
Viscosity Higher Lower
Cost Moderate Higher

The rate of initiation (R;) is expressed as the rate of
formation of PI*, which corresponds to the number of
photons absorbed by the PI per unit time:

Ry = Ly Ff (2.21)
where the term I,,s corresponds to the intensity of light
absorbed by the PI, F is the fraction of PI" that yields
initiator species, and f is the fraction of initiator which
initiates polymerization. I, is related to the incident
light intensity (Ip), the number of photons incident to the
system per unit time and area and the absorbance (A) of
the PI, according to the Beer-Lambert law:

Lips = Ip(1 —107%)
where A = edc (2.22)
where d is the pathlength of light (or film thickness), ¢ is the
molar absorptivity of the PI and c is the PI concentration.
It is desirable that the rate of initiation, R;, be uniform
throughout the system and to be high enough for efficient
utilization of the light energy. For example, internal
stresses arising from non-uniform cross-linking adversely
affect adhesion to the substrate and mechanical properties,
such as tensile strength. From Equation (2.22), one can
also see that the non-uniformity of the absorption increases
with the absorbance A. Therefore, the appropriate PI
concentration, molar absorptivity of PI and the value of
absorbance of the system are very important in order to
optimize a monomer system for UV curing [46].

2.7.3 Basic kinetics of photopolymerization

Since the rate of polymerization is an important parameter
in characterizing polymer curing, the curing profile can be
predicted from this. The kinetics of photopolymerization
presented below should prove helpful in understanding
how to calculate the rate of polymerization.

2.7.3.1 Radical photopolymerization
Radical photopolymerization is a chain reaction which
proceeds according to the following steps:
PI+hv — R®
R*+M—"4RM;  Photoinitiation

RM®_, +M—, RM?

(2.23)

(2.24)

RM] +M N RM3, etc. Propagation (2.25)
Propagation (2.26)

(2.27)

RM; + RM;, R, RM,,.. Termination
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where PI represents the photoinitiator, RM,,, is the
stable polymer molecule and k;, k, and k; are the rate
constants for initiation, propagation and termination,
respectively.

The rate of photochemical initiation is expressed as
follows:

R = 21 (2.28)
where I is the intensity of absorbed light in moles of
light quanta per liter and second and @, referred to as the
quantum yield for initiation, is the number of propagating
chains initiated per light photon absorbed. The factor of
‘2’ indicates that two radicals are produced per molecule
undergoing photolysis. The maximum value of @ is 1 for
all photoinitiated polymerizations.

Monomers are consumed by the initiation reaction, as
well as by propagation reactions. The rate of change in
monomer concentration by polymerization is expressed
as follows:

_IM]_ gk
—R +R,

< (2.29)

where R; and R, are the rates of initiation and propaga-
tion, respectively. For a process producing high-molecular-
weight polymers, the number of monomers reacting in the
initiation step is far less than that in the propagation step.
Thus, Equation (2.29) can be simplified as follows:

dM]

o - R, (2.30)

Assume that the rate constants for all of the propaga-
tion steps are the same, the polymerization rate can be
expressed by the following:

Ry = kp[M][M"] (2.31)
where [M] is the monomers concentration and [M*®] is the
total concentration of all chain radicals.

The polymerization rate cannot be directly obtained
from Equation (2.31) since it is difficult to measure the
radical concentrations quantitatively, which are very low
(~ 1078 M). In order to eliminate [M*] from Equation
(2.31), we use a steady-state assumption that the con-
centration of radicals increases initially but then reaches
a constant steady-state value within a very short time.
This means that the rates of initiation, R;, and termina-
tion, Ry, of the radicals are equal, or:

Ri = R, = 2k M"]? (2.32)

where the factor of ‘2’ in the above equation represents
the fact that the radicals are ‘destroyed’ in pairs. By
rearranging Equation (2.32), the concentration of the
radicals is given by:

] (2%)1/2

and then by substituting Equation (2.33) into Equation
(2.31), we obtains:

R\ 2
Ry = kp[M] (Z_Iq)

A combination of Equations (2.28) and (2.34) then
yields:

(2.33)

(2.34)

Bl 1/2
> ) (2.35)

R, = kp[M]( L

and by using Equation (2.22), the expression for R,
becomes:

Plo(1 — 10—“’0)} v (236)

R, = ky[M] { ,

2.7.3.2 Cationic photopolymerization

The process of cationic photopolymerization can be
generalized as follows:

Pl+hy —— HTX"™ 2.37

H*X~ +M—~HM}X~ Photoinitiation (2.38

HM, X~ +M—2 HM; X~ 2.40

(2.37)

(2.38)

HM{ X~ +M— HM{ X etc. Propagation (2.39)
Propagation  (2.40)

(2.41)

HM; X~ —“HM,X Termination 2.41

The reaction rates for initiation, propagation and termi-
nation are expressed as follows:

Ri = ®lyps (242)
R, = ky[HM*X"|[M] (2.43)
R = k[HM*X"] (2.44)

where [HM™X ] is the total concentration of the reactive
centers. Supposing that the steady-state assumption is
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also valid for cationic photopolymerization, one can get
the following:

_ DI abs

t

[HM X (2.45)

A combination of Equations (2.43) and (2.45) yields:

k@l [M]

R
1 kt

(2.46)

This is the rate of polymerization for cationic photo-
polymerization. R, can also be expressed in terms of Iy,
which is as follows:

DIy(1 — 107%)

Ry =kp M] ke

(2.47)

2.8 DEPOSITION TECHNIQUES FOR
POLYMER THIN FILMS

A brief list of the polymeric materials commonly used
in the context of various microsystems is presented in
Table 2.10. Polypyrrole is one candidate for a sorbent
thin-film material. Chemical oxidation as a means of
depositing these conducting polymers onto host mem-
branes has been shown to be useful [47]. In this method,
the host PVDF film is ‘pre-wet’ in a 50 % ethanol solution
and then dipped into the monomer (pyrrole) solution. The
‘superficial” solution is ‘blot dried” with filter paper. This
coated material is then dipped in an oxidant solution (e.g.
ferric chloride hexahydrate) for chemical polymerization.
A similar approach has been reported by de Lacy Costello
et al. [48], where ferric nitrate solution was used for
polymerization.

To deposit polymer thin films without affecting their
chemical integrity and physico-chemical properties, the
pulsed laser deposition technique has been recently used
[49]. A patterned deposition is possible by incorporating
an x—y positioning stage in this approach. These authors
[49] have deposited a fluoroalcoholpolysiloxane (SXFA)
polymer under vacuum onto piezoelectric substrates in
this way. In yet another instance, UV-induced graft
copolymerization with 4-vinylpyridine has been used
for surface modification of PVDF for the electroless
deposition of nickel [50]. This method enhanced the
adhesion of nickel to the PVDF by interfacial charge-
transfer interactions between the grafted polymer chains
and the deposited metals, the spatial distribution of the

grafted chains into the metal matrix and the covalent
‘tethering’ of the grafted chains on the PVDF surface.
Processing techniques involved in the fabrication of
polymer MEMS are described in Chapter 11.

2.9 PROPERTIES AND SYNTHESIS
OF CARBON NANOTUBES

Over the last few years there has been an increasing trend
to further miniaturize the sensors/actuators from the
micro to the nano scale. This is due to some outstanding
properties that these nano-scale materials can offer over
conventional bulk materials. One such nano-scale mate-
rial is the carbon nanotube (CNT). From their unique
electronic properties and thermal conductivities higher
than diamond to mechanical properties where the stiff-
ness, strength and resilience exceed any current material,
carbon nanotubes offer tremendous opportunities for the
development of fundamentally new material systems. In
particular, the exceptional mechanical properties of car-
bon nanotubes, combined with their low density, offer
much scope for the development of nanotube-reinforced
composite materials. The potential for nanocomposites,
reinforced with carbon nanotubes, having extraordinary
specific stiffness and strength properties, represent tremen-
dous opportunities for applications in the 21st Century.

The research towards exploring the various special
properties of carbon began in the mid-1980s, when
Smalley and coworkers discovered the fullerenes [51],
which are cage-like structures of carbon atoms having
hexagonal and pentagonal faces. The first closed convex
structure formed is the Cgo ‘buckyball’ structure. The
other forms of carbon-based materials that can exist in
different forms are ‘Diamond’ and the ‘graphite’ sheets.
In 1991, Iijima [52] discovered yet another form of
carbon-based material, which he named as ‘carbon nano-
tubes’. All of these forms are shown in Figure 2.10.

CNTs, due to their superior properties, have immense
potential for use in many structural applications. A single
layer of CNTs can achieve 50 times the tensile strength
of conventional steel [53], while the mass density of
CNTs is only 1/6 that of steel. These properties highlight
the promising role of CNTs in applications involving
nanomaterials and nanodevices. Theoretically, the tensile
modulus and strength of a graphene layer can reach up to
1 TPa and 200 GPa, respectively.

In addition to the exceptional mechanical properties
associated with carbon nanotubes, they also possess
superior thermal and electric properties. They are ther-
mally stable up to 2800°C in vacuum, have a thermal
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Diamond

Graphite

Buckyball Cg,

‘Armchair’ nanotube

Figure 2.10 Different forms of carbon-based materials. Reprinted from Composites Part B Engineering, vol 35 (2), pp. 95-101,

Copyright 2004, with permission from Elsevier

conductivity about twice as high as diamond and an
electric-current-carrying capacity 1000 times higher than
copper wire. These exceptional properties have been inves-
tigated for devices such as field-emission displays, scan-
ning probe microscopy tips and microelectronic devices.
The size, mechanical strength and electrical properties
of nanotubes are highly dependent on the atomic archi-
tecture. It has been reported that armchair nanotubes
exhibit better ductility and electrical conductivity than
zigzag nanotubes. Schematics of these two forms are
CNTs shown in Figure 2.11 exist in two different forms.
A single-walled carbon nanotube (SWCNT) has a hol-
low structure formed by covalently bonded carbon atoms
and can be imagined as a rectangular graphene sheet
rolled from one side of its longest edge to form a
cylindrical tube. Hemispherical caps seal both ends of
the tube as shown in Figure 2.10. For multi-walled

Figure 2.11 Different forms of carbon nanotubes: (a) arm-
chair; (b) zig-zag. Reprinted from Composite Science &
Technology, 61, 1899-1912, Copyright 2001, with permission
from Elsevier

carbon nanotubes (MWCNTSs), a number of graphene
layers are co-axially rolled together to form a cylindrical
tube (Figure 2.11). The spacing between the graphene
layers is about 0.34 nm. In other words, an MWCNT is
thought to be made up of nested shells of cylinders with
weak interlayer interactions. These values have been
widely used to interpret the mechanical properties of
single-walled and multi-walled nanotubes. The typical
dimensions of SWCNTSs are shown in Table 2.11.

It has also been observed that the majority of carbon
nanotubes exhibit chirality [54] (Figure 2.12). In other
words, the been hexagonal carbon orientation with
respect to the tubular axis could be different for different
carbon nanotubes. The properties of CNTs depend lar-
gely on their diameters and chirality. Carbon nanotubes
have extraordinary mechanical, thermal and electrical
properties due to their unique carbon structure, as well
as their nano-size scale [55]. Wong et al. [56] reported
the average Young’s modulus value of MWCNTs, deter-
mined by atomic force microscopy (AFM) measure-
ments, to be 1.28 £ 0.59 TPa, which is the largest of
any known material. Wildoer et al. used scanning tunnel-
ing microscopy (STM) to measure the conductivities of
individual carbon nanotubes and found that these depend
on the chiral angle and diameter [55].

Table 2.11 Key geometric parameters of
single-walled carbon nanotubes.

Parameter Range of values
Thickness 0.0066-0.34 nm
Diameter 0.40-100 nm
Length I nm—1 pm
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Figure 2.12 Schematic showing the formation of a carbon nanotube from a rolled graphite sheet. Reprinted from Composite
Science & Technology, 61, 1899-1912, Copyright 2001 with permission from Elsevier

The features (size, single- or multi-walled, helicity,
etc.) of carbon nanotubes are also determined by the
method of preparation. There are several methods for the
synthesis of carbon nanotubes. Arc discharge and laser
vaporization of a graphite electrode in the presence of
metal catalysts were the earliest methods used to synthe-
size CNTs [57]. However, both of these methods require
reaction temperatures higher than 3000°C, which is
incompatible with modern IC fabrication. Another lim-
itation is the high production cost due to the complex
equipment required and the low deposition rate [58]. In
recent years, pyrolysis of hydrocarbon (e.g. acetylene,
methane, etc.) vapors over transition metals incorporated
on a catalyst support has attracted much research interest
because of the simplicity of the equipment and reprodu-
cibility of the product in comparison with other methods.

Another method to produce high-quality carbon nano-
tubes is the use of microwave CVD. Compared with the
conventional thermal filament CVD method, microwave
CVD has much faster heating and cooling times and
higher yields of nanotubes. By optimization, this approach
is expected to result in up to 90 % yields and a large-scale
production capability [59]. Techniques for the purification
and functionalization of nanotubes for nanocomposites
and MEMS have also been developed [59].

Carbon nanotubes are regarded as promising filler
materials for a new generation of high-performance
nanocomposites because of their exceptionally high
Young’s modulus [60], bending strength and low density.
The use of physical bonding and chemical bonding
represent two approaches for preparing composites of
nanotubes. In the former method, the CNTs are added to
a solvent, e.g. chloroform, toluene, ethanol, etc. and a

high-power ultrasonic probe is used to disperse the
system. Then, the dispersed nanotubes are blended with
the host material. Composite films can be deposited by
drop- and spin-coating on various substrates. In this
method, the carbon nanotubes are only physically bonded
to the host material. Because of the pure carbon compo-
sition and their stable structures, carbon nanotubes are
insoluble in all organic solvents. This makes it extremely
difficult to explore their properties and applications.
Furthermore, because the high surface energies make
carbon nanotubes easy to agglomerate (due to their nano-
size dimensions, composite processing is still limited to
bench-top levels and has been hampered by the high
viscosities of available matrix materials, lack of good
dispersion techniques and excessive porosity [61].

To overcome this problem, chemical modification by
functionalization of the carbon nanotube surface has
been pursued [62]. It has been reported that functiona-
lized nanotubes can form stable and uniform colloidal
dispersions with some solvents. This can be explained by
the electrostatic repulsion resulting from the functional
groups attached to the surfaces of the nanotubes. Thus,
well-dispersed colloidal systems are required for in situ
polymerization. The functional groups attached to the
surfaces of the nanotubes are able to react with functional
monomers to form a chemically bonded UV-curable
polymer. The ‘functionalization yield’ can be enhanced
by using a phase-transfer catalyst at room temperature
[63]. A UV-curable polymer with chemically bonded
nanotubes can be synthesized by a three-step in situ
polymerization. Since UV curing is one of the preferred
methods of MEMS fabrication, especially by microster-
olithography, those materials are likely to have many
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potential applications. Design modeling and fabrication
of CNT based microsystems will be presented in later
chapters.
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3

Sensors for Smart Systems

3.1 INTRODUCTION

Various microsensing and micro-actuation mechanisms
have been developed for diverse smart system applica-
tions [1,2], including chemical sensors, gas sensors,
optical sensors, biosensors, thermal sensors, mechanical
sensors, etc. Some of the major sensing mechanisms for
mechanical microsensors are introduced in this
chapter.

First, let’s consider some terminology regarding sensor
performance. The transfer function of a sensor is the
functional relationship between the physical input signal
and electrical output signal. The sensitivity is a relation-
ship indicating how much output one obtains per unit
input. The sensitivity is usually taken as the ratio
between a change in the electrical signal corresponding
to a change in the physical signal. Hence, the sensitivity
of the sensor is generally defined as the slope of the
output characteristic curve. Furthermore, in some sen-
sors, the sensitivity is defined as the input parameter
change required to produce a standardized output change.

The span or dynamic range is specified as the range
over which other performance characteristics described
in the data sheets are expected to apply. The accuracy of
a sensor is the largest expected error between actual and
ideal output signals. Accuracy is often expressed as the
percentage of the full range output.

Often, the relationship between input and output is
assumed to be linear over the working range. The error is
the maximum deviation from a linear transfer function
over the specified dynamic range, while the resolution of
a sensor is defined as the minimum detectable signal
fluctuation. The stability of a sensor is its ability to give
the same output when measuring a constant input,
measured over a period of time. The change that occurs
is referred to as drift.

All sensors have a finite response time when subjected
to an instantaneous change in the physical signal. In
addition, many sensors have decay times, which repre-
sent the time after a step change in physical signal that
the sensor output takes to decay to its original value. The
reciprocals of these times correspond to the upper and
lower cutoff frequencies, respectively. The bandwidth of
a sensor is the frequency range between these two
frequencies.

We now proceed to describe various sensor principles
applicable to smart systems.

3.2 CONDUCTOMETRIC SENSORS

When pressure is applied on a section of a conductor its
dimension changes, causing a change in its resistance.
This change, although it is usually very small in magni-
tude, can be detected by using a resistance bridge circuit,
and the detected output is the differential voltage which
is proportional to the applied pressure. Conventional
examples of such resistive (conductometric) sensors
include film resistors, strain gauges, metal alloys and
polycrystalline semiconductors.

A very popular example of such a sensor is the strain
gauge shown in Figure 3.1. When pressure is applied to
the structure attached to the strain gauge, the lengths of
the metal strips increase and their widths decrease. Both
of these changes cause an increase in the resistance.
Although this change in resistance is usually too small to
measure directly, it can be determined with reasonable
sensitivity by including the strain gauge as an arm of a
Wheatstone bridge. The bridge is excited with a stabi-
lized DC supply, and the output is ‘zeroed’ at the null
point of measurement by additional conditioning electro-
nics. As stress is applied to the bonded strain gauge(s),
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Figure 3.1 (a) Schematic of a typical strain gauge. (b) Schematic of the Wheatstone bridge circuit used in connection with a strain

gauge to measure change in resistance.

the resistive changes caused by this unbalances the
bridge and this results in a signal output.

Strain gauges have been in use for several years as
pressure sensors, load cells, torque sensors and position
sensors. With the popularization of micromachining tech-
nologies, their small-sized counterparts have also been
developed. In these, usually a bulk micromachined silicon
diaphragm is patterned with micro-sized strain gauges.

3.3 CAPACITIVE SENSORS

Capacitive sensors consist of a pair of electrodes
arranged in such a way that one of the electrodes
moves when the input variable (pressure, acceleration
or rate) is applied. While the simplest configuration

consists of capacitors with two parallel plate electrodes,
capacitors with interdigitated fingers (Figure 3.2) have
gained wide acceptance as inertial sensors, as they allow
for larger linear sensing ranges.

In a parallel plate capacitor, the capacitance C is given
by:

eA
C=—

3.1
- (3.1)
where ¢ is the permittivity of the gap, A is the area of the
electrodes and d is the separation between the electrodes.
For a circular diaphragm sensor, the capacitance under
deflection is as follows:

C= Ud%w(r)rdrde (3.2)
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Figure 3.2 Two arrangements for capacitive sensing: (a) parallel plate; (b) comb structure.

where w(r) is the deflection of the diaphragm given by:

w0 =51~ ()]

in which r is the radial distance from the center of the
diaphragm, a is the diaphragm radius and P is the applied
pressure. The flexural rigidity, D, is given by:

2
(3.3)

ERW

D=—""_
12(1 —2)

(3.4)

where E, h and v are the Young’s modulus, thickness and
Poisson’s ratio of the diaphragm, respectively.

Capacitive sensing utilizes the capacitance change
induced by the deformation of the diaphragm to convert
the sensory information (pressure, force, etc.) into
electrical signals (such as changes in oscillation frequ-
ency, time, charge and voltage). A schematic of a typical
capacitive microsensor is given in Figure 3.2(a), showing
an electrode on the flexible diaphragm and another on the
substrate constructing he sensing capacitor. Capacitive
microsensors can be used for measuring pressure, force,
acceleration, flow rate, displacement, position, orienta-
tion measurement, etc.

In capacitive microsensors, the capacitance change is
not usually linear with respect to diaphragm deformation.
The small capacitance (generally 1-3 pF) requires the
measurement circuit to be integrated on the chip. How-
ever, capacitive sensing has been found to have potential
for higher performance than piezoresistive sensing in
applications requiring high sensitivity, low pressure

ranges and high stability [2]. Comb-type electrostatic
sensing is made possible by micromachining technolo-
gies. In this case, the area between the plates is made to
vary as the overlap between the ‘fingers’ change. Hence,
this type of sensor has a much broader linear range than
the parallel-plate type.

Two modifications have been suggested to increase
the linearity of the sensing arrangement shown in
Figure 3.2(a). These are the contact mode sensor and
the use of bossed diaphragms, as indicated in Figure 3.3
[3]. In the former, the capacitance is proportional to the
contact area and hence is linear with respect to the
applied pressure at the expense of decreased sensitivity.
In the latter, the shape of the center boss does not distort
appreciably when pressure is applied, while in the non-
uniform bossed diaphragm, the thicker center portion
contributes to most of the capacitance but is stiffer than
the outer area.

(a) (b) Cut-away view

I I

Cross-section

Figure 3.3 Comparison of deflection shape in (a) normal and
(b) bossed diaphragms [3]. W.P. Eaton and JH Smith, Micro-
machined pressure sensors- Review and recent developments,
Smart Materials & Structures, vol. 6, 1997 © IOP
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Figure 3.4 A typical structure for a piezoelectric sensing
device.

3.4 PIEZOELECTRIC SENSORS

These sensors are based on the piezoelectric effect
observed in some materials. In this, an electrical charge
change is generated when a mechanical stress is applied
across the face of a piezoelectric film. The converse
effect is also observed in such materials. Piezoelectricity
is attributed to an asymmetry in the unit cell and the
resultant generation of electric polarization dipoles due
to the mechanical distortion. Examples of such materials
include lead zirconate titanate (more popularly known by
the acronym PZT), lead metaniobate, lead titanate and
their modifications. Above the Curie temperature, a
phase change occurs in these materials as their crystal
structures change from piezoelectric to non-piezoelectric.

For a piezoelectric disk of thickness ¢, the voltage (V)
generated across the electrode disk (Figure 3.4), when
subjected to a stress (7)), is given by:

V =gT (3.5)
where g is the piezoelectric voltage coefficient, defined as
the ratio of the field developed to the applied mechanical
stress.

The piezoelectric substrate forms an important ele-
ment which influences the performance of the sensor.
The relationship between the dipole moment and the
mechanical deformation is expressed by the following
constitutive relationships:

g=cS—eE (3.6)

and:

D =¢E+eS (3.7)
where ¢ is the mechanical stress, S is the strain, E is the
electric field, D is the flux density, ¢ is the elastic
constant, e is the piezoelectric constant and gy is the
permittivity of free space. It may be noticed that in the
absence of piezoelectricity these relationships reduce to
Hooke’s law and the constitutive relationship for dielec-
tric materials, respectively.

The effectiveness of a piezoelectric material is best
expressed in terms of its electromechanical coupling
coefficient, K>. By definition, this is related to other
material parameters used in the above constitutive equa-
tions by the following:

62

K*=—
ce

(3.8)
Piezoelectric devices have several advantages over other
sensing mechanisms. Since this sensor generates its own
voltage, it does not require power for operation. Therefore,
for applications where power consumption is a significant
constraint, piezoelectric devices can be used. Furthermore,
the piezoelectric effect is scalable to small devices and
several micro-fabricated sensors have been reported in the
literature, e.g. Lee et al. [4]. One disadvantage of piezo-
electric sensing is that it is sensitive only to time-varying
signals and hence static quantities such as weight cannot
be measured by using this approach.

While bulk ceramic substrates have been in use for this
application for a long time now, their micro-sized coun-
terparts with a ceramic thin film deposited on another
substrate material have also been developed recently.
Piezoelectric sensing is widely used in pressure and
force sensors, accelerometers, hydrophones, micro-
phones, etc. A schematic of a micromachined piezo-
electric force sensor is shown in Figure 3.5.

3.5 MAGNETOSTRICTIVE SENSORS

Certain ferromagnetic materials show deformation when
subjected to a magnetic field. This phenomenon, com-
monly known as magnetostriction, is reversible and is
also called the ‘Joule and Villari effects’. In their
demagnetized forms, domains in a ferromagnetic mate-
rial are randomly oriented. However, when a magnetic
field is applied these domains become oriented along the
direction of the field. This orientation results in micro-
scopic forces between these domains, hence resulting in
deformation of the material. By reciprocity, mechanical
deformation can cause orientation of the domains, so
resulting in induction at the macroscopic level [5]. The
elongation is quadratically related to the induced mag-
netic field and hence is strongly non-linear.

Apart from the ferroelectric bar, a magnetostrictive trans-
ducer consists of a coil and a magnet [5] (Figure 3.6(a)).
It is now possible to translate this electrical equivalent
circuit to a electromechanical circuit, as shown in
Figure 3.6(b). This has electrical and mechanical
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Figure 3.5 Schematic of a micromachined piezoelectric force sensor [4]. C. Lee, T. Itoh, and T. Suga, “Micromachined
piezoelectric force sensors based on PZT thin films,” IEEE Trans Ultrasonics, Ferroelectrics & Freq. Control, vol. 43, © 1996 IEEE

components connected to an electromechanical transfor-
mer. The ratio of the ‘turns’ of this transformer is decided
by the amount of coupling. The electromechanical cou-
pling coefficient is defined as the ratio of the energy
stored in the mechanical circuit to the total input energy.
The electromechanical coupling for the magnetostric-
tive transducer shown in Figure 3.6(a) relates the induced
voltage V at the terminals of the coil with the rate of
change in displacement at the free end of the bar:

8aEN
R

V= i (3.9)

where gA is the magnetostrictive strain modulus, F is the
Young’s modulus of the material, R, is the total ‘reluc-
tance’ of the magnetic circuit and N is the number of turns
in the coil. The ratio on the right-hand side of Equation
(3.9) represents the electromechanical coupling.

Ferrites, and metallic alloys such as ‘Permalloy’ (45 %
Ni—+ 55 % Fe), ‘Alfer’ (13 % Al+ 87 % Fe) and ‘Alcofer’
(12 % Al+2 % Co+ 86 % Fe), are some of the common
materials used in magnetostrictive transducers. These
materials can also be deposited as thin films, thus
making it possible to fabricate micro-actuators and
sensors by using them. In addition, amorphous thin
films, such as TbFe,, Tby;Dyq;Fe, and DyFe,, have
been reported in the literature [6]. The realization of such
thin films is more process-dependent than their bulk

counterparts, as the preparation conditions affect the
homogeneity and growth process of the films, as well
as their stoichiometry.

(a) Schematic

Radial
magnetic
field

Strain pulse

<+—>

Ring
magnet
(moving)

(b) Equivalent circuit

8 élgﬂ:

Figure 3.6 Schematics of (a) a magnetostrictive transducer
and (b) the equivalent electromechanical circuit [5].




50 Smart Material Systems and MEMS

Piezoresistors

Y

Silicon Diaphragm

Figure 3.7 A typical structure for a piezoresistive sensing
device.

3.6 PIEZORESISTIVE SENSORS

Apart from the electronic and mechanical properties of
silicon, discussed in Chapter 2, piezoresistivity is another
of its important characteristics which has resulted in the
widespread utilization of this material for sensors. The
piezoresistive effect, first reported by Smith [7] in 1954,
in silicon, produces an approximately two orders of
magnitude larger resistance change than that due to the
dimension change under an applied stress in a typical
conductor. For example, if the material is elongated
0.1 % by stretching, the typical metallic resistors used
for strain gauges would change by about 0.2 %, but the
resistance of silicon would change by about 10 %. Piezo-
resistive sensors fabricated on micromachined dia-
phragms (Figure 3.7) dominate pressure, acceleration
and force sensing applications. For small deflections of
thin diaphragms, the change in resistance is linear with
the applied pressure [3]. Silicon obeys the Hooke’s law
up to 1% strain, much higher a range than most metals
alloys.

The key processes involved in the fabrication of these
sensors include wet etching, ion implantation and anodic
bonding. Wet etching (discussed in Chapter 10, Section
10.4) is required to form the diaphragm. Strain gauges
are formed on the single crystal silicon by ion implanta-
tion. Recall that by this process, the majority of carriers
are injected into the intrinsic material, thereby increasing
its conductivity ‘selectively’. The uniformity and con-

P*-polysilicon Piezo-

Passivation interconnection resistor

Polysilicon
membrane

centration of doping can be better controlled by ion
implantation than by other methods, such as diffusion.
Anodic bonding (for details, see Chapter 10, Section
10.2.5) can be used to attach the silicon wafer to Pyrex
glass for improved ruggedness. Since these are com-
monly used batch processing methods used in the IC
industry, the resulting sensors are of low cost.

A typical structure for a piezoresistive microsensor is
shown in Figure 3.7. Notice that the resistor is built on a
silicon diaphragm. The deflection of the diaphragm leads
to the dimensional change of the resistors, hence result-
ing in the resistance changing due to the piezoresistive
effect in silicon.

AR Al Ap

F -+ H=E (3.10)

where AR is the change of the resistance, R is the
original resistance, v is the Poison ratio, Al is the length
change of the resistor, / is the original length of the
resistor and Ap and p represent the resistivity change and
resistivity of the resistor, respectively. It is easily found
that the resistance of the resistors used for these types of
piezoresistive microsensors is proportional to the exter-
nal pressure when the resistivity change is ignored, since
the dimensional change is proportional to the applied
pressure. Typically, four piezoresistors are connected into
a Wheatstone bridge configuration to reduce temperature
errors (Figure 3.8).

Another piezoresistive-type microsensor is shown in
Figure 3.9, where a semiconductor polymer foil is
formed on inter-digitated transducer (IDT) electrodes.
If a voltage is applied to the electrodes and there is no
pressure applied, the resistance is at the level of mega-
ohms (Mohm). When a force is applied, the resistance
decreases due to the current that flows across the ‘shunt-
ing’ polymer foil [9]. Here, the sensing resistance is
inversely proportional to the applied pressure.

Figure 3.8 A schematic and illustration of a micromachined sensor using the piezoresistive properties of a polysilicon membrane
[8]. T. Lisec, M. Kreutzer, and B. Wagner, “Surface micromachined piezoresistive pressure sensors with step-type bent and flat
membrane structures,” IEEE Trans. Electron. Dev., vol. 43, © 1996 IEEE
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Figure 3.9 Tllustration of a piezoresistive sensing device combining inter-digitated transducers (IDTs) and a semiconducting

polymer [9].

The performance of piezoresistive microsensors varies
with temperature and pressure. The sensitivities of the
sensors decrease as the temperature increases, while any
residual stress generated during the fabrication will also
influence the sensitivities of the sensors. A non-linear
deflection of the diaphragm occurs when the high pres-
sure induced a deflection which is over 10% of the
diaphragm thickness.

3.7 OPTICAL SENSORS

Optical sensors are based on measuring either the inten-
sity change in one or more light beams or phase changes
in the light beams caused by their interaction or inter-
ference. Thus, optical sensors can be grouped as either
intensity sensors or interferometric sensors. The techni-
ques used in the case of intensity sensors include light
scattering (both Rayleigh and Raman), spectral transmis-
sion changes (i.e. simple attenuation of transmitted light
due to absorption), microbending or radiative losses,
reflectance changes and changes in the modal properties
of the fiber [10]. Interferometric sensors, on the other
hand, are based on the magneto-optic, the laser-Doppler
or the Sagnac effects.

The simplest optical sensor is a photodetector. In a
reverse-biased P-N junction detector, electron-hole pairs
generated by the incident optical energy increases the
carrier density. PIN and avalanche-type photodiodes are
also used in several applications.

Interferometric techniques, such as Mach—Zehnder
interferometry and Fabri—Pérot interferometry, can be
used in conjunction with diaphragms to sense pressure,
force and related quantities. The deflection of the dia-
phragm varies linearly with the applied pressure. Some
optical sensors are based on measuring quantum-well
spectrum deformation.

Temperature sensors based on Fabri—Pérot interfero-
metry can measure the change in optical pathlength of a
short piece of material whose thermal expansion coeffi-
cient and refractive index as a function of temperature
are known. When improved selectivity is needed, multi-
ple wavelengths can be used to null secondary effects,
such as strain or pressure, in the material being mea-
sured. Materials used in such sensors include glass,
calcite or zinc selenide (ZnSe).

In a fiber-optic interferometer (Figure 3.10), the inter-
ference occurs at the partially reflecting surface of the
fiber and an external mirror. The size of the sensitive
element based on this principle can be as small as
diameter of the fiber. A low-coherence optical source is
usually used in this system. The prime advantage of
this interferometer is its simple configuration.

The radiation of the laser diode is coupled into the
fiber and propagates partially through the coupler
towards the mirror. At the tip of the fiber, a part of the
radiation is internally reflected and the other part goes
out, gets reflected by the mirror and is picked up again by
the fiber. These two optical beams interfere with each
other and as a result the intensity of the optical radiation
at the photodetector is periodically changed, depend-
ing on the distance x, between the fiber and mirror.
The displacement of the mirror by 1/2 changes the path-
length difference of the interfering rays by 2m, resulting
in one period variation of the radiation intensity at the
photodetector.

Generally, the intensities of the interfering rays are
different. In such a case, 100 % ‘visibility’ of the inter-
ference cannot be achieved, even at a zero pathlength
difference of the interfering rays. The detected signal
intensity is given by the following

1211 +Iz+2“/\/1112005(p (311)
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Figure 3.10 Schematic of a fiber-optic interferometric sensor.

where ¢ is the phase difference of the interfering rays, /;
and I, are the intensities of the two rays and y is the
degree of coherence of the beam.

In a fiber optic Fabry—Pérot interferometer;

I =Ry (3.12)

and:

L =(1—R)*RI, (3.13)

where [ is the intensity of the laser diode radiation
coupled into the fiber, R, is the reflectivity of the end face
of the fiber and R is the reflectivity of the external mirror.
Thus, when the distance between the interferometer
mirrors equals xp, the light intensity detected by the
photodetector is:

1=1I {Rl +(1=R)’R+2(1—R)VRR,

sin 6 47
X (T) Ccos (7) .Xf():| (3 14)
where:
I
0=n—
b1 A

in which [ and /. are the path difference and coherence
length of two rays in a non-coherent system. When the
distance between the fiber and mirror is smaller than the
coherence length, interference occurs and the intensity of
the light in the interferometer changes with the mirror
displacements. The ‘visibility’ of interference increases
when the distance between the mirror and fiber is
decreased.

Another possibility is to use fiber Bragg grating (FBG)
devices, e.g. for temperature sensing. The challenge here
is to fabricate a device that responds only to temperature.
In one reported example, two identical FBGs have been
interferometrically monitored [11]. By incorporating
these in a bimetallic beam, the temperature was reliably
measured independent of other effects, with £+ 1 % line-
arity achieved over the range 25 to 65°C, and with a
possible resolution of +0.006°C. Germanium-silica
fibers, fabricated as a fiber Bragg grating [12], can be
used for higher temperatures up to 650 °C.

Two types of optical rotation sensors have been
developed based on the Sagnac effect; i.e. the ring laser
gyroscope and the fiber-optic gyroscope. When two light
beams propagate in opposite directions around a com-
mon path, they experience a relative phase shift, depend-
ing upon the rotation rate of the plane of the path. The
actual direction is obtained by integrating the output. In
the case of the ring laser gyroscope, this phase change
produces a change in the oscillation frequency of a laser
that is integral to the path. In the case of the fiber-optic
gyroscope, the phase difference is detected by ‘interfer-
ing’ the two beams outside the path. The fiber-optic
gyroscope is a simpler device and can achieve the
required performance at a lower cost than with ring
laser or mechanical gyroscope technology.

The fiber-optic gyroscope consists of a loop of a
single-mode optical fiber and related coupler compo-
nents, a semiconductor laser and signal-processing elec-
tronics. The coupler components are generally fabricated
in proton-exchanged LiNbOj integrated-optic circuits
due to their ability to modulate the light beam for
improved detection.
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As seen from the above, nearly all physical quantities of
relevance to smart systems may be measured by using
optical sensors. These include temperature, pressure, flow,
displacement, velocity, acceleration, etc. Optical sensors
usually have high sensitivity, fast response, low noise and
high reliability. They are also free of electromagnetic
interference. However, the main disadvantages are the
cost involved in accurately aligning and calibrating the
sensors and issues associated with temperature sensitivity.

3.8 RESONANT SENSORS

Resonant sensors are based on measuring the resonant
frequency of the mechanical vibration of beams or dia-
phragms. The applied strain causes changes in the resonant
frequency (similar to a guitar string), enabling measure-
ment of input variables such as pressure, acceleration, rate
and temperature. Resonant frequency pickup can use any
of the sensing technologies discussed previously. Resonant
sensing is easily understood based on the change in the
natural frequency of a string with the tensile force. In a
resonant microsensor developed based on this principle,
the strain caused by pressure on the diaphragm leads to
variation of its natural frequency. By picking up the natural
frequency variation of the resonator, the physical informa-
tion which caused the strain will be sensed.

As an example, the natural resonant frequency of a
flexure resonator with both ends fixed can be obtained
from the following [13]:

4.73%h ( E 2 91/

f= W{m[l +0.2366(1/h)¢] } (3.15)
where f is the natural frequency of the fundamental
oscillating mode, [ the resonator length, % the resonator
thickness, E the Young’s modulus, p the density of the
diaphragm material and ¢ the strain generated inside the
resonator structure. Comparing resonant sensing with
piezoresistive sensing, the resonator acts as a kind of strain
gauge — the resonant strain gauge — which relates the strain
with the resonant frequency. Therefore, the gauge factor of
the above resonant strain gauge can be determined as:

1| 0.2366(1/h)?
[ omesum2 T
2|14 0.2366(1/h)*e
and:
o o (3.17)

If the strain is 100 ppm, for a 1.2 mm long, 20 um wide and
5 pum thick resonator strain gauge, the gauge factor can be
as high as 3000, while the piezoresistive strain gauge
factor is only about 2. Since the gauge factor relates
directly to the sensitivity of the sensor, resonant sensing
can be used to obtain high-sensitive micro sensors. How-
ever, as resonant sensing usually requires a more complex
sensor structure than piezoresistive sensing, resonant strain
gauges need to be encapsulated from the fluid [14].

The resonant microbeam system shown in Figure 3.11
acts as a sensitive strain gauge [15]. In Figure 3.11(b), when
the pressure P; exceeds P,, the diaphragm bends down-
ward, increasing the resonance frequency of the
microbeam, represented by the line in the middle of the
figure. In Figure 3.11(c), an upward acceleration deflects
the proof mass downward, hence causing a frequency
increase. The microbeam is sealed in an integral vacuum
enclosure to prevent gas damping (Figure 3.11(a)). Changes
in the stress state of the diaphragm cause changes in the
tension in the embedded structure, which in turn result in
changes in its resonant frequency. The structure is usually
driven into resonance by electrostatic excitation by applied
AC voltages and the resonant frequency is sensed by
piezoresistive sensing. For open-loop tests, the beam elec-
trode is driven by an external oscillator at the test frequency.
The differential amplifier amplifies the AC signal from the
piezoresistive sense resistor. For closed-loop operation, an
automatic gain control (AGC) circuit is used to maintain a
constant amplitude and prevent ‘over driving’ the beam.
Open-loop tests disable the AGC, measure the gain = (V,/
Vi) versus frequency and drive amplitude. Closed-loop
tests enable the AGC, connect the beam drive and measure
frequency versus strain and temperature.

Capacitive sensing may also be employed in a similar
arrangement. Alternately, the structure can be optically
excited by a laser and sensed by a photodetector. Resonant
sensors have better sensitivity than simple piezoresisitive
sensors. It may also be noted that the output is frequency,
and hence is inherently more immune to noise than analog
signals in the case of piezoresistive or capacitive sensors.

3.9 SEMICONDUCTOR-BASED SENSORS

There are several sensor configurations making use of the
interesting properties of semiconductor devices. In the
following example, a field effect transistor (FET) is
modified with its gate electrode suspended with micro-
machined beams. Changes in the positions of the beams,
caused by the measurand quantity, affect the FET output
and can be used as a sensing mechanism.



54  Smart Material Systems and MEMS

Resonant
microbeam

Contacts for
sense lines

Silicon
diaphragm
1K
(b)
P,
Silicon Proof mass
() ¥
Silicon flexure
Differefntal
i
Vi ampli |fr
(d) Top Ie %4 Counter out
Beam <— \T\
Vin §.-> /l/ ? © Vout
Substrate l
v Beam
V. drive
a
Sense resistor

Voltage-controlled

Detector attenuator

AGC amplifier

Figure 3.11 Resonant microbeam system (a) showing cross-sectional views of the polysilicon beam attached to a silicon diaphragm
(b) or silicon flexure (c), along with (d) a schematic of the related microbeam test circuit [15]. Reprinted from Sensors Actuators A,
35, Zook J D, Burns D W, Guckel H, Sniegowski J J, Engelstad R L and Feng Z, Characteristics of polysilicon resonant microbeams,

pp- 51-59, Copyright 1992, with permission from Elsevier

First, we will discuss an accelerometer consisting of
a proof mass suspended over an FET, with the gate
electrode of the device attached to the suspended
structure. The anchors of the ‘meander’ support are
elevated to suspend the beam above the gate region
(Figure 3.12). This arrangement provides a gap
between the gate and the insulator layer, thus keeping
the threshold voltage for the FET constant [16]. The
meander beams attached to this system are configured
such that the electrode moves in the direction shown in
Figure 3.12.

This motion of the gate electrode changes the transis-
tor drain current without affecting the current density
through the channel. The sensitivity S of this device is
given by the following:

ol

S_(SW

(A/m) (3.18)

where dIp is the change in drain current and oW is the
change in the depth to which the gate is overlapping the
channel.
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Figure 3.12 Schematics of a movable-gate field effect transistor: (a) top view; (b) cross-sectional view.

For a typical n-channel FET, the drain current is given
by:

CouW
Ip= g;i [2(Vgs—Vr)Vps — V3] for Vips < Vs — Vr
(3.19)
and:
CouW
Ip = gz‘[z (Vs — VT)2 for Vps > Vgs — Vr

(3.20)

where Vs and Vpg are the gate-to-source and drain-to-
source voltages, Vr is the threshold voltage at which the
channel begins to conduct, C, is the gate capacitance per
unit gate area, u is the majority carrier mobility for the
channel and W and L are the width and length of the
channel, respectively. These equations show a linear
relationship between the drain current and the channel
width W.

The threshold voltage for the FET is as follows:

V24eNo (Ves =V,
VT:VFB—%— 7 D(C_" ) (30

where Op is the dose of the n-type impurity, Np is
the doping concentration, ¢ is the dielectric constant of
the semiconductor and Vgg, V},; and Vig are the flat-band
voltage, built-in potential of the channel junction and
substrate bias, respectively; C; is the capacitance of
the gate, which is a series combination of the capacitance
due to the air gap and that due to the insulator layer.
For very thin insulator layers, this capacitance can be
approximated to that due to air alone. Thus, the config-
uration presented here results in a linear relationship
for the device current to the mechanical motion. Further-
more, the lateral motion permits larger amplitudes of
variation. The inertial force of the mass causes the
lateral movement when the device can be used as an
accelerometer.
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3.10 ACOUSTIC SENSORS

Acoustic sensors operate by converting electrical energy
in to acoustic waves, the propagation characteristics of
which could be influenced by the physical parameter
being measured, and then converting this back to
electrical energy for further processing. Various config-
urations of acoustic wave devices are possible for sensor
applications. The important characteristics of some of
these devices are summarized in Table 3.1. The type of
acoustic wave generated in a piezoelectric material
depends mainly on the substrate material properties, the
crystal cut and the structure of the electrodes utilized to
transform the electrical energy into mechanical energy.

A Rayleigh wave has both a surface-normal compo-
nent and a surface-parallel component in the direction of
propagation. The wave velocity is determined by the
substrate material and the crystal cut. Most surface
acoustic wave (SAW) devices operate under this mode
and will be discussed further below. The energies of the
SAW are confined to a zone close to the surface a few
wavelengths thick [19]. Love waves are guided acoustic
modes which propagate in a thin layer deposited on a
substrate. The acoustic energy is concentrated in this
guiding layer and results in a high-mass sensitivity. This
wave mode is typically employed in gases, biochemical
or viscosity sensors.

The selection of a different crystal cut can yield shear
horizontal (SH) surface waves instead of Rayleigh
waves. The particle displacements of this wave are
transverse to the wave propagation direction and parallel
to the plane of the surface. The frequency of operation is
determined by the inter-digitated transducer (IDT) finger
spacing and the shear horizontal wave velocity for the
particular substrate material. These have shown consid-
erable promise in applications such as sensors in liquid
media and biosensors [20-22]. In general, SH-SAWs are
sensitive to mass loading, viscosity, conductivity and
permittivity of the adjacent liquid.

The configuration of SH-APM devices is similar to
the Rayleigh SAW devices, but the wafer is thinner,
typically a few acoustic wavelengths. SH waves excited
by the transducer propagate in the bulk of the substrate,
at an angle to the surface. These waves reflect between
the plate surfaces as they travel in the plate between
the input and output transducers. The frequency of
operation is determined by the thickness of the plate
and the design of the transducer. SH-APM devices are
mainly used in liquid sensing and offer the advantage of
using the back surface of the plate as the sensing active
area.

Lamb waves, also known as flexural plate waves
(FPWs), are elastic waves that propagate in plates of
finite thickness and are used for the health monitoring
of structures and for flow sensors: as the fluid passes
through a channel above the acoustic path, it affects the
properties of the acoustic waves propagating on the
substrate.

Surface acoustic wave (SAW)-based sensors form
an important part of the sensor family and in recent
years have seen diverse applications ranging from gas
and vapor detection to strain measurement [19]. SAW
devices were first used in radar and communication
equipment as filters and delay lines and were recently
found to have several applications in sensors for various
physical variables, including temperature, pressure,
force, electric field and magnetic field, as well as che-
mical compounds. A SAW device consists of a piezo-
electric wafer, IDTs and reflectors on its surface. The
IDT is the ‘cornerstone’ of SAW technology, converting
the electrical energy into mechanical energy, and vice
versa, and hence are used for exciting as well as detecting
the SAW.

An IDT consists of two metal comb-shaped electrodes
placed on a piezoelectric substrate (Figure 3.13). An
electric field, created by the voltage applied to the
electrodes, induces dynamic strains in the piezoelectric
substrate, which in turn launches elastic waves.
These waves contain, among others, the Rayleigh
waves which run perpendicular to the electrodes with
velocity Vg.

If a harmonic voltage, v = vy exp (jw?), is applied to
the electrodes, the stress induced by a finger pair travels
along the surface of the crystal in both directions. To
ensure constructive interference and in-phase stress, the
distance between two neighboring fingers should be
equal to half the elastic wavelength, Ag.

d=Ig/)2 (3.22)

4

Figure 3.13 Finger spacings and (d) and their role in determi-
nation of the acoustic wavelength (v) in an inter-digitated
transducer [23].




58 Smart Material Systems and MEMS

IDTs’ center-to-center separation

To source «—

—> To detector

e
S & b

Uniform
finger spacing

7z
A

Constant finger overlap

Figure 3.14 Schematic of a SAW device with IDTs metallized onto the surface [23].

The associated frequency is known as the synchronous
frequency and is given by the following:

Jo=Vr/x (3.23)
At this frequency, the transducer efficiency in converting
electrical energy to acoustical, or vice versa, is max-
imized. The width of each electrode finger is generally
chosen as half the period. Its length determines the
acoustic beamwidth and hence is not as significant in
this preliminary design. The number of pairs of fingers
are however critical in choosing the device bandwidth.
The impulse response of the basic IDT is a rectangle.
The Fourier transform of a rectangle is a sinc function
whose bandwidth in the frequency domain is propor-
tional to the length of the rectangular window in the
space domain. As a result, a narrow bandwidth requires
the IDT to have a large number of fingers. A schematic of
a SAW device with IDTS metallized onto the surface is
shown in Figure 3.14 [23].

The exact calculation of the piezoelectric field driven
by the inter-digital transducer is rather elaborate [19]. For
simplicity, analysis of the IDT is carried out by means of
numerical models. The frequency response of a single
IDT can be simplified by the delta-function model [19].
The SAW velocity on the substrate depends on its density
and elastic and piezoelectric constants. The principle of
SAW sensors is based on the fact that the SAW traveling
time between the IDTs changes with variation in the
physical variables.

Acoustic sensors offer a rugged and relatively inex-
pensive platform for the development of wide-ranging
sensing applications. A unique feature of acoustic sen-
sors is their direct response to a number of physical and
chemical parameters, such as surface mass, stress, strain,
liquid density, viscosity, dielectric and conductivity pro-
perties [24]. Furthermore, the anisotropic nature of piezo-
electric crystals allows for various angles of cut, with
each cut having unique properties. Applications, such
as, for example, a SAW-based accelerometer utilize a

quartz crystal with an ST-cut, which has an effective
zero temperature coefficient [25], with a negligible
frequency shift through changes in temperature.
Again, depending on the orientation of the crystal cut,
various SAW sensors with different acoustic modes may
be constructed, with a mode ideally suited towards a
particular application. Other attributes include very low
internal loss, uniform material density and elastic con-
stants and advantageous mechanical properties [26].

The principal means of detection of the physical
property change involves the transduction mechanism
of a SAW acoustic transducer, which involves transfer
of signals from the mechanical (acoustic wave) to the
electrical domain [19]. Small perturbations affecting
the acoustic wave would manifest themselves as large
changes when converted to the electromagnetic (EM)
domain because of the difference in velocity between
the two waves. Given that the velocity of propagation of
the SAW on a piezoelectric substrate is 3488 m/s and the
AC voltage is applied to the IDT at a synchronous
frequency of 1 MHz, the SAW wavelength is given by
J.=v/f =3.488 x 1073 m. The EM wavelength in this
case is Ac = c/f, where ¢ = (3 x 108 m/s) is the velocity
of light. Thus, Ac =30m, and the ratio of the wave-
lengths (1/4c) = 1.1 x 1075,

3.11 POLYMERIC SENSORS

Several well-known sensing mechanisms have been dis-
cussed so far in this chapter. This and the next section
will dwell on two material systems that have not been
explored to their fullest potential.

The advancement of silicon-based micro systems is
intimately intertwined with developments in silicon
semiconductor processing technology. Accordingly, var-
ious processing approaches have been established for the
integration of silicon-based micro systems with standard
complimentary metal oxide semiconductor (CMOS) pro-
cessing. For precision devices, and for devices requiring
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integrated electronics, silicon is presently unrivaled.
However, it is not necessarily the best material for all
applications. For example, structures fabricated on this is
limited to 2-D or very limited 3-D systems, unpackaged
silicon devices are incompatible with many chemical and
biological substances and fabrication requires sophisti-
cated, expensive equipment operated in a clean-room
environment. These often limit the low-cost potential of
silicon-based micro systems. Polymer-based micro sys-
tems are rapidly gaining momentum due to their potential
for conformability and other special characteristics not
available with silicon. In general, polymer-based devices
may not be as small or as complex as those with silicon.
However, polymers are often flexible, chemically and
biologically compatible, available in many varieties and
can be fabricated in truly 3-D shapes. Most of these
materials and their fabrication processes are inexpensive.
Perhaps one of the most important advantages of sensors
using polymeric materials, in the context of smart systems,
is their potential for being distributed over a large area.

Polymer sensors are particularly advantageous in
‘moderate-performance’ devices which are low cost or
disposable [27]. Unlike many silicon devices that are
often packaged inside polymers, sensors built with poly-
mers can even be ‘self-packaged’. Active polymer com-
ponents can take advantage of several functional
polymers to increase their functionality. Polymer sensors
may be divided into two categories. The first uses the
piezoelectric properties observed in some functional
polymers while the second uses the change in conduc-
tivity of some other polymers when exposed to changing
environmental conditions.

Since the discovery of strong piezoelectricity in poly
(vinylidene fluoride) (PVDF) in 1969, piezoelectric poly-
mers have been extensively investigated for various
applications [28]. There are some unique features of
piezoelectric polymers that make them attractive for
use as sensing elements, including their relatively low
acoustic impedance, broadband acoustic performance,
flexible form and availability in large area films, and
ability to be dissolved and coated onto various substrates.
In the successful applications of piezoelectric polymer
technology, these characteristics have prevailed over
their inherent disadvantages of relatively weak piezo-
electric properties, large dielectric and elastic losses,
and low dielectric constants. In addition to its piezo-
electric properties, PVDF also offers pyroelectric proper-
ties [17].

PVDF is a semicrystalline high-molecular-weight poly-
mer formed by the linking together of simple 1,1-difluor-
oethylene (VDF) molecules. Under precisely controlled

reaction conditions, a molecular structure of PVDF with a
90% head-to-tail arrangement (i.e. CHy—CF,—(CH,—
CF,),—CH,—CF,) [29] can be obtained. PVDF is approxi-
mately half crystalline and half amorphous. The most
common polymorph form of PVDEF, the a-phase, is pro-
duced by crystallization from the melt or solution. The
a-phase can be transformed into the polar form, the f3-
phase, by mechanically stretching or rolling at elevated
temperatures. Since all of the dipole moments become
perpendicular to the chain axes, microscopically, each
crystallite has a net dipole moment and is piezoelectric.
However, on the macroscopic scale, there is no polariza-
tion within the polymer due to the random orientation of
the dipole moments of the crystallites. In order to render
the PVDF film piezoelectric, poling is required, which
involves the application of an electric field. This step
preferentially aligns the dipoles of the crystallites in the
direction of the applied electric field and thus produces a
net polarization. In the copolymer (P(VDF-TrFE)), the
increased number of the relatively large fluorine atoms
prevents the formation the of tg+ tg-conformation. This
extends the polymer chains to crystallize directly into the
B-phase. The copolymer also needs a final poling step to
make it fully piezoelectric. The two main poling techni-
ques are conventional two-electrode poling (also referred
to as thermal poling) and corona poling. A listing of the
properties of poled PVDF and its copolymer P(VDF-
TrFE) is provided in Table 3.2 [30].

Several standard processes are available for the deposi-
tion of polymer thin films. Some films which are used
for gas sensing employing SAW devices are listed in
Table 3.3. These could be deposited on a substrate by
deposition methods such as spin coating, dip coating and
in situ polymerization.

3.12 CARBON NANOTUBE SENSORS

After carbon nanotubes (CNTs) were first discovered by
lijima in 1991 [31], several researchers have reported
excellent mechanical, electrical and thermal properties
for these materials, both theoretically and experimen-
tally. In recent years, such nanotubes have been intro-
duced into microelectronics and micro electromechanical
systems (MEMS). These nanotubes are also regarded as
promising materials for nanotechnology and nano elec-
tromechanical systems (NEMS).

Fundamentally, CNTs can be considered as rolled-up
cylinders of graphite sheets of sp,-bonded carbon atoms
with diameters less than 100nm. The length of an
individual carbon nanotube could typically vary from
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Table 3.2 Comparison of typical properties of PVDF and P(VDF-TrFE) [30].

Property PVDF P(VDF-TrFE)
Coupling coefficient

k31 0.12 0.20

ke 0.14 0.25-0.29
Piezoelectric strain constant (10712 m/V or C/N)

ds 23 11

dss -33 —38
Piezoelectric stress constant (1073 Vm/N)

831 216 162
£33 —330 —542
Pyroelectric coefficient, P (10°¢ C/(m2 K) 30 40
Young’s modulus, ¥ (10° N/m?) 2-4 3-5
Relative permittivity, &/¢q 12-13 7-8
Mass density, p (10*kg/m) 1.78 1.82
Speed of sound, ¢ (10° m/s) 2.2 2.4
Acoustic impedance, Z (MRa) 3.92 4.37
Loss tangent, tan 0., (at 1kHz) 0.02 0.015
Temperature range (°C) —40 to 80 —40to 115

tens of nanometers to several microns. Caps have always
been observed at both ends of these cylinders, which
could be hemispheres of a fullerene, such as Cgy. Carbon
nanotubes can be divided into two categories, i.e. single-
walled nanotubes (SWNTs) and multi-walled nanotubes
(MWNTSs), according to the number of grahene layers.
Some properties of CNTs, such as conductivity varia-
tion and the electrostrictive effect, have been used in
implementing sensors using them. The design of such
sensors follow the principles discussed earlier in this
chapter. In the following, we present a somewhat differ-
ent approach that makes use of the variation in electro-

Table 3.3 Typical examples of polymer thin films
used in gas sensors.

Measurand Coating
Hydrogen Palladium

SO, Triethanolamine

NO, Lead phthalocyanine
Toluene Polydimethylsiloxane

Water vapor/humidity Polymide, SiO,,

cellulose acetate

st WO3

(6(0) Metal phthalocyanine
CO, Polyethyleneimine
CH4 Metal phthalocyanine
NH; Platinum

magnetic properties of a transmission line coated with a
layer of a CNT [32]. Based upon the change in this
electrical property in composite thin films of carbon
naotubes (as the vapor concentration varies), monitoring
of the reflection phase at radio frequencies has been
proposed for real-time wireless sensing applications. The
reflection phase of electromagnetic waves reflected from
a load was determined by load impedance. For this
purpose, composite thin films with funtionalized carbon
nanotubes (f-CNTs) were coated onto an interdigital
coplanar waveguide, as shown in Figure 3.15, and the
phase change of the reflected waves due to the presence
of an organic gas was evaluated.

Gas sensor
(CNT/PMMA)

RF signal

—>
4___

Power
divider
i Reference load
(NiCr thin film)
Figure 3.15 Schematic of a sensor based on the phase changes
in a transmission line coated with a carbon nanotube composite.
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Figure 3.16 Relationship of the reflection (S;;) phase to the real and imaginary parts of the load impedance (Z;, = a + jb), with

z1 =a+jl and z = a+j2.

When a reflected wave exists on a ‘lossless’ transmis-
sion line terminated with a load impedance, Z; = a + jb,
the voltage across T the line is given by the following:

vV =Vvte /Ly (3.24)
where V* and V™ are the amplitude constants of the
incident and reflected waves, respectively, and f is the
phase constant for the ‘lossless’ line. The voltage reflec-
tion coefficient, I';, is described by the ratio of V™ to Vvt
as follows [33].

Vo Z—Zc

I =— =
LUV T zi 2o

(3.25)

and the voltage at any point on the transmission line
(z < 0) is given by the following:

— i 4|y |0+ _
V=vt (e b |rele <“+/f">) (3.26)
where:
Iy =|Ile? (3.27)
and:
Y
Iyl = [(@® — Z2) + b*] + 4b*Z> (3.28)
- [(a+22) + b2 '

plus:

9=tan7'{( 267, } (3.29)

@72+ 1

where Z. is the characteristic impedance of the transmis-
sion line.

According to Equation (3.29), the phase of the
reflected waves in a transmission line is determined by
load impedance. Typical changes in the phase of the
reflected waves with respect to the load impedance of a
transmission line are illustrated in Figure 3.16. As long
as the imaginary part of the load impedance () is low,
the reflected wave phase exhibits a large phase shift with
a small change in the real part of the load impedance
(a) near the characteristic impedance. The basic sche-
matic of phase monitoring in this newly designed sensor
employs a variable resistor with a small imaginary
impedance as a load terminating a coplanar waveguide
(Figure 3.15).
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Actuators for Smart Systems

4.1 INTRODUCTION

In this chapter, the basic principles of common electro-
mechanical actuators are briefly discussed. The energy
conversion schemes presented here include piezoelectric,
electrostrictive, magnetostrictive, electrostatic, electro-
magnetic, electrodynamic and electrothermal. Most of
the schemes are reciprocal and hence these devices are
generally referred to as transducers. Although some of
these schemes are not quite amenable for smart micro-
mechanical systems, they do have the potential for being
used in such systems in the foreseeable future.

One important step in the design of these mechanical
systems is obtaining their electrical equivalent circuits
from analytical models. This remains the main focus of
this chapter. However, relevant examples of fabricated
prototypes from the published literature are also included
wherever necessary. In what follows we extensively
make use of electromechanical analogies to arrive at
electrical equivalent circuits of transducers. These
equivalent circuits are neither unique nor exact, but
would serve as an easily understood tool in trasnducer
design. The use of these electrical equivalent circuits
would also facilitate use of the vast resources available
for modern optimization programs for electrical circuit
design into transducer designs.

A list of useful electromechanical analogies is given in
Table 4.1 [1]. These are known as mobility analogies.
These analogies become useful when one needs to
replace mechanical components with electrical compo-
nents which behave similarly, forming the equivalent
circuit. As a simple example, the development of an
electrical equivalent circuit of a mechanical transmission
line component is discussed here [1]. The variables in
such a system are force and velocity. The input and
output variables of a section of a ‘lossless’ transmission

line can be conveniently related by an ABCD matrix

form as follows:

ol Jposﬁx JZy sin fx i 1)
Fi | |=-sinfix  cosfx F> )
Zy
where:
1 C
Zo=——=1/— 4.2
AT +2)
and:
w
= 4.3
b= (43)
and:
E 1
Vp =y [—= 4.4
? P M, “4)

In these equations, A is the cross-sectional area of the
mechanical transmission line, E its Young’s modulus and
p the density; C; and M are the compliance and mass per
unit length of the line, respectively. Now, looking at the
electromechanical analogies in Johnson [1], the expres-
sion for an equivalent electrical circuit can be obtained in
the same form as Equation (4.1) above:

v cosfx  jZosin fx v
{111} = [Zisin px  cosfx [122] (4.5)
0

In Equation (4.5), the quantities in the components of the
matrix are also represented by equivalent electrical
parameters as follows:

L
ZO:\/E: [l
& C1

(4.6)
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Table 4.1 Electromechanical mobility analogies [1].

Feature Mechanical parameter Electrical parameter
Variable Velocity, angular velocity Voltage
Force, torque Current
Lumped network element Damping Conductance
Compliance Inductance
Mass, mass moment of inertia Capacitance

Transmission line

Immitance Mobility

Impedance

Clamped point

Compliance/unit length
Mass/unit length
Characteristic mobility

Inductance/unit length
Capacitance/unit length
Characteristic impedance
Impedance

Admittance

Short circuit

Free point Open circuit
Source immitance Force Current
Velocity Voltage
L (4.7) 42 ELECTROSTATIC TRANSDUCERS

Vv, =
Pyme VLG

In Equations (4.6) and (4.7) L; and C) represent the
inductance and capacitance per unit length of the line,
respectively.

Apart from the above mobility analogy, a direct
analogy is also followed at times to obtain the equiva-
lence between electrical and mechanical circuits. These
result from the similarity of integro-differential equa-
tions governing the electrical and mechanical compo-
nents [2]. A brief list of these analogies is presented
in Table 4.2. A brief description of the operational
principles of some of the common transduction mecha-
nisms used in electromechanical systems is provided
below.

Table 4.2 Direct analogy of electrical and mechanical
domains [2].

Mechanical quantity Electrical quantity

Force Voltage

Velocity Current
Displacement Charge

Momentum Magnetic flux linkage
Mass Inductance
Compliance Capacitance

Viscous damping Resistance

Electrostatic actuation is the most common type of
electromechanical energy conversion scheme in micro-
mechanical systems. This is a typical example of an
energy storage transducer. Such transducers store
energy when either mechanical or electrical work is
done on them [3]. Assuming that the device is lossless,
this stored energy is conserved and later converted
to the other form of energy. The structure of this type
of transducer commonly consists of a capacitor
arrangement, where one of the plates is movable by
the application of a bias voltage. This produces dis-
placement, a mechanical form of energy. A schematic
of a practical electrostatic transducer is shown in
Figure 4.1. The transfer matrix for this transducer
can be derived following [2].

Fo
Flexural spring T

Co(=) % \‘

TDispIacement, X

—

Rigid mass m

R electrode
R Fixed F. lAir a surface
electrode™y 93P (area, Ay)

777

Figure 4.1 Schematic of a practical electrostatic transducer.
H.A.C. Tilmans, “Equivalent circuit representation of electro-
mechanical transducers: 1. Lumped parameter systems”, J.
Micromech. Microeng., vol. 6, 1996 © IOP
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We use the electromechanical force in a simple (fixed)
parallel plate capacitor:

1 ,¢eA
1

F
2 x?

(4.8)

In more complicated systems, it is difficult to calculate
this directly. Instead, we start with the basic energy
balance equation:

dW, + dW, = dW; (4.9)
This expression indicates that the force balance is
between the electrostatic and mechanical forces. Substi-
tuting for the appropriate values of work done:

1
VIdt + Fdx =d (5 cv2> (4.10)

It may be noted that the capacitance of the arrangement
cannot be considered a constant. Furthermore, we can
eliminate / by the following:

[— dQ d(cv) dv dc

dr o CatVa

(4.11)

The first term on the right-hand side is for a fixed
capacitor, while the second term results from the physical
motion of the movable plate. Obviously, this is zero for a
fixed plate capacitor.

Substituting this in Equation (4.10):

1
VCAV + V2dC + Fdx = CVdV + 3 Ve (4.12)
1
Fdx = —EVZdC (4.13)
1_,dcC
F=—-V— 4.14
i (4.14)

Observe that dC/dx is negative for a parallel plate
capacitor. Furthermore, the force depends on the square
of the voltage and hence does not depend on its polarity
or rate of change:

1
VCAV + V2dC + Fdx = CVdV + 3 vidc  (4.15)

When both plates of the capacitor are fixed, there is no
mechanical motion, and hence no work is done:
VCdV +04+0=CVdV +0 (4.16)

and so the term CVdV represents the energy stored!!

9c e .
e
+ | Fixed plate | Movable |
y . plate |
t | |
- F,
: Gap I !
| <d—> |
| [

Figure 4.2 Schematic of a simplified case for an electrostatic
transducer [2]. H.A.C. Tilmans, ‘“Equivalent circuit representa-
tion of electromechanical transducers: I. Lumped parameter
systems,” J. Micromech. Microeng., vol. 6, 1996 © IOP

By cancelling this term from Equation (4.15), we
obtain the energy transfer caused entirely by motion:

1
V2dC + Fdx = 3 v2dce (4.17)

By comparing Equations (4.17) and (4.13), we see that
the electrical source contributes twice as much energy as
the mechanical source.

Based on the simplified schematic of the transducer
shown in Figure 4.2, constitutive equations can be
derived; the state variables of this are the displacement
x; and charge ¢,. Since all variables are dependent on
time, these are omitted here for convenience. The elec-
trical energy contained in the transducer is given by the
following:

¢ qld+x)

W, = W, = =
N (91, %) 2C(x,) 260Ae

(4.18)

We use C(x;) = gyAe/(d + x;) and d, the spacing of the
plates when uncharged.
The total differential of W, is:

oW, oW,
dw, = ( ) dg, + ( ) dx;
aqt X; = constant a‘x' ¢, = constant

(4.19)

In thermodynamic equilibrium, the energy put into the
transducer through the electric and mechanical ports is
given by:

AW, = v, dg, + F, dx, (4.20)
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Equating the terms on the right-hand sides of Equations
(4.19) and (4.20), we get:

v (q X): aWe(qhxt) 7q[(d+)€,) (421)
t tyM) — - .
8q[ X; = constant EOAC
OWe(qy,x 2
Fi(qnx) = 72(;1, ) = 27’A (4.22)
Xt ¢, = constant S0Ae

The above equations define the terminal voltage and
the force as being the effort variables at the res-
pective ports. The equilibrium values are given by
the partial derivatives of W, with respect to the cor-
responding state variable. Note that F; is the externally
applied force necessary to achieve equilibrium. Its
magnitude is equal to the electrostatic Coulomb force
between plates of a charged capacitor (opposite in
direction).

This force has a quadratic dependence with charge. To
make it linear, we assume small signal state variables.
So:

X, = xo + x(1) (4.23)
qr = qo +4q(t) (4.24)
There Equation (4.23) becomes:
ov, Ov; (d+x0) 90
vig,x) = — + — = + —2x
(q ) aqt Oq 8)6[ 0 SOAe 1 s(lAe
LI N (4.25)
- Co 1 X0 ’
while similarly, Equation (4.24) becomes:
6Ft aFt qo Vo
F(q,x) =— — x= +0x=—g+0x
(q ) g, oq Ox; 0 SOAeq qu
(4.26)

Note that bias signals are independent of time since they
define static equilibrium. It is rather easy to show that the
plate illustrated in Figure 4.3(a) is not in equilibrium. To
keep the plate in place we need to provide an external
force. This requires a spring constant term, correspond-

@ dG+4q
—

My M
1 Q
1/K* 1/K

F’ 1/K* F

- o

Figure 4.3 Schematic (a) and equivalent circuit (b) of an
electrostatic actuator with a spring attached to the movable plate
for stability [2]. H.A.C. Tilmans, “Equivalent circuit representa-
tion of electromechanical transducers: I. Lumped parameter
systems,” J. Micromech. Microeng., vol. 6, 1996 ©) IOP

ing to the mechanical energy at the spring, added to
Equation (4.18):

2
4q; 1 2
em — Wem = =k — Xr
W Wem(qr,x:) 2¢(x,) +2 (X — x/)
(4.27)
2
— q; (d + xt) l _ 2
= e + 2k(x, Xr)

This changes Equations (4.24) and (4.26) to the
following [2]:

OWem (q: xt) qz
Figx) =———— =—"—+kxy, (428)
axf g, = constant 280A.
aFr 3Ft q0 Vo
F = —| x= kx = — kx
(9,%) oqt |, Oxt Ox £0Ae a+ Xo 9+
(4.29)

Note that Equations (4.25) and (4.29) express voltage and
force in terms of displacement and charge. It is usually
required to have voltage and displacement as the
independent variables. This makes:

q(wx)zﬂv— g .
d+ xo d + xo
A, A,
)
d + xo (d +xo)
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q0 qé
F = k————
(ij) d+X0v+ ( 80Ae(d+xO))x

_ SerV(12V+ i — EerV%% .
(d +X0) (d + xo)‘
Note that the system is in equilibrium as long as the

second term on the right-hand side of Equation (4.31) is
negative.

(4.31)

&0Ae v%

where k'=—""=
(d + xo)

k<k’

The matrix form of Equations (4.25) and (4.31) is:

d+x 4o
Vi _ &Ae  €0Ae q 4.32
Flo e el e
€0Ae
The static capacitance and transduction factor are:
g0Ae 90
Co = ;I =
0 d+xo’ d + xo
Therefore, Equation (4.32) becomes [2]:
1 r
v Cy C
{F] =% ko m (4.33)
Co

The 2 x 2 matrix in Equation (4.33) is the constitutive
matrix for the electrostatic transducer. The coupling
factor K is an important characteristic of an electrome-
chanical transducer. This gives the electromechanical
energy conversion for a lossless transducer:

I"2
K= |—
kCy

It may be noticed that a stable equilibrium state exists for
0 < K < 1. The typical values for K are between 0.05
and 0.25.

Transduction may also be expressed in such a way as
to connect between electrical variables (on the left-hand
side) and mechanical variables (on the right-hand side).
The transfer matrix relates force and velocity with
voltage and current.

(4.34)

We start with rewriting the second part of Equation
(4.33) with g on the left-hand side and taking the time
derivative for current:

Co .. kC
I:jw—OFf?OU

. (4.35)

We assume time-harmonic variations in the force and
substitute velocity for the time derivative of displacement.
Substituting this into the first part of Equation (4.33):

1 I U
=—F+(——k|— 4.
r +(Co )JwF (4.36)
1 1 <F2 )
v I joI \C
{ ] - Joi AR (4.37)
o],6 o |
127 T

This 2 x 2 matrix is known as the transfer matrix. This
transfer can be split as follows to conveniently express
the equivalent circuit for the transducer [2]:

L

1 0
PR e oo |
r r (4.38)
1 /1?
l 0 1 —(=——-%
X I Jo CO
0 -r 0 1

This network is an exact representation for the transfer
matrix. This, however, may not be a unique way of
expressing an equivalent circuit for this transducer.

As noted earlier, the spring is represented in the circuit
by a capacitor. The corresponding ‘impedance’ of the
spring (= force/velocity) is k/jw. The spring has a
negative stiffness, as follows:

I"Z
_C_O:_

aerv(z)

0 = K%
(d +X())‘

K = (4.39)

This is a result of the electromechanical coupling, lead-
ing to a lowering of the overall dynamic spring constant.
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Figure 4.4 Schematic (a) and equivalent circuit (b) of a comb-type electrostatic resonator. CTA Nguyen and RT Howe, CMOS
micromechanical resonator oscillator, IEEE Electron Devices Meeting, © 1993 IEEE

If we combine the two springs, the combined spring
constant is:

kK =k(1 - K?) (4.40)

Recall that the system is mechanically stable as long
as this spring constant is positive, i.e. K < 1. If the
coupling K is zero (K =0), k* = k. Therefore, k*
is the measured stiffness when the electrical port
is short-circuited and k is the stiffness when it is
open-circuited.

A similar approach may be followed to obtain the
equivalent circuit for an in-plane electrostatic actuator of
the comb type, as shown in Figure 4.4.

Fabrication of micro-sized devices with an elec-
trostatic actuation scheme is relatively easy as it is
usually independent of the properties of the material
systems. Therefore, the electrostatic actuation scheme
is the most preferred one for micro-actuators. Both
parallel-plate and comb drive mechanisms are popular
in these devices.

4.3 ELECTROMAGNETIC TRANSDUCERS

The magnetic counterpart of a moving plate capacitor is
a moving coil inductor. This is yet another energy-storing
transducer, the difference in this case being that the
forms of energy are magnetic and mechanical. A simpli-
fied illustration of such a transducer is shown in
Figure 4.5 [4]. When a current i flows through the
coil, the magnetic flux is ¢,. Neglecting non-idealities
such as electrical capacitance and resistance, and
mechanical mass and friction, the constitutive relation-
ships for this device can be derived for the current and

Yoke d
Movable plate
q; I N P
y—» !
: L I
Vi Coil EEE F,
-
— =
1
L
— "
Figure 4.5 Schematic of an electromagnetic transducer.
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force, in terms of displacement and flux linkage [3]. The
conversion of energy takes place due to interactions
between these electrical and mechanical quantities in
such a circuit.

In the transducer shown in Figure 4.5, the fixed
armature has N turns of winding, while the armature
and the moving part are made of ferromagnetic materials.

The magnetic flux in the core (¢,) is related to the
current through the coil by:

¢, = L(x)i; (4.41)
The magnetic energy stored in the transducer when an
input is applied to it is given by:

2

1
Wy = EL(X,)Z (4.42)

where L(x,) is the inductance of the driving coil when the
moving coil is at x = x,. Therefore:

NyiAe

Lix) = d+ x,

(4.43)

where N is the number of turns, u is the permeability and
A, is the effective area of the movable plate.
By substituting Equation (4.43) into Equation (4.41):

1 4’:2 7¢,2(d—|—x,)
2L(x;)  2N?pA.

Wy = (4.44)

This shows that Wy is a function of ¢, and x,. Therefore
we can write:

AWy = 88WM do, + OWnm
Py 1, = constant OX; |4, — constant
dx; = i,d¢, + F,dx; (4.45)
From this, we can get
(o) = 3Whg(i,7x,) _ ¢;Elﬂzl;:cr) (4.46)
Fi(yx) = OWuldyx) __o: (4.47)

Ox, B N2uA,

Note that the force-to-flux relationship here is quadratic.
To linearize this, we assume small signal conditions:

Xy = xo + x(1) (4.48)
b, = o+ d(1) (4.49)
Therefore:
i, 0i; d + xo b0
, — = +
((rb ) a¢u 0 axt (/):Ox NzluAed) NzﬂA
(4.50)
Similarly:
OF, OF, o
, +— X = + Ox
RO =50 b+g| romat
(4.51)

These are the constitutive relationships for the transdu-
cer. As discussed in the case of the electrostatic transdu-
cer, an additional element is required to keep the plate in
a stable equilibrium. The spring element for this purpose
is attached to the movable plate, as shown in Figure 4.5.
The modified energy-balance equation is:

2
252},) + %k(x, —x) (452

Wl(/[ - WI(/I((pnxt) =

The first term on the right-hand side of the above equa-
tion is the energy stored in the coil due to the current flow
while the second term accounts for the energy stored
in the spring. The rest position of the spring is denoted
by Xx..

¢
= N + kx,

8W1(/I(¢t7xf)

Fi(d,x) = ox,

¢, = constant

(4.53)

Based on the constitutive relationship (Equation (4.46)),
this becomes:

OF,
o,

O
0 ox;

.
0 Ny

F(¢,x) =

¢+ ke (4.54)

The other constitutive relationship can be rewritten as:

]
b iox
L() X0

i(¢,x) = (4.55)
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with:

_ .uNZAeV io = $o
d+xp’ .uNer

Lo

and where i is the bias current; ¢, = Loio.

i

F(d,x) = od + kx (4.56)
0

X

The constitutive matrix can be written in the form:

1 ¥

il |Lo Lo|[¢
F_lka

Ly

(4.57)

where:

N2
p - N,
d+X0

This may also be rearranged to obtain the¥ transfer
matrix. Rewriting the second part in Equation (4.57):

Ly Lok

¢ = lpF v X (4.58)
_dp  LydF  Lokdx

VSaTva v (4.59)

Assuming time-harmonic inputs and writing F in the
form Ae/®":

Lok
V= % joF — %v (4.60)
From the constitutive relationship:
) N Yoo P Y ok
T L v T\, w)t
(4.61)

1
Ty T o L)’

Therefore:

_ 2
{i}: j% Jw—i”(ll;]:%) [f} (4.62)

b4 b4

Figure 4.6 Equivalent circuit of the electromagnetic transdu-
cer shown in Figure 4.5.

In order to obtain an equivalent circuit, this transfer
matrix may be split into several sub-matrices:

v o) S

JjoLgy Lok 1 0] |[joLy 1
v 14
1 /(¥?
G
x |V Jjo \ Lo
0 =% 1|o 1

(4.63)

The matrices on the right-hand side of Equation (4.63)
represent a gyrator, a shunt capacitor, a transformer and a
series impedance, as shown in Figure 4.6.
Miniaturization of electromagnetic actuators requires the
fabrication of magnetic thin films and current-carrying
coils. Although few attempts have been made in this
direction, the overall sizes of the devices developed so far
are not very small. Coupled with this is the difficulty in
isolating the magnetic field between adjacent devices,
which makes fabrication of integrated micro devices
rather challenging.

4.4 ELECTRODYNAMIC TRANSDUCERS

These are one of the most common types of electro-
mechanical actuation schemes. The primary component
is a current-carrying moving coil such as the one com-
monly used in loudspeakers. A schematic of such an
actuator is shown, in Figure 4.7. For simplicity in
analysis, a small segment of the coil is shown, along
with the directions of the field quantities in Figure 4.8.
The element of length dl, carrying a current i, is further
characterized by its velocity v and induction B. By
Lenz’s law for the electromotive force e:

de = (v x B)dl (4.64)
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Figure 4.7 Schematic for an electrodynamic actuator. Reproduced by permission from M. Rossi, Acoustics and Electroacoustics,
Norwood, MA: Artech House, Inc., 1988, © 1988 by Artech House, Inc

The magnetic force is given by Laplace’s law:

dFpae = idl X B (4.65)
In this analysis, flux linkages and displacement may be
taken as the state variables. Although these are functions
of time in the dynamic analysis, for the sake of conve-
nience, this dependence is omitted here.

de

Axis of motion

Figure 4.8 Field directions for a section of the coil shown in
Figure 4.7. Reproduced by permission from M. Rossi, Acoustics
and Electroacoustics, Norwood, MA: Artech House, Inc., 1988,
© 1988 by Artech House, Inc

The energy stored in the magnetic field is given by:

1
W = 51,01'2 (4.66)
where L is the series inductance of the coil. The emf
induced in the coil is:
e = Bli, + 2, (4.67)
where B is the magnetic flux due to the biasing magnet.
The second term on the right-hand side of the above

equation denotes the dynamically induced emf, due to
changes in flux linkages.

1 BI A
i = —Jedt ot (4.68)
Ly Ly
Therefore:
1 (Blx, + 4)*
Wp=z—"-—""— 4.69
L (4.69)
Taking the total derivative:
OWn, OWn,
dw,, = di, +—— dx, (4.70
81[ X; = constant ' axf /= constant ' ( )
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for a transducer in thermodynamic equilibrium, the
energy put into the transducer through the electrical
and mechanical ports is given by:

AWy = i,dJ, + Fdx, (4.71)
Therefore:
. OWp, Bolx, + 44
i x,) = 2 ] 4.72
[( ' [) a/bf X, = constant LO ( )
OWn Byl(Byl A
Fi(A,x:) = 3 — J0AF0MH T A (Bolx: + /1)
Xt /¢ = constant LO
_ (B()l)zx, B()U.t (4 73)
Lo Loy ’

Small signal variations in the effort and state variables
are obtained by defining a bias point (xg, 4o):

. 0i; iy A Bolx
i(x) = A+ 5| x=7—+—— 4.74
%) =5 o xl, Ly Lo (4.74)
8F, 8F, B()l/l (B()l)zx
FO,x) == A+ x=22242920 475
(%) Mily  Oxly Ly Ly (475)

These are the constitutive relationships for an electro-
dynamic transducer. Recall that the model of the trans-
ducer shown in Figure 4.7 is not stable since there is no
mechanism to hold in place the movable plate. A
mechanical spring with a spring constant £ may be
attached to the plate to introduce stability.

With this, the energy equation needs to be modified as
follows:

(Bl +4) 1
Wm = ET + zk(x,

—x)? (4.76)

where x; denotes the rest position of the plate. The above
constitutive relationships for i(4, ) is not affected by
this. However, the relationship for F(4, ) should be
modified as:

OWn (A, x;)

Ft(}mxt) = ox
1

J; = constant

Bol)’x, Byl
:( OL())X’-Q- 20’+2k(x,—xr)

(4.77)

6Ft(/lt7xt) , 8Ft(;“ﬁxf)
F(A,x) =
( ,X) aAt O/L + 8)6[ 0
Boli.  (Bol)*x
X = + kx 4.78
. I (4.78)

The constitutive matrix may therefore be formed as:

1 ¥
i L Lo )
O _ ™ [A(t) } (4.79)
F(t) 4 1112 X(I)
L o

In the above matrix, ¥ (= Byl) is the transduction factor.
To obtain the transfer matrix, we proceed by rearranging
the equations:

P P2
F(t) = L—OA(t) + (K +E)x(t) (4.80)
Therefore:
2
0= r0 - (L )0 @
The voltage induced, v(t) = A(r). Therefore:
) 2
W(1) =""7L°F(z) 75 (Lo +W7>u(t) (4.82)
where u(t) denotes velocity. In addition:
o AP
2
i(r) = Lio {%F(z) - % <Lo + T)x(t)} + L—Wox(t)
1 k
=5 F0) _jw—Y’v(t) (4.84)

The transduction equation in the matrix form is as
follows:

1 —k
{z(t)] v jo¥ F(1)
vy | |joLe  —k p? u(?)
N2 ,Ttp( 0 _7)
(4.85)
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Figure 4.9 Equivalent circuit for an electrodynamic transducer.

The transfer matrix may be modified as follows to obtain
the equivalent circuit (Figure 4.9):

1 —k
p jo¥ 10
joLy  —k (Lo_ﬁ) oLy 1
¥ jov 3 (4.86)
1 jk
X 14 w
o —vllo 1

As mentioned earlier, a very common form of elec-
trodynamic transducer is found in loudspeakers. How-
ever, due to the requirements of the coil and magnetic
field, they are not so popular at the micro-scale. Electro-
dynamic micromotors have been successfully fabricated
in reasonably smaller sizes (7mm X 15mm x 0.4 mm)
[5]. The resonant frequency of such a system is given as:

1 /BJn,\"
o= ( nm)
T\ ps

where 7, is the utilization factor of the rotor, p is the
density of the material of the wire, J is the current density
and s is the maximum displacement of the rotor.

As with the electromagnetic actuation schemes dis-
cussed previously, these devices also require fabrication
of small-sized magnets and current-carrying coils. In this
case, however, the coil is also movable. This remains a
fabrication challenge, as miniaturized components are
required for MEMS applications.

(4.87)

4.5 PIEZOELECTRIC TRANSDUCERS

When subjected to mechanical stress, certain anisotropic
crystalline materials generate charge. This phenomenon,

discovered in 1880 by Jaques and Pierre Curie, is known as
piezoelectricity. This effect is widely used in ultrasonic
transducers. Lead zirconate titanates (PZTs) are the
most common ceramic materials used in piezoelectric
transducers. These crystals contain several randomly
oriented domains, if no electric potential is applied during
the fabrication process of the material. This results in
small changes in the dipole moment of such a material
when a mechanical stress is applied. However, if the
material is subjected to an electric field during the cooling-
down process of its fabrication, these domains would be
aligned in the direction of the field. When an external
stress is applied to such a material, the crystal lattices get
distorted, causing changes in the domains and a variation
in the charge distribution within the material. The converse
effect of producing strain is caused when these domains
change shape by the application of an electric field.

The direction of vibration of the piezoelectric material
depends on the dimensions of the slab. If /> b and h,
the slab will vibrate along the length direction. On the
other hand, if / and b > h, the slab will vibrate in the
thickness direction. Hence, for the thin slab shown in
Figure 4.10(a) the vibrations are in the thickness direc-
tion. The piezoelectric vibrations are given by:

v= Mq + hyzw (4.88)
bl
~ CY0bl

where CD, is the elastic stiffness of the piezoelectric
material at constant electric displacement, h33 is the
piezoelectric strain constant and Q is the phase constant.

By defining the static capacitance Co, the transfer
factor I' and the spring constant k as follows:

bl bl

CO.bl
= ;G k=—3
Bish

C = h33
0 33ﬁ§3h7 h

1/k*

z

o

— - —> ~.
<« Yl—=x

Figure 4.10 Schematic (a) and equivalent circuit (b) of a
piezoelectric transducer.
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we can simplify the above expressions for v and F
and write the constitutive matrix in the following

form:
1 r
Co Co
Fl-fe S e
Co tanv—g

Furthermore, the transfer matrix can be obtained as:

_ ook _
1 -1 W r?
rjer|. . wh Gy
v VP F
{ . } - { } (4.91)
! ~kwh "
ju)C() VP Co
r wh [
tan —
L vy |

The transfer matrix may be split as follows to obtain a
convenent electrical equivalent circuit for the transducer
(Figure 4.10(b)):

_ Jowh -
1 -1 w I
G joG| . Wh G
v 1 0
kwh joc, 1
JoCy v? Co
r wh
tan—D
L v J
1 1
x | T JjoX (4.92)
0 Irjjo 1
where:
kwh
1 [ w1
X wh™ C,
tanV—D

t

PZT thin films have been developed using standard
thin-film deposition techniques such as sputtering and
physical or chemical vapor deposition. Their use in

sensors and actuators is inherently limited by the quality
and ‘repeatability’ of the thin films obtained by using
these techniques. Compared to bulk-material processing
techniques, the thin film performance is severely ham-
pered by the properties of the surface where the film is
deposited [6]. Non-ferroelectric AIN thin films have also
been explored for sensor applications where voltage
output is required. However, PZT thin films are still
preferred in actuators. Compared to other electromecha-
nical conversion schemes, these require a low voltage
input but generally have a low electromechanical con-
version efficiency.

4.6 ELECTROSTRICTIVE TRANSDUCERS

Electrostriction is the phenomenon of mechanical defor-
mation of a material due to an applied electric field. This
is a fundamental phenomenon which is present to varying
degrees in all materials and occurs due to the presence of
polarizable atoms and molecules. An applied electric
field can distort the charge distribution within the mate-
rial, resulting in modifications to bond length, bond angle
or electron distribution functions, which in turn affects
the macroscopic dimensions of the material.

Lead magnesium niobate (PMN) is an electrostrictive
ceramic which exhibits an order of magnitude more
strain than most piezoceramics for the same electric
field strength.

To develop an equivalent circuit [3,7], we start with the
basic laws of electromagnetism that should be obeyed.
The electric field displacement due to an applied field is
given by:

D=¢E+P (4.93)
A planar slab with electrodes on either side would exhibit
a zero electric field when the electrodes are shorted
together and if ‘fringing fields’ are neglected.

An isolated specimen containing no free charges must
exhibit a zero electric displacement field if the fringing
fields are neglected. The generalized model of electro-
striction under stress-free conditions is:

eo(e —1) E

V1 +aE?

P=P,+ (4.94)

where Py is the remnant polarization, ¢ is the relative
permittivity of the dielectric material and a is the satu-
ration parameter. For large values of a, the polarization



Actuators for Smart Systems 75

saturates at modest field strengths. Therefore:

(e—1)E

&0
D =¢E+Py+ 4.95
T+ aB? (4.95)

For non-zero stress in the thickness direction of the
slab:

E3 = 061D3 + O(zD% + OC3D3T3 (496)

and:

s3 = P15 + BoD3 (4.97)
where the subscript ‘3’ represents the thickness direction;
Ej; is the electric field, D3 is the electric displacement
field, s3 is the strain and 73 is the stress. In addition o,
o, o3, By, and f, are constants resulting from series
expansions, where f3; is the compliance and f3, is equi-
valent to the electrostriction constant denoted by Q.

Recalling that the permittivity of electrostrictive mate-
rials such as PMN is of the order of 2000:

goeE

D~P)y+——
0 14 akE?

(4.98)

Solving for E:

D3 — Py
\/ngz —a(D5 — Py)’

E;= (4.99)

with the restriction that D3 — Py < (0.99¢¢/+/a). Gen-
eralizing this one-dimensional nonlinear model to three
dimensions:

(1)
D, — P,
E, = 12 0 —20353T1Dy — 201311 D,
(e0e1y)” — alef;)w
—2013T3D1 — 4044T6Dy — 4Q44T5D3 (4.100)
(2)
D, — P,
E, = 22 0 — - 4Q44Ts Dy
(80352) _0(3;2) w
—2033T2Dy — 2013T3D, — 201371 D>
— 404 TyDs (4.101)

&)
D;—P
E; = 370

— 4Q44T5D
T2 T2 Q44 5]
(e0e33)" — aless)w

—40uTyD; —2033T3D3 — 201311 D5

—2013T2D;3 (4.102)

51 = SO Ty + ST + 2Ty + Q33D + Q13D3
+ Q1303 (4.103)

52 = spoT1 + s0 To + s3T5 + Qu3Di + 033D3
+ 01303 (4.104)

53 = ST + S5 To + s3T5 4+ Qi3D] + Q13D3
+ 03D; (4.105)
54 = SiyTs +4QuuDaD;y (4.106)
ss = sy Ts +4QuD D5 (4.107)
s6 = SgeT6 + 4QuD1 D> (4.108)

where P(()l), P(()z) and Pff) are components of the remnant

polarization vector Py and w = Z;Zl (D; — Pg)) /a; .
For permanently poled ferroelectrics, only two physically
independent permitivities, &I, and &1, exist and Py’ =
Péz) =0 and P(()S) = Py — thus &f, = ¢l,.

It should be noted that s2 is not an independent elastic
constant, and is related to other elastic constants accord-

ing to the following:

D 2(sP, —sD) (piezoelectric ceramics, biased PMN)
667 s, (unbiased PMN)

Components (1) to (3) are each subject to a limitation of
the field strength of the form:

3 (D — PO)/ET)” < 0.9920/+/a
=1

(4.109)

J

A bar with electrodes on its ends, poled along its
length and lying along the z-direction may be considered
to obtain the model for a typical electrostrictive transdu-
cer. Solving the three-dimensional equations for E3 and
s3, subject to the following conditions:

I'=T,=T4=Ts=T=0

and:
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we get:
D;— P
E; = 370 -~ 24, TsDy (4.110)
\/S(Z)Ez — a(Dg — P())
and:
s3 = B\ T3 + B,D3 (4.111)

where B, = s%; and 8, = Qs3. The equivalent circuit for
this bar may be obtained by linearizing the theory for the
expansion of the bar. To do this, the displacement field
may be written as:

p-% 4

4.112
~ T2 (4.112)

where ¢ is the first-order charge and Qp is the fixed
charge on the electrodes, each of area A, arising either
from a fixed polarization Py, or a bias voltage V), or a
combination of both.

The strain is written in the form s = s© + s() where
s© is a fixed strain and sV is the first-order strain.
Similarly, the electric field 1is expressed as
E=E" 4+ EW,

To obtain the functional dependence about Q, the
voltage and force are taken as the effort variables, the
charge (¢) and displacement (x) are taken as the state
variables and the current (i) and velocity (u) are taken as
the flow variables.

The ‘actuation’ of the transducer is assumed to consist
of stacks of active material, where each element of
each stack acts electrically in parallel but mechanically
in series. Each stack contains n. elements and several
such stacks are combined appropriately to drive the
transducer face. There are m, such mechanically parallel
stacks.

The voltage due to the first order charge g is:

q

Vi = —
G

(4.113)

where C; is the blocked capacitance given by:

mglle
C| =
"7 Gd
and d is the plate separation. In the above expression, G is:
2
G = (‘00‘0'{%)
T \2 NRE
Al (a08k) — a(Qo/4 — Po)']

2 2
14l %

fia

The voltage due to the fixed charge Qy is:

 —x (28,00d
e dn, ( BiA VO)

(4.114)

A capacitive term Cy is defined as follows:

_anO

0= 23,00/ B,A) — Vo

(4.115)

The transduction factor N is defined as:

C1 Qo
N=—=— 4.116
Cod ( )

Therefore:

xN

=— 4.117
c @.117)

V2

where x is the displacement. Hence, the total voltage is
given by the following:

q xN
V=V + V) =+ —

4.118
e (4.118)

To derive the force equation, we need to combine the
electrostatic and electrostrictive forces. The electrostric-
tive forces are:

_ =2p00
BiAn,

_a%

F =
dn,

2

The opposing force due to the loading mass, i.e. the
motional resistance of the material, is:

1
F3 = “|:ijM + Rm +.—}
JoCym
(4.119)

{, M+ms N meA }
=uljo —rM -
Me JonBd

where Ly (= M) is the total motional mass which, includes

the loading mass, ry is the motional resistance of a single

element, o is the angular frequency and u is the velocity.
By assuming time-harmonic motion:

msA

F3 = jox|joM + ™ ny +

p Son | ~ IO (4.120)
€ €
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where x is the displacement and Zy is the motional
impedance. Hence, the effective force is:

N
F—=F, +F,+F; :C—q—ijMx (4.121)
1

In the matrix form, the constitutive relationship for the
transducer is:

r N
o G 1 (4.122)
F N 7 x '

C, JWLm

This relationship shows that the total strain in a material
is the sum of the elastic strain and the polarization-
induced strain. By rearranging, we obtain the transfer
matrix relationship in following form:

1 N C\Zm
v N  joC TN F
= (4.123)
i j(uC1 —jwcle u
N N

This transfer matrix may be split conveniently as
follows:

1 N Ci1Zm

— -1
i 1
N  joC N _ e
jCOC] —ja)Cle _](}JC 1 0 1
N N
l 0 1 ZM
x | N (4.124)
o —n|L0 1
This results in the equivalent circuit shown in

Figure 4.11. In this model, the total impedance Zy, is:

ZM :JwM+RM + I/JQ)CM
where Cy, the total motional capacitance is given by:

neﬁld
Cyv = .
M msA )

In addition, Ly, is the total motional inductance (= effec-
tive mass, M), Ry is the total motional resistance (=
msrm/N.), v is the motional resistance for a single
element, C; is the total capacitance (= ms#,/Gd) and
N is the electromechanical transformation ratio

(= (C1/Co) (Qo/d)).

Figure 4.11 Equivalent circuit of an electrostricitve transducer.

The coupling coefficient « is calculated in terms of the
circuit capacitances:

»_ B FﬁondVOr

_ 4.125
YT 2GA| pA (4.125)

The phenomenon of electrostriction is very similar
to piezoelectricity. One of the fundamental difference
between the two, however, is the closeness of the transi-
tion temperature of the material to the operating tem-
peratures. This accounts for the improved strain and
hysteresis properties for electrostrictive materials. How-
ever, a larger number of coefficients are required to
model electromechanical coupling for electrostriction.
The polarization in piezoelectric materials is sponta-
neous, while that in electrostrictive materials is field-
induced. The properties of electrostrictive materials are
more temperature-dependent, with the operating tem-
perature ranges for these materials being narrower than
those of piezoelectrics [8].

Material compositions based on lead magnesium
niobate (Pb(Mgg33,Nbge7)O3 or PMN) are commonly
used in electrostrictive transducers. Their properties
have been studied extensively [9]. However, practical
thin-film transducers using this approach are yet to be
realized. However, polymeric thin-film materials with
compliant graphite electrodes have been shown to have
excellent electrostrictive properties [10]. These mater-
ials are capable of efficient and fast responses with
high strains, good actuation pressures (up to 1.9 MPa)
and high specific energy densities. In this case, the
electrostriction phenomenon is not due to molecular
dipole realignment [11]. In these silicone film actuators,
the strain results from external forces caused by electro-
static attraction of their graphite compliant electrodes.
Although their mechanism is electrostatics-based, these
actuators have been shown to produce a much larger
effective actuation pressure than conventional air-gap
electrostatics with similar electric fields.
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4.7 MAGNETOSTRICTIVE TRANSDUCERS

While the characteristic property of electrostrictive
materials is the production of strain on the application
of an electric field, in magnetostrictive materials
mechanical strain is produced by the application of a
magnetic field. In addition, like ordinary materials,
strains may also originate from applied stresses. Their
magnetization changes are due to applied mechanical
stresses as well as applied magnetic fields. Mathema-
tically, these relationships may be summarized as
follows:

S=S(T, H) (4.126)
B =B(T, H) (4.127)
Therefore:
aS; aS;
ds;= dT; dH, 4.128
87} . J + aHk r k ( )
OB, OBy,
dB;= dT; ——| dH, 4.12
07} . J + OHk r k ( 9)

In these equations, i = (1,...6) denote the components of
the engineering strains, while m = 1,2 and 3. The elastic
compliances at constant H are:

0S;

_ < H
o7, = % (4.130)

Uy
H

while the magnetic permeabilities at constant 7 are:

OB,

_ T
AR (4.131)

- Pmk
T

For small variations in d7 and dH, the constitutive
relationships may be linearized as follows:

Si = ST} + duHy (4.132)

By =dyT, + 12 Hy (m=1,2,3) (4.133)

where d,,; (= d;,) are the magnetostrictive constants.
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2 31 H,
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T
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Assuming linear relationships between B and H and
between S and H, the internal energy may be written as
follows:

1 1

1 1 1 1
=3 TiSijTj += Tldmle +-H, dmiTi + = Hy .umka

2 2 2 2

= Uz +2Upe + Un (4.136)
Here, U. and U, are the pure elastic magnetic energies
and Uy, is the magnetoelastic energy of the system.
These quantities may be used to arrive at an important
figure of merit, called the magnetomechanical coupling
coefficient, k, as:

Ume
k=—r=

VU Un

Usually magnetostrictive materials operate in the long-
itudinal mode. This reduces the stresses strains, and
magnetic field components in the direction with subscript

(4.137)



Actuators for Smart Systems 79

‘3’, while all others are zero. These conditions simplify

the magnetomechanical coupling coefficient to:
2

d3;

T 0
H33833

Ky = (4.138)

After the subscript ‘3’ is dropped, Equations (4.132) and
(4.133) then become:

S=s"T+dH
B=dT + i'H

(4.139)
(4.140)

By rearranging to change the variables, we then obtain:

1

T:S_BS*)“B (4.141)

1
H=—-/S+—B (4.142)

u

where the constant / is given by:

d

= e (4.143)

By assuming sinusoidal variation (with angular fre-
quency ) for all quantities, the strain along the rod
under ‘quasi-static’ conditions is related to the phase
velocities on the rod by:

Vo — Vi

S = 4.144
Jjol, ( )

From Equation (4.141), the force on the rod is given by:

A —
F=-1aA =221
s jol;

+ JAB (4.145)

The magnetizing field from a thin solenoid with N turns
and /; > r is given by:

(4.146)

By substituting Equations (4.146) and (4.142) into Equa-
tion (4.145), we obtain:

Vo — V1 ;ArN
= — —1 4.147
JjoCH sHI ( )
where:
on 3 on SOk
A A,

By Faraday’s law, the induction through a solenoid can
be related to the voltage across the terminals by:

v
"~ joNA,

(4.148)

By substituting Equation (4.148) into Equation (4.142),
we obtain:

NI — Vv
M_phrzn, Y (4.149)
l; jol,  joNAuS
Rewriting Equation (4.149), we obtain:
V = joLSI + N (vy —v1) (4.150)
sHI, ! ’

where the clamped and free inductances of the magnetiz-
ing coil are:

s ONAL L HINA
ke ke

By rearranging Equations (4.147) and (4.150), we can
obtain the transfer matrix as follows:

joLS 1
v r jwChr F
{ }_ 1 (4.151)
I 1 LS dr||u
S
r cCcHr
where:
JAN
I =
sH,

Correspondingly, the equivalent circuit takes the form
shown in Figure 4.12.

> ~.

(5001 2

<
«—— T —>=

Figure 4.12 Equivalent circuit of a magnetostrictive transducer.
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4.8 ELECTROTHERMAL ACTUATORS

In electrothermal actuators, heat is applied to a ‘bimorph’
beam, the expansion of which is used to generate the
mechanical moment required for the actuation. Large
deflections and greater energy densities are achievable
with this scheme. However, electrothermal transducers
are generally very slow. Several configurations have been
reported in the literature for this kind of actuator. In
general, these consist of two transduction mechanisms —
the first an irreversible electrothermal process and the
second, a reversible thermomechanical transduction. The
configuration of an audio frequency filter with such an
actuator is shown in Figure 4.13 [12]. This consists of a
thermally isolated thin diaphragm, fabricated by ‘back-
side etching’, and a pair of metal resistors for the actuator
(heater) and sensor, patterned by a ‘liftoff” process.

Several other configurations of micromachined ther-
mal actuators have also been reported in the literature
[13,14].

In Huang and Lee [14], for example, the difference in
electrical resistances of a wide and a narrow arm in a
bimorph structure (Figure 4.14) is used to generate the
necessary deflection. This difference causes variation in
the heat produced and hence thermal expansion of the
two arms. In Figure 4.14, in-plane motion is made
possible by the asymmetrical thermal expansion of the
microstructure having different cross-sections for its
arms. As an electric current is fed through the ‘anchors’,
the higher current density in the ‘hot arm’ generates heat
and causes it to expand more than the ‘cold arm’. Since

ES ES/
ﬂ DL + s Vo= kAR

— 7
Micromachined
<" Diaphragm
- Ry R
Heater Sensor

v__ v

Diaphragm/ sensor
Electrical heating temperature Electrical signal
power (AV,) (AT to ARy) conversion (AV, )
He) =157

Figure 4.13 Principles of an electrothermal transducer [12].
K.H. Lee, H.J. Byun, H.K. Lee, I.J. Cho, J.U. Bu, and E. Yoon,
“An audio frequency filter application of micromachined
thermally-isolated diaphragm structures,” 13th Annual Inter.
Confer. Micro Electro Mechanical Systems MEMS 2000, ©
2000 IEEE
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Figure 4.14 Schematics of a ‘biomorph’ electrothermal trans-
ducer: (a) top view; (b) equivalent one-dimensional coordinate
system; (c) cross-sectional view [14]. Q.A. Huang and N.K.S.
Lee, Analysis and design of polysilicon thermal flexure actuator,
J. Micromech. Microeng., vol. 9, 1999, © IOP

the arms are joined at the free end, the actuator tip
moves laterally along an arc in the direction of the cold
arm.

This electrothermal transducer is irreversible, since
even though the electrical energy can produce mechan-
ical motion, energy transport in the opposite direction is
not possible. Hence, this cannot be modeled with a
reciprocal electrical network. The deflection of the
actuator can be derived to be:

12

= ¢ (4.152)

u x1l — 3x3)

where I}, is the moment of inertia of the hot arm, E is the
Young’s modulus of the arm, x; is the horizontal force in
the arm and xj3 is the coupling force on it. The equivalent
force acting on this may be obtained as follows:

1
F f(xll*3X3)

- 4.153
T (4.153)
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Hence, the force acting is dependent on the temperature
changes which are produced due to different current
densities in these arms. The corresponding spring con-
stant is:

3EI

By choosing that the displacement y, and charge ¢, are
the state variables, the mechanical energy confined in the
transducer is as follows:

1
Wr = Ekq,yf (4.155)
The total differential of Wr is given by:
dw; dw:
AWy = —— dg, + — dy, (4.156)
dq{ Y = constant dyt g, = constant

In thermodynamic equilibrium, the electrical energy
fed into the transducer is transferred to the mechani-
cal port, while the remaining energy is stored in the
transducer:

dWr = v,dg, — F,dy, (4.157)
Therefore:

dWr 1 ,dk(g,)

Vi(gr,x) = ==y (4.158)
e dq[ ¥, = constant 2 dqf
dw-
Fi(gix) = = = vikg; (4.159)
Vi ¢, = constant

It may, however, be pointed out that due to the non-linear
nature of these expressions, development of an equiva-
lent circuit in the form described elsewhere is not
possible for an electrothermal transducer.

Another thermoresponsive transducer is based on the
class of materials known as shape memory alloys
(SMAs), which includes certain alloys (Ni-Ti, Cu—Al-
Zn, etc.) that undergo large strains. These can recover
their initial configurations spontaneously or by heating
without any residual deformation. These properties of
SMAs are associated with a solid—solid phase transfor-
mation which can be thermal- or stress-induced. SMAs
are mainly used in medical sciences, electrical, aero-
space, civil and mechanical engineering.

Important properties of SMAs include the following:

e Compact powerful actuators with high work output
per volume.

Large actuation displacement and recovery force.
Medium operational voltage (below 40 V).
Hysteresis may be put to use in large energy absorp-
tion and damping capacity.

o SMA-active elements transform into their original
parent phases/shapes, even after several years.

e Repeated absorption of large amounts of strain energy
and fatigue resistance under loading without any
permanent deformation.

e Possibility for obtaining a wide cyclic behavior by
varying the number and/or the characteristics of the
SMA components.

Usable strain range of 70 %.
Smooth operation of the transducer.

Based on the above, these materials are used in several
structural applications, such as in active and passive con-
trol structures, as smart material tags, in self-stressing and
self-healing structures and in structural health monitoring.

As mentioned previously, SMAs undergo a solid-to-
solid phase transition. Because of this, they can have two
different crystalline lattice structures, depending on both
the applied stress and the temperature. As result of this
solid-to-solid phase transition, SMAs show three special
properties: the shape memory effect (SME), the pseu-
doelastic effect and the ‘martensitic deformability’.

Martensite is the crystallographic description of the
low-temperature phase of an SMA, formed during cool-
ing. The martensitic crystalline structure is thermodyna-
mically more stable below a certain transition
temperature. Martensite evolves from austenite crystals
in various directions and can therefore have many dif-
ferent lattice arrangements, depending on the local stress
field. In addition, the structure can appear as twinned or
‘de-twinned’. In this phase, the SMA can be deformed
easily due to the mobility of the twinned boundaries. A
plateau stress is present in the stress—strain curve of the
SMA in the martensite phase.

Typically, a phase transition is induced by a change in
temperature. The temperature at which the SMA starts to
transform into the martensite phase is the ‘martensite
start-temperature’. This transformation is completed
when the temperature falls below the ‘martensite finish-
temperature’. However, the transformation of austenite to
martensite can also be induced at higher temperatures
during loading; this is known as ‘strain induced marten-
site” (SIM).



82 Smart Material Systems and MEMS

Table 4.3 Properties of an Ni-Ti shape memory alloy.

Property Value
Density (g/cm?) 6.45-6.7
Maximum energy density (J/m?) 106-107
Ultimate tensile strength (MPa) < 1900
Poisson ratio 0.33

Shape memory effect (%) ~ 8
Elongation at failure (%) <50
Response speed (time to heat/cool) (Hz) <10

Power supply (typical) (V, A) < 40V; < several kA
Operational temperature range (°C) < 250
Transition temperature (°C) —200 to +110

Properties that change between two phases

Phase
Property Austenite Martensite
Yield strength (MPa) 195-690 70-140
Young’s modulus (GPa) 90-100 28-41
Coefficient of thermal expansion (°C™") 10-11 x 107 6.7 x 1076
Thermal conductivity (W/(m°C)) 18 8.5-9.0

The second crystalline lattice structure is austenite,
which is the strong, high-temperature phase of an
SMA. The molecular arrangement of the austenite
structure is cubic and because of this symmetrical
structure the alloy shows a high modulus of elasticity.
This austenitic structure has the characteristic stress—
strain curve of typical metals and is much stronger than
the martensitic structure. The austenite phase starts to
form out of the martensite phase at the ‘austenite start-
temperature’. This transformation is completed when
the temperature rises above the ‘austenite finish-
temperature’. However, above this temperature, the
SMA element can still be in the martensitic phase
due to an applied load (SIM). The specific transforma-
tion temperatures can vary significantly with the che-
mical composition of the SMA.

Heating of an SMA to induce the phase change can
be achieved by actually providing heat. External heat-
ing elements are usually bulky, not very efficient and
may cause internal stresses. Usually, resistive heating
is used to deform the SMA by passing an electric
current through it. The time needed for complete
shape recovery is directly related to the time required
to heat the element to above a certain temperature. The
time needed to relax depends on the cooling rate of the

material. This cooling process cannot be accelerated
very easily, but the transformation back to the marten-
site state can also be induced by means of an applied
stress or strain. The response time of an SMA can be
minimized by reducing the actuator size and maximiz-
ing the heat transfer. The latter can be achieved with a
moving liquid, or by making the contact surface as
large as possible.

Sun and Sun [15] used a thermomechanical approach
to develop a constitutive relationship for the bending of a
composite beam with continuous SMA fibers embedded
eccentric to the neutral axis. These authors concluded
that SMAs can be successfully used for active structural
vibration control.

Table 4.3 lists the properties of a representative shape
memory alloy, i.e. Ni-Ti.

4.9 COMPARISON OF ACTUATION
SCHEMES

A brief comparison of some of the electromechani-
cal transducers discussed previously is presented in
Table 4.4. Due to its simplicity, electrostatic actuation
is the most preferred, especially in micro devices. The
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Table 4.4 Comparison of the properties of electromechanical transducers [16]. Reproduced with
permission of IEE.
Actuator Fractional stroke (%) Maximum energy density (J/cm?) Efficiency Speed
Electrostatic 32 0.004 High Fast
Electromagnetic 50 0.025 Low Fast
Piezoelectric 0.2 0.035 High Very fast
Magnetostrictive 0.2 0.07 Low Very fast
Electrostrictive 4 0.032 High Fast
Thermal 50 25.5 Low Slow
control signal here is voltage, which is easy to mani- 2. H.A.C. Tilmans, ‘Equivalent circuit representation of elec-

pulate in electrical circuits. However, these devices
require greater environmental protection as electrostatic
fields are prone to attract dust, which could affect the
performance of associated complimentary metal oxide
semiconductor (CMOS) circuits. Electromagnetic and
electrodynamic actuators are based on Lorentz force
effects. The current-carrying coil is stationary in the
former case, while in the latter it is moving. These are
ideally suited when large currents are possible, even if
with lower voltages. However, they are prone to pro-
blems with power dissipation, but are tolerant to dust
and humidity.

Actuators based on piezoelectricity, magnetostriction
and electrostriction depend on changes in strain produced
by an applied electric or magnetic field in some special
materials used. The achievable strain is at a maximum for
electrostrictive materials but the force generated is at a
maximum in magnetostrictive materials. Both electro-
strictive and piezoelectric materials deform with the
application of an electric field, but while the relationship
between the force produced and applied field is linear in
piezoelectrics, it is quadratic in electrostrictive materials.

Most of these transduction schemes are non-linear. That
is, the transfer function between electrical (voltage or
current) and mechanical (force or displacement) is not
linear. Such non-linearities distort the ‘sensed signal’, and
may cause loss of ‘fidelity’. One approach to overcome this
difficulty is to restrict the signal to very small variations
about a DC bias. It is fairly reasonable to assume that the
responses to these small signal variations are linear.
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5

Design Examples for Sensors and Actuators

5.1 INTRODUCTION

The principles of several sensors and actuators have been
discussed in Chapters 3 and 4. Several of these devices
are employed in numerous applications in civil, military,
aerospace and biological areas, as will be demonstrated
in Part 4 of this text. This chapter is intended to provide
the basic understanding of the design of some of these
sensors and actuators. Examples of sensors presented
here include the piezoelectric and piezoresistive types. A
chemical sensor based on the surface accoustic wave
(SAW) principles is described. A fiber-optic gyroscope
represents the optical segment of sensors in this chapter.
In addition, the design of microvalves and pumps required
in several biomedical applications is also included here.

5.2 PIEZOELECTRIC SENSORS

Lead zirconate titanate (commonly known by the acro-
nym PZT) is arguably the most widely used component
in smart systems. The importance of this material comes
from the fact that it exhibits significant piezoelectric
properties. Piezoelectricity refers to the phenomenon in
which forces applied to a slab of a material result in the
generation of electrical charges on the surfaces of the
slab. This is due to the distribution of electric charges in
the unit cell of a crystal when force is applied.

In these crystals, the force applied along one axis of the
crystal leads to the appearance of positive and negative
charges on opposite sides of the crystal along another axis.
The strain induced by the force leads to a physical dis-
placement of the charge within the unit cell. This polariza-
tion of the crystal leads to an accumulation of charge:

0 =dF (5.1)

In the above equation, the piezoelectric coefficient d is a
3 x 3 matrix. In general, forces in the x,yz directions
contribute to charges produced in any of the x,y,z direc-
tions. Values of the piezoelectric coefficients of these
materials are usually made available by the manufacturer.
Typical values of the piezoelectric charge coefficients are
1-100 pC/N. Some of the other properties of PZT are
listed in Table 5.1. Once the charge is known, the voltage
across the plate of the piezoelectric material can be
determined by:

V=0/C (5.2)
where the parallel plate capacitance of this configuration
is:

£0&A

€="a

(5.3)

Thus, in order to produce a larger voltage one can resort
to reducing the area of the sensor. However, it must be
cautioned that piezoelectrics are not generally good
dielectrics. These materials have substantial leakage
losses. In other words, the charge across a pair of
electrodes may vanish over time. Therefore, there is a
time constant for retention of voltage on the piezoelectric
after the application of a force. This time constant
depends on the capacitance of the element, and the
leakage resistance. Typical time constants are of order
of 1s. Because of this effect, piezoelectrics are not used
for static measurements such as weight.

The reversible effect is used in piezoelectric actua-
tors. Application of a voltage across such a material
results in dimensional changes in the crystal. The
coefficients involved are exactly the same as in
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Table 5.1 Electromechanical properties of PZT.

Property Value
Density (g/cm?) 7.7-8.1
Maximum energy density (J/m?) 102
Young’s modulus (GPa) 60-120

Tensile strength (MPa) 25 (dynamic);

75 (static)

Compressive strength (MPa) 520

Curie temperature (°C) 160-350

Operational temperature range (°C) —273 to 80

Inducible strain (1-2kV/m) at (um/m) 1-2

Response time Very fast
(typically
kHz, up to
GHz)

Equation (5.1). The change in length per unit applied
voltage is given by:

(&)
dL _ EA &8 (5.4)

'V~ [d\FL\ ~ Edy,
£0&A

The strain in the above expression depends only on the
piezoelectric coefficient, the dielectric constant and
Young’s modulus. Therefore, it may be inferred that
objects of a given piezoelectric material, irrespective of
their shape, would undergo the same fractional change in
length upon the application of a given voltage.

Most sensors using the piezoelectric effect require a
charge-amplifying preamplifier. A simple circuit for this
purpose is shown in Figure 5.1. Another recently devel-
oped material with sizeable piezoelectric properties is
poly(vinylidene fluoride) (PVDF). This can usually be
treated during fabrication to have a good piezoelectric
coefficient in the direction of interest. Being polymeric,
films of this material can be made at low cost. A related
copolymer P(VDE-TrFE) also shows significant piezo-
electric properties. The properties of PVDF and P(VDF-
TrFE) are given in Table 5.2. Both of these materials are
used in acoustic sensors because of their strong piezo-
electricity, low acoustic impedance (useful in underwater
applications, since there are only small mismatches with
those of water) and flexibility (which permits applica-
tions on curved surfaces). Therefore, transducers with
wide operating bandwidths can be easily designed using
PVDE. This also results in improvements in the overall
performance of sensors such as hydrophones used for
sensing acoustic fields. As the sensor size decreases, it

Charge generating
sensor s P 1

oo

Figure 5.1 Schematic of a piezoelectric sensor which uses a
charge preamplifier.

> Vout

becomes necessary to provide an amplifier or buffer in
close proximity to overcome the sensitivity loss due to
interconnected capacitances. This calls for the concept of
sensors integrated with electronics. The discussion below
shows the integration of a sensor where an on-chip
MOSEFET is implemented in which the sensor is placed
over the extended gate metal electrode of the MOSFET.
The MOSFET amplifier takes care of the loss of the sensor
signal due to the finite capacitances of the cables that are
used to drive the signal to the signal processing unit.

A schematic of the device structure is shown in
Figure 5.2 [3]. This is fabricated using six levels of
photo masks. The device consists of a sensing part and
an amplifying part. A PVDF film is used as the sensing
material and an n-channel MOSFET with an extended
aluminum gate is used as the electronic interface to the
PVDF sensor. The basic structure is fabricated using a
standard NMOS process. Transistors with large W/L

Table 5.2 Properties of PZT, PVDF and P(VDF-TrFE)
[1,2]. F. S. Foster, K. A. Harasiewicz and M. D. Sherar,
“A History of Medical and Biological Imaging with
Polyvinylidene Fluoride (PVDF) Transducers,” IEEE
Trans. Ultrasonics Ferroelectrics Freq. Control,
UFFC-47, © 2000 IEEE

Property PZT-5A PVDF P(VDF
—~TrFE)
Thickness mode 0.49 0.14 0.25-0.29
coupling coefficient
Relative permittivity, & 1200 12-13 7-8
Density (g/cm?) 7.75 1.78 1.88
Acoustic impedance, 33.7 3.92 4.37
Z (MRa)
Maximum 365 80 115-145

temperature (°C)
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Figure 5.2 Schematic of the cross-section of PVDF-MOSFET hydrophone device [3].

ratios are preferred in order to obtain a large transcon-
ductance, g, and low noise. Hence, MOSFETs with
different W/L ratios are preferred for this application.

The operating principle of this device can be explained
as follows. The incident acoustic signal initiates the
charge redistribution on the surfaces of the PVDF film
that, in turn, changes the charge on the gate of an n-type
MOSFET. The shift in gate voltage is used to modulate
the drain current in a common source configuration. Since
the FET is an important component in these sensors, its
electrical characteristics are important in determining the
behavior of these sensors. They also help to determine the
operating point for the integrated sensors.

In a MOSFET, the drain current I is produced when
electrons flow from source to drain. So, the existence of
the channel is the cause of current flow. If Vg is the gate-
source voltage of the MOSFET and Vry the threshold
voltage, then the condition for a channel to exist is that
Vigs > Vr. With source and substrate terminals at ground
potential, the threshold voltage Vr is given by [4]:

V1 = V1 _mos + VEB (5.5)

where Vp_pmos 1S the threshold voltage of the MOS
capacitor and Vgg is the flat band voltage:

The threshold voltage of the MOS capacitor Vr_pmes i
given by:

O

ox

VI_mos = 2¢(b) + (5.6)

where @(b) is the bulk potential, Oy is the maximum
space charge density per unit area of the depletion region
and C, is the gate oxide capacitance. From these
relations, it is evident that Vr is a function of the material
properties of the gate conductor and insulation, the
thickness of the gate insulator, the channel doping and
the impurities at the silicon—insulator interface.

If N, is the acceptor atom concentration and N; is the
intrinsic concentration, then the bulk potential ®(b) is

given by:
KT A
(o) =—In (]i)

Sy (5.7)

If & is the permittivity of the silicon substrate, then the
maximum space charge density Qy, is given by:

Qb = \/4e5igNap(b) (5.8)
The flat band voltage Vg is given by:
Ore
Vig = ¢ms - C:x (59)

where @, is the work function at the metal-semicon-
ductor interface, Q. is the surface charge state and Cy is
the gate oxide capacitance.

If E, is the band gap energy and @(b) the bulk potential,
then the work function @, is given by:

-E,

(5.10)
To operate the MOSFET as an amplifier, it must be
biased at a point in the saturation region where the
transconductance is proportional to the applied gate
voltage but is independent of the drain voltage. For the
MOSFET to operate in the linear region, the drain source
voltage Vps < (Vgs — Vr). Then the drain source current
1y is given by:

Wi, Cox

Iy = ——— (Vgs — VT)2

o (5.11)

where L is the length, W the width and p, the surface
mobility of the carriers in the channel of the MOSFET.

Hence the length L, the width W and the gate insulator
thickness of the MOSFET are decided based on the above
equations. The channel length of these devices is
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Figure 5.3 Equivalent small-signal model of a PVDF-MOS-
FET device.

designed as 10 um. From the /-V characteristic curves,
the carrier mobility u, was obtained as about 600-
700 cm?/(Vs). The threshold voltages for both the devices
are within —0.5 to 0.3V, which means the devices are
‘depletion-mode’ n-channel MOSFETs.

Since the resistance of the MOSFET is quite small and
the equivalent output impedance of the PVDF transducer
is simply a capacitor (Cp), the ideal PVDF-MOSFET
structure may be modeled as shown in Figure 5.3. In the
equivalent circuit, V, is the signal voltage reaching
the gate of the MOSFET (induced gate voltage), Cy is
the ‘clamped’ capacitance of the PVDF film, Cyy, is the
extended gate electrode-to-substrate capacitance, Cys and
Cyq are the gate-to-source and gate-to-drain capacitances,
respectively, g, is the transconductance and Rp is the
resistance of the resistor connected to the drain of the
MOSFET.

From the equivalent circuit, it is easy to get:

Ve Co
Vevpr  Co + Caup + Cys + Coa(1 + gmRp)

(5.12)

where Cj is related to the thickness of the PVDF film. In
the design shown here, the PVDF film has a thickness of
110 um. The values of Cgyp, Cgs and Cyq can be calcu-
lated from the structural and geometrical parameters of
the MOSFET (Table 5.3). Equation (5.12) shows that the

Table 5.3 Structural and geometrical parameters
of a fabricated MOSFET (all values in pm).

Parameter Value
Field oxide thickness 1
Gate oxide thickness 30.0
Metal thickness 0.25
n"junction depth 0.5
p-Type substrate thickness 250
SU-8 thickness 11

induced gate voltage can be improved by minimizing
Cqup» Cys and Cyq. When an acoustic signal reaches the
PVDF transducer, a small voltage is generated and
partially transmitted to the gate of the MOSFET. The
small variation of the gate voltage in turn induces the
voltage variation across Rp. The voltage gain is:

Vo Wn,C,

20 o Ry=—
V, EmAD

(Vs — V1)Rp (5.13)

The sensitivity of the sensor with the electronics built in
can be obtained as:

n= () () (52)
Py Ve /) \VpvDE Py

5.3 MEMS IDT-BASED ACCELEROMETERS

(5.14)

The concept and design principles underlying an
MEMS-IDT (inter-digitated transducer)-based acceler-
ometer are based on the use of surface acoustic waves
(SAWs). This unique concept is a departure from the
conventional comb-driven MEMS accelerometer design.
By designing the seismic mass of the accelerometer to
float just above a high-frequency Rayleigh surface acous-
tic wave sensor, it is possible to realize the accuracy and
versatility required for the measurement of a wide range
of accelerations. Another unique feature of this device is
that because the SAW device operates at radiofrequen-
cies (RFs), it is easier to be able to connect the 1DT
device to a planar antenna and read the acceleration
remotely by wireless transmission and reception. This
unique combination of technologies results in a novel
accelerometer that can be remotely sensed by an RF
communication system, with the advantage of no power
requirements at the sensor site.

In the device described here, a conductive seismic
mass is placed close to the substrate (at a distance of less
than one acoustic wavelength). This serves to alter the
electrical boundary condition as discussed above. Pro-
gramable tapped delay lines have used the principle of air
gap coupling between the SAW substrate and a silicon
‘superstrate’ to form individual MOS capacitors. These
capacitors are then used to control the amount of RF
coupling from the input IDT on the SAW substrate to the
output terminal on the silicon chip [5]. This principle has
also been successfully implemented in the realization of
SAW ‘convolvers’ [6].

The seismic mass consists of a micromachined silicon
structure which incorporates reflectors and flexible
beams. The working of the device is as follows. The
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IDT generates a Rayleigh wave, and the array of reflec-
tors reflect this wave back to the IDT. The phase of the
reflected wave is dependent on the position of the
reflectors. If the positions of the reflectors are altered,
then the phase of the reflected wave is also changed. The
reflectors are part of the seismic mass. In response to
acceleration, the beam flexes, so causing the reflectors to
move. This can be measured as a phase shift of the
reflected wave. By calibrating the phase shift measured
with respect to the acceleration, the device can be used as
an acceleration sensor. Alternatively, the measurement
can be done in the time-domain, in which case the delay
time of the reflection from the reflectors is used to sense
the acceleration. A schematic of an MEMS-IDT-based
accelerometer is shown in Figure 5.4. For waves propa-
gating in the piezoelectric medium, there are two sets of
equations, namely the mechanical equation of motion
and Maxwell’s equation for the electrical behavior. The
equation of motion is as follows:

(5.15)

o 82ui _ i 8T,,

8t2 — 6)61'
j=1
where p is the density of the material, u; is the wave
displacement in the ith direction and Tj; is the stress. This
equation is intercoupled by the constitutive relation:

E
Ty =22 cluSu = euiEx
Fa k

(5.16)

where C;"kz is the stiffness tensor for a constant electric

field, i.e. if the electric field (E) is held constant, this
tensor relates changes in T}; to changes in Sy;. The electric

Absorber
eam

LiNbOj; crystal

Figure 5.4 Schematic of an MEMS-IDT-based accelerometer.

Polysilicon
seismic mass

displacement (D) is determined by the field £ and the
permittivity tensor &; In a piezoelectric material, the
electric displacement is also related to the strain:

Di=) ey B+ > ewS
J ik

where 81-Sj is the permittivity tensor for constant strain and
eyj is the coupling constant between the elastic and
electric fields.

The constitutive equations for piezoelectric materials
relating the stress 7, strain S, electric field E and electric
displacement D are given by Equations (5.15) and (5.16).
It can be seen that the electric field and the electric field
displacement are coupled in this set of equations. For a
non-piezoelectric material, e;; = 0 and there is no cou-
pling between the elastic and electric fields. The sym-
metric strain tensor is given by:

1 (Ou; Ou;
Sij _ (= + '
2 an 8x,~
where u is the wave displacement.
The electromagnetic quasi-static approximation:

o
oy
0 (5.20)

(5.17)

(5.18)

E = (5.19)

VD

for an electric potential ¢ can be used here to make
further simplifications. The rotational part of the electric
field due to the existence of a moving magnetic field is
neglected. This approximation (Equation (5.19)) is valid
as the acoustic velocity is small when compared to that of
the electromagnetic wave.

IDT

Contacts
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By incorporating Equations (5.17)-(5.19) in Equation
(5.20) results in a system of four coupled equations
relating the electric potential with three components of
displacement in a piezoelectric crystal:

&u;

=S (ot e ) (520
0

Zz(iaxax Z"kﬁxgjc>0'

where i, j and k vary from 1 to 3. The problem of wave
propagation on anisotropic substrates can be solved by
the method of partial waves. Plane wave solutions of the
form:

(5.22)

S oo
U = Ot}nelkb X3 elk()(] vt)

/ (5.23)

" = ol gk =) (5.24)

are considered where j = 1-3 and m =1-4. The coordi-
nate system is aligned to the substrate such that the
propagation is along x; and the surface normal is in the
x3 direction. Therefore, the surface wave decays along the
x3 direction. In Equations (5.23) and (5.24), k is the wave
number, b is the decay factor and v is the phase velocity.
The partial wave solutions are substituted into Equations
(5.21) and (5.22). The weighing coefficients of these plane
waves are chosen to satisfy the mechanical and electrical
boundary conditions at the surface of the crystal.

In equations of motion, the material parameters are
expressed in terms of axes which are selected for con-
venient boundary conditions and excitation requirements.
The tabulated values of these material parameters are
expressed according to the crystalline axes. It is neces-
sary to transform the material parameters to match the
coordinate system of the problem. In certain cases, this is
a mere interchange of the coordinate axes (as in YZ
lithium niobate). For more complex situations (128°YZ
lithium niobate) the parameters are transformed using an
appropriate transformation matrix. The elements of this
matrix are the direction cosines between the crystalline
axis and the ‘problem’ axis.

A YZ lithium niobate crystal is usually the material of
choice in the design of devices of this type as it has the
highest electromechanical coupling efficiency. The basic
principle of the device depends on the strength of the
piezoelectric coupling. ‘YZ lithium niobate’ indicates
that the x3 axis is parallel to the crystal axis Y, and x,
is parallel to the crystal axis Z. The orientation of x3 is
called the ‘cut’ of the crystal. For YZ lithium niobate, the

crystal is Y-cut and Z-propagating. Since the material
tensors, permittivity and piezoelectric tensors are speci-
fied with reference to the crystal axes, they need to be
transformed into a frame defined by xj, xp, x3. The
rotated material parameters are:

¢z oci3 c3 0
c3 cn ¢z 0 e O
0

_ |13 C12 Cl1
C= 0 0 0 Ce6 0 Cl4 (525)
0 cu4 —cu 0 cag O
0 0 0 Cl4 0 C44
€33 €3] €3] 0 0 0
e = 0 0 0 —e€ 0 els (526)
0 —€2 € 0 €15 0
€33 0 0
€= 0 €11 0 (527)

0 0 €11

The partial wave solutions (Equations (5.23) and (5.24))
are substituted into Equations (5.21) and (5.22), after the
material parameters have been rotated to match the
coordinate system defined for the problem, to get:

2
my — pV mpp m3 my
2
miy my — pV ma3 n
2
m3 my3 my3 — pV' M3y
2
mig o msy4 myq — pV
o
o
x| 721 =0 (5.28)
o3
0y
where:

miy = cssb* +2c1sb + c1

miy = cash* + (c1a + cs6)b + cig
miz = c3sb* + (c13 + cs5)b + c15
myy = 6351?2 + (615 + 631)17 + e

My = caab® + 2ca6b + cos
my3 = c3b® + (36 + cas)b + Cs6
Moy = exb® + (e1s + e36)b + eig
ms3 = cx3b” + 2c35b + cs5
my = ex3b” + (e13 + e35)b + e15

My = —(633b2 +2¢e13b + €11).
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For YZ lithium niobate, m,,, my3 and my4 = 0. For non-
trivial solutions, the determinant of the coefficients of o
must vanish. For a given value of the phase velocity,
setting this determinant equal to zero results in an eighth-
order equation in the decay constant (b). These roots of b
are purely real or conjugate pairs. Only values with
negative imaginary parts are admissible as these roots
lead to waves that decay with depth (i.e. surface waves).
There exist four such roots of b. For each of the four
roots, the corresponding eigenvalues and the eigenvectors
are determined. A linear combination of the partial waves
is then formed:

U — (ZC o(m ikb" X3> k(xy—vt) (529)
_ (Z CmaZ'leikb”‘)@) eik(xlfvt) (530)

These are then substituted into the boundary conditions
in the mechanical and electrical domains of the problem.
The mechanical boundary condition states that the sur-
face of the crystal is ‘mechanically free’. There is no
component of force in the x3 direction on the surface
(x3 = 0). This further implies that 73;, 73, and 733 = 0.

In the electrical domain, since a conductive plate is
placed at a height & above the substrate, the potential
goes to zero at x3 = h. The potential above the surface
satisfies Laplace’s equation. The potential and the elec-
tric displacement (D) in the direction normal to the
substrate are continuous at x3 = 0. This boundary con-
dition is represented by the following equations. The
potential in the air gap is given by:

b1 (x3) = (Be™ + Ce ) et (5.31)
The potential at x3 = h is zero. Therefore:
Bekh + Ce—kh ik(x; —vt)
i) = ( ) (5.32)

C = 2kh

The potential given by Equation (5.27) is equal to the
potential given by the plane wave solution at the surface
(x3 = 0). Equating these results in an expression for the
unknown constant B:

$1(0) = B(1 — &*)e*7) = ¢(0)  (5.33)
(Z ol ) ik(xi =) (5.34)

> emty
B=" (5.35)

1 — e2kh

The electric displacement in the air gap is given by:

0, (x3)
8)63

Ds = —& (5.36)

The electric displacement on the surface of the crystal is
given by:

2 Cmy

D3 (X3 = O) = _ks()lm_—eZkh

(1 +e2kh)eik(x17vt) (537)
This equation is obtained from the potential equation in
Equation (5.25). The expression for the electric field
displacement from the plane wave solution of potential
is similarly obtained and is given by:

=2 A+ DD eusy

5(x3 = 0) (5.38)

From the above equations, the relevant electrical bound-
ary conditions can be obtained.

The choice of the suspension for the seismic mass
determines the linearity of motion and the sensitivity to
residual strain. A single support is the simplest and
lowest spring constant design, but allows substantial
offline motion and rotation in the suspended mass. Two
parallel supports remove the rotation component of the
motion, but still introduce offline motion due to curvature
of the beams (arclength is preserved, while vertical
distance is not). A two-sided support removes that
problem but greatly increases the sensitivity to residual
stress.

In addition to launching surface waves, the IDT can
also generate bulk acoustic waves. These waves can
propagate in any direction within the body of the sub-
strate material. In this design, the principal effect of the
generation of bulk waves is reduction of the power
available for the generation of surface waves. The fol-
lowing strategies may be useful to minimize the genera-
tion of bulk waves:

(a) The bottom surface of the piezoelectric substrate is
roughened and coated with a soft conductor like
silver epoxy.

(b) Use substrate geometries that are not rectangular in
shape.

(c) Choice of the right number of IDT fingers. The input
power is converted into bulk wave energy and sur-
face wave energy as P = Pg + Pg, where Pg repre-
sents the power in the excited SAW wave and Py the
component that is radiated as bulk waves. The ratio
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of Pg to Py decreases drastically as the number of
finger pairs in the exciting IDT is reduced. For YZ
lithium niobate, the amount of input power converted
into transverse bulk waves increases almost expo-
nentially as the number of IDT fingers is reduced
below five.

5.4 FIBER-OPTIC GYROSCOPES

Fiber-optic gyroscopes are miniature solid-state optical
devices for the precise measurements of mechanical
rotation in inertial space. Conventionally used mechan-
ical gyroscopes involve a spinning mass and ‘gimbaled’
mountings. Optical gyroscopes are free of such moving
parts and may be used for a wide range of applications,
for example, navigation, exploration and in the manu-
facturing and defence industries.

The basic theory of rotation sensing by optical means
is known as the Sagnac effect, since this possibility was
first demonstrated by G. Sagnac in 1913. The type of
interferometer used to measure rotation is known as the
Sagnac interferometer (Figure 5.5). Two identical light
beams traveling in opposite directions around a closed
path experience a phase difference when the loop is
rotated about its axis, and this phase difference is
proportional to the rotation rate [7]. Consider the inter-
ferometer shown in Figure 5.5. Here, a light beam is split
by using a beam splitter and the two beams (B, and B,)
are made to travel in a circular path. When the inter-
ferometer is at rest in an inertial frame of reference, the
pathlength of the counter-propagating waves are equal
since light travels at the same speed in both directions
around the loop.

The time taken by the beam B; to complete the
circular path is:

2nr

(5.39)

Figure 5.5 Schematic of a Sagnac interferometer.

where r is the radius of the circular path. Similarly, the
time taken by the beam B, is also of the same value.
Therefore:

TI=1,=1 (5.40)
If the interferometer is rotating at a speed of 2m/s in the
clockwise direction and the observer is motionless in the
original inertial frame, the time taken by B, to complete
the circular path is less than B,. In this case, the time
taken by B to complete the circular path is given by:

2nr  Qrr
T =—+—

—+— (5.41)

Similarly, the time taken by B, to complete the circular
path is:

oy = 2 Sk (5.42)
c c

Therefore, the difference between the propagation times
of the two waves is:

2Qtr  4nrPQ)
=—

AT=1—17,= (5.43)
Obviously, B, will reach its destination before B;. For a

continuous wave of frequency w, this corresponds to a
phase shift:

4t 4
an w = —(;AQ
c c

Ap = wAt = (5.44)

where A is the area of the circular path. It may also be
noted that this result would remain unchanged even when
the interferometer is filled with a medium of refractive
index n because of the Fresnel-Fiezeau drag effect due to
the movement of the medium compensating for the
increased optical pathlengths.

The advantage of using an optical-fiber coil to form the
interferometer is that the Sagnac phase difference
increases with the number of turns or length of the
fiber. In this special case, Equation (5.44) can be rewrit-
ten as:

Ap = 2nL,—DAQ (5.45)
Ac
where L is the length of the fiber and D is the diameter of
the coil.
Fiber-optic gyroscopes are broadly classified into two-
types. The first type is an open-loop fiber-optic gyroscope
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Figure 5.6 Schematic of a fiber-optic gyroscope in the open-loop configuration [8]. Reproduced with permisison of KVH

Industries Inc

with a dynamic range of the order of 1000 to 5000, with a
scale-factor accuracy (inclusive of non-linearity and
hysterisis effects) of about 0.5 %, and sensitivities that
vary from less than 0.01 degrees/h to 100 degrees/h and
higher. These fiber-optic gyroscopes are generally used
for low-cost applications where dynamic range and
linearity are not crucial. The second type is the closed-
loop fiber-optic gyroscope that may have a dynamic
range of 10° and a scale-factor linearity of 10 ppm or
better. These types of fiber-optic gyroscopes are primar-
ily targeted at medium- to high-accuracy navigation
applications that have high turning rates and require
high linearity and large dynamic ranges.

Figure 5.6 illustrates the open-loop configuration. This
consists of a fiber coil, two directional couplers, a
polarizer, an optical source and a detector. A piezo-
electric (PZT) device wound with a small length at one
end of the fiber coil applies a non-reciprocal phase
modulation. Light from the laser traverses the first
directional coupler, polarizer and then the second direc-
tional coupler where it is split into two signals of equal
intensity that travel around the coil in opposite direc-
tions. The light recombines at the coupler, returning
through the polarizer, and half of the light is directed
by the first coupler into a photo detector. This configura-
tion permits measuring the difference in phase between
the two signals to one part in 10'®. This is possible due to
the principle of reciprocity. Light passing from the laser
through the polarizer is restricted to a single state of
polarization, and the directional couplers and coil are
made of special polarization-maintaining fibers to ensure
a single-mode path. Beams of light in both directions
travel through the same pathlength. Almost all environ-
mental conditions (except rotation) have the same effects
on both beams and are canceled out. Hence, this gyroscope

is sensitive only to rotation about the axis perpendicular to
the plane of the coil. The light intensity returning from the
coil to the polarizer is a raised cosine function, having a
maximum value when there is no rotation and a minimum
when the optical phase difference is + m (half an optical
wavelength). This effect can be shown to be independent
of the shape of the optical path and of the propagation
medium. Modulating PZT with a sinusoidal voltage
impresses a differential optical phase shift between the
two light beams at the modulating frequency. The inter-
ferometer output when there is no rotation of the coil
exhibits the periodic behavior shown in Figure 5.7, whose
frequency spectrum comprises Bessel harmonics of the
modulation frequency. Since the phase modulation is
symmetrical, only even harmonics are present; the ratio
of the harmonic amplitudes depends on the extent of phase
modulation. When the coil is rotated, the modulation
occurs about the shifted position of the interferometer
response. The modulation is unbalanced, and the funda-
mental and odd harmonics will also be present (Figure 5.8).
The amplitudes of the fundamental and odd harmonics
are proportional to the sine of the angular rotation rate,
while the even harmonics have a cosine relationship. The
simplest demodulation scheme synchronously detects
the signal at the fundamental frequency.

Further improvements in dynamic range and linearity
can be obtained by using a closed-loop configuration
where the phase shift induced by rotation is compen-
sated by an equal and opposite artificially imposed
phase shift. One way to accomplish this is to introduce
a frequency shifter into the loop, as shown in Figure 5.9.
The relative frequency difference of the light beams
propagating in the fiber loop can be controlled, resulting
in a net phase difference that is proportional to
the length of the fiber coil and the frequency shift. In
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Figure 5.7 Sagnac interferometer response for stationary open-loop gyroscope configuration [8]. Reproduced with permisison

of KVH Industries Inc

Figure 5.9, this is done by using a modulator in the
fiber-optic coil to generate a phase shift at a rate of w.
When the coil is rotated, the first harmonic signal
modifies the phase, in a manner similar to that for
open-loop fiber-optic gyroscopes. By using the rotation-
ally induced first harmonic as an error signal, the fre-
quency shift can be adjusted by using a synchronous
demodulator with a detector to translate the first harmonic
signal into a corresponding voltage. This voltage is
applied to a voltage-controlled oscillator whose output
frequency is fed into the frequency shifter in the loop so
that the phase relationship between the counter-propagat-
ing light beams is locked into a single value.

5.5 PIEZORESISTIVE PRESSURE SENSORS

A pressure sensor can consist of a micromachined silicon
wafer bonded onto a glass substrate. Strain gauges are
patterned onto the micromachined diaphragm area. To
analyze its operation, if we first consider a circular plate
of thickness /i, where the deflection of the plate w, under
a uniformly distributed pressure (p), is assumed to be
smaller than A/5, the differential equation describing the
elastic behavior of the middle plane of a thin plate is
obtained from the elementary theory of plates [9]:

(5.46)
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Figure 5.8 Sagnac interferometer response for rotating open-loop gyroscope configuration [8]. Reproduced with permisison of
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where D is the stiffness of the plate, (D = Eh®/
[12(1 —v?)]); here, E is the Young’s modulus of the
plate and v is the Poison ratio. In the case of a simply
supported edge, w is solved as follows:

2 _ 2
W:p(a ) [ (54 R

64D I+v
where a is the radius of the plate and r is measured in a

coordinate system fixed to the center of the plate.
The radial strain (¢,) is given by:

(5.47)

&(r,z) = __Dbz_ dz_w+zd_w
= T2 \a T rar
(5.48)
3 paz(hp —hm)(3+v) (1 rz)
8| E(hp+hm)’ a?
while the tangential strain (&) is given by:
a(r.2) Dz Vd2w+1dw
r [ - -
Y= T\ T rar
_3 pa*(hy — hn)(3 +V) {1 3 (3\) + 1) (r:)}
8|  E(hy+ hw)’ 3+v )\
(5.49)

where z is the vertical coordinate from the middle plane
to the boundary lamina of the plate and the thickness &
consists of the plate thickness, /,, and the membrane
thickness, Ap,.

As the pressure-induced strains are functions of the
radius, the mean radial strain is given by:

J &(r)dr . 3 3

o =T,

T =) o

while the mean tangential strain is:

Po

g
_ in () L (3v+ 1\ [ps—p}
RN :Sol_g 3+v )\ py—p;
J dr 0 !

Pi

(5.51)

where ry and 7| represent the outer and inner diameters of
radial strain, py and p, are the outer and inner diameters
of tangential strain and &g is the maximum strain acting in
the center of the circular plate, given by:

3

pa(hy = h)(3 + )
&y = g

E(hy + )’

(5.52)

A Wheatstone bridge is widely used to pick up variation
in the electrical resistances of the strain gauges. When
the bridge is balanced, there is no voltage output (when
there is no resistance change from its balance value) but
the bridge indicates a voltage output if the resistance is
varied from its nominal value. This resistance variation
depends on the strain generated in the resistor and the
change in resistivity:

AR

Ap
= (1+2v),s+7 (5.53)

where AR is the resistance change, R is the original
resistance to achieve the Wheatstone bridge balance, ¢ is
the strain, v is the Poison ratio of the resistor material,
Ap is the resistivity change and p is the original
resistivity of the resistor materials. Usually, the resistivity
change can be ignored, considering that resistors are
made from homogeneous materials. The linear relation-
ship between the resistance change and strain is obtained
as follows:

AR

== (I+2v)e (5.54)

Here, ko(=1+2v) is called the gauge factor which
directly reflects the relationship between resistance
change and strain.

If four gauges are placed on the flexible plate, two of
them for radial-strain sensing and the other two for
tangential-strain measurement, all four gauges have the
same nominal resistance so that the Wheatstone bridge is
in the ‘balance state’ and there is no voltage output. The
radial- and tangential-resistance changes due to the radial
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and tangential strains, respectively, are obtained by con-
sidering the temperature-shift-induced strain:

AR _

n 5 = kot (& + Etemp) (5.55)
AR
Tt = ket (B + Eremp) (5.56)

The voltage output due to the resistance change is

calculated from:
AR AR,
R R

(2 + AR, + ﬁ)

Vou = Vo (5.57)

R R

By considering the fact that AR,/R < 1 and AR;/R < 1
and combining Equations (5.55)-(5.57), the voltage out-
put of the circuit is given by:

Vo k (p = hw)(3 +)

— k(e — &) =—
2 ( l) 16 E(hp+hm)3

1 33 3.3
(GG -Gk
3+v)\po—pi ro—ri

where V; is the DC supply voltage of the Wheatstone
bridge. If the voltage output of this pressure transducer is
Vour When it is exposed to a pressure p, the sensitivity of
the transducer is then calculated as:

Vour =

1 dVeu k(B — )3+ V)
Vo dp 16 E(hy + hy)’

[ ()- ()
34v /) \po—pi To—Ti

(5.59)

System antenna

FM
Generater
Phase Mi
ixer
PC measurement

It may be interesting to note from the above equation that
pressure transducers with high sensitivities can be
obtained by using flexible materials with low Young’s
modulus values.

5.6 SAW-BASED WIRELESS STRAIN
SENSORS

In this section, a surface acoustic wave (SAW)-based
strain sensor is described. This sensor has recently been
proposed for studying the deflection and strain of a
‘flexbeam’-type structure for a helicopter blade [10].
The basic design principles of operation of SAW sensors
have been discussed in Chapter 3. The system presented
here consists of a remotely readable passive MEMS
sensor and a microwave-reader system, as shown in
Figure 5.10. The microwave-reading system used in
this system employs a frequency-modulated (FM) radar-
device. The FM signal sent by the system antenna is:
ut
S(t) = A cos (wo + 7); (5.60)
where oy is the start frequency of the FM signal, p is the
rate of modulation and ¢ is time. The echoes from the
reflectors, S (¢) and S, (), are the same as the transmitted
signal S(7) but with time delays #; and #, respectively.
These are written as:

$1(1) = $1 cos (o + %’) (t—1) (5.61)

and:

Sz(l‘) =S, cos <w0 + %[) (l‘ — l‘z) (562)

where t; = 2d,/v+ 1. and t, = 2d,/v + 1.. Here, v is

the SAW velocity, d; and d, are the distances from the
IDT transducer to the reflectors 1 and 2, respectively, and

Sensor antenna

=l 1

IDT Reflectors

Figure 5.10 Schematic diagram of a remote-reading sensor system with a passive SAW sensor.
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7. 18 the total of other delays, such as the electromagnetic
wave traveling time and the delay in the electronic circuit
and devices, which is the same for both echoes. Through
the mixer, which uses the transmitted signal as the
reference, and low-pass filter, the frequency differential
signals are obtained as:

E(1) = E; cos[utyt + (woty — ,utf)] = Ejcos (ot + ¢;)
(5.63)
and:

Ey(1) = E; cos|utat + (woty — ,ut%)] = E; cos (wpt + ¢,)
(5.64)

It may be observed that both the frequencies and phases
of these two signals depend on the delay times. The two
signals can be separated in the frequency domain. Since
o 1s usually much greater than y, the phase shift is more
sensitive to the variation of the delay time than that of the
frequency. The difference of the two phases can be
written as:

b=0¢,—¢,= [wo —g(zl +6)|(—1n) (5.65)

where the extra delay time of the second echo with
reference to the first is equal to the ‘round-trip’ time
for the acoustic wave traveling from the first reflector to
the second, and is 1, =1, — t; = 2dJv, where d is the
distance between the two reflectors. The phase difference
is sensitive to the change in delay times. The variation of
the phase difference due to the change in delay times is
expressed as:

A = [wo - g (1 + tz)] At (5.66)

Since wy is usually much larger than u(t; + #,)/2, we get
A¢ = a)oAT .
The wave traveling time ¢ is proportional to the distance

between the two reflectors and inversely proportional to
the velocity. If we neglect the possible velocity variation

of the SAW under strain and take into account only the
direct effect, the distance change is given as:

2¢
A¢ = (,l)()id = Wp&ETg (567)
v

where ¢ is the strain and 1 is the traveling time when the
strain is zero. The sensitivity of this remote-sensor
system depends on the operating frequency and the
round-trip traveling time between the two reflectors of
the SAW. The phase shift of the signal therefore varies
linearly with the strain on the structure to which the
sensor is attached. Strain can therefore be monitored at
the reader unit.

5.7 SAW-BASED CHEMICAL SENSORS

Acoustic microsensors are also used to detect/identify/
estimate many liquids and gases based on variations in
the electroacoustic properties. Their responses can be
easily related to physical quantities, such as mass density
and viscosity. These sensors offer a number of advan-
tages over traditional sensors, including real-time elec-
tronic read-out, small size, robustness and low-cost
fabrication. By employing so-called chemical interfaces,
the interaction of a chemical analyte with the sensor
surface results in a change in the propagation character-
istics of the wave. While Rayleigh surface acoustic wave
(SAW) sensors are most commonly used in gas-sensing
applications, shear horizontal (SH) polarized waves are
more suitable for liquid sensing [11]. However, improved
sensitivity can be obtained by using Lamb waves (flex-
ural plate waves) [12-15]. These sensors can be fabri-
cated on piezoelectric substrates. This approach is used
for simultaneous measurements of both mechanical and
electrical parameters of the fluid. The basic principles of
operation of a SH-SAW sensor in a single free delay-line
configuration are shown in Figure 5.11. In this, the input
and output IDTs are connected to the source and the load

A
/A, <>

I IDT) (transmitter)

Aperture, w

Liquid
! Uy 1/A,
<>

IDT, (receiver) I

Figure 5.11 Schematic of a delay-line arrangement with inter-digitated transducers on a piezoelectric substrate.
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Figure 5.12 Schematic of a dual-delay-line SH-SAW micro-

Sensor.

i

with admittances A; and A;, respectively. The basic
design considerations are identical to those used for
Rayleigh SAWSs. The design of the IDTs for the genera-
tion and detection of SH-SAWSs uses the delay-line
configuration often employed for SAW filters [11]. The
sensor consists of two adjacent delay lines, as shown
in Figure 5.12, consisting of an uncoated metallized
(reference) surface and an electrically free delay line.
The basic operating principles utilized in the design of
these liquid-sensing devices is that the perturbations
which affect SH-SAW propagation on a metallized and
electrically shorted surface are associated with the
mechanical properties of the adjacent liquid, while the
SH-SAWSs propagating on a free surface are associated
with both the mechanical and electrical properties of the
adjacent liquid [12]. Common environmental interactions
arise from both delay lines and can be removed by
comparison between the two signals. The design is
made by considering analysis and prediction of the
sensor response, which requires that the sensor effect is
accounted for in the device response. The sensor effect
can be incorporated into the device unperturbed transfer
function, to allow for the variations of delay time (related
to phase shift) and attenuation. When applying a voltage
across the two bus bars of the transmitter IDT, which are
connected to identical finger pairs, a current enters the
electrodes. This current is determined by the static
capacitances of the electrodes and the acoustic admit-
tances of the IDTs caused by generation of the SH—
SAWs.

The SH-SAWs which propagate on the surfaces of
piezoelectric substrates have associated electric fields
that will propagate typically several micrometers into a
liquid. This electrical interaction (also known as the
acoustoelectric interaction) with the liquid affects the
velocity and/or attenuation of SH-SAW propagation and
is utilized in sensing the dielectric properties of liquids
[15]. SH-SAW sensors thus can exhibit some specificity
in detecting the electrical properties of an adjacent liquid
[16,17].

The piezoelectric potential becomes zero for the elec-
trically shorted surface and hence the mechanical proper-
ties, including viscosity and density of a liquid, can be
detected because the horizontally polarized shear wave
can interact with it. On the other hand, since the piezo-
electric potential at the free space extends into the liquid,
the electrical properties, and hence the wave propagation,
will change due to an acoustoelectric interaction known
as ‘electrical perturbation’. The potential that is asso-
ciated with the SH-SAW will be affected by the elec-
trical properties of the adjacent liquid.

The complex unperturbed acoustic admittance transfer
function for transmitter to receiver can be approximated
as follows: [15,18]

1L

Ap(w) = G(w)oe™ 7 (5.68)
where o is the attenuation coefficient of the acoustic
wave, A is the acoustic wavelength, L is the distance
between the centers of the IDTs and G(w)=
Go(sinw/w)*, with @ = 7N(w — wo)/we and Gy =
2.25m0N*W (g + s;)KZ/Z. In the latter, Gy is the con-
ductance at the center frequency, N is the number of
fingers pairs, W is the aperture of the electrodes, ¢ is the
permittivity of a vacuum, sg is the effective permittivity
of the piezoelectric substrate and K? is the electrome-
chanical coupling coefficient of the substrate, which
depends on the crystal cut, frequency g and the mechan-
ical properties and thickness of the IDT metallization
[18].

The presence of a liquid causes a variation in the delay
time and attenuation of the SH wave. These should be
included in this admittance transfer function as an addi-
tional phase shift and attenuation. Therefore, the perturbed
admittance transfer function for the liquid sensor is:

_j2aL ol !

Ap(w) =G(w)oe™ 7e 7 e (5.69)
where (= Av/v) is the fractional velocity change of the
SH-SAW due to the sensing effect, [ is the length of the
liquid contact area and a is the attenuation of the SH-SAW
due to the sensor effect along the region of liquid contact.
If the conductivity of the unperturbed liquid (reference
liquid) is zero, the electrical properties of the liquid, in
terms of permittivity and conductivity, can be written as:
& = &8 (5.70)

where ¢, ¢ and &p are the permittivity and dielectric
constant of the liquid, and the permittivity of free space,
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respectively. The electrical property after perturbation, &/,
in terms of the conductivity o, is:

g =¢eo fj% (5.71)

Using the perturbation theory, the acoustoelectrical inter-
action relations of velocity and attenuation of SH waves
in the presence of a liquid can be written as follows [14]:

Av_ K(0' /o)’ + eols — &) (ejeo + &) (5.72)
v (o' /w)* + (eleo + 8;)2 ’

where &} is the effective permittivity of the crystal, e,
is the permittivity of the reference liquid and &', and
o' are the permittivity and conductivity, respectively,
related to loss of the measurand. The change in
attenuation due to the presence of the liquid can be
written as follows [14]:

Ax K (ofo)(exso + D)
K72 (o)} + (ehoo + ob)°

(5.73)

where K is the electromechanical coupling coefficient
and k is the wave number. By using Equations (5.71) and
(5.72), Equation (5.73) can be rewritten as follows:

AV+K52 2+ Ao (KZeeo+ b\ (K2eo + b\’
v o2 k 4 o2 “\4 o

(5.74)

The SAW that propagates on the metallized surface is
affected only by the mechanical properties of the adja-
cent liquid. However, the SAW that propagates on the
free surface is affected by both the mechanical and
electrical properties of the liquid. The above Equations
(5.73) and (5.74) can be used to determine the permit-
tivity and conductivity of the liquid under test [17].
These may be solved by graphical means.

These sensors can be used in ‘smart tongues’. Taste is
comprised of five basic qualities, namely sourness, bitter-
ness, saltiness, sweetness and umani. A taste sensor
should be able to measure these effects and discriminate
between them for recognition and identification applica-
tions. Acoustic microsensors can detect different physi-
cal properties such as mass, temperature, strain, torque,
pressure and viscosity of liquids and gases. These micro-
sensors, together with an oscillatory circuit, can give a
real-time electronic read-out with smaller size and very

low unit cost. SAW microsensors are a unique class of
devices that have been used as electronic ‘tongues’ and
‘noses’ because the propagating acoustic waves can
effectively couple with the medium placed in contact
with the device surface. The interactions between acous-
tic waves and mass density, elastic stiffness and electric/
dielectric properties of the propagating medium can give
the sensing responses. Any changes in the above proper-
ties can be measured as changes in the phase or ampli-
tude of the propagating waves.

It is highly desirable in the food industry for the
development of a taste sensor with high sensitivity,
stability and selectivity. The main goal of a taste sensor
is to reproduce five kinds of human senses, which is quite
difficult. The importance of knowing the quality of
beverages and drinking water has been recognized as a
result of the increase in concern in environmental pollu-
tion issues. However, no accurate measuring system,
appropriate for the quality evaluation of beverages, is
yet available.

A similar approach can be extended for the sensing of
gases. However, here the acoustic wave is guided through
a channel of the piezomaterial, with its top surface coated
with a sensitive polymer thin film. In such a case, the
gas—polymer partition coefficient, K (the interaction
between vapor and polymer molecules), and the solvation
equation (modeling physio-chemical and biochemical
processes) are expressed by a linear solvation energy
relationship (LSER) [19]:

log K = ¢ + rRy + st + aoll + bpY 4 llog L'®
(5.75)

where R, is the excess molar refraction (which models
the polarizability contributions from n and p electrons),
il is the depolarity/polarizability, of! is the hydrogen-
bond acidicity, ,BIZ'I is the hydrogen-bond basicity and L'
is the gas-liquid partition coefficient for n-hexadecane.
These coefficients are obtained by regression analysis.
The change in the relative phase velocity (Av/vy) and
attenuation per wave number (Aw/kp) of the acoustic
wave for an acoustically thin, viscoelastic and isotropic
film is given by the following [20]:

Av > —wh|pi(ci + 24 c3) — <ﬂ) G’} (5.76)

Vo Vo

A h

22X () +4e) G (5.77)
k() VO
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where c¢; represents the substrate specific material con-
stants, A is the film thickness, py is the film density, vy is
the unperturbed Rayleigh wave velocity, G’ and G’ are
the real and imaginary parts of the shear modulus of the
polymer film, respectively, and w is the radian frequency.
When the polymer is exposed to a vapor, the total mass
increases due to adsorption and diffusion and there is an
additional change in the shear modulus due to swelling
and softening. The change in the resonant frequency of a
SAW-based gas sensor can be derived as follows [21]:

Ap(i+ w)
Af = — 2 2p |2 TR
\f = —(ki +k2)f0hpf+k2foh{v%()v+2u)

] (5.78)
where k; and k; are the substrate material constants, fj is
the unperturbed SAW resonant frequency, u is the shear
modulus of the film and A is the Lame constant of the
film. The second term in the above equation may be
neglected in most cases. As the polymer film absorbs
vapor, the change in resonant frequency is due to mass
loading, as well as changes in its shear characteristics.
The change in resonant frequency due to vapor absorp-
tion (Afy) in this case is given by the following [20]:

_AAfCK
Pt

Afy (5.79)

where K is defined in Equation (5.75) above.

For soft visoelastic materials with low shear acoustic
velocities, the maximum layer thickness, hg, to ensure
monomode operation is given by the following [22]:

VsVL

2 \/VE—VE

where f is the operational frequency and Vs and V| are
the acoustic velocities on the substrate and the deposited
polymer layer, respectively.

ho = (5.80)

5.8 MICROFLUIDIC SYSTEMS

Compared to the number of microsensors discussed
above, far fewer micro-actuators have been commercia-
lized. One of the reasons for this is the fact that the
deflection, force or power generated by micro-actuators
is usually low. In this section, the design of various
microfluidic systems is presented.

Microvalves is a primary component of microfluidic
systems, which have wide applications in areas of the

automotive industry, refrigeration and home appliances,
control, medical and biomedical sciences, chemical ana-
lysis, the aeronautical industry, etc. Basically, micro-
valves are divided into passive valves and active valves,
but both of these share the same flow characteristics. As
an example, an analytical static-flow model of a dia-
phragm microvalve is presented here for us to understand
why flexible diaphragm microvalves are desired in some
applications. A cross-sectional view of a typical dia-
phragm microvalve is shown in Figure 5.13, containing
both a diaphragm and a valve seat. As the viscosity flow
through diaphragm microvalves can be considered as a
viscosity flow through a slot with a varying gap resis-
tance, the volume flow rate through the microvalve can
be calculated as follows [23]:

Q=f(w,1) xd®>x APl (5.81)

where f(w, [) is a function related to the width (w) and the
length (I), d is the height of the gap, AP is the fluid
pressure drop through the gap and # is the viscosity of the
fluid. One can see that the height of the gap is an
important parameter affecting the valve flow character-
istics. Basically, the gap height of the diaphragm micro-
valve is proportional to the pressure drop applied to the
diaphragm:

d :f(wd,td,ld) X AF/E (582)

where wy, 3 and /4 are the width, thickness and length,
respectively, of the diaphragm where the pressure drop is
applied, AF is the net force applied on the diaphragm
and E is the Young’s modulus of the material used for the
diaphragm. It should be pointed out have that the net
force acting on the diaphragm is related to the inlet and
outlet fluid pressures in the case of a ‘passive’ valve,
while the actuating force needs to be accounted for in the
calculation in the case of an ‘active’ valve. It is easy to
see that with a fixed force, pressure drop and geometric
parameters, the volume fluid flow rate increases signifi-
cantly with the decreasing Young’s modulus of the
diaphragm material. Specifically, in the case of a passive

(a) ﬁ (b)

Figure 5.13 Cross-sectional views of a microvalve containing
both a diaphragm and valve seat: (a) opened; (b) closed.
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microvalve, the same pressure drop through the
microvalves will generate larger flow rates or with
smaller pressure drops the desired flow rate can be
achieved when the diaphragm is made of a low-
Young’s-modulus material. In the case of an active
microvalve, a smaller actuating force can be used to
generate the designed flow rate. In addition to the high
flow rate which is practical with a low Young’s modulus,
a large deflection of the valve diaphragm will ensure a
lower ‘leakage’ of the valve [24]. The above general
analysis can also be applied to a gas-flow microvalve
[25]. Hence, materials with low Young’s moduli and their
fabrication processes are also important for microvalves
in applications with large flow rates and low leakage
requirements.

Micropumps are further primary components for
microfluidic systems. Several micropumps have been
developed with various actuation principles and
designs [26]. Reciprocating diaphragm micropumps
are one of the most extensively studied types
of micropumps. A typical diaphragm micropump
consists of an actuating diaphragm, two microvalves
(or nozzles/diffusers [27]), micropump cavities, etc.
(Figure 5.14). During the initial state, the actuation is
off, both inlet and outlet valves are closed and there is
no fluid flow in or out. Once the actuation is on and
assuming that the actuation diaphragm can move
upwards, the cavity volume will be expanded, hence
resulting in the inside pressure being decreased. The
inlet valve is then opened and the fluid flows into the
pump cavity until the inside pressure is increased to its
original level. Then, the actuation diaphragm moves
downwards and the shrinkage of the pump cavity leads
to the inside pressure increasing; the outlet valve is
then opened and the fluid flows out of the pump cavity.
By repeating the above steps, a continuous fluid flow
can be realized by the micropump.

A static analytical model for diaphragm micropumps
is given below in order to provide a better understanding

of the working behavior of micropumps. By considering
a ‘square actuation’ diaphragm with a side length of 2a,
the deflection expression of the diaphragm can be written
as follows:

49Apa*
wx,y) = —any Fooy)

)

where Ap is the net applied pressure on the diaphragm,
F(x,y) is a polynominal which satisfies the boundary
conditions, D is the stiffness of the diaphragm (defined
by ER3/12(1 — v?), where h is the diaphragm thickness),
E is the Young’s modulus of the diaphragm and v is the
Poison ratio. The ‘stroke volume’ of the diaphragm can
be obtained from:

av=[ |

It can be observed that the ‘stroke volume’ of the pump,
AV, is inversely proportional to the Young’s modulus, E,
indicating that with the same conditions, a lower E will
lead to a larger ‘stroke volume’ for the micropump.
From the static model, the ‘stroke volume’ of the
micropump is directly related to the pump flow rate.
In addition, the ‘stroke volume’ is important for realiz-
ing a self-priming micropump which requires a large
ratio between the ‘stroke volume’ and the dead volume,
e(= AV/Vy) [26]. Therefore, a flexible actuation dia-
phragm for micropumps is expected in such applica-
tions which require a high pump flow rate and an
excellent ‘priming’ performance. A micropump, fabri-
cated wusing polymeric materials, is shown in
Figure 5.15.

w(x,y)dxdy (5.84)

!

Figure 5.14 Working principle for a diaphragm micropumps: (a) initial state; (b) supply mode; (c) pumping mode.
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Pumping
Piozoelectrc disk ch}e}mber

Ball valves

Figure 5.15 Schematic (cross-sectional view) of a polymer
micropump fabricated using the microstereolithography (MSL)
process [28]. M. C. Carrozza, N. Croce, B. Magnani, and P. Dario,
A piezoelectric-driven stereolithographyfabricated micropump,
J. Micromech. Microeng. 5, 1995, © IOP
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Introductory Concepts in Modeling

One of the fundamental concepts involved in mathema-
tical modeling is to first generate the governing differ-
ential equation of the system. There are two ways of
doing this. In the first method, the system is broken at the
continuum level and a small block of this continuum is
isolated as a free body and the 3-D state of stress, acting
on the block, is written. Writing the equilibrium equation
of this free body essentially gives the equation governing
the system. 2-D and 1-D approximations can further be
obtained from the 3-D equations of motion by converting
the stresses into stress resultants through integration of
the equation of motion in the directions where condensa-
tion of the dimension is desired. The method described
above is the Theory of Elasticity procedure of obtaining
the governing equation. One can see that, in this method,
one has to deal with tensors and vectors. This chapter
will give a complete bird’s eye view of this method.

An alternate way of generating the governing equa-
tions is by the energy method, wherein minimization of
the energy functional, will not only yield the desired
governing equations but also their associated boundary
conditions. This is the most widely used method in
discrete modeling techniques (described in Chapter 7),
where obtaining an approximate solution to the govern-
ing equation is the main goal. This chapter gives com-
plete details of obtaining the energy functional from the
continuum modeling and the associated energy theorems
for obtaining an approximate solution to the governing
equation.

The ease of embedding smart sensors and actuators in
laminated composites has increased their popularity as
structural materials. In addition to having low weight and
high strength, laminated constructions enable the struc-
tures to become ‘active’ by placing the smart sensors and
actuators at any desired location. Hence, one can find a
variety of applications for the use of smart materials in

laminated composites reported in the literature. These
structures are orthotropic in construction and hence their
behavior is quite complex compared to metallic struc-
tures. Hence, the second part of this chapter deals with
the basic theory related to the behavior of laminated
composite structures.

Many analysis tools are required to study the function-
ality of the designed smart structures. The Finite Element
Method (FEM) is extensively used for this purpose.
However, when the frequency content of the load is
very high (which is very relevant in the case of impact-
related problems) or when one is addressing Structural
Health Monitoring (SHM) in composites (here, for small
flaw sizes, only the higher modes get altered), FEM may
lead to enormous problem sizes due to the small element
size requirement. Hence, the FE solution may be com-
putationally prohibitive. In such a situation, wave-based
techniques are extensively used. Hence, the last part of
this chapter gives the introductory concepts of wave
propagation. The details of FE and wave modeling are
given in Chapter 7.

6.1 INTRODUCTION TO THE THEORY
OF ELASTICITY

6.1.1 Description of motion

Consider a body undergoing deformation to some applied
loading (Figure 6.1). Let u? be its position at the time
t = 0 (undeformed) configuration and u! its position after
some time ¢ = . In terms of the unit vectors e;, they can
be expressed as follows:

Undeformed position 2 = u?ei

Deformed position :u = ule;
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Y4

"

z
Figure 6.1 Undeformed and deformed configurations of a body.

Hence, the motion can be expressed as:

wi = u;(°,)°,2°,0) or ) =ud(x,y,z,1)

(6.1)
The former represents the Eulerian coordinates, which
are normally used to represent a fluid in motion. Here,
the independent variables are the position vector u; at a
given instant. The latter is called the Lagrangian variable,
where quantities are expressed in terms of the initial
position vector u? and time. The difference between
these two motion descriptions can be stated as:

e Langragian: If we put a rectangular grid on an
undeformed body and visualize this grid after defor-
mation, it will look like that shown in Figure 6.2(a).

e Eulerian: If we put a rectangular grid on a deformed
body and visualize it in the undeformed state, it will
look like that shown in Figure 6.2(b).

(a) ~%

b eccapecaada
PAES

Figure 6.2 Grids describing (a) Lagrangian and (b) Eulerian
motions.

Due to the above definitions, evaluation of the material
derivatives will defer. For example, in the Langrangian
frame of reference, the derivative of u(x?,y°, %, and ¢) is
given by:

du  Ou

Pt (6.2)

In the Eulerian frame of reference, the derivative of
u(x,y,z,t) = u(x®,y°,2%,¢) is given by:

du  Ou  Oudx Oudy  Oudz

a o oxa oy oz 63)
Ou Ou Ou Ou
_E-vaa-FV)-a—y-FVZa—Z

where v, v, and v, are the convective velocities in the
three material directions. Deformation is defined as the
comparison of two states, namely the initial and the final
configurations. The motion of the particle is defined in
terms of its coordinates attached to the particle, while
displacement is defined as the shortest distance traveled
when a particle moves from one location to the other.
That is, if the position vectors of two points are r; and r,,
the displacement vector u is given by:

u=ry—ry = (i +yyj+ k) — (x1i +y,j + 22k)
or

u=(x2—x1)i+ (v, =y + (22 —21)k (6.4)
The deformation gradient is an important parameter which
is extensively used in the theory. Let us now compute
the deformation gradients. These relate the behaviors of
the neighboring particles. Consider points Py and Py at
time ¢ = 0, which are at a distance given by the vector
diy = dx'i + dy°j + dz°k (Figure 6.3). At some time ¢, if

Z

Figure 6.3 Deformation of neighboring points.
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these two points move to the new locations P and P’
the new distance between them is given by the vector
dr = dxi + dyj + dzk. The location of P, with respect to
P is now given by 7F+di = (x+dx)i+ (y+dy)j+
(z+dz)k. Now consider the first term in the vector,
namely (x + dx). Expanding this term in a Taylor series
with respect to the variables corresponding to time
t =0, we get:

Ox 0x Ox
x+dx—x+ﬂdx ‘I‘Wdy +Wd0 ........

This gives the relation:

o Ox 0% o

Similarly, one can write:

Jdy Jy y
dy a de +ﬁd +ﬁdz and

dz = 8Zd0+8zd0+8z

0
Ox0 Oy° 80d

These relations can be written in tensorial notations as:

dx; = Oxi dx](-)

i,j =1,2 and 3
OxJO i,j ,2 an

(6.6)

where i and j correspond to the three coordinate direc-
tions, namely x, y and z. Similarly, the motion of the
particles at time # = 0 can be expressed in terms of the
current time ¢ as:

o
) = I, dx;

ij=1,2and 3 (6.7)

The quantities Ox;/9x) and Ox)/Ox; are called the
deformation gradients and form the basis of description
of any deformation. Equations (6.6) and (6.7), when
expanded and written in the matrix form, become:

{dx} = [Jol{ax’}

o o o
dx %xo %yo 8;0 dx®
_ _ | 9 9 0
=<dy p = a0 By 02 dy0 (6.8)
oo oo | L
Ox0 0 90

{dx"} = [J){dx}
0 ox dy 0z
dx() (:)y() ay() ay() dx
= = |2 X Z ({4 6.9
jyo ox dy 0z dy (69)
Z Py O_ZO 8_Z0 z
ox Oy 0z

The determinant of the matrices [J] and [Jg] is defined as
the Jacobian. Since the deformation is continuous, it
requires that the value of the Jacobian not be equal to
zero. Since no region of finite volume can be deformed
into a region of zero or infinite volume, it is required that
they follow the following conditions:

0<Jp<oo, 0<J<o0 (6.10)
This condition is very useful to check and see if the
deformation is physically possible. From the above
results, it is straightforward to write the deformation
of lines, areas and volumes. A line along the x-axis
before deformation is represented by a vector di’ =
dx’i + dy’j + d’k = dx?. After deformation, this line
becomes:

ox dy
dx = —dxi + =

0z
0 0 gdxoj + 55k

70 (6.11)
Even though the initial vector is horizontal, the deformed
configuration will have components in all three direc-
tions. Similarly, one can write the deformation of areas
and volumes as:

Ox?
dAy = Jo 5L dA),  dV = JodV°

o (6.12)
where Jy is Jacobian with respect to the horizontal
direction, dAg is the initial area vector and dA; is the
final area vector. In addition, dV° is the volume before
deformation, while dV represent the same parameter
after deformation. Here, the Jacobian is a function of
two coordinates for area transformation and all three
coordinates for volume transformation.

6.1.2 Strain

Strain is a measure of the relative displacement of
particles within a body and is an essential ingredient
for the description of the constitutive behavior of the
materials. There are three different measures of strain.
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These can be described on a specimen of original and
final length Ly and L as:

Change in length __ AL

L Engmeermg stram &= “Original length. — Lo

___ Change inlength  __ AL __ AL
e True strain, el " Final (current) length — L — Lo+4L
L
o Logarithmic strain, &¥ = [ True strain = j ' = 1n (Lﬂ)
Ly

Using the above definitions, the final length L can be
written in terms of these strains as:

e Engineering strain L = Lo + AL = Ly + Loe =

Lo(1 +2)
L=Ly+AL= Lo+ 14y = qtm
e Logarithmic strain L = Ly exp (&)

e True strain

Using the basic definitions of the above strain measures,
we can also write the relationship among them as:

=In(1+¢)

Strain measures are normally established by considering
the change in the distance between two neighboring
material particles. Consider two material particles having
coordinates (x°,°,2%) and (x* + dx®,y° + dy°, 2° + d2°).
After the motion, these particles will have the coordi-
nates (x,y,z) and (x + dx,y + dy, z + dz). The initial and
final distances between these neighboring particles are
given by:

ds3 = (dx')* + (dy')* + (dz )? (6.13)
dS? = (dx)* + (dy)* + (dz)* (6.14)

Using Equation (6.8) in Equation (6.14) we get:
§% = {dx}" {dx} = {dx°} [Jo] [Jo){dx’}  (6.15)

In the event of deformation, dS? is different from dS%.
That is:
ds? — dst = {dx"}" [Jo]" o) {dxo} — {dx’}" {dx"}

= (@} [l o] — 1] {ax}

= 2{dx"}" [E|{dx"} (6.16)

The above measure gives the relative displacements
between the two material particles, which is insensitive

to the rotations. If the Eulerain frame of reference is
used, then the relative displacement is given by:

{ax}"{av} — {ax} W) W)}
= {ax}" 11 - 1 V1] {ax)
= 2{dx}"[e]{dx}

In Equations (6.16) and (6.17), the matrices [E] and [e]
are the Lagrangian and Eulerian strain tensors. In tensor-
ial form, they are given by:

. 1 [ 0x,, Ox,y, - 1 OXom OXom
E;= 3 (aXOi Oxg; - 51_/)7 €j = b (541 Ox; Ox; )

(6.18)

ds® — ds} =

(6.17)

The physical significance of E;; and e;; can be established
by considering a line element of length dx® = dS,. The
deformation of the line element is given by dS. The
extension of the line element per unit length (E1) is given
by:

dsS — dS
E, =20 o as=

1+ E,)dS,
dSo (1+E))dSo

(6.19)

From equation (6.16), we have:
ds* — dSy? = 2E;,dSy*

Combining the above, we can establish the relationship
between E| and E; as:

=/1+2e;, — 1 (6.20)

1
E]] :E1+§E12 or

Expanding the right-hand term by binomial expansion,
we get:

1
E:(1+E11—§E112+ ..... y—1

1

=Ey, —EEHZ (6.21)

For very small Ey;, E| = E;, which simply says that £
can be interpreted as an elongation per unit length only
when the extension is very small. Similarly, we can write:

E,=+/142E»n —1, E; =+\/142E3; — 1

(6.22)

for line elements in the other two directions.
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6.1.3 Strain-displacement relationship

In most of the analysis methods to follow, it is customary
to deal with the displacement and displacement gradients
rather than deformation gradients. If u, v and w are the
three displacements in the three coordinate directions,
then, we can write:

y:y0+v7 1=2L4w

W=y-v,

)c:xo—l—u7

0

or x =x-—u, L=z—w (623)

The derivatives of these can be written as follows:

Ox Ou dy _ Ov 0z  Ow
o0 T a0 a0 a0 a0 o
Ox _ Ou dy v 0z _Ow
o0 o op Tap ooy
Ox _ Ou dy Ov 0z ow
90 007 90 9L ad AL

In tensorial form, we can write the above equations as:

Ox,  Oupy,
=T S 6.24
oxY  Oxd * (6.24)
Similarly, one can write:
Ox° _q ou O 920 _ Ow
ox ox’ ox  ox’ Ox  Ox
o ow o | ov B ow
dy Oy’ Oy oy’ dy Oy
oo o v o | ow
dz 0z 0z 07 0z 0z
In tensorial form, the above equations become:
OXom < Ou,,
= Sy — —2 2
8x,~ 8)6,' (6 5)

where, J;; is the Kronecker delta. Substituting Equations
(6.24) and (6.25) in the Lagrangian and Eulerian strain
tensors (Equation (6.18)), we get after some simplification:

E, — L%, O Ot Dt
Y2 ox) " ox)  Ox) Oxf
1 [Ou;  Ou;  Ouyy Ouy
== | 2
€ 2 |:8Xj + Ox,» 6}6,‘ 8Xj:| (6 6)

The first two terms in the above two equations represent
the linear part of the strain tensors, while the last term

represents the non-linear part. Both these tensors are
symmetric. When the displacement gradients are very
small, we can neglect the non-linear parts of the above
tensors. Thus, infinitesimal strain components have
direct interpretations as extensions or changes of angles.
Furthermore, the magnitudes of the strains are very
small compared to unity, which means that the deforma-
tions are very small. Hence, we can conclude for very
small deformations:

Ej =& = ejj

Expanding the linear part of Equation (6.26), we get:

0w fou ] 1[ou 0w

=0 1275 oy ox0]’ =5 970 Ox0
ov 1[ov  Ow ow

&2 = 8—y0’ 83 = 5 {8_20 + 8—)70} y €33 = 220 (6.27)

In addition, for small deformations, following condition
is normally true. That is:

Ui
—<x 1
L<<

where L is the smallest dimension of the body. If the
above condition is true, then we can conclude that
X9 = x;. That is, we do not differentiate between Euler-
ian and Lagrangian coordinates. Hence, the functional
form of displacement and its components become
identical in these two frames of reference. Henceforth,
we will use ¢; to denote both the Eulerian and Lagran-
gian strain tensors and x; to represent their coordinates.
We will extensively use Equation (6.27) in the later
chapters on composites, finite element analysis and
wave propagation.

In terms of displacements, the rotation terms can be
written in tensorial form as:

oL (0w Ow
a)'j72 Ox;  Ox;

This is a second-order tensor that is antisymmetric. In
matrix form, the diagonal term is always zero. In the 2-D
case, there is only one non-vanishing component of the
above tensor, which is given by

b (000
YT 2\ox Oy

(6.28)

(6.29)
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6.1.3.1 Stress

Strains (deformations) are normally caused by forces or
moments exerted on the mass of the continuum or
through the contacts contained in the mass. The contact
forces are normally referred to as surface tractions as
their effects occur on the surface of the continuum. The
different types of forces or moments can be Extrinsic,
Mutual or Contact-type, depending upon the way these
act on a body. Extrinsic forces are the external forces that
act outside the body under consideration, such as gravity
loads, magnetic loads, etc. Mutual forces are those that
arise within the body. The most general type of forces
encountered in many phenomena is the contact type of
force that generates what we call Stress or Pressure.

To explain the concept of stress, let us consider a small
surface element of area 4A in the deformed configuration,
as shown in Figure 6.4. The forces and moments should be
acting in this small elemental area such that they cancel
each other out, or in other words, the elemental area
should be in equilibrium. These forces can be thought of
as contact forces although they act inside a body. Let 71 be
the unit vector, which is perpendicular to the surface of the
elemental area, and let Af be the resultant force exerted
for the other part of the surface element. In the limiting
case of 4A becoming very small, we get what is called the
Traction Vector, which is given by:

jo Y A (6.30)
dA  1A—04A

The above limit is possible due to the assumption that the

material is continuous. This traction vector has a unit of

force per unit area acting on the surface. Note that the use

z
Figure 6.4 A section of an arbitrary continuum.
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Figure 6.5 Stress cube with stress vectors and an outward unit
normal.

of 71is to remind the reader that these traction vectors are
dependent on the orientation of the area. To give an
explicit representation of the traction vector, let us
consider a cube, as shown in Figure 6.5. Let us now
write the components of the vector on this cube on three
faces as shown. On face 1, we have:

a=i, 1" =10 =re; =i+ dj+k

While on face 2, we have:
a=j, =i =ne=1Di+j+ 10k

The above definitions can be sirp})liﬁed by introducing
the following notation, ¢; = t;e" . That is, g, =,
O =19, g =10, ... , etc. Hence, it can be said
that the projections of the traction vector 7™ on the
faces are the normal stress components, 6y, ¢,y and o,
while the projections perpendicular to the outward nor-
mal 71 are the shear stress components, Oy, Gy;, Gz, Oy,
0y and ;. Thus, unlike deformations, stress is a second-
order tensor having both direction and a plane of appli-
cation. The matrix containing the elements of the stress
components [g;], in all 9, is called Cauchy’s Stress
Tensor. It will be shown later that this tensor is sym-
metric, meaning o;; = 0j;. Next, we can establish the
relation between the traction vector 7 and the outward
normal 7. For this purpose, consider an arbitrary surface
of a tetrahedron, as shown in Figure 6.6.

On the faces perpendicular to the coordinates, the com-
ponents of the three stress vectors are denoted by the
respective stress components (g;;) on the plane in which
they are acting. These are the following:

e The stresses acting on the x-axis face:0yy, 0y, and o,;.
o The stresses acting on the y-axis face:o,,, gy, and o,..
e The stresses acting on the z-axis face:o, o, and o;.
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Figure 6.6 Stresses acting on an arbitrary surface of a
tetrahedron.

The stress vector acting on the inclined surface ABC is #
and the unit normal vector 7. The equilibrium of the
tetrahedron requires that the resultant force acting on it
must vanish.

Writing the equilibrium along the x-direction, we get:

1,dA — G dA, — GyudA, — 0dA; + bepdV = 0

where b, is the x-component of the body force vector b,
which has a unit of force per unit volume. Here, ¢, is the
x-component of the stress vector, dA,, dA, and dA, are
the areas of the faces perpendicular to the coordinate
axes x, y and z and dA is the area of the inclined surface.
In addition, we have dV = (1/3)hdA as the volume of the
tetrahedron, where 4 is the smallest distance from any point
to the inclined surface ABC. Furthermore, the outward
normal vector can be written in terms of unit vectors along
the three coordinate directions as i = ni + n,j + n k. The
elemental areas, dA;, can now be written in terms of the
components of the unit normal vector as:

dA, =ndA, dA,=n,dA, dA,=n.dA

and letting dA—0, we get:

by = Oy + Oylly + Ozl (6.31)

Similarly, equilibrium of the forces in y and z will give:

ty = Oyl + Oyhy + Oz, 1, = Oy + Oylty + 00,

(6.32)

Hence, we can write these equations in tensorial notation
as:

(6.33)

li = 0jin;

The above relation is valid for any value of the outward
normal vector 71 and in any coordinate system. Hence, it can
be concluded that the state of stress in a body is completely
known if the stress tensor ¢j; is given. In other words,
given any surface with the unit normal vector 7, it will be
possible to determine the stress vector (force intensity)
acting on that surface if the stress tensor is known.

6.1.3.2 Principal stress

It is established now that the stress vector acting on a
surface depends on the direction 71 and in general this is
not parallel to 7. Now, we will attempt to find 7 such that
the stress vector is acting in the direction of 7. That is:

ti = An; (634)
where A is a scalar representing the magnitude of the
stress vector. The direction n; that satisfies the above
condition is the principal direction and A is called the
principal stress. Substituting Equation (6.33) in to Equa-
tion (6.34), we get:

g, il = AN
The above equation can be written in the matrix form as

[[a] - zm] (n} =0 (6.35)
In other words, the above problem reduces to a standard
eigenvalue problem of size 3 x 3 with eigenvectors
giving the principal directions nj,n; and n3 and the
eigenvalues giving the principal stresses 41,4, and /3.
This problem can be solved by equating the determinant
of the matrix [o] — A[l] to zero, as done in conventional
eigenvalue problems. When the determinant of the above
matrix is expanded, we get the following cubic poly-
nomial equation in A:

P12+ hi-1 (6.36)
Here, 11,1, and I5 are the stress invariants, that is, their
values do not change with the coordinate system being
used. They can be written both in terms of the compo-
nents of the stress tensor ¢;; or the principal stresses /; as:

I =0n+oy+o,=0i=h+l+i3

12 = (112 — O','jO','j) = )Ll;bz + /12/13 —+ ;»3/11

Iy =2 BLiy = 1)’ + ayopou) = Miads  (6.37)

W= N =
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In addition, the principal directions n; will have to satisfy
the relation:

mr4m?+n?=1 (6.38)
From the theorem relating to eigenvalue analysis, it can
be easily shown that the eigenvalues are always real since
the stress tensor is symmetric (which will be shown later)
and hence the principal directions are mutually orthogonal.

6.1.3.3 Normal stress

To obtain normal stresses from Cauchy’s stress tensor,
we define the normal stress ¢, as the component of the
stress vector in the direction of unit normal 7 to the
surface of interest. This is obtained by taking the dot
product of the stress vector and the normal vector, that is:

n = Lij = 01N

If the coordinate axes are chosen such that they are
aligned in the direction of principal stresses, then Cauchy’s
stress tensor becomes diagonal with:
O = A1, Oyy = la, O =13
Hence, the normal stress can be evaluated from the
expression:
_ 2 2 2

on = Ain” + Aamy” + Aang (639)
If 4, > 72 > 23, then by using Equation (6.38) in Equa-
tion (6.39) we can conclude that A, > o, > 13, from
which we get that 4; and 13 are the maximum and
minimum normal stresses, respectively, at the point
under consideration.

6.1.3.4 Shear stress

We can also extract the shear stresses from Cauchy’s
stress tensor. Projection of the stress vector on any
surface of interest will give the shear stress vector 7.
Mathematically, this can be represented as follows. The
stress vector equation can be split in terms of normal and
shear stress tensors as:

~>

=0, i+1, or t=1— 0,0 (6.40)

The magnitude of the shear stress 7 can be written as:
o2 =12+ 1, +1.2— g,

2= i =07 = titi -

where |?| is the magnitude of the stress vector. In arriving
at the above relation, we have used the relation || = 1. If
we assume that the coordinate axes coincide with the
principal direction, then we have:
Iy = )ql’lx, 1y = j.zny, t, = ).3)’12 (6.41)
Using Equation (6.41), we can write the magnitude of the
stress vector |7|* as:
|i|2 :t,-ti:txz-i-t +12 =2+ 22 ny 24 057t
(6.42)

Using Equation (6.42), the magnitude of the shear stress
can now be written as:

—dan 4 dan, + /l;n,z
+”’yz(l *"\'2)122 +n(1=n)23
2/13)1}’1?

22 =2n> +/122ny2 +3%n2
2 2y5 2
=n,"(1—-n")4

— 2/1| ;LGxznyz — 2/12].3}’1)'21’!v

Using Equation (6.38) in the above equation to replace the
terms in parentheses, for example, 1 — m? = nm? + ns’,
we can write the magnitude of the shear stress as:

) )2+n22n32(/12 —/13)2

+n3°n (/13 *13)2

2 =n%n% (2
(- (6.43)

From this relation, it is clear that the magnitude of the
shear stress is zero on the surfaces with:
m=1, m=n=0, m=1,

n1:n3:O, n3:1, n|=n2:0
On these surfaces, the normal stresses o, are either
minimum or maximum values. For example, consider
the surface that contains the y-axis with ny; = 0. From
Equation (6.43), the magnitude of the shear stress
becomes:

‘L'z = n32n12(/13 — 23)2 =

(1= (2s — )

The maximum value of the shearing stress occurs at:

(7%
6}’[1

:0:(2}’11*4}’11 )(23*; )

which gives n; = + 1/\/5 = n3. That is, the maximum
shearing stress occurs on the surfaces bisecting the angle
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between the x- and z-axes. The corresponding value of elemental volume shown in Figure 6.7, we get
the shearing stress is:
idA + | pbdV = | pidV (6.44)
2 1 MRV
Tmax :Z(AS =) A 4 v
. o , chxidAJrchxpédv:J;cxpi}dv (6.45)
The above expression, which is normally found in many
A 14 14

elementary ‘Strength of Materials’ textbooks, is true if
A > 0, > A3 is true.

6.1.4 Governing equations of motion

There are a number of ways to derive the governing
differential equations of a continuum. The most common
method is to draw the free-body diagram of an isolated
volume of the continuum and establish the equilibrium of
forces in all of the three coordinate directions to get the
required governing equations. However, here we will use
Newton’s Second Law of Motion for not only deriving
the governing equation, but to also establish the symme-
try of Cauchy’s stress tensor.

Consider a body of density p and volume V, as shown
in Figure 6.7. Let the body be subjected to a surface
traction 7 = t,i+t,j+ 1,k and a body force per unit
volume b = byi + byj + b.k. Newton’s Laws of Motion
relating to force and moment equilibrium for a body of
mass m and having acceleration & is given by:

where F is the resultant force vector, M is the resultant
moment vector and X = xi + yj + zk is the position vector
of the resultant force. Applying these two laws to the

ilAixs

\eE 1%
t

Z

Figure 6.7 Arbitrary small volume under the action of forces.

Here, { is the traction vector on the boundary surface of
area A. In tensor notation, these can be rewritten as:

Jz,»dA + Jp bidV = Jp iidV (6.46)
A v v

Jﬁykxjtde + J &ijXibep dV = Js,-jkxjp ydvV  (6.47)
A 14 14

Here, ¢ is the permutation tensor used to represent a
cross-product of any two vectors. By using Equation
(6.33) in Equations (6.46) and (6.47), and using the
Divergence Theorem [1]:

80 i
[t,-dA = jap,»n,,dA = J 6;; av
A A 14

we get:

0opi

J {& + pb; — pii,—] av
0x,

14

0 ..
J {87)61( (Siijijk) + paijkxjhk — PEjrXjui av (648)
\4

The first term in the second equation can be written as:

1o} Jdo k
o, (x0pk) = O +xfa—xi,

Using the above equation in Equation (6.48), we can
obtain the governing equilibrium equations as:

861,1‘ .

opi I 4
o, + pb; = pii (6.49)
ko =0 (6.50)

While the first equation (Equation (6.49)) gives the
governing differential equation of a continuum in terms
of stresses, the second equation states that Cauchy’s stress
tensor o0 is symmetric, that is, ¢; = gj;. Expanding
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Equation (6.49), we get the following three differential
equations of motion:

00y 0Ty Oty B
o + By + 2 +pby =0 (6.51)
Oty 00y, Oty

—_— ;= 52
6x+8y+81 +pb, =0 (6.52)
or, Oty 0o

= b, = .

A R (6.53)

The above equations will form the heart of many ana-
lyses which will be reported later in this book. It is also
worth mentioning that out of nine stress components in
Cauchy’s stress tensor, only six are independent, which is
the outcome of the symmetry of the tensor. The derived
equations of equilibrium are valid for both small and
large deformation analyses.

6.1.5 Constitutive relations

In the theory of elasticity, constitutive relations are
important components in the analysis and basically
they relate the stresses developed with the strains. In
normal materials, the stresses and strains are related
through a material matrix. In the case of smart materials,
the constitutive law has two parts, one due to mechanical
loading and the other due to either electrical loading
(in cases of piezoelectric or electrostrictive materials)
or magnetic loading (in the case of magnetostrictive
material). That is, the second part denotes the existence
of the coupling between the mechanical motion and
the motion due to electrical or magnetic fields. This
material law is normally called the actuation law. 1t is
this coupling strain that gives the required control force
for a host of applications, such as vibration control,
noise control, etc. which are reported in the last chapter
of this book. In addition to the actuation law, smart
materials, such as piezoelectric or magnetostrictive mate-
rials, exhibit a second constitutive law, called the
sensing law, which relates the electric/magnetic fluxes
to the mechanical stresses and the electric/magnetic
fields. This law is normally used in Structural Health
Monitoring (SHM) applications to sense the presence
of any damage. In this section, we will mention the
constitutive relations for ‘normal’ materials only. Con-
stitutive relations for smart materials will be dealt with
separately in Chapter 8.

Returning back to ‘normal’ materials, the constitutive
relations are normally established under certain assump-
tions. These can be summarized as the following:

e The stress at a point depends on geometric changes
that take place in the immediate vicinity.

e There are no history effects — the present state of
stress will give the strain. Hence, the presence of
material non-linearity is assumed negligible.

e The structure under loading will ‘bounce’ back to its
original shape on its removal.

e Temperature changes only cause a change in shape or
volume but otherwise do not directly affect the stresses.

e The material is homogeneous, that is, the material
properties are not a function of spatial coordinates.

e Displacements and hence the strains are very small
compared to unity.

The constitutive relations can be developed by two
different methods — one is based on the second assump-
tion, which we call the Hookean Elastic Solid, while
the second method is by the use of the Principle of
Virtual Work (which we will dwell on in more detail in
Chapter 7). The constitutive law obtained based on the
above theorem is called Green’s Elastic Solid. Both of
these methods will essentially give the same material
matrix for an elastic solid.

6.1.5.1 Hookean elastic solid

This constitutive model is normally referred to as
Hooke’s Law. It is based on the assumption that for an
elastic body, the stress depends only on deformation and
not on the history of deformation. This can be mathema-
tically expressed as:

i = [ (&) (6.54)

Expanding the above term by a Taylor series about the
initial configuration (¢t = 0), we get:

- af;(0) 1 82fi'(0)
o = f3(0) + { 8j8kz }Skl "2 {agkjg'"”}

If the assumption of zero initial stress is true, then we
require g;; =0 when ¢; = 0. This condition leads to

f;i(0) = 0. The second term in Equation (6.55) is the

linear term and all other terms in the expression are non-
linear. Retaining only the linear term due to a small-
strain assumption, we can write Equation (6.55) as:

. o, (0)
0ij = Cijriex with Cin = { 8]

} (6.56)

ki
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Equation (6.56) is called Hooke’s Law, which states that
the stress tensor is linearly related to the strain tensor.

The term in Equation (6.56), Cjj, is a fourth-order
tensor of elastic constants, which are independent of either
stress or strain. The tensorial quality of the constants
Cii follows the quotient rule, according to which, for a
fourth-order tensor, it should have 3* = 81 elements. Due
to symmetry of the stress tensor (o;; = 0j;), we should
have Cjz; = Cjjy. Furthermore, since the strain tensor is
also symmetric (ey = &x), we have Cj; = Cjj. Under
these conditions, the fourth-order tensor Cj;; will have
only 36 independent constants. Hence, the total number
of elastic constants cannot exceed 36, since the maximum
independent elements in the stress and strain tensors are
only 6 each. With these reductions, the generalized Hook’s
law can be written in the matrix form as:

Oxx Ci Cnn Ci3 Cu Ci5 Cis Exx
Tyy Coy Cyp Cz Cy Cy Cy Eyy
oz _ |G Cxn Ci3 Gy G35 Cy &z
Ty [ | Cst Caa Caz Cas Cus Ca Vyz
Taz Cs1 Csy Cs3 Csy Css Cse Pz
Txy Cot Coo Ce3 Cea Ces Ces | \ Vny
(6.57)

where all of the 7’s represent the shear stresses in their
respective planes and all of the }’s are the corresponding
shear strains. For most elastic solids, the number of
elastic constants can further be reduced by exploiting
the material symmetry about different reference planes.

6.1.5.2 Green’s elastic solid

An alternate method of deriving the constitutive relation-
ship is by using the work and energy principles. This
method is normally referred to as Green’s Elastic Solid.
For elastic materials, it will give the same material matrix
as that of the Hookean Solid approach. This method is
based on the assumption that the work done by the elastic
forces is completely transformed into potential energy
and furthermore the potential energy is entirely due to the
deformation a body undergoes due to applied tractions
(forces). We begin by considering the total forces acting
on a body, which is given by Equation (6.44). Total
incremental (virtual) work done by the forces (acting on
a surface S) of a body of volume V in displacing by an
incremental (virtual) displacement of du; is given by:

S %

Using the Divergence Theorem, the surface integral can
be converted to the volume integral and the above
equation becomes:

814,-
dWe = JO’[jd <a—x]> dv = J(r,-jde,-jdv
Vv Vv

The change in the potential energy (also called the Strain
Energy) is given by:

(6.59)

dU* = JdUdV (6.60)

\4

where U is the potential energy per unit volume (which is
also called the strain energy density function). Assuming
that U is a function of only deformations (strains), which
is the basic hypothesis on which this material model is
based, we can write:

y

Using the above in Equation (6.60), we get:

U
dU* = J—daijdv

.61
e, (6.61)
14

Comparing Equations (6.61) and (6.59), we can say:

ou

dW,=dU* or Ja,-jds,-jdv = Ja—dsijdV (6.62)
4

&ij
4

Since the volume is arbitrary, we can equate the inte-

grands and in doing so we get:

U
R

(6.63)

Oij
Equation (6.62) is the famed Principle of Virtual Work
(PVW), which is the heart of many numerical methods,
such as the Finite Element Method (FEM). We will again
deal with this principle in more detail in Chapter 7 on

FEM. Returning to the constitutive modeling, Equation
(6.63) can be expanded by using Taylor series as:

~_0u _ [9U(0) N 0?U(0) N
%= 88,'/' o 8?,/ o

38[/'8k1
0 .
= 0;; + Ejutu
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Assuming that the stress is zero when the strains are zero,
the above equation reduces to:

0ij = Ejjer

which is the same as what we derived earlier. Because of
the symmetry of both stress and strain tensors, the
number of independent constants in the Ey tensor is
36. Since:

82U(0)} _ [82U(0)

Eju = =
v 38k18ij

= Eu;
by
88,]81(1 :|

This additional symmetry reduces the number of inde-
pendent constants to 21.

6.1.5.3 Elastic symmetry

A material having all of the 36 unknown material
constants is said to be a highly Anisotropic material
(Triclinic System). However, if the internal composition
of a material possesses symmetry of any kind, then
symmetry can also be observed in the elastic properties.
The presence of symmetry reduces the number of
independent constants. Such simplification in the gen-
eralized Hooke’s law can be obtained as follows. Let x,
v, and z be the original coordinate system of the body
and let x/, y' and 7’ be the second coordinate system,
which is symmetric to the first system in accordance
with the form of elastic symmetry. Since the directions
of similar axes of both systems are equivalent with
respect to elastic properties, the equations of the gen-
eralized Hooke’s law will have the same form in both
coordinate systems and the corresponding constants
should be identical.

6.1.5.4 Monoclinic system: one elastic symmetric plane

Supposing that the material system is symmetric
about the z-axis, the second coordinate system x’ , y’
and 7 can be described by the following base unit
vectors:

e ={1,0,0}, ¢ =4{0,1,0}, e;={0,0,—1}
Using this, we can construct a transformation matrix by
having the base vectors as the column of the transfor-
mation matrix. For the above case, the transformation
matrix and the stress tensor in a ‘primed’ coordinate

system becomes:

1 0 0
T]=10 1 0 |,
0 0 -1
O xx Txy —Oxz
[O_;j] = [T]T[O'tﬂ [T]=| 1 Oy “Tyx
—0x —Ty Oz

Similarly, transforming the strains in the ‘primed’ coor-
dinate system will give:

Exx ny —&xz
/ p— A > —
[FU] - Y yx f‘y}' yyz.
—&xx _sz &z
The elastic symmetry requires that:
/ ! ! / 1 \T
{a., o 0L T, Ty ‘L'Xy}

T
Vo

Using the above relations, the constitutive law in the
original coordinate system becomes:

Oxx [Ch Cn Ciz —Cuy —Ci5 Cie ]
Oyy Cy  Cnp (G —Cy —C Cyxp
oz | | G Cxn G —Ci —C3 Cs
T, [ | ~Can —Cyn —Ciz Cau Cis —Cu
Taz —Cs; —Cs; —Cs3 Css Cs5 —Csg
Tyy Coi Coo Cezs —Cesa —Cos Ces |

Exx

Eyy

w5

Vyz

Vxz

Vxy

Comparing the above matrix with the general matrix
(Equation (6.57)) leads to the conclusion Ci4 = Ci5 =
Cyy = Cp5 = C34 = C35 = C46 = C5¢ = 0. Hence, the
material matrix for a monoclinic system becomes:

Ch Cp Ciz O 0 Cis
Cp Cpn Cx O 0 Cy
Csz Cxpx Gz O 0 Cs
0 0 0 Cyu Cy5 O (6.65)
0 0 0 Cs5 Cs5 O
Cis Cyp C O 0 Ces
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Hence, in the case of a monoclinic system, 13 indepen-
dents constants require to be determined to define the
material matrix.

6.1.5.5 Orthotropic system: three orthogonal
planes of symmetry

The most common example of the orthotropic system is
the lamina of a laminated composite structure, which is
dealt with in great detail in Section 6.2. Here, the original
coordinate system of the body is perpendicular to the
three planes. The orthotropy assures that no change in
mechanical behavior will be incurred when the coordi-
nate directions are reversed. Following the procedure
described for the monoclinic system, the material matrix
for an orthotropic system is given by:

Chi Cpp Ciz O 0 0

Cp Cpn Cyp O 0 0

Csz Cpn Gz O 0 0
0 0 0 Cyuq O 0 (6.66)
0 0 0 0 Css O
0 0 0 0 0 Ceg

The number of elastic constants that requires to be
determined is 9. The relationship of these constants
with the elastic constants can be found in Jones [2].

6.1.5.6 Hexagonal system: transversely isotropic system

This system has a plane of symmetry in addition to an
axis of symmetry perpendicular to the plane. If the plane
of symmetry coincides with the x—y plane, then the axis
of symmetry is along the z-axis. Thus, any pair of
orthogonal axes (¥, ") lying in the x—y plane are similar
to (x,y). Hence, the stress—strain relations with respect to
(,y',7') where 7 = —z, should remain identical to those
with respect to the (x, y, z) system. Following the procedure
given for a monoclinic system, we can derive the material
matrix. The material matrix for this case is given by:

Cip Cypn Co 0 0 0

Cz Cxn Ci3 O 0 0
0 0 0 Cu O 0 (6.67)
0 0 0 0 Css 0
0 0 0 0 0 iCy—-Cp)

For the transversely isotropic system, the number of
independent material constants required to describe the
system is 5.

6.1.5.7 Isotropic system: infinite plane of symmetry

This is the most commonly occurring material system for
structural materials. For this case, every plane is a plane
of symmetry and every axis is an axis of symmetry. It
turns out that there are only two elastic constants which
require to be determined and the material matrix is given
by:

Cn Cpp C2 0 0 0
Cp Cn C2 0 0 0
Cp Cpp Cny 0 0 0
0 0 0 Ychn—-cn) 0 0
0 0 0 0 HCn—Cn) 0
0 0 0 0 0 1(C11—Cp)
(6.68)
where:

Cii=2+2G, Cp=24.

The constants A and G are the Lamé constants. The
stress—strain relations for isotropic materials are usually
expressed in the form:

g = »Skkéij =+ ZGS,:,‘, 266,']' =0j O'kkélj

A
3.+2G
(6.69)

Note that except for an isotropic material, the coefficients
are given with respect to a particular coordinate system.

In practice, the elastic constants for an isotropic
material are K, E and v. These are called the Bulk
modulus, Young’s modulus and Poisson’s ratio, respec-
tively. They are related to the Lamé constants in the
following manner:

A

K=1(3i+26), v=
—3 © VT 200+ 20)

(6.70)

Some relationships among the constants are as follows:

VE E E
A:(lJrv)(lev)’ Y=y XT3o
(6.71)

6.1.6 Solution procedures in the linear theory
of elasticity

The developments in the last subsections form the basis
of field equations of the theory of elasticity. In this
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subsection, these are reformulated to make them con-
venient for solving boundary value problems. The funda-
mental assumptions adopted here are the following:

(a) All the deformations are small.

(b) The constitutive relations are linear. For metallic
structures, the material behavior can be idealized as
isotropic. However, for composite structures, the
material behavior is assumed anisotropic.

In 3-D elasticity, there are 15 unknowns, namely the 6
stress components, 6 strain components and 3 displace-
ments. Hence, for complete solution, we require 15
equations, which come from:

e 3 equations of equilibrium (Equation (6.49)).

e 6 stress—strain relations (Equation (6.57)).

e 0 strain-displacement relations (Equation (6.27)) or 6
compatibility conditions (to be introduced later).
Either of these conditions will be used depending on
the choice of solution schemes to be used.

e In addition, for the solution to be unique it has to
satisfy the boundary conditions on the surface S,
which has two parts, that is, surface S, on which the
boundary conditions in terms of the displacements u;
are prescribed and surface S, on which the traction
boundary condition #; = o;n; is prescribed.

Historically, there are two different solution philoso-
phies, one based on assuming displacements as the
basic unknowns, while the other approach is based on
assuming stresses as the basic unknowns. In the former,
the compatibility of the displacements is ensured as we
begin the analysis with displacements as the basic
unknowns. However, the equilibrium is not ensured and
hence they are enforced in the solution process. In the
latter, since the stresses are the basic unknowns, the
equilibrium is ensured and the compatibility is not
ensured and hence enforced during the solution process.
In the next few paragraphs, for both of these methods, we
will derive the basic equations and their solution.

6.1.6.1 Displacement formulation: Navier’s equation

In this approach, the displacements are taken as the basic
unknowns, that is, at each point, there are three unknown
functions u, v and w. These must be determined subject
to the constraint that the stresses derived from them are
equilibrated, or in other words, by enforcing equilibrium.
For this, the stresses are first expressed in terms of
displacements. That is, first the strains are expressed in

terms of displacements using strain—displacement rela-
tions (Equation (6.27)) and then these are later converted
to stresses. For isotropic solids, these can be written as:

_ 8u,- 8uj 8uk -
O',-j = G(()_x,+8_x,) +)\. 8—Xkb,j

(6.72)

Substituting this into the equilibrium equation (Equation

(6.49)), we get:
2y,

6xk8xk

(92 Uy
Ox;Oxy,

+(1+G) +pbi=0 (6.73)

These are known as Navier’s equations, with three displace-
ments as unknowns. The above equations should satisfy the
following boundary conditions in terms of displacements:

On S,: u; specified
ou Oou;  Ou; .
On S;: /'La—xll:ni + G(ax_,v + 87le> n; =t; specified

Note that the traction boundary conditions are a set of
inhomogeneous difterential equations. These are very dif-
ficult to solve directly. The most common way to solve the
above equation is to express the displacement field in terms
of scalar potential (®) and vector potential (H) by using
Helmholz’s theorem. The displacement field takes the
following form:

0P OHy

OH},
U = — + i —
! 0xi Y Bx, ’

—=0 6.74
Ox, (6.74)
where, ¢ is the permutation symbol. If the body force is
absent, then Navier’s equations can be expressed as:

0
(A +2G) o V2® + Geyp VPH = 0 (6.75)
This equation will be satisfied if:
V?® = constant, V*H = constant (6.76)

Thus, the problem reduces to solving a set of Poisson’s
equations in terms of potentials, which are easier to solve
than the original Equation (6.73). The displacements are
later obtained from differentiation.

6.1.6.2 Stress formulation: Beltrami—Mitchell equations

In this approach, the stresses are assumed as basic
unknowns. That is, at each point in the body, there are
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6 unknown functions, namely, Gy, G}y, 0., Txy, Ty, and
7,.. These stresses obviously have to satisfy the equili-
brium equations. However, there are only 3 equations of
equilibrium. The rest of the conditions come from the
requirement that the strains must be compatible.

The assumed stress fields can be converted to strain
fields by using the generalized Hooke’s law, which in
turn can be converted to displacement fields by using
strain displacement relationships. In doing so, we get 6
independent partial differential equations for displace-
ments with prescribed strains &;. For arbitrary values of
&, there may not exist unique solutions for the displace-
ment fields. Hence, for getting unique solutions for
displacements, it is necessary to place some restriction
on the strains ¢;. By differentiating twice, the strain—
displacement relations (Equation (6.27)), we get:

(928,‘]' _1 83Mi
Oxpdx; 2 0x;0x,.0x;

83 U;
6.77
Bxiaxkaxl) ( )
Interchanging the subscripts and with some manipulation
leads to the following relation:

828,'1'

828kl 828,-1( 828j, -0
8xk8xl

Ox;0x; a 0x;0x; a Ox;Ox,

(6.78)

There are 81 equations in the above relation, out of which
some are identically satisfied and some of them are
repetitions. Only 6 equations are nontrivial and indepen-
dent and in expanded notation, these equations are the
following:

P O Oey, Doy Oty 0oy Pen ey
= (SR 2 y -
OyOz  Ox ox  dy Oz Oxdy  Oy*  Ox?
ey, _ 0 e N Dty N Oey, and 0%ey, _ 0%y ey
0z0x Oy dy 0z Ox Oydz 02 Oy?
0%, O 0oy Oty Oty ey ey sy
= (-2+2+ - «
oxdy 0z 0z  Ox 0Oy 0z0x  Ox2 0%
(6.79)

These 6 relations are collectively known as compatibility
equations. The bodies can be simply or multiply con-
nected, as shown in Figure 6.8. For simply connected
bodies, equations of compatibility are necessary and suffi-
cient for their solution. However, for multiply connected
bodies, they are necessary, but no longer sufficient.
Additional conditions needs to be imposed to ensure
that the displacements are single-valued.

Simply

Multipl
YA connected Py

connected

=y

<

Figure 6.8 Simply and multiply connected bodies.

The general solution procedure in stress formulation is
as follows. We first transform the strains into stresses by
using Hooke’s law (for isotropic solids) of the form:

1+v v
Sij = TO’,'J' — Eo—kkéij
By substituting for strains in the compatibility equations
(Equation (6.79)) and with some simplification (that is,
by using equations of equilibrium), we get:

626,']‘ 1 620kk v E)bk
s,
OxrOxy, + (l + v) 0x;0x; + (1 — v>p Ox. "V

o2 2) —
p 8Xj E)x,» o

(6.80)

The stress field should satisfy the above equation along
with the equilibrium equation (Equation (6.49)) in order
to be admissible. In addition, it has to satisfy the follow-
ing boundary conditions:

On S;: o;n; =t; = given and on S,: u; = given

Note that the second set of boundary conditions are
obtained by integrating the strain—displacement relations
in conjunction with the stress—strain relations.

6.1.7 Plane problems in elasticity

The 3-D equations and their associated boundary condi-
tions are extremely difficult to solve and solutions only
exist for very few problems. Hence, in most cases some
approximations are made to reduce the complexity of the
problem. One such reduction is to reduce the dimension
of the problem from three to two. This can be made for
certain types of problems, which falls under two different
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Figure 6.9 A thin plate under plane-stress conditions.

categories, namely the Plane Stress problems and the
Plane Strain problems. A typical plane stress problem is
a thin plate loaded along its plane, as shown in Figure 6.9.
In this case, the stress perpendicular to the plane of the
plate (o) can be assumed to be zero. In addition, the
corresponding shear in the x—z and y—z planes (t,; and t,,)
can also be assumed zero. In the process, the equations get
simplified considerably.

The following are the equations required for solution
of the plane stress problem:

e Equations of equilibrium.

00 N Oty b= 8%u

ax oy T P

0ty 0oy v

) ) b = p—
ax oy T2 TPon
e Strain—displacement relations.

v ou oy
ToxT Y oy Ty = Oy  Ox

e Stress—strain relations. This is obtained by inserting
0,=0,7,=0,7,, =0 in the generalized Hooke’s
law (Equation (6.57)) and solving the resulting equa-
tion after substituting for strains in terms of displace-
ments. After substitution, we get:

_E @+v@
(I=v))\0x dy)’

7L @+ @ =Gy
O-'Vy_(l—v2) Oy v@x’ Ty = Oy

This we call plane stress reduction in the x—y plane.
Note that a similar reduction of stresses in the other
plane is also possible.

Oxx =

=Y

/

Figure 6.10 A dam-type structure under plane-strain conditions.

e If one has to use the stress-based approach for the
solution, then only one compatibility equation requires
to be enforced, which is given by:

2
Oy P | iy

oxdy Oy = Ox?

Note that although the normal stress ., is zero in the
plane stress case, the normal strain ¢, is non-zero and its
value can be computed from the 3-D constitutive law.
The second type of reduction is called the plane strain
reduction, where the body perpendicular to the plane of
loading is assumed rigid, that is, the displacement w and
hence the strains, ¢, = ¢, = ¢,, = 0, can be inserted in
the 3-D constitutive model and the resulting equations can
be solved to get the stress—strain relations, as was done for
the plane stress case. A typical example of a plane strain
case is the dam structure shown in Figure 6.10, wherein
the structure is assumed rigid in the z-direction.

6.2 THEORY OF LAMINATED COMPOSITES

6.2.1 Introduction

Laminated composites have found extensive use as air-
craft structural materials due to their high strength-to-
weight and stiffness-to-weight ratios. Their popularity
stems from the fact that they are extremely lightweight
and the laminate construction enables the designer to
tailor the strength of the structure in any required
direction depending upon the loading environment to
which the structure is subjected. In addition to aircraft
structures, they have found application in many auto-
mobile and building structures. In addition to better
strength, stiffness and lower weight properties, they have
better corrosion resistance and wear resistance and
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thermal and acoustic insulation properties over metallic
structures.

A laminated composite structure consists of many
laminas (plies) stacked together to form the structure.
The number of plies or laminas depends on the strength
that the structure is required to sustain. Each lamina
contains fibers oriented in the direction where the max-
imum strength is required. These fibers are bonded
together by a matrix material. These laminated compo-
site structures derive their strength from the fibers. The
most commonly used fibers include the following: carbon
fibers, glass fibers, Kevlar fibers and boron fibers. The most
commonly used matrix material is epoxy resin. These
materials are orthotropic at the lamina level, while at the
laminate level they exhibit a high level of anisotropic
behavior. The anisotropic behavior results in stiffness
coupling, such as bending-axial-shear coupling in beams
and plates, bending-axial—torsion coupling in aircraft thin-
walled structures, etc. These coupling effects make the
analysis of laminated composite structures very complex.

With the advent of smart materials, the usage of
composites is increasing due to the possibility of embed-
ding smart sensors and actuators anywhere in the struc-
tures, for potential applications such as structural health
monitoring, vibration and noise control, shape control,
etc. This is because many of the smart materials are
available either in powder form (magnetostrictive mate-
rials, such as Terfenol-D) or in thin-film form (PVDF
sheets or PZT films), which can be readily integrated into
the host composite structure. This increases the possibi-
lity of building on-line health monitoring or vibration
monitoring systems with built-in sensors, actuators and
processors. Laboratory-level models of such systems are
already in place at Stanford University [3] and a few
other places.

The basic theory and modeling aspects of laminated
composite structures are introduced in this section, while
detailed modeling and analysis of smart composites are
introduced in Chapter 8. Readers who are already familiar
with the basic theory of composites can skip the following.

This section is organized as follows. First, the micro-
mechanical aspects of laminas are described. This is
followed by the macromechanics of laminas and the
complete analysis of laminates.

6.2.2 Micromechanical analysis of a lamina

A lamina is a basic element of a laminated composite
structure, constructed with the help of fibers that are
bonded together with the help of a matrix resin. The
strength of the lamina and hence the laminate depends on

the type of fiber, its orientation and also the volume
fraction of the fiber in relation to the overall volume of
the lamina. Since the lamina is a heterogeneous mixture
of fibers dispersed in the matrix, determination of the
material properties of the lamina, which are assumed to
be orthotropic in character, is a very involved process.
The methods involved in determination of the lamina
material properties constitute micromechanical analysis.
According to Jones [2], micromechanics are the study of
composite material behavior, wherein the interaction of
the constituent materials is examined in detail as part of
the definition of the behavior of the heterogeneous
composite material.

Hence, the objective of micromechanics is to deter-
mine the elastic modulus of a composite material in
terms of the elastic moduli of the constituent materials,
namely, the fibers and matrix. Hence, the property of a
lamina can be expressed as:

Qij = Qlj(Ef,Em,Vf,Vm,Vf,Vm) (681)
where E; and E,, are the elastic moduli of the fiber and
the matrix, vr and v,, are the Poisson’s ratios of the fiber
and matrix and V; and V,, are the volume fractions of
fiber and matrix, respectively. The volume fraction of the
fiber is determined from the expression:

Volume of the fibers

Y’ = Total volume of the lamina

Similarly, one can determine the volume fraction of the
matrix. There are two basic approaches to determining
the material properties of the lamina. These can be
grouped under the following: (1) Strength of Materials
approach and (2) Theory of Elasticity approach. The first
method gives the experimental way of determining the
elastic moduli. The second method actually gives the
upper and lower bounds of the elastic moduli and not
their actual values. In fact, there are many papers avail-
able in the literature that deal with the theory of elasticity
approach to determine the elastic moduli of composites.
In this section, only the first method is presented. There
are several classic textbooks on composites, such as
Jones [2] and Tsai [4], which dwell on this in detail.

6.2.2.1 Strength-of-material approach to determination
of the elastic moduli

The material properties of a lamina are determined by
making some assumptions as regards its behavior. The
fundamental assumption is that the fiber is the strongest
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Figure 6.11 Representative volume (RV) for determination of
the longitudinal material properties.

constituent of a composite lamina, and hence is the main
load-bearing member, and the matrix is weak and its
main function is to protect the fibers from severe envir-
onmental effects. In addition, the strains in the matrix as
well as in the fiber are assumed to be the same. Hence,
the plane sections before being stressed ‘remain plane’
after the stress is applied. In this present analysis, we
consider a unidirectional, orthotropic composite lamina
for deriving the expressions for the elastic moduli. In
doing so, we limit our analysis to a small volume element,
which is small enough to show the microscopic structural
details, yet large enough to represent the overall behavior
of the composite lamina. Such a volume is called the
Representative Volume (RV). A simple RV is a fiber
surrounded by a matrix, as shown in Figure 6.11.
First, the procedure for determining the elastic modulus
E; is given. In Figure 6.11, the strain in the ‘1-direction’ is
given by ¢ = AL/L, where this strain is felt both by the
matrix and the fiber, according to our basic assumption.
The corresponding stresses in the fiber and the matrix are
given by:
of = Efﬁ], Oy = Emé'] (682)
Here, E; and E,, are the elastic moduli of the fiber and
matrix, respectively. The cross-sectional area of the RV,
A, is made up of the area of the fiber, Ay, and the area of
the matrix, A,,. If the total stress acting on the cross-
section of the RV is o, then the total load acting on the
cross-section is:
P = O'lA = E181A = O'fAf + G',,,Am (683)
From the above expression, we can write the elastic
moduli in the ‘1-direction’ as:

An

Ay
E; :EfK-i-EmA

(6.84)

2

l Gy Fibers

[ty

Matrix

Matrix

Wik

Figure 6.12 Representative volume (RV) for determination of
the transverse material properties.

The volume fractions of the fiber and the matrix can be
expressed in terms of the areas of the fiber and matrix as:

Ar A
Vep=—, = 6.85
= i (6.85)
Using Equation (6.85) in (6.84), we can write the
modulus in the ‘1-direction’ as:

Er = EVy +EnVi (6.86)
Equation (6.86) is the well known rule of mixtures for
obtaining the equivalent modulus of the lamina in the
direction of the fibers.

The equivalent modulus, E,, of the lamina is deter-
mined by subjecting the RV to a stress g, perpendicular
to the direction of the fiber, as shown in Figure 6.12. This
stress is assumed to be same in both the matrix as well as
the fiber. The strains in the fiber and matrix due to this
stress are given by:

g g
& =—, &m=— 6.87
1= ™TE, (6.87)
If & is the depth of the RV (see Figure 6.12), then this total
strain &, gets distributed as a function of volume fraction as:

&oh = Vfoh + Viaemh (688)
Substituting Equation (6.87) into (6.88), we get:
a2 a2
= Vel = Vil =— 6.89
. ! (Ef> ¥ (Em) ( )
However, we have:
02 02
=Ee=FE|Vi—+V,— 6.90
) 262 2 ( ¢ E + Em) (6.90)
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From the above relation, the equivalent modulus in the
transverse direction is given by:

EE,,

Ey=—I=m
ViEy+ Vo

(6.91)

The major Poisson’s ratio v, is determined as follows. If
the RV of width W and depth 4 is loaded in the direction
of the fiber, then both the strains ¢; and &, will be induced
in the ‘1’ and ‘2’ directions. The total transverse defor-
mation, 0y, is the sum of the transverse deformation in
the matrix and the fiber and is given by:

On = Opp + Onm (6.92)
The major Poisson’s ratio is also defined as the ratio of

the transverse strain to the longitudinal strain and is
mathematically expressed as:

Vip = —— (693)

&1
The total transverse deformation can also be expressed in
terms of depth # as:
5h = —/’l82 = hvlzsl (694)
Following the procedure adopted for the determination of
the transverse modulus, the transverse displacement in
the matrix and fiber can be expressed in terms of their
respective volume fractions and Poisson’s ratios as:
517f = ]’lVfoSl7 5hm = thVm£1 (695)
Using Equations (6.94) and (6.95) in Equation (6.92), we
can write the expression for the major Poisson’s ratio as:
Vi2g = Vfo + Vme (696)
By adopting a similar procedure to that used in the
determination of the transverse modulus, we can write

the shear modulus in terms of its constituent properties
as:

G/Gy

Gp=— >t
T VGy + VuGy

(6.97)

The next important property of the composite that
requires determination is the density. For this, we begin
with the total mass of the lamina, which is the sum of the
masses of the fiber and the matrix. That is, the total mass

M can be expressed in terms of the densities (p; and p,,)
and volumes (Vy and V,,) as:

M = Mf + Mm = prf + pmV,,, (698)

The density of the composite can then be expressed as:

_ % _ pfvf +pmvm

v v (6.99)

Once the properties of the lamina are determined, then
one can proceed to a macromechanical analysis of the
lamina to characterize its constitutive model and beha-
vior, which is described in the next subsection.

6.2.3 Stress—strain relations for a lamina

Determination of the overall constitutive model for a
lamina of a laminated composite constitutes the macro-
mechanical study of composites. Unlike the micro-
mechanical study where the composite is treated as a
heterogeneous mixture, here the composite is presumed
to be homogenous and the effects of the constituent
materials are accounted for only as an averaged appar-
ent property of the composite. The following are the
basic assumptions used in deriving the constitutive
relations:

e The composite material is assumed to behave in a
linear (elastic) manner. That is, Hooke’s law, as well
as the principle of superposition, are valid.

e At the lamina level, the composite material is assumed
to be homogenous and orthotropic. Hence, the mate-
rial has two planes of symmetry, one coinciding with
the fiber direction and the other perpendicular to the
fiber direction.

e The state of stress in a lamina is predominantly plane
stress.

Consider the lamina shown in Figure 6.13 with its
principle axes, which we denote as ‘1’, 2’ and ‘3’.
That is, axis ‘1’ corresponds to the direction of the fiber
while axis ‘2’ is the axis transverse to the fiber. The lamina
is assumed to be in a 3-D state of stress with six stress
components, given by {oi1,02,033,723,731,T12}. The
generalized Hooke’s law for an orthotropic material has
already been derived in the previous section.

This is given by Equation (6.66). For the 3-D state of
stress, nine engineering constants require to be deter-
mined. The macromechanical analysis will begin from
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Figure 6.13 Principal axes of a lamina.

here. Inverting Equation (6.66), we get:

&1l S S Sz 0 0 0 o11
€2 Sp S» S»3 0 0 0 02
e3 | _ |Si3 S3 S3 0 0 O 033
V23 0 0 0 S44 0 0 23
V31 0 0 0 0 S55 0 T31
Y12 0 0 0 0 0 566 T12

Here, S are the material compliances. Their relation-
ships with the engineering constants are given in Jones [2];
v, the Poisson’s ratio for transverse strain in the jth
direction when the stress is applied in the ith direction, is
given by:

— G (6.101)

The above condition is for 6;; = ¢, with all other stresses
being equal to zero. Since the stiffness coefficients
C;j = Cj;, from this it follows that the compliance matrix
is also symmetric, that is, S; =Sj;. This condition
enforces the relation among the Poisson’s ratios as:

Vi i (6.102)

i J

Hence, for a lamina under the 3-D state of stress, only
three Poisson’s ratios, namely vj,, vo3 and v3;, require to
be determined. Other Poisson’s ratios can be obtained
from Equation (6.102).

For most of our analysis, we will assume the condition of
plane stress. Here, we derive the equations assuming that
the condition of plane stress exists in the 1-2 plane (see
Figure 6.14 below). However, if one has to carry out an
analysis of a laminated composite beam, which is essen-
tially a 1-D member, the condition of plane stress will

X
Figure 6.14 Principal material axes of a lamina, plus the
‘global’ x—y axes.

exist in the 1-3 plane and a similar procedure could be
followed.

For the plane-stress condition in the 1-2 plane, we set
the following stresses equal to zero in Equation (6.100),
that is, g33 = 723 = 731 = 0. The resulting constitutive
model under the plane-stress condition can be written as:

1 - 0
E, E,
e11 vy 1 g11
522 = Tz Ez 0 (‘:22 (6103)
V12 1 12
0 .
G

Note that the strain £33 also exists, which can be obtained
from the third constitutive equation:

€3 = S13011 + S302

From this equation, it also means that the Poisson’s ratios
v13 and vy3 should also exist. Inverting Equation (6.103),
we can expresse the stresses in terms of strains, which are
given by:

o1t On Qp O &1l
02 p=1(Cn On 0 &2 (6.104)
T12 0 0 Qs 712

where Q;; are the reduced stiffness coefficients, which
can be expressed in terms of the elastic constants as:

E, o1 Eq vi2E»
Ou=—""", On-= = )
I —vppvay L—vipvar 1 —vppvag
E,
Op=—"2  04x=G 6.105
= 0w=Gn (6.105)
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6.2.3.1 Stress—strain relations for a lamina
of arbitrary orientation

In most cases, the orientations of the global axes, which
we call the x—y axes, which are geometrically ‘natural’
for solution of the problem, do not coincide with the
lamina principle axes, which we have already designated
as the 1-2 axes. The lamina principal axes and the global
axes are shown in Figure 6.14. A small element in the
lamina of area dA is taken and the free-body diagram
(FBD) is drawn as shown in Figure 6.15. Consider the
free body A. Summing all of the forces in the direction of
the 1-axis, we get:

o11dA — 05 (cos0dA)(cosd) — 6y, (sinfdA)(sinb)
— Ty (sinfdA) (cosl) — 7,y (cosfdA)(sinf) = 0
(6.106)
On simplification, the above equation can be written as:
611 = 60820 + ayysinzé) + 27,,sinfcosd

(6.107)

Similarly, by summing up all the forces along the 2-axis
(free body A), we get:

T12dA — 0, (cosOdA)(sinf)) — a,,(sinddA)(cosb)
— Ty (sinBdA) (sinf) + 1,y (cosfdA)(cosh) = 0
(6.108)

Figure 6.15 Lamina and laminate coordinate system and the
free-body diagram (FBD) of a stressed element.

Simplifying the above equation, we get:

T3 = —0xsindcosl + a,,sinfcosd + rxy(cosze — sin®0)
(6.109)

Following the same procedure and summing up all the
forces in the 2-direction in the free body B, we can write:
02 = G,8in*0 + 7,,c08%0 — 27,,sinfcosd  (6.110)

Equations (6.2.107), (6.2.109) and (6.2.110) can be
written in the matrix form as

o1 ct s 2CS O
on p=| 2 ? -2CS Oy ¢,
12 -CS CS (C*=8)] |

C = cosl), S = sinf
or

{0} = [THo}

In a similar manner, the strains from the 1-2 axis can be
transformed to the x—y axis by a similar transformation.
Note that by having the same transformation, shear
strains are to be divided by two. Without going into
much too detail, they can be written as:

(6.111)

e c? s b
b= & ¢ -208 Eyy
712 Vxy

> —CS CS (C*-8?)

or (£}, = [71{8},, (6.112)

Inverting Equations (6.111) and (6.112), we can express
the stresses and strains in terms of global coordinates as:

O [c* & —2¢S ] (on
oy p= |8 C 2CS 2 ¢,
Txy L CS *CS (C2 — Sz) i T12
{G.}x—y = [T}71{6}1—2 (6113)
Exx [c2 s —2cs 1 [en
by b=18 ¢ 2cs e\
In CcS —-CS (C?—¢§? fiEs
2 L - (=117
{&}ey = [T {8}1 (6.114)

The actual strain vectors in both the 1-2 and x—y axes,
{e},_, and {e},_,, can be related to {&},_, and {e}

x=y
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through a transformation matrix as:

€11 1 00 Ll

en p =10 0 €2 5 and
Y12

Y12 L 0 0 2 1 7

Exx (1 0 07 [ &=

&y p =10 1 0 Eyy
y)cy

Yy 10 0 2] >

{e}imo = [RH{E}-y,  {e}oy = [RI{E}—,  (6:115)

Now, the constitutive equation of a lamina in its principal
directions (Equation (6.104)) can now be written as:

{o}i = [Qfe}i—

Substituting Equations (6.111), (6.112) and (6.115) into
Equation (6.116), we get:

(6.116)

[THo}.—, = [Q[R]{e} -, = [QIIRI[TI{z} -,
= [QIRITIR " {e},—,

Hence, the constitutive relation in the global x—y axes can
now be written as:

{0}, = [O{&} -, = [T [QURITIR] (&},
(6.117)

Here, the matrix [Q] is a fully populated matrix. Hence,
although the lamina in its own principal direction is
orthotropic, in the transformed coordinate it represents
complete anisotropic behavior, that is, the normal stres-
ses are coupled to the shear strains and vice versa. The
elements of the [Q] matrix is given by:

011 = 011 C* +2(Q12 +204)5°C* + 0 S*

Q12 = (Q11 + 02 — 404)S°C* + 015 ($* + C*)

016 = (Q11 = Q12 —2066)5C” + (Q12 — 0 +2046)S°C

02 = 011" +2(Q1 +2066)S*C* + 0 C*

026 = (Q11 — Q12 —2Q46)S’C + (@15 — Q2 +2Q46)SC”

Q66 = (Q11 + 02 — 201 — 2066)S°C* + Qg6 (S* + CY)
(6.118)

Equation (6.118) gives the constitutive equation of a
lamina under plane stress in the 1-2 plane.

6.2.4 Analysis of a laminate

A laminate is one in which two or more laminas are
bonded together to form an integral structural element.
Different laminas in the laminate have different principal
directions and as a consequence, a laminate does not
have any defined principal direction. In addition, differ-
ent fiber orientations will enable resisting loads in
different directions. The goal of the analysis is to use
the determined properties of the laminas from micro- and
macromechanical analysis to find the stress resultants
acting on the laminate. The heart of the present analysis
here is based on the Classical Lamination Theory (CLT).

6.2.4.1 Classical lamination theory (CLT)

The approach used in the CLT is to first write the lamina
constitutive relations for each laminate. Based on the
mechanics of the structure, a suitable displacement field
is assumed from which the strains and the stresses in
each lamina are found. These are then integrated over the
thickness to get the overall stress resultants. In this
process, we will also obtain the coupling stiffness
matrices at the laminate level, which are normally called
the [A], [B] and [D] matrices. Matrix [B] determines the
extent of stiffness coupling in the laminate.

The lamina constitutive relation was derived earlier
and is given in Equation (6.117). For the ™ lamina in a
laminate, the stress strain relation can be written as:

{o}, = [0)i{e}

Next, the stress resultants for the laminate are estab-
lished. For this, consider the laminate shown in Figure 6.16.

(6.119)
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Figure 6.16 Deformation of a laminate in the x—y plane.
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Assuming no shear deformation and the condition of
plane stress, the laminate displacement fields can be
assumed as:

ow
u(x7y>z):u0(x7y)_za—xoa
8w0
viX,y,2) = volX,y) — 22—/,
(x,5,2) = vo(x,y) o

W(x»%z) = wo(x,y) (6120)
Here, ug, vy and wy are the mid-plane displacements. The
second term in the u and v displacement fields represents
the respective slopes of a laminate. From these displace-
ment fields, the strains can be evaluated as:

. _Ou Oug Pwy o dv 0w Pwy
*Tox T ox o WT dy Oy ¢ y?
Ou v Ouy Ov Pw
Yy =gt a = ot — 22 (6.121)
Y dy Ox 0Oy Ox 8x8y
The above strain fields can be written as:
Exx 8,(\)1 Kxx
&y p = S?,y +2z4 Ky ¢
Vsy 7y Kay
6u0 82W0
& ox K o
&0 o 82W0
. = —_— Ky = —
o a ()" 9y
Vxy Oug  Ovy Ky Pwy
4+
dy  Ox Oxdy
(6.122)

The first term represents the normal strain, while the
second term represents the curvature. As in the case of
beams, the strain varies linearly over the depth. The
stress—strain relation for the k™ laminate is written by
inserting the above strain field in Equation (6.119), which
is given by:

Oxx On On O Ery Kx

Oyy = Q 12 QZZ QZ() sgy + 29 Kyy

Ty ) LQis Q% Oss o Koy
(6.123)

On a laminate, there are three force resultants, namely
N,,N, and N,, and three moment resultants namely

Figure 6.17 Force and moment resultants on a laminate.

M., M, and M,, (shown in Figure 6.17). The resultant
forces and moments are obtained by integration of
the stresses in each lamina through the laminate thick-
ness. These can be written for an N-ply laminate as:

Nx h/2 Oy N & Opx
Ny ¢ = Oyy = Z J Oy ¢ dz
NXY —;:/2 Ty )k klek—l Ty )k
(6.124)
and
Mx h/2 Oxx N X O xx
M, = Oy ¢ 2dz = Z J gyy ¢ 2dz
M, —hi2 Ut ) g =10 Ut )y
(6.125)
Here, h is the laminate thickness and z;_; and z

represent the ply depths from the middle plane — shown
in Figure 6.18. Substituting for the stresses from Equa-
tion (6.123) in Equation (6.125) and designating:

M=

Ajj = Qi) (2 — z-1) (6.126)
k=1
%ZNJ i-2,)  (6127)
k=1
1 N
i=30 i@ —5)  (6128)
k=1
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Middle
surface

Figure 6.18 Depth coordinates for an N-layered lamainate.

we can write the stress resultants as

Ny Aun A A | [ &
Ny » = |App An Axp bg)v
Nyy A Az Ass ygy
By By By Kxx
4 |Bi By By |y b (6.129)
Bi6 B Bes | | Kxy
M, By Bi Big] [ &k
My 5> = |Bin Bxn By 8,%
My Bis Bx Bes| |09
Dy D12 Die Ky
4+ | Dia Dy D Kyy (6.130)
D¢ Dy Des Ky

Equations (6.129) and
written as:

{{N}}: {[A] [B]H{s"}}
{m} (B] [D] ]\ {x}

Equation (6.131) represents the stiffness equation for a
laminate. Here, A;; represents the axial stiffness and Dj;
represents the bending stiffness of the laminate. Bj; is the
coupling stiffness matrix and exists only for an unsym-

metric ply lay up. In other words, the complete stiffness
coupling is represented by this matrix Bj;.

(6.130) can be combined and

(6.131)

6.3 INTRODUCTION TO WAVE
PROPAGATION IN STRUCTURES

In this section, we present some introductory concepts of
wave propagation in structures. The question that one

may be asking is why this part is necessary in the first
place in a book dealing with smart materials, structures
and MEMS. The reason is quite simple. Today, there is a
new class of analytical (numerical) techniques available
for modeling, which is based on wave propagation
theories. This method, which is described in detail in
the next chapter, and used extensively in many examples
in this book, is called the Spectral Finite Element Method
(SFEM). Some applications presented in the last part of
the book are based on wave solutions. Some of the
modeling and control aspects dealt with in Chapters 7,
8 and 9 derive their origin from the governing wave
equation. Hence, it becomes necessary for the reader to
understand the rudiments of wave propagation before he/
she attempts to understand some of the topics given in the
later part of this book.

A structure, when subjected to dynamic loads, will
experience stresses of varying degree of severity depending
upon the load magnitude and its duration. If the temporal
variation of load is of a large duration (of the order of
seconds), the intensity of the load felt by the structure will
usually be of lower severity and such problems falls under
the category of Structural Dynamics. For such problems,
there are two parameters which are of paramount impor-
tance in the determination of its response, namely the
natural frequency of the system and its normal modes
(mode shapes). The total response of the structure is
obtained by the superposition of the first few normal
modes. A large duration of the load makes it low on the
frequency content and hence the load will excite only the
first few modes. Hence, the structure could be idealized
with fewer unknowns (which we call the degrees of free-
dom, a terminology which we will introduce in the next
chapter). However, when the duration of the load is small
(of the order of microseconds), stress waves are set up,
which start propagating in the medium with certain velo-
cities. Hence, the response is necessarily transient in nature
and in this process many normal modes will get excited.
Hence, the model sizes will be many orders larger than
what is required for the structural dynamics problem. Such
problems come under the category of Wave Propagation.
The key factors in the wave propagation are the propa-
gating velocity, level of attenuation of the response and
its wavelengths. Hence, phase information is one of the
most important parameters, which is of no concern in
the structural dynamics problems.

Since wave propagation is a multi-modal phenomenon,
the analysis becomes quite complex when the problem is
solved in the time domain. This is because the problem
by its very nature is a high-frequency-content problem.
Hence, the analysis methods based on the frequency
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domain are highly suited for such problems. That is, all of
the governing equations, boundary conditions and vari-
ables are transformed to the frequency domain using any
of the integral transforms available. The most common
transformation for transforming the problem to the fre-
quency domain is Fourier Transform. This transform has a
discrete representation and hence is amenable for numer-
ical implementation, which makes it very attractive for
its usage in wave propagation problems. By transforming
the problem into the frequency domain, the complexity
of the governing partial differential equation is reduced
by removing the time variable out of the picture, thus
making the solution of the resulting Ordinary Differential
Equation (ODE) much simpler than the original equation.
In wave propagation problems, two parameters are very
important, namely the wavenumber and the speeds of the
propagation. There are many types of waves that can be
generated in a structure. Wavenumbers reveal the type of
waves that are generated. These give us two important
relations, namely the Spectrum Relation, which is a plot
of the wavenumber with the frequency and the Disper-
sion Relation, which is a plot of wave velocity with the
frequency. These relations reveal the characteristics of
different waves that are generated in a given structure.

In this subsection, first the basic Fourier theory is
discussed, which forms the ‘backbone’ of all our wave
analysis to follow. Next, the spectral analysis of motion is
discussed, wherein the determination of wavenumbers
and speeds is given. This will be followed by a subsec-
tion on wave propagation in all commonly occurring
structural elements.

6.3.1 Fourier analysis

The time signal encountered in wave mechanics has two
extreme bounds in the temporal axis, that is, from —oo to
~+o00 and is assumed to persist at all times. This signal can
be represented in the Fourier domain in three possible
ways, namely the Continuous Fourier Transforms
(CFTs), the Fourier Series (FS) and the Discrete Fourier
Transforms (DFTs). In this section, only brief definitions
of the above transforms are given. The interested reader
is encouraged to refer to many classic textbooks, such as
Chatfield [5] and Sneddon [6], available on this subject
for greater detail.

6.3.1.1 Continuous Fourier Transforms

Consider any time signal F(¢). The inverse and the forward
CFT, which are normally referred to as a transform pair,

are given by:

F(o) = [ F(t)e ™'dt
h (6.132)

where, F(w) is the CFT of the time signal, o is the
angular frequency and i =+/—1. F (w) is necessarily
complex and a plot of the amplitude of this function
with the frequency will give the frequency content of the
time signal. As an example, consider a rectangular time
signal of pulse width d. Mathematically, this function can
be represented as:

Ft)y=Fy —d/2<t<d)/2
=0 otherwise

This time signal is symmetric about the origin. If this
pulse is substituted in Equation (6.132), we get:

sin(wd/2)}

wd)2 (6.133)

F(w) = Fod{

The CFT in this case is real only and as seen from
Figure 6.19, it is symmetric about @ = 0. The term

Iy S l
=-50 W /\ [ Imagillaly
\J

-100 =50 0 50 100

Frequency v (kHz)

Figure 6.19 Continuous Fourier transforms for various pulse
widths.
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inside the brace is called the sinc function. In addition,
the value of the CFT at w = 0 is equal to the area under
the time signal.

Now, if the pulse is allowed to propagate in the time
domain by an amount #; seconds, mathematically such a
signal can be written as:

ts<t<t+d

=0 otherwise

Substituting the above function into Equation (6.132) and
integrating, we get:

(6.134)

F(w) = Fod{w}e—iw(wd/z)

wd/2

The above CFT has both real and imaginary parts. These
are again plotted in Figure 6.19. From Equations (6.133)
and (6.134), we see that the magnitudes of both of these
transforms are the same; however, the second transform
has phase information built into it. Furthermore, we see that
propagation of the signal in the time domain is associated
with the change of phase in the frequency domain. Wave-
propagation problems are always associated with the
phase changes occurring as the signal propagates.

Based on the CFT, one can also determine the spread
of the signal both in the time and frequency domains. For
this, one has to look at the frequencies at which the CFT
is zero. This occurs when:

. CUnd CUnd 2nm
sin - =0, or > =nn or w,=—

2n
wgfwlewzg

That is, if the spread of the signal in the time domain is d,
then the spread in the frequency domain is Aw = 27/d.
In other words, if the spread in the time domain is small,
then the spread in the frequency domain gets larger.
Here, Aw represents the frequency bandwidth. Hence, a
Dirac Delta function, which has infinitesimal width in the
time domain, will have infinite bandwidth in the frequency
domain. This aspect has greater implications in choosing
the mesh sizes, when one resorts to the Finite Element
technique to solve the wave-propagation problem. The
following are some of the properties of the CFT:

e Linearity: Consider two time functions F;(¢) and
F,(t). The CFTs of these functions are given by
F\(w) and F,(w) and then the Fourier transform of the
combined function F;(t) + Fy(t) & Fi(0) + Fa2(w).

Here, the symbol ‘<’ is used to denote the CFT of a
time signal.

Implications in wave propagation: Here, F,(t)
and F,(¢) can be thought of as the incident and
reflected waves, respectively. The linearity property
states that the combined transforms of the incident
and reflected waves are equal to the individual trans-
form of these obtained separately.

Scaling: If a time signal F(¢) is multiplied by a factor
k to become F'(kr), the CFT of this time signal is given
by F(kt) < 1/kF(w/k).

Implications in wave propagation: Time-domain
compression is the frequency-domain expansion. That
is, this property fixes the frequency bandwidth of the
given time signal.

Time shifting: If a given time signal F(¢) is shifted by
an amount #; to become F(t —t;), the CFT of the
shifted signal is given by F(t — t,) < F(w)e ",
Implications in wave propagation: Propagation in
the time domain is accompanied by the phase changes
in the frequency domain.

The CFT is always complex: Any given time function
F(t) can be split up into symmetric and antisymmetric
functions, Fs(r) and F,(¢). Furthermore, by using the
property of the linearity of the CFT, we can show that:

F,(f) =Real (F(»)) and F,(t) = ilmag (F(w)).

Implications in wave propagation: Since the time
signals encountered in wave mechanics are neither
symmetric (even) or antisymmetric (odd) in nature,
the CFT is necessarily complex in nature. Hence, wave-
propagation problems are always associated with phase
changes.

Symmetric property of the CFT: Since the CFT of a
time signal F(¢) is complex, it can be split up into real
and imaginary parts as F(w) = Fg(w) + iF;(w). Sub-
stituting this in the first equation of Equation (6.132)
and expanding the complex exponential in terms of
sine and cosine functions, we can write the real and
imaginary parts of the transform as:

Fr= I F(t)cos(wt)dr, F; = I F(t)sin(wr)dt

The first integral is the even function and the second
is the odd function, that is, Fg(w) = Fg(—w) and
Fi(w) = —F;(—w). Now, if we consider the CFT
about a point w = 0 (origin), the transform on the
right of the origin can be written as F(w) = Fp(w)+
iFr (). Similarly, the transforms to the left of the origin
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can be written as F(—w) = Fp(—w) + iF;(—w) =
Fr(w) — iFj(w) = F*(w), which is the complex con-
jugate of the transform on the right side of the origin.
The zero frequency point about which this happens
is called the Nyquist Frequency.

Implication in wave propagation: The Nyquist
frequency is an important parameter in wave propaga-
tion analysis, especially in the context of using a Fast
Fourier Transform (to be introduced later), since it is
only up to this frequency that all of the analysis can be
performed.

Convolution: This is a property relating to the
product of two time signals F;(¢t) and F,(¢). The
CFT of the product of these two functions can
be written as:

Fip(o) = J Fi(f)F2(t)e ™ dr

Now, substituting Equation (6.132) for both of these
functions in the above equation, we can write:

J Fl(d)) J F2(t)€7i(w7(b)rdld60

—00

ﬁlz(w) =

- J Fi(@)Fy(0 - @)do o

F](I)Fz(l‘) = J ﬁ](@)ﬁz(w—@)d@

—00

The above form of the CFT is called the Convolution.
Conversely, we can also write:

Fi(o)fa(0) J Fi(1)Fa(t — 7)de

Implication in wave propagation: The first prop-
erty of using the product of two time domain signals
has its use in understanding the signal-processing
aspects. For example, a truncated signal in the time
domain is equal to the product of the original signal
and the truncated signal. The second (or the converse)
property is of great utility in wave-propagation analy-
sis. That is, all of the responses (output) of mechanical
waveguides to applied loadings can be represented as
the frequency-domain product of the input times the
system transfer function. Thus, the time responses are

obtained by convolving the transfer functions with the
load spectrum.

6.3.1.2 Fourier series

Both forward and inverse CFTs require mathematical
descriptions of the time signals, as well as their integra-
tion. In most cases, the time signals are ‘point-data’
acquired during experimentation. Hence, what we require
is the numerical representation for the transform pair
(Equation (6.132)), which is called the Discrete Fourier
Transform (DFT). This is introduced in great detail in the
next subsection. The Fourier Series (FS) is inbetween the
CFT and the DFT, wherein the inverse transform is
represented by a series, while the forward transform is
still in the integral form as in the CFT. That is, one still
needs a mathematical description of the time signal for
getting these transforms.

The FS of a given time signal can be represented as:

00 ‘ /
F(t) = % + 2 [ancos (Znn?) + b,,sin(Znn?)]
(6.135)
where,
.
ay = ?[ F(t)cos (27m —) dr,
0
oI
t
by = ?JF(t)sm(Znn?)dn n=0,1,2... (6.136)
0

Equation (6.135) corresponds to the inverse transform of
the CFT, while Equation (6.136) corresponds to the
forward transforms of the CFT. Here, T is the period of
the time signal. That is, the discrete representation of a
continuous time signal, F(¢), introduces periodicity to the
time signal. The FS given in Equation (6.135) can also be
written in terms of complex exponentials, which can give
a one-to-one comparison with the CFT. That is, Equa-
tions (6.135) and (6.136) can be rewritten as:

1 . <
F(t) = EZ (an - bn)ew)nt = ZFnelw"r
—00 —00
n=0,+1,4+2,...

T
1 . 2
Fo==(ay—by) = —JF(t)e”“’”'dz, on =22 (6.137)
2 T
0



132 Smart Material Systems and MEMS

Because of the enforced periodicity, the signal repeats
itself after every T seconds. Hence, we can define the
fundamental frequency either in radians/per second (@)
or Hertz (fo = wo/2n = 1/T).

We can now express the time signal in terms of the
fundamental frequency as:

e 0
F(l) — Z ﬁneiangfgt _ Z i;neim/)gt
—00 —00

From Equation (6.138), it is clear that, unlike in the CFT,
the transform given by the FS is discrete in frequency. To
understand the behavior of the FS as opposed to the CFT,
the same rectangular time signal used earlier is again
considered here. The FS coefficients (or transform) are
obtained by substituting the time-signal variation in
Equation (6.137). This is given by:

(6.138)

. (nnd)
) F sin - A
F, = ?0 e e~ilts+d/2)2mn/T (6139)
T

The plot of transform amplitude obtained from the CFT
and FS are shown in Figure 6.20. This figure shows that
the value of the transform obtained by the FS at discrete

£=500 s

£=200 us

frequencies falls exactly on the transform obtained by
the CFT. This figure also shows the transform values for
different time periods 7. We see from this figure that
the larger the time period, then the more close are the
frequency spacings. Hence, if the period tends to infinity,
the transform obtained by the FS will be exactly equal to
the transform obtained by the CFT.

6.3.1.3 Discrete Fourier transforms

The Discrete Fourier Transform (DFT) is the other
alternate way of mathematically representing the CFT
in terms of summations. Here, both the forward and
inverse CFT given in Equation (6.132) are represented
by summations. This will completely do away with all of
the complex integration involved in computation of the
CFT. In addition, it is not necessary to represent the time
signals mathematically and the great advantage of this is
that one can use the time data obtained from experimen-
tation. Numerical implementation of the DFT is done
by using the famous Fast Fourier Transform (FFT)
algorithm.

We begin here with Equation (6.137), which is the FS
representation of the time signal. The main objective here
is to replace the integral involved in computation of the
Fourier coefficients by summation. For this, the plot of

Continous transform
. Fourier series coefficents

-100 =50

0
Frequency v (kHz)

50 100

Figure 6.20 Comparison of Fourier series with continuous Fourier transforms.
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Figure 6.21 Time-signal discritization for discrete Fourier
transforms (DFTs).

the time signal shown in Figure 6.21 is considered. The
time signal is divided into M piecewise constant rectan-
gles, whose height is given by F,, and the width of these
rectangles is equal to AT = T/M. We have derived earlier
that the continuous transform of a rectangle is a sinc
function. By rectangular idealization of the signal, the
DFT of the signal will be the summation of M sinc
functions of pulse width AT and hence the second
integral in Equation (6.137) can now be written as:

. sin(w, 4T /2) _
F, = AT F, e iontn 14
{ (0, AT)2) } Z ¢ (6.140)

Let us now look at the sinc function in Equation (6.140).
Its value depends on the width of the rectangle AT. That
is, as the width of the rectangle becomes smaller, the
term inside the bracket of Equation (6.140) tends to reach
a unit value. This will happen for all values of n < M. It
can be easily shown that for values of n > M, the values
of the transform is approximately equal to zero. Hence,
the DFT transform pairs can now be written as:

Fn=F(ty) = ZF ei®ntm — ZF i2nnm/N
F,=F(w,) = ATZF,ne*iwnfm
n=0

N—1
= AT Fpe 2V (6.141)
n=0

Here, both m and n range from O to N — 1.

The periodicity of the time signal is necessary for the
DFT as we begin from FS representation of the time
signal. Now, we can probe a little further to see whether
the signal has any periodicity in the frequency domain.
For this, we can look at the summation term in Equation

(6.140). Hypothetically, let us assume that n > M.
Hence, we can write n = M + in. Then, the exponential
term in the equation becomes:

efiw,ltm — efinwot,,, — efiM{uotmefinumtm
— efz2nme—mw0tm — e—zﬁwotm
Hence, the summation term in Equation (6.140)
becomes:
M—1
AT E Fme*mwofm
m=0

This term shows that the above summation evaluates the
same value when n = 7. For example, if M = 6, then for
n=29, 11 and 17 evaluate the same as n =3, 5 and 11,
respectively. Two aspects are very clear from this analy-
sis. First n > M is not important and the second is that
there is forced periodicity in both the time and frequency
domains in using the DFT. This periodicity occurs about
a frequency where the transform goes to zero. This
frequency can be obtained if one looks at the sinc
function given in Equation (6.140). That is, the argument
of the sinc function is given by:

_w,,AT =71 ndT = m
2 M
where, we have used the relation A7 =T/M in the
above.

Here, we see that the sinc function goes to zero when
n=M. It is at this value of n that the periodicity is
enforced and the frequency corresponding to this value is
called the Nyquist frequency. As mentioned earlier, this
happens due to the time signal being real only and the
transform beyond the Nyquist frequency is the complex
conjugate of the transform before this frequency. Thus, N
real points are transformed to N/2 complex points.
Knowing the sampling rate A7, we can compute the
Nyquist frequency from the expression:

ﬁ\lquisl: 241177, (6 142)
Numerical implementation of the DFT is the Fast Fourier
Transform (FFT). There are a number of issues in
numerical implementation of the DFT. These are not
discussed here. However, the interested reader is encour-
aged to refer to many classic textbooks, such as Chatfield
[5] and Sneddon [6], to obtain more information on these
aspects. In all of the wave-propagation examples given in
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Figure 6.22 Comparison of the fast-Fourier transform (FFT)
and a continuous transform for a sampling rate AT of 1 ps.

this text book, the FFT is used to transform the signal
back and forth between time and the frequency.

In order to see the differences in the different trans-
form representations, the same rectangular pulse is again
used here. There are two parameters on which the
accuracy of the transforms obtained from the DFT
depends, namely the sampling rate A7 and the time
window parameter N. Figures 6.22 and 6.23 show the
transforms obtained for various sampling rates A7 and
the time window parameter N. From these figures, we can
clearly see the periodicity about the Nyqusit frequency.
For a given time window N, the figures show that the
frequency spacing increases with the decrease in the
sampling rate. In addition, the Nyquist frequency shifts
to a higher value. Next, for a given sampling rate AT, the
time window is varied through the parameter N. In this
case, the Nyquist frequency does not change. However,
for larger N, the frequency spacing becomes smaller and
hence we get a denser frequency distribution.

6.3.2 Wave characteristics in 1-D waveguides

In this section, we will describe the different types of
waves that are associated with 1-D waveguides. The
general procedure to determine the wave characteristics
is to first establish the governing partial differential
equation of motion. This equation is transformed to the

Continous transform
FFT

®0cccccecocce

AT=1pus

0 100 00
Frequency v (kHz)

300

Figure 6.23 Comparison of the fast-Fourier transform (FFT)
and a continuous transform for various sampling rates.

Fourier domain by using a forward FFT. The resulting
equation is then solved to determine the wave para-
meters, such as wavenumbers, phase speeds and group
speeds. Determination of these parameters will even-
tually lead to the solutions for displacements, velocities
and accelerations. Before outlining the procedure in
greater detail, first a few wave propagation terminologies
are introduced:

(a) Waveguide. Any structural element is called a
waveguide as it guides the wave in a particular
manner. For example, a rod essentially supports
only the axial motion and hence it is called an
axial or longitudinal waveguide. In the case of a
beam, only a bending motion is possible and hence
the beam is called a flexural waveguide. In the case
of shafts, the only possible motion is a ‘twist’ and
hence they are known as torsional waveguides. In the
case of a laminated composite beam, due to the
stiffness coupling both axial and flexural motions
are possible. In general, if there are n highly coupled
governing partial differential equations, then such a
waveguide can support n different motions.

(b) Wavenumber. This is a frequency-dependent para-
meter which determines the following: (1) whether
the wave is propagating or non-propagating or will
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propagate after a certain frequency; (2) the type of
wave — dispersive or non-dispersive. Non-dispersive
waves are those that retain their shapes as they
propagate, while dispersive waves completely
change their shapes as they propagate. That is, if
the wavenumber (k) is expressed as a linear function
of frequency (), say kK = aw, then the waves will be
non-dispersive in nature. Wavenumber in rods and in
general for most second-order systems will be of this
form and hence the waves in such waveguides will be
non-dispersive in nature. However, if the wave num-
ber is of the form k = aw", the waves will essentially
be dispersive. Such a behavior can be seen in higher-
order systems such as beams and plates. The plot of
wavenumber with frequency is usually referred to as
a spectrum relation.

(c) Phase speeds. These are the speeds of the individual
particles that propagate in the structure. They are
related to the wavenumber through the relation
C, = w/k. If the waves are non-dispersive in nature
(that is, kK = aw), then the phase speeds are constant
and independent of frequency. Conversely, if the
phase speeds are constant, then such a system is a
non-dispersive system.

(d) Group speeds. During the propagation of waves,
groups of particles travel in bunches. The speeds of
each of these groups are called the group speeds of
the wave. They are mathematically expressed as
C, = dw/dk. Again here, for a non dispersive sys-
tem, the group speeds are constant and independent
of frequency. The time of arrival of all of the waves
will be based on this speed. The plot of phase/group
speeds with frequency is called the dispersion
relation.

6.3.2.1 Wave equation for a generalized
higher-order anisotropic laminated composite beam

For characterization of the waves, it is first necessary to
obtain the wave equation for the waveguide under con-
sideration. Here, we derive the wave equation for the
most complicated 1-D structure, namely the unsymmetric
higher-order laminated composite beam. From this equa-
tion, various simplifications can be made to obtain the
governing wave equations for different waveguide mod-
els, such as elementary isotropic rods and beams, higher-
order rods and beams, elementary laminated composite
beams and higher-order laminated composite beams.
There are different methods of obtaining the governing
wave equation for a given waveguide. Here, we resort to
using energy methods for deriving the wave equation.

This is because the energy methods, through Hamilton’s
Principle, will not only give the required wave equa-
tion but also the associated force boundary conditions.
Although this method is explained in greater detail in
Chapter 7 (Section 7.5.5), here we will just mention the
procedure and obtain the governing differential equa-
tion. We make the following assumptions for deriving
the governing equations: (1) the structure is assumed
to behave linearly and the deformations are assumed to
be small; (2) the structural material is also assumed
to behave linearly; (3) the material is homogenous.
Developing the governing equations from Hamilton’s
Principle requires the energy associated with the
motion, namely the strain energy and kinetic energy,
to be expressed in terms of displacements. For this, it is
required to make some assumptions on the displacement
field, based on the physics of the problem. Since the
higher-order laminated composite beam is used as an
example for deriving the governing equation of motions,
one can expect a high degree of axial-flexural shear
coupling in the member. Without loss of any generality,
we can assume the displacement field for a laminated
composite beam as:

= up(x,1) — zp(x, 1)
= wo(x, 1) + 2 (x, 1)

u(x, 1)
wi(x, 1) (6.143)
Here, up and wy are the mid-plane axial and transverse
displacements of the laminate, x and z are the axial and
depthwise coordinates, ¢ is the slope and  represents
the lateral motion due to the Poisson’s ratio effect.
These displacements are pictorially represented in
Figure 6.24. Next, strains are calculated by using the
strain displacement relations (Equation 6.27). These are
given by:

_Ow 0%y O W
8):):78)6 Z8x> 82271p7 l)xzf ¢+ ax +Z6X
(6.144)

Tz
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Figure 6.24 Cross-section of a beam and its degrees or freedom.
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The stresses are then expressed in terms of displacement
by using the plane-stress-reduced constitutive law in the
x—z plane as:

Oxx = Qllgxx + Q13822 Q ([2_ - gd)) + Ql3l//
02 = O136x + 0336, = O13 (% - %) + O3y
st( ¢+%+zg—f) (6.145)

Here, Q,-j are the plane stress reduced material constants
that depend on the Young’s modulus and the Poisson’s
ratio. For the present problem in question, they are given
by:

Q11 = 4046c05°0sin’0 + cos>0(Q;,c0s>0 + Q,5in0)
+ sin*0(Q;,c0s%0 + Q,sin0)
013 = (Q13¢08°0 — O3sin’0), 033 = O33,

Oss5 = (0550520 + Quysin0) (6.146)
The strain energy stored in the structure is evaluated by
using a volume integral given by

1
U=—

5 (6.147)

J (Gurtrr + Oz + TPy ) AV
v

where V is the volume of the structure. In a similar
manner, we can write the kinetic energy as:

T= %([p(uz +w?)dv = %Jp[(llo —20)* + (o +290)*]dV
\4 v

(6.148)

where all quantities with a ‘dot’ on their heads represent
the time derivatives. Hamiltion’s principle, which states
that the minimization of the net energy gives the alter-
nate statement of equilibrium, is mathematically repre-
sented as follows (more details are given in the next
chapter):

(6.149)

Substituting the energies given in Equations (6.147) and
(6.148) into Equation (6.149) and minimizing, we get
the following four highly coupled partial differential

equations corresponding to four degrees of freedom,
namely ug, wo, ¢ and . These are given by:

& 0? & & 1o,
O g A B — A =0
? o? 0 0 0
o ago“‘a—;f_/*“(a;o a(f) Ssaf 0
et uy Owg N
hgm e _A”(W_ )‘Bsﬁa
i & 0
+ Bi 8;120 Dua—jJera—li_O
? O? 15] 5]
1287;2#"’1] 6:20+A13£*313£+A331//
Pwo 0 oy
_BSS( axz 8x> Dsswf 0 (6150)

Here, Iy, 1, and I, represent the inertial constants, while
Ajj, Bjj and Dj; represent the stiffness constants, given by:

; (6151
p[l,z,2%]bdz

—ZJ

[Al]7BIj7D ] Qij[l’z7zz]bdz7 [10711712}

The above highly coupled equations represent a compli-
cated set of partial differential equations that are very
difficult to solve in the time domain. This complexity is
due to the material construction of the laminate which
represents all possible stiffness and inertial couplings,
namely the axial-shear-bending—lateral contraction. How-
ever, we will not try to solve this equation straightaway.
We will reduce the above equations to a simpler isotropic
waveguide devoid of stiffness or inertial coupling and get
an insight of the wave behavior before analyzing the above
system. This will also enable us to compare the behavior
of waves in elementary waveguides as opposed to higher-
order waveguides.

6.3.2.2 Wave propagation in elementary isotropic rods

Rods are structural waveguides that support only the
axial motion u(x, ). Equation (6.150) can be reduced to
a wave equation governing the motion of rods by
assuming the following:

0=0, l//:—v@

E=E=E
1 2 ) Ox

Vig = V21 =V,
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On substituting the above into Equations (6.146 and
6.151), the material constants and the stiffness coeffi-
cients become:

_ E _ vE
On=0u=7_—7 95=0u=7_7
~ E
st—st—m
EA vEA
A =—2 Ap=—"_—A
n=y_ An=7_7=4%
Bi1 =Bss =Bi3 =0
Iy=pA, IL1 =L =0, Dss=0, Dy =EIl

Here, E and p are the Young’s modulus and density of the
material and A and [ are the area and moment of inertia
of the cross-section. In substituting these into Equation
(6.150), the bending and axial motions are decoupled and
we get the following equations:

82M0 8214()
PAGe ~EAGe =0
N
(X, 1) = Y iy (x, )" (6.152)
n=1
82W() 82W0 8(]5
A 55 ( o~ ax) =0 (6.153)
Awo Pp
— Ass (W - ) —El55 =0 (6.154)

Differentiating Equation (6.154) with respect to x and
substituting this into Equation (6.153) and using
¢ = Owo/Ox, we get the following governing differential
equation for the elementary beam:

& ot
wo L EI wo

PA or? ot

0 (6.155)

For wave analysis in elementary rods, we will use only
Equation (6.152). We begin the analysis by transforming
the governing wave equation to the Fourier domain by
using the forward DFT. This can be done by assuming
the solution for axial displacement in the spectral form
as:

N
up(x,1) = ) ity (x, 00 )& (6.156)
n=1

In the above equation, i, are the frequency-dependent
Fourier coefficients and are also a function of the spatial
coordinates. In the rest of the sections in this part, the

quantities with a “hat” represent the frequency-domain
quantity; o, is the circular frequency and i= +v/—1.
Equation (6.156), when substituted into Equation
(6.152), reduces the partial differential equation into a
set of N ordinary differential equations with constant
coefficients, which is given by:

d?ir,

A

+ pAw, i, =0 (6.157)
Here, the summation sign is removed as it is implied. The
above equation has a solution of the form &, = A, etk
Here, ki, is called the wavenumber of the wave in
question and in the present case it is the longitudinal
wavenumber of the elementary rod. Substituting the
above solution into Equation (6.157), we get:

(—EAkp,” + pAw,2)A,e** =0

Since the system is second order, we will have two roots,
one representing the forward moving or incident wave
and the other representing the backward moving or
reflected wave. From the above equation, we can get
the longitudinal wavenumbers for a rod as:

(6.158)

The spectrum relation, i.e. the relation between the
wavenumber and frequency, is shown in Figure 6.26
below. Hence, the solution for Equation (6.157) is
given by:

it, = A,e”*n¥ 4 B, e (6.159)
The constants A, and B, require to be determined from
the boundary conditions of the problem. The first term in
the above equation represents the forward-moving wave
traveling with a wavenumber of +k;, and the second
term represents the backward-moving or reflected wave
traveling with a wavenumber of —kz,. Hence, the total
solution is the superposition of both incident and
reflected waves. The following are some of the aspects
on the behavior of waves in rods:

e The wavenumber is fully ‘real’ and hence the long-
itudinal waves in rods are propagating.

e The Spectrum relation (relation between the wave-
number and the frequency) is linear. Hence, the phase and
group speeds (C, = w/k, = \/E/p = dw/dky, = C,)
are equal. When such a condition exists, the waves are
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termed Non-dispersive. The main characteristic of such
waves are that they do not change their shape as they
propagate. In such a system, the reflections from the
boundary can be easily identified and hence have great
utility in applications such as identification of ‘damage’.

One can visualize the wave nature in rods by considering
an infinite rod. For this system, the second term in
Equation (6.159) does not exist as there will be no
reflections from an infinite rod. Hence, we can write
the displacement field as:
iln _ AnefikL,,x

The constant A, can be determined from the force
boundary condition. That is, if the force, F(¢), or its
frequency-domain counterpart, F(w) = EA dit/dx, are
known at some point, say at x = xo, then we can write
the displacement field as:

e—ikL,lx R
liy (x, ) = (e—ikLuxu)F”

We have actually written the response as:

(6.160)

Output = (Transfer function) x Input

The term within the bracket in Equation (6.160) repre-
sents the transfer function. Obtaining the transfer function
(also called the Frequency Response Function (FRF)) is
one of the fundamental advantages of the spectral analysis,
which enables this technique to be used in the solution of
the inverse problems, such as Force Identification (FI) or
System Identification (SI) problems.

The non-dispersive nature of the waves in rods is dis-
played in Figure 6.25, wherein the propagation of a
triangular impulse in an infinite rod shows that the profile
of the incident wave is maintained. The general proce-
dure of using spectral analysis is as follows:

e First, the force is transformed to the Fourier domain
by using a forward FFT.

e The frequency, the real and the imaginary parts of the
force spectrum are read and stored.

e The transfer function is evaluated at each frequency
and at the required spatial point.

e The obtained transfer function is convolved with the
load to get the displacement spectrum.

e The velocity and acceleration spectra are obtained by
multiplying the displacement spectrum by iw and

—?, respectively.

x=0

x=100

1500

Time (us)

Figure 6.25 Non-dispersive nature of waves in an infinite rod.

e Finally, the time-domain response can be obtained by
taking the inverse FFT on the obtained frequency
response.

Figure 6.25 is obtained in this way. One of the advantages
of the spectral approach is that one can view both the time-
and frequency-domain responses in a single analysis and
the transfer function is a direct byproduct of the approach.

Using Equation (6.159) and knowing the incident
wave, one can construct the reflection responses due to
interaction of the incident wave with various boundaries.
These are extensively dealt in Doyle [7].

Some of the properties of propagating non-dispersive
signals are as follows:

(a) Waves travel with constant speed and hence do not
change their shapes.

(b) The given time signal requires proper sampling with
an appropriate time window. If the time window is
small, due to induced periodicity of the wave intro-
duced as a result of using spectral analysis, the waves
from the neighboring window will start propagating
from the left, distorting the overall response. Hence,
the time window is chosen so that (1) there is enough
room for propagation of the signal and (2) since
there is a connection between the time window and
the distance the wave can move, the window size is
to be determined by the slowest traveling component
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and not the fastest. The time window can be
increased by either increasing the number of points
N or by decreasing the sampling rate AT

6.3.2.3 Wave propagation in elementary
isotropic beams:

Unlike rods, beams represent the fourth-order system in
space and hence it can be expected that the wave
behavior be much more complex. The beam analysis
can be carried out on similar lines to those for rods. That
is, we begin with the governing differential equation,
which is given by Equation (6.155). We assume that the
spectral form of the solution is as follows:

N
w(x,1) = i(x, ,)e (6.161)
n=1

Substituting Equation (6.161) into the governing equa-
tion (6.155), the governing PDE reduces to a set of
ODEs, which is given by:

d*,

El
dx*

— pAwHv, =0

(6.162)

The above equation is a constant-coefficient ODE
and hence we can assume a solution of the type

W, = A,e~*»* Since the system is fourth order, there
will be four wavenumbers. Using this in Equation
(6.162), we get all of the four wavenumbers as:

kBlﬂ = iﬁm szn = _iﬁm kB;n = ﬂm ka = _ﬂn
4 2PA
= w," — 6.163
B = on” (6.163)

Clearly, the wavenumber is a nonlinear function of
frequency and hence such waves changes their shapes
as they propagate and so they are called a Dispersive
wave system. From Equation (6.163), it is clear that the
first two modes are propagating, while the last two modes
are damped or evanescent modes. That is, the waves, in
addition to being dispersive, attenuate as they propagate.
The spectrum relation is shown in Figure 6.26. The phase
and group speeds are given by:

E1\ 025
Cg =dw/dkg, = 2\/cwo<p—A)

C, =2C, (6.164)

From the above relations, we see that, unlike rods, the
phase and group speeds are different and are functions of
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Figure 6.26 Spectrum relationships for an elementary rods and beams.
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the frequency. That is, different frequency components
of the signal have different speeds. This is one of the
characteristics of the dispersive system. The solution of
the beam system is given by:

W, = Aye P 4 Be P 4 CetP 4 DeP (6.165)

Here, the first two terms in the above equation represent
the forward-moving wave while the last two terms
represent the backward-moving wave. As in a rod, the
total solution is obtained by superposition of two solu-
tions. If one is dealing with an infinite beam, the last two
terms in equation (6.165) need not be considered. Using
the above equation, the interaction of the incident wave
with various boundaries can be investigated. Further
details on these aspects can be found in Doyle [7].
While dealing with dispersive signals such as those
occurring in beams, the following are some signal
processing aspects that one has to consider:

e The shape of the time signal changes as it propagates
and hence it is not possible to identify the original
profile.

e The speed of the wave changes with the frequency
and hence the low-frequency components take a long
time to arrive and hence the signals have long tails.

e When the time window is small, propagation of the
signal over long distances causes signal distortion due
to the neighboring window ‘coming from the left’.
This problem is called a wraparound problem. This is
due to the low-frequency components occurring first,
instead of the high-frequency components. This pro-
blem can be avoided by any of the following: (1) by
‘padding’ the time window by zeros; (2) by using
what is called band-pass filtering — that is, all of the
frequency components below a certain frequency
would be blocked; (3) by using an N-point moving
average, wherein the low-frequency components are
averaged by using a suitable least-squares approach;
(4) by increasing the time-window size by suitably
choosing the sample rate and the number of FFT
points.

6.3.2.4 Wave propagation in elementary
composite beams

Unlike an elementary isotropic beam, a laminated com-
posite beam exhibits stiffness coupling due to unsymme-
trical ply lay up sequences. Due to this, the structure will
exhibit bending—axial coupling. Hence, such beams can

undergo three different motions, namely axial, bending
(transverse) and rotation. To perform the wave analysis,
we need the governing equation, which can be obtained
from Equation (6.150) by ‘proper’ reduction. Since the
beam is still elementary, the shear deformation, rotational
inertia and lateral displacement due to Poisson’s ratio,
are not considered. The governing equation can be
obtained by setting all of the terms associated with the
¥ motion and its derivates to zero in Equation (6.150). In
addition, in the third part of this equation the contribution
of rotational inertia by the axial degree of freedom is
assumed to be zero (that is, the 1;0%u/0¢* term) and by
setting ¢ = Ow/0x, we get the following two coupled
governing partial differential equation, which are given by:

82u0 82140 63W0
o2 ~4u Ox? +Bu ox3 =0
02W0 631,{0 (34W0
IOWfB” ax3 +D”W—O (6166)

From the above equations, we can clearly see the stiff-
ness coupling through the term By;. If this term is zero,
that is, for a symmetric lay up sequence, the axial and
transverse motions will become uncoupled and the beha-
vior would be very similar to that of isotropic rods and
beams, respectively. The wave behavior for this coupled
system can be determined by representing the two
motions in the spectral form, which is given by:

iwpt
)

M=

up(x,1) =) iy (x, w)e

n=1

(6.167)

im,t

[
M=

wo(x, 1) Wy (x, m)e

n=1

Substituting the above into Equation (6.166) reduces the
governing PDE to a set of coupled ODEs with constant
coefficients, which is given by:

d%i &
2 n _
— o un*AuﬁJanE—O
i d*w
— Iyw*W — By — +Dij— =0 6.168
0w = Bt +Dn I ( )

The solutions for axial and transverse displacements will
be of the types:

l:tn = U()Cﬂk”x, VAV,, = W()eﬂk"x

The same wavenumber appears in both the solutions
to retain the phase information during propagation. By
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using the above solution, Equation (6.168) can be written
in matrix form as:

2 2 -CCﬂ3 3
(CLkn — Wy ) l W, kn‘ {UO}_{O}
cel Cp,* Wo [ 10
—i—ckn3 an kn4 - wnz 0

Wy Wy,

(6.169)

Here, C; and Cp, are the longitudinal and bending wave
speeds, while C¢, is the wave speed due to stiffness
coupling. These are given by:

1 1
A Dy |* By |3
l7 Cp, = AL l:li| P Cen = |:wn l:l
I() I() I()

(6.170)

C, =

For obtaining the nontrivial solution, it is necessary that
the determinant of the above matrix be zero. In doing so,
we get a sixth-order characteristic equation to solve for
the wavenumber k,, which is given by:

(1 - r)kn6 - kankn4 - an4knz + kLr12an4 =0 (6~17])

In the above expression, r is a parameter that represents
the stiffness coupling between the axial and flexural
motions, while k;, and kp, are the longitudinal and
flexural wavenumbers in the absence of stiffness cou-
pling. These are given by:

2
Bll Wy Wy
r= ) = an =
AnDy

n— .~ 9 6 172
- CL CBn ( )

Equation (6.171) is the sixth-degree polynomial equation
corresponding to three motions, namely the axial, bend-
ing and rotational displacements. Hence, the solution of
Equation (6.168) will have six constants, three of which
represent the forward-moving components, while the
other three represent the reflected-wave components.

Before attempting to solve the above equation, we can
easily see that for a symmetric ply lay up r vanishes and
hence there is no stiffness coupling. Equation (6.171)
then becomes:

(kn2 - kan)(kn4 - an4) =0

That is, the bending and axial motions become uncoupled
and the solutions of these are the same as those of the
rods and beams described earlier, with EA giving way
to Ay, EI giving way to Dy; and pA making way for /.

The solution of Equation (6.171) is quite complex and
requires numerical solution. However, it reduces to sol-
ving a cubic equation as the forward- and backward-
moving waves always occur in pairs. By looking at the
characteristic equation, one cannot say anything about
the behavior of any wave mode. Hence, it is quite likely
that the axial mode is propagating and hence would be
real, while one of the bending modes is likely to be
complex, as in the case of an isotropic beam. One of the
disadvantages of a numerical solution is to keep track of
the mode type. That is, while obtaining the solution, one
would not know what mode (bending or axial in this
case) that one is solving for. However, there are many
numerical methods which will look for only the real roots
or complex roots separately. In the present case, we look
for the real root, say 1/x, which we will designate as the
longitudinal mode. The other roots can be found easily
by ‘synthetic division’. Hence, we can now write the
wavenumbers as:

kln = \/O—Cr:a k2n7 k3n

1
- % \/(kLrn - an) + \/(kLrn + OCn)2 - 4(“% - kBrn)

kLn2 _ an4
(1—}’)7 Bm*(l_r)

It is very difficult to ascertain its behavior by looking at
the expression. One thing which is very clear is that the
wave behavior will certainly change with the stiffness
coupling. In order to investigate this, we plot the spec-
trum relation and the dispersion relations for an AS/3501
graphite—epoxy laminated composite beam. Ten plies are
considered in three different ply stacking sequences to
give different degrees of stiffness coupling. The thickness
of each ply is assumed to be 1 mm. The three different
stacking sequences and their values of stiffness coupling
are given as follows:

ki = (6.173)

[05/30,'603] —— r = 0.312,

[Ol()}—ﬁ =0,

The first case is the symmetric one wherein there is no
stiffness coupling, while the last represents the case of
a crossply laminate, wherein the stiffness coupling is
maximum. These plots are shown in Figures 6.27 and
6.28, respectively.

In the spectrum relation (Figure 6.27), the real part of the
wavenumber is plotted above the zero and is imaginary
below zero to identify the propagating and evanescent
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Figure 6.27 Spectrum relationships for elementary composite beam.

components. The axial wavenumber behavior is almost
nondispersive for most of the frequency spectrum. How-
ever, a mild dispersion is introduced at very high fre-
quencies. This is because the dispersive components
from the bending motion, normally introduced through
stiffness coupling, are small. This is the reason why the
stiffness coupling parameter r has a negligible effect on
the longitudinal wavenumber. The flexural-mode beha-
vior is highly dispersive as in the isotropic case; however,
the influence of the stiffness coupling parameter r is quite
significant and is shown by altering the slope of the

curve. The slope is smaller for a smaller r and hence the
speeds will also change with the coupling parameter.
This is shown in Figure 6.28. The general tendency is
that the stiffness coupling reduces the speeds, both for
axial as well as the flexural case. In the axial case, it is
seen that a maximum of 26 % reduction in speeds can be
achieved, while the reduction in the flexural speed at 50
kHz is about 46 %. More details of this analysis can be
found in Roy Mahapatra et al. [8].

A similar analysis can be done for higher-order wave-
guides, where additional constraints are introduced in the
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Figure 6.28 Dispersion relationships for an elementary composite beam.
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elementary model. For example, when the shear defor-
mation is introduced in the elementary-beam model, the
shear strains do not vanish and as a result the beam slope
cannot be obtained from the transverse displacement.
Hence, the addition of shear constraints will cause an
alteration in the behavior of the evanescent wave of the
elementary beam. This wave, which starts as a nonpro-
pagating wave at low frequencies, becomes propagating
after a certain frequency. This frequency is called the
cut-off frequency, where the wavenumber traverses from
imaginary to real. Details of the wave behavior in a
higher-order isotropic beam waveguide can be found
in Gopalakrishnan et al. [9], while the same for a com-
posite waveguide can be found in Roy Mahapatra and
Gopalakrishnan [10]. In the case of a longitudinal wave-
guide, the higher-order effects are incorporated through
the introduction of a lateral displacement (also called a

four independent motions for this beam, namely the axial
(u), transverse (w), rotational (¢) and lateral contraction
() motions.

The displacement field for this case is given in
Equation (6.143) and the four-coupled governing equa-
tions for this displacement field are given by Equation
(6.150). The wave analysis, as before, begins by repre-
senting the different motions in their spectral forms
and converting the coupled PDEs to a set of coupled
ODEs. As in the earlier cases, these ODEs have con-
stant coefficients and hence one can assume exponential
solutions. Following the procedure employed for deter-
mining the wavenumbers in an elementary composite
beam, we can form the eight-order polynomial charac-
teristic equation for the solution of wavenumbers. The
eight-order polynomial is obtained from the following
equation:

lateral contraction) due to the Poisson’s ratio effect in
the elementary-rod model. This introduces an additional
motion and as a result, increases the order of the
governing differential equation. The behavior of waves
in an isotropic higher-order rod waveguide can be found
in Martin et al. [11]. In the next subsection, the behavior
of the waves in a higher-order laminated composite beam
is discussed, wherein, in addition to the shear deforma-
tion, lateral contraction is also introduced. Hence, one
can expect a four-way coupling.

6.3.2.5 Wave propagation in higher-order laminated
composite beams

Here, we consider the most complicated case of a
higher-order laminated composite waveguide wherein
the higher-order effects, through shear deformation and
lateral contraction via the Poisson’s ratio effect, are
introduced in the mathematical model. Hence, there are

- sisakin? rkinky? Az i
an —k nz 0 (9192 n_ nfn l—kn
( . ) ksn ksn2 All
2 U 0
2 2 . w, I 7% 2 0
0 (kn* — ksn?) ik, ( A Ass k, ) Wo - 0
(r"“ kn” _ SIsZk.m) ik, (slz - ks"zi"z) (4(355 . BB)k"Z) ’ ’
kLnan an Ass l,bo 0
A W2 B —i(Bss — B3 )k’ 2l D
28, (‘” ! ikﬁ) ( i(Bss — Bis) ) (“’ 2 —ﬁm)
L As3 Az Asy Asz As3 Asz -
(6.174)

By setting the determinant of the above matrix to zero,
the polynomial of the 8th order is obtained. Clearly, there
is a four-way stiffness coupling, namely the axial-trans-
verse—shear-lateral contraction coupling. The behaviors
of these modes are difficult to estimate unless one plots
these. One can expect cut-off frequencies in the shear and
lateral contraction modes, which can be obtained by
looking at the frequencies where the wavenumber goes
to zero. The cut-off frequencies associated with the
contraction and shear modes are given by:

Ass o _ Ass
12(1 *S22)7 ¢ — shear 12(1 7S22)

(6.175)

D¢ —cont =

Since As3 > Ass, the shear cut-off frequency occurs ear-
lier than the contractional cut-off frequency. Figure 6.29
gives the spectrum relation for a higher-order laminated
composite beam. Clearly, the longitudinal mode becomes
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Figure 6.29 Spectrum relationships for a higher-order laminated composite beam.

dispersive at higher frequencies. The first bending mode
is always propagating, while the shear mode is evanes-
cent to start with and becomes propagating after the shear
cut-off frequency. If the elementary model is used in such
cases, the dynamics of the beam motion will be grossly
misrepresented. The contractional mode is again evanes-
cent to start with and becomes propagating beyond the
contractional cut-off frequency. Hence, it can be con-
cluded that higher-order effects are more pronounced at
high frequencies and if these properties are not used at
such frequencies, the responses predicted will no longer
be reliable.
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7

Introduction to the Finite Element Method

7.1 INTRODUCTION

The behavior of any smart dynamic system is governed
by the equilibrium equation (Equation (6.49)) derived in
the last chapter. In addition, the obtained displacements
field should satisfy the strain—displacement relationship
(Equation (6.27)) and a set of natural and kinematic
boundary conditions and initial conditions. Also, if the
system happens to be a laminated composite with an
embedded smart material patch, there will be electro-
mechanical/magnetomechanical coupling introduced
through the constitutive model. Obviously, these equa-
tions can be solved exactly only for a few typical cases
and for most problems one has to resort to approximate
numerical techniques to solve the governing equations.
Equation (6.49), as such, is not readily amenable for
numerical solutions. Hence, one needs alternate state-
ments of equilibrium equations that are more suited for
numerical solution. This is normally provided by the
variational statement of the problem.

Based on variational methods, there are two different
analysis philosophies: one is the displacement-based
analysis called the stiffness method, where the displace-
ments are treated as primary unknowns and the other is
the force-based analysis called the force method, where
internal forces are treated as primary unknowns. Both
these methods split up the given domain into many
subdomains (elements). In the stiffness method, a dis-
critized structure is reduced to a kinematically determi-
nate problem and the equilibrium of forces is enforced
between the adjacent elements. Since we begin the
analysis in terms of displacements, enforcement of com-
patibility of the displacements (strains) is a non-issue as
it will be automatically satisfied. The finite element
method falls under this category. In the force method,
the problem is reduced to a statically determinate struc-

ture and compatibility of displacements is enforced
between adjacent elements. Since the primary unknowns
are forces, the enforcement of equilibrium is not neces-
sary as it is ensured. Unlike the stiffness method, where
there is only one way to make a structure kinematically
determinate (by suppressing all the degrees of freedom),
there are many possibilities to reduce the problem into a
statically determinate structure in the force method.
Hence, the stiffness methods are more popular.

The variational statement is the equilibrium equation
in the integral form. This statement is often referred to as
the weak form of the governing equation. This alternate
statement of equilibrium for structural systems is pro-
vided by the energy functional governing the system. The
objective here is to obtain an approximate solution of
the dependent variable (say, the displacements u in the
case of structural systems) of the form:

N

u(x,y,2,1) = Y _ an(t,(x.,2)

n=1

(7.1)

where a, () are the unknown time-dependent coefficients
to be determined through some minimization procedure
and ,, are the spatial dependent functions that normally
satisfy the kinematic boundary conditions and not neces-
sarily the natural boundary conditions. There are differ-
ent energy theorems that give rise to different variational
statements of the problem and hence different approx-
imate methods can be formulated. The basis for formula-
tion of the different approximate methods is the Weighted
Residual Technique (WRT), where the residual (or error)
obtained by substituting the assumed approximate solu-
tion in the governing equation is weighted with a weight
function and integrated over the domain. Different types
of weighted functions give rise to different approximate
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methods. The accuracy of the solution will depend upon
the number of terms used in Equation (7.1).

The different approximate methods again are too diffi-
cult to use in situations where the structures are complex.
To some extent, methods like the Rayleigh—Ritz method
[1], which involves minimization of the total energy to
determine the unknown constants in Equation (7.1), can
be applied to some complex problems. The main diffi-
culty here is to determine the functions ,, which are
called Ritz functions, and in this case, are too difficult to
determine. However, if the domain is divided into num-
ber of subdomains, it is relatively easier to apply the
Rayleigh—Ritz method over each of these subdomains
and solutions of each are pieced together to obtain the
total solution. This, in essence, is the Finite Element
Method (FEM) and each of the subdomains are called the
elements of the finite element mesh. Although the FEM
is explained here as an assembly of Ritz solutions over
each subdomain, in principle all of the approximate
methods generated by the WRT, can be applied to each
subdomain. Hence, in the first part of this chapter, the
complete WRT formulation and various other energy
theorems are given in detail. These theorems will then
be used to derive the discritized FE governing the equa-
tion of motion. This will be followed by formulation of
the basic building blocks used in the FEM, namely the
stiffness, mass and damping matrices. The main issues
relating to their formulation are discussed.

Even though variational methods enable us to get an
approximate solution to the problem, the latter is heavily
dependent upon the domain discritization. That is, in the
finite element technique, the structure under consideration
is subdivided into many small elements. In each of these
elements, the variation of the field variables (in the case of
a structural problem, displacements) is assumed to be
polynomials of a certain order. Using this variation in
the weak form of the governing equation reduces it into a
set of simultaneous equations (in the case of static ana-
lysis) or highly coupled second-order ordinary differential
equations (in the case of dynamic analysis). If the stress or
strain gradients are high (for example, near a crack tip of a
cracked structure), then one needs very fine mesh dis-
critization. In the case of wave propagation analysis, many
higher-order modes get excited due to the high-frequency
content of loading. At these frequencies, the wavelengths
are small and the mesh sizes should be of the order of
the wavelengths in order that the mesh edges do not act
as the fixed boundaries and start reflecting waves from
these edges. These increase the problem size enormously.
Hence, the size of the mesh is an important parameter that
determines the accuracy of the solution.

Another important factor that determines the accuracy
of the Finite Element (FE) solution is the order of the
interpolating polynomial of the field variables. For those
systems that is governed by the PDEs of orders higher
than two (for example, the Bernoulli-Euler beam and
classical plate), the assumed displacement field should
not only satisfy displacement compatibility, but also the
slope compatibility at the interelement boundaries, since
the slopes are derived from displacements. This necessa-
rily requires higher-order interpolating polynomials.
Such elements are called C' continuous elements. On
the other hand, for the same beam and plate systems, if
the shear deformation is introduced, then the slopes can
no longer be derived from the displacements and as a
result one can have the luxury of using lower-order
polynomials for displacements and slopes separately.
Such shear-deformable elements are called the C° con-
tinuous elements. When such C° elements are used for
beams and plates which are thin (where the shear
deformation is negligible), these elements cannot degen-
erate into C' elements and as a result the solutions
obtained will be many orders smaller than the actual
solution. These are commonly referred to as shear locking
problems. Similarly, there is incompressible locking in
nearly incompressible materials when the Poisson’s ratio
tends to 0.5, membrane locking in curved members and
Poisson’s locking in higher-order rods. Such problems
where one or other forms of locking are present are
normally referred to as constrained media problems.

There are many different techniques that can be used
to alleviate locking [2]. These will be explained in detail
in the latter part of this chapter. One of the methods to
eliminate locking is to use the exact solution to the
governing differential equation as the interpolating poly-
nomial for the displacement field. In many cases, it is not
easy to solve a dynamic problem that is governed by a
PDE exactly. In such cases, the equations are solved
exactly by ignoring the inertial part of the governing
equation. The resulting interpolating function will give
the exact static stiffness matrix (for point loads) and an
approximate mass matrix. These elements can be used
both in deep and thin structures and the user need not use
his judgment to determine whether locking is predomi-
nant or not. Use of these elements will substantially
reduce the problem size, especially in wave-propagation
analysis as these have super-convergent properties.
Hence, a complete section in this chapter is devoted to
the formulation of these super-convergent elements.

The super-convergent elements explained above still
do not provide accurate inertia distribution, which is
extremely important for accurate wave-propagation
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analysis. This is because the mass matrix in the super-
convergent formulation is formulated using the exact
solution to the static part of the governing equation. This
approach can be extended to certain PDEs by transform-
ing the variables in the governing wave equation to the
frequency domain using the Discrete Fourier Transform
(DFT). In doing so, the time parameter is replaced by the
frequency and the governing PDE reduces to a set of
ODEs in the transformed domain, which is easier to
solve. The exact solutions to the governing equation in
the frequency domain are then used as interpolating
functions for element formulation. Such elements formu-
lated in the frequency domain are called the Spectral
Finite Elements (SFEs). An important aspect of SFEs are
that they give the exact dynamic stiffness matrix. Since
both the stiffness and the mass are exactly represented
in this formulation, the problem sizes are many orders
smaller than the conventional FE solution. Hence, the last
part of this chapter is exclusively devoted to describing
the spectral element formulation.

7.2 VARIATIONAL PRINCIPLES

This section begins with some basic definition of work,
complementary work, strain energy, complementary
strain energy and kinetic energy. These are necessary to
define the energy functional, which is the basis for any
finite element formulation. This will be followed by a
complete description of the WRT and its use in obtaining
many different approximate methods. Next, some basic
energy theorems, such as the Principle of Virtual Work
(PVW), Principle of Minimum Potential Energy (PMPE),
Rayleigh—Ritz procedure and Hamilton’s theorem for
deriving the governing equations of a system and their
associated boundary conditions, are explained. Using
Hamilton’s theorem, finite element equations are derived,
which is followed by derivation of stiffness and mass
matrices for some simple finite elements. Next, the mesh-
locking problem in FE formulations and their remedies
are explained, followed by the formulation procedures
for super-convergent finite elements. Next, the equation
solution in static and dynamic analysis is presented. The
chapter ends with a full review of Spectral Finite Element
(SFE) formulation.

7.2.1 Work and complimentary work

Consider a body under the action of a force system
described in a vectorial form as F = Fyi + Fyj+ F k,

where F,, F, and F are the components of force in the
three coordinate directions. These components can also
be time-dependent. Under the action of these forces, the
body undergoes infinitesimal deformations, given by
dit = dui + dvj + dwk, where u, v and w are the compo-
nents of displacements in the three coordinate directions.
The work done is then given by the ‘dot’ product of force
and displacement vector:

dW = F - dit = Fdu + Fydv + F.dw (7.2)

The total work done in deforming the body from the
initial state to the finial state is given by:

W:Ji’-dﬂ

uy

(7.3)

where u, is the final deformation and u; is the initial
deformation of the body. To understand this better, consi-
der a 1-D system under the action of a force F, and
having an initial displacement of zero. Let the force vary
as a nonlinear function of displacement (u) given by
F, = ku", which is shown graphically in Figure 7.1.
Here, k and n are some known constants. To determine
the work done by the force, a small strip of length du is
considered in the lower portion of the curve shown in
Figure 7.1. The work done by the force is obtained by
substituting the force variation in Equation (7.3) and
integrating, which is given by:

W= =1 7.4
n+1 n+1 (7:4)
A
oF F=ku"
i A .
:
5 1
4 du
—od

>

Y A Displacement

Figure 7.1 Definitions of work (‘area OAB’) and complimen-
tary work (‘area OBC’).
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Alternatively, work can also be defined as:
F
W= J it dF

Fy

(15)

where, F'| and F, are the initial and final applied forces.
The above definition is normally referred to as Comple-
mentary Work. Again, by considering a 1-D system with
the same nonlinear force—displacement relationship
(Fy = ku"), we can write the displacement u as u =
(1/k)F{/"_ Substituting this into Equation (7.5) and
integrating, the complementary work can be written as:

F(l/n+1) F.u 6
Wr=_—= = a 7.
k(1/n+1) (1/n+1) (7.6)

Obviously, W and W* are not the same although they
were obtained from the same curve. However, for the
linear case (n = 1), they have the same value, given by
W = W* = F,u/2, which is nothing but the area under
the force—displacement curve. The definition of Work is
normally used in the stiffness formulation, while the
concept of Complementary Work is normally used in
the force method of analysis.

7.2.2 Strain energy, complimentary strain energy
and kinetic energy

Consider an elastic body subjected to a set of forces and
moments. The deformation process is governed by the
First Law of Thermodynamics, which states that the total
change in the energy (AE) due to the deformation
process is equal to the sum of the total work done by
the elastic and inertial forces (Wg) and the work done
due to head absorption (Wg), that is:

AE =Wg+ Wy

If the thermal process is adiabatic, then Wy = 0. The
energies associated with the elastic and the inertial forces
are called the Strain Energy (U) and Kinetic Energy (T),
respectively. If the loads are gradually applied, the time-
dependency of the load can be ignored, which essentially
means that the kinetic energy T can be assumed to be
equal to zero. Hence, the change in the energy AE = U.
That is, the mechanical work done in deforming the
structure is equal to the change in the internal energy
(strain energy). When the structure behaves linearly and
the load is removed, the strain energy is converted back
to mechanical work.

dyT
GXX
<«
-
O, pid e
XX
Oyt —dx e dz

Figure 7.2 Elemental volume for computing the strain energy.

To derive the expression for the strain energy, consider
a small element of volume dV of the structure under a
1-D state of stress, as shown in Figure 7.2. Let g, be the
stress on the left face and g, + (9, /9x)dx be the stress
on the right face. Let B, be the body force per unit volume
along the x-direction. The strain energy increment dU due
to the stresses oy, on face 1 and o, + (90, /0x)dx on
face 2 during infinitesimal deformation du on face 1 and
d(u + (Ou/dx)dx) on face 2 is given by:

00y, Ou
o dx) dydzd (u + e dx>

dU = —odydzdu + (am +

+ B,dydxdz

Simplifying and neglecting the higher-order terms, we
get:

o) 0 XX
AU = od [ 24) dudydz + dudxdydz [ 22 1 B,
Ox Ox

The last term within the brackets is the equilibrium
equation, which is equal to zero. Hence, the incremental
strain energy now becomes:

dU = o,,d <@) dxdydz = o, de,, dV

- (1.7)

Now, we introduce the term called incremental Strain
Energy Density, which we define as:

dSp = o, dey,

Integrating the above expression over a finite strain, we
get:

Exx

Sp = O_xxdsxx (78)

[Sr—
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Using the above expression in Equation (7.7) and inte-
grating it over the volume, we get

U= JSDdV
14

(7.9)

Similar to the definition of work and complementary
work, we can define complimentary strain energy density
and complimentary strain energy as:

O
U* = JSEdV, Sp = J eexd0
% 0

(7.10)

We can represent this graphically in a similar manner as
we did for work and complimentary work. This is shown
in Figure 7.3.

In this figure, the area of the region below the curve
represents the strain energy while the region above
the curve represents the complementary strain energy.
Since the scope of this chapter is limited to the Finite
Element Method, all of the theorems dealing with com-
plimentary strain energy will not be dealt with here.

Kinetic energy should also be considered in evaluating
the total energy if the inertial forces are important.
Inertial forces are predominant in time-dependent pro-
blems, where both loading and deformation have time
histories. Kinetic energy is given by the product of mass
and the square of velocity. This can be mathematically
represented in the integral form as:

1
T:—Jp(it2+v2+wz)dV (7.11)

2
v

Here, u, v and w are the displacement in the three co-
ordinate directions while the dots on the characters

4
do o=ke
c s ‘\ B
)
f
g
e — 4' de
(0] . A >
Strain

Figure 7.3 Concepts of strain energy (‘area OAB’) and com-
plimentary strain energy (‘area OBC’).

represent the first time derivatives and in this case are
the three respective velocities.

7.2.3 Weighted residual technique

Any system is governed by a differential equation of the
form:

Lu=f (7.12)
where L is the differential operator of the governing
equation, u is the dependent variable of the governing
equation and f'is the forcing function.

The system may have two different boundaries 7; and
75, where the displacements u = 1 and tractions ¢ = t,
respectively, are specified. The WRT is one of the ways
to construct many approximate methods of analysis. In
most approximate methods, we seek an approximate
solution for the dependent variable u by, say u# (in one
dimension), as:

(x,1) = > 0, (1)h,(x) (7.13)

Here, «, are some unknown constants, which are time-
dependent in dynamic situations, and ¢, are some known
functions, which are spatially dependent. When we use
discritization in the solution process as in the case of the
FEM, o, will represent the nodal coefficients. In general,
these functions satisfy the kinematic boundary conditions
of the problem. When Equation (7.13) is substituted
into the governing equation, we get Liu — f # 0 since the
assumed solution is approximate. We can define the error
function associated with the solution as:

er=Lu—f, ex=u—uy, es=t—ty (714)
The objective of any weighted residual technique is to
make the error function as small as possible over the
domain of interest and also on the boundary. This can be
done by distributing the errors in different methods with
each method producing a new approximate method of
solution.

Let us consider a case where the boundary conditions
are exactly satisified, that is, e; = e3 = 0. In this case, we
need to distribute the error function e; only. This can
be done through a weighting function w and integrating
over the domain as:

Jelde:J(Lﬁ —f)wdV =0 (7.15)

Vv 14
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Choice of the weighting functions determines the type
of WRT. The weighting functions used are normally of
the form:

N
W= ; B, (7.16)

When Equation (7.16) is substituted into Equation (7.15),
we get:

n=1273,...,n

J (Lu—fY,=0, n=1,2,....n
%

This process ensures that the number of algebraic equa-
tions resulting in using Equation (7.13) for # is equal to
the number of unknown coefficients chosen.

Now, we can choose different weighting functions to
obtain different approximate techniques. For example, if
we choose all of Y, as the Dirac delta function, normally
represented by the ¢ symbol, we get the classical finite
difference technique. These are the spike functions that
have a unit value only at the point that they are defined
while at all other points they are zero. They have the
following properties:

T O(x — x,)dx = Tré(x —x,)dx =1
T F3)3(x — )dx = Tf(X)fS(x — x)dx = £(x,)

Here, r is any positive number and f(x) is any func-
tion that is continuous at x = n. To demonstrate this
method, consider a three-point line element, as shown in
Figure 7.4.

The displacement field can be expressed as a three-
term series in Equation (7.13) as:

u= un71¢1 + Mn¢2 + un+l¢3 (717)
n-1 n n+1
x=0 x=L"2 x=L

Figure 7.4 Finite differences, according to the weighted
residual technique (WRT).

Here, the functions ¢, ¢, and ¢; satisfy the boundary
conditions at the nodes, namely its nodal displacements,
and they are given by:

X 2x 4x  4x?
¢1:<1_Z>(1_I)’ ¢2:(I_F)’

x (2x
b=5(2-1) (7.18)
Now the weighting function can be assumed as:
w = B0(x —0) + B,6(x — L/2) + B30(x — L)
(7.19)

3
L
n=1

Let us now try to solve the following simple 1-D ordinary
differential equation given by:
d*u

dx2+4u+4x:0’ u(0)=u(1)=0

(7.20)

Here, the independent variable x has limits between 0 and
1. Using Equation (7.17) in Equation (7.20), one can find
the error function or residue e, say at node n, given by:

<d2u+4 +4) (1 2,1 )
e = |- u X | =\ 5Un-1 — U — Upt1
dx? RV D S

+ 4du,, + 4x, (7.21)

Here, L = 1 is the domain length. If we now substitute
the weight function (Equation (7.19)) and integrate, and
using the properties of the Dirac delta function, we get:

1
L—Z(un_l —2uy +upiy) | +4u, +4x, =0

(7.22)
The above equation is the equation for the central finite
differences.

The method of moments can be derived by assuming
the weight functions of the form given by (for the 1-D
case):

N
w =B+ fox + 3’ + i’ + ... = Zﬂnx” (7.23)
n=0
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Consider again the problem given in Equation (7.20). Let
us assume only the first two terms in the above series.
Let the field variable u be assumed as:
= ox(1 —x) 4+ opx*(1 — x) (7.24)
Each of the functions associated with the unknown
coefficients satisfy the boundary conditions specified in

Equation (7.20). Substituting the above into the govern-
ing equation, the following residue is obtained:

er = oy (=24 dx — 4x%) + 0(2 — 6x + 4% — 4x®) + 4x
(7.25)

If we weight this residual, we get the following
equations:

1 1
J1€|dX: 20(1 + 0 = 3,Jxe|dx = 50(1 +60€2 =10
0 0

Solving the above two equations, we get oy = 8/7 and
op = 5/7. Substituting these, we get the approximate
solution to the problem as:

= %x(l —Xx) +§x2(1 —X)

The exact solution to Equation (7.20) is given by:

sin (2x)
Uexact =~ A4 — X

sin (2)
To compare the results, say at x = 0.2, we get # = 0.205
and Uexaer = 0.228. The percentage error involved in the
solution is about 10, which is very good considering that
only two terms were used in the weight-function series.
Next, the procedure of deriving the Galerkin technique
from the weighted residual method is outlined.

Here, we assume the weight-function variation to be

similar to the displacement variation (Equation (7.13)),
that is:

w= B}, + Bobr + Bahs + ... (7.26)

Let us now consider the same problem (Equation (7.20))
with the assumed displacement field given by
Equation (7.24). Let the weight function variation have
only the first two terms in the series, as:

w= B¢y + Bagpy = frx(l —x) + fr*(1 —x) (727)

The residual e is the same as that given for the previous
case (Equation (7.25)). If we weight this residual with the
weight function given by Equation (7.27), the following
equations are obtained:

1
J¢]€1dx = 601 + 30, = 10,
0

1
J ¢2€1dx =210y + 200, = 42
0

Solving the above equations, we get oy = 74/57 and
op = 42/57. The approximate Galerkin solution then
becomes:

4 42
= ;—7x(1 —Xx) +§x2(1 —x)
The result obtained for x = 0.2 is 0.231, which is very
close to the exact solution (only a 1.3 % error).

In a similar manner, one can design various approxi-
mate schemes by assuming different weight functions.
The FEM is one such WRT, wherein the displacement
variation and the weight functions are the same. The
‘weak form’ of the differential equation becomes the
equation involving the energies.

7.3 ENERGY FUNCTIONALS
AND VARIATIONAL OPERATOR

The use of the energy functional is an absolute necessity
for development of the finite element method. The energy
functional is essentially dependent on a number of depen-
dent variables, such as displacements, forces, etc. which
themselves are functions of position, time, etc. Hence, a
functional is an integral expression, which in essence is
the ‘function of many functions’. A formal study in the
area of energy functionals requires a deep understanding
of functional analysis. Reddy [3] gives an excellent
account of the FEM from the functional analysis view-
point. However, we, for the sake of completeness, merely
state those important aspects that are relevant for finite
element development. These are mathematically repre-
sented between the limits a and b as:

dw dzw) (7.28)

b
I(w) = JF(X’ME’W
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Here, a and b are the two boundary points in the domain.
For a fixed value of w, I(w) is always a scalar. Hence, a
functional can be thought of as a mapping of I(w) from
a vector space W to a real number field R, which is
mathematically represented as /: W — R. A functional
is said to be linear if it satisfies the following condition:
F(ow + pv) = aF(w) + BF(v) (7.29)
Here, o and f§ are some scalars and w and v are the depen-
dent variables.
A functional is called quadratic functional, when the
following relation exist:
I(ow) = aI(w) (7.30)

If there are two functions p and ¢, their inner product
over the domain V can be defined as:

(p,q) = Jpqu (7.31)

14

Obviously, the inner product can also be thought of as a
functional. We can use the above definition to determine
the properties of the differential operator of a given dif-
ferential equation. A given problem is always defined by
a differential equation and a set of boundary conditions,
which can be mathematically represented by:

Lu=f, over the domain V
u=uy, OVerrt
q=¢qy, oOverT (7.32)

where L is the differential operator, V is the
entire domain, 7, is the domain where the displacements
are specified (kinematic or essential boundary condi-
tions) and 7, is the domain where the forces (natural
boundary conditions) are specified. If g is zero, then we
call the essential boundary conditions homogenous. For
non-zero ugp, the essential boundary condition becomes
non-homogenous. There is always a functional for a
given differential equation provided that the differential
operator L satisfies the following conditions:

e The differential operator L requires to be self-adjoint
or symmetric. That is, (Lu,v) = (u, Lv), where u and v
are any two functions that satisfy the same appropriate
boundary conditions.

e The differential operator L requires to be positive
definite. That is, (Lu,u) > 0 for functions u satisfying

the appropriate boundary conditions. The equality
will hold only when u = 0 everywhere in the domain.

The derivation of these relations is beyond the scope of
study here. The interested reader is advised to refer
to Shames and Dym [1] and Wazhizu [4] which are
classic textbooks on variational principles for elasticity
problems.

For a given differential equation, Lu = f, that is,
subjected to homogenous boundary conditions with the
differential operator being self-adjoint and positive defi-
nite, one can actually construct the functional. This is
given by the following expression:

I(w) = (Lw,w) — 2(w,f) (7.33)
To see what the above equation means, let us construct
the functional for the well-known beam governing
equation, which is given by:

4
El % +g=0
In the above equation, EI is the bending rigidity, w is
the dependent variable, which represents the transverse
displacements, x is the independent spatial variable
and g represents the loading. The domain is represented
by the length of the beam /. In the above equation,
L=EId*/dx* and f= —q. Now, the first term in
Equation (7.33) becomes:
l

d*w

(Lw,w) = JEI@wdx

0

Integrating by parts, we get:

T dPwdw
(Lw,w) = wElw} x:()_ JEIﬁadx

The first term is the boundary term which has two
parts — one is the displacement boundary condition
while the second part (EId*w/dx?) is the force boundary
condition and in the present case, represents the shear
force. For a right-hand coordinate system, this is denoted
by —V. Hence, the above equation can be written as:

3W w
(Lw,w) = —w(O)V/(0) + w(D) V(1) — [Ez‘;?%dx

0
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Integrating again the last part of the above equation by
parts, we get:

(L) = —w(O)V(0) + w() V(D) — 2 gy &Y
dx dx2 x=0
1
s,
0
=-w(0)V(0) + wV({) — ¢()M(])
! 2
+ ¢(0)M(0) + [EI {Eﬂ dx (7.34)

Here, ¢ is the rotation of the cross-section (also called
the slope) and M is the moment resultant. There are three
possible boundary conditions in the beam, namely:

e Fixed end condition, where w = 9 = ¢ = 0.

e Free boundary condition, where V = —FEI
M =EI%y =0,

e Hinged boundary condition, wherew = M = EI % =0.

dw _
@ =

For all of these boundary conditions, the boundary terms in
Equation (7.34) are zero and hence the equation reduces to:

o =2(3) [er(£2) o
0

Substituting the above into Equation (7.33), we can write
the functional as:

] 2 1
1 d*w
0

(7.35)

(7.36)

The terms inside the bracket are the total potential energy
of the beam and the value of the functional is essentially
twice the value of the potential energy. Hence, the func-
tionals in structural mechanics are normally called
energy functionals. We see from the above derivations
that the boundary conditions are contained in the energy
functional.

7.3.1 Variational symbol

In most approximate methods based on variational
theorems, including the finite element technique, it is

necessary to minimize the functional and this mini-
mization process is normally represented by a varia-
tional symbol (normally referred to as delta operator),
mathematically represented as J. Consider a functional
that is a function of the dependent-variable w and
its derivatives and is mathematically represented as
F(w,w',w"), where the primes (') and (") indicate the
first and second derivatives, respectively. For a fixed
value of the independent variable x, the value of the
functional depend on w and its derivatives. During the
process of deformation, if the value of w changes to ou,
where o is a constant and u is a function, then this
change is called the variation of w and is denoted by
ow. That is, ow represents the admissible change of w
for a fixed value of the independent variable x. At the
boundary points, where the values of the dependent
variables are specified, the variations at these points
are zero. In essence, the variational operator acts like
a differential operator and hence all of the laws of
differentiation are applicable here.

7.4 WEAK FORM OF THE GOVERNING
DIFFERENTIAL EQUATION

The variational method gives us an alternate statement
of the governing equation, which is normally referred
to as the strong form of the governing equation. This
alternate statement of the equilibrium equation is essen-
tially an integral equation. This is essentially obtained
by weighting the residue of the governing equation
with a weighting function and integrating the resulting
expression. This process not only gives the weak
form of the governing equation, but also the associated
boundary conditions (both essential and natural bound-
ary conditions). We will explain this procedure by
again considering the governing equation of an elemen-
tary beam. The ‘strong’ form of the beam equation is
given by:

d*w

El— =0
a9

Now, we are looking for an approximate solution for w
in a similar form to that given in Equation (7.13). Now,
the residue becomes:

H&w
—tqg=ce
I q 1
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If we weight this with another function v (which also
satisfies the boundary conditions of the problem) and
integrate over the domain of length [, we get:

1

4
J (EI%—H])vdx
0

Integrating the above expression by parts (twice), we will
get the boundary terms, which are a combination of both
essential and natural boundary conditions, along with
the weak form of the equation. We obtain the following
expression:

v(0)V(0) = v(DV (1) — p(HM(1) + $(0)M(0)

d*wd?v
0

where V = —EId*w/dx®,M = EId*w/dx* and ¢ = diw/dx.
Equation (7.37) is the weak form of the differential
equation as it requires a reduced continuity requirement
when compared to the original differential equation.
That is, the original equation is a fourth-order equation
and requires functions that are third-order continuous,
while the weak order requires solutions that are just
second-order continuous. This aspect is exploited fully
in the finite element method.

(7.37)

7.5 SOME BASIC ENERGY THEOREMS

In this section, we outline three different theorems, which
essentially form the backbone of finite element analysis.
Here, the implications of these theorems on the develop-
ment of finite element techniques are discussed. For a
more thorough discussion on these topics, the interested
reader is advised to refer to some classic textbooks
available in this area, such as Shames and Dym [1],
Wazhizu [4] and Tauchert [5]. Here, we discuss the fol-
lowing important energy principles:

Principle of Virtual Work (PVW).

Principle of Minimum Potential Energy (PMPE).
Rayleigh—Ritz method.

Hamilton’s principle (HP).

While the first two are essential for FE development for
static problems, the last theorem is used for deriving the
weak form of the equation for time-dependent problems.
This section will also describe a few approximate meth-
ods which are ‘offshoots’ of these theorems.

Figure 7.5 Representation of a body under virtual displace-
ments.

7.5.1 Concept of virtual work

Consider a body shown in Figure 7.5, under the action of
an arbitrary set of loads P;, P,, etc. In addition, consider
any arbitrary point which is subjected to a kinemati-
cally admissible infinitesimal deformation. By ‘kinema-
tically admissible’, we mean that it does not violate the
boundary constraints. Work done by such small hypothe-
tical infinitesimal displacements, due to applied loads
which are kept constant during the deformation process,
is called virtual work. We denote the virtual displacement
by the variational operator ¢ and in this present case it
can be written as du.

7.5.2 Principle of virtual work (PVW)

This principle states that a continuous body is in equili-
brium, if and only if, the virtual work done by all of the
external forces is equal to the virtual work done by
internal forces when the body is subjected to a infinite-
simal virtual displacement. If W is the work done by the
external forces and U is the internal energy (also called
the strain energy), then the PVW can be mathematically
represented as:

SWg = U (7.38)

Proof

Let us consider a three-dimensional body of ‘arbitrary
material behavior’ which is subjected to surface traction
t; on a portion of the body of area § and a body force per
unit volume B;. The total external work done by the body
of volume V on displacements u; is given by:

WE = Jt[u,-dS + ‘B,‘M,‘ (739)
s v
By taking variation of this work, we get:

S %
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Substituting for ‘tractions’ from Equation (6.33) in
Chapter 6 in the above equation, we get:

S \%4

Here, n; is the surface normal of the body where the
‘tractions’ are acting. The surface integral on the right-
hand side of the above equation is converted to a volume
integral by using the divergence theorem [1] which
states:

JVudV = JundS (7.42)

Vv S

where V = (9/0x)i + (9/0y)j + (0/0z)k is the gradient
operator, u = (ui + vj + wz) is the displacement vector
and n = (nyi + nyj + n;k) is the outward normal vector.
Using Equation (7.42) in Equation (7.41) and simplify-
ing, we get:

5WE = JGU 8% (514,) dv -+ J% (GU)(SM,dV + JBﬁu,-
Vv \A/——/ 14 ! Vv

Virtual strain

= J aijéeljdv + J |:i (O-ij) + B,‘jl 5u,»dV
N—_—— 5 axj

V Internal virtual work=6U

Equation of equilibrium=0

Further simplifying, the external virtual work becomes
O0Wg = 60U, which is essentially the virtual work principle.

The direct offshoot of PVE is the Dummy Displace-
ment method, which is extensively used for finding
the reaction forces in many redundant structures. The
details of this method can be found in Tauchert [5] and
Reddy [6].

7.5.3 Principle of minimum potential energy
(PMPE)

This principle states that of all the displacement fields
which satisfy the prescribed constraint conditions, the
correct state is that which makes the total potential
energy of the structure a minimum.

This principle can be directly obtained from the PVW.
Here, we define the potential of the external forces V as
the negative of the work done by the external forces. That
is, V = —Wg. Using this in the PVW expression, we have:

d(U+V)=0 (7.43)

The above principle is the backbone for finite element
development. In addition, this principle can be used to
derive the governing differential equations of the system,
especially for static analysis, and also their associated
boundary conditions. This aspect is demonstrated here by
deriving the governing equation for a beam, starting from
the energy functional.

Consider a beam of bending rigidity £/ and subjected to
a distributed loading of ¢(x) per unit length over the entire
beam of length L. Let w(x) represent the lateral displace-
ment field of the beam. The strain energy functional and
the potential of the external forces can be written as:

LT i
w
0 0

By the PMPE, we have:
L 3 L
1 d*w
Z|EIl— — =
14 5 [ ( dxz) dx qudx 0
0 0
Using the operation on the variational operator, we have:
L L
dw dw
0 0

L L
dw\ [d?(6w)
0 0

(7.44)

Integrating the first term by parts (twice) and identifying
the boundary terms, as was carried out earlier, we get:

SW(O)V(0) — Sw(L)V(L) — S(LMI(L) — 56(0)M(0)

d )
+J (Elﬁ—o—q)bwdx: 0
0

Since the variation of the displacements at the specified
locations (boundaries) is always zero and Jw is arbitrary,
the only non-zero term contained in the large bracket
should be the governing differential equation of the beam.

The PMPE can be directly used to derive the well-
known Castigliano’s first theorem used in elementary
structural mechanics to determine the reaction forces in
a structure discritized by using n generalized degrees
of freedom, g,. Both the strain energy, as well as the
potential of external forces, are functions of these
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generalized degrees of freedom. Hence, we can write
the PMPE statement as:

0

N
U(qn) - anqn:| =0
n=1

Here, P, represent the applied load. Taking the first vari-
ation of the strain energy and expanding, we can write
the above expression as:

a—Uéq +8—U5q+ +8U
0q, : g, 2 04,

—...—P,q,=0

0q, — P10q, — P20q,

Grouping the terms together, we have:

ou ou
— =P, |d — =P |6
(5% l) Nt (042 l) N

ou
- P, , =
+(8q )5q 0

n

Since all of the dg, are arbitrary, the terms contained in
each bracket should be equal to zero. Hence, we have:

ou
dq,

P, (7.45)

The above statement is essentially the Castigliano’s
theorem, which states that, if a reaction force at a gene-
ralized degree of freedom is required, then differentiating
the strain energy with respect to the said degree of
freedom will give the required reaction force.

The PMPE can also be used to construct some approxi-
mate solutions to the problem, One such method is the
Rayleigh—Ritz method [1]. This is one of the most import-
ant methods in structural mechanics for determining
an approximate solution to a problem. In fact, the Finite
Element Method can be considered as a ‘piecewise’
Rayleigh—Ritz method, where this technique is applied
at the element level and the total solution is obtained by
synthesis of element level solutions. This method is
explained next.

7.5.4 Rayleigh-Ritz method

In this method, we are seeking an approximate solution
to the governing equation Lu = f, where u is the depen-
dent variable normally representing displacements in

structural mechanics. We again assume the approximate
solution in the form:

N
=Y ad, (7.46)
n=1
Here, a,, are the unknown generalized degrees of freedom
and ¢, are the known functions — called the Ritz func-
tions. These functions should satisfy the kinematic bound-
ary conditions and need not satisfy the natural boundary
conditions. Next, the strain energy and the potential of
external forces are written in terms of displacements and
the assumed approximate displacement field (Equation
(7.46)) and are substituted into the energy expressions
and integrated. The PMPE is invoked and the total energy
is minimized to get a set of n simultaneous equation,
which are solved for determining a@,. Mathematically, we
can represent the total energy, which is function of a,, as:

m(ap) = (U +V)

By the PMPE, we have that the first variation of the total
energy is zero. That is:

on on on
om=0=—295 —9 ... +—=—9a,
71: Oay a1+8a2 a2+ +8an a
N
on
= o "
Oay, a

Since da, is arbitrary, we have:

on On on
= 2T = =0 =1,2,...
8a1 8a2 69»1 ! " "

This procedure ensures that there are n equations to solve
n unknown coefficients. The Ritz functions should be so
chosen that they be differentiable up to the order specified
by the energy functional. Normally polynomials or trigo-
nometric functions are used as Ritz functions. Since the
natural boundary conditions are not satisfied by the
assumed field, it is highly likely that the solutions would
not yield accurate forces (stresses). Normally, enough
terms should be used in Equation (7.46) to get accurate
solutions. However, if very few terms are used, then
these introduce additional geometric constraints which
make the structure stiffer and hence the predicted displa-
cements are always ‘lower-bound’. The application of this
method to problems of complex geometry is very difficult.

7.5.5 Hamilton’s principle (HP)

This principle is extensively used to derive the govern-
ing equation of motion for a structural system under
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Real path

r(t) =xi +yj+zk

Figure 7.6 Real and variable paths for a particle of mass m.

dynamic loads. In fact, this principle can be thought of
as the PMPE for a dynamic system. This principle was
first formulated by an Irish mathematician and physi-
cist, Sir William Hamilton. Similar to the PMPE, the HP
is an integral statement of a dynamic system under
equilibrium.

In order to derive this principle, consider a body of
mass m and having a position vector with respect to its
coordinate system as r = xi + yj + zk. Under the action
of a force F(t) = Fy(t)i + Fy(t)j + F.(t)k, this mass
moves from position 1 at time #; to a position 2 at
time 7,, according to Newton’s Second Law. Such a
path is called the Newronian Path. The motion of this
mass is pictorially shown in Figure 7.6.

The total force F(t) comprises conservative forces such
as internal forces caused by the strain energies of the
structures, the external forces and some non-conservative
forces, such as damping forces. Hence the force vector is
made up of two parts, which can be written as
F(t) = F.(t) + F,(t). Each of these will have compo-
nents in all of the three coordinate directions. This force
is balanced by the inertial force generated by the moving
mass. If this mass is given a small virtual displacement,
or(t) = oui + ovj + owk, where u, v and w are the dis-
placement components in the three coordinate direc-
tions, the path of mass is as shown by the dashed line in
Figure 7.6. This path need not be a ‘Newtonian path’,
however, at time ¢t = | and t = 15, the path coincides
with the ‘Newtonian path’ of the original motion of the
mass. That is, we have or(t;) = or(t2) = 0. The equili-
brium of this mass can be written as:

F(t) — mi(t) =0,
Fy(t) —mi(t) =0,
F.(t) —mw(t) =0

Invoking the PVM, which essentially states that the total
virtual work done by the infinitesimal virtual displace-
ment should be zero, we have:

[Fu(t) = mii(1)|ou(t) + [Fy () — mi(t)]ov(r)

+ () — miv(1)]ow(r) = 0 (7.47)

Rearranging the terms and integrating the equation
between the time ¢, and time #,, we have:

J —mlii(t)ou(t) 4+ v(2)ov(r) + w(t)ow(t)]
+ J [Fy(£)ou(t) + Fy(1)ov(t) + F(t)ow(r)] (7.48)

n

Consider the first integral (/;), which can be written after
integrating by parts as:
Iy = —mi(t)ou(t) — mv(t)ov(t) — mv'v(t)éw(t)zg
5]
+ Jm(it&it + VOV 4+ wow)dr

n

Recognizing that the virtual displacement must vanish at
the beginning and end of this varied path, we can write
the first integral as:

[5)
I = Jm(msu + VOV + Wwow)dr
1]
t 5}
= J%a(uz FV2 +d)dr = 6 J Tdr  (7.49)

3l il

Here, T represents the total kinetic energy of the sys-
tem. Now, let us consider the second integral (I;) in
Equation (7.48). The force term in this expression can be
written in terms of internal and non-conservative forces.
This integral then becomes:

I, = J [Fex (£)ou(t) + Fey(£)0v(t) + Fer (1)ow(t)]ds

h

+ J [Faex (£)31(£) + Faey (1)0V(1) + Foey (£)0w(2)]dr

1
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The second integral in the above expression is nothing
but the variation of the work done by the non-conservative
forces and can be written as:

L) &)

5 J Woedt = 6 J Faex (0t(1) + Facy (1)0(0)

+ Foc, (1)w(1)]dt

The first integral in I, is the work done due to internal
forces. From Castigliano’s first theorem, which was
derived in Section 7.5.3, the internal force is obtained
by differentiating the strain energy (U(u,v,w,t)) with
respect to the corresponding displacement (Equation
(7.45)). Accordingly, we can write:

ou ou

ou
ou’ Foy=——~, Fo=

Fox == ow

(7.50)

The negative sign is given to indicate that these forces
resist the deformation. Using Equation (7.50) in I, we
have:

L= —J G u0) + 5 (0 + 5 o)
+ 5]2Wmdz (7.51)

By using Equations (7.49) and (7.51) in Equation (7.48),
Hamilton’s principle becomes:

[5)
5J(T7U+Wnc)dt:0

a

(7.52)

The use of this equation in obtaining the governing equa-
tion and its associated boundary conditions was demon-
strated in Section 6.3.2 in the last chapter. It is of interest
to know that if we omit the inertial energy in Equation
(7.52) and assume that all of the quantities are time-
independent, then the HP reduces to the PMPE.

One can easily deduce the famous Lagrange Equa-
tion of motion for a discrete system having the energies

(kinetic, strain energy and non-conservative energy) as a

function of the generalized coordinates ¢q;, g,, . ..q, as:
T= T(ql7Q27~~-qnaq17QZ7-"‘.Zn)
U=U(q1:9---9)
Wnc:qu1+PZQZ+-'~ann (753)

Here, Py, P,,... P, represent the external and damping
forces. Taking the first variation of these energies, we
have:

or orT or or .
oT s 0q1+8 0gy + .. +a 0q, + 8715611
6 5@2+ + Z& oq;+ q;
ou ou
oU =224 P
5g, 201 + g 00t - + Za

OWpe = P1dq; + P20q, + ... P,dq,

= i Pidg;
i—1
Using the above in the HP (Equation (7.52)), we have:
. D
ZJ (%T 3q; + 2—;5&,[ —~ g—;éqi + P,ﬁq,-) dr=0
(7.54)

Integrating the second term by parts and recognizing that
the virtual displacements vanish at the beginning and
end, the above integral becomes:

5]
HEGEE
= dr \ 0g; dq; 0q;

Since the virtual displacements
Lagrange equations become:

0q; =0
are arbitrary, the

d /oT oT oU
N )5t =PF
dr \ 9g; Oq;  Og;
The above equation is extensively used in the derivation
of discritized equations of motion for a dynamic system.

(7.55)

7.6 FINITE ELEMENT METHOD

The FEM uses the ‘weak form’ of the governing equation
to convert a ordinary differential equation to a set of
algebraic equations in the case of static analysis and a
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coupled set of second-order differential equations in the
case of dynamic analysis. In the previous sections of this
chapter, different approximate methods were explained,
which are very difficult to apply to a problem involving
complex geometry and complicated boundary conditions.
However, if one takes the approach of subdividing the
domain into many subdomains, in each of these sub-
domains, one can assume a solution of the type:

N

ﬁ(x7 y7 Z? t) = Z an(t)¢)1(x7y’ Z)

n=1

(7.56)

and fit any of the approximate methods described earlier
within the subdomains to get an approximate solution to
the problem. In the FEM, these subdomains are called
elements, which normally take the shapes of line ele-
ments for 1-D structures, such as rods and beams,
rectangles or triangles for 2-D structures and bricks or
tetrahedrons for 3-D structures. Each element has a set of
nodes, which may vary depending on the order of the
functions ¢, (x,y,z) in Equation (7.56) used to approxi-
mate the displacement fields within each element. These
nodes have unique IDs, which fix their positions in space
of complex structures. In Equation (7.56), a,(f) normally
represents the time-dependent nodal displacements,
while ¢, (x,y,z) are the spatially dependent functions,
which are normally referred to as shape functions. The
entire finite element procedure for obtaining a solution
for a complex problem can be summarized as follows:

e The use of the weak form of the governing differential
equation and an assumption of the field-variable vari-
ation over the element (Equation (7.56)) and its subse-
quent minimization will yield a stiffness matrix and a
mass matrix. The sizes of these matrices depend on
the number of nodes and the number of degrees of
freedom each node can support. The mass matrix
formulated through the weak form of the equation is
called the consistent mass matrix. There are other
ways of formulating the mass matrix, which are
explained in detail in the latter part of this chapter.
The damping matrix is normally not obtained through
weak formulation. For linear systems, this is obtained
through a linear combination of stiffness and the mass
matrix. Damping through such a procedure is called
proportional damping.

e The FEM comes under the category of the stiffness
method, where satisfaction of the compatibility is
automatic as we begin the analysis with a displace-
ment assumption. The issue in the stiffness method is
satisfaction of the equilibrium equations. This

condition requires to be enforced. Such an enforce-
ment is made by assembling the stiffness, mass and
damping matrices. This is done by adding the stiffness
of a particular degree of freedom coming from the
contiguous elements. Similarly, the force vectors act-
ing on each node are assembled to obtain the global
force vector. If the load is distributed on a segment of
the complex domain, then using the equivalent energy
concept, it is split into concentrated loads acting on
the respective nodes that make up the segment. The
size of the assembled stiffness, mass and damping
matrices is equal to n x n, where n is the total number
degrees of freedom in the discritized domain.

e After assembly of the matrices, the displacement
boundary conditions are enforced, which could be
homogenous or non-homogenous. If the boundary
conditions are homogenous, then the corresponding
rows and columns are eliminated to get the reduced
stiffness, mass and damping matrices. In the case of
static analysis, the obtained matrix equation involving
the stiffness matrix is solved to obtain the nodal
displacements. In the case of dynamic analysis, we
get a coupled set of ordinary differential equations,
which are solved by either modal methods or a ‘time-
marching’ scheme.

7.6.1 Shape functions

The spatial dependent function in Equation (7.56) is
called the shape function of the element. These functions
are normally assumed as being polynomial, whose order
depends on the degrees of freedom that an element can
support. These functions relate the nodal displacements
with the assumed displacement field. They are normally
denoted by the symbol N. We will now give the proce-
dure of finding the shape functions for the elements
shown in Figure 7.7.

7.6.1.1 Rod element

Let us now derive the shape functions for a finite rod ele-
ment having length L and axial rigidity EA. A
rod element can support only axial motion and hence
this element can have two nodes and each node can
support one axial motion, as shown in Figure 7.7(a). That
is, we require a function that is only first order contin-
uous (that is C° continuous elements). Hence, we can
assume the displacement field contains two constants
corresponding to two degrees of freedom, that is:

u=ay(t) + a(t)x (7.57)



160 Smart Material Systems and MEMS

Uy x= x=L "2
N
(b) x=0 ) ® Yx=L
D
Wi wy @,
vy V3 -
©) b U
“a l 7 3 3
2b
l 1 2
u— u,
2a
1
Vi 1!

(@)

Figure 7.7 Different finite elements: (a) rod element; (b) beam
element; (c) rectangular element; (d) triangular element.

The above equation also happens to satisfy the governing
static differential equation of a rod, which is given
by EAd’u/dx* = 0. Equation (7.57) is now converted in
terms of nodal coordinates by substituting u(x = 0) = u,
and u(x = L) = u, in the above equation. This will enable
us to write constants ay and a; in terms of the nodal
displacements u; and u,. Eliminating these constants and
simplifying, Equation (7.57) can now be written as:

9= (1o s (o

In Equation (7.58), the two functions inside the brackets
are the two shape functions of the rod corresponding to
two degrees of freedom. Hence, the displacement field
can be written in matrix form as:

(7.58)

) =) M =) (759

The shape function N, takes the value of 1 at node one
while it is zero at node two. Similarly, N, is zero at node 1
and one at node 2. In fact, the displacement for any element
can be written in the form shown in Equation (7.59).

7.6.1.2 Beam element

One can similarly derive the shape functions for a beam
element. The beam element shown in Figure 7.7(b) has
two nodes and each node have two degrees of freedom,

namely the transverse displacement w and rotation
¢ = (dw/dx). Hence, the nodal degrees of freedom
vector is given by {u} = {w;, ¢, wy ¢,}", which
requires a minimum cubic polynomial for displacement.
In addition, since the slope is derived from the transverse
displacements, it is required that the polynomial is
second-order continuous, that is, it requires a higher
continuity when compared to the rod. Such elements
are called C' continuous elements. We proceed as fol-
lows to obtain the shape functions. The interpolating
polynomial for the beam is given by:

w(x, 1) = ao(t) + a()x + aa()x* + a3()x*  (7.60)

As in the case of rods, the above solution happens to be
the exact solution to the governing beam equation. Now,
if we substitute w(0,¢) = w;(r), ¢(0,¢) = dw(0,7)/dx
=¢, (1), w(L,t) =wy(t) and ¢(L,1) =dw(L,1)/dx =
¢, (1), we get:

wi 1 0 O 0 ay

01 0 0 a
AR R EA R S S )
b, 0 1 2L 32| | as

Inverting the above matrix, we can write the unknown
coefficients as {a} = [G]'{u}. Substituting the values
of the coefficients in Equation (7.60), we get:

w(x, 1) = [Ni(x)  Na(x)

N3(x)  Na(x)[{u(n)},

Nx)=1— 3(%)2+2(%)3,N2(x) - x<1 —%)2

i =3G) 2 o =+{ ()] o

The above shape function will take a unit value at the
nodes and zero everywhere else.

Before we proceed further, we will highlight the
necessary requirements an interpolating polynomial of
an element has to satisfy, especially from the convergence
point of view. These can be summarized as follows:

e The assumed solution should be able to capture the
rigid body motion. This can be made sure by retaining
a constant part in the assumed solution.

e The assumed solution must be able to attain the
constant strain rate as the mesh is refined. This can
be assured by retaining the linear part of the assumed
function in the interpolating polynomial.
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e Most second-order systems require only C° continu-
ity, which are easily met in most FE formulations.
However, for higher-order systems such as Bernoulli—
Euler beams or elementary plates, one requires C!
continuity, which are extremely difficult to satisfy,
especially for plate problems, where interelement
slope continuity is very difficult to comply with. In
such situations, one can use shear-deformable models,
that is, models that also include the effect of shear
deformations. In such models, slopes are not derived
from the displacements and are independently inter-
polated. This relaxes the C' continuity requirement.
However, when such elements are used in thin-beam or
plate models, where the effects of shear deformations are
negligible, the displacements predicted would be many
orders smaller than the correct displacements. Such
problems are called shear-locking problems, which are
addressed in detail in a latter part of this chapter.

e The order of an assumed interpolating polynomial is
dictated by the highest order of the derivative appear-
ing in the energy functional. That is, the assumed
polynomial should be at least one order higher than
that appearing in the energy functional.

e In 2-D formulation, especially for C! continuity prob-
lems, the polynomials are chosen based on Pascal’s
triangle [7].

7.6.1.3 Rectangular element

We will now determine the shape functions for two-
dimensional elements. Let us now consider a rectangular
finite element of length 2a and width 2b, as shown in
Figure 7.7(c). This element has four nodes and each node
can support two degrees of freedom, namely the two
displacements, u(x, y) and v(x, y) in the two coordinate
directions. Since there are four nodes, we can assume the
interpolating polynomial as:

u(x,y) = ap + a1x + azy + azxy

v(x,y) = bo + bix + bay + baxy (7.62)
The above function has a linear variation of displace-
ment in both the coordinate directions and hence it is
normally referred to as a bi-linear element. In the above
interpolating polynomial, we substitute u(—a, —b) = uy,
v(—a,—b)=vy, u(—a,b)=uy, v(—a,b)=va, u(a,b) =us,
v(a,b)=v3, u(a,—b)=uy and v(a,—b)=v4. These help
us to relate the nodal displacements to the unknown
coefficients as {u}= [G]{a}. Inverting the above rela-
tion and substituting for the unknown coefficients in
Equation (7.62), we can write the displacement field

and the shape functions as:
u(x,y) =[N|{u} =[Ni(x,y) Na(x,y) N3(x,y) Na(x.y)l{u}
V(xvy) = [N]{v} = [Nl (x,y) Nz(X,y) N3(x7y) N4(x7y)]{v}

{M}Z{ul Uy us M4}T, {V}:{Vl V2 V3 V4}T

M) =B DUy ) B OED)
M) = EFDUED) ) EHDUZD) (g g3

7.6.1.4 Triangular element

One can similarly write the shape functions for a triangle.
However, it is very convenient if one uses the area coordi-
nates for the triangle. Consider the triangle shown in
Figure 7.7(d), having coordinates of the three vertices as
(x1,51)s (x2,y2) and (x3,y3).

Consider an arbitrary point P inside the triangle. This
point will split the triangle into three smaller triangles of
area A, A, and As, respectively. Let A be the total area of
the triangle, which can be written in terms of nodal
coordinates as

1 1 X1V
A==11 X2 Y2 (764)
2
I x3 3

We will define the area coordinates for the triangle as:

A A,

L L=
1—A7 3 =

=2, N (7.65)

Thus, the position of point P is given by (L;,L,,L3).
These coordinates, which are normally referred to as area
coordinates, are not independent and satisfy the relation:

Li+L+Ls=1 (766)

These area coordinates are related to the global x—y
coordinate system through:

x = Lix; + Lyxy + Lsyxs

y=Liyi + Loy, + Lsy3 (7.67)
where:
a; + bix + ¢;y .
Li :% L= 172,3 (768)
and:
ar =xy3 —x3y2, bi=y2—y;, ca=x-x
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The other coefficients are obtained by cyclic permuta-
tion. Equation (7.67) requires to be used when the
derivative with respect to the coordinate is required.

Now, one can write the shape functions for the triangle
as:

u = Nyuy + Nrup + N3uz
v = Nv| + Novy + N3v3

Ny =L\,N, =L,,N; =13 (7.69)
These shape functions also follow the normal rules. That
is, at point A where the value of L; = 1, the shape func-
tions take the value of 1. At the same point, L, = L3 = 0.
Similarly, at the other two vertices, L, and L3 take a unit
value, while the other two go to zero.

In summary, for all of the elements, we can express the
displacements in terms of shape functions and the nodal
displacements as u = >__ N,u, or [N]{u}. This spatial
discritization will be used in the energy functional to
obtain the finite element governing equation. This is
shown in the next section.

7.6.2 Derivation of the finite element equation

Consider a body of volume V under the action of surface
tractions in the three coordinate directions {#,} =
{t. 1 .}" on the boundary S and the body force
vector per unit volume {B} = {B, B, B.}'. Let the
displacement vector be written as {d(x,y,z,1)} =
{u(x,y,z,t) v(x,y,z,t) w(x,y,z, t)}T, where u, v and
w are the displacement variations in the three coordinate
directions. We will now invoke Hamilton’s principle,
which states that:

5]
5J(T—U+Wnc)dt:0

n

(7.70)

where the kinetic energy T is given by:

1
T = 5J,o(iﬂ + V7 +Ww?)dV
14

Taking the first variation and integrating, we get:
i T (dudGu) dvd(sv) dwd(Sw)
ud(ou vd(ov wd(ow

oTdr = — — — dvd

J ! ,”p<dz dr * dr dr * dr dt ) !

n nv

Integrating by parts, and noting that the first variation
vanishes at times #; and #,:

th n

JéTdt - J Jp(iléu + Vov + wow)drdV

n

O p{od}" {d}avar (7.71)
I]

hv
where {d} = {it v Ww}" represents the acceleration
vector and {0d} = {ou v Ow}’ represents the vector
containing the first variation of the displacements.

The strain energy for a 3-D body in terms of stresses
and strains is given by:

1
U= EJ (OxxEar T Oyyeyy + 02+ Ty oy F Tye Py + TV )AV

\%4
Z%J{E}T{G}dv (7.72)

For the linear elastic case, the constitutive law given by
Equation (6.68) in Chapter 6 can be written as {o} =
[C]{e}. Hence, the strain energy becomes:

U= %J (e} [Cl{e}dv

Taking the first variation and integrating, we have:

) 5]

JéUdt = J J {oe}"[C]{e}dVdr

h nv

(7.73)

The work done by the body forces, surface forces,
damping elements and the concentrated forces are
‘clubbed’ together under W, That is, W, = W+
Ws + Wp. The work done by the body forces is given by:

Wg = J(Bxu + By + B.w)dV = J{d}T{B}dV (7.74)

Vv 14

The first variation of the body force work is given by:

Iy

5]
J oWpdt = J (Bx0u + Byov + B,ow)dVdt

1 nv

153

_ ” (6d)" {B}avdr

nv

(7.75)
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The work done by the surface forces is given by:
Ws = J{d}T{ts}dS
s
The first variation of this work is given by:

5] 5]

J(SWsdz = J J {od}" {1,}dsds

n nv

(7.76)

Similarly, the first variation of the work done by the
damping force is given by:

5] 5]

JéWDdz _ “ (64} {Fp}dvdr

n nv

(1.77)

If the damping is of the viscous type, then the damping
force is proportional to the velocity and is given by
{Fp} = n{d}, where 5 is the damping coefficient and
{d} ={a v w}" is the velocity vector in the three
coordinate directions. Now, using Equations (7.71) and
(7.73)-(7.77), in the Hamilton’s principle (Equation
(7.70)), we get:

- [ {od}" p{d}dvdr — t“

nv nv

{66} [C){e}dvidr

+ [ [1oay Bravar + [ J (6d)" {1,}dSdr
nv nv
O {6} {Fp}dVdr =0

nv

(7.78)

In the above equation, we substitute the assumed dis-
placement variation in terms of the shape function and
nodal displacements, derived earlier. That is, we have:

{d(x,y,2,0)} = [N(x, 5, 2) {ue (1)} (7.79)

where [N(x, y, z)] is the shape function matrix and {u,} is
the nodal displacement vector of an element. Using the
above, we can write velocity, acceleration and its first
variation as:

{d} =[N}, {dy=[N]{it.} and {od}=[N]{ou.}
(7.80)

Now the strains can also be written in terms of the strain—
displacement relationship (Equation (6.27) in Chapter 6).
That is, the six strain components can be written in
matrix form as:

e 0o 0
0
Exx 87y 0
Eyy 1o}
il u
&7z _ 0 0 82 v
yxy 2 g 0
s dy Ox w
ﬂ” g 0
/zx O a_z 8_y
9 4 9
Loz x (7.81)
{e} = [Bl{d} (7.82)
{0¢} = [B]{dd} (7.83)

Now, we will consider the entries term-by term in
Equation (7.78) and further simplify. We have the first
term, which is essentially the inertial part of the governing
equation. If we substitute Equation (7.79), it becomes:

Jp{éd}T{éz}dv = Jp{éue}T[N]T[N]{u’e}dV

\4 v

— (ou)T J'p[N]T[N]dv (it}

= {ouc}" [m){it.}

The term inside the brackets is called the element mass
matrix. The mass matrix obtained from the above form
is called the consistent mass matrix, although other
forms of mass matrix exist. Next, we consider the second
term involving strains in Equation (7.78). Using Equation
(7.79) and (7.83), the second term can be written as:

(7.84)

| a1 ietterav = [ 0w B (€18l pav

Vv \4

— (0w}’ j[B]T[an}dv (e}

%

= {Ou,} (K] {u.} (7.85)
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In the above equation, the term inside the bracket
represents the stiffness matrix of the formulated element.
The other terms in Equation (7.78) can be written
similarly in terms of the nodal displacement vector and
it first variation, using Equations (7.79) and (7.80). Now,
the term due to body force can be written as:

[ oy m1av = [ (ouy " (m1av = o)

\4 14

x J[N}T{B}dv — (ou n)
(7.86)

The bracketed term represents the body force vector
acting on the element. Similarly, we can write the surface
forces as:

j{ad}f{rx}ds — TRy, () = jmf{u}ds
(7.87)

Finally, the damping force vector, assuming viscous-type
damping, can be written as:

—j{&z}%{d}dvf Y j nINY"INJaV | {ie}
1% Vv

= —{ou,} " [e{ite} (7.88)
Matrix [c] is the consistent damping matrix. This form is
seldom used in actual analysis. There are different ways
of treating damping, which is explained in the latter part
of this chapter. Now, using Equations (7.84)—(7.88) in
Equation (7.78), we have:

5]

J{5ue}7[[m}{ﬁe}+[C]{Ike}+[k]{ue}*{fs} —{f:}dr=0

Since the first variation of the displacement vector is
arbitrary, we have:

[mlfite} + [cl{iee} + [K[{u} = {R}

Equation (7.89) is the discritized governing equation of
motion that we need to solve through the finite element
technique. Here, {R} is the combined force vector due to
body, surface and concentrated forces. Note that the

(7.89)

above equation is a highly coupled second-order linear
differential equation. If the inertial and the damping
forces are absent, the above equation reduces to a set
of simultaneous equations, which are solved to obtain the
static behavior. The sizes of the matrices [m], [k] and [c]
are equal to the number of degrees of freedom an element
can support. All of these matrices are generated for each
element and assembled to obtain the global mass matrix
[M], stiffness matrix [K] and damping matrix [C],
respectively. Before assembling these matrices, displace-
ment boundary conditions are enforced. All of these
matrices are symmetric and banded in nature. The band-
width is dictated by the node numbering of the mesh.
This is determined by taking the highest difference in
node numbers multiplied by the number of degrees of
freedom supported by each node. The present formulation
requires modification to handle curved boundaries. Such a
formulation is called the Isoparametric Formulation.

7.6.3 Isoparametric formulation and numerical
integration

Until now we have dealt only with finite elements having
straight edges. In practical structures, the edges are
always curved and to model such curved edges with
straight-edged elements will result in an enormous sys-
tem size for the problem. In addition, in many practical
situations, it is not always required to have a uniform
mesh density throughout the problem domain. Meshes
are always graded from fine (in the region of a high-stress
gradient) to coarse (in the case of a uniform stress field).
These curved elements enable us to grade the mesh
effectively. With the availability of curved quadrilateral,
triangular and wedge elements, it is now possible to
model the 3-D geometry of any complex shape.

The elements with curved boundaries are mapped to
the straight boundaries through a coordinate transfor-
mation which involves mapping functions, which are
functions of the mapped coordinates. This mapping is
established by expressing the coordinate variation as a
polynomial of a certain order with the order of the poly-
nomial decided upon by the number of nodes involved
in the mapping. Since we are working with a straight-
edged mapped domain, the displacement should also be
expressed as a polynomial of a certain order in the
mapped coordinates. In this case, the order of the poly-
nomial is dependent upon the number of degrees of
freedom that an element can support. Thus, we have two
transformations, one involving the coordinates and the
other involving the displacements. If the coordinate
transformation is of a lower order than the displacement
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transformation, then we call such a transformation as
sub-parametric transformation. That is, if an element has
n nodes, while all of the n nodes participate in the
displacement transformation, only a few nodes will
participate in the coordinate transformation. If the coor-
dinate transformation is of a higher-order compared to
the displacement transformation, such a transformation is
called a super-parametric transformation. In this case,
only a small set of nodes will participate in the displace-
ment transformation, while all of the nodes will partici-
pate in the coordinate transformation. The most
important transformation as regards the FE formulation
is when both the displacement and coordinate transfor-
mations are of the same order. That is, all of the nodes
participate in both transformations. Such a transforma-
tion is called an iso-parametric transformation. The
concept of mapping is shown for 1-D and 2-D elements
in Figure 7.8. Next, the concept of isoparametric for-
mulation is demonstrated for 1-D and 2-D elements and
the stiffness matrices for some simple elements are
derived by using this concept.

7.6.3.1 One-dimensional isoparametric rod element

Figure 7.8(a) shows the 1-D rod element in the original
rectangular coordinate system and the mapped coordi-
nate system, with the 1-D mapped coordinate . Note that
at the two extreme ends of the rod, where the axial
degrees of freedom u; and u, are defined, the mapped
coordinates ¢ = —1 and 41, respectively. We now
assume the displacement variation of the rod in the
mapped coordinates as:

u(é) =ap + ar ¢ (7.90)

@ ®«>@_____ ©®
x=0 x=L ¢&=-1 =1

b @@ @<«
x=0 x=L2 x=L ¢§{=-1 ¢=0 (=1
(©) LA

4 3
y “>» ¢

1
-1,-1
X

Figure 7.8 Various isoparametric finite elements: (a) linear
rod; (b) quadratic rod; (c) quadrilateral.

211

We now substitute u(é = —1)=u; and u(é=1) =u,
and eliminating the constants, we can write the displace-
ment field in the mapped coordinates as:

u(&) = (l%é)ul + (1%5) u

- [55 HE{} —wewd oo

We also assume that the rectangular x-coordinate to vary
with respect to the mapped coordinate ¢ in the same
manner as displacement, that is:

. [5 ﬂ} { } S INONe) (92)

2 2 X2

In the above equation, x; and x, are the coordinates of
the actual element in the rectangular x-coordinate system.
We can see that there is a ‘one-to-one correspondence’ of
the coordinates in the original and mapped systems. The
derivation of the stiffness matrix requires computation
of the strain—displacement matrix [B], which requires eva-
luation of the derivatives of the shape functions with respect
to the original x-coordinate system. In the case of a rod,
there is only axial strain and hence the [B] matrix becomes:

= |40

= = (7.93)

sz}
However, one coordinate system can be mapped to the
different coordinate system by using a Jacobian.

That is, by invoking the chain rule of the differentia-
tion, we have:

‘Z’;’f:ﬁ?% i=1,2 (7.94)
From Equation (7.92), we have:
= ! ; éxl +1%éx2
(% (XZ;)“):g:j (7.95)
%:%*;’ dx = Jdé (7.96)

Using Equation (7.96) in Equation (7.94), we get:

dN; _ dN;1_ dN;2
dx ~ déJ déL

(7.97)
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Substituting the shape functions in the above equation,
the shape function derivatives with respect to the mapped
coordinates and hence the [B] matrix become:

vy -1 1 -1 1
W@ @ [B}*[T 5} (7.98)

In the case of a rod, there is only axial stress acting and
as a result [C], the material matrix in Equation (7.85) for
evaluating the stiffness matrix, will have only E, the
Young’s modulus of the material. The stiffness matrix for
a rod is given by:

[K]= J [B]"[C][B]dV = “ [B]" E[B]dAdx = j [B]" EA[B]Jd¢

(7.99)

Substituting Equations (7.95) and (7.98) into the above
equation for the Jacobian and [B] matrix, we get the
stiffness matrix for a rod as:

(7.100)

The reader can check that one can directly obtain the
above result without going through the iso-parametric
formulation by directly substituting the shape functions
from Equation (7.58) into Equation (7.85) and perform-
ing a direct integration. For lower-order and straight-
edged elements, the Jacobian is constant and not a
function of the mapped coordinate. For complex geo-
metries and higher-order elements, the Jacobian is
always a function of the mapped coordinate. In such
cases, integration of the expression for computing the
stiffness matrix will involve rational polynomials. To
demonstrate this, we will consider a higher-order rod
having three degrees of freedom, all being axial, as
shown in Figure 7.8(b). The displacement variation for
this element in the mapped coordinate is given by:

(&) = ap + aré + ar& (7.101)

Following the same procedure as was done for the
previous case, we first substitute u(é=—1)=uy,
u(¢ =0) = up and u(¢ = 1) = u3 into Equation (7.101)
to get the following three shape functions corresponding
to the three degrees of freedom:

(=149 c+9)

I No=(1-8), Ny=

Ni=

(7.102)

Next, the Jacobian requires to be computed, for which
we assume the coordinate transformation as:

x:wm +(1_52)x2+w)%

(7.103)
In the above expression x;, x, and x3 are the coordinates
of the three nodes of the element in the original coordi-
nate system. Taking the derivative with respect to the
mapped coordinate, we get:

dr_(@E-1) . et

= dx =Jd
dé 2 2 ¢

X3 = ],
(7.104)

Unlike in the two-noded rod case, the Jacobian in the
higher-order rod case is a function of the mapped coordi-
nate and its value changes as we move along the bar. If
the coordinate x;, coincides with the mid-point of the rod,
the value of the Jacobian becomes L/2. The [B] matrix in
this case becomes:

-3 [ )

The [B] matrix, unlike the two-noded rod, is a function of
the mapped coordinate. Hence, the stiffness matrix, given
in Equation (7.99) cannot be integrated in the closed
form. One can see that it involves integration of rational
polynomials. Hence, one has to resort to numerical inte-
gration. The most popular numerical integration scheme
is through the Gauss Quadrature, which is explained a
little later in this section.

(7.105)

7.6.3.2 Two-dimensional plane isoparametric element
formulation

The original and mapped representations of an isopara-
metric quadrilateral is shown in Figure 7.8(c). Here, x—y
is the original coordinate system and -7 is the mapped
coordinate system. Each of the mapped coordinates range
from +1 to —1. This element has four nodes and each
node can support two degrees of freedom. In all, the
element has eight degrees of freedom and the resulting
stiffness matrix would be of size 8 x 8. The displacement
variation in the two coordinate directions (u along the
x-direction and v along the y-direction) is given in terms
of the mapped coordinates as:

u(é,n) =ao+aié+am+azén

v(E, ) = bo + b1E+ by + b3ény  (7.106)
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Substituting the mapped coordinates at the four nodes
would result in determination of the shape functions. The
displacement field, as well as the shape functions, are
given by:

u Nl 0 N2 0 N3 0 N4 0
= {ue} =[N{u}
1% 0 Nl 0 Nz 0 N3 0 N4

(7.107)
{W}*{ul Vi Uy Va2 Uz Vi U4 V4}T
(1-=91—=n) 1+ =n)
Nl— 4 B Nz— 2
N3:(1+é)4(1+"), N4:(1_5)4(1+'7) (7.108)

The coordinate transformation between the original and
mapped coordinates can be similarly written as:

{x} |:N1 0 Nz 0 N3 0 N4 0 { }
= X,
y 0 Ny 0 N, O Ny 0O Ny
= [Nl{x.}
{Zl={xi 1 » » x3 y3 xn y4}T
(7.109)

To compute the derivatives, we will invoke the chain rule.
Noting that the original coordinates are functions of both
mapped coordinates ¢ and 7, we have:

O _00x 00 9 _00x 00

O OxOE ' OydE OF Oxdn  Oyon

or

oY ox av7(0 0

oc | _|oc o¢|foax | ) ox

o ("o o) = o (7.110)
on an anl Loy on

The numerical value of the Jacobian depends on the size,
shape and orientation of the element. In addition:

9 9
P G
o (" ] ) (7.111)
an on

Using Equation (7.111), we can determine the derivatives
required for computation of the [B] matrix. Once this

is done, we can derive the stiffness matrix for a plane
element as:

11
K] =1t J J [B]"[C][B]Jdédn (7.112)
—1-1

where J is the determinant of the Jacobian matrix and ¢
is the thickness of the element. The stiffness matrix will
be 8 x 8. [C] is the material matrix, and assuming the
plane stress condition, we have:

P 1 v 0
_ v 1 0
[C]—l_v2 0 0 lgv (7.113)

Equation (7.112) cannot be integrated as such in the
closed form. It has to be numerically integrated and for
this purpose, we use the Gauss Quadrature, which is
explained in the next subsection.

7.6.4 Numerical integration and Gauss quadrature

Evaluation of the stiffness and mass matrices, specifically
for isoparametric elements, involves an expression such
as that given in Equation (7.112), which are necessarily
rational polynomials. Evaluation of these integrals in
their closed forms is very difficult. One has to use a
numerical integration scheme. Although there are several
different numerical schemes available, the Gauss Quad-
rature approach (Cook et al. [7] and Bathe [8]) is most
ideally suited for isoparametric formulation as it evalu-
ates the value of the integral between —1 and +1, which
is the typical range of natural coordinates in isopara-
metric formulation.
Consider an integral of the form:

+1
[= J Fdé,

-1

F=F() (7.114)

Let F(&) = ag + a;£. This function requires to be inte-
grated over the domain —1 < £ < 1 with the length of
the domain equal to two units. When the above expres-
sion is substituted into Equation (7.114), the exact value
of the integral is 2ay. If the value of the integrand is
evaluated at the mid-point (i.e. at ¢ = 0) and multiplied
by the length of the domain (i.e. 2), we obtain the exact
value. Hence, an integral of any linear function can be
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Table 7.1 Sampling points and weights for the
Gauss Quadrature.

Order, Location, &; Weight, W;

n

1 0 2
+0.57735 02691 89626 1.0

3 40.77459 66692 41483 0.55555 55555 55556
0.00000 00000 00000 0.88888 88888 88889

4 +0.86113 63115 94053  0.34785 48451 37454
40.33998 20435 84856 0.65214 51548 62546

5 +0.90617 98459 38664 0.23692 68850 56189

£0.53846 93101 05683
0.00000 00000 00000

0.47862 86704 99366
0.56888 88888 88889

evaluated in this way. This result can be generalized for a
function of any order as:

+1
1= JFdé%WlFl+W2F2+...—|—W,1Fn

-1

(7.115)

Hence, to obtain the approximate value of the integral I,
we evaluate F(&) at several locations &;, multiply the
resulting F; with the appropriate weights W; and add
them together. The points where the integrand is evalu-
ated are called sampling points. In the Gauss Quadarure,
these are the points of very high accuracy, sometimes
referred to as Barlow Points. These points are located
symmetrically with respect to the center of the interval
and symmetrically placed points have the same weight.
The number of points required to integrate the integrand
depends exactly on the degree of the highest polynomial
involved in the expression. If p is the highest degree of
the polynomial in the integrand, then the minimum
number of points n required to integrate the integrand
exactly is equal to n = (p + 1)/2. That is, for a poly-
nomial of the second degree, i.e. p = 2, the minimum
number of points required to integrate is equal to two.
Table 7.1 gives the locations and weights for the Gauss
Quadrature [7]. In the case of 2-D elements, the stiffness
and mass matrix computation involves evaluation of the
double integral of the form:

1= j jF(é,n)dfdn = j [EN: WiF(éh”):| dn
1 o Lt

1

Il
4M2
<M§

WiW;F(&i,m;) (7.116)

Here, N and M are the number of sampling points used in
the ¢ and # directions. Similarly, we can extend this to
three dimensions. The sampling points of the Gauss
Quadrature are located such that the stresses, which are
less accurate than the displacements in the FE method, at
the Gauss points are very accurate when compared to
other points [9].

Numerical integration for the isoparametric triangle
is also possible by using the Gauss Quadrature. However,
the Gauss points and the weights are quite different.
These are given in Cook et al. [7]. The numerical inte-
gration of the type given in Equation (7.115) is given by:

1 n
I = EIZZI WiF(O(,',ﬁu Vi)

where, «;, f5; and y; are the locations of the Gauss points
in area coordinates.

7.6.5 Mass and damping matrix formulation

The expression for the consistent mass matrix is repre-
sented by Equation (7.84), which is given by:

) = [ i v
4
where p is the density and [NV] is the shape-function matrix.
This matrix is a fully populated and banded matrix, whose
bandwidth is equal to that of the stiffness matrix. For a
rod element of length L, area of cross-section A and
density p, the shape function is given by Equation (7.58).
Using this shape function, the mass matrix becomes:

L
o= [o
0A

1—x
acEE
X
L

L L 6 |1 2
(7.117)

For the case of a beam of length L and area of cross-
section A, the four shape functions are given by Equation
(7.61). Substituting these into the mass matrix expression
and integrating, we get:

156 22L 54 —13L
_ pAL 417 13L  -3L

[ }—m SYM 156 —22L (7.118)
412

In both of these cases, we find that the matrix is sym-
metric and positive definite.
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There are alternate ways to formulate the mass matrix.
That is, the masses can be ‘lumped’ corresponding to the
main degrees of freedom, which make the mass matrix
diagonal. The diagonal mass matrix will result in a very
small storage requirement and hence enables faster solu-
tion of the dynamic equation of motion. There are certain
problems, such as wave propagation, where a lumped
mass is preferred to a consistent mass. There are three
different methods of lumping of the mass reported in the
literature, as follows:

o Adhoc lumping
e HRZ lumping
e Optimal lumping

Adhoc lumping is the simplest way of lumping the mass.
The total mass of the structure is computed and is distri-
buted evenly among all of the translational degrees of
freedom. If the element has rotational degrees of free-
dom, then the mass moment of inertia of the element is
computed and distributed evenly among the rotational
degrees of freedom.

Let us again consider a two-noded rod element of
length L, density p and area of cross-section A. The total
mass of the element is pAL. If this mass is equally distri-
buted between the two axial degrees of freedom, the
lumped mass can be written as:

M

pAL[1 0
]lumped:T 0 1

Now consider a three-noded quadratic bar having the
same elemental properties as the two-noded bar. The
total mass is again equal to pAL, which can be distributed
equally among the three axial degrees of freedom. The
lumped mass matrix then becomes:

pAL

1 0 0
[M]lumped = T 010 (7] ]9)
0 0 1

Based on experience, the above matrix is expected to
give ‘terrible’ results. On the other hand, if the three-
noded bar is split into two halves having mass pAL/2,
then the middle node will get the mass contribution from
both halves and the mass matrix becomes:

pAL

100
Miumpea ==~ |0 2 0 (7.120)
00 1

The above mass representation gives much better results
as there is a more even distribution of mass. Hence, in
adhoc mass lumping, no fixed rules are specified for the
lumping procedure. It is purely left to the judgment of the
analyst to decide on how the masses should be lumped.

The lumped mass for a beam of length L, density p and
area of cross-section A, which has four degrees of free-
dom, including two rotational degrees of freedom, is
derived as follows. The total mass m is again equal to
PpAL, which can be distributed equally between the two
transverse degrees of freedom. The mass corresponding
to the rotational degrees of freedom is derived as follows.
The mass moment of inertia of a bar is given by mL?/3,
where m is the mass of the bar. In our case, for a better
approximation, we split the beam into two halves of
length L/2 and the mass moment of inertia of each half is
computed and lumped onto the respective rotational
degrees of freedom. That is, the mass moment of inertia
is equal to (1/3)(m/2)(L/2)* = pAL®/24. Hence, the
lumped mass for the beam becomes:

o« 0 0 O
> _pAL |0 BL* 0 0
[ }]umped - 420 | 0 0 o 0 ’
0 0 0 pL’
2=210, B=175 (7.121)

In the above form, one can compare Equation (7.121)
with Equation (7.118) and establish the correlation
between two different mass matrices.

Hinton et al. [10] derived a new lumping scheme that
uses the consistent mass matrix. This lumping scheme is
called HRZ lumping, named after the three authors. The
diagonal coefficients are extracted from the consistent
mass matrix as follows. The consistent mass matrix is
first obtained. If m is the total mass and N; is the shape
function of the ith degree of freedom, then the diagonal
coefficients of the mass matrix are given by:

N
m
M;; = EJpN?dV’ §= Z (Mif)consislenl

Vv n=1

(7.122)

Let us consider the same example of a two-noded bar.
The total mass of the bar is m = pAL. The consistent
mass matrix for this linear bar is given by Equation
(7.117). We have S in Equation (7.122) as equal to
(2/3)pAL. The shape functions Ny and N, are given in
Equation (7.58). Using this and the values of S and m,
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we can write the lumped mass matrix through HRZ
lumping as:
pAL {1 0}

[M]HRZ:T 0 1 (7~123)

This matrix is the same as the one derived using adhoc
lumping. The same can be established for the beam
and 2-D isoparametric elements. In the case of beams,
the consistent mass matrix is given by Equation (7.118).
For this case, we have two value of S, one for the
translational degrees of freedom and one for the rota-
tional degrees of freedom. For the translational degrees
of freedom, S = (pAL/420)(156 + 156) = (26/35)pAL
and for the rotational degrees of freedom, § = (pAL/
420)(4L* 4 4L*) = (21*/105)pAL. Using this and the
shape functions given in Equation (7.61), we get:

390 0 0
CpAL| 0 I 0 0

Mz = 7810 0 39 0 (7.124)
0 0 0 I?

Comparing this with the mass matrix obtained by adhoc
lumping given in Equation (7.121), the translational
degrees of freedom have a similar mass distribution,
while the rotational degrees of freedom have smaller
values. Similar mass matrices for eight- and nine-noded
isoparametric 2-D elements can be obtained. These are
shown in Figure 7.9.

HRZ lumping gives very good results for lower-order
elements and sometimes this lumping scheme is better
than the consistent formulation, although it is less accu-
rate for higher-order elements.

Optimal lumping was first introduced by Malkus and
Plesha [11]. This uses a numerical integration scheme to
obtain the lumped mass matrix. That is, it uses the pro-
perty of the shape function which takes the value of unity
at the node where it is evaluated. Hence, the scheme

(a) 1/36 8/36 (b) 1/36 4/36

16/36

Figure 7.9 HRZ lumping for 2-D elements: (a) eight-noded;
(b) nine-noded.

requires an integration scheme that uses the nodes as the
sampling points. This process eliminates the off-diagonal
terms in the mass matrix. The Newton—Coates method,
which is the ‘one-third Simpons’s rule’, provides for inte-
grating numerically with nodal points as the sampling
points. The 2-D version of the Newton—Coates method is
the Labatto Integration rule. The number of sampling
points required is determined by the highest order of the
polynomial involved in computation of the mass matrix
and in general is given by:
n=2p—m) (7.125)

Here, p is the highest order of the polynomial, n is the
number of sampling points required for numerical inte-
gration and m is the highest order of the derivative
appearing in the energy functional. For a plane-stress
problem, m = 1, while for bending problems, m = 2.

Let us consider a three-noded isoparametric quadratic
bar element of length L and having three axial degrees of
freedom corresponding to the three nodes. The isopara-
metric shape functions are given in Equation (7.102). In
this case, p = 2 and m = 1 and hence the minimum num-
ber of points required according to Equation (7.125) is 2.
The Newton—Coates formula for integrating the function
f(x) in the interval a to b is given by:

jf(x)dx =(b—a) Ef(x =a) +%f(x: a—;b)

- éf(x = b)} (7.126)

Now, the mass matrix of the bar in the indicial notation
can be written in terms of the shape functions as:

1
My = J PAN,N;Jd¢ (7.127)
21

Here J is the Jacobian and its value is equal to L/2 if
the middle node is exactly at the center. Now, using
the Newton—Coates formula and noting that b —a = 2,
we get:

EN(E=— DN (E= 1)+ N(E=O)N (=0)
M;=pAL
FEN(E=DN(E=1)

(7.128)
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Figure 7.10 Optimal mass lumping for: (a) an eight-noded
element; (b) a nine-noded element; (c) a six-noded triangular
element (A, area of the element).

Substituting the shape functions and evaluating, we get:

AL 1 00
(Mg == [0 10 (7.129)
0 0 4

One can get the same results if we use HRZ lumping.
One can similarly obtain the optimally lumped mass
matrix for 2-D triangular and quadrilateral elements,
which are shown in Figure 7.10. From this figure,
we see that some mass coefficients are zero and can
even have negative values. This poses a problem in the
solution of dynamic equations. Some special solution
schemes are required for the purpose.

Here, we state the general guidelines for the choice of
mass matrix. A consistent mass matrix is generally used
for flexural problems and in general gives poor results
when the mode shape spans more than four elements.
This is generally not advised for wave-propagation
problems. The computed natural frequencies required
for the solution of dynamic equations are always upper
bound and these are expensive to store and operate as
they are fully populated. However, these are most ideally
suited for higher-order elements.

A lumped mass matrix is extensively used for wave
propagation and highly transient dynamics problems as
it gives very few spurious oscillations. It also gives good
results for lower-order elements. However, for higher-
order elements, one can use an optimally lumped matrix.

Damping is a very complex phenomenon in structures
that is difficult to ascertain exactly. Some of the sources
of damping are the material hysterisis and friction in
joints. The damping matrix derived from the equation of
motion (Equation (7.88)) is seldom used as it is difficult
to measure the damping parameter #. The most common
method of deriving the damping matrix is known as
Rayleigh’s proportional damping, where the damping
matrix is used as a combination of stiffness and mass
matrix as:

[C] = a[K] + B[M] (7.130)

Design spectrum

A aw/2 + B2o
& = (1/2)(aw + P/o) ({ \
<>
&, /(
g T E=aw/2,=0
(stiffness)

& /V ——

/ ]
o1 w2 Frequency

& =B2w, o.=0 (mass)

Figure 7.11 Damping behavior as a function of frequency.

where o and f are the stiffness and mass proportional
damping coefficients to be determined experimentally.
They can be measured by determining the damping ratio
¢ from the single-degree-of-freedom model. The damp-
ing ratio and the stiffness and mass proportional para-
meters are related by the equation:

N ]
=3 (+5)

A plot of frequency @ with the damping ratio ¢ is shown
in Figure 7.11. By measuring the damping ratio at two
different frequencies, one can find the stiffness and mass
proportional damping coefficients. The above damping
representation has a great advantage in uncoupling the
governing equation for solution of the dynamic equation
in the modal domain.

(7.131)

7.7 COMPUTATIONAL ASPECTS IN THE
FINITE ELEMENT METHOD

The efficiency of the FE solution scheme is judged by the
speed with which the solution can be obtained for a large
complex problem. The speed of the FE solution depends
on various factors, such as mesh sizes, node and element
numbering, type of storage of matrices and the type of
‘solvers’ used in the solution. This section briefly out-
lines the various methods available to reduce the system
size and the various solutions techniques for static and
dynamic problems, without going into much detail. The
interested reader is encouraged to refer to various text-
books available on the FE method [7,8], which dwell on
this aspect in greater detail.
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7.7.1 Factors governing the speed of the FE solution

The FE discritization process requires the solution of a
set of simultaneous equations of the form [K]{d} = {F}
in the case of static analysis and a set of coupled second-
order ordinary differential equations of the form given in
Equation (7.89) in the case of dynamic analysis. For a
given mesh, the speed of solution depends upon the
following:

Node and element numbering of the mesh

Storage of stiffness, mass and damping matrices
Type of ‘solver’ used

Type of assignment of arrays in the main FE program

All of the matrices in the FE solution process are sym-
metric and banded. Hence, it is not necessary to store
only the upper half of these matrices. Even in this upper
half, there are many zeros, which need not be stored. For
example, consider the mesh shown in Figure 7.12(a).
Each node here supports two degrees of freedom. Note
that the nodes are numbered here along the shorter
direction. The stiffness matrix is 12 x 12 and the band-
width B = 8. The bandwidth is evaluated by using the
expression:

B = (ND + 1) x NDOF (7.132)
In the above expression, ND is the maximum difference
in the node numbers in a given FE mesh and NDOF is the
number of degree of freedom that an element can sup-
port. That is, for the mesh given in Figure 7.12(a), ND =
3, NDOF = 2 and and hence, B = 8.

Now let us consider the mesh shown in Figure 7.12(b),
where the nodes are numbered along the longer direction.
The stiffness matrix will again be 12 x 12 and the maxi-
mum node number difference ND = 4. Hence, the band-
width B is 10. Therefore, the bandwidth is dependent on
the way we number the nodes. If the bandwidth is larger,
then we need to store more elements of the stiffness matrix.

(a) 1 2 b 1 4
3 -4 2 -5
5 6 3 6

Figure 7.12 A single mesh with two different node numbering(s).
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Figure 7.13 Illustration of the skyline storage system.

The following procedure is normally followed while
storing the banded matrices. The diagonal entries become
the first column of the banded matrix. The next line
parallel to the diagonal becomes the second column and
so on. In this way, we simplify the storage procedure.
Even if the problem is large and the bandwidth is small,
the time taken to solve the system of the equation would
be of the order NB?> compared to N° of the full system,
where N is the size of the matrix and B is the bandwidth.

Alternatively, the matrix can be stored even more effi-
ciently by not storing all of the zeros contained within
the bandwidth. Consider the stiffness matrix of the mesh
shown in Figure 7.12(b). The stiffness matrix can be
stored as shown in Figure 7.13. This storage resembles
that of a skyscraper in a city and hence it is called the
skyline storage scheme. In this storage, the column
heights are stored, from which the address of each ele-
ment in the stiffness matrix can be found. By this approach,
many zeros contained within the bandwidth need not be
stored.

The type of storage scheme employed is also depen-
dent upon the FE ‘solvers’ used for obtaining the solu-
tion. If one uses the Gauss elimination or Cholesky’s
decomposition method of solution, it is preferable to
use the banded /skyline storage scheme. On the other
hand, if one chooses the Frontal method of solution, then
the element system matrices need not be assembled and
stored to get the global matrices. Instead, the element-
wise operation is performed to eliminate those degrees of
freedom that do not participate further in the solution
process. If one uses the Frontal solution technique, then
the way the nodes are numbered is not significant. It is
the element numbering that is very important.

The speed of the solution is greatly influenced by the
memory allocation of various matrices such as the stiff-
ness, mass and damping matrices in the main program
and the way these matrices are accessed by the program.
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It is prudent to have single dimension arrays and memory
pointers to access the elements of these matrices. More
details of the programing part can be obtained from
Bathe [12] and Hinton and Owen [13].

7.7.2 Equation solution in static analysis

In the static analysis, we are looking for the solution {d}
in the equation [K]{d} = {F}, where [K] is the assembled
stiffness matrix and {F} is the assembled force vector.
Although there are many methods of equation solving,
there are only a few methods that can be readily adapted
under an FE environment. Here, we briefly discuss four
such methods.

One of the simplest methods of solving the FE static
equation is the Gauss Elimination Method. Here, the first
equation is considered and the displacement d; is then
expressed in terms of the others. This involves dividing
all of the elements in the first row by its ‘pivot’, that is,
Ki1, which make the diagonal element equal to one.
Then, matrix operations are made to make the off-
diagonal terms equal to zero. This process is done for
all other degrees of freedom. Finally, the original matrix
is reduced to the upper diagonal form with all of the
diagonal entries equal to one. This process is called
forward reduction. In this process, the {F} vector gets
modified. The last equation in this form will be only an
algebraic equation containing only the last degree of
freedom (nth degree of freedom), which is solved. This
is then ‘back-substituted’ in the (n — 1)th equation to
get d,_;. This process is continued until all of the
degrees of freedom are solved. This process is called
back-substitution. No search of the pivot is made as it is
assumed that it is always large when compared to off-
diagonal elements. This is always the case unless the
structure is unstable. In this process, each elimination
frees a degree of freedom or releases a constraint. The
numerical value of the diagonal coefficients continues to
decrease but remain positive at all stages of forward
reduction.

In the Choleski decomposition method, the stiffness
matrix is reduced to the following form:

K] = [U]"[U] (7.133)
where [U] is the upper diagonal matrix. Such decom-
position is possible for all square matrices, which are
symmetric. That is, we need to solve the equation:

w1 [w){d} = {F) (7.134)

Here, we designate [U]{d} = {y}. This is substituted in
the above equation and we solve first the equation
[U]"{y} = {F} for obtaining the vector {y} through
forward substitution. Once the {y} is solved, the actual
displacement vector {d} is obtained by solving [U]{d} =
{y} through back-substitution. The elements of the
matrix Uj; are obtained from the stiffness matrix [K]
using the following algorithm:

Uj=0, for i>j (upper triangular form)
K
Ui = VK, Ulj:Ulj
11

" 05
Ui = <K,‘[ — Z Uk,'2> (fOT i> ])

k=1

i1
<Kij - UkiUkj)
k=1

Uy = 0

(fori>1 j>1)

The Gauss and Choleski algorithms have same computa-
tional efficiency for a full matrix. However, for a ‘sparse’
matrix, their efficiencies are different. Gauss elimination
is row-oriented for a banded matrix, while the Choleski
method is column-oriented. One of the disadvantages of
the Choleski’s method is that it cannot handle indefinite
matrices as in the case of mixed finite elements.

The other important solver that is extensively used in
the FE solution process is the wave front or frontal solver.
In this method, assembly of FE equations alternates the
FE solution. The details of this method can be found in
Hinton and Owen [13] and Irons [14]. As mentioned
earlier, this method is driven by element numbering.
First, the equations associated with the first element are
reduced by using Gauss elimination. Next, the second
element number makes its contribution to the stiffness
matrix. Those degrees of freedom that are common to
elements one and two are reduced. The next reduction
awaits further contribution to the partially formed stiffness
matrix. The assembly-solution process can be viewed as a
“wave” that sweeps over the structure. Proper element
numbering will increase the efficiency of the method as
the processing of the degrees of freedom proceeds in
element-number order. This method requires little main
storage but requires extensive bookkeeping of the data.

More recently, iterative solvers, such as the Precondi-
tioned Conjugate Gradient (PCG) method or GMRES
method are extensively used. These methods are not
sensitive to either node or element numbering. They are
based on an initial ‘guess’ and the residue of the governing
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equation is obtained and the iteration continued until the
solution converges. These methods are dealt with in great
detail in Kane [15].

7.7.3 Equation solution in dynamic analysis

The governing partial differential equation of a dynamic
structural system reduces to a coupled set of second-
order ordinary differential equations on the application
of FE discritization, which is given by [M]{d}+
[D]{d} + [K]{d} = {R}. This equation requires to be
solved to obtain the dynamic response to the time-
dependent input. The following are two different and
distinct methods of obtaining the response:

e Modal method
e Direct time integration

As before, only a short introduction to these methods is
given here. Readers can obtain further details from many
classic FE textbooks and journal papers available in the
literature.

7.7.3.1 Modal method

In this method, first the undamped free-vibration problem
is solved, which is an eigenvalue problem given by:

[K{d} = o?[M){d} (7.135)
Here, (ulz is the ith eigenvalue, which happens to be the
natural frequency of the ith degree of freedom of the sys-
tem and {d}, is the eigenvector or mode shape of the ith
degree of freedom. There are different eigenvalue extrac-
tion schemes and all of these are necessarily iterative.
The most commonly used methods of eigenvalue extrac-
tion are as follows:

Jacobi’s method

Subspace iteration method
Lanchoz’s method
Determinant search method
Inverse iteration method
Forward iteration method

These methods are explained very briefly here.

Jacobi’s method uses a set of transformations to reduce
both the stiffness and mass matrix into a diagonal form.
In this form, the eigenvalues are given by w? = K;;" /M;;",
where the r superscript is used to denote the reduced or
transformed stiffness or mass matrices. This method

computes all of the eigenvalues at a time and hence is
a very costly and time-consuming process. In conven-
tional dynamic analysis, all of the eigenmodes are seldom
computed. Hence, this method is limited to problems of
small system size.

Subspace iteration is the most famous eigenvalue/
vector extraction technique which is extensively used in
many general-purpose FE software. Here, the property of
orthogonality of the modes is used to reduce the size of
matrices from n X n to m X m, where m << n. On this
reduced set of matrices, Jacobi’s method is used to
compute the eigenvalues/vectors.

Lanchoz’s method is also a powerful technique, which
uses a set of transformations to reduce the stiffness and
consistent matrices into tridiagonal form using suitable
transformations. The extraction of eigenvalue for tridia-
gonal matrices is very fast and well-established. This
method has some in-built parallelism and is hence
extensively used along with many parallel FE codes.

A determinant of the matrix [[K] — w?[M]] will give a
polynomial of order n, whose solution will give the
eigenvalues of the problem. Since the general structural
problem will have a large number of degrees of freedom,
explicit determination of the coefficients of the charac-
teristic polynomial is extremely difficult. In the Determi-
nant search method, these coefficients are computed
without actually solving the characteristic polynomial.
This is done through use of the Strum sequence check,
which states that if we assume the magnitude of an eigen-
value, one can then split the effective dynamic stiffness
matrix into a Choleski’s decomposition, that is:

[[K] — u[M]] = [U]ID][U]" (7.136)
where p is the assumed value of the eigenvalue and [U]
is the upper diagonal matrix. The number of negative
elements in the diagonal matrix [D] indicates the number
of eigenvalues less than u. Using this property, one can
converge on the actual eigenvalue. However, this method
is not recommended for large-scale dynamic analysis.

Inverse and forward iteration techniques are normally
used to find the lowest and highest natural frequencies of
the problem having n degrees of freedom. They are
normally used to determine the frequency bounds
of the problem in hand, which is very useful in choosing
the method of analysis for computing the dynamic res-
ponse. It uses Rayleigh’s principle in determining the
eigenvalues, which states that:

o K4}

=5 (7.137)
{a} [M]{d}
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Here, {d} is the ‘best-guess’ displacement profile of
the structure. In principle, the static solution can form
the best initial guess, and this solution can be iterated to
get the correct eigenvalue.

It is apparent that the extraction of eigenvalues/vectors
is the most computationally costly activity in the entire
analysis process. The computational time and the memory
cost involved in the various schemes are dealt with in
great detail in Bathe [12]. For a system with n degrees of
freedom, only the first m natural frequencies and mode
shapes are computed, where m < n.

After obtaining the first m eigenvalues/vectors, these
are put in the matrix form as [®] and [A]. The former is
called the modal matrix, which is of size n x m. In this
matrix, the modes are stored column-wise. The latter is a
diagonal matrix of size m x m containing the natural
frequencies of the computed m modes. This matrix is also
called the spectral matrix. The modal matrix is orthogo-
nal with respect to both the stiffness and mass matrix.
These two matrices along with the orthogonality condi-
tions are used to estimate the dynamic response. There
are two orthogonality conditions, which can be stated as:

@' [K][@] = [A], (@] [M][®] = [I] (7.138)

In general, modal methods use similarity transformation
to convert the actual degrees of freedom {d} of size
nx 1 to generalized degree of freedom {Z} of size
m X 1. This similarity transformation is given by:

{d()} 1 = []en {20 }xa (7.139)

There are two different modal methods by which the
response can be computed. These are:

o Normal Mode method or Mode Displacement method
e Mode Acceleration method

In the Normal Mode method, the orthogonality relations
are used to uncouple the governing differential equation.
This is done in the following manner. The FE differential
equation is given by:

(M]{d} + [C]{d} + [K]{d} = {F}

In this equation, let us use Rayleigh’s proportional damp-
ing of the form [C] = «[K] + B[M]. The reason for using
such a damping scheme will become clear in the next

few steps. Now, we substitute Equation (7.139) into the
above equation, which becomes:

M][@{Z} + («[K] + BIM])[@{Z} + [K][®[{Z} = {F}

Premultiplying [<I>]T and using the orthogonality condi-
tions (Equation (7.138)) uncouples the differential equa-
tion and can be explicitly written, say for the rth mode as:

7, +28,0,Z + 0,°Z, = {$,} {F} =F,  (7.140)
Note that, by using a smaller set of modes, we have
reduced n coupled differential equation to m uncoupled
differential equations. In the above equation, &, =
(C,/2M,®,) is the damping ratio of the rth mode and
{¢,} is the eigenvector of the rth mode. Equation (7.140)
is nothing but the governing equation for a single degree
of freedom vibratory system, which can be easily solved
in terms of generalized degrees of freedom. Using these,
the actual degrees of freedom is evaluated using the
similarity transformation (Equation (7.139)).

One of the fundamental limitations of the normal
mode method is that it cannot recover the static displace-
ments in the limit as the frequency tends to zero. As a
result, this method requires more modes to represent the
dynamic response. This limitation is circumvented in the
Mode Acceleration method. This method is described
below.

The similarity transformation (Equation (7.139)) is
first expressed in terms of summation as, say for the
kth degree of freedom, as:

(1) = Z b1 (7.141)
r=1

From Equation (7.140), we can write Z, as:

F, 2. . 1 .
z,=tr 2y 1y
, [

Using this in Equation (7.141), we get:

moF 2. 1
dk(l‘) = Z(bk’(m_ Z, ——22r) (7.142)
r=1 r

o8 Wy

Now, we can write the inverse of the stiffness matrix, that
is, [K]™', by using the first orthogonality condition. The
inverse can be written as:

[K]71 — {¢r} {¢)}

7.143
= (7.143)
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Using the above in Equation (7.138) and noting that
F, = {¢,}"{F}, we can write this equation as:

de(t) = (K] {F) - Zcbkr (2@ z) (7.144)

The first term is the static response. This representation
gives a quite accurate response using a smaller set of modes.
Modal methods are not suitable for wave-propagation
problems, which are necessarily high-frequency-content
problems. Such problems require evaluation of higher-
order modes and natural frequencies, which are compu-
tationally prohibitive. For such problems, one normally
uses Direct Time Integration, which is described next.

7.7.3.2 Direct time integration

Here, we write the differential equation at a particular
time instant, say n, where the time derivatives are written
in terms of the finite difference coefficients. This method
can be universally applied to both low- and high-
frequency-content problems as well as both linear and
nonlinear problems. The modal methods cannot be
applied to nonlinear problems. Hence, this method is
extensively used in highly transient dynamics and wave-
propagation problems. There two different time integra-
tion schemes. These are:

e Explicit Time Integration
e Implicit Time Integration

7.7.3.3 Explicit time integration

In this type of integration, the displacement, velocity and
acceleration histories before the current time instant are
known. This method is very easy to implement and gives
very good results for wave-propagation problem. How-
ever, one of the main disadvantages of this method is that
the method is conditionally stable, that is, there is a
constraint placed on the time step.

Consider the variation of a function that requires to
be integrated with respect to time, shown in Figure 7.14.
The governing equation at time step n can be written as:

[MI{d}, + [CHd}, + {R™}, = {F},. {R"},

(B {0},dV | {d)

4

(7.145)

e
|

d(®)

» Time
n-1n-12n n+1/2

Figure 7.14 Displacement variation at different times for the
finite difference approximation.

The above form is generally used for nonlinear problems,
where {R"} represents the internal force vector. In linear
problems, {R"} = [K]{d} = [[, [B]" [D][B]dV]{d}. Using
the forward and backward difference at times n+1/2
and n — 1/2, the velocities can be written as:

{d}n+1/2 _ {d}n-HAt {d}n ,

{d}n—]/Z - 7{61}" Lid}"il

(7.146)
Here, At is the time step adopted for the time-marching
scheme. Combining these, we can write the velocities and
accelerations at time step n as:

{d}rH»l {d}nfl
{d} - ZAI )
{d})H» z{d}n + {d}n71
{d}, = ! A2 (7.147)

The above representation of the second derivative is
‘second-order accurate’. The above scheme is called
the central difference scheme. Substituting the above
into Equation (7.145), we get:

{%*%}{d}m {F}, — KN}, + 32 : S M)(2{a),

_{d}nfl) ZAZ[ ]{d}n 1
(7.148)

In the above expression, the right-hand side contains
expressions that depend on time instants previous to the
current time step. After the displacements are obtained,
the velocities and accelerations can be obtained from
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Equation (7.147). If matrices [M] and [C] are diagonal,
then the equations are uncoupled and one can obtain dis-
placements without solving the simultaneous equations.
Equation (7.148) requires the value of {d} , and {d}, at
time = 0; {d}_, is obtained by expanding the {d}, by a
Taylor series and substituting = 0 in the expression.
{EZ}O is obtained by the governing differential equation
written at t = 0. These are given by:

(@), = {do— Arfd) + 5 (i,

{d}o = M {F}, — [K}{d}, — [CH{d}, (7.149)
This method is conditionally stable. That is, a large time
step would result in divergence of the displacements.
Hence, a constraint is placed on the time step. This
constraint is derived based on a rigorous error analysis
based on Z-transforms [7]. This constraint is given by:

2

wmax

At = (7.150)

The wmax can be evaluated in the following ways:

(1) The frequency content of the input signal can be
obtained through the FFT and the maximum fre-
quency can be determined from the FFT plot. This
will normally be used in wave-propagation problems.

(2) The wpax can also be evaluated from the global
stiffness and mass matrix as:

N
wmux2 = Max (Kii + Z |Kl/> /Mii

j=1

(3) For each element, the eigenvalue problem is solved.
Then, the critical time step can be obtained by
At = Min(2/w,?), where o, is the maximum natural
frequency of each element.

7.7.3.4 Implicit time integration

Implicit time integration requires information of quanti-
ties beyond the current time step. That is, for computing
the displacements at time step n, information of displace-
ments, velocities and accelerations at time steps n + 1
and n + 2 are required. This integration method uses the
well-known Trapezoidal rule and Simpson’s rule to come
up with different time-marching schemes. Here, we
describe a simple integration scheme based on the
Trapezoidal rule. This is called the average acceleration

method and when applied to a parabolic PDE is some-
times referred to as the Crank—Nicholson Method. The
implicit schemes are hard to implement; however, these
methods are unconditionally stable.

In this scheme, we write the governing equation at
time step n + 1, which is given by:

[M]{a}wrl + [C}{d}rwl + [K]{d}n+1 = {F}n+l (7151)

Using the Trapezoidal rule, the displacements and velo-
cities at time n + 1, can be written in terms of velocities
and accelerations as:

[hsr = (), + 50, + ()00),

(@1 = (), + 500, + (),)

(7.152)
The velocities and accelerations at time n + 1 can now
be written as:

@1 = 2 (e — )~ (),

1 = o (e — (a),) — - (), — 1},
(7.153)

Substituting these into Equation (7.151), we get:

(K {d}, = {F},,. (7.154)

where:

4

eff] _ 7
(K = AP

M)+ [C] + K]
0 4 4 . .
(MY = (P + )32 0, 5, ), + (@),

(] (Ait{d}n + {d}n) (7.155)

Equation (7.154) is solved for finding out the displace-
ments at time step n + 1 using the information available
at time step n. Velocities and accelerations are computed
using Equation (7.153). At each step, Equation (7.154) is
a highly coupled set of simultaneous equations even
when [M] and [C] are diagonal. This is unlike the explicit
method. Hence, there is no merit in using lumped
approximations for the mass. It is similar to solving a
static problem at each time step. When implementing this
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scheme, one can perform Choleski decomposition on
[K°™] only once for forward reduction as it is a function
of only the time step, which is decided a priori before the
analysis. If [M] is positive definite, [K°] is nonsingular
even for singular [K]. This scheme is said to give poor
convergence for nonlinear problems. This scheme gives
better results with the use of a consistent mass matrix.
The most important advantage of this method is that it is
unconditionally stable. That is, even for a large time step,
the solution will not diverge. This does not, however,
mean unconditional accuracy. For nonlinear problems,
the time step should be small for better accuracy.

In general, both of the integration schemes, namely the
implicit and explicit, do not provide for automatic dis-
sipation of high-frequency noise, which normally exists.
Hence, there are many integration schemes that are
designed to incorporate additional parameters that would
take care of dissipating this high-frequency noise. One
such method, which is extensively used in many general
purpose packages, is the Newmark-f method. This
method has two parameters that dictate the amount of
dissipation and the type of integration scheme, namely
explicit or implicit. That is, by appropriately tuning these
parameters, we can make the integration scheme purely
explicit or implicit. More details of this method can be
found in Bathe [12].

7.8 SUPERCONVERGENT FINITE
ELEMENT FORMULATION

The FEM is an approximate technique and the accuracy
of the solution is heavily dependent upon the element
size and the order of the interpolating polynomial. To
improve the accuracy in the case of elements formulated
with lower-order polynomials, it is necessary to increase
the mesh density, especially for transient dynamic pro-
blems and also for problems with high stress gradients.
Such an approach for increasing the mesh density is
called the h-FEM approach. Alternatively, one can
increase the order of the polynomial, thereby increasing
the number of nodes in each element. Such an approach
is called the p-FEM approach. In the case of transient
dynamic problems, what is required for accurate solution
is accurate mass distribution. This necessarily requires a
fine mesh density, no matter what type of approach one
adopts. The problems in smart structures, especially
structural health monitoring problems, are necessarily
high-frequency-content problems. In most cases, it
requires interrogation of a high-frequency tone-burst-
type signal to infer the state of the structure. The

frequency content of such signals is of the order of
50kHz-2MHz. In such problems, all higher-order
modes not only get excited but also have high-energy
contents. To capture these higher modes, the mesh sizes
should be so fine that they should match the wavelength
of the stress wave that is set up due to the given
excitation. Hence, such problems are beyond the reach
of the FEM.

The problem of obtaining an accurate mass distribu-
tion ‘boils down’ to how close the assumed displacement
field satisfies the governing equation. In the FEM, time-
dependency does not enter explicitly in the solution.
Hence, if we choose our interpolating functions to satisfy
the spatial part (static part) of the governing equation,
one would exactly characterize the stiffness of the struc-
ture, while the mass distribution of the structure will
still be approximate. However, it is the accurate predic-
tion of resonances or natural frequencies that is key to
obtaining an accurate solution to the dynamic problem. If
one carries out an error analysis of an assumed solution,
it can be shown that the order of error magnitude in
stiffness characterization is quite a lot higher as opposed
to mass. This aspect is proved in Strang and Fix [16].
Hence, one can expect a better prediction of higher-order
modes using smaller finite element meshes by employing
the above approach. We call this formulation the Super
Convergent Finite Element Formulation (SCFEM). In
fact, the elementary rod and beam elements described
earlier in this chapter are super-convergent elements as
they satisfy the static part of the governing equation
exactly. As a result, one element, no matter how long the
element is, is sufficient to capture the static response
exactly. This is true as long as the structure is subjected
to point loads, which is normally the case in most wave-
propagation problems.

Another situation where the SCFEM is very useful is
in constraint media problems. These problems occur
when finite elements based on higher-order theory are
used to predict responses in the models based on
elementary theory. For example, let us consider the
Timoshenko beam and Euler-Bernoulli beam models.
The basic difference between the two models is that, in
the former shear deformation is introduced. Introduction
of shear deformation violates the condition that “‘plane
sections remain plane before and after bending”. Hence,
the beam slopes cannot be obtained by differentiating the
transverse displacement and therefore, in finite element
formulations, it requires to be separately interpolated.
This reduces the continuity requirement from C! in the
elementary beam to C° in the Timoshenko beam. When
this Timoshenko beam model is used to predict responses



in very thin beams (where the shear strains are zero), one
obtains solutions that are many orders smaller than the
correct solution. This problem is called the shear locking
problem. The reason for this locking is that the formula-
tion introduces two stiffness matrices, one due to bending
and the other due to shear. It is this shear stiffness matrix
that introduces the shear constraints, which makes the
structure excessively stiff. That is, the shear stiffness
matrix is non-singular. If one needs to eliminate shear
locking, the shear matrix should be made ‘rank-deficient’,
which makes this matrix singular. This is accomplished
by ‘under-integrating’ the shear stiffness using the Gauss
Quadrature. These schemes are explained in greater
detail in Prathap and Bhashyam [17], Hughes et al.
[18] and Prathap [19].

In such constrained media problems, the SCFEM can
be employed. In this formulation, the user need not know
if the higher-order effects are predominant or not. In
addition, it is extremely useful in solution of the transient
dynamics problems using smaller problem sizes. In the
next subsection, we introduce the SCFEM formulation
for a deep rod, where the higher-order effects due to
lateral contraction introduce an additional degree of
freedom.

7.8.1 Superconvergent deep rod finite element

An elementary rod can support only axial motion. Hence,
a linear polynomial is sufficient to capture the static
response exactly under point loads. In the deep rod, the
lateral displacements are significant due to Poisson’s
ratio. This is accounted for through an additional degree
of freedom . This lateral motion is shown in Figure 6.24
in Chapter 6. This was earlier introduced in Chapter 6
to study the wave-propagation behavior in composites
(Section 6.3.2). Here, we consider an isotropic rod of
length L, axial rigidity EA, density p, Poisson’s ratio v
and shear rigidity GI. A and [ are the area and moment of
inertia of the cross-section. The assumed displacement
field can be taken as:

u(x, 1) = u(x,t), wix, 1) =zp(x,1) (7.156)
In the above expression, u(x, ) and w(x, ) are the axial
and lateral displacement fields and z the depth coordi-
nate. Using this, we write the strains by using the strain—
displacement relations (Equation (6.27)) and stresses,
using Equation (6.68) (Chapter 6). These are then used
to write the strain and kinetic energies in terms of
displacements, which is used in Hamilton’s principle
(Equation (7.52)) to obtain the following governing
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equations for a deep rod:
EA [0%u 19,/ Pu
v =pA—
1—v2|0x2 Ox or?
GIKaz—lpfﬂ ¢+v@ = IKaz—l// (7.157)
12 ax) P e

In the above equations, the two constants K and K, are
introduced to compensate for the approximations
enforced in the analysis. When this equation is uncoupled
in terms of the axial displacement u(x, 1), it becomes a
fourth-order partial differential equation, as opposed to
the second order of the elementary rod. The elementary
rod theory can be recovered by setting = —v(du/0x),
GIK = 0 and pIK; = 0. In regular finite element analy-
sis, a linear polynomial in u and ¥ would have been
sufficient to formulate the basic element. Such an ele-
ment would behave very well in a deep-rod situation.
However, in the limit as y = —v(9u/0x), this rod ele-
ment would lock, giving responses much smaller than
the true solution. In order to circumvent this problem, we
ignore the dynamic part in Equation (7.157) (the right-
hand side of the equation) and solve the coupled ordinary
differential equation exactly. This exact solution can be
used in interpolating functions for FE formulation. In
doing so, we get the following solution:

u(x) =ap+ax+ are P 4 gre=F*

Y(x) = by + bie PE) 4 pre P (7.158)
Here, f° = FEA/GIK and L is the length of the finite
element. In reality, the above function is a polynomial of
infinite order. If GIK = 0, then we would recover our
elementary rod solution. In the above equation, we have
seven constants and only four boundary conditions at
both ends. Hence, there are three dependent constants
which can be expressed in terms of independence by
substituting the solution (Equation (7.158)) in the govern-
ing differential equation (Equation (7.157)). In doing so,
we get the following relations among the constants:

b() = —vay, b1 = —az;, bz = a3§ (7159)

Now, the interpolating polynomial can be written only
in terms of four constants as:

u(x) =ap +ax + are PL) 4 grePx

ﬁ e—ﬁx

Y(x) = —vay —a ge*ﬁ“*” +a3 (7.160)
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Here, we see that some of the coefficients associated
with lateral contraction are material-dependent. This is
one of the features of the SCFEM. First, the shape
functions are established. This is done by enforcing
u(0) = ur. u(L) = uz, Y(0) =, and Y(L) = y. This
will give a relation between the unknown coefficients
{a}={ay a1 a; a3}" and the nodal degrees of free-
dom {u} ={u; ¥, wu, Y,}", which can be written
as {a} = [G]{u}. These coefficients are substituted back
into Equation (7.158), and hence we can write the
displacement field as:

u(x) = [Nu{u},
NJ=[1 x el e
[G] = [Nu
Y(x) = [Ny {u},
Ny =[0 —v e Pl e fy

Nu2 Nu3 Nu4]

[G] = INy1 Ny2 Nz Nyal - (7:161)
Here, [N,] and [V, ] are the 1 x 4 shape function matrices
corresponding to u and Y degrees of freedom at the two
ends of the rod. The above shape functions are exact
shape functions for performing static analysis. The for-
mulation from here is the same as was carried out for a
regular finite element. First, the strain displacement

matrix [B] is established. The strains are as follows:

. _ du . 7dvil// . _ du +dv7 dys
Xx_dx’ yy_dy_ ’ /xy_dy7 d,X_ZdX
(7.162)

This can be written in matrix form as:

dN,g dN, dNs AN
. & dx dr dx | (w
by o= Nyt N2 Nyz Nia 152, = [BJ{u}
o) ang, avg, avgs an, | L
& Tdr Cdar Tdx
(7.163)

The constitutive matrix assuming the plane stress condi-
tion is given by Equation (7.113). Using the formulated
[B] matrix and the material matrix [C], the expression for
the stiffness matrix is given by:

K] = “ (B]7[C)[BldAdx (7.164)

A

The explicit expressions for the elements of the stiffness
matrix is given by:

R —aLS
11 Aa 12 A ’ 13 11, 14 12
L>a(R* + S? — 2vaRS)
kyy = ka3 = —k
22 29SA ) 23 125
L*a(R* — S? — 2vaRS)
koq =
2vSA
k33 = ki, ks = —kia, ka =kn
R=1+eP s=1-¢",
v EA
=—, A=R—-2vuS, f=1/—m 7.165
*= g vas, p=\lcr (7.165)

Using the shape functions given in Equation (7.161), we
can also formulate the consistent mass matrix. It has two
components, one due to axial motion and the other due to
lateral contraction. Hence, we can write the mass matrix as:

[M] = [M.] + [My]

M,] = pA j VTV Jdx, [My] = pIK, J N ] [Ny Jdx
0 0

(7.166)

Substituting for the shape functions from Equation
(7.161), we can write the mass matrix as:

[M] = pALIG) (m")[G] + pIKi[G) ]G] (7.167)
The elements of [m"] and [m"] are given by:
S
my“=1, mp" ==, m13“:*a7 myg" =my3"
2 v
L? L S L 28
my" =—, "123“:—0C - ’m24":—OC S—R—O——oC
3 v v 2v \J
RS R-S
mSSZ’:Tva, m34u:72 , Mgy =ma3" (7.168)
my’ =mp" =miz¥ =mis =0
mu? =vL, myV =S, my' =-8§
RS R—-S
v v___*° V= 7.169
Myt =o T e = o Maat =ms3 ( )

Before we use this element, we should determine the
values of the parameters K and K. This is normally done



Introduction to the Finite Element Method 181
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Figure 7.15 Examples used in deep-rod formulation: (a)
cantilevered rod with a tip axial load; (b) infinite deep rod.

by looking at the limiting behavior of the rod at very high
frequencies. Since the present theory is an approximation
of the 2-D behavior, a practical approach would be to
consider a better representation of this model with a 2-D
FE model and choose the values of K and K to get the
best results in the frequency of interest. This was carried
out by Martin et al. [20] and values of K = 1.2 and
K, = 1.75 were suggested.

To demonstrate the utility of this element, two exam-
ples are considered — one is a static-analysis example
while the other is a wave-propagation example. For static
analysis, we consider a cantilever rod of axial rigidity
EA and length L under a tip axial load, as shown in
Figure 7.15(a). One single element will give an exact
static response. If the rod is elementary, then the tip axial
displacement will be equal to PL/AE. A single deep rod
element will give the tip axial displacement as:

PL[

2vaRS
AE

Utip =

Here, the parameters R, S, etc. are defined in Equation
(7.165). The second term in the brackets is the error in
using the elementary theory. A plot of the error with the
L/h ratio, where h is the depth of the rod, would show that
even for a very thick rod (very small L/h ratio), the error
is only about 8 %. This was reported by Gopalakrishnan
[21]. Hence, the errors are not large enough to justify the
use of a higher-order model for static analysis. An
elementary rod model is sufficient.

It has been shown by Gopalakrishnan [21], Doyle [22],
Chakraborty and Gopalakrishnan [23] and Roy Mahapatra
and Gopalakrishnan [24] that a very high-frequency beha-
vior gets affected by introduction of the lateral contrac-
tion mode. That is, an additional propagating mode is
introduced at very high frequencies, which was shown in
Chapter 6 for an unsymmetric laminate (Section 6.3.2).
To demonstrate the presence of an additional propagating
mode, an infinite isotropic rod is considered, as shown in
Figure 7.15(b).

This rod is subjected to a tone-burst narrow-banded
signal sampled at 125 kHz. This frequency is chosen so
that the tone-burst frequency is beyond the cut-off fre-
quency for this rod to ensure that the second propagating
contraction mode is excited. The cut-off frequency for a
deep rod with aluminum properties has been given by
Gopalakrishnan [21].

EA

——— = 88kH
(1 —v2)pIK, z

woy = (7417])

The pulse is allowed to propagate a distance of 3048 mm
for the contraction mode to appear. The infinite rod was
modeled using 9000 formulated finite elements to make
sure that the element size matches the wavelength at this
high frequency. Figure 7.16 shows a comparison of the
solutions between the present model and the spectral
model [20]. At about 2000 ps, one can see the contraction
mode appearing in both of the models. The finite element
model over estimates the speed due to an approximate
mass distribution. This narrow-banded tone-burst pulse is
very useful for performing structural health monitoring
studies.

The SCFEM models are now available for practically
all 1-D models such as deep composite beams [23], first-
order shear-deformable composite beams [25], function-
ally graded beams [26] and thin-walled composite box
beams with and without smart ‘patches’ [27,28]. One
practical difficulty in the SCFEM is that it is extremely
difficult to formulate 2-D and 3-D elements as exact
solutions of the governing equations, as these are very
difficult to obtain.
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Figure 7.16 Two propagating modes in a deep rod: (a) finite
element solution; (b) spectral element solution.
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7.9 SPECTRAL FINITE ELEMENT
FORMULATION

Application of the FEM for wave propagation requires
a very fine mesh to capture the mass distribution accu-
rately. The mesh size should be comparable to the wave-
lengths, which are very small at high frequencies. Hence,
the problem size increases enormously. Many applica-
tions in smart structure applications, such as structural
health monitoring or active wave control in composite
structures, require wave-based modeling since one has to
use high-frequency interrogating signals. If one needs
online diagnostic tools in structures, wave-based model-
ing is an absolute must. For such problems, the FEM by
itself cannot be used as a modeling tool as it is very
expensive from the computational viewpoint. Hence, one
needs an alternate formulation wherein the frequency
content of the exciting signal is not an issue. That is, we
need a modeling tool that can give a smaller problem
size for high-frequency loading, at the same time retain-
ing the matrix structure of the FEM. Such a technique is
feasible through the spectral finite element (SFEM)
technique.

The SFEM is the FEM formulated in the frequency
domain and wavenumber space. That is, these elements
will have interpolating functions that are complex expo-
nentials or Bessel functions. These interpolating func-
tions are also functions of the wavenumbers. In Chapter 6
(Section 6.3.2), we have seen that a governing partial 1-D
wave equation, when transformed into the frequency
domain using DFT, removes the time derivative and
reduces the PDE to a set of ODEs, which have complex
exponentials as solutions. In the SFEM, we use these
exact solutions as the interpolating functions. As a result,
the mass is distributed exactly and hence, one single
element is sufficient between any two discontinuities
to get an exact response, irrespective of the frequency
content of the exciting pulse. That is, one SFEM can
replace hundreds of FEMs normally required for wave-
propagation analysis. Hence, the SFEM is an ideal
candidate for developing online health monitoring soft-
ware. In addition to smaller system sizes, other major
advantages of the SFEM include the following:

e Since the formulation is based on the frequency
domain, system transfer functions are the direct
byproduct of the approach. As a result, one can perform
inverse problems such as force identification/system
identification in a straightforward manner.

e The approach gives the dynamic stiffness matrix as a
function of frequency, directly from the formulation.

Hence, we have to deal with only one element of
dynamic stiffness as opposed to two matrices in the
FEM (stiffness and mass matrices).

e Since different normal modes have different amounts
of damping at various frequencies, by formulating the
elements in the frequency domain one can treat the
complex damping mechanisms more realistically.

e The SFEM lets you formulate two sets of elements —
one is the finite length element and the other is the
infinite element or ‘throw-off element’. This ‘throw-
off element’ acts as a conduit of energy out of the
system. There are various uses of this infinite ‘throw-
off element’, such as adding maximum damping,
obtaining good resolution of the responses in the
time and frequency domains and also in modeling
large lengths, which are computationally very expen-
sive to model in the FEM.

o The SFEM is probably the only technique that gives
you responses in both the time and frequency domains
in a single analysis.

The SFEM can be formulated in a similar manner to the
FEM by writing the ‘weak form’ of the governing differ-
ential equation and substituting the assumed functions
for displacements and integrating the resulting expres-
sion. Since the functions involved are much more com-
plex, integration of these functions in the ‘closed form’
takes a longer time. In addition, by this approach we
cannot obtain the dynamic stiffness matrix of the ‘throw-
off element’, as the latter is normally complex. Hence,
we adopt an equilibrium approach of element formula-
tion, which eliminates integration of the complex func-
tions. In this chapter, we show this formulation for a
simple isotropic rod element, while the procedure remains
the same for other elements.

Formulation of the spectral elements requires deter-
mination of the spectrum (the variation of wavenumber
with frequency) relations and the dispersion relations
(speed with frequency). The procedure to determine
these were given in Chapter 6 (Section 6.3.2). The
SFEM begins with transformation of the governing
equation into the frequency domain by using a discrete
Fourier transform. The solution of this transformed equa-
tion becomes the interpolating function for the spectral
element formulation. The procedure of formulating the
SFEM for a simple 1-D rod is illustrated below.

The governing differential equation for a uniform rod
with associated boundary conditions are given by:

0%u Ou

2
Ou F=EAZ"

EAZ— = pAZ—
o Phoe o

(7.172)
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Figure 7.17 Degrees of freedom for a spectral rod element.

where EA is the axial rigidity and p is the density of
the material. Assuming the spectral form of solution (or
Fourier transform) given by:

N
u(x, 1) =Y iy (x, 0)e™"
n=1

Substituting the above spectral form of the solution into
Equation (7.172) converts the PDE to a set of ODEs,
which is given by:

o~ (g L 2
Z EA 2 + pAw i, | =0

n=1

(7.173)

The longitudinal wavenumber for the rod is given by

k = w+/pA/EA, where w is the frequency.

Consider a rod of length L. The force and displacement
degrees of freedom are shown in Figure 7.17. Note here
that all of the variables with a “hat” indicate frequency-
dependent quantities. The interpolating function for ele-
ment formulation, which is the exact solution of Equation
(7.173), is given by:

il(x, ) = Ae™ ™ 4 Be k(=) (7.174)

We now substitute the boundary conditions, that is, at
i(0) = ay, (L) = itp, we get:

{Z;}:Lflﬂ efkaH/;} {a},=[Gl{a} (7.175)

Inverting the above relation, we get:

A B 1 1 —eikL ftl
B 7(178—2ikL) _e—ikL 1 [’

{a} =[G {a},

Substituting Equation (7.176) into Equation (7.174), we
get the spectral shape functions, which are given by:

(7.176)

i(x,w)=[e~™ e fay =l e HEI)[G] Ha,

=[N|{a},, [N]=[Ni No]=[e™™ e ][G] ™!
(7.177)

Now, we consider the force results at the two ends, which
are given in Equation (7.172) and can write the resultants
in terms of the boundary resultants as:

Fi = EAdﬁ F*EAdﬁ
T, P T

x=L

The above relation can be put in the matrix form as:

Fi| _EA. 1 —e™]fA
{ﬁz}_leL[e—ka ~1 |5

Substituting Equation (7.175) into the above equation
and carrying out the required matrix multiplication will
give the required force—displacement relation in the
frequency domain through a dynamic stiffness matrix,
which is given by:

Fi| EA kL [l4e 2 —2e ™ 7y
Fz L (] _ e—2ikL) _De—ikL 1+672ikL ity

. EA .
{F}, = [Kl{aj, (7.178)

Here, [K] is the element dynamic stiffness matrix, which is
symmetric and real, as in the case of a conventional finite
element dynamic stiffness matrix, which is given by:

R = 1= o) =5 7

_wZ@{Z 1} (7.179)

1 2

Figure 7.18 gives a comparison of some stiffness coeffi-
cients of the SFEM and FEM at low and medium
frequencies.

We see that at low frequencies they practically match
each other. At medium frequencies, we see that the stiff-
ness coefficients differ substantially. We can make the
FEM stiffness match the spectral stiffness if we use many
elements to model the rod. This is one of the reasons why
the model sizes of the SFEM are very small. The
formulation of various spectral elements for 1-D isotro-
pic waveguides is given in Doyle [22]. Spectral elements
for 1-D elementary and first-order shear deformable
composite waveguides are given in Roy Mahapatra and
Gopalakrishnan [24] and Roy Mahapatra et al. [29].
Spectral elements are also available for composite
tubes [30] and functionally graded beams [31]. Spectrally
formulated elements are also available for 2-D isotropic
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membrane waveguides [32] and composite waveguides
[33]. In all of these works, exact solutions to the inter-
polating functions were used for element formulation.
There are a few approximate spectral elements, where an
approximate solution, along with the frequency-domain
variational principle, was used to formulate the spectral
element. These are available for a shear-deformable
tapered beam [34] and a inhomogeneous rod [35].

The SFEM computer code has many resemblances to
the FEM code. That is, as in the FEM the element dynamic
stiffness matrix is generated, assembled and solved. How-
ever, all of these operations have to be performed for each
frequency. Since the system sizes are small, these do not
pose a major computational ‘roadblock’.

The analysis procedure using the SFEM can be sum-
marized as follows:

(1) The given forcing signal is fed into the FFT program
and the output is stored in a file, which contains
three columns containing the frequency and real and
the imaginary parts of the forcing function. The
sampling rate of the signal and the number of FFT
points is decided by various factors, such as the
nature of the wave (dispersive or nondispersive),
length of propagation and level of damping.

(2) These frequencies, along with the real and imaginary
components, are read and stored.

(3) The analysis begins over a big ‘do-loop’ over the
frequency. The analysis is performed over all of the
frequency components, but only up to the Nyquist
frequency. For each frequency, the element dynamic
stiffness matrix is generated, assembled and stored
for further use. This is unlike the FEM, where the
matrices (stiffness and mass) are generated and
assembled before the analysis is performed over a
‘loop’ of time steps.

(4) The equations are solved in the frequency domain by
using the conventional Gauss elimination with Cho-
leski decomposition. However, the ‘solver’ should be
able to handle complex variables. The equations
are first solved for a unit impulse — this will give
the system transfer function (FRF) directly, which
has a varied use in addition to computing responses.
If the number of different time histories is used in the
analysis, computing the FRF needs to be done only
once. By multiplying this FRF with the input, we get
the displacement response in the frequency domain.
If we are performing inverse problems such as force
identification, the input is divided by the FRF to get
the force response in the frequency domain.

(5) If quantities such as stresses, strains or energies are
needed, the displacement response is ‘post-processed’
as is done in the conventional time-domain FEM.
However, the computed responses will be frequency-
dependent.

(6) The frequency-domain responses are converted into
time-domain responses by using the inverse FFT.

One of the major disadvantages of the spectral approach
is that the exact solutions are limited to only a few
waveguides. It is not possible to develop spectral ele-
ments for geometries of arbitrary shape or for structural
waveguides with discontinuities such as cracks or holes.
These can be modeled in several ways within the SFEM
environment. In Gopalakrishnan and Doyle [36], wave-
guides with cracks and holes were modeled with the
FEM over a small region and reduced as ‘super-spectral
elements’, which are then coupled with regular spectral
elements and the analysis is performed.
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8

Modeling of Smart Sensors and Actuators

8.1 INTRODUCTION

Modeling of systems with structures having smart sen-
sors and actuators are very similar to conventional
structures wherein numerical techniques, such as the
FEM or spectral techniques, as outlined in Chapter 7,
can be used. However, the modeling has to take care of
additional complexities arising due to the material prop-
erties of smart materials that make up the smart sensors
and actuators. These are reflected in the constitutive laws
in the form of electromechanical coupling, as in the case
of piezoceramic or PVDF sensors or magneto-mechan-
ical coupling, as in the case of magnetostrictive sensors/
actuators, such as Terfenol-D. From the modeling point
of view, these complexities would lead to additional
matrices in FEM/SFEM approachs.

Piezoelectric or magnetostrictive materials have two
constitutive laws, one of which is used for sensing and the
other for actuation purposes. For 2-D problems, the con-
stitutive model for a piezoelectric material is of the form:

(o)1 = (OS5 1 301 — lelsua{Ed oy

{D}y = lelra{e}sn + S0 {EDsy

(8.1)
(8:2)

The first of this constitutive law is called the actua-
tion law, while the second is called the sensing law.
Here, {a}T ={ow 0, 1Ty} is the stress vector,
{e} ={en &y 74} is the strain vector, [¢] is the
matrix of piezoeleétric coefficients of size 3 x 2,
which has units of N/(Vmm), {E}' ={E, E,}=
{V,/t V,/t} is the applied field in two coordinate
directions, where V, and V, are the applied voltages in
the two coordinate directions, and ¢ is the thickness
parameter. The latter has units of V/mm; [u] is the
permittivity matrix of size 2 x 2, measured at constant

stress and has units of N/V/V and {D}" = {D, D,} is
the vector of electric displacement in two coordinate
directions. This has units of N(V mm). [C] is the mechan-
ical constitutive matrix measure at constant electric field.
Equation (8.1) can also be written in the form:

{e} = [S{o} + [d{E} (8.3)
In the above expression, [S] is the compliance matrix,
which is the inverse of the mechanical material matrix
[C], and [d] = [C] '[e] is the electromechanical coupling
matrix, where the elements of this matrix have units of
mm/V and the elements of this matrix are ‘direction-
dependent’. In most analyses, it will be assumed that the
mechanical properties will change very little with the
change in electric field and as a result, the actuation law
(Equation (8.1)) can be assumed to behave linearly with
the electric field, while the sensing law (Equation (8.2)) can
be assumed to behave linearly with stress. This assumption
will considerably simplify the analysis process.

The first part of Equation (8.1) represents the stresses
developed due to mechanical load, while the second part
of the same equation gives the stresses due to voltage
input. From Equations (8.1) and (8.2), it is clear that the
structure will be stressed due to the application of electric
field, even in the absence of a mechanical load. Alter-
natively, when the mechanical structure is loaded, it
generates an electric field. In other words, the above
constitutive law demonstrates electromechanical cou-
pling, which is exploited for a variety of structural
applications, such as vibration control, noise control,
shape control and structural health monitoring. Actuation
using piezoelectric materials can be demonstrated by
using a plate of dimensions L x W x ¢, where L and W
are the length and width of the plate and ¢ is its thickness.
Thin piezoelectric electrodes are placed on the top and
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3 (direction of polarization)
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Figure 8.1 Illustration of the actuation effect in a piezoelectric
plate.

bottom surfaces of the plate, as shown in Figure 8.1.
Such a plate is called a Bimorph plate. When a voltage is
passed between the electrodes, as shown in the figure
(which is normally referred as the poling direction), the
deformations in the length, width and thickness direc-
tions are given by:

dy1 VL
6L = d31E1L = %7

(8.4)
SW = dy E;W = d“lvw,

ot = ds3V

Here, d3; and d3; are the electromechanical coupling
coefficients in the directions 1 and 3, respectively. Con-
versely, if a force F is applied in any of the length, width
or thickness directions, the voltage V developed across
the electrodes in the thickness direction is given by:

dsF
nLwW

d3 F dy F
y =Bt 31

or (8.5)
pnL uw

Here, u is the dielectric permitivity of the material. The
reversibility between the strain and voltages makes
piezoelectric materials ideal for both sensing and actua-
tion. Finite element modeling of the mechanical part is
very similar to what was discussed in Chapter 7, except
that the coupling terms introduce additional energy terms
in the variational statements, which results in additional
coupling matrices in the FE formulation.

There are different types of piezoelectric materials that
are used for many structural applications. The most
commonly used material is PZT (Lead Zirconate Titanate)
which is extensively used as a bulk actuator material as it
has a high electromechanical coupling factor. Due to this
low electromechanical coupling factor, ‘Piezo polymers’
(PVDF) are extensively used as sensor materials. With
the advent of smart composite structures, a new brand of
material, called Piezo Fiber Composites (PFCs) have

been found to be very effective actuator materials for
use in vibration/noise control applications.

The constitutive laws (both actuation and sensing) for
magnetostrictive materials, such as Terfenol-D, are much
more complex than those of piezoelectric materials.
These are highly nonlinear and have a similar form to
those of piezoelectric materials, which are given by:

{e} = [5)"{o} + [d]" {H}
{B} = {d}{o} + [ {H}

(8.6)
(8.7)

Here, [S] is the compliance matrix measured at a con-
stant magnetic field H, [d] is the magneto-mechanical
coupling matrix, the elements of which have units of m/A
and {B} is the vector of magnetic flux density in the two
coordinate directions. It has units called teslas, equal to
weber/metre®. {H} is the magnetic field intensity vector
in the two coordinate directions and has units called
oersted, equal to ampere/meter. It is related to the AC
current (I(z)) through the relation H = nl, where n is the
number of turns in the actuator; [u] is the matrix of
magnetic permeability measured at constant stress and
has units of weber/(Ampere meter). As in the case of
piezoelectric materials, the first equation (Equation (8.6))
is the actuation constitutive law, while the second equa-
tion (Equation (8.7)) is the sensing law. The stress—strain
relations are different for different magnetic field inten-
sities. The strain is linear with stress only for small
magnetic field intensities. For higher magnetic field inten-
sities, both sensing and actuator equations require to be
simultaneously solved to arrive at the correct stress—strain
relation. This is because a change in the magnetic field
changes the stress, which changes the magnetic perme-
ability. Hence, characterization of the material properties
of Terfenol-D is more difficult when compared to the
piezoelectric material.

In this book we will assume only linear behavior of
these materials and proceed with modeling of these smart
sensors and actuators based on this assumption. This
chapter gives the FE modeling of both 1-D and 2-D
structures with both piezo and magnetostrictive material
patches and 1-D Spectral element modeling of beam
structures with smart material patches.

More recently, micro electromechanical systems
(MEMS) have found extensive applications in almost
all fields of science and engineering. These structures are
of micron-level thickness and millimeter-level dimen-
sions. Most MEMS devices are micro sensors. A typical
MEMS device has a substrate usually made of silicon or
a polymer. Over this substrate the electrodes are placed to
obtain the necessary electromechanical coupling. Hence,
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the design of these sensors involves mechanical design as
well as the design of the electrical circuit. As in the case
of smart materials, these sensors exhibit strong electro-
mechanical coupling. When these are bonded to the main
structure (of macro dimensions), they contribute negligi-
bly to the stiffness and as such do not alter the mechanics
of the macro structure. If one needs to assess the device
performance, a local analysis of the device on the host
structure is required. In other words, we need to resort to
multi-scale modeling techniques to analyze the bulk
structures with MEMS-type devices. In addition, if one
needs to design these sensors, it is necessary to perform
local FE analysis of the MEMS device since the device
itself could be of any arbitrary shape. However, if one
needs to design a distributed sensor of micron-level
thickness and long dimensions, it is necessary to model
the host structure as well as the sensor itself. The long
dimension of the sensor may result in incomplete transfer
of the response to the sensor from the host for effective
sensing. That is, there may be some response loss. In such
cases, it is necessary to perform the analysis taking into
consideration the mechanics of the host structure and also
accounting for this loss. One such analysis for the design
of capacitive sensors is given in this chapter.

Presently, research is being focused to further minia-
turize sensors from the micro scale to the nano scale.
This was made possible by the discovery of new forms of
stable carbon atoms, namely the Cgy fullerenes and
carbon nanotubes (CNTs), in the late 1980s and early
1990s, respectively. These have opened up new area of
researchs in material science to harness their immense
potential in various fields. More importantly, when these
materials are dispersed in a matrix, due to their enormous
strength and low density they have immense potential to
become ‘next-generation’ structural materials. They are
currently a fertile area of research the world over. The
properties of CNTs were discussed in detail in Chapter 2.
One of the key properties of CNTs is that they can
propagate waves at the terra-frequency levels. This
aspect is investigated in this chapter.

In the next section, FE modeling of piezoelectric
sensors and actuators is given. In this section, a general
3-D formulation is outlined from which 2-D plane stress/
plane strain finite elements will be deduced. Next, a
superconvergent thin-walled box beam FE element with
an embedded piezoelectric actuator is formulated. This is
followed by a section on the modeling of magene-
tostrictive sensors/actuators where first the numerical
characterization of the nonlinear constitutive law is
described, followed by the formulation of a general 3-D
FE formulation of magnetostrictive sensors and actuators.
Following this, there is a subsection that will deal with the

modeling of 1-D structures with piezoelectric/magnetos-
trictive sensors/actuators using spectral finite element
methods. This is followed by a subsection that will address
the modeling of MEMS devices and in particular will
address the analysis of distributed thin-film-type capaci-
tive sensors. The last part of this chapter will address the
modeling issues and the continuum spectral element
modeling of single-walled and multi-walled carbon nano-
tubes. All these sections will also carry some numerical
examples, which highlight the capabilities and utilities of
these analytical/numerical tools.

8.2 FINITE ELEMENT MODELING

OF A 3-D COMPOSITE LAMINATE WITH
EMBEDDED PIEZOELECTRIC SENSORS
AND ACTUATORS

8.2.1 Constitutive model

Fundamental to any FE modeling is to first establish the
constitutive model and this is also true for a 3-D laminate
with embedded piezoelectric sensors/actuators. Here, we
take the same approach as we had taken for conventional
composite structures described in Chapter 6 (Section 6.2).
That is, we first establish the constitutive model at the lamina
level in the fiber coordinate system, which is transformed to
the global coordinate system. These relations are then
synthesized for all the laminas to establish the constitutive
model of the laminate. However, additional matrices will
arise in this case due to the presence of electromechanical
coupling. Consider a lamina with a piezoelectric layer, as
shown in Figure 8.2. The constitutive model in directions
1, 2, and 3 for such a lamina is given by Equations (8.1) and
(8.2), respectively. In matrix form, it is given by:

{{6}}_ (C] [e]]{{e}}
{p} el [u |\ {E}

{o} = [Ciz}

(8.8)

Composite ply

Piezoelectric patch

Figure 8.2 Local and global coordinate systems for a lamina
with an embedded piezoelectric patch.
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Expanding the above equation, we get:

on [CLiCinCi3 0 0 0 0 0 —ey]
02 CnCpCy 0 0 0 O 0 —exn
033 C3CxCy;3 0 0 0 O 0 —es3
023 0 0 0 Cyg O 0O O —en O
g31 0= 0 0 0 0 Cs5 0 —;5 O O
o1 0 0 0 0 0 Ce¢ O 0 0
Dy 0 0 0 O e5 0 yy O O
D, 0 0 0 egq 0O 0O O puy O
D; Lesi ex2 e33 0 0 0 0 0 sy

é11

&2

€33

&23

X4 €31

&12

E,

E;

E;5
Here, E; = —V®, where @ is the electric potential

vector. The above constitutive model is then transformed
to the global x—y—z coordinate system using the transfor-
mation matrix, which is given by:

T 0
m={% ) (89)

where:

[c> £ 0 0 0 —2CS T

2 Cc2 0 0 0 28

0 0 1 0 0 0
Tu) = )

0 0 0 C S 0

0 0 0 S C 0

LCS -CS 0 0 0 C>—8%]

[c? 2 0
[T]=|8* Cc* 0|, C=cos(0), S=sin(0)

L0 0 1

Here, 0 is the fiber orientation of the lamina. The consti-
tutive model in the global x—y—z direction is then given by:

Cl —le Cl —Iz
(] —[e] [q H]{a}

TlHel =
][4 }[ e le] [

{0} = [T}T[

In expanded form, the above equation becomes:

Oxx CiiCnCz 0 0 0 0 0 —éy Exx
Oyy C2CnCy 0 0 0 0 0 —epn &yy
0 Ci3C3C3 0 0 0 0 0 —enl| e
0y 0 0 0 Cyu 0 0 0 —2y O 26y
oxp=[0 0 0 0 Css 0 —&;5 0 0O 26,
Ty 0 0 0 0 0Ce6 0 0 0 ||[2ey
Dy 00 0 0&s 0 g, O O E,
D, 0 0 024 0 0 0 i, O E,
D, (e em e 0 0 0 0 0 jiy | UE:

(8.10)

The elements of [C] and [¢] are given by:

C11 = 4CeC2 8% + C*(C11C? + C118?)

+ $H(C 1 C* + CpS?)
Ciy = —4Ce6C2S> + S*(C1 1 C* + C1pS?)

+ C3(C1aC* + CnS?), Ci3 = C;3C* — CpS?
Ci6 = —2CesCS(C* — §%) + CS(C11 C? + C1,8?)

— CS(CRC* 4 CS?), €y =Cpy
Ca = 4CesC2 8% + S (C1 8% + C 12 C?)

+ CY(CaS? 4+ CnC?), Cp3 = Cy3C* + C138°
Ca = 2Ce6CS(C? — §%) + CS(C11 8% + C1,C?)

— CS(C1aS* + CC?), C31=Ci3, Cpn=0Cn
Ci3 = Cy, Ci5=CS(Ci3 — Cn3),
Cay = CuC® + Cs55%,  Cys = CS(Css — Cuy)
Css = Cus, Css = CuS® 4 C55C*,  Ce1 = Cie,
E‘62 = 626, 6()3 = 636
Ces = Ce(C* — 82)? 4+ C2$*(Cyy — C1a)

— C?$*(C1y — Cy)
e = (63]C2 + 63252), ey = (631S2 + e32C2),
214 = (e15C2S + 34, CS?)

e15 = (e15C7 — eS°),

€33 = e33,
2 = (enC’ +e158°),
éx5 = (e24C2S — ¢15CS?
3 = CS(es1 —ex), g = i C* + S,
Ty = C*S™(uyy + pian)
fop = pnCt 4 1y S,

Has = a3 (8.11)

For 2-D analysis, we normally employ either plane stress
or plane strain assumptions. For the plane stress assump-
tion in the x—y plane, we substitute o,, = o, = 0,, =



Modeling of Smart Sensors and Actuators 191

Dy = Dy =0 in Equation (8.10). Simplifying this, we
can write the constitutive model for a 2-D piezoelectric
composite as:

GXX
{{0}}: [A} _[é] {{8}}: Oz
D, L [é}T It E, Oxz
D,
[Cii Cn 0 —éy Exx
_|Cs G 0 —ep &z
0 0 Css O ey
Lesy e 0 jigg E;
(8.12)
where:
” = 1r= = = = =
Chu=Cn+ v [CIZ(C26C16 — Ces6C12)
+C (626(:16 — C22C16)]
N = 1 r= = = = =
Cis=Cp +Z [Clz(C26C36 — CesCa3)
+516(626623 - 622636)}
N = 1r= = = -
C33 = C33 +Z [C23(C26C36 — Ce6Ca3)
+E36(626623 - 622636)}
=)
A = C
Css = Css — =2 (8.13)
Cy

(]

. 1. = = - =
e31 = e3| +Z [632(C12C66 — C16C)

+236(C16Ca — C12C26)}

. - . = = = =
ey =expn + 7 [632(C23C66 — C2%C36)

+&36(C36Can — 623626)}

. - Lo = = = =z
fizy = i3 + {636(C22C69 + Ce6C29)

+232(Ca9Cos — 6266()9)}

8.2.2 Finite element modeling

Let us consider a 2-D composite laminate under plane
stress in the x—z plane. Let u(x,y,) and w(x,y, ) be its
displacement components. First, the weak form of the

governing differential equation is written. This requires
that the energy associated with the problem be written in
terms of displacements. The kinetic, strain and electrical
energy for the smart laminate having a volume V are
given by:

l\)l’-‘

plifayav, U=g j (o} {e}av,

8.14
l

E u,dv

l\)l’-‘

where:

{u}T = {u v}, {O’}T = {0 Oz 0y}

Here, p is the density of the smart composite. The
stresses are related to the strain using Equation (8.12),
which can be expressed in terms of displacement using
the strain—displacement relationship (Equation (6.27) in
Chapter 6). Using these energies in Hamilton’s principle,
we get the following strong form of the governing
equation and its associated boundary conditions:

u . Pu . OPw . 2y 2y
p%—cn%—clagx—&—cﬁ(g—zz-ﬁ-gx—&)
OE, . OE;
+ é31 o =Fu+ean o
Pw ., Pw . Pu s, [(Pw Ou
P op B2 _CB@_CSS (ﬁ+@)
+e33 %Ez =F; —és %EZX
. Ou -
ena#—eﬂ o +M33E —D; — upzE;
(8.15)

where {F S}T = {Fy F} is the surface force vector in
the two directions and E; and D are the residual
electrical field and the electrical displacement in the
smart composite. In the above equation, the first two
represent the force equilibrium in the x- and z-directions,
while the third equation represents the equation for
electrical field equilibrium. The associated force bound-
ary conditions on the edge parallel to the z-axis are:

~ Ou .~ Ow .
C117+C1377631E1:Frx+e31Es
Ox 0z

or u prescribed

(8.16)

C‘ss (gu g:) F., or w prescribed
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Similarly, the force boundary conditions on the edge
parallel to the x-axis are:

. Ou ow

Cra 2t 4 Oy ot e3E, = F., + és3E; or w prescribed
Ox 0z

.. (Ou O

Css (ét + %) =F,, or u prescribed (8.17)

where F,, and F, are the sum of all point loads in the x-
and z-directions, respectively. The main goal here is to
solve Equation (8.15). These are very difficult to solve
exactly. Hence, it necessary to recast the above equili-
brium equation in its weak form and best-fit an approx-
imate solution using the FE procedure.

The weak form of the governing differential equation is
obtained by adopting the procedure outlined in Chapter 7
(Section 7.4). This is obtained by performing a variational
minimization (Hamilton’s Principle) of the total energy,
which can be written as:

5] 5}

| Jrrotivavar L[ [ o) cpava

Hv nv
| 2} 5]
B +§J [EZDZdth + J{M}T{Fc}dt -0

I3 V n

t 5}

+ J J {u}"{F}dS,dr + J J E.D,dS,dt
t S S
(8.18)

where S| and S, are the surfaces in the structure where
the surface forces and residual displacements act. Sub-
stituting for stresses and electrical displacements from

Ey4 E;

Equation (8.12), the weak form of the differential equa-
tion becomes:

t

Jj{éu}Tp{u}dth
L J (66} T[] {e}dvdr— ] J SE[E] {e}dvdr

t nv

2 I
+ JéEZ[E]T{s}dth + J JéEzyEdedt
Hnv nv

+ {5u}T{FC}dt+J [{5u}T{FS}dS1dt

1 1S
15}

+ [ SE.D,dS»dt = 0

ns

(8.19)

The above equation is the weak form of the governing
equation (Equation (8.15)) for a composite laminate with
piezoelectric smart patches. This is the starting point for
the FE formulation.

8.2.3 2-D Isoparametric plane stress smart
composite finite element

Here, we outline the procedure for formulating a four-
node isoparametric plane stress smart composite finite
element. The element configuration is shown in
Figure 8.3. This element will have two mechanical
degrees of freedom, namely the two displacement com-
ponents u(x,y, r) and w(x,y, r), respectively, and a single
electrical degree of freedom E;(x,y, ) in the z-direction.
The electric field in this direction will induce stresses in

(b)

Figure 8.3 (a) Element degrees of freedom and (b) the isoparametric coordinate system.
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the x-direction. Thus, this element will have a total of
twelve degrees of freedom. Here, we will use the iso-
parametric formulation outlined in Chapter 7 (Section
7.6.3). Since the proposed element is four-noded, we will
use the bilinear shape functions for the mechanical
displacements required, which can be written as:

w(x,y,1)
(8.20)

where £ and 7 are the isoparametric coordinates and u;(f)
and w;(r) are the nodal mechanical degrees of freedom.
The four bilinear shape functions are given by:

Ni=7(1=80=n), Np=2(1+(1—n),

4>|»— 4>|»—
I N

N; =

I+ +n), Ni=

(1=90+n) (821)
Now, in order to choose the interpolating polynomial for
the electrical degrees of freedom, we look at the strong
form of the governing equation (Equation (8.15)). By
substituting the linear variation for the mechanical
degrees of freedom, we find that for consistency of the
displacement field we also require a bilinear variation of
the electrical field. Hence, we assume the electric field to
vary as:

E.(x,y,1) = (8.22)

where the same shape function given in Equation (8.21)
is also used here, and E_; are the nodal electrical degrees
of freedom at the four nodes.

In isoparametric formulation, we map the actual geo-
metry of the element to a square of size two defined in the
generalized coordinate system (&,7) through a Jacobian
transformation. This requires the variation of the coordi-
nate system in the generalized coordinates in terms of the
nodal coordinates of the actual element geometry. Hence,
one can use the same displacement shape functions to
describe this variation and which can be written as:

4

X(xvy)ZZNi(Cf,ﬂ)Xh

i=1

4
2ey)=) Ni(Gmaz  (8.23)

The Jacobian can be computed using the procedure given
in Chapter 7 (Section 7.6.3). The strains are evaluated by

using the strain—displacement relationship, that is:

Exx 9/ox 0 0

ez || 0 9/0z 0 “
ey 9/0z 0/ox 0 g
E, 0 0 1 ‘

Z

Using Equations (8.20) and (8.22) in the above equation
enables us to express the strains in terms of the nodal
displacement vector {u}, = {us w1 wur wr uz w3
uy  wy}" and the electric field vector {E.}, = {E.; Ex
E; Ez3}T. That is, the strain can be written as

Bl (3x8) 0
e} = [Bl{u} = " 8.24
{6} = [Bl{u} { 0 | ®
where the [B] matrix, is given by:
[ON, ON» ON3 ONy 1
Y m Y P 00000
ON, ON, ON3 ON4
0O — 0 — 0 —|— 0 — 0 0 0 O
[B]= 0z 0z 0z 0z
AN, 0Ny 0Ny DN ONs 0N Ny Ny (o
dz Ox 0z Ox 0z Ox Oz Ox
L0 0 0 0 0 0 0 O N NyN; N4

(8.25)
Using Equations (8.24) and (8.25) in the weak form of

the equation (Equation (8.19)), and performing varia-
tional minimization, we get:

{ou}] (J m’pw]dv> (i,

\4

+ {ou)! (J B.)7[C) [Bu1dv> {u,
— {ou}” ([[Bu] BE1dv> (E},
\4

—{0E.}, ( o' (B, ]dV> {u},

(8.26)

(0B} [ By) unwmv) (E.},
\4
— (o) {Fo} — (o) J[N} (F)as,

~ (0.7 | 1Be)"D.as: =0

N
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Since {ou}, and {JE.}, are arbitrary, the above expres-
sion can be written in a concise matrix form as:

{[A[lotiu] {g” { {{gz}fe } " {[g}L [[Ifﬂ { gﬂ }

-{ tFh } (8.27)
{q}.

The above equation is the elemental equilibrium in the
discritized form, where [M,,] is the mass matrix, [K,,] is
the stiffness matrix corresponding to the mechanical
degrees of freedom, [K,]| is the stiffness matrix due to
electromechanical coupling and [Kgg] is the stiffness
matrix due to the electrical degrees of freedom alone.
Note that all of these matrices require the volume integral
to be evaluated. Since the exact integration of these is
most difficult to achieve, we resort to numerical integra-
tion (see Chapter 7, Section 7.6.3). Here, {F}, is the
elemental nodal vector and {¢}, is the elemental charge
vector. These matrices are given by:

(M) =1 j j [N]

-1 -1
11

Kul =1 | j[Bu]’[é] 1B.]]dzdn

-1 -1

"p[N]|J|dédn

1
J [&)[Bz)l]dzdy

1 1
K] —zj | e s lpelsazen s28)
15

The elemental load and charge vectors are given by:

(Fho= () + [N Fhasi, (g = - [ W7 D.as,
N Sa
(8.29)

The matrices in Equation (8.27) are then assembled to
obtain their global counterparts and solved for obtaining
solutions for displacements and electric field. Note that
this has a zero diagonal block in the mass matrix. The
methods of solution for the sensing and actuation pro-
blems are quite different. For the sensing problem, for a
given mechanical loading, we need to determine the
voltage developed across the smart patch. This is done

by first obtaining the mechanical displacement due to the
given mechanical load, which is then used to obtain the
electric field and hence the voltage developed in the
sensor patch. In order to solve this, the global matrix
equation can be expanded and written as:

Mu{ii} + [Kud{u} + [Kue{E:} = {F}
[Kue]' {u} + [Keel{E:} = {q} (8.30)

We can write the second part of the above equation as:

{Q} - I[KME]T{u}

Using the above equation in the first part of Equation
(8.30) and simplifying, we get

{E.} = [Kee] ™' [KeE]™ (8.31)

Mu){it} + [Ku] = {F} (8.32)
where:
(K = (K] = [Kue) K] [Kug]"
{F} = {F} — [Kee)"'{q} (8.33)

Note that Equation (8.32) is only in terms of mechanical
displacements, which can be solved by using the conven-
tional solution techniques given in Chapter 7 (Section 7.7).
Using this solution, electrical fields are obtained using
Equation (8.31), from which the voltages can be obtained.
For the actuation problem, the voltages and hence the
electric fields go as input. That is, the second part of
Equation (8.27) is not required. Hence, the equation that
requires solution becomes:

Mol (it} + (K {0} = {F} ~ [Kue{E} = {F*} (8.34)
If an arbitrary value of E, is specified, the problem comes
under the catagory of open-loop control. If the value of
E, comes from the sensor output that is fed back to the
controller, then the control scheme is referred to as
closed-loop control. These aspects are discussed in
more detail in the next chapter.

8.2.4 Numerical example

In order to discuss the validity of the formulated four-
noded quadrilateral element and to check its performance
and behavior, a numerical example is presented. The
results obtained from the formulated element are then
compared with standard published results.
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Figure 8.4 Schematic of the piezoelectric PVDF bimorph
cantilver beam.

In this study, the modeling and static analysis of a
piezoelectric bimorph composite beam is done using the
formulated smart composite element. Chen et al. [1]
presented a comparative study of the bending of a
bimorph beam due to an external applied voltage as
part of verifying the accuracy of the piezoelectric FE
solution, with this bimorph beam configuration being
adopted from Hwang and Park [2]. In this study, the same
configuration of the bimorph beam is considered to verify
the accuracy of the formulated FE. The bimorph beam
consists of two identical PVDF beams laminated together
with opposite polarities. A schematic diagram of the
bimorph beam is shown in Figure 8.4. The dimensions
of the beam are taken as 100mm x 5.0mm x 0.5 mm.
The material properties of the PVDF bimorph beam are
taken as being the same as that of Chen ez al. [1] and are
given in Table 8.1. The theoretical solution for transverse
displacement for the above problem is presented in Chen
et al. [1], and given by:

w(x) = 037547 (’—t‘)z

= (8.35)

Table 8.1 Material properties used in the numerical
example.

Property Value

0.2 x 10"°N/m’
0.775 x 10" N/m*

Young’s modulus, Ej;
Shear modulus, G;»

Poisson’s ratio, v 0.29
Poisson’s ratio, vy 0.28
Piezoelectric constant, e3; 0.046 C/m2
Piezoelectric constant, ez, 0.046C/ m?
Piezoelectric constant, e33 0.0
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Figure 8.5 Centerline deflections for a PVDF bimorph beam
under a unit voltage.

where V is the applied voltage and ¢ is the thickness of
the beam. This beam is modeled using 200 formulated
elements along the x—z plane. When an external active
voltage is applied across the thickness, the induced strain
generates control forces that bend the bimorph beam. A
unit voltage is applied across the thickness and the
deflections at the nodes are computed. The deflection
of the beam along the central longitudinal axis obtained
from the present formulation is compared with the
theoretical value given by Equation (8.35) and the
works of Chen et al. [1] and Tzou and Tseng [3],
respectively. Figure 8.5 shows the comparison of deflec-
tion along the length of the beam for a unit voltage
applied across the thickness.

Next, the deflection of the beam is calculated for
different applied voltages over the range 0-200V. The
calculated deflections from the present study are com-
pared with those of Chen et al. [1] and Tzou and Tseng
[3] and Equation (8.35). Chen et al. [1] used a first-order
shear-deformable plate finite element, while Tzou and
Tseng [3] used hexahedral solid elements to model the
same problem. These are plotted in Figure 8.6. Figure 8.7
shows the variation of the deflection along the central
longitudinal axis for various values of applied voltages.

This problem solved here is associated with actuation
with open-loop control. That is, for an electrical load
caused by the voltage, strains are generated, which in
turn cause deformations. In Figure 8.7, we can clearly see
that greater voltages produce larger deformations. The
results presented here show close agreement between the
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Figure 8.6 Tip deflection for a PVDF bimorph beam as a
function of voltage.

theoretical and the formulated element and also with the
established works. This present study has demonstrated
the accuracy of the formulated element to handle pro-
blems involving electromechanical coupling.

8.3 SUPERCONVERGENT SMART
THIN-WALLED BOX BEAM ELEMENT

The procedure for formulating a superconvergent FE was

given in Chapter 7 (Section 7.8). In this section, a generic
smart composite thin-walled beam element having an

-0.01p
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-0.04 1
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-0.08

n (mm)

10

Centerline deflect

40 60 80 100

Longitudinal axis (mm)

0 20

Figure 8.7 Deflection profile for a PVDF bimorph beam for
various voltages.

arbitrary cross-section with open and closed contours is
developed. This element will find its use in the modeling
of aircraft structures, which are essentially thin-walled.
The element uses higher-order interpolating polynomials
that are derived by solving the static homogeneous
coupled governing differential equation and hence pre-
dicts the exact elemental stiffness matrix and a electro-
mechanically coupling matrix. Each node has seven
degrees of freedom (dof) including extension, two in
the bending dof in the span-wise and chord-wise direc-
tions, corresponding shears and twist and a single elec-
trical dof.

First-order shear deformation theory is used for trans-
verse shear deformation and out-of-plane torsional warp-
ing is modeled by using Vlasov theory. A higher-order
interpolating polynomial for twist eliminates the need of
a separate dof for the resulting restrained torsional
warping. The element is then validated by comparing
the electrically actuated response of different smart beam
configurations to those available in the literature. The
fundamental aspect of the superconvergent finite element
formulation is the interpolating polynomials that satisfy
the static part of the governing equation exactly. Hence,
deriving the governing differential equation is the first
step in the formulation of this element. This is taken up
in the next subsection.

8.3.1 Governing equation for a thin-walled smart
composite beam

The general coordinate system for deriving the governing
equation is shown in Figure 8.8. The proposed element
is assumed to undergo three translations and three rota-
tions. From geometrical considerations and assuming the

Figure 8.8 General coordinate system adopted for the box-
beam element formulation.
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in-plane deformation to be very small, the beam displa-
cement field considering First-Order Shear Deformation
Theory (FSDT) and Vlasov theory for torsion can be
written as:

0 0
w(s) = vo5 — wo e — gy
Jy 0z
v(s) Voa+W0&+rl//
d
u(s) = uo + 20y + y0x + <p8—‘f: (8.36)

where ug, vo and wy are the displacements in the x, y
and z directions; , 0, and 0, are the rotations about the
x, y and z directions (see Figure 8.8). The torsional
warping function ¢ for a closed cross-section of wall
thickness 7 is expressed as in Megson [4].

50s:J\E 0= E

s
6()\
d 2A,
¢= Jr s+ S Gt’ Gt
0 0

(8.37)

where A, is the cross-sectional area enclosed by the mid-
line contour, G is the shear modulus, r is the radius, s is
the tangential coordinate and 7 is the normal coordinate.
For open contours, neglecting secondary warping, ¢ is
given by:

s

= —ers
0

(8.38)

The relevant strains are the axial strain &,, and the two
shear strains, which are given by:

_Ou_ w00, 0. O
T m T e Yt (8.39)
_Ou v _ (0w 9z (v o\
e a5 Tax [(ax +9v") s+ (a +92) Bs}
el
+ {(r as) ﬁx} (8.40)
_Ou  Ow dy  Owgy Oy
P = o o K@Z%‘Wa)
0z avoaz 0p\ Oy
+(9 Bn ox Bs)} {(q—‘—%) E}
(8.41)

The last square brackets in Equations (8.40) and (8.41)
are due to torsional displacement, which are normally
quite small and hence neglected in the present formula-
tion. A state of plane stress is assumed and a reduction
procedure as adopted in Chapter 7 (Section 7.2.1) is
again done here starting from the 3-D constitutive model
given in Equation (8.8) to arrive at the required consti-
tutive relations, which can be written for smart laminated
thin-walled structures as:

O xx é‘]] C]ﬁ 0 Exx é31
Tis = | Cie Ces O Vs ¢ — | €6 | E
Txn 0 0 CSS Vxn 0
(8.42)
where:
- Ci? - CpC
C11—C11—:l—27 Cis = C6 — —=—2,
Cx 2
~ _ ~ 2 N _ E‘ 2
Cos = Cop — ==, Cs5 = Cs5 — —>
22 C44
. Cn. . _ G-
€3] = €3] — ?u€327 €36 = €36 — ?%632 (843)
22 22

The equations of motion are derived using Hamilton’s
Principle for which it is necessary to write down all of the
energies associated with the problem, expressed in terms
of deformations. That is, there are three energies asso-
ciated with the problem, namely the strain energy, kinetic
energy and the energy due to electrical degrees of free-
dom, which can be written as:

J (O-X)ng)( + TXS’VX.Y + TX"’YXH) dAdx?

l\)l'—‘

B ey

(1’42 T4 wz) dAdx

l\)\'—‘

EDdAdx

2 Sy

(8.44)

NI'—‘

-
.l
-

where E is the electrical field, D is the electrical dis-
placement and L is the length of the beam. Applying
Hamilton’s principle, we get seven highly coupled partial
differential equations corresponding to seven degrees of
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freedom, which are given by:

I uy 0%0, b7 %0, 631,// 0?uy
0 or o or " o2
82\/0 8 wo 831//
- Ay.?16 W - AZS]6 W - Al//ll %
Oy 820 00, 00,
_Aozl()W —Bn W; — A6 5= o —Biu—= p
a0 OFE
_Ayslf)aixz‘f“AeSI a: 0 (845)
v Py 0 u
2 2 0 2 2 \o9V 0
(’ i > or <1m1 I) o MO e
32\/0
(A\s66 +A4566) P
Pw o 0?
- (Azsys66 _AzsySSS) Ox 20 +A)s¢16 x 113/ _AysozlGa—xlf
%0, 00, 020,
- Bysl() WZ) - (Azsysﬁé A*stS) Ox Byslﬁ w
00, OE
<AV566 +Ayn7555) Ox +Ae36)s Ox =0 (846)
82W0 821// 62140
(Izs2 +Iys2> W + (Iysq +Izsr> W 7AZSI6W
821/() aZW()
- (Ayszs66 7Ayszs55> W - <Azs366 +Ays255> W
Io& 0? %0,
+Azpi6 o lﬁj Ameaafxf - Bmsﬁ
a0, 0%0,
- (Azx266 - A_vsanS) aix} —Bi6 e
00, OE
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~ 00,
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where the stiffness constants are given by:

[Aﬂs yis Brtsnyis Brsnyis Drts.nyis Drts.miss Drtsmi

1 , 2, ), 2 7yz,yz}dsdn

Il
o
3% s
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and: (9 Uup 0140 8 Vo aV()
Aqoll B +Aa16 Ix +Aysq>16 O +A}s066 Ox
o 2
) € 17 s Vs <ny y s Wy . 8 (9w
f(s I’l) |: 25y YssZny Yns 159, @ <r 8S):| +AZ5¢16 o +Azm66 a()
Here, (r — d¢p/ds) is taken equal to «. The stiffness A Py Aor o B 0y
. . . . 011 53 T Awe6 -+ Boi1 55
coefficients associated with smart or electrical degrees Ox Ox Ox
of freedom are given by: a0,
+ (Botl6 +Azs<pl6> (97) + Azsx669y
X
A ij 7B i v 7 i) S, n 1 5y dsdn, — 29(. _ OE
Aciston: Beistsn) e JJ el ( ] +Boti 55 + (Boclﬁ +Aysa66)91 —Aip o
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—ApeE=T 8.55
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By —— o +B\516 o 4 Bgig o — By e
Hamilton’s principle will also give the six essential u
i3 ; . 0 00
(force) boundary copdltlons, which are necessary for 1B 2 W D, 2y B.y160,
the element formulations. These essential boundary con- Ox Ox
ditions are given by: 00,
+ Dll Ox -+ By&166 e?lE = My (856)
Oug vy Owy
A —— o +A}Y16 o %+ Acis e o O v owe - O
By —— +Bys16 + B16—— — Byni -7
Py o a0, Ox Ox Ox Ox
— Aot 55 g + Ayte 5 o + By = pe L+ Agi60y oy 00,
I + Byis - o + Dy = o >+ Bis160y
+B118—;+Ay51691 —As1E=P (8.52) _ o0
+ D —— x Bysi60: — Bes 1 E = M. (8.57)
8140 31)0 . . .
A’mﬁﬁ— + (Aysz(,() +Amz55> B These governing equations and the associated boundary
* * " conditions will be used for finite element formulation.
Owy oy
+ (Azsyséé +A79\\55> E) ysq)l()ﬁ
* * 8.3.2 Finite element formulation
oy a0,
+ Aysu66 x + Bysi6 aix) + <Azsy566 + AzsanS) 0y The proposed element is a two-noded box beam element
20 and each node has three translational degrees of freedom,
+ Byt + (Avsz o6 + Ayn1555>92 namely the u, v and w displacement components, three
Ox A rotational degrees of freedom, namely 0,, 0, and v/, and
—ApeE =V, (8.53)  one electrical degree of freedom, E. These are shown in
Figure 8.9.
The first task here is to solve the static part of the
Ouo aV() . . . .
Az516a + (Ayszs66 *Aysms) N governing equation exactly and use this solution as
5 interpolating functions for FE formulation. However,
n ( Asge + Av5255> Owo Azx(/)lﬁ% the static part ‘of tbe governing equations (Equations
Ox Ox (8.45)—(8.51)) is highly coupled and complex and
A oy B 00, 4 A 0 needs careful analysis before one assumes a solution
T Ao o T ‘SlﬁaiJr( 266 W"55) Y that could be nearly exact. Looking at the governing
90 differential equations, we see that the axial displacement
+BZ51687);+ (Ay51566 *Aynysss)ez (up) and slopes about the y- and z-axis (6, and 0)
require a quadratic polynomial while the lateral and
—AsesE =V, (8.54) transverse displacements (vo and wp) and the rotation
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Figure 8.9 Schematic of a thin-walled box beam with nodal degrees of freedom.

about the longitudinal axis (twist ¥/) require cubic poly-
nomials.

Assuming a polynomial variation for the electrical
degree of freedom is very involved. Here, we assume
that the electrical degree of freedom will be prevalent
only in those regions where the structures have these
smart PZT patches, which are normally of small length
over a small area and hence variation of the electrical
field over this small length can be assumed constant. This
amounts to assuming that all of the gradients of the
electric field are equal to zero. Hence, we can assume the
solution to the governing equation as:

uo(x) = ai + apx + asx?,
vo(x) = as + asx + agx’> + arx’
wo(x) = ag + aox + ajox® + ayx’,
Y(x) =an +apx+ a4 ajsx’
0y(x) = a6 + arzx + agx’,
0.(x) = ayo + axx + anx*, E(x)=a, (8.58)

There are a total of twenty two constants in the assumed
solutions. However, there are only twelve mechanical
degrees of freedom. All of the other nine constants in the
mechanical displacement field are dependent constants.
The dependent constants and the constant associated with
the electric field can be obtained in terms of the inde-
pendent constants by substituting the assumed displace-
ment field (Equation 8.58) into the electromechanically

coupled governing equations (Equations (8.45)—(8.51)).
Here, two vectors are introduced, {a} and {a}, where the
former contains all the unknown constants, while the
latter contains all the dependent constants. These can be
written as:

{a} ={ar ar as as ag ays apn ap

ai ay ap ax}’ (8.59)
{a} ={{a.} a} ={as as a7 aw an
ay ais aig ay a}  (8.60)

We first establish the relationship between the dependent
and independent coefficients by substituting the assumed
field in the governing equations. This can be written
as:

[Ail{a} = [A:]{a} (8.61)
where [A;] and [A;] are matrices dependent on the
material properties. These are of sizes 10 x 10 and
10 x 12, respectively. Inverting the above relation and
rewriting the above relation:

@={M = = [ @

e AE]

{a.} = [Al{a}, ac = [Agl{a} (8.62)
The matrices [A;] and [A;] can be found in Mira Mitra

[5]. Matrices [A] and [Ag| are evaluated by inverting
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matrix [A;] numerically. Evaluation of these matrices will
help in writing the displacement field only in terms of the
unknown independent coefficients {a}.

The next step is to evaluate the exact shape functions.
For this, we need to define the nodal mechanical degrees
of freedom vector, which is given by:

{ute ={uor vor wor ¥, 0y 0a up (8.63)

T
voo w2 Y, Oy 02}

The displacement field is evaluated at the two nodes of
the box beam element located at x = 0 and at x = L. This
enables us to write the nodal degrees of freedom in terms
of the unknown coefficients as:

{u}, = [Rl{a} (8.64)
Inverting the above equation, we get:
{a} = [R " {u}, = [B{u}, (8.65)

Similarly, we can express the electric field in terms of
mechanical nodal displacements. For this, we use Equa-
tion (8.62) and (8.65), from which we can write:

ac = [Apl{a} = [Ag][Bl{u}, = [K{u}  (8.66)
Next, we use the six force boundary conditions given in
Equations (8.52)—(8.57) and express them in terms of
nodal forces, that is:

P(0) =—P;, V,(0)=-Vy, V/(0)=-V,
T(0) =—-T1, M(0)=—-M,;, M[(0)=—-M,
P(L)=P,, Vy(L)=Vy, V.(L)=Vy,
T(L)=T,, M,(L)=My,, M. (L)=M,

Substituting these in the six force boundary conditions
(Equations (8.52)—(8.57)), we can write the nodal force
vector as:

{F} = [Cl{a} — [KA]E (8.67)

where the matrix [K,] is of the form:
[Kal =[~Ae31 —Awzeys —Aczss —Acen —Ai31 —Besi
AeBl Ae36ys Ae}ézs Ae36a Ae3l _Be31] (868)

[Ka] is the electromechanical coupling matrix which
gives the expression for the actuating force due to the

electric field E applied to the PZT patch. Substituting for
{a} from Equation (8.65) into Equation (8.67), we get:

{F} = [C{BHu}, — [KAE = [K[{u}, — [KAE

or {F} + [KAJE = [K]{u}, (8.69)

Here, [K] is the exact static stiffness matrix, which is
derived from the interpolating polynomials that exactly
satisfy the governing differential equations.

8.3.3 Formulation of consistent mass matrix

The consistent mass matrix for this element is obtained
by using the material-dependent shape functions [N] and
is given by:

[M] = J Jp[N]T [N]dnds (8.70)
0A

Hence, it is necessary to first establish the shape func-
tions. For this, we use Equation (8.65) in the interpolat-
ing polynomials given by Equation (8.58) and these can
be written as:

up(x)=[1 x 00 0 0 0 0 0 0 0 0]{a}
+[x* 00000 0 0 0]AJ{a}
vo(x)=[0 0 1 x 0 0 0 0 0 0 0 O}{a}
+0 x> x* 0 0 00 0 0][A]{a}
wo(x)=[0 0 0 0 1 x 000 0 0 0]{a}
+0 00 x x¥ 00 0 0][A{a}
Yy(x)=[0 00000 1 x 00 0 0]{a}
+0 000 0 % X 0 0][Al{a}
Oy(x)=[0 0 00 00001 x 0 0]{a}
+0 000000 x* 0][A{a}
0.(x)=[0 0 0 0 000000 1 x|{a}
+[0 00000 00 x*AJ{a} (8.71)

Using {a} from Equation (8.65) in the above equation,
we can write the displacement vector as:
{u} = [N{u}, [NJ=[Nu Ny Nw Ny

No, No.]

(8.72)

where [N, N, N, N, Ng Np] are the shape
functions corresponding to the six displacement fields.
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Equation (8.72) is then substituted into Equation (8.70)
to get the mass matrix, which becomes:

)=t [ .7 .

+ <sz2 +1).S2> l([NV]T[NV] N[V ) dx
—(Lasg—1ysr)

IV I N T VL]

(Lo tg) | (VT IV V)TN

e~ C— 1~

e [ () LA A A

+1, [NHJT[Nez]dx—l-EJ([NHZ]T[N,J-Q-[NAT[N@])dx

)»]T[NMH[NM]T[Neyl)dx

—
=

+

+
=~
S N O N O~

([Ng,_}T N, ]+IN,]" [N@y]) dx
+1wj<vvmfm[N(,,,,JT[Nu)dx
0

100 mm

zj (09, = 14,71 o

to [ (0 L s

—1e [ [Ny]" [Ny.]dx (8.73)

S e Tl —

where the inertial constants are given by:

[1051177171277277274"(5,”)}

= ”p[L 2,3,25,y%, s, (s,n)]dsdn

s n

8.3.4 Numerical experiments

The performance of the formulated element is first
examined for an open-loop response due to electrical
actuation. The static and dynamic responses are then
compared with the experimental and numerical results
available in the literature.

The static analysis is performed on a bimorph PVDF
(piezoelectric poly(vinylidine fluoride)) cantilever beam
due to an applied voltage of 1V using the formulated
element. The beam has two layers of PVDF with oppo-
site polarities for bending actuation. The dimensions of
the beam are shown in Figure 8.10. The PVDF material
has a Young’s modulus of 2 GPa, a Poisson’s ratio of
0.29 and a density of 1800kg/m3. It also has piezo-
electric coefficients d3; = d3, = 2.2 x 107! m/V. The

(@)

I 5 mm

(b)

Poling Direction l

Figure 8.10 Schematic of a PVDF bimorph beam for static analysis: (a) top view; (b) side view.
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Table 8.2 Comparison of the results obtained for
a PVDF bimorph beam with literature values
(all entries x 10~7 m).

Table 8.3 Natural frequencies (Hz) for the aluminum
beam shown in Figure 8.10.

Mode MSC/NASTRAN [12] Present
Nodes 1 2 3 4 5 formulation
Experiment [6] — — — — 3.15 1 (bending) 5.68 5.76
Solid FE [3] 0.124 0.508 1.16 2.10 3.30 2 (bending) 33.59 33.77
Shell FE [7] 0.132 0528 1.19 2.11 3.30 3 (torsion) 60.24 59.06
Present 4 (bending) 91.21 90.48
formulation 0.132 0528 1.19 2.11 3.30

tip displacements of the beam were obtained experimen-
tally by Tzou [6]. In Table 8.2, the displacements at the
five nodes (see Figure 8.9) are presented and compared
with experimental and 3-D and shell FE results available
in the literature.

A good correlation is observed with the FE results.
The tip displacement obtained with the formulated ele-
ment converges with just one element, confirming the
exactness of the solution. The 3-D FE results were
obtained by Tzou and Tseng [3] using 5, 11-noded
hexahedron elements. The shell FE results were obtained
by Tzou and Ye [7] using a 12-noded piezoelectric
triangular shell elements with four dof per node.

An experimental dynamic analysis of a cantilever
aluminum beam with PZT actuators was done by Reaves
and Horta [8]. This beam had one PZT actuator mounted
on the top surface and near the root. A schematic of
this beam is shown in Figure 8.11. A PZT actuator (type
PZT-5A) was used, the material properties of which are
the following: Young’ modulus, E = 1.0 x 10’ 1b/in2;

Poisson’s ratio = 0.3; Shear modulus G=3.82 x 10°1b / in2;
density =7.16 x 10~*(Ibs?) /in*; piezoelectric constant,
d31 =6.73x107%in/V. For this problem, the first four
natural frequencies were obtained in Reaves and Horta [§]
using a general-purpose software package (MSC/NAS-
TRAN). Here, the same model is modeled with ten
formulated elements. The results of these two analyses
are compared and shown in Table 8.3. These results show
excellent agreement between the two models.

Next, a composite T300/976 graphite—epoxy box
beam, shown in Figure 8.12, having two bimorph sur-
face-mounted PZT actuators, is considered. This problem
was again studied in Reaves and Horta [8] using MSC/
NASTRAN. The material properties of the PZT actuators
are the same as in the previous example. The properties
of the T300/976 graphite—epoxy beam are as follows:

E;; =2.17x107Ib/in*, Ej = 1.305x10°1b/in’,

G = 1.03x10°1b/in” = G135, Ga3 = 1.305x10°Ib/in’,
p=1.49x10"*(Ib/s?) /in*

Actuator
I 16 in I
W ! 3in >
_Il.75 in 2.78 in
% -y
Actuator
7 in
% / L 0.008 | ¢: o
. i

Figure 8.11 Schematic of the PZT-mounted aluminum beam for dynamic analysis.
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Figure 8.12 Schematic of the PZT actuator mounted on a T300/976 graphite—epoxy box beam.

As before, the above beam was modeled with ten super-
convergent FEs and Table 8.4 shows comparison of the
results between the present element and the MSC/NAS-
TRAN results, which again shows excellent correlation.

8.4 MODELING OF MAGNETOSTRICTIVE
SENSORS AND ACTUATORS

8.4.1 Constitutive model for a magnetostrictive
material (Terfenol-D)

Some magnetic materials (magnetostrictive) show elon-
gation and contraction in the magnetization direction due
to an induced magnetic field. This is called magnetos-
triction, which is due to the switching of a large amount
of magnetic domains caused by spontaneous magnetiza-
tion, below the Curie temperature point. Thus, magne-
tostrictive materials have the ability to convert magnetic

Table 8.4 Natural frequencies (Hz) for the
composite beam shown in Figure 8.11.

Mode MSC/NASTRAN [8.12] Present
formulation

1 (bending) 11.1 10.9

2 (bending) 68.9 67.7

3 (torsion) 186.7 187.7

4 (bending) 279.6 239.1

energy into mechanical energy, and vice versa. This
coupling between magnetic and mechanical energies
represents what is called the transductor capability,
which allows a magnetostrictive material to be used in
both actuation and sensing applications.

One of the main issues in the design of these magne-
tostrictive sensors/actuators is to predict their behaviors
under various mechanical and/or magnetic excitation
conditions through the constitutive relationships of the
materials. The constitutive relationship of magnetostrictive
materials consists of two equations, i.e. a sensing and an
actuation equation. In the sensing equation, the magnetic
flux density is a function of the applied magnetic field and
stress whereas in the actuation equation, the strain is a
function of the applied magnetic field and stress. Both
sensing and actuation equations are coupled through the
applied magnetic field and mechanical stress level. As a
result, the constitutive relations for a magnetostrictive
material, such as Terfenol-D, are highly nonlinear.

The analysis of structures with magnetostrictive sen-
sors/actuators is generally performed by using uncoupled
models. Uncoupled models are based on the assumption
that the magnetic field within the magnetostrictive mate-
rial is proportional to the electric coil current multiplied
by the number of coil turns per unit length. Due to this
assumption, the actuation and sensing equations become
uncoupled. For the actuator, the strain due to the mag-
netic field (which is proportional to the coil current) is
incorporated as the equivalent nodal load in the finite
element model for calculating the ‘block’ force. Thus,
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with this procedure the analysis is carried out without
taking smart (magnetic) degrees of freedom in the finite
element model. Similarly for the sensor, where generally
the coil current is assumed to be zero, the magnetic flux
density is proportional to the mechanical stress, which
can be calculated from the finite element results through
‘post-processing’. This assumption for the magnetic field
leads to ‘violation’ of the flux line continuity, which is
one of the four Maxwell’s equations in electromagnet-
ism. On the other hand, in the coupled model it is
considered that the magnetic flux density and/or strain
of the material are functions of the stress and magnetic
field, without any additional assumptions for the mag-
netic field, as in the uncoupled model.

The 3-D constitutive law for a magnetostrictive mate-
rial is given by:

{e} = "o} + [ {H} = {0} =[O} — ] {H}

{B} = [dl{o} + (W' )|{H} = {B} = [e]{e} + [w]{H}
(8.74)

where {¢} and {c} are the strain and stress, respectively;
[S{H }] represents the elastic compliance matrix measured
at a constant magnetic field {H} and [u(”)] represents the
permeability measured at a constant stress {c}. Here, [d]
is the magneto—mechanical coupling coefficient matrix,
which provides a measure of the coupling between the
mechanical strain and magnetic field. In general, [S], [d]
and [y] are nonlinear as they depend upon {¢} and {H}.
The first part of Equation (8.74) is often referred to as the
direct effect and is called the actuation equation, while
the second part of Equation (8.74) is known as the
converse effect. It should be noted that the elastic con-
stants which are used correspond to the fixed magnetic
field values while the permeabilities correspond to the
fixed stress values. Alternatively, we can write the con-
stitutive relations as given on the right-hand side of
Equation (8.74). Here, [Q] is the elasticity matrix,
which is the inverse of the compliance matrix, [p?] is
the permeability matrix measured at constant strain and
[e] is the magneto-mechanical stress coefficient matrix.
[1¢¥] and [e] are related to [Q] through the relation:

Let us consider a simple 1-D model. A look at Equation
(8.74) reveals that for each value of the magnetic field
H, there is a different stress—strain curve. Similarly, for
each stress level, there is a separate magnetostriction—
magnetic field curve. In other words, unlike piezoelectric

materials, one has to solve the sensing and actuation
equations simultaneously to get all of the required
quantities. Hence, the equations require to be solved
iteratively. This is done in Ghosh and Gopalakrishnan
[9] through two approaches. In the first approach, an
Artificial Neural Network is created by ‘training’ the
network with the data supplied by ETREMA Inc., USA,
which is one of the few companies in the world which
market the products derived from Terfenol-D. If the
stress level and the magnetic field intensity are fed into
this network, then the required stress—strain and magne-
tostriction—magnetic field relations can be obtained. In
the second approach, the data supplied by ETREMA Inc.,
USA are used to fit a fifth-degree polynomial for mag-
netostriction as a function of the magnetic field H. This
curve is later used to get the required curve for stress—
strain. These curves are shown in Figures 8.13 and 8.14.
These two plots were obtained through an iterative
solution of Equation (8.74) and match exactly with the
plots given in the ETREMA manual [10] on Terfenol-D. In
addition, the stress—strain and magnetostriction—magnetic
field curves are given for different levels of magnetic field/
stress not covered in the ETREMA manual.

8.4.2 Finite element modeling of composite
structures with embedded magnetostrictive patches

The finite element formulation of structures with embedded
magnetostrictive patches differs depending upon whether
the constitutive model is coupled or uncoupled. For the
uncoupled model, the magnetic field is assumed to be
proportional to the coil current and as a result, the sensing
and actuation constitutive relations are solved independently.

That is, there is no need to have the magnetic field as
the independent degree of freedom. However, in a
coupled model, both the sensing and actuation constitu-
tive laws need to be solved simultaneously, since no
explicit variation of the magnetic field with respect to the
magnetostrictive patch parameters are available. This
requires that the magnetic field be taken as an indepen-
dent degree of freedom. Here, we outline the procedure
of modeling magnetostrictive sensors/actuators for both
uncoupled and coupled constitutive laws.

Finite element formulation begins by writing the
associated energy in terms of the nodal degrees of free-
dom by assuming displacement and magnetic field varia-
tions in three coordinate directions over each element.
That is, the displacement field can be written as:

(U ={u v w}=INJU}, (8.75)
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Figure 8.13 Magnetostriction—magnetic field curves for different stress levels in Terfenol-D.

Here, u(x,y,t), v(x,y,z,¢) and w(x,y,z,t) are the dis- coordinate could be adopted. The strains can be
placement components in the three coordinate directions, expressed in terms of displacement through a strain—
[N,] is the shape functions associated with mechanical displacement relationship, that is:

degrees of freedom and {U}, is the nodal displacement

-

vector. If an isoparametric formulation is used, then the {e} ={en &y &z 2 7 2o} =[BHU}

conventional isoparametric shape functions in natural (8.76)
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Figure 8.14 Stress—strain curves for different magnetic field intensities in Terfenol-D.
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where [B] is the strain-displacement matrix and its
evaluation is given in Chapter 7. For coupled analysis,
we need to take the magnetic field as the independent
degree of freedom. In such cases, we can write the
magnetic field in the three coordinate directions as:
{H) = {H, H, H}=[Na{H}, (877

where {H}, is the nodal magnetic field vector and [Ng] is
the shape function associated with the magnetic field
degree of freedom.

The strain energy in a structure with magnetostrictive
patches over a volume V is given by:

1 T
V.= EJ {e} {o}dV

Substituting for {¢} from Equation (8.74) converts the
above equation into terms of strains and magnetic field
vectors. In this equation, the strains are expressed in
terms of displacement using Equation (8.76) and the
magnetic field in terms of the nodal magnetic field vector
using Equation (8.77).

The resulting expression for the strain energy will
become:

Ve= %{U}J[KW]{U}E - %{U}ET[KuH]{H}e (8.78)

where:

Kl = | (BT 1QIBIV.  (Kua) = [ B(e) WalaV
(8.79)

and [K,,] is the stiffness matrix associated with the
mechanical degrees of freedom and [K,] is the coupling
stiffness matrix, which couples the mechanical and
magnetic degrees of freedoms. The kinetic energy is
given by:
1 . .
T, = EJ {U} p{UYdV (8.80)
4
Here, {U} is the velocity vector and p is the average

density of the host material. Using Equation (8.75) in the
above equation, we can write the Kinetic energy as:

T = {0 Mul{0} (s:81)

where [M,,] is the mass matrix associated only with
mechanical degrees of freedom and is given by:

M) = j[zvufpwdv (8.82)

14

The magnetic potential energy for the system can be
written as:

1 T
V= 5] (B {H}dV

Vv

(8.83)

Substituting for [B] from Equation (8.74) and for {H}
from Equation (8.77), we can write the magnetic poten-
tial energy as:

Vo =5 | {lde) + bt} ey (80

Substituting for strains from Equation (8.76), we get:

Vm:%{U}eT[KuH]T{H}e+%{H}eT[KHH]{H}e (8.85)

where:

(K] = J Nl [NV (8:36)

When an applied current / (amp) (AC or DC) is fed to
the patch having N number of coils, it creates a magnetic
field, which in turn introduces an external force in the
patch. The external work done over a magnetostrictive
patch of area A due to this field is given by:

W =V [ ) {H)an (8.87)

A

Here, [1°] is the permeability matrix measured at con-
stant stress. It is necessary to convert this area integral
into a volume integral. If # is the number of coil turns per
unit length and {/.} is the direction cosine vector of the
coil axis, the above area integral can be converted into
the volume integral by replacing N by n{l.}". Substitut-
ing for the magnetic field from Equation (8.77), Equ-
ation (8.87) becomes:

W = {(Fu {H},, {Fu} = In{lc}TJ[u”] Nuldv

(8.88)
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The external mechanical work done due to the body force
or surface traction vector can be written in the form:

We = (R} {U}, (8.89)

15
Using Hamilton’s principle, & [ (Te = Vet Vy+ Wyt
n
W,.)dt = 0, gives the necessary FE governing equation.
This takes a varied form for uncoupled and coupled
models, which are given below.

In the uncoupled model, the magnetic field is assumed
to be proportional to the coil current and hence a
variation with respect to the magnetic field is not per-
formed. That is, the magnetic field is normally equal to
H = nl, where n is normally the coil turns per unit length of
the magnetostrictive material patch. With this assumption,
Hamilton’s principle will give the equation of motion as:

Mul{U}e + [Ku{U}, = [Kunl{H}, —{R} (8.90)
where {U}, is the elemental acceleration vector and the
magnetic field in the above equation is obtained by
{H}, = n.I, with n, being the elemental coil turns per
unit length.

In the case of the coupled model, one has to also take a
variation on the magnetic field as there is no explicit
relation of this with respect to any of the parameters.
Hence, both mechanical and magnetic degrees of free-
dom are considered as unknowns. Hamilton’s principle
will give the following coupled set of equations:

{[Mm,} [0]} {U}. N [[KW] —[Kun] ] { {U}. }
-- T

[0 o] I{{H}, (Kur]”  [Kun] ) U{H},
_ { —{R}}

{Fu}
Note that the stiffness matrix is not symmetric and we
have a block zero diagonal matrix in the mass matrix as
the magnetic field does not contribute to the inertia of the
composite. For an effective solution, the above equation
is expanded and the magnetic degrees of freedom are

condensed out. The reduced equation of motion can be
written as:

(8.91)

Mu{U}, + K, {U}, = {R"} (8.92)

where:
Kl = (Ko + Kt K] (Ko

(8.93)
{R*} = [Kun)[Knn) ' {Fn} — {R}

The assembly of matrices and solution procedures are
similar to those detailed in Chapter 7.

After computation of the nodal displacements and
velocities, we can compute the sensor open-circuit
voltage. This is particularly of great interest in structural
health monitoring studies. The processes of computing
this for coupled and uncoupled models are quite differ-
ent. Using Faraday’s law, the open-circuit voltage V, in
the sensing coil can be calculated from the magnetic flux
passing through the sensing patch.

In the uncoupled model, the nodal magnetic field is
assumed constant over the element and with zero sensor
coil current. To get the open-circuit voltage, the magnetic
flux density can be expressed in terms of strain from the
sensing equation (second part of Equation (8.74)), which
is given by:

{B} = dl{o} = [d][Q{z} = [el{e} = [][B{U}.

Now using Faraday’s Law, the open-circuit voltage of the
sensor having Ng turns and area A, can be calculated
from the expression:

Vo N[ S lEm @99

The above integral can be converted into the volume
integral as before by multiplying it with the direction
cosine vector and the open-circuit voltage can now be
written as:

V,={F{U.}, F.} = —n,\v{l[.}TJ[e][B}dV (8.95)

Here, ny is the coil turns per unit length of the sensor.

In the case of the coupled model, the magnetic flux
density is computed from the nodal magnetic field, which
is obtained from finite element analysis. Thus, the open-
circuit voltage in the sensor takes a different expression
and can be calculated from the expression:

0

1) A

vV, = —N.\.J (8.96)

A

This can again be converted into the volume integral as
before. Substituting for {H} from Equation (8.77) in
terms of the nodal magnetic degrees of freedom, for
which the second part of Equation (8.91) is used, and
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finally after simplification, the open-circuit voltage can
be written as:

v, = {F.}{U.},

{F.}" = —n{l}" J[u”][NH]dV (Knn) ™' K]
(8.97)

8.4.3 Numerical examples

In this section, the effect of coupling on the overall
response of a 1-D composite structure is brought out.
Hence, for all analysis the results are compared with the
uncoupled model to see the effect of coupling. Here, we
consider two examples of a one-dimensional structure —
the first is a 1-D magnetostrictive rod model, while the
second is a composite beam model based on first-order
shear deformation theory. For the last example, static,
frequency response and time history analyses are per-
formed to bring out the essential differences between the
coupled and uncoupled models.

8.4.3.1 Effect of coupling in a Terfenol-D rod

The displacement field in a rod is given by:

u(x,y,z,t) = u(x,t), v(x,y,z,6) =0, w(x,y,z1) =0
and the magnetic field is present only in the axial
direction and is given by H(x, ). Consider a Terfenol-D
rod of length L, cross-sectional area A, Young’s modulus
E, magneto—mechanical coefficient d and constant stress
permeability u’. For finite element formulation, we use
conventional rod shape functions for both displacement
and magnetic degrees of freedom, which are given
by:

u(x, 1} = [NJ{U}, = N1 (x)u (1) + Na(x)ua (1)
H(x, 1} = [Nul{H}, = N1 (x)H: (1) + N2(x)Ha (1)

m=(1-3) 1= ()

where u; and u, are the two axial degrees of freedom at
the two ends of the rod. Using the above equations,
strains can be evaluated as a function of nodal displace-
ment. Substituting Equation (8.98) into Equations (8.79),
(8.82), (8.86), (8.88), we can get the mass matrix, all the

(8.98)

relevant stiffness matrices and the load vector due to the
magnetic field. These are given by:

[Mm,]:'OA—L{Z 1}7 [Kuu]zg{l —1}7

6 [1 2 L|-1 1
EAd[—-1 -1
[KMH]_T|:1 1:|7
ALp’ [2 1 nlALuC 1
K = Fyl = .
R e N e )

Uncoupled analysis For uncoupled static analysis, the
corresponding equations become:

RN R E A
(8.100)

where u; and u, are the two nodal axial displacements
in a magnetostrictive rod. For uncoupled analysis,
H, = H, = nl. Here, we consider the following three
cases:

e Keeping the boundaries fixed, that is, u; = u, = 0, by
solving Equation (8.100) for the block force, we get
R, = —R, =AdEH, = AdEIn and the  stress
g = RI/A B Rz/A = dEIn.

e Next, if we consider the completely fixed—free bound-
ary conditions, where R} = R, = u; = 0 =0, we get
the tip displacement and strain as u, = Ldnl, & = dnl.

e If the coil current is zero and the rod is subjected to a
‘pure’ tension F, then a purely mechanical state exists
and for the fixed-free boundary condition, we have
u; = FL/AE, which is the conventional strength-of-
material solution.

Now, the same set of analyses is performed using the
coupled model to see the essential differences in

responses.

Coupled analysis Coupled analysis requires solution of
the following equation:

EA{I —1Hu1} EAd{—l —1}{H1}7{R1}
L|1-11]\lw 2 11 1|\ HS R

EAd{*l 1}{u1}+ALMS [2 1}{H1}_ALMGI}1{1}
2 |1 1] \w) 2 |12]\HJ 2 1

(8.101)
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The same three analyses are again performed here:

e For fixed—fixed boundary conditions, the second part
of the above equation gives:

‘ua
H =H,=In— (8.102)
'ua
The value of the magnetic field is less than the generally
considered value (In) for the uncoupled model. The value
of the magnetic field will increase (decrease) with the
increase (decrease) in the ratio of constant stress and
constant strain permeability. Similarly, the blocked force
in the support is obtained from the first part of Equation
(8.101) and is given by:
g
Ry = —R, = AdEH, = AdEIn"~ (8.103)
u
which is less than the value generally considered (AdEIn).
These also depend on the ratio of the permeabilities.

e For fixed—free boundary conditions, the solution of

Equation (8.101) gives:

Hy=H,=H=1In, u,=Ldnl, e¢=dnl (8.104)
That is, H = In is only true for fixed—free boundary
conditions. For the other boundary condition (fixed—
fixed), the magnitude of the magnetic field depends on
the ratio of permeabilities.

e For fixed—free boundary conditions and a tensile force

F acting at the tip with zero coil current (I = 0), the
solution of Equation (8.101) gives:

Fd FLi&*
H, :HZZA—N”’ up :AEu‘T

(8.105)

Here again, the dependence on the ratio of perme-
abilities is noticeable. If this ratio of permeabilities is
equal to 1, the effect of coupling vanishes. However,
for Terfenol-D, the ratio of permeabilities (u /) is
in the range of 0.4 to 0.5. Hence, the effect of
coupling is quite significant.

8.4.3.2 Modeling of a laminated composite beam
with embedded Terfenol-D patch
The displacement field for the beam based on the first-

order Shear Deformation Theory (FSDT) is given by:

V(‘x7 y7 Z7 t) = 07
(8.106)

u(x,y,x,t) = ug(x, 1) — z¢(x, 1),
w(x,y,x, 1) = w(x, )

As before, the magnetic field (H) is only in the axial
direction. Next, we need to assume the necessary poly-
nomials for the mid-plane axial displacement u, lateral
displacement wy and slope ¢. Since the slopes are
independent and not derivable from the lateral displace-
ment, a C° continuous formulation is sufficient and hence
of the use linear polynomials given in Equation (8.98) is
sufficient. All of the formulated matrices are numerically
integrated. However, this formulation is prone to exhibit
what is called the shear-locking problem, which was
explained in Chapter 7. One of the simplest ways to
eliminate locking is to ‘reduce-integrate’ the part of the
mechanical stiffness matrix contributed by the shear
stress. This is undertaken in this formulation.

The approach to formulation is very similar to rod
formulation, and hence all of the details are skipped here.
We will write down only the final forms of the elemental
matrices involved. The mechanical stiffness matrix [K,,]
is 6 X 6 and is given by:

(K]
[Au Ais (A Bu _Au _Ais Ais_ Bu
L L 2 L L L 2 L
Ass  (Ass_Bis _Ais _Ass Ass  Bis
L 2 L L L L
AssL _Ais Bu) [ Ass Bis Assl_Du
B 4 r 2L 2L 4L
- Au Ais _Ais_Bu
L L 2 L
Ass Ass  Bis
SYM o > 7h
L ( 2 L)
AssL Dy,
B -
(4 +Bis L
where:

[Ay, Bij, Dyj] = JQij[L z,7°JdA
A

The magneto—mechanical coupling matrix is given by:

6011 0
6011 0

1

—e1
1

—€11

1
€11

1l—e%; 0
K] == { o °
11

2| —e 11 0
where:
z)dA

"1

e'n) = Jell[l
A
The matrix [Kpyy| is given by:

L2 17 (e
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In the case of the coupled model, we require the force
vector {Fy}, which is given in Equation (8.88). This
vector becomes:

(Fu} = In/;OL{ } }

The mass matrix is given by:

21, 0 =21, I 0
21y 0 0 Iy 0

21 -1 0 I
[Muu] _ 2 1 2

2y, 0 -=2I,
SYM 21, 0
21,
where:

[10,11712] = Jp[1>Z7Z2]dA
A

The composite magnetostrictive bimorph beam shown in
Figure 8.15 is analyzed to verify the effectiveness of the
formulated element. Static and frequency response ana-
lyses are performed on this beam to bring out the effects
of coupling. The length and width of the beam are
500 mm and 50 mm, respectively. The beam is made of
12 layers with the thickness of each layer being 0.15 mm.
Surface-mounted magnetostrictive patches on the top and
bottom layers are considered as sensor and actuator,
respectively. The elastic moduli of the composite are
assumed as 181 and 10.3 GPa in the parallel (E;) and
perpendicular (E,) directions of the fiber, respectively.
The density (p) and shear modulus (Gy,) of the compo-
site are 1.6 g/ml and 28 GPa, respectively. The elastic
modulus (E,), shear modulus (G,,) and density (p,,) of

the magnetostrictive material are taken as 30GPa,
23 GPa and 9.25 g/ml, respectively.

The magneto—mechanical coupling coefficient is taken
as 15 x 107" m/amp, and the permeability in vacuum or
air is assumed to be 400m nH/m. The constant-stress
relative permeability of the magnetostrictive material is
assumed to be equal to 10, while the number of coil turns
per meter (n) in the sensor and actuator is assumed to be
20000.

Static analysis The effect of coupling of a magnetos-
trictive material in a laminated composite beam for static
actuation is analyzed for a 1amp DC actuation coil
current. It is observed that the tip deflection for coupled
analysis is 2.17 mm, whereas for uncoupled analysis it
is 2.44 mm. The ratio between these two is 1:12. As the
thickness of the actuator is smaller when compared
to the thickness of the composite beam, the effective
increase of stiffness in the global stiffness matrix due to
coupling is very much smaller. The increases in thickness
of the sensor and actuator patches will increase the
effective thickness and hence decrease the effective
deflection, especially in the coupled analysis. In addition,
an increase in the ply angle will also increase the stiffness
in the transverse direction. These observations are quite
evident from Table 8.5 for different ply angles of 0° and
90°. It is very clear from this table that for 90 ° ply angle,
the effect of coupling is considerable. This reinforces the
need for coupled analysis for structures with magnetos-
trictive patches.

Frequency response analysis To observe the effects of
the coupling terms on the behavior of a cantilever beam
with a magnetostrictive material in the frequency domain,
the frequency response function (FRF) is computed with
both coupled and uncoupled models for the same canti-
lever composite beam up to a S00Hz frequency. The
FRFs for 0 and 90 ° ply angles are shown in Figures 8.16

Actuator

\AARAAARNANNANNNANNNANNT

Magnetostrictive Patches

JAVAVAVAYAVAYAYAYAVAVAYAYAVAVAVAYAVAVAYAY

Sensor

Figure 8.15

Schematic of a magnetostrictive cantilever bimorph beam.
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Table 8.5 Ratios of uncoupled and coupled analysis
tip displacement of a cantilever beam with
magnetostrictive patches.

Ply sequence

Coupled Uncoupled Ratio, Wu

analysis analysis ¢

we (mm)  w, (mm)
m/[0],,/m 2.17 2.44 1.12
m/[30],,/m 2.83 3.30 1.17
m/[45],,/m 3.84 4.78 1.24
m/[60],,/m 5.52 7.69 1.39
m/[90],,/m 8.62 15.40 1.78
m/[0/90]5/m 3.44 4.80 1.40
m/[90/0]s/m 7.62 10.73 1.48
[m],/[0)g/[m], 5.25 6.97 1.33
[m],/[301g/[m], 6.03 8.41 1.39
[m],/[45]s/[m], 7.07 10.58 1.5
[m],/[90]s/[m], 10.72 21.56 2.01
[m],/[90],/[0]4/[m], 10.77 19.57 1.82
[m]5/]90]4/[m]5 12.15 25.53 2.10
[m]5/]90]5/[0]5/[ml], 12.88 26.31 2.04
[m],/[90],/[0],/[m], 14.06 30.44 2.17

1078
0

and 8.17, respectively. For a 0° ply angle, we see that the
first three modes are least affected due to the effects of
coupling. However, we can see a significant shift in the
resonant frequencies of the higher modes. For the 90 ° ply
angle, we see shifts in the natural frequencies, even for
the lower modes. This further reinforces our belief that
uncoupled analysis underestimates the stiffness of the
structure with a magnetostrictive material.

8.4.4 Modeling of piezo fibre composite (PFC)
sensors/actuators

The concept of broadband distributed active control in
flexible structures has evolved in recent times. Tremen-
dous technological success in the field of micro electro-
mechanical systems (MEMS) has laid the path toward
implementation of such concepts. Especially, structures
made of multifunctional multiphase composites [11-14]
have provided a wide range of platforms for structural
sensing, actuation and control-related applications
[15,16]. Currently, a number of designs are available
which use different forms of PZT ceramic fibers and
conventional matrices. Experimental observations have
shown sustained electromechanical properties of these
composites that match well with the microscopic models

o Coupled
— Uncoupled

100

1
200

1 ]
300 500

Frequency (Hz)

Figure 8.16 Frequency response function for a laminated composite magnetostrictive bimorph beam with 0° ply angles.
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Figure 8.17 Frequency response function for a laminated composite magnetostrictive bimorph beam with 90° ply angles.

mathematically derived from their bulk forms in the
linear and high-frequency regimes. Following the perfor-
mance standardization of these active composites as
distributed actuators, the main task remains as to how
better control performances can be achieved, particularly
in transverse actuation. Before real-scale implementa-
tion, various complexities due to embedded electronics,
limitations in the electro—magnetic properties and inter-
actions with the host structures need detailed analysis.
Some physical insight into the macroscopic behavior of
these PFC actuators has been reported [17,18].

Here, we consider a PFC with an interdigitated surface
electrode as the distributed actuator element and a broad-
band vibration sensor capable of measuring far-field as
well as near-field. The computational model accounts for
the axial-flexural coupling due to the out-of-plane actua-
tion effort and unsymmetric mechanical stiffness and
inertia across the beam thickness. As the frequency
content of the external disturbance increases, wave-
lengths of the traveling waves decrease. Therefore,
scattering of the waves at minute discontinuities in the
structural interfaces becomes significant at these high-
frequency ranges. Here, the spectral finite element model
is used to characterize the waves at the high-frequency
ranges. This model is used in tandem with the Active
Spectral Finite Element Model (ASFEM) (to be dealt
with in detail in the next chapter) for active wave con-
trol. Here, we will describe the constitutive model for a
PFC actuator. We will use this SFEM along with the

ASFEM for controlling broadband applications in the next
chapter.

To illustrate the derivation of the constitutive model
for piezoelectric fiber composite (PFC) actuation, we
consider rectangular-packing square PZT fibers with a
matrix as shown in Figure 8.18. The rectangular cross-
section of the fibers can provide a maximum volume
fraction of ceramic, which is preferable for actuation.
The configuration can be obtained using fibers that have
been tape-cast and diced, extruded or cast into a mold.

Figure 8.18 shows an actuator element (say, the gth)
with its host composite structure and having a local
coordinate system (X4, Y4, Z9). The representative volume
element (RVE), of the two-phase ceramic—matrix compo-
site system is described by one quadrant axisymmetric
model about the x3 axis. Here, & is the total depth of a
single PFC layer, p is the uniform spacing of the inter-
digitated electrodes spanning along x; and b is the width of
each electrode. The constitutive relations for an ortho-
tropic active ceramic bulk form [19] can be represented as:

Oxx CEyy CEp CEi3 —es Exx
oz | _ | CE CEx CEyy —ex &z
T [ | CFi3 CPy CPyz —e Vxz
D, e31  exn e i E,

This is of a very similar form to that of a PZT actuator.
For 1-D waveguide analysis, this requires reduction into
a single equivalent constitutive law by considering the
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Figure 8.18 Configuration of a piezoelectric fiber composite (PFC) for composite beam actuation.

volume fraction of the piezo fiber (PZT) to the total
volume of the laminate. For a pure piezoceramic,
Ch =CE, CEL =CE and e3; = e3. For the matrix
phase, all e;; are zero and their mechanical and dielectric
properties are represented without superscripts. Assum-
ing negligible distortion of the equipotential lines and
electric fields beneath the electrodes, and imposing a
proper field continuity between the ceramic and matrix
phases, the effective unidirectional constitutive law for a
PFC beam structure can be expressed as:

0. =Cle.. —eJE. (8.107)
where:
= VPV (Cia — Ci3)’
C33eﬁ=(C33V1p+C22V1m)—M (8.108)
CuViP+Cpvi™
_ e VPV (Cpy—C
o =z 4 2NN (G2 = Ci) (8.109)

CnViP+Cyy V™
_ Vzpvzm(clgf Cn)
Ci Vo +Cpp Vo™
_ VaP V" (C1p — C12)Cra — Ca3)
Ci 1 VP +Cp Vo™
VP Va™(Cia — C3)?
Ci VP +Cp Vo™

Cn =(C Vo +CuVa™)

Cis=(CiaVa” +CiaVa™)

Cii=(C3Va" +Cp Vo) — (8.110)

532V2pV2m(C12 —Cn)
Ci VP + Cpp Vo™

e Vo’ V2" (Crp — Co3)

e = ey Vo’ +

ez = eV’ + = 8.111
BT emh CiiVaP + Cp Vo™ ( )
= Vs3"esjesx
Cie = Cjp + ! :

BT Vs Vi

ey = gt (8.112)

VaP 33 V3™ 113

Here, vf' and V", for i = 1 and 2 represent, respectively,
the length fractions of the ceramic and matrix phases
along direction i and:

p

V3P ___h
+(1-VyP)

b<p (8.113)

SRS

represents the volume fraction of the ceramic phase in the
RVE. The details of the above derivation can be found in
Roy Mahapatra [20]. Similar models for uniform-packing
circular fibers can be found in Bent [13]. Essentially,
these models provide dominant electromechanical cou-
pling in direction ‘3’, which can be aligned along the
local host beam axis during bonding or embedding. This is
unlikely in a uniformly electroded PZT plate structure.
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8.4.4.1 Spectral element modeling of beams with
PFC sensors/actuators

Assuming a Euler—Bernoulli-type displacement field for
the PFC actuator or sensor system integrated with the
host composite beams and considering cross-sectional
unsymmetry and neglecting rotational inertia, the gov-
erning wave equations can be written as:

82140 82140

Fw OE

A= — B AnfTC =0
p. o 3382+ 338*+ 33 o
*w ug w prc OE;
PAZ 5 —Biy g 3+ Dy o+ By F =0 (8.114)

where ug, w and E, are the mid-plane axial displacement,
transverse displacement and electric field intensity in the
z-direction and p is the density of the composite having
an area of cross-section A. The three associated force
boundary conditions, which are required for the spectral
and active spectral finite element models, are given by:

Az % — B33 (Z)ZTV; —As"CE. = N,,
B33 % — D33 33721/ - 333PFC% =V
— B3y % + D33 %272” + B CE, =M,  (8.115)
where
[As3, B3z, D33) = | C3¥'[1,2,2°]dA,  [A3"FC, B3]

1, 7]dA (8.116)

g
e

N, is the axial force, V. is the shear force and M, is the
bending moment. Once the constitutive model, the gov-
erning differential equation and its associated boundary
conditions are known, then one can proceed to formulate
the required spectral finite element, as outlined in Chap-
ter 7. For this, first the wavenumbers are characterized,
followed by the solution of the differential equation in
the transformed domain, which is used as the interpolat-
ing function for spectral element formulation.

8.4.4.2 Spectral element modeling of beams
with magnetostrictive sensors/actuators

The spectral element formulation for modeling compo-
site beams with embedded/surface-mounted magnetos-

trictive sensors/actuators is very similar. The constitutive
law for the magnetostrictive material is of the form:

& = Shho, + disH,, B, =d%o, +u5H, (8.117)
The governing equation for a beam with a magnetostric-
tive actuator using the Euler—Bernoulli beam model is
given by:

8 1Z0) 8 IZ0) (’)3 qu
A———A B A ==
PA SR 3362+ 3332-1— 33" o 0

Pw Bug w 0°H,
pAW—Bjﬁ p +D33 o + B33™ p =0 (8.118)

and the associated force boundary conditions are:

Oug Pw
A2 _p — Ays"H, = N,
B  Bnga —An N,
&ug & wo OH,
By D mMe_y
B2 ey g
8u0 82
—B D B3;"H, = M, 8.119
3o + D33 = e + B33 ( )
where
[A33, B33, D33] = [533[1,Z, 2]dA,
A
A", By"] = ‘d33[17Z}dA (8.120)
A

The rest of the procedure of spectral finite element
formulation is similar to that outlined in Chapter 7

8.5 MODELING OF MICRO
ELECTROMECHANICAL SYSTEMS

Modeling and analysis of an MEMS device is absolutely
essential for validating the design and performance.
These devices are of a few millimeters in dimensions
and a few microns in thickness. The most important
question one has to answer here is that ‘can we employ
the analysis tool developed for macro structures’?. ‘Can
we idealize the constitutive model for these structures in
the same manner as the macro structures, since it is a
question of scale?’. Most MEMS analyses are performed
using the conventional finite element technique and the
experience reported in many papers in the literature is
that the techniques for macro models give acceptable
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results. When an MEMS device is used in structural
applications, they are surface bonded and as such, they
contribute to negligible stiffness to the complete struc-
ture. Since the area of application of the device is small,
it can be considered as a point-sensing case. In such
cases, the performance of the MEMS device can be
assessed based on the component analysis. However, in
certain applications, such as crack sensing in a structure,
the stresses at the crack tip are theoretically infinite and
hence small devices mounted at a number of location
may not perform to the desired level. In such cases, one
has to go onto distributed sensing, where the sensor could
be a few centimeters in dimensions and will still retain
the micron-level thickness. In such a case, due to longer
dimensions, the modeling of the MEMS device should
also take care of the host structure to account for the
losses during response transfer. The mechanics here is
more complex compared to the point-sensing case.
There are different types of MEMS device available
with the most common type being the capacitive device,
where the performance (sensitivity) and design of the
device is essentially assessed based on the capacitance of
the electrical circuit of the device. Typically, an MEMS
device will have a wafer of a few microns thickness and
in most cases are made of silicon or a polymer and in
many cases, they are also made of PZT material. Over
these wafers, IDTs (interdigitated transducers) or elec-
trodes are placed to get the required actuation due to the
electric field. Hence, the constitutive models for these
devices are very similar to those of bulk piezoelectric
(PZT) materials. The general procedure for design of
MEMS capacitive sensors is that first the minimum
capacitance required by the electrical circuit of the
device for sustaining the general mechanical loading is
obtained through electromechanical analysis. The electri-
cal circuit is then designed to get the required capacitance.
There are many papers on the analysis of MEMS
devices, such as pressure sensors, accelerometers, rate
gyroscopes etc., available in the literature. Most of these
use the FE technique to model the device and assess its
performance without considering on what structure it is
going to be mounted. This is because of the assumption
of point-sensing. Hence, the aspects of modeling point-
sensors are not addressed here since a knowledge of the
FEM addressed earlier in this book (Chapter 7) will be
sufficient enough for this. Here, we address the analysis
and design aspects of distributed MEMS sensors,
wherein the modeling will take care of the host structure
material properties and the properties of sensors such as
the thickness of wafers, thickness of the IDT, material
properties of the sensor and the loss factor due to leakage

of response from the structure and sensor. Modeling of
one such sensor, namely the capacitive thin film sensor, is
addressed in the next subsection.

8.5.1 Analytical model for capacitive thin-film
sensors

Here, a novel analytical technique towards the design and
development of thin-film distributed and deformable
capacitive sensors in a composite structure is presented.
The approach is a ‘one-step’ improvement over the
already prevailing analysis and design methodology for
conventional micro electromechanical transducers. In
engineering structural health monitoring (SHM) applica-
tions, the identification of hidden structural defects and
any damage process taking place at the sub surface and/
or in deep interlaminar regions in composites are of great
importance. Conventional strain gauges and MEMS
sensor arrays are being used for performing the damage
detection task. Similarly, in electroactive flexible adap-
tive structures for shape and vibration-control applica-
tions, understanding the effects of various material and
geometric parameters on the electromechanical coupling
is essential.

One of the major concerns for MEMS is the relatively
poor reliability caused by delamination, brittle fracture
and fatigue degradation of multilayer thin-film structures.
However, identification of the damage configuration,
which is non-local and spatio-temporal, can be per-
formed best if a continuous distributed film sensor with
segmented electrode arrays (like a synthetic skin with
active pixels/grids for imaging) can be modeled,
designed and fabricated. While validating such a design
concept, it is essential to incorporate several effects, such
as electromechanical coupling in the sensor structure,
dissipation factor in the sensor materials, bulk electrical
resistivity of the sensor material and AC frequency and
loss factor of the matrix, as against the conventional
design, where all of these factors are not taken into
consideration. For certain materials, where the dipoles
do not get oriented instantly and hence show significant
reaction times, there is a phase delay in the polarization
that results from the sinusoidal electric field. A detail
analytical model incorporating all of these effects
appears necessary.

Most of the analytical and finite element analysis
techniques for coupled electromechanical simulations
reported in the literature are based on iterations over
the mechanical and electrical equivalents of the stress
field to achieve optimum capacitances and voltages
(Schrag et al. [21]). In recent times, there has been
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increasing effort in developing analytical techniques to
study the constrained effect on thin films [22,23]. Similar
problems in deformable capacitive devices for distributed
transducer applications are also expected to play an
important role and a systematic analytical model of the
coupled electromechanical field appears advantageous.
Here, we develop an electromechanical continuum field
model to analyze the constrained boundary effects on the
transduction performance of thin films based on the
method of stress transfer and strain continuity.

Here, we shall consider a simple model of the sensor
film bonded to the surface of the host structure. A
constant in-plane tensile stress profile in the host layer
is considered to be directly transferred to the film, along
with the condition of strain continuity at the interface. A
plane-stress case of a surface-mounted sensor on the host
structure is considered here. The free-body diagram of
the sensor is shown in Figure 8.19. The stress transfer
mechanism is based on the shear-lag model [24].

In the following derivation, we use the superscript s to
indicate the variables in the host structural domain and a
superscript a to indicate the variables in the film domain.
As shown in Figure 8.19, 1, 1,, and ¢, /2 are, respectively,
the thickness of the host structure (an equivalent thick-
ness for effective stress transfer), the thickness of the
bonding layer and the thickness of the film. Considering
a ‘span-wise’ segment of infinitesimal length dx of the
film along with the bonding layer, the equilibrium
equations can be written as:

doytsb + 2bdxt,, =0, dol t,b — bdxt,, =0 (8.121)
where t,, is the shear stress transferred from the host
structure to the film through the bonding layer. From the
shear-lag model, we have:
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Figure 8.19

Differentiating Equation (8.121) three times and substi-
tuting o, = Ci1&x and o3, = C%y1¢l,, after some simpli-
fication, we get:

d*e s, de d e P
o 2, &, 0, & 12, & —0

dxt dx? dxt dx?

(8.123)
where:
G* 2C 11ty + Ciity

I = 8.124
0 Cslllslm ( Cllta > ( )

Here, G* is the complex shear modulus of the bonding
layer taking into account its viscoelastic properties as a
generalization of the analytical model and C*;; and Cy;
are the 1-D material constants of the sensor and host,
respectively; u* and u“ are the interface displacements of
sensor and host structure, respectively. The general solu-
tion for Equation (8.123) is given by:

City

2C3 1t
& =ay +axx+ <a3 sinh (T'gx) + a4 cosh (Fox)) (8.125)

Sa=a+ayx— (a3 sinh (I'gx) ++a4 cosh (Fox))

Boundary conditions are now applied separately on the
host structure and on the film, which are:
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all constants in Equation (8.125), which are given by:
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Schematic of a surface-mounted sensor based on stress transfer and strain continuity at the bonding layer.
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For pure sensory transduction, that is, assuming all the
stresses are transformed into electric potential and dis-
sipated through the circuit:

@ AD
0 Dz:eSIS)cx“’,uj,j,t— (8128)

a a

O =Cr180 — €31

where A® is the change in the electric potential. Note
that the electric potential is related to the electric field by
the relation E, = d®/dz. The surface charge accumu-
lated over the film segment of width b and span
x(=-L/2, +L/2) is given by:
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(8.129)

Equating the deformation-induced electric power gener-
L

ated, the equivalent capacitance R = ([ (D,bdx/A®)) of
0

the film segment L is obtained as:
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Clearly, the capacitance value depends on both the host
material as well as on the sensor properties. In addition, in
the absence of any piezoelectric effect, the conventional
form of electrostatic capacitance given by buss (L, — Ly)/t,
can be clearly seen from Equation (8.130).

8.5.2 Numerical example

In this section we show the variation in the capacitance
and output voltage based on the proposed model and
compared with the results from the conventional expres-
sion of electrostatics. Note that in this simple one-
dimensional model, only a constant in-plane tensile stress
profile in the host structure is assumed to be directly

Table 8.6 Material properties of the films used
in numerical studies.

Property PVDF PZT
C11 (GPa) 2.00 69.00
Ci3 (GPa) 0.768 23.664
C33 (GPa) 2.00 55.00
Css (GPa) 0.746 26.336
Poisson’s ratio, v 0.34 0.31
ds; (pC/N) 8 —175
dsz (pC/N) 15 350
e31 (N(V m)) 0.02753 —3.79256
e33 (N/(V m)) 0.036 15 15.1088
Relative permittivity, 11 1800
€5/, at o = 1 MHz
Dissipation factor, 7, 0.018 0.018
Volume Resistivity, p 5 x 10"2 2 x 10%

(ohm m)

transferred to the sensor film. In addition, further assump-
tion is that the effective thickness ¢, of the host structure
over which the stress transfer takes place is known.

The material properties of the PVDF and PZT films
used in the numerical simulations are shown in Table 8.6.
Carbon—epoxy composite (55 % fiber volume fraction) is
used as the host structural material with C;; = 55.1 GPa.
The shear modulus of the bonding layer is assumed as
G = 1GPa. The viscoelastic property of this bonding
layer is modeled as G* = G(1 — in) where the loss factor
n = 0.007 is assumed. The frequency-dependent dielec-
tric including the effect of AC loss [24] is assumed as:

. i
taz = Wil —in,) — )

where u'33 is the DC component of the dielectric, n,, is
the AC component of the dielectric loss, p, is the volume
resistivity and o is the AC frequency. In numerical
simulations, the thickness of the bonding layer
ty (= 10 pm), the film width b (= 1 mm), the film lengths
L (=2mm and 3 mm), respectively, for PVDF and PZT,
and the film thicknesses 7, (= 10um and 100 pum),
respectively, are assumed.

Figures 8.20 and 8.21, respectively, show the depen-
dences of the capacitances of the surface-mounted PVDF
sensor and PZT sensor on their geometric properties, that
is, the film thickness and length.

It can be seen that for both of the PVDF and PZT
sensors, the results predicted by the present model differ
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Figure 8.20 Capacitance of a PVDF sensor: (a) present formulation; (b) conventional electrostatics formulation.

from the results predicted by the conventional electro-
statics model. This can be attributed to the higher
stiffness and higher thickness range that significantly
affect the constrained electro mechanical behavior.
Figures 8.22 and 8.23, respectively, shows the varia-
tions in the output voltages of the surface-mounted
PVDF and PZT sensors on carbon—epoxy composite. It
is clear that the low stiffness of the PVDF film produces a
smaller voltage amplitude compared to PZT sensor,
which has a high stiffness. Normally it is assumed that
the admissible in-plane tensile stress is constant through-
out the film span, which is not the exact case because of a
certain amount of horizontal shear deformation across
the sensor film thickness, as the film stiffness increases.
This additional contribution of shear energy should be

Capacitance (nF)
D

1
Length (mm)

Capacitance (nF)

included in the model to get a better prediction of the
voltage.

From the design point of view, it is necessary that for
maximum sensitivity of the sensor the capacitance of the
electrical circuit is maximized. This will result in mini-
mum impedance and hence a maximum voltage output.
Hence, the above model can help in a better design of the
capacitive sensors.

8.6 MODELING OF CARBON NANOTUBES
(CNTs)

The basic properties of CNTs, their construction, forms
and properties were described in Chapter 2. In most

(b)

nNnN A~ OO0 @

Length (mm)

Figure 8.21 Capacitance of a PZT sensor: (a) present formulation; (b) conventional electrostatics formulation.
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Voltage (V)

Figure 8.22 Output voltage of a PVDF sensor surface-mounted on carbon—epoxy composite.

structural application, a CNT is normally used as a
reinforcing material for the development of new classes
of highly strong and lightweight nanocomposites. It has
been shown that 1% by weight of a CNT mixed with a
matrix material can yield an increase in stiffness in the
range of 3642 % and an increase in tensile strength of
25 %. The mechanical load-carrying capacity of these
nanocomposites are also increased by many orders of
magnitude. Hence, when these CNTs are used in con-
junction with other materials, the length scales and the

0~
—-50+
< —100+

()

(

-150+
—200+
—250
—300 5

10 :

Voltag

10
10°
Stress (Pa)

10°

time scales of the host materials and the CNTs are
different. Conventional modeling and simulation meth-
ods are not well suited for these problems since they are
typically formulated at a single time or length scale. It is
a great challenge to break the boundaries between scales
and develop a robust method that is capable of integrat-
ing the different length and time scales involved in a
general class of applications. There are essentially three
different modeling techniques that have unique time and
length scales. These are summarized in Table 8.7.

Y

0.25

025  yL

Figure 8.23 Output voltage of a PZT sensor surface-mounted on cabron—epoxy composite.
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Table 8.7 Modeling and simulation approaches
with their length and time scales.

Modeling approach Length Time
scale (m) scale (s)
Continuum mechanics >1073 >1073
Micromechanics 107°-107* 107°-1073
Molecular dynamics 107"°-107° 1071%-107°

The modeling of a CNT alone should be typically
performed using Molecular Dynamics (MD) simulation.
Since the length scales and time scales are very small, the
computational cost of modeling is enormous. However, it
is the most accurate method of modeling a CNT. The MD
approach has provided abundant simulation results for
understanding the behaviors of individual and bundled
CNTs [24-32]. However, MD simulations cannot deal
with the larger length scales in studying nanocomposites.
Nanocomposites for engineering applications must
expand from nano to micro, and eventually to macro-
length scales.

The next alternative is Micromechanics (MM) model-
ing, where a Representative Volume Element (RVE) with
a built-in CNT is considered, as shown in Figure 8.24.
This is classified as a ‘middle-level’ analysis inbetween
the molecular dynamics method and Continuum Mechanics
(CM) modeling.

Many micromechanical models have been developed
to predict the macroscopic behavior of composite mate-
rials reinforced with fibers, such as laminated compo-

Z

sites, that are much larger than the CNT. These models
assume that the fiber, matrix and sometimes the interface,
are continuous materials and the constitutive equations
for the bulk composite material are formulated based on
assumptions of continuum mechanics. That is, an RVE is
isolated and the continuum theory (Theory of Elasticity)
is applied to this isolated RVE. The RVE can be of any
shape. Many researchers have studied the behavior of
CNTs embedded in a matrix using both cylindrical and
square RVEs [33]. If the properties of the CNT and its
volume fraction are known, then the effective properties
of this nanocomposite can be computed using the law of
mixtures given in Chapter 6 (Section 6.2). The MM
analysis is based on the assumption that quantities such
as mass, momentum and energy exist in a mathematical
sense, irrespective of the length or time scales. In most
cases reported in the literature, RVE analysis has been
used for estimation of the material properties. Due to the
computational limitation of the MD approach, research-
ers have adopted continuum mechanics to model a CNT,
that is, by using an idealization of an SWCNT, as shown
in Figure 8.25. In most models, elastic, isotropic and
small deformations are assumed. Yakobson et al. [34]
gave the analytical energy expressions for shells in terms
of the local stresses and deformations. The parameters
entering this expression were derived from atomistic
simulations. The various deformation modes and critical
strains were calculated analytically and found to be in
good agreement with the results from microscopic stu-
dies. Govindjee and Sackman [35] used the Bernoulli—
Euler beam bending theory to investigate the applicabil-
ity of continuum theory to study the behavior of a CNTs.
They emphasized that the tube should be broken down

Figure 8.24 Representative volume element (RVE) of a carbon nanotube embedded in a matrix. Reprinted from Computational
Materials Science, 29, pp. 1-11, Copyright 2004, with permission from Elsevier
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Single-walled
carbon nanotubs

Figure 8.25

into a number of parallel cross-sections, rather than
described as a single rod/beam. A similar point was
made by Ru [36] who emphasized that the continuum
shell theory breaks down once atomic dimensions are
reached. Thus, attempts to reconcile the continuum
theory with atomistic simulations had to use parameters,
such as the effective thickness of the shell, whose
physical origins are doubtful at best. Finally, a clear
breakdown of the continuum theory occurs when the
tubes undergo plastic deformation, since the continuum
model is insensitive to the chirality of the wrapping
index, while tight-binding MD simulations are believed
to show a dependence of the elastic limit on chirality.
Clearly, the continuum approximation can be very valu-
able and may be the only feasible approach for large and
complex systems, but its applicability deserves further
investigation.

Some of the common models in continuum mechanics,
such as finite element techniques, are normally employed
to study the behaviors of SWCNTs and MWCNTs. These
are straightforward approaches, which were dealt with
extensively in the last chapter. The only difference is that
the modeling is done on the nano scale. Hence, FE
modeling of a CNT is not dealt with here. However,
recently CNTs have been used for a variety of applica-
tions which require propagation of signals at very high
frequencies [37,38]. These frequencies are in THz range
and at these frequencies it is almost unthinkable to use
conventional FE modeling due to the very small wave-
lengths and hence very small element sizes (of the order
of nm—pm). In such situations spectral FE modeling is
the only option. Hence, we outline the spectral finite

Effective-thickness

Equivalent continuum model

Equivalent continuum model of a single-wall carbon nanotube.

element modeling of single- and multi-walled nano tubes
and show how one can propagate the THz frequencies in
such tubes.

8.6.1 Spectral finite element modeling of an
MWCNT

The spectral FE formulation begins by computing the
wavenumbers to determine the types of waves propagat-
ing in the CNT. For this, we need to first establish the
governing PDE of the multi-walled CNT. The multiple-
elastic beam model for an N-walled CNT, based on the
Euler-Bernoulli beam theory, is governed by the follow-
ing set of N-coupled equations:

cl(wszl)=l‘:11%+/”4la;;;I
p=23,...N—1
p(Wps1 = wp) — cp1 (Wp — Wp—1) :EI”%—HOAP%
—cy-1(wy —wy-1) =Ely a;;‘th +phy a;:c‘;N
(8.131)

where x is the axial coordinate of the beam, ¢ is the time,
wp(x,t)(p =2,.....N) is the deflection of pth CNT, I,
and A, are, respectively, the moment of inertia and the
area of the cross-section of the pth tube. The Young’s
modulus £ = 1 TPa (with an effective thickness 0.35 nm)
and the mass density p = 1300 kg/cm3. The interaction



Modeling of Smart Sensors and Actuators 223

coefficients c,(p = 1,2,.....N), arising due to van der
Waals interactions between any two adjacent layers, can
be estimated approximately as given in Yoon et al. [39]:

400R )

Cp:—16d2 erg/cm , d=0.142 nm, le,Z,N—l

(8.132)

where R, is the inner radius of the pth wall. The
coefficients ¢, are estimated as the second derivative of
the energy-interlayer spacing relations of two flat mono-
layers. Hence, they do not take the curvature effects of
the CNTs into account. The spectral formulation begins
by assuming the displacement field as a synthesis of
plane waves of the form:

Ny
wplx, 1) = et (8.133)
n=1

where k is the wavenumber, w, is the circular frequency
at the nth sampling point and j> = —1; N, is the fre-
quency index corresponding to the Nyquist frequency in
the Fast Fourier Transform (FFT). When Equation
(8.133) is substituted into Equation (8.131), we get:

cl(Wz—fvl)—(Ellk4—pA1w2)fvl =0

p=2,....N—1
cp(Wpr1 =Wp) = Cpt (Wp —Wp—1) — (Elpk4 —/’prz)wp =0
—cno1 (W —Wn—1) — (EIvk* — pAyo®)ivy =0 (8.134)

The above equation is a complicated polynomial that
requires special schemes for the solution of the wave-
numbers. The order of the polynomial increases with an
increase in the value of N, the number of walls. Instead of
using some adhoc schemes, we need a generalized and
robust scheme of polynomial equation solving. In addi-
tion, after the solution of the wavenumbers, spectral
formulation requires computation of wave amplitudes
for all propagating modes. In numerical solution schemes
for the roots of the above polynomial equation, it is
practically impossible to keep track of individual modes.
There are two different methods of equation solving that
can remove most of the above problems, namely the
Companion Matrix (CM) approach and the Polynomial
Eigenvalue Problem (PEP) approach. These methods can
be employed with the Singular Value Decomposition
(SVD) technique to obtain the wave amplitudes. These

methods, in relation to the wave propagation, are
explained in great detail in Chakraborty [40].

In the present case, the PEP approach is used to solve
for the wavenumbers. We can write Equation (8.134)
as:

(KA + [40]) {0} =W} =0, {v}={wr . - )
(8.135)

where [A4] and [A¢] are N x N matrices given by:

[A4] = Diag (El,, p=1,2,...N), [A¢]=[C] M|
(8.136)

Furthermore, the matrices [M] and [C] are defined as:

[M] = Diag (pl,, p=1,2,...N), [C]= RV 1 (ca)

(8.137)

where R is an assembly operator (like the stiffness matrix
assembler of a rod element) and the matrix ¢, is defined
as:

Cn —Cn
=] ]
On solving Equation (8.135), the eigenvalues k and the
eigenvectors {v} can be obtained, which will be used in
subsequent element formulation. Since, in the PEP the
coefficient matrices of k, k> and k* are zero, we can
minimize the cost of computation by substituting A for k*

in Equation (8.135) and solving the PEP as a generalized
eigenvalue problem:

[Aol{v} = A[-Adl{v}

and the desired wavenumbers can be expressed as +1
and £ jtimes /1% However, the eigenvectors obtained in
this method will be of no consequence and the real
eigenvectors need to be computed in a different way.

For an N-walled nanotube, there are 4N wavenumbers
and corresponding N phase speeds (c,) and group speeds
(cg). The definition of these speeds is defined in Chapter 6
(Section 6.3). Although the phase speeds can be computed
directly from the wavenumbers, it is not straightforward to
compute the group speeds. Here, they are computed using
the characteristic equation, which is given by:

¢ (k) = det(k*[A4] + [Ao])) = 0 (8.138)
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These equations are polynomials in k, whose general
form is:

$k) =Y apk®

p=0

where the coefficients a, are dependent on material
properties and other than ap, all are functions of .
Differentiating ¢ (k) with respect to k, and using
the definition of the expression for (c,) the latter
becomes:

N
> (4pak')
do p=1
Cg=—=

=)= 8.139
% (8.139)

N
! J4p
> ak
p=1

where a;, indicates the derivative of a, with respect to w.
While computing the group speeds using the above
expression, for Re(k) < 0, the group speeds will be
zero. One characteristic of this multi-walled beam-
based model is that there are N — 1 frequencies where
the wavenumber becomes zero, thus rendering the group
speed equals to zero and the phase speed escapes to
infinity. These frequencies are called the ‘cut-off fre-
quencies’, whose expression can be obtained by substi-
tuting k = 0 in the dispersion relation and solving for k.
However, for large N, the problem of root finding of a
polynomial becomes a cumbersome task (even if we use
the companion-matrix-based technique, we have to form
the related matrices). The problem becomes simple if
k = 0 is substituted into Equation (8.135) and the task of
finding w is identified as another PEP:

([C] — *M]){x} =0 (8.140)
where {x} is a hypothetical eigenvector of no conse-
quence in our subsequent formulation. For N = 2, there
is one cut-off frequency given by:

= {M} (8.141)
PpA1A>

which for equal cross-sectional properties reduces to
26‘1 / pA

For the spectral element formulation, it is essential to
know the eigenvectors {v} of the PEP given in Equation
(8.135), which are also known as the wave vectors. This
PEP can be solved directly by the method of linearization

for obtaining {v} or the method of singular value
decomposition (SVD) can be adopted. In the first
method, the PEP is converted into a generalized eigen-
value problem in terms of the matrices [A4] and [A).
These matrices are constructed in the following way. If
the PEP is posed as:

U(W)x = (VA4 AA 0 + .. JA| + Ag){x} =0,
A[ :e mem

then the problem is linearized to:

[Al{z} = A[B{z} (8.142)
where:

[ (0] (1] (0] 0] 17

(0] [0] 1] [0]
=l

L[-A0] [-A1] [-A9] (A1)

1] -

7]
[B] =
(7]
L —[A/] ]

and the relation between {x} and {z} is given by:

;Ll—l{x}T}T

Here, [B] '[A] is a block companion matrix of the PEP.
The generalized eigenvalue problem of Equation (8.142)
can be solved by the QZ algorithm, iterative method,
Jacobi-Davidson method or the rational Krylov method.
Each one of these has its own advantages and disadvan-
tages; however, the QZ algorithm is the most powerful
method for small-to-moderate-sized problems and hence
for this present problem, as the order of the matrices [A]
and [B] is not large (!I=4, m=N) and hence the
computation can be performed by the economic and
efficient subroutines available in many mathematical
software packages, such as LAPACK.

In the second method, it is noted that {v} are the
elements of the null space of the matrix [W] (which has
non-trivial elements as the matrix is singular). In the

@ ={W" "
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SVD technique, [W] is factorized as [W] = [U][S][V]"
where [S] is a diagonal matrix containing the singular
values. Since, [W] is singular, there will be zero diagonal
elements in [S] and the columns of {v} corresponding to
the zero singular values are the elements of the null space of
[W] (actually they form a basis for the null space). The SVD
can be also be performed by the LAPACK subroutines.
After the wavenumbers and wave amplitudes are
computed, the spectral element formulation procedure
is same as that given in Chapter 7 (Section 7.9). Hence,
the formulation is not repeated here. Now, we will take a
closer look at the behavior of waves in an MWCNT.
The wavenumber and group speed variations for
N = 3 are plotted in Figures 8.26 and 8.27, respectively.
These plots were obtained using the following properties;
Youngs’s modulus E equal to 1.0 TPa, shear modulus G
equal to 0.4 TPa, density p equal to 1300kg/m’, inner
wall radius equal to 5nm, wall thickness equal to
0.35nm and the van der Waals interaction force equal
to 0.62TPa. The plot above the zero value represents
the real (propagating components) wavenumber while the
plot below the zero value is the imaginary value of the
wavenumber (evanescent components). As previously

0.6

Wavenumber, (nm™)

mentioned, there are two cut-off frequencies, one at
1.014 and another at 1.757 THz. At these frequencies,
the wavenumber becomes zero, while the corresponding
phase speed becomes infinite and the group speed zero.
However, before the cut-off frequencies, the wavenum-
bers (k, and k3) have real as well as imaginary parts,
which indicate that there are propagating components of
these modes. Due to the presence of the imaginary part,
these waves will, however, attenuate while propagating.
Thus, these waves are the so-called inhomogeneous
waves. Thus, there are non-zero phase and group speeds
before the cut-off frequencies.

For N = 10, the spectrum relations and phase speed
variations are given in Figures 8.28 and 8.29, respec-
tively. The characteristic remains the same as before,
where there are nine cut-off frequencies. The minimum
of these is at 0.2886 THz and the maximum at 1.891 THz.
Thus, it becomes apparent, even for this many number of
tubes that there is no great variation in the maximum cut-
off frequency. This suggests that there exists an upper
bound to the range of cut-off frequencies and similarly a
lower bound. To study this aspect, the number of walls N
was varied from 2 to 100 and for these values the
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0o 05 1 15

Figure 8.26

2 25 3 3.5 4
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Wavenumbers in multi-wall carbon nanotubes for N = 3.
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Figure 8.27 Group speeds in multi-wall carbon nanotubes for N = 3.
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Figure 8.28 Wavenumbers in multi-wall carbon nanotubes for N = 10.
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Figure 8.29 Phase speeds in multi-wall carbon nanotubes for N = 10.

maximum and minimum cut-off frequencies are plotted meters, are at 1.891 THz and 0.0169 THz. Since there
in Figure 8.30. This figure suggests that indeed there is is no appreciable difference in cut-off frequency with
both an upper and lower bound of the cut-of frequencies, wall numbers, an MWCNT can be approximated by a
which, for this particular material and geometric para-  Double-Walled Carbon Nanotube (DWCNT), where the
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Figure 8.30 Variation of (a) maximum and (b) minimum cut-off frequncies as a function of N.
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Figure 8.31 Broad-band pulse loading and its frequency amplitude.

effective inner radius of the DWCNT can be obtained Once the characteristics of the waves are known, real-
from the magnitudes of the maximum and minimum time data can be obtained by using the formulated spectral
cut-off frequencies. For example, in this present case, element with a small-duration loading of suitable frequency
for an identical DWCNT, the inner radius will be content. A broad-band pulse is considered with a frequency
1.737nm, which is obtained by using the maximum content of around 2.1 THz, shown in Figure 8.31, which is
cut-off frequency and Equation (8.141). above the highest cut-off frequency for any N.
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Figure 8.32 Transverse velocity at the free end of a cantilevered multi-wall carbon nanotube for different values of N.
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The time-domain data of the loading is shown in the
inset in Figure 8.31. As this figure suggests, the load
starts at 2 ps and is completed by 3 ps, within which it
attains a maximum magnitude of unity. This load is
applied at the free end of a cantilever MWCNT and the
responses are measured at the tip. The load is equally
distributed at all of the tubes so that the total load is
always 1 nN.

The transverse velocity history at the tip of the beam is
shown in Figure 8.32 for different numbers of walls. The
initial peak is the instantaneous effect of the loading,
whereas the oscillations at the latter part are refections
from the fixed end of MWCNT. As this figure suggests,
with increasing N the overall stiffness increases consid-
erably and the group speed decreases, as is evident from
the decreasing magnitude and arrival time of the bound-
ary reflections.

REFERENCES

1. S.H. Chen, Z.D. Wang and X.H. Liu, ‘Active vibration
control and suppression for intelligent structures, Journal of
Sound and Vibration, 200, 167-177 (1997).

2. W.-S. Hwang and H.-C. Park, ‘Finite element modeling
of piezoelectric sensors and actuators’, AIAA Journal, 31,
930-937 (1993).

3. H.S. Tzou and C.I. Tseng, ‘Distributed piezoelectric sensor/
actuator design for dynamic measurement/control of distrib-
uted parameter systems: a piezoelectric finite element
approach’, Journal of Sound and Vibration, 138, 17-34 (1990).

4. TH.G. Megson, Linear Analysis of Thin-Walled Elastic
Structures, Surrey University Press, Guildford, UK (1974).

5. Mira Mitra, Active Vibration Suppression of Composite Thin
Walled Structures, M.Sc. Thesis, Indian Institute of Science,
Bangalore, India (2003).

6. H.S. Tzou, Piezoelectric Shells (Distributed Sensing and
Control of Continua), Kluwer Academic Press, Dordrecht,
The Netherlands (1993).

7. H.S. Tzou and R. Ye, ‘Analysis of piezoelectric structures
with laminated piezoelectric triangle shell elements’, ATAA
Journal, 34, 110-115 (1996).

8. M.C. Reaves and L.G. Horta, ‘Test cases for modeling and
validation of structures with piezoelectric actuators’, in
Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference,
American Institute of Aeronautics and Astronautics (AIAA),
Reston, VA, USA (2001) [on CD-Rom].

9. D.P. Ghosh and S. Gopalakrishnan, ‘Role of coupling terms
in constitutive relationships of magnetostrictive materials,
Computers, Materials and Continua, 1, 213-227 (2004).

10. J.L. Butler, Application manual for the design of Terfenol-D
magnetostrictive transducers, Technical Report TS 2003,
Edge Technologies, Inc., Ames, 1A, USA (1988).

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

U.K. Vaidya, ‘Integrated and multi-functional thick section
and sandwich composite materials and structures’, in
Proceedings of the ISSS—SPIE International Conference
on Smart Materials Structures and Systems, A. Selvarajan,
A.R. Upadhya and P.D. Mangalgiri (Eds), Allied Publisher,
New Delhi, India, pp. 311-318 (1999).

J. French, J. Weitz, R. Luke, R. Cass, P. Jadidan, P. Bhargava
and A. Safari, ‘Production of continuous piezoelectric
ceramic fibers for smart materials and active control
devices’, SPIE, 3044, 406-412 (1997).

A.A. Bent, Active Fiber Composites for Structural Actua-
tion, Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA (1997).

. Y. Wu, Magnetostrictive Particulate Actuator and its Char-

acterization for Smart Structure Applications, Ph.D. Thesis,
University of Maryland, Baltimore Country, MD, USA
(1997).

J.P. Rodgers and N.W. Hagood, ‘Design, manufacture and
testing of an integral twist-actuated rotor blade’, in Pro-
ceedings of the Sth International Conference on Adaptive
Structures and Technology, pp. 63-72 (1993).

S. Yoshikawa and T. Shrout, ‘Multilayer piezoelectric
actuators — structures and reliability’, AIAA Paper,
93-1711-CP, 3581-3586 (1993).

N.W. Hagood, R. Kindel, K. Ghandi and P. Gudenzi,
‘Improving transverse actuation of piezoceramics using
integrated surface electrodes’, SPIE, 1917, 1917-1925
(1993).

A. Bent, N.W. Hagood and J.P. Rodgers, ‘Anisotropic
actuation with piezoelectric composites’, Journal of Intel-
ligent Material Systems and Structures, 6, 338-49 (1995).
Institute of Electrical and Electronics Engineers, IEEE
Standard on Piezoelectricity, IEEE Standard 176-1978,
The Institute of Electrical and Electronics Engineers,
Piscataway, NJ, USA (1978).

D.R. Roy Mahapatra, Spectral Element Models for Wave
Propagation Analysis, Structural Health Monitoring and
Active Control of Waves in Composite Structures, Ph.D.
Thesis, Indian Institute of Science, Bangalore, India (2004).
G. Schrag, G. Zelder, H. Kapels and G. Wachutka, ‘Numer-
ical and experimental analysis of distributed electromecha-
nical parasitics in the calibration of a fully BiCMOS-
integrated capacitive pressure sensor’, Sensors and Actua-
tors: Physical, T6A, 19-25 (1999).

T.C. Chen, H.C. Wu and C.-L. Lin, ‘Longitudinal anisotropic
stress and deformation in multilayered film heterostructures due
to lattice misfit’, Journal of Crystal Growth, 249, 44-58 (2003).
N. Mokni, F. Sidoroff and A. Danescu, ‘A one-dimensional
viscoelastic model for lateral relaxation in thin films’,
Computational Materials Science, 26, 56—60 (2003).

A. Pizzochero, Residual Actuation and Stiffness Properties
of Piezoelectric Composites: Theory and Experiment, M.Sc.
Thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA (1998).

M. Macucci, G. Iannaccone, J. Greer, J. Martorell, D.W.L.
Sprung, A. Schenk, LI. Yakimenko, K.F. Berggren, K.



230 Smart Material Systems and MEMS

26.

27.

28.

29.

30.

31.

32.

Stokbro and N. Gippius, ‘Status and perspectives of nanos-
cale device modeling’ Nanotechnology, 12, 136-142 (2001).
J. Han, A. Globus, R. Jae and G. Deardor, ‘Molecular
dynamics simulations of carbon nanotube-based gears’,
Nanotechnology, 8, 95-102 (1997).

C.F. Cornwell and L.T. Wille, ‘Elastic properties of single
walled carbon nanotubes in compression’, Solid State
Communications, 101, 555-558 (1997).

S.B. Sinnott, O.A. Shenderova, C.T. White and D.W.
Brenner, ‘Mechanical properties of nanotubule fibers and
composites determined from theoretical calculations and
simulations’, Carbon, 36, 1-9 (1998).

T. Halicioglu, ‘Stress calculations for carbon nanotubes’,
Thin Solid Films, 312, 11-14 (1998).

G.H. Gao, T. Cagin and W.A. Goddard, ‘Energetics,
structure, mechanical and vibrational properties of single-
walled carbon nanotubes’, Nanotechnology, 9, 184—-191
(1998).

M. Buongiorno Nardelli, J.L. Fattebert, D. Orlikowski,
C. Roland, Q. Zhao and J. Bernholc, ‘Mechanical properties,
defects and electronic behavior of carbon nanotubes’,
Carbon, 38, 17031711 (2000).

J.W. Kang and H.J. Hwang, ‘Mechanical deformation study
of copper nanowire using atomistic simulation’, Nanotech-
nology, 12, 295-300 (2001).

33.

34.

35.

37.

38.

39.

40.

Y.J. Liu and X.L. Chen, ‘Evaluations of the effective
materials properties of carbon nanotube-based composites
using a nanoscale representative volume element’,
Mechanics of Materials, 35, 69-81 (2003).

B.I. Yakobson, C.J. Brabec and J. Bernholc, ‘Nanomecha-
nics of carbon tubes: instabilities beyond linear range’,
Physical Review Letters, 76, 2511-2514 (1996).

S. Govindjee and J.L. Sackman, ‘On the use of continuum
mechanics to estimate the properties of nanotubes’, Solid
State Communications, 110, 227-230 (1999).

. C.Q. Ru, ‘Effect of van der Waals forces on axial buckling of

a double-walled carbon nanotube’, Journal of Applied
Physics, 87, 7227-7231 (2000).

J. Yoon, C.Q. Ru and A. Mioduchowski, ‘Timoshenko-beam
effects on transverse wave propagation in carbon nanotubes’,
Composites: Engineering, B35, 87-93 (2004).

J. Yoon, C.Q. Ru and A. Mioduchowski, ‘Vibration of an
embedded multiwall carbon nanotube’, Composites Science
and Technology, 63, 1533-1542 (2003).

J. Yoon, C. Ru and A. Mioduchowski, ‘Non-coaxial reso-
nance of an isolated multiwall carbon nanotube’, Physical
Review, B66, 233-402 (2002).

A. Chakraborty, Wave Propagation in Anisotropic and
Inhomogeneous Structures, Ph.D. Thesis, Indian Institute
of Science, Bangalore, India (2004).



9

Active Control Techniques

9.1 INTRODUCTION

The concept of control, which originated in early 1900,
has advanced tremendously to the level that every
designed system has a control component in its various
functions. One cannot visualize a robot performing with-
out built-in control systems. Today, control plays a major
role in almost all branches of engineering. In many space
vehicles, missile guidance and robotic systems, control
has become an integral part of the manufacturing pro-
cess. In structural applications, which are mainly
addressed in this book, we require control techniques
for controlling displacements (velocities or accelera-
tions), pressure (force or stress), temperature, humidity,
viscosity, etc. Controlling these quantities translates into
many applications such as:

Vibration control, where control techniques are used
to reduce the dynamic displacements.

Noise control, where acoustical disturbances (dyna-
mical responses) are regulated by using control tech-
niques. In helicopters, we can induce the twist of the
rotor blades to control exterior noise (air borne) or
treat the path of disturbance to radiate it so as to
control the interior noise (structure-borne).

Shape control, wherein the shape of the structure is
modified for a particular application. For example, the
shape of the aerofoil of wing or tail surfaces of an
aircraft can be altered to change the flow conditions.
More recently, there have been efforts to control or
delay the growth of cracks. The severity of a crack is
measured by a quantity called the Stress Intensity
Factor (SIF) and not the stress. This is because the
stress at the crack tip is infinite. Hence, for delaying
the growth of cracks, control systems are designed.
Here, the quantity that is controlled is the SIF.

The principle behind all control techniques for structural
applications is to generate additional forces for enforcing
control of the required variable. For example, in vibration-
control problems, the control system generates damping
forces that reduce the dynamic displacement amplitudes,
which are one of the control variables. Hence, for gen-
erating such additional forces, an additional input is
needed in conventional structures, which in many cases
is difficult to generate. However, this is not the case in
structures with built-in smart sensors and actuators. Smart
sensors/actuators, made of piezoelectric or Terfenol-D
materials, exhibit strong electromechanical coupling. As
explained in Chapter 8, this results in additional terms in
both the actuator and sensor constitutive laws. Here, we
are only concerned with the actuator law, wherein this
additional term helps in generating the additional input
required for the control of the desired variable. This is one
of the main reasons why a smart actuator is much more
popular as opposed to conventional hydraulic or other
types of actuators.

In this chapter, we will not go into greater depth on the
control theory. The interested reader is advised to go
through some classic control textbooks, such as Ogata
[1], for greater detail on automatic modern control
theory. Here, we will deal only with those topics that
are directly relevant for smart actuation in structural
applications. Before going into greater detail on smart
actuation, we will define some common definitions that
we will encounter while dealing with control theory:

(1) Control. This means a sustained release of energy
for limiting or controlling the response of a desired
control variable by inducing an additional input in
the form of a manipulated variable to the system.

(2) Control variable. This is a quantity such as dis-
placement, force, stress or strain (in structural
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applications) that requires to be measured and/or
controlled. These are necessarily the output vari-
ables. ‘Control of the control variable’ is normally
performed through an additional input to the system
called the manipulated variable.

(3) Plant. This is defined as the physical object that

requires control, such as a mechanical device (heli-

copter rotor blade, mechanical gear, cantilever beam
etc.), aircraft, spacecraft, etc.

Disturbance. A signal that propagates through a

system carrying a considerable amount of energy is

called a disturbance. For enforcing control of a

system, one may require many such disturbances,

which can be internally generated (by using smart
materials) or externally given as an input.

(5) Feedback Control. If due to a disturbance, the
difference between the output of the system to
some reference input is reduced, and if this reduction
was obtained based on this difference, then we term
the operation as feedback control.

(6) Error Signal. The difference between the output

signal and the feedback signal is called the error

signal. In many cases, the feedback signal may be a

function of the output signal or its derivatives. In

structural applications, the output signals are nor-
mally displacements or strain and its derivatives,
namely the velocities and accelerations.

Closed-loop control. When the output of the system

is brought to the desired value by feeding an error

signal to the controller under feedback control, such
an action is called closed-loop control.

Open-loop control. A system, in which the outputs

do not play any role in the control action of bringing

down the response is termed as an open-loop response.

That is, the error signal is not needed in the control

action and therefore the output is not compared with

any reference signal. Hence, a fixed operating condi-
tion exists for all inputs and so the accuracy is always
not assured and depends on the calibration.

Linear System. A system is said to be linear if the

principle of superposition holds for such a system.

That is, the response to several inputs can be

obtained by treating one input at a time and adding

the result. If the governing equation describing the

system is of a constant coefficient type, such a

system is called a linear time invariant system.
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As mentioned earlier, we, in this chapter, will give only a
‘bird’s eye view’ of control theory. The material given
will address only the smart actuation normally encoun-
tered in smart structures applications.

This chapter is organized as follows. First, the math-
ematical concept of control theory is described, wherein
the state-space modeling of a second-order system along
with determination of the transfer function and frequency
response function are discussed. This is followed by a
section on the stability of control systems. This is
followed by a section on design concepts and methodol-
ogy for control systems. Different FE model-order reduc-
tion schemes are given next. Finally, the concept of the
Active Spectral Finite Element (ASFEM) and its use in
controller design is addressed.

9.2 MATHEMATICAL MODELS FOR
CONTROL THEORY

For the analysis and design of control systems, a proper
mathematical model is necessary. A number of different
methods are available for the design of control systems.
Each method requires a different mathematical model.
Central to all of these methods is the second-order
differential equation. This differential equation can be
characterized in many different forms, depending upon
the type of controller that requires to be designed. For
example, in a Single-Input-Single-Output (SISO) system,
the transfer-function-based approach is mostly suitable.
This is generally performed either in the Laplace
or Fourier (frequency) domain. More recently, the
frequency-domain-based Active Spectral Finite Element
has been wused for Multiple-Input-Multiple-Output
(MIMO) systems. This is discussed in the latter part of
this chapter. The most common method adopted for
MIMO systems is the approach based on state-space
modeling. This chapter gives some important aspects of
these modeling techniques.

9.2.1 Transfer function

The output and input of the system are algebraically
related through what is called the transfer function. Such
an relation is possible only in the frequency (or Laplace)
domain and is not valid in the time domain. If the output
of the system in the transformed frequency domain is
i(x,y,z,w) (where x,y, z are the spatial dimensions and
w 1is the circular frequency at which the output is
sampled) and F(x,y,z, ) is the input, then the transfer
function G(x,y,z,®) is obtained by the equation
#t = GF. In structural dynamic applications, the transfer
functions are normally called Frequency Response Func-
tions (FRF), which essentially gives all of the resonant
frequencies and their corresponding energies associated
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with each of the modes. In the design of controllers, it is
necessary to obtain transfer functions, which are nor-
mally characterized using Laplace transforms. The use of
Laplace transform is, however, limited to smaller SISO
systems. If we use an FE for solving a dynamic problem,
then we need to reduce the order of the system for the
design of the controller. There are many model order
reduction schemes available. Some of these important
schemes are given in the latter part of this chapter.

9.2.1.1 Transfer function in Laplace and Fourier
domains

Here, Laplace transformation is used to transform the
variable from the time domain to the Laplace domain.
Laplace transformation for a function f(x,y, 7) is defined
as:

L(f(5,7.)) = F(x.y,5) = Jf<x,y, e di (9.1)
0

The Laplace transformation for the derivative of the
function f(x,y,t) is given by:

L{W} = 5 (x,y,8) = f(x,7,0)
, .
L{%} = 5°f(x,y,5) — 9 (x,5,0) = f(x,7,0)

9.2)

Here, f(x,y,0) and f(x, y,0) are the value of the function
and its derivative at time t = 0. The use of Laplace
transformation on a differential equation reduces the
same to an algebraic equation. Let y be the output
variable and x the input variable. The linear differential
equation that has an nth-order temporal derivative and an
mth-order temporal input derivative, where n > m, can be
written as:

dny dn—]y dy
A A it A —+A
O g PA G o T g A 93)
d"x d"x dx
=By—+B +...Bu_1— + Bux

drm L1 dt

Applying the Laplace transformation reduces the above
equation to an algebraic equation. The transfer function
that relates the output to the input under a ‘zero initial
condition’ is then given by:

<>

(s) _ Bys" + Bis" '+ ...+ B,_is+ By,
(x) T Aos" A L+ A s + A,

(9-4)

[oN

If the highest power of s is n, then the system is called an
nth-order system. Both the numerator and the denomi-
nator can be factorized and written as:

j)(s):(s+ot1)(s+o<2)...(s+am) ©5)
) (s B+ B (s+Bu)
Here, —o;, —0, ... — o, are the points in the s-plane,

where the value of the transfer function is zero and are
called the zeros of the transfer function, while
—By,—P,,...— P, are the points where the value of
the transfer function goes to infinity. These points are
called the poles of the transfer function. Poles and zeros
are very important parameters in the design of control-
lers. In vibrational analysis, poles represent the resonant
condition, where at this frequency (normally referred to
as the resonant frequency) the response increases steeply.
Let us now consider a second-order single-degree-of-
freedom mechanical system that governs the vibrational
motion of a spring—mass—damper system, which is given
by:
mi + cx + kx = f(t) (9.6)
In the above equation, m denotes the mass of the system,
c is the viscous damping coefficient and k represents the
effective stiffness of the system. Here, x, X, X represent
the displacement, velocity and acceleration of the system
and f(¢) is the force and is considered as the point-input.
When a Laplace transformation is applied to both sides
of Equation (9.6) and assuming that the initial conditions
are zero, we get:

(ms® + cs + k)i(s) = f(s)
(s) 1

f(s) T m? tes+k

(9.7)

The second part of the above equation gives the transfer
function and can be factorized and written as:

x(s) 1

(9.8)

From the above equation, we have no zeros and the
two poles at «; and o,. Here, oy and o can be real or
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complex, depending on the radical under the square root.
For the design of a controller, it is necessary that the
values of the real parts of «; and o, should be negative.
This aspect is dealt within more detail in the next section
on the stability of control systems.

From Equation (9.7), when we substitute s = iw, we
can transform the problem from the Laplace domain to
the Fourier domain. That is, the transfer function
becomes:

X(w) 1
e — 9.9
—m? + icow + k (99)

The right-hand side of the above equation is called the
Frequency Response Function (FRF), which is normally
obtained in conventional vibration analysis.

9.2.1.2 Transfer function from the finite element
method

The discritized form of the governing equation in the
Finite Element method is of the form:

(M]{3} + [Cl{i} + [K){x} = {F} (9-10)

Here, [M], [C], and [K] are the mass, damping and
stiffness matrices of size nx n and {x}, {x}, {¥} are
the displacement, velocity and acceleration vector of
size n x 1 and {F} is the applied force vector. Applying
a Fourier (or Laplace) transformation to the above
equation and assuming the initial conditions to be zero,
we get:

[K|{x} = {F}, K] = [~0’[M] +io[C] + [K]] (9.11)
where [k] is the frequency-dependent dynamic stiffness
matrix. To obtain the transfer function, we apply a unit
impulse at the desired degree of freedom and Equation
(9.11) is solved for this unit impulse. Such an n degree of
freedom will have n poles (resonant frequency). If n is
very large, control design becomes extremely difficult
and one has to reduce the FE system. This can be
accomplished by Modal Order Reduction.

9.2.2 State-space modeling

A system 1is said to be in state if for a given input, the
response can be completely determined for all future

times with a minimum amount of information. Mathe-
matically, a dynamic system is defined by a differential
equation of the form given by:

dny dnfly dy
.+ A =4+ Ayy =R(t
dm de-1 ot Yar + Aoy (1)

+ A (9.12)

The above differential equation is of the nth order and
hence all of the n derivatives are defined and it requires n
initial conditions for its solution. We may choose to call
each of the variables y and each of the first (n — 1)
derivatives as state variables. The number of state vari-
ables required to model a differential equation is equal to
the order of the differential equation. The fundamental to
the state-space modeling is to provide a systematic
mathematical approach to analysis of the characteristics
of the system by reducing a single differential equation
into a coupled set of first-order differential equations
with each equation defining one state. This set of equa-
tions is called the state equations.

In Equation (9.12), R(¢) represents the forcing term.
Let us first assume that R(f) does not involve any
derivative terms and is equal to f(¢). We can now assume
that y(¢),dy/dr,...,d""'y/de*! as a set of n state vari-
ables. Let us now define:

dy dX]
X = X = — = —
1 Yy, 2 dl dt
d?y  dx, &}y dxs
X3 = — = —— Xy =—=—
3T T A YT as T A
(9.13)
_ dn—Zy _ dxn—Z _ dnily _ dxnfl
B T T

The nth-state equation is obtained by using the above
definition in Equation (9.12) that is:

dx,
ditn =f(t) —Aox; —Aixp — ... —Apox,1 — Apxy

(9.14)

Equations (9.13) and (9.14) can be put in matrix forms
as:

{&} = [A[{x} + [BI{f} (9.15)
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where:
- dn—ly dn—lf dnflf
X1 = dr-1 €0 dr-1 “l dm-2 T Ol (918)
dx,—
X2 _ -1
wl f=— S
where:
_x,, co=by, ¢y =by—ajcy, c3=Dby—ajc; —ac,
0 1 0 0
0 0 1 0
[A] — , e =by—aic,1 — ... —ap_1c1 — a,co
) (9.19)
—Ay —A —A, —A, The choice of the above state variables ensures the
p 0 " uniqueness of the solution of the state equation. Now,
the reduced first order state equation can be written as:
0
dx;
[B] = E =X —+ CLf
. dx
1 d_t2 =x3+cof (9.20)
The output can be written in the form given by: ’
dx,—
X ();t 1 :xn+cn71f
1
dx
X2 n
= —QuX| — Qp_1X2 — ... — A1Xy +C
y=[110 . . 0] ory=[Cl{x} (9.16) dr Al Vi + Cof
The above set of equations can be written in the matrix
Xn form as:

Here, [A] is called the state matrix, [B] is called the input
matrix and [C] is called the output matrix.

Now, let us consider a case where the right-hand side
of Equation (9.12) has, in addition to the forcing function
f(2), its time derivatives, that is:

df dnfl dnf

- Yy 4B, S Y

R() = Bof () + Bi -+ .+ Byt o+ Bu gy
9.17)

In this case, defining the state variables are not straight-
forward. The earlier definitions of state variables, given
in Equation (9.13), will not yield unique solutions. In this
case, the state variables must be chosen such that they
will eliminate the derivatives of the input f(¢). This can
be accomplished if we define the n state variables as:

d d, dx
x1 =y — cof, Xz*d%)—codl;—cl f:T;_le
d’y d’f df dxy

BEGE g Gg e fEg el

X 0 1 0 0 7
X2 0 0 1 0
)‘Cnfl 0 0 0 1
an L—dn —anp-1 —ap—2 —ap |
X1 B C1 ]
X2 (&5}
X + f
Xn—1 Cn—1
Xn L Cn |
X1
X2
y=[1 0 0 0] + cof
Xn—1
Xn
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That is, in the shortened form, these equations can be
written as:

{i} = [A){x} + [Bf

y = [} + DF 621

Equation (9.21) is the state-space representation of
Equation (9.12), wherein the right-hand side has deriva-
tives of the forcing function.

One can now obtain the transfer function of the system
from the state equation (Equation (9.21)). This can be
done if one takes the Laplace transform of Equation
(9.21), that is:

s{3(s)} — {x(0)} = [AJ{&(s)} + [BIf(s)

. (9.22)

3(s) = [C{x(s)} + Df (s)
Here, {x(s)} and f(s) are the Laplace transform of the
state vector {x(¢)} and the forcing function f(¢). Transfer
functions are normally derived by assuming a zero initial
condition. From the first part of Equation (9.22), we
have:

{3(s)} = [s[1] = [A] "' [BIf (5) (9.23)

Using the above in the second part of Equation (9.22), we
can relate the output to the input, that is, the transfer
function is given by:

G(s) = [C][sl1) — [A]]'(B] + D

(9.24)

That is, the transfer function computation involves com-
putation of [s[I] — [A]]"". Hence, the determinant of
matrix [s[/] — [A]] will give the characteristic polynomial
of the transfer function and the eigenvalue of matrix [A]
will give the poles of the system.

Let us now consider a simple single degree of freedom
of the spring—mass vibratory system, the governing
differential equation of which is given by:

mx + cx + kx = f (1) (9.25)
where m is the mass of the system, c is the viscously
damped damper coefficient and k is the stiffness of the
system. For state-space representation of the system, we
define the state variables x;(7) = x(¢) and x,(¢) = x(¢).
Using these state variables, Equation (9.25) reduces to

the following two first-order equations (state equations),
written in the matrix form as:

(- e+ {oh

m m m

oo )

The above equation is in the conventional form of state
equations given by Equation (9.21). Substituting the
matrices [A], [B], [C] and [D] derived from the above
equation in Equation (9.24), we can write the transfer
function as:

(9.26)

1
T ms24cs+k

G(s) (9.27)

This is the same as what was derived in Equation (9.7),
obtained by taking a Laplace transformation on the
governing equation.

In designing controllers for multi-input multi-output
systems, especially for structural applications, one will
have to depend extensively on the discritized mathema-
tical model as that derived from FE techniques. The
discritized Finite Element governing equation of any
structure is of the form:

MI{x} + [CI{x} + [K{x} = {f} (9.28)
Here, [M], [C], and [K] are the mass, damping and
stiffness matrices, respectively.

These matrices are of size n X n.{x} is the degree of
freedom vector and {f} is the force vector, both of which
are of size n x 1. The above equation is similar to the
single-degree-of-freedom equation (Equation (9.25)) and
the state space equation will be of the form of Equation
(9.26). Hence, the state vectors for the FE equation are
{x1} = {x} and {x,} = {x;}. The reduced-state-space-
form of Equation (9.28) and its corresponding output
vector {y} is given by:

{H} N [—[A}}OL[K] —[A}f}I[C}ng}
{ - G
o= ol{£2)

The above is in the standard form given in Equation
(9.21), wherein we can clearly identify matrices [A], [B]

(9.29)
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and [C], respectively. Equation (9.29) represents a
2n x 2n system. That is, an n X n second-order system
(Equation (9.28)), when reduced to state-space form,
becomes 2n X 2n of the first-order system. In addition,
the input and the output are related, especially for the
feedback, by:

{r} = [G]{y}

In the above equation, [G] is the gain matrix of size
n x r, when r states are chosen for input feedback to
reduce the response, especially for vibration control
applications. Using the second part of Equation (9.29)
in the above equation, we can write the output—input
relation in terms of the state vector as:

(9.30)

{f} = [GlICl{x}

Once we reduce the governing equation in the state-space
form, and using Equation (9.26), one can determine the
transfer function. However, normally, the system size of
the FE system is quite high, especially for dynamic
systems. In order to design the control system, it is
practically impossible to consider the entire FE system
due to its large system size. In most control applications
to structural problems, such as vibration or noise control,
only the first few modes are targeted for reduction based
on their energy content. In such a situation, one has to
reduce the order of the system using suitable reduction
techniques. The concepts of dynamic reduction are
addressed in the latter part of this chapter.

(9.31)

9.3 STABILITY OF CONTROL SYSTEM

A control system design should adhere to some basic
concepts that ensure the stability of the system. In this
section, some of the commonly used methods in deter-
mining the stability of the system are highlighted.

An engineer’s definition of stability is that a system
should have enough damping to damp out all of the
transients and resumes a steady-state condition. That is, a
system is said to be stable if a finite duration input causes
a finite duration response. On the other hand, a system is
said to be unstable if a finite duration input causes the
response to diverge from its initial value. That is, when
the output changes ‘unidirectionally’ and ‘shoots up’
with ever increasing amplitude, the system is said to be
unstable.

Here, let us consider a linear system. Most systems we
come across are differential equations, second-order in

time, and in most cases are equations with constant
coefficients. One of the fundamental features of constant
coefficient equations is that they have exponential solu-
tions of the form:

y(t) = Ae"™ + Be™ + Ce™' + De™ +...  (9.32)
In the above equation, the constants A, B, C, etc. are
determined by using the initial conditions and the forcing
functions; ry, r», etc. are the roots or eigenvalues of the
characteristic polynomial. The stability of Equation
(9.32) depends on the values of r. If these are negative
and real, then the output tends to zero value as t = oc.
Such a system, where all of the r’s are negative and real,
is said to be a stable system. If the roots of the
characteristic polynomial are positive and real, then the
output of Equation (9.32) grows without a bound as
t = 00. Such a system is said to be an unstable system.
If all of the r’s are purely imaginary, then the system
exhibits continuous oscillations due to the presence of
sine and cosine terms in the output equation. Finally, if
all of the r’s are complex, having both real and imaginary
parts, it amounts to attenuation of the response due to a
growth in time. Hence, the determination of the stability
of the system amounts to determination of the roots of
the characteristic polynomial. In terms of the complex
variable s, a system is said to be stable if all of the roots
are in the left half of the s-plane and unstable if any roots
are on the imaginary axis or in the right half of the
s-plane.

If the system is linear, then testing of the stability of
the system amounts to determining whether any root is in
the right half of the s-plane or on the imaginary axis. The
following are the different methods of testing the stability
of a control system:

(1) Numerically determining the roots of the character-
istic polynomial.

(2) Routh—Hurwitz criterion.

(3) Nyquist criterion.

(4) Root Locus method.

(5) Using the state-space or transfer-function approach.

The choice of using the above tests is ‘problem-
dependent’. We will now briefly describe the above
methods in a few sentences. The reader is advised to
refer to Kuo[2] for a detailed account of these methods.

In the first test, a characteristic polynomial of order n
is first obtained and its roots are determined numerically.
There are many elementary root-finding algorithms, such
as the Newton—Raphson technique, bisection method,
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secant method, etc. For complex differential equations,
some of the more recent techniques, such as the compa-
nion matrix method or polynomial eigenvalue method,
can be used. These are discussed in Chakraborty [3]. In
Finite Element terminology, an n degree of freedom
model will yield a characteristic polynomial of order .
If n is very large, as in the case of the transient dynamic
problem, then solving for all poles from the characteristic
polynomial is an ‘horrendous’ task. Hence, the system
size of the FE equations is reduced using proper model
order reduction.

The Routh—Hurwitz criterion test gives us the number
of roots if any of these exist to the right of the s-plane. It
does not give the location of these roots on the s-plane
and hence does not give any guidance for design proce-
dures. It can be conveniently used for lower-order
systems and is relatively simple to implement.

The Nyquist criterion [4] helps in identifying the poles
that are located on the right half of the s-plane. This is a
frequency-domain technique that is based on conformal
mapping and complex variable theory. The method
involves plotting the open-loop Frequency Response
Function (FRF) and looking at the frequency amplitude
at the resonant frequencies. From this, one can infer on
the stability of the system. The main advantage of this
criterion is that one can modify the control design by
reshaping the frequency-response plots.

The root locus is again a graphical method, wherein
the curves are constructed in the s-plane that show the
response of each root of the characteristic polynomial as
a specified system parameter is varied. Using this
method, it is possible to evaluate the root location for a
given value of the system parameter and also establish
the conditions for stability. Again, due to the graphical
nature of the method, design procedures can be devel-
oped based on reshaping of the curves.

In the state-space approach, the eigenvalues of the
state matrix [A] (see Equation 9.21) will give the poles in
the s-plane from which the stability of the system can be
assessed. From the FE point of view, this method is ideal.
As a part of the FE code, there are many eigenvalue/
vector extraction routines, which are used in free/forced
vibration analysis. These routines can be used to extract
the pole information from the state matrix [A].

There are two other terms that are normally used in the
control theory as regards the stability of the system.
These are Controllability and Observability. These
terms are commonly used in the control theory as they
play an important role in the design of controllers,
particularly when using the state-space approach. These
were introduced by Kalman. A system is said to be ‘not

controllable’ if it does not satisfy the controllability and
observability conditions. Hence, some conditions are
specified in terms of the control parameters, which a
system is made to satisfy for if it is to become con-
trollable and observable. These conditions can be derived
by using the following definitions. A system is said to be
controllable at some time f if it is possible to transfer the
system from an initial state x(fy) to any other state in a
finite interval of time by using an unconstrained control
vector. A system, which is in the state x(f), is said to be
observable at some time #, if it is possible to determine
this state from observation of the output over a finite
interval of time.

Using the above definition, we can derive the condi-
tions for both input and output controllability. Here, a
‘mere’ condition is stated without going into much detail.
Let us consider the governing differential equation of
order n in the state-space form given in Equation (9.21).
The condition of controllability of the input is that the
vectors [B], [A][B], ..., [A]""'[B] are linearly independent
and the matrix is given by:

[[B]

which is of rank n or is not singular. Similarly, we can
state the condition of output controllability of the state
equation given by Equation (9.21) in a similar manner.
That is, we can write the output controllable matrix as:

[A][B] A" [B]] (9.33)

[[cIB] [cllA]B] [CAT'[B] . [CliA]""'[B] [D]]

(9.34)

The above matrix is of the order m x (n+ 1)r, where
matrix [A] is n X n, vector [B]isn X r, [C] is m X r and
[D] is m x r. The condition for output controllability is
that the matrix given in Equation (9.34) is of the rank m.

On similar lines, we can write the observability con-
dition by using the definition. That is, the state equation
given by Equation (9.21) is observable, if and only if, the
matrix given by:

(€] [AT)[cT] A en ] (935)
is of the rank n. We can also state the conditions for
complete controllability and observability in the s-plane.
That is, the system is not completely controllable or
observable if there exists common factors in the transfer
functions in the numerator and denominator. For example,

a transfer function given by:
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is not completely controllable or observable due to the
common factor (s + 1) in both numerator or denominator
of the above equation.

9.4 DESIGN CONCEPTS AND
METHODOLOGY

The fundamental to the design of the control system is to
place the poles at the appropriate positions so that the
stability of the system is ensured. The plant is a part of
the control system that has unchangeable parts and is
described by the transfer functions or state variables. The
poles can be shifted to the appropriate positions by
closing a loop around the plant with a feedback signal
with appropriate gain. The gain matrix is the one that
relates the output vector to the input vector. The gains
can be constant or variable, depending upon the control
system design. The basic or minimum system is deter-
mined by having a closed-loop unit feedback. Normally,
sensors are assumed ideal (unit gain) and only an
amplifier is added between the error signal and the
plant. The gain is then set accordingly to meet the
steady-state and bandwidth requirements, which are
followed by a stability analysis. For a smart system, we
have a sensor(s) and an actuator(s) to receive the sensor
input and a controller. The stability of such a smart
system is governed by the placement of the sensor, the
placement of actuator, the error signal, the gain variation
and the type and method of control design.

Design of a control system involves a design of
compensation. Compensation can be designed in two
different ways. The main objective of the first way is to
modify the basic system in order that the stability of the
system is ensured. Stability analysis is a very important
preliminary step that determines how unstable (or stable)
the system is and hence tells the designer how much
compensation is necessary to ensure stability. The second
step in the design process is to mathematically determine
the parameters for the chosen value.

It has been mentioned earlier that the unstable system
will have roots in the right half of the s-plane. To
stabilize an unstable system, we need to move these
roots to the left half of the s-plane. In addition, for a
stable transient response, these moved poles need to be
reallocated in a suitable area in the s-plane. The roots are
generally complex and the real part of the root deter-
mines the duration of the transient and the imaginary part
determines the oscillating characteristics. In general, one
can move the roots by (a) changing gain, (b) changing

plant, (c) placing a dynamic element (filter) at the
forward transmission path, (d) placing a dynamic ele-
ment (filter) at the feedback path and (e) feedback all or
some of the states. Of the above, the first two ((a) & (b))
are seldom permissible. All of the other four are possible
options a designer can use. Selection of these is a matter
of engineering judgment and also depends on the nature
of the problem. Although one can design the control
system using frequency-response or root-locus techni-
ques, in this chapter the state-variable approach is used,
keeping in mind that the designed control system can
handle the multiple-input-multiple-output problem.
Under this approach, two different design schemes are
outlined, namely the PID controller and the controller
based on eigenstructure assignment. These are discussed
in the following subsections.

9.4.1 PD, PI and PID controllers

From the previous discussion, it is clear that gain is an
important parameter governing the design of a controller.
An increase in the gain increases the bandwidth and
makes the response faster and accurate. However, an
increase in gain decreases the damping. The damping is
improved by introducing a derivative signal and if there
is a need to increase the accuracy substantially, then an
integrator is used. Several commercially available con-
trollers combine several of these concepts. The most
common among them are the following:

e PD Controller =Proportional + Derivative
= G(s) =K, + Kus
e PI Controller =Proportional 4 Integral

=G(s) =K, +%&
e PID Controller = Proportional 4 Integral 4+ Derivative
= G(s) =K, + &+ Kys

In the above equations, K,,K; and K; are the gain
parameters, which are adjustable. Among the above,
PID controllers are extremely popular and successful
and have been used in many applications, such as
autopilots in ships and aircraft. Ziegler and Nichols [5]
have developed adjustment procedures, which is one of
the reasons why such controllers are so popular.

Let us now consider the transfer function of a PD
controller. This is given by:

K,
G(s) = K, + Kus = Ky (s + F”) (9.36)

d
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This controller simply introduces a free zero and the
design requires a zero to be placed at the appropriate
location and adjust the gain accordingly.

The Proportional-Integral (P]) is a type of feedback
controller whose output is u(¢), with a control variable
(CV) which is generally based on the error signal e(r)
between some user-defined set point (SP) and some
measured process variable (PV). The control action of
a proportional plus integral controller with u(r) as the
output of the controller and an e(r) actuating error signal
input is defined by:

t
u(t) = Kpe(t) + K; Je(t)dt
0

plus where the transfer function of the controller is given
by:

K] _ K,,(S + K[/Kp)

Gls) =Ky + ' = (9.37)

N

The proportional gain K, is multiplied by the error — this
is an adjustable amplifier. In many systems, K, is
responsible for process stability. If it is too low, the PV
can drift away; if it is too high, the PV can oscillate. The
integral gain K; is multiplied by the integral of error. In
many systems, K; is responsible for driving the error to
zero; however, if K; is set too high, there will be
oscillation, instability, integrator windup or actuator
saturation. The integral adds zeros at s = —K;/K,, and
a pole at s = 0 to the open-loop transfer function. The
effects of K, and K; on a closed-loop system are
summarized in Table 9.1. These correlations may not
be exactly accurate, because K, and K; are dependent on
each other and changing one can bring about a change in
the other.

The PI controller involves adjustment of K}, and K; or
tuning to achieve some user-defined optimal character of
system response. The industrially accepted procedure is
the Ziegler-Nichols technique [5], which is as follows.

Table 9.1 Effect of gains K, and K; on close-loop
response.

Closed- Rise  Overshoot  Settling S-S

loop time time error

response

K, Decrease Increase  Small Decrease
change

K; Decrease Increase Increase Eliminate

First, K; = 0 is set and using proportional action only, K,
is increased from O to a critical value K. where the
output first exhibits sustained oscillations. Thus, the
critical gain and corresponding period P, are experi-
mentally determined.

To get the error signal, sensors are required. The
sensing is normally done through accelerometers. The
acceleration sensed varies with the location of the accel-
erometers. The corresponding [C] matrix entries are then
estimated. The feedback is given as a proportional gain
matrix [G,]| times the acceleration vector {g} and an
integral gain matrix [G,] times the velocity vector {g}.
For acceleration and velocity feedback, the output vector
{y} can be written as:

{} = [G]{x} + [Crl{x}

where [C,] and [C;] are measurement matrices.
Let us now consider the PID controller. The transfer
function in this case is given by:

K, _ Kus* + Kps + K

G(Y) =K, + T + K5 = (938)

N

This requires a pole to be placed at the origin and two
zeros at the desired locations for adjustment of the
dynamic response. The two zeros may be real or com-
plex, depending on the gains used and it will always be
on the left-half plane. PID controllers can be digitally
implemented with microprocessors.

9.4.2 Eigenstructure assignment technique

The eigenstructure assignment technique for feedback con-
trol system design allows the closed-loop system to have
specified eigenvalues and eigenvectors. The forced response
of a multi-variable system depends on both these eigen
parameters; thus, this technique is an efficient tool for
effective controller design, where the number of closed-
loop eigen parameters can be specified a priori depending
on the number of measurable outputs and inputs.

For a linear time-invariant system, the governing
equations written using the standard notations are given
by Equation (9.29). It was mentioned previously that the
eigenvalues of matrix [A] give the poles of the system.
Each of these eigenvalues/vectors satisfy the identity:

[Al{vi} = Zi{vi} (9:39)
where /; is the ith eigenvalue and {v;} is the correspond-
ing eigenvector. The free transient response of the system



Active Control Techniques 241

to a non-zero initial condition {xo} is given by the
equation:

{x(1)} = e {xo}

Assuming the eigenvalues of [A] to be distinct, a non-
singular modal matrix [®] consisting of eigenvectors can
be found, where:

(9.40)

[@]=[vi v2 v3 . . . ] (9.41)

and:

[A] = [@][A)[@] ! (9.42)

where [A] is the diagonal matrix of eigenvalues. Now, the
response in Equation (9.40) can be written as:

{x(n)} = [®@)e™ D] ' xo (9.43)

By defining:

[<I>]7l=[w] Wy W3

wal', O = Zwij()j
Jj=1
(9.44)

Substituting the above equation in Equation (9.43), we
get:

X,'(l‘) = V],'G]e)"t + Vzi()zebt +...+ Vm'one)‘”t (945)

From the above equation it can be interpreted that:

e The state-variable response consists of a combination
of all existing modes.

e Each eigenvalue determines the growth/decay rate of
the corresponding mode.

e The amplitude of contribution from a particular mode
depends on the eigenvectors.

9.4.2.1 Design methodology

A linear time-invariant, multi-variable, controllable and
observable system is given by:

(i} = [Al{x} + [Bl{u},  {y} = [C]{x}

where there are n state vector ({x}), m input vectors
({u}) and r output vectors ({y}). The objective here is to
find a control law of the form:

{u} = [Kl{y}

(9.46)

(9.47)

such that the closed-loop system matrix is ([A] 4 [B][K]
[C]) (after applying feedback) satisfies:

(A + BIKICl)v: = vy, i=1,2,...,n  (9.48)
where 1; is the ith desired eigenvalue and v; is the
corresponding desired eigenvector. The general metho-
dology to achieve this eigenstructure involves three
numerical steps, as follows:

e Computation of the allowable subspace of the eigen-
vectors.

e Choice of eigenvectors.

e Computation of the gain value for assignment of the
above eigenstructure.

In the eigenstructure assignment technique, the number
of assignable eigenvalues is determined by the number of
outputs and inputs. Full-state feedback requires that all of
the state variables are measurable, which is often not
possible and in such cases the output feedback is used.
Here, eigenstructure assignment using output feedback is
implemented to get a desirable closed-loop eigenstruc-
ture. With accelerometers used as sensors, the measur-
able quantities are the acceleration and velocity as
integral of the acceleration.

9.5 MODAL ORDER REDUCTION

We have seen that design of a control system involves
placement of the poles at the appropriate positions so as
to ensure stability of the system. If one uses FE methods
for mathematical modeling of the dynamic system, the
system size of the problem is determined by the FE
mesh density, which is usually very high for transient
dynamics problems. That is, if the FE model of the
system has n degrees of freedom, there will be n different
poles in the system and the characteristic polynomial of
the system is of the order n. If n is very large, then
handling the design of the control system becomes
‘horrendous’ since most of the control system design
techniques are mostly to shift the first few poles of the
system. Even in real-world problems, such as vibration
control in structures, it is sufficient that the first few
modal amplitudes are reduced through a control system.
In essence, the large system size of the FE model of the
problem requires to be reduced for design of the control
system. This can be achieved through what is called
modal order reduction. In this section, all of the available
model order reductions are reviewed and the behavior of
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these techniques are compared for a transient dynamics
problem through numerical examples.

9.5.1 Review of available modal order reduction
techniques

The general procedure for modal order reduction is as
follows:

e First, a few important degrees of freedom (dof) of the
full order system are selected as the ‘master’ dof and
these are retained in the reduction process and the rest
of the dof are designated as the ‘slave’ dof that is to be
condensed out. The selected configuration of the
‘master—slave’ dof depends on the nature of the
problem sought for solution and also upon the algo-
rithm adopted for reduction.

e A linear coordinate transformation (also called a
similarity transformation) that transforms the original
full-order system to a reduced-order system is defined.

e All of the system matrices (mass, stiffness and damp-
ing matrices) are then transformed to this new trans-
formed coordinate system to obtain the reduced-order
matrices.

With the usual FEM notations, the second-order govern-
ing differential equation of motion for a dynamical
system of order n is expressed as:

(M[{ii()} + [Cl{a(0)} + [K{u(n)} = {£(1)}

where [M], [C] and [K] are the system mass matrix,
damping matrix and stiffness matrix, respectively, of
order n x n. Here, {u}, {i1} and {ii} are the displacement,
velocity and acceleration vectors, respectively, of size
n x 1 while {f(¢)} is the nodal force vector of size n x 1.
After selection of the master and slave dofs of orders m
and s, respectively, the objective of reduced-order mod-
eling (ROM) is to establish an equivalent model for the
above equation of order m instead of n, where m < n.
This reduced model can be expressed as:

(M i (1)} + [Clin (1)} + [K]{un(1)} = {F(1)}
(9.50)

(9.49)

The overhead ‘tilde’ indicates the system matrices of the
equivalent ROM. The transformation matrix [77] relates
the full-scale model to the reduced scale and is expressed
in terms of the displacement vectors of the full and
reduced models, respectively, as shown below:

wy = { i} =ty 030

wherein the subscripts m refers to the retained (master) dof
and s to the condensed (slave) dof. Substituting Equa-
tion (9.51) into Equation (9.49) and ‘pre-multiplying’
[T]", the expression in Equation (9.49) reduces
to:

(T M7 i (1)} + (7] TCNT i (1)}

; . (9.52)
+ [T KT Hun ()} = [T {7 (1)}

which can be written in form given in Equation (9.50).

Hence, we have:

[M] = 1] [M)[T],
(K] = 11" K171,

(€] = [1]"[C][T]

- 9.53
= 03
Different model-order reduction methods prescribe steps
for computation of the transformation matrix [7]. The
review of theoretical formulations of different ROMs and
derivation of the corresponding transformation matrices
are discussed in this section. A similar transformation
applies for the ROM of the system in the state-space
framework. The state-space equation for the full system
is given by:

{i} = [A[{x} + [BI{/} (9.54)

with the output vector given by:
{v} = [Cl{x}

The state-space equation of the ROM and the corre-
sponding reduced output state vector are given by:

{on} = [Al{xn} + B}, {om} = [Cl{xn} (9.55)
In this section, three important model-order reduction
techniques are reviewed in detail.

9.5.1.1 Guyan reduction technique

Time-domain model-order reduction methods that are
applicable to steady-state structural problems date back
to the 1960s, due to the work of Guyan [6]. These
methods are based on the assumption that the effects of
inertial forces on the eliminated physical coordinates are
negligible, that is, the condensed dof does not experience
any force and the effect of associated inertia and damp-
ing are not included in the transformation. Upon parti-
tioning the mass and stiffness matrices into submatrices
and the displacement and force vectors as subvectors
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based on the master and slave configurations, the equa-

tion of motion can be expressed as:
{[Mmm] [Mms}} { {itn } } N [ Lo [Kms]] { {Mm}}
My M) ] {iis} [Kos]" K] ]\ {us}
= { {];')"} } (9.56)
Expanding the second equation and neglecting the

masses associated with the ‘slave’ degrees of freedom,
we get:

(Kons]" {ttm} + [Kss]{us} = 0 (9.57)

The above equation helps us to relate the ‘slave’ dof in
terms of the ‘master’ dof, which can be written as:

{us} = - [Kss} ! [Kms]T{Mm]

The transformation matrix required for order reduction is
given by:

() = { {{Zf } = [T{un}, [T]= L[KSS][,’J [KMS]T}
9.59)

(9.58)

This method is simple and has been used in various
engineering applications. In dynamic analysis, Guyan’s
method is adopted by usually considering the dof with
small inertia as the ‘slave’ dof. A computational algo-
rithm was proposed by Shah and Reymand [7] for
analytical selection of ‘master’ and ‘slave’ configurations
in Guyan’s reduction.

9.5.1.2 Dynamic condensation method

This method is an improvement over Guyan’s reduction
method in the sense that the transformation is based on the
dynamic stiffness matrix [D] rather than the static stiffness
matrix [K]. This method is a ‘frequency-selective’
approach. At a given frequency , the equilibrium
equation in the frequency domain is expressed as:

(9.60)

The above equation is obtained by taking a Fourier
transform on the displacement and acceleration para-
meters in the original governing equation (Equation
(9.49)) and {it} and {f} are the frequency-domain

amplitudes’ displacement and force vectors, respectively.
Again, partitioning the above in terms of matrices asso-
ciated with the ‘master’ and ‘slave’ dofs, we get:

Uy (0 £
)} [0 g

{its(@)} 0
Following the same procedure used in Guyan’s reduction,
we first express the ‘slave’ dof in terms of the ‘master’

dof through the second equation. Then, the transforma-
tion matrix becomes:

(D]
D]

[Dns]
[Dss]

=i ) =m 0=,y
(9.62)

Based on this approach, a central frequency w for
condensation was proposed by Paz [8]. For dynamic
problems, where multiple modes participate, as in the
case of wave problems, the use of the geometric mean as
the central frequency over the frequency band under
interest has been employed by Paz [8].

9.5.1.3 System equivalent reduction and expansion
process (SEREP)

SEREP was proposed by O’Collahan [9], primarily as a
technique for a cross-orthogonality check between ana-
Iytical and experimental modal vectors, linear and non-
linear forced response studies and analytical model
improvement. This method uses a modal matrix instead
of a stiffness matrix to derive the required transformation
matrix. That is, this method proposes transformation of
the dynamic characteristics through the collection of
desired eigenmodes. The modal matrix [y/] of the system
computed for p numbers of modes is partitioned as [i/,,]
and [y,] for m numbers of the ‘master’ dof and s numbers
of the ‘slave’ dof and is expressed as:

V)
0=t
A
The modal matrix relates the generalized displacements
to the modal displacements through the expression given

as:
ot d =l e

(9.63)

(9.64)
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where {Z} is the generalized degree of freedom vector.
From the above equation, we can write:

{2} = Wl {um}

where [,,] " is the generalized inverse of [,,], which is a
rectangular matrix of size m x p, where m is the number
of ‘master’ dofs and p is the number of modes retained in
the transformation. To and Ewins [10] discussed the
computation of a generalized inverse for a rectangular
matrix, which is given by:

[‘Pmﬁ = Hlpm}T[lpmuil[l//m}T when m > p
Wl = Wl [W¥)’] ™ when m < p

(9.65)

(9.66)

Substituting for {Z} from Equation (9.65) into Equation
(9.64), we get:

{td = [

The transformation matrix in this case is given by:

(9.67)

— [lpm] +

= | Wl (9.69)
As discussed by O’Callahan [9], this method allows an
arbitrary selection of the modes that are to be selected in
the ROM and the quality of the ROM does not depend
upon the location of the ‘master’ dof. However, the
number of modes included in the transformation should
be more than or equal to the number of ‘master’ dofs. In
addition, the frequencies and modes shapes of the ROM
are exactly the same as those of the selected frequencies
and mode shapes of the full-system model. This is one of
the great advantages in the design of control systems,
wherein one has to design the same by using a limited
number-of-degrees-of-freedom model. Since the reduced
mathematical model based on the SEREP can exactly
represent the dynamic characteristics of the full model,
the control theory tolerances are greatly enhanced.

In addition to the above three ROM techniques, there
are three other techniques reported in the literature. These
are the Condensation Modal Order Reduction Technique,
based on the Projection Operator, proposed by Dyka et
al. [11] and referred to as the CMR method, the Improved
Reduced System of O’Callahan [12], referred to as the
IRS method and the Dynamic Improved Reduced System
of Friswell et al. [13], referred to as the DIRS method.
The above three methods are not discussed here, although
some of the results from these methods are used in the
next subsection for comparison purposes.

o
L=500mm D=6 mmB=10mm

Figure 9.1 Schematic of a cantilever beam used for the
comparative study.

9.5.1.4 Reduced order modeling in transient dynamics:
a comparative study

The main objective of this section is to identify the
reduction technique that results in the most accurate
response for the given master—slave dof configuration.
It was explained previously that the characteristics of the
transient dynamic problem is that the frequency content
of the forcing function is quite high. In other words, the
time duration is very short, normally of the order of
microseconds. Hence, it excites all higher-order modes.
This results in very fine FE discritization and hence a
very large system size. Thus, when using an ROM, one
has to be very careful in choosing the master—slave dof
combination.

For comparative study of different ROMs, a 2-D canti-
lever beam under plane-stress conditions and subjected to
axial impact, shown in Figure 9.1 is considered. The
dimensions of the beam are 500 mm X 6.0 mmx 9.0 mm
and the isotropic material properties are E = 72.0 GPa,
v=0.3, and p = 2700kg/m>. The time history and the
frequency spectrum of the applied load is shown in
Figure 9.2 and the load is acting axially at the free
end of the cantilever beam. The full system model is

100
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15¢
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Figure 9.2 Input load history and its frequency spectrum used
in the comparative study.
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(b)

Figure 9.3 Configurations showing the spatial distributions of the master-slave dofs: (a) pattern 1 — master dof of 150; (b) pattern —

master dof of 50.

descritized based on the wavelength consideration. The
full system matrix is of the order 624 x 624. For compar-
ison of the response, three reduced-order models, namely,
the Dynamic Condensation (DC), Dynamic IRS (DIRS)
and SEREP are considered and the response is computed
for the same ‘master—slave’ dof configuration for all of the
methods. Two different patterns of ‘master—slave’ dof
configurations are used in the investigation, which form
the reduced-order system matrices of order 150 x 150 and
50 x 50, respectively. The configurations indicating the
spatial distribution of the ‘master—slave’ dof for the two
patterns are shown in Figure 9.3. The locations of the
‘master’ dofs at the nodes are shown by * marks.

The axial velocities are plotted at the middle node of
the free end of the beam. For pattern 1 with 150 dof, the
axial velocity plot is given in Figure 9.4. In this case, the
location and amplitude of the incident and first reflection
of the wave are accurately captured for all of the
reduction methods; however, the response through
SEREP is observed to be able to capture even a small
dispersion exhibited by the longitudinal wave and the
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Figure 9.4 Comparison of axial velocity for pattern 1 (150
dof) for different ROMs.

results match exactly with the full-system response. The
number of modes included in the transformation in the
case of SEREP is equal to the number of ‘master’ dofs,
that is, 150. The condensing frequency used in the DC
method is the fundamental frequency of the system
(185.09 Hz). Figure 9.5 gives a comparison of the same
for the pattern-2 (dof 50) configuration of the ‘master—
slave’ dof. In this case, the response by SEREP matches
accurately with that of the full-system response, but the
response histories by DC and DIRS have shown some
time lag in the occurrences of the reflected pulses, while
there is no such time lag observed for the incident pulse.
That is, the other two ROMs under-predict the axial wave
velocity. In addition, a slight under-prediction of
response and perturbation is observed in the cases of
DC and DIRS. The accurate matching of the response in
this case for the ROM through SEREP can be explained
by the fact that the first few eigenmodes carry maximum
spectral energy, which can be observed by the FFT
diagram of the load history, as shown in Figure 9.2 and
SEREP can be said to work excellently with inclusion of
the eigenmodes that carry maximum energy.
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Figure 9.5 Comparison of axial velocity for pattern 2 (50 dof)
for different ROMS.
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Figure 9.6 Comparison of transverse velocity for pattern 1
(150 dof) for different ROMs.

Next, the transverse loading is considered. For the
same cantilever beam and for two different ‘master-
slave’ configurations, the free-end transverse responses
are plotted in Figures 9.6 and 9.7, respectively. The ROM
simulation of wave propagation for the transverse excita-
tion is observed to be more sensitive to the order of
reduction and the ‘master—slave’ dof configuration. For
the case of the ROM of order 150 (pattern 1), all of the
methods are observed to give a slight decay in the
amplitude of the transverse velocity corresponding to
the occurrence of the incident pulse.

For the case of the ROM of order 50 (pattern 2),
SEREP gives the most accurate solution, which matches
exactly with the full-system response after the occur-
rence of the incident pulse peak. DC and DIRS result in
an oscillatory response and a slight perturbation from the
original system response at a longer time range. In all of
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Figure 9.7 Comparison of transverse velocity for pattern 2
(50 dof) for different ROMS.

the simulations discussed above, for SEREP the number
of modes is always taken equal to the number of ‘master’
dofs, while for DIRS and DC the condensing frequency is
taken as the fundamental frequency of the system. From
the above example, it is quite clear that the SEREP
method is perhaps the best ROM from the computational
viewpoint. That is, whatever the modes that are retained
in the transformation, those modes are accurately repre-
sented in the ROM. This is particularly useful in multi-
modal control, wherein the modes that requires suppres-
sion are a priori assigned while designing the control
law.

9.6 ACTIVE CONTROL OF VIBRATION
AND WAVES DUE TO BROADBAND
EXCITATION

The FE model of a system is usually very ‘high’,
especially for transient dynamics and wave-propagation
problems. Designing a control system for such problems
is very difficult due to the very ‘high’ system size. For
example, in vibration-control problems, it is customary to
reduce the vibration amplitudes of the first few modes
using suitable control algorithms. This can be easily
accomplished by using a reduced-order model of the
complete system that has all of the necessary information
about the first few relevant modes. This ROM can be
used in conjunction with state-space modeling or the
transfer function approach that was outlined earlier, for
designing the control law. However, transient dynamics
or wave-propagation problems are multi-modal pro-
blems. That is, if we use the FE approach, then one
cannot design the controller based on the first few modes,
since many higher-order modes carry significant portion
of kinetic energy. Obtaining all of the higher-order
eigenvalues/vectors is computationally very prohibitive.
That leaves one with no other option but to look for an
alternate mathematical tool that has a smaller system size
and yet contains all of the model information. A tool that
fits into the above description is the Spectral Finite
Element Model (SFEM) which was dealt within Chapters
7 and 8. In this present chapter, a new design philosophy
based on Fourier transforms is developed, wherein the
existing SFEM is modified to model the control ele-
ments, namely the sensor and the actuator, and also the
controller. Since the system size of the SFEM model is
very small and also contains all modal information, no
model-order reduction is required. In addition, the con-
troller can be designed for the entire eigenspectrum and
hence in cases of vibration- or noise-control problems,
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one can obtain the Frequency Response Function of the
structure after the feedback signal is enforced. This will
quantitatively give the amount of vibration amplitude
reduction over the entire eigenspectrum. This will give a
great reduction in the computational effort as opposed to
the traditional approaches. One other major advantage of
the model is that one can handle arrays of sensors/
actuators and any sensor(s) can be fed to any actuator(s)
or set of actuators. That is, it is quite simple to handle
both collocated and non-collocated sensor—actuator con-
figurations. This aspect is extremely difficult to handle in
the traditional approaches.

9.6.1 Available strategies for vibration
and wave control

Design of smart structural systems based on control of
the first few resonant modes, individually, is the most
common in practice. For many vibration-control appli-
cations, this serves the control objective, since the
modal energy is distributed over the first few resonant
modes only. The basic steps behind development of
such active control system models can be described as
follows:

e First, an appropriate kinematics and constitutive
model is assumed. For actuators or load cells mounted
on the host structure, appropriate ‘lumping’ of the
control force and actuator inertia can be considered.
For surface-bonded or embedded layered sensors/
actuators, the same kinematics as the host structure
with additional constraints (for example, shear-lag to
model active/passive constrained layers, discontinu-
ous functions to represent interfacial slip while hand-
ling inclusions, air-gap, etc.) can be used.

e Next, one has to adopt an application-specific control
scheme. For a known harmonic disturbance, a control
force can be applied in the open-loop having an
optimal phase difference with the mechanical distur-
bance. An actuator force can directly be specified to
add onto the equivalent mechanical force vector. For
unknown dynamic loading, and as required in most
stable controller designs, closed-loop control schemes
are to be adopted. The initial configuration of the error
sensors, whose placements and numbers are to be
fixed based on optimal control performance (observa-
bility and controllability), can be used for feedback or
feed-forward control. These error measurements are
considered as inputs to the controller under design.
The controller output vector is to be used as the input
electrical signal to the actuators. For an off-line

optimal control design based on a conventional opti-
mization technique, the above steps are to be repeated
at every iteration while extremizing the cost func-
tion(s). For an off-line optimal control design based
on soft-computing tools (e.g. genetic algorithms),
these solution spaces can be explored directly.

Once all of the system parameters (stiffness, mass,
damping, electromechanical properties of sensors and
actuators, sensor locations, actuator locations, actua-
tor input, etc.) for a particular configurations are
available, one has to develop a global model for the
passive structure and senor/actuator segment using
analytical or finite techniques. Under certain cases
of electromechanical coupling, the system matrices
can be decoupled into passive and active components.
For the fully coupled electromechanical case, an
analytical solution can be obtained for only a few
electromechanical boundary conditions and for this,
one can use a detailed finite element model. For
mounted actuator or load cells, the effect of actuator
stiffness, inertia and force can be ‘lumped’.

Next, one has to adopt suitable methods of system
solution in temporal or modal space. When the dis-
cretized system size is large, an appropriate reduced-
order modeling technique can be used. Dynamic Con-
densation, Proper Orthogonal Decomposition (POD)
or the System Equivalent Reduction Expansion Process
(SEREP), among many reduced-order modeling tech-
niques, are found useful. Based on the formalism of the
control cost function construction, a state-space model
(first-order representation) is often used instead of a
direct second-order representation. This is particularly
suitable for conventional designs based on the quad-
ratic regulator approach, where the state-space plant
matrix, the input/output matrix, along with the required
weighting matrices, are introduced. Peak-response spe-
cifications are generally found to be linear matrix
functions of the design variables, which allow them
to be incorporated within the design framework with-
out increasing the complexity of the optimization [14].
In time-marching schemes (for example, Newmark
time integration) while designing optimal control sys-
tem, the control cost function is minimized, including
special control system features (e.g. gain scheduling,
feedback delay, etc.). When modal analysis is adopted,
the modified dynamic stiffness matrix (including the
contributions of sensor, controller and actuator para-
meters) is to be optimized so that the prescribed modes
are controlled. In this approach, the control efficiency is
quantified in terms of reduction in the modal amplitude
level in the frequency response.
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e Once the range of control system parameters and the
sensor/actuator collocation pattern is obtained, sensi-
tivity and stability studies are carried out. Sensitivity
studies are important to identify the most effective
solution-space of the design parameters. This also
helps in visualizing the deviation in the desired
response due to control uncertainty and measurement
of noise. With the narrowed-down solution-space of
the design parameters thus obtained above, the locus
of the roots of the characteristic system, that is, poles
(resonances) and zeros (anti-resonances) of the system
transfer function for varying design parameters are
studied. The range of design parameters that produces
the root locus on the right-half phase-plane are
unstable and are avoided in the final design. A
secondary objective is often placed for control of
transient disturbances, which is to minimize the tran-
sient response time of the controller.

e For real-time automatic control systems, the off-line
design discussed above is augmented by an adaptive
filter that tunes the control gains in the presence of
measurement errors and uncertainty [15]. In addition,
there are certain drawbacks of the finite dimensional
design to control a distributed parameter system, such
as control spillover. This is the result of insufficient
modes considered in the MIMO state-space model.
Although adaptive filters can augment the perfor-
mance of an off-line design based on a finite number
of states, better modeling techniques for distributed
parameter systems are often advantageous. This is
where techniques such as SFEM score over other
methods available for the solution. A modified
SFEM that includes the modeling of control elements
such as sensors, actuators and control elements is
what is called the Active Spectral Finite Element
Model (ASEM). This formulation is built on the
same lines as the FEM and removes most of the
limitations of the other off-line techniques. This
method is explained in the next subsection.

9.6.2 Active spectral finite element model (ASEM)
for broadband wave control

In this subsection, a generalized active spectral finite
element model (ASEM) capable of handling arbitrary
distributed sensor—actuator configurations with a PID
feedback scheme is presented. The main objective is to
develop an efficient and faster computational technique
for the analysis and design of multiple sensor—actuator
configurations for active control of broadband waves in
connected composite beams. The ASEM can be used to

study structure—control interactions produced by various
types of mounted or embedded active actuators and
sensors, along with classical transducers modeled as
‘lumped’ devices. Among the specific advantages are
the accurate sensors and actuators dynamics based on a
uniform micro electromechanical field model, considera-
tion of multiple scattering of waves through structural
joints and boundaries and near-field effects on the
sensors. Numerical experiments on a slender laminated
composite cantilever beam with a bonded piezoelectric
fiber composite (PFC) (explained in Section 8.4.4, chap-
ter 8) are performed. Various aspects of low-authority
control against parametric variations are explained. Some
physical insight into the macroscopic behavior of these
PFC actuators has been reported in Bent [16] and Hagood
et al. [17].

In this ASEM model, the beam network is discretized
and classified into three different classes of elements, as
follows: (1) a spectral element for finite beams with
mechanical and passive properties; (2) distributed or
point sensors; (3) distributed or point actuators. A sche-
matic diagram of a sensor—actuator element configuration
is shown in Figure 9.8. Here, it is assumed that that the
controller output for a single actuator can be designed
based on a feedback signal constructed from a group of
sensors. Furthermore, in Figure 9.8, the connectivity
between the pth sensor and the gth actuator is also
shown, where the sensor response is measured at the
local coordinate system (X,”, ¥i”) and the actuation force
is provided at the local coordinate system (X%, Y,7).

9.6.2.1 Spectral element for finite beams

The SFEM outlined in Chapter 7 is again used here to
represent the dynamics of the beam structure. For the

Zs,
Sensor element
X,
3 >,
— L, —

i

Figure 9.8 Sensor—actuator configuration for the active spec-
tral finite element model.

g



Active Control Techniques 249

sake of completeness, the element-level equations invol-
ving the nodal displacement vector are repeated here.
Assuming the beam to have three degrees of freedom
(two translational dofs and one rotational dof) per node
and having two nodes, the elemental displacement vector
in the frequency domain is given by:

i}y ={a Wy 0, @ Wy 0,} (9.69)
and the corresponding nodal force vector is given
by:

{F}e = {Nl ‘71 Ml Nz ‘72 Mz} (9.70)
The use of the spectral form of solution for the governing
equation and its eventual solution in the frequency
domain results in the dynamic shape functions for the
spectral element formulation, which can be written as:

ix, ) fi [0 (0] ] (et
Weno) b =1 (0] [R] (0] |§ Ve o dF)
0(x, ») o 0] [s]] L {0},
— &4}, ©.71)
where [N], [N;],[N3] are the exact spectral element

shape-function matrices corresponding to the axial, trans-
verse and rotational degrees of freedom, and [K], is the
exact element dynamic stiffness matrix. As in the case of
the FE, the stiffness matrix in the elemental coordinate
system is transformed to the global coordinate system by

using a suitable transformation matrix.

9.6.2.2 Sensor element

For illustrative purposes, a point sensor has been con-
sidered in the modeling. However, it should be noted that
the formulation does allow for distributed sensors such as
piezoelectric film sensors. The force-balance equations
for the sensor element are identical in form to Equation
(9.71). Based on the response measured by a displace-
ment sensor (s), which is located at (x;,,zy,) in the pth
sensor element (denoted by subscript s,), the actuator
input spectrum can be expressed with the help of Equa-
tion (9.71) as:

6
n, (x.\'pa Ws,,a wn lwn O( |: § Nl/ ZXI,N3J uj€:|

j=1

(9.72)

when longitudinal displacement is measured, and:

(i)™ [Z szuje] (9.73)

My (xs,, s Wsps wn =

when transverse displacement is measured. In Equations
(9.72) and (9.73), i = v/—1, « is the sensor sensitivity
parameter and m = 0, 1 and 2, for displacement, velocity,
and acceleration spectra, respectively. Similarly, if a
strain sensor is used, one can write the actuator input

spectrum:
6
R R m aNl_,- 6N3,
nu(xspvwsp»wn) = (iw,)" |:]Zl < o sy Ox Lje
(9.74)

9.6.2.3 Actuator element

In the formulation of the ASFEM presented here, we
consider the PID (Proportional-Integral-Derivative)
feedback control scheme [18]. Other types of frequency
domain control schemes, such as feed-forward control
can also be implemented. The controller output in the
form of current spectrum 1 (or voltage spectrum @) for
the gth actuator, and the resulting field (magnetic field A
for a magnetostrictive material or electric field E for a

piezoelectric material) can be written as:
=> i, H=fI,

p

ﬁ = (ﬁuvﬁwv ':IS) (9'75)

where 7] is given by Equations (9.72)—(9.74). The con-
stant y is a scalar gain and f§ is the actuator sensitivity
parameter introduced to account for the actuator assem-
bly and packaging properties (e.g. the solenoid config-
uration for a packaged Terfenol-D rod actuator [19],
voltage-to-electric field conversion factor for plane-
polarized PZT wafers, etc.). Next, after substituting for
H from the magnetomechanical (or electromechanical)
force-boundary condition (Equation (8.119) in chapter 8)
into Equation (9.75) and following the same procedure as
used for discretizing the purely mechanical domain using
the SFEM, the force-balance equation for the gth actuator
element (denoted by subscript a,) in the actuator local
coordinate system can be obtained as:

{F}aq = [k}aq{ﬁ@}aq_'_

(9.76)
[As? 0 —ByY —Au 0 B336ﬁ] i
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where:

(A3, B33 7] = Je%eﬁ'[l,z]dz (9.77)

defines the equivalent mechanical stiffness due to the
effective magnetomechanical (or electromechanical)
coupling coefficient egf;f (see Equation (8.109) in chapter
8 for the PFC) for actuation in the longitudinal mode. A
similar vector with non-zero second and fifth elements in
Equation (9.76) be used. After substituting # in terms of
the sensor element shape function matrix [N] and the
corresponding nodal displacement vector {it,} from
Equations (9.72)—(9.74), Equation (9.76) can be rewritten
as:

{Ft’}aq = [ke]aq{':t@}aq + [kﬁ}aqHs,,{':t@}s,, (978)

where the notation [IA(e]aqu is introduced to represent
the Sensor-Actuator Stiffness Influence Matrix (SASIM).
This equation is transformed to the global coordinates as
in a regular FE solution. This procedure leads to the final
expression for the gth actuator element with the pth
feedback sensor. If [I] ;, is the transformation matrix
that transforms the stiffness matrix of a sensor element
from local coordinates to global coordinates, and [F]ap is
the transformation matrix for the actuator element, then
the assembled closed-loop MIMO system with a general
sensor—actuator configuration in the ASEM is obtained in
the form:

{F},,

{F},,
L0 7 T ) [0]

T, [Kel, s, [T,
{u}

T, [Kel,, Lo,

x{ . (9.79)

(i},

As evident from the above derivation, restrictions are not
placed on the sensor and actuator locations. In addition,
in terms of computational cost and broadband analysis
capabilities, the proposed ASEM is a better option
compared to the conventional state-space models which
are of very high order and several accuracy-related
problems due to errors in model-order reduction, modal
truncation etc. need to be addressed before they can be
applied for broadband Low Authority Control (LAC). So
far as LAC is concerned, after combining the displace-
ment (or strain) field generated by the primary distur-
bance (external mechanical load) and the secondary
sources (actuators), one can obtain the wave coefficient
vector {it} for a subdomain 2 of interest as:

(i = [Ta) ' [[K] + [K(x),, ] {F}o  (9:80)
In the above equation, [Tq] is the matrix that relates the
displacement field to the wave vector. At this stage, if a
transfer-function-based concept of wave cancellation is
chosen for designing the controller, Equation (9.80) pro-
vides a direct way to carry out identification of appropriate
control gains for known sensor and actuator locations that
will reduce certain elements of {it}, to zero, and hence
the corresponding wave components can be controlled.
However, the analytical approach to achieve this is limited
by the fact that one cannot obtain an explicit expression
for the dependence of local wave components on sensor
and actuator locations and other control parameters for a
complex problem, which may have more than one dis-
cretized subdomain. Hence, a semiautomated scheme
integrated with an ASEM is chosen to analyze the
spatially rediscretized system by changing sensor loca-
tions or actuator locations on an iterative basis. This is
feasible because of the fast computation and small system
size permitted by the ASEM.

9.6.2.4 Numerical implementation

As the initial step, input time-dependent forces or dis-
turbances are decomposed into Fourier components by
using the forward FFT. Note that all of the element-level
operations as well as the global system-level operations
are carried out at each discrete frequency w,. Except for
this basic difference, the proposed program architecture
is almost identical (for an open-loop configuration) to a
finite element program in terms of features such as input,
assemblage, solving of the system and output. For a
closed-loop system, we use Equation (9.79) to implement
the explicit form of the global dynamic stiffness matrix at
a particular frequency, which is in most of the cases,
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neither banded nor symmetric. Here, a non-symmetric
sparse complex matrix inversion routine needs to be used
as part of the global system solver. After solving the
closed-loop system at each frequency, the time history
of displacements, strains, stresses, etc. are then post-
processed using an inverse FFT.

9.6.2.5 Effect of broadband distributed actuator
dynamics

Here, we consider a composite cantilever beam with
surface-bonded PFC to study the effect of distributed
actuator dynamics towards broadband control of trans-
verse response of the cantilever tip under transverse-
impact-type loading. Essentially, the control point of
interest for LAC in this case is the cantilever tip. This
requires a feedback sensor to be placed at the cantilever
tip. It is well known that optimal placement of an
actuator is dictated by the location of high average strain
[20]. Hence, while controlling the static or first mode
shape under tip loading on a cantilever beam, it is
essential that the actuator be placed at the root of the
cantilever beam. For velocity feedback with a collocated
sensor, Crowley and Luis [20] has shown that the damp-
ing of a particular vibration mode, while using a surface-
bonded PZT wafer, can be expressed as:

ey, Whgb

B dep(x2) B dop(x1)
T OMawoLg (6 + W)

dx dx

} (9.81)

where 7y, is the velocity feedback gain,wy is the natural
frequency associated with the mode, M is the modal
mass, Lp is the length of the beam, b is the width of the
beam, A, is the thickness of the beam, ¥ = (Cphg)/
(Cpzrhp) is the effective stiffness ratio for a PZT wafer
thickness of hg, and d¢(x)/dx — dp(x;)/dx is the dif-
ference between the gradients of the strain mode shape at
the two ends (xi,x;) of the PZT actuator. With the
specified actuator-to-beam length scale, the maximum
modal damping of a single mode is obtained for
maximum feedback gain as:

EmathZT
(1) = (082)
where E,,. is the saturation electric field. Note that when
the feedback sensor is placed non-collocated with the
actuator, the sensor output signal will have a phase
difference with the modal strain at the actuator ends
and the effect can be destabilizing for a phase difference

of more that 180°. A similar consequence will also be
evident while controlling more than one mode using the
same configuration. For example, while controlling the
second mode along with the first mode, one has to
overcome the difficulty of almost zero average modal
strain around the strain node (point of zero modal strain)
at x = 0.216Lp. Two options are available to overcome
this difficulty. One is to use segmented actuators, where
one of the actuator located at x < 0.216Lz must be driven
180° out of phase with a second actuator located at
x > 0.216Lg. Obviously, control over further numbers of
modes means more strain nodes and hence further
numbers of segmented actuators. In addition, the possi-
bility of interaction between the controlled modes and
modal spillover for multiple-segmented actuators
becomes evident. This necessitates the requirement of
appropriate optimal control strategy. The second option
for multi-modal control is to use a single actuator at
the root of the cantilever beam with an optimal length of
the actuator and a frequency-weighted optimal gain
while using a non-collocated sensor. Direct feedback
from the control point of interest is found to be more
suitable when a large number of modes over a broad
frequency band are to be controlled. The fundamental
behavior of this non-collocated sensor—actuator config-
uration for LAC resembles that of the disturbance pro-
pagation in a structural network [21].

In the following numerical simulation, the sensitivity
of the PFC actuator length (actuator located at the
cantilever root) while using velocity feedback from the
sensor (located at the cantilever tip) is studied. The
configuration is shown in Figure 9.9. The beam is of
length L =1m and thickness =2cm. An AS/3501-6
graphite—epoxy material with a play-stacking sequence
of [02]/[90%] is considered. Assuming Euler-Bernoulli

PID controller

F(t)

B — Point sensor — PFC actuator
Figure 9.9 Schematic of composite cantilever beam with a
surface-bonded PFC actuator and a non-collocated velocity

feedback sensor for broadband local control at the tip.
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beam kinematics, the coupled electromechanical wave
equation can be expressed as:

a uop 6 170 6 w Ae]f aE3

PA——A B =0
a2 e TPRge ARy 083)
Aazw 5 o’ w g 0 W+B€ffazE3 —
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The associated force-boundary conditions are:
au() 0 eff
Az ——B A E3 = N,
B B2 3
GRS w5 0E;
By 55 ~Dugs —AT = ==V (9.84)
0 0w
-B D B; E =M,
By + D33 —— o + 3=

In Equations (9.83) and (9.84), the mechanical stiffness
coefficients A;, B; and D; are defined in Equation
(8.120) of Chapter 8 and the electromechanical stiffness
coefficients A%) and B are described in Equation (9.77).
One actuator element and one composite beam element
(with a point sensor in it) is used in the ASFEM.

The beam 1is subjected to an impact loading
(Figure 9.2) in the transverse direction at the cantilever
tip. Note that under such loading, which is likely to
excite many higher-order modes, the control analysis
becomes challenging because of additional axial-flexural
coupling due to the unsymmetric ply-stacking sequence.
Control of multiple spectral peaks in the frequency
response of the transverse tip displacement is considered
as the local control objective. If satisfied, this require-
ment will also ensure the stability of the close-loop
system. That is, all of the resonant modes will be damped
and hence the poles will be moved to the left-half of the
complex phase plane. In addition, the possibility of
modal truncation over a sufficiently large frequency
band can be eliminated. It is important to note that the
waves that will travel from the tip to the fixed-end of the
beam will be of the same order of magnitude as the
incident impact. It is also necessary that the scattered
axial and flexural waves from the fixed end be suppressed.
This is also one of the reasons, apart from those discussed
in the context of Equations (9.81) and (9.82), why the PFC
actuator is placed adjacent to the fixed end. The sensor is
assumed at x = x;, which is considered near the tip for
direct velocity feedback to the actuator in advance. A non-
dimensional scalar feedback gain g is derived from the
feedback gain y (Equation (9.75) to perform parametric
study. These two quantities are related as g = (coaf3)y/Eo,
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Figure 9.10 Closed-loop transverse displacement at the canti-
lever tip under impulse excitation.

where E is a reference AC voltage and c is the speed of
sound in air. An optimal closed-loop performance which
corresponds to L, = 0.25m,x; = 1.0m (at the tip) and
g = 3.4 x 10° is shown in Figure 9.10.

From Figure 9.10, which shows the locations of the
forced resonances and anti-resonances along the fre-
quency axis and the corresponding spectral amplitudes
of transverse displacement at the tip, it can be seen that
the configuration is able to suppress most of the resonant
modes. Furthermore, we study the effects of parametric
variation on the amplitude level over the frequency range
of 20 kHz under consideration. First, it is assumed that
the feedback gain g chosen above is optimal and is not
sensitive to small variations in other parameters, such as
L, and x,. L, is slowly varied from 0.15m to 0.35m,
corresponding to velocity feedback from various sensor
locations x; moving away from the cantilever tip
(Figure 9.9). The integral effect of the change in
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Figure 9.11 Performance of actuator and control point inter-
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amplitude level of the closed-loop response (transverse
displacement at the tip) over the whole frequency range
is evaluated by using the control cost function:

N/2
T = " (20.0) [tog 0l (@, )penl — 10810 (@0 el
n=1

(9.85)

In Figure 9.11, the sensitivity of [] is shown by a two-
dimensional solution space involving the actuator length
L, and sensor location x;.

This plot confirms the result of Figure 9.11 that one
optimum solution exists at (x;/L =1.0,L,/L =0.25)
and yields a total reduction of 6.025dB in [J.
Figure 9.11 also predicts that another solution exists at
(xs/L=1.0,L,/L =0.15).
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Silicon Fabrication Techniques for MEMS

10.1 INTRODUCTION

The technology of micro electromechanical systems
(MEMS) spun off from developments in the integrated
circuit (IC) fabrication processes, enabling co-fabrication
of sensors, actuators and control functions on silicon
chips. Since then, remarkable research progress has been
achieved in MEMS areas under strong capital promotions
from both government and industry. In addition to several
applications already commercialized, the feasibility
of more complex MEMS devices have been proposed
in microfluidics, aerospace, biomedical fields, chemical
analysis, wireless communications, data storage, display,
optics, etc. [1,2]. These sensors and actuators could also
form the building blocks of several smart systems.

Micromachining is the fundamental technology for the
fabrication of micro electromechanical system (MEMS)
devices, in particular, miniaturized sensors and actuators
having dimensions in the sub-millimeter range. Silicon
micromachining is the most mature of the micromachining
technologies and has been a key factor for the tremendous
progress of MEMS within a short time. Micromachining
refers to the fashioning of microscopic mechanical parts
out of a silicon substrate or on a silicon substrate, making
the structures three-dimensional, thus bringing new ave-
nues to designers.

Silicon micromachining comprises two technologies:
bulk micromachining, in which structures are etched into
a silicon substrate, and surface micromachining in which
the micromechanical layers are formed from layers and
films deposited on the surface. Yet another but less
common method, LIGA 3-D microfabrication, has been
used for the fabrication of high-aspect ratio and three-
dimensional microstructures for MEMS [3-5]. However,

three-dimensional microfabrication processes incorporat-
ing more material layers have been recently reported for
MEMS in some specific application areas (e.g. biomedi-
cal devices) and micro-actuators with higher output
powers [6—11]. Employing materials such as crystalline
silicon, polycrystalline silicon and silicon nitride, a
variety of mechanical microstructures including beams,
diaphragms, grooves, orifices, springs, gears, suspensions
and numerous other complex mechanical structures have
been fabricated [12-16]. These processes are reviewed
briefly in the subsequent sections of this chapter.

10.2 FABRICATION PROCESSES
FOR SILICON MEMS

Important steps in the fabrication of silicon-based MEMS
are as follows:

Lithography

Resists and mask formation
Lift-off technique

Etching techniques

Wafer bonding

Hardly any MEMS device is fabricated without going
through all of these steps. Hence, a brief description of
these is provided in the following paragraphs.

10.2.1 Lithography

The patterning of geometries is an essential process step
in the fabrication of devices for microelectronics and
MEMS. The process of transferring a geometrical

Smart Material Systems and MEMS: Design and Development Methodologies
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pattern from a mask to the radiation-sensitive resist is
called lithography. Both additive and subtractive pro-
cesses are employed in the industry to define features
after transferring the pattern. In both cases, suitable
resists are first spin-coated onto the wafer surface. The
wafer surface is then irradiated with the mask placed
above it. Depending on the choice of resist material and
mask (c.f. Section 10.2.2), part of the resists gets cured,
thereby affecting its solubility. Thus, the resist may be
used either to protect areas that need not be etched
(subtractive) or to protect areas that should not be
deposited on (additive). After etching or depositing,
the resist itself is removed by dissolving it in suitable
chemicals.

The mask is often made on glass or quartz with a
chrome pattern on areas where we intend the radiation to
be blocked from reaching the resist. Often, the mask
itself is made by (higher-precision) lithography. UV light
(e.g. from a high-pressure mercury lamp) is the most
common source of radiation.

Several types of lithographic tools are in use in the
industry. For example, contact aligners can be used to
interlock the mask and the wafer before the latter is being
exposed. Resolution of the order of 0.5um can be
obtained with this approach. Resolution is defined as
the minimum feature size with good fidelity that can be
transferred onto the resist film coated on the wafer. The
radiation schemes employed depend on the desired
resolution; electromagnetic (UV or X-rays) or particulate
(electrons or ions) beams may be used for the irradiation.

Contact aligners with optical lithography use UV
radiation (0.2-0.4 pm wavelengths). The minimum line
width with this approach is ~\/Ag, where 4 is the optical
wavelength used and g is the spacing between the mask
and the wafer. Since the mask covers the entire wafer, the
process involves single exposure. This technique results in
a feature size the same as that on the mask. An alternate
approach uses stepper technology to improve the resolu-
tion (=~ 0.25 pm) of features. In this case, the radiation is
passed through a focusing lens arrangement, after it
encounters the mask. Although the mask is simpler and
cleaner, the equipment cost far exceeds that with the
contact aligner.

Fresnel diffraction of the radiation beam at the edges
of the features on the mask is the limiting factor in the
resolution of the features obtained with lithography.
Significant reduction in minimum feature size is there-
fore possible with electron beam lithography. The beam
from an electron source, typically of a 20 nm diameter
spot, is passed through electrostatic plates to direct onto
the wafer in vacuum. This technique, however, does not

use a mask, but instead relies on a ‘direct-write’ techni-
que. The steering and blanking (switching) of the beam is
controlled by a computer with the geometry loaded in a
computer-aided design (CAD) package. However, the
writing process is time-consuming (several hours per
wafer) and the equipment used is far more expensive
than other approaches.

Several new techniques are emerging for better reso-
lution, with a potential for mass production, especially
in the context of the increased thrust for nanotechnol-
ogy. Embossing lithography, also known as nano-
imprinting lithography, uses a mold made by the elec-
tron beam lithography to imprint the pattern onto a
substrate coated with a resist (e.g. PMMA). Metal lines
of 10nm width have been reported based on this
approach [17]. By repeatedly using the mold, a higher
throughput is obtained at the cost of reduced resolution.
Scanning probe lithography is another high-resolution
method in which electrostatic discharge from the probe
tip is used as the stimulant to modify (e.g. by oxidizing)
the wafer surface, thereby creating a pattern on it [18].

10.2.2 Resists and mask formation

As mentioned previously, accurate fabrication of the
mask and selection of the proper resist material are
vital to the success of lithography. The mask-making
process is quite similar to lithography itself. The equip-
ment consists of a UV light source, an automated x—y
positioning stage and optical control and reduction units.
The positioning stage and the optical aperture are con-
trolled by a computer with a CAD package in which the
required mask geometry is loaded. For better resolution,
low-expansion glass or quartz is used as the substrate. An
optical blocking material, such as chromium or iron
oxide, is used to define the mask features.

Geometrical patterns are transferred to resists prior to
deposition or etching of substrates. Since optical radia-
tion is most often used, these materials are generally
called photoresists. These may be either positive or
negative resists — depending on how these respond to
the radiation. The processes of developing positive and
negative resists are compared in Figure 10.1. The positive
resists becomes soluble in a developer after being
exposed to radiation, leaving patterns on the substrate
the same as that on the mask. In contrast, when a negative
resist is exposed to radiation, it becomes less soluble to
the developer, thus leaving a pattern the reverse of that on
the mask. Some of the commercially positive and nega-
tive resists for various lithography approaches are listed
in Table 10.1.
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Table 10.1 Types of some commercially available
resists.

Resist type Commercial name Lithography
Positive ~ AZ-1350] Optical
Positive PR 102 Optical
Positive ~ Poly(methyl methacrylate) E-beam and
X-ray

Negative ~ Kodak 747 Optical
Negative  Dichloropropyl acrylate X-ray

and gylcidyl metha-

crylate-co-ethyl acrylate
Negative  Poly[(glycidyl metha- E-beam and

crylate)-co-ethylacrylate] X-ray

The resist is formed on the substrate by spin-coating.
By this process, a thin uniform film is deposited on the
substrate. The clean wafer is placed on the wafer holder
of a spinner and is held tight by using vacuum. The resist
in the liquid form is dropped on the surface of the wafer.
The spinner motor is then operated at a specified speed
for good-quality films. The wafer is dried and then baked
at the desired temperature after spin-coating the solution.
The baking step is required to strengthen the adhesion of
the resist to the wafer before further processing.

10.2.3 Lift-off technique

The lift-off technique is used to define a structural
geometry on a substrate. The process steps involved in
this are schematically shown in Figure 10.2. The resist is
spin-coated and then exposed to the radiation though a
mask. A thin film of the desired material (e.g. a metal)
is then deposited on the top of this structure by any of
the processes described in Chapter 2. The resist can be
dissolved in an appropriate solution, which detaches
the film on top of the resist as well. The primary criterion
for this lift-off process to be effective is that the thickness
of the deposited thin film should be less than that of the
resist. Some of the features of the lift-off process of
patterning are:

e The film thickness should be smaller than that of the
resist.

e High-resolution geometries can be produced.

e Discrete devices can be patterned.
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Figure 10.2 Steps involved in the lift-off process of patterning.
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10.2.4 Etching techniques

Etching is the key technological step for bulk micro-
machining. The etch process employed in the microma-
chining of silicon comprises one or several of the
following techniques:

e Wet etching — isotropic/anisotropic
e Dry etching — plasma/reactive ion

These etch processes are standard technologies widely
employed in the microelectronics industries. Process
parameters that characterize etching are etch rate, etch
selectivity and etch uniformity. Etch rate is the thickness
of the material removed per unit time. Etch selectivity is
a measure of the effectiveness of the removal of
unwanted material without affecting other materials or
films present on the wafer. This is often represented as
the ratio between the etch rate of the material to be
etched and other materials (such as an etch mask) on the
wafer. The performance of etchants used to remove some
of the common materials used in the microelectronics
and MEMS industries are listed in Table 10.2. Wet
etching is done by dipping the substrate into an etchant
bath or spraying it with etchants. Wet etching can be
either isotropic or anisotropic, depending on the structure
of the materials or the etchants used. If the material is
amorphous or polycrystalline, isotropic wet etching is
employed. During isotropic etching (Figure 10.3(a)), the
resist is always undercut, meaning that the deep etching
is not practical for MEMS. In this process, the etchant
used is an acid solution. Single-crystal silicon can be

Table 10.2 Wet etchants used in etching selected
electronic materials.

Material ~ Composition of the etchant Etch rate
(pm/min)
Si HF (3ml) + HNO; (5 ml) 35
GaAs H,S0,4 (8 ml) + H,0, (1 ml) + 8
H,O (1 ml)
Sio, HF (28 ml) +H,0 (170 ml) + 0.1
NH,F (113 g)
HF (15 ml) + HNO3 (10ml) + 0.012
H,0 (300 ml)
SizNy Buffered HF 0.005
H;PO, 0.01
Al HNO; (1 ml) + CH;COOH 0.035
(4 ml) + H;PO,4 + H,O (1 ml)
Au KI (4g)+1, (1g)+H,0 (40ml) 10

anisotropically etched. The etching features are deter-
mined by the etching speed which is dependent on the
crystal’s orientation. The etching slows down signifi-
cantly at the (111) planes of silicon, relative to other
planes. With the chosen wafers with different crystal
orientation, different features can be achieved
(Figure 10.3 (b,c)). The most common etchants used
for the anisotropic etching of silicon include alkali
hydroxide etchants (KOH, NaOH, etc.), ammonium-
based solutions (NH,OH, TMAH ((CH;),NOH), etc.)
and EDP (ethylene diamine, pyrocatechol and water).
These etchants have different etch rates in different
crystal orientations of silicon [13,20].

The etch process can be made selective by the use of
dopants (heavily doped regions etch slowly), or may even
be halted electrochemically (e.g. etching stops upon
encountering a region of different polarity in a biased
p—n junction). A region at which wet etching tends to slow
down or diminish is called an ‘etch-stop’. Methods that
make use of an etch-stop region include doping-selective
etching (DSE) and bias-dependent DSE [13,20,21].

Wet etching in many cases is done from the back side
of the wafer while plasma etching preferred for the front
side. Dry etching is done by chemical or physical
interaction between the ions in the gas and the atoms
of the substrate. The non-plasma, isotropic dry etching is
possible by using xenon difluoride or mixture of inter-
halogen gases and provides very high selectivity for
aluminum, silicon dioxide, silicon nitride, photoresists,
etc. Common methods for dry etching of bulk silicon are
plasma etching and reactive ion etching, where the
external energy in the form of radio frequency (RF)
drives chemical reactions in low-pressure reaction cham-
bers. A wide variety of chlorofluorocarbon gases, sulfur
hexafluoride, bromine compounds and oxygen are com-
monly used as reactants. The anisotropic dry etching
processes are widely used in MEMS because of the
geometry flexibility and sometimes less chemical con-
tamination than in wet etching. Arbitrarily oriented
features etched deep into silicon by using anisotropic
dry etching are shown in Figure 10.3 (f). Very deep
silicon microstructures can be obtained by the deep RIE
(DRIE) dry etching process [14]. During plasma etching,
radicals react chemically with the wafer and selectively
remove the material. Diluents such as inert gases are
introduced into the chamber to maintain the reaction rate.
Increasing RF power helps increase ionization, but may
affect wafer uniformity and selectivity at very high levels
of power. Corrosion, reproducibility, sidewall profile and
loss of critical dimensions are issues to be addressed
while evaluating and optimizing etching.
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10.2.5 Wafer bonding for MEMS

As silicon micromachining has limitations in forming
complex three-dimensional microstructures in a mono-
lithic format, multi-chip structures have been proposed
for advanced MEMS, where wafer-to-wafer bonding is
critical in the formation [23]. Wafer bonding of silicon
for MEMS can be categorized into three major types:
anodic bonding, intermediate-layer assisted bonding and
direct bonding.

10.2.5.1 Anodic bonding

Anodic bonding is typically done between a sodium glass
and silicon for MEMS. For anodic bonding, a cathode

and an anode are attached to the glass (or silicon with a
thin coating glass) and silicon wafer (Figure 10.4),
respectively — the voltages applied range from 200 to
1000 V. At the same time, the anode is put on a heater to
provide the bonding temperature of 180-500 °C. During
the bonding, oxygen ions from the glass migrate into the

Cathode

Figure 10.4 Schematic of the process of anodic bonding.
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silicon, resulting in the formation of a silicon dioxide
layer between the silicon wafer and glass wafer to form a
strong and hermetic chemical bond. The advantage of
anodic bonding for MEMS is that the low temperatures
used can ensure the metallization layers (e.g. aluminum)
could withstand this temperature without degradation.
This technique is also called field-assisted thermal bond-
ing or electrostatic bonding. Anodic bonding is also used
to seal two silicon wafers together by using a thin
sputter-deposited glass layer. The equipment used in
this case is basically a heat chuck element with an
electrode capable of supplying a high voltage across
the structure to be bonded. The system automatically
controls the temperature and power supply during the
bonding process. In this process, after surface cleaning
and polishing, one of the wafers (referred to here as the
top wafer) is coated with a few-microns-thick glass film
(usually by sputtering). The top wafer is placed on top of
a second silicon wafer (referred to as the support wafer)
for these two wafers to be bonded. The support wafer
rests on an aluminum chuck. The two wafers are usually
sealed together at temperatures less than 400 °C with an
electrostatic DC voltage of 50 to 200 V. The negative
electrode is connected to the top wafer. The voltage
should be applied over a sufficiently long time (10 to
20 min) to allow the current to reach a minimum steady-
state level. This bond process usually takes place in air at
atmospheric pressure.

10.2.5.2 Direct bonding

Direct bonding is based on a chemical reaction between
the OH groups present at the surface of native silicon or
grown oxides covering the wafers [24]. Direct bonding is
also called silicon fusion bonding, since it is used for
silicon-silicon fusion bonding. This process is usually
done is three steps: surface preparation, contacting and
thermal annealing.

The surface-preparation step involves cleaning the
surfaces of the two wafers to form a hydrate surface.
The wafer surface should be ‘mirrcor-smooth’, the rough-
ness should be no greater than 10 A, and the bow of a 4”
wafer should be less than 5 um to achieve the necessary
flatness [23]. Following this preparation, the wafers are
aligned and contacted in a clean-room environment by
gently pressing the two wafers at the surface central
point. The surface attraction of the two hydrated surfaces
creates an intimate contact over the entire wafer surfaces.
At room temperature, these wafers adhere via hydrogen
bridge bonds of chemisorbed water molecules that
subsequently react during the annealing process to form

Si—O-Si bonds. Consequently, wafer pre-treatment pro-
cedures such as hydrophilization steps (wet-cleaning
processes, plasma hydrophilization) assist the bonding
process. The final step in direct bonding is to anneal the
bonding from room temperature to 1200 °C. This anneal
process increases the bond strength by more than one
order of magnitude at a temperature as high as 800-
1200°C. However, high-temperature annealing is not
allowed for the metallized wafers. The direct bonding
prevails in the high-strength bonding and the devices’
dimensions design could be scaled down if direct bond-
ing approaches other than anodic bonding are used.

In the last decade, several groups [25-27] have demon-
strated that the fusion of hydrophilic silicon wafers is
possible for obtaining silicon-on-insulator (SOI) materials.
Since then, wafer-bonding techniques have found various
applications in the field of microelectronics such as in
static random access memories (SRAMs), CMOS and
power devices. For micromechanical applications, fusion
bonding has rendered possible the fabrication of complex
structures by combining two or more patterned wafers.

According to the reaction mechanism, annealing at
temperatures above 1000°C for several hours should
result in an almost complete reaction of the interface.
Annealing at 1000°C for about 2h would give a suffi-
ciently high bond strength for all subsequent treatments
[28]. It is not possible to separate the two bonded Si
wafers without breaking the silicon. Although high-
temperature annealing increases the strength of the
bond, this step (usually if the temperature is above
800 °C) may introduce problems, such as doping profile
broadening, thermal stresses, defect generation and con-
tamination. Annealing also prevents the use of bonding
technology for compound semiconductor materials since
their dissociation temperatures are often low. In addition,
post-metallization bonding also requires bonding tem-
peratures that are less than ~450°C since most of the
common metals used in device fabrication melt below
this temperature. Therefore, in order to make full use of
the potential provided by wafer bonding for microstruc-
tures, low-temperature bonding methods have to be
developed. To summarize, three ranges of annealing
temperature are of interest in wafer bonding:

e <450°C - for post-metallization wafers.

e >800°C — for wafers with diffusion dopant layers
(e.g. p* etch-stop layers).

e > 1000°C - for wafer bonding before processing.

A major concern of all bonding processes is the presence
of non-contacting areas which are generally called voids.



Silicon Fabrication Techniques for MEMS 263

Voids are mainly caused by particles, organic residues,
surface defects and inadequate ‘mating’. Therefore, both
the surfaces being fusion-bonded have to be perfectly
smooth and clean since the smallest of particles could
cause large voids. Optimized processing includes wafer
surface inspection, surface pre-treatment (hydrophiliza-
tion, cleaning), and mechanically controlled, aligned
mating in a particle-free environment.

10.2.5.3 Intermediate layer assisted bonding

This type of bonding for MEMS requires an intermediate
layer, which can be metal, polymer, solders, glasses, etc.,
to fulfill the bonding between wafers [23]. One of the
earliest wafer bonding — eutectic bonding — utilized Au
as the intermediate layer for Si—Si bonding in a pressure
sensor [29]. The Au-Si eutectic bonding takes place at
363 °C, well below the critical temperature of the metal-
lized Al layer. However, the stress generated during
bonding was found significant and introduced ‘sensor
drift’ [29].

The use of polymers as intermediate layers for bond-
ing requires very low temperatures and results in reason-
ably high strength and low stress due to the low-elasticity
polymers. Usually, UV photoresists such as polyimide,
AZ-4000, SU-8, PMMA and other UV-curable cross-
linked polymers can be used for this purpose [24]. The
major disadvantage of this approach is that the device
bonded with polymer may not have the performance of
hermetic sealing.

Glasses with low melting temperatures as intermedi-
ate layers for the bonding has also been demonstrated,
where a layer of glass frit is usually deposited onto the
silicon wafer. The flatness of the deposited frit layer is
critical to obtaining uniform, strong, low-stress bond-
ing. A screen-printed glass frit has been used to bond a
pressure sensor [29].

10.2.5.4 Bonding of silicon-based materials

Fusion bonding of polysilicon, silicon dioxide or silicon
nitride to silicon proceeds in a manner similar to silicon-
to-silicon bonding. For examples, to bond polysilicon to
silicon, a polishing step for the two surfaces to be bonded
is necessary to produce two smooth defect-free surfaces.
The bonding mechanism is mostly identical to silicon-
to-silicon fusion bonding in that in both cases Si—OH
groups are present at the surface. Thus, the pre-treatment
(hydrophilization) and annealing conditions are also
similar. Because of the dissimilar mechanical character-
istics of the different bonded materials, the yield of void-

free wafers can be significantly reduced by ‘wafer bow’
or defects caused by stress during thermal treatment.
Bonding of wafers covered with a thin thermal oxide or a
thin silicon nitride results in homogenous-bonded wafers,
while wafers with thicker oxide or nitride films generally
developed voids [30].

10.3 DEPOSITION TECHNIQUES FOR THIN
FILMS IN MEMS

Deposition and etching of thin films facilitates ‘quasi-
3D’ structures based on planar processing techniques
commonly used in the semiconductor industry. Solid
thin films can be deposited from liquid, plasma, gas or
the solid state. The deposition process is usually followed
by thermal processing for achieving desired material
properties and substrate adhesion. Some of the materials
used in MEMS and microelectronics are Si, Al, Au, Ti,
W, Cu, Cr, O, N and Ni—Fe alloys. Some materials are
used in MEMS and not in microelectronics applications,
i.e. Zr, Ta, Ir, C, Pt, Pd, Ag, Zn and Nb. A large number of
distinct material systems are usually required in sensors
and biomedical devices. The quality of the deposited film
is evaluated by ascertaining the grain size, film composi-
tion, thickness, uniformity, step-coverage, adhesion and
corrosion resistance.

Many different kinds of thin films are used in the
fabrication of MEMS:

(1) Metallization of thin films.

(2) Thermal deposition of silicon dioxide.

(3) Chemical vapor deposition (CVD) for dielectric
layers.

(4) CVD of polycrystalline silicon (poly-Si).

(5) Deposition of ceramic thin films.

Metal films are used to form low-resistance ohmic
connections both to heavily doped n'/p™ regions and
poly-Si layers and rectifying (non-ohmic) contacts in
metal-semiconductor barriers. The dielectric layers
include silicon dioxide (referred to as ‘oxide’) and silicon
nitride. These dielectrics are used for insulation between
conducting layers, for diffusion and ion-implantation
masks and for passivation to protect devices from impu-
rities, moisture and scratches. Poly-Si is used as a gate
electrode in metal-oxide—semiconductor (MOS) devices,
as a conductive material for multilevel metallization and
as a contact material for devices with shallow junctions.
In addition, several smart system applications require
deposition of ceramic thin film materials.
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10.3.1 Metallization techniques

Metallization is a process whereby metal films are
formed on the surface of a substrate. These metallic
films are used for interconnections and ohmic contacts,
apart from structures. Hence their continuity, uniformity
and surface properties are critical in the device perfor-
mance. Metal films can be formed by using various
methods, the most important being physical vapor
deposition (PVD). PVD is performed under vacuum
using evaporation or sputtering techniques. In these,
physical mechanisms such as evaporation or impact are
used as the means of deposition. In contrast, in chemical
vapor deposition (CVD) methods, a chemical reaction is
taking place under favorable conditions.

10.3.1.1 Evaporation

An evaporation system consists of a vacuum chamber,
pump, wafer holder, crucible and a shutter, as shown in
Figure 10.5. The source metal to be deposited is placed in
an inert crucible, and the chamber is evacuated to a pressure
of 107%-1077 torr. The crucible is heated using a tungsten
filament or an electron beam to ‘flash-evaporate’ the metal
from the crucible and condense onto the cold substrate. The
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Figure 10.5 Schematic of a thermal expansion unit for depos-
iting metals and other materials.

film thickness is determined by the length of time that the
shutter is opened and can be measured using a QMB-based
film thickness monitor. The evaporation rate is a function of
the vapor pressure of the metal. Hence, metals that have a
low melting point (e.g. 660°C for aluminum) are easily
evaporated, whereas refractory metals require much higher
temperatures (e.g. 3422°C for tungsten) and can cause
damage to polymeric or plastic samples. In general, evapo-
rated films are highly disordered and have large residual
stresses; thus, only thin layers of the metal can be evapo-
rated. The chemical purity of the evaporated films depends
on the level of impurities in the source, contamination of
the source from the heater, crucible or support materials, or
due to residual gases within the chamber [31]. In addition,
this deposition process is relatively slow.

For depositing metal alloys, the constituents are eva-
porated independently of one another. The deposited film
has atoms that are less tightly bound than inorganic
compounds [31]. Sources of individual metals are often
kept at different temperatures.

10.3.1.2 Sputtering

Sputtering is a physical phenomenon involving the accel-
eration of ions via a potential gradient and the bombard-
ment of a ‘target’ or cathode. Through momentum
transfer, atoms near the surface of the target metal
become volatile and are transported as a vapor to a
substrate. A film grows at the surface of the substrate
via deposition. Figure 10.6 shows a typical sputtering
system comprising a vacuum chamber, a sputtering target
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Figure 10.6 Schematic of sputtering unit for depositing
materials.
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of the desired film, a substrate holder and a high-voltage
DC or RF power supply. After evacuating the chamber
down to a pressure of 107°~107® torr, an inert gas such as
helium is introduced into the chamber at a few mtorr of
pressure. Plasma of the inert gas is then formed. The
energetic ions of the plasma bombard the surface of the
target. The energy of the bombarding ions (x~keV) is
sufficient to make some of the target atoms escape from
the surface. Some of these atoms land on the sample
surface and form a thin film. Sputtered films tend to have
better uniformity than evaporated ones, and the high-
energy plasma overcomes the temperature limitations of
evaporation.

Most elements from the Periodic Table can be sput-
tered, as well as inorganic and organic compounds.
Refractory materials can be sputtered with ease. In
addition, materials from more than one target can be
sputtered at the same time. This process is referred to as
‘co-sputtering’ and can be used to form compound thin
films on the substrate. The sputtering process can, how-
ever, be used to deposit films with the same stoichio-
metric composition as the source, and hence allows the
utilization of alloys as targets [31]. Sputtered thin films
have better adhesion to the substrate and many more
grain orientations than evaporated films.

The structure of sputtered films is mainly amorphous,
and their stress and mechanical properties are sensitive to
specific sputtering conditions. Some atoms of an inert gas
can be trapped in the film, causing anomalies in its
mechanical and structural characteristics. Therefore, the
exact properties of a thin film vary according to the
precise conditions under which it was made. The deposi-
tion rate is proportional to the square of current density
and inversely proportional to the spacing between the
electrodes.

10.3.1.3 Metallo-organic chemical vapor deposition
(MOCVD)

Metallo-organic chemical vapor deposition (MOCVD) is a
relatively low temperature (200-800°C) process for the
epitaxial growth of metals on semiconductor substrates.
Metallo-organics are compounds where each atom of the
element is bound to one or many carbon atoms of
hydrocarbon groups. For precise control of the deposition,
high-purity materials and most accurate controls are
necessary [32]. However, due to the high cost, this
approach is used only where high-quality metal films are
required. A summary of the MOCVD reaction parameters
for depositing various metals are given in Table 10.3.

Table 10.3 Reactants and reaction conditions for
MOCYVD of various metals (adapted from Pierson [32]).

Metal Reactant Conditions

Al Trimethyl aluminum 200-300°C,
Triethyl aluminum 1 atm
Tri-isobutyl aluminum
Demethyl aluminum hydride

Au  Dimethyl-1,2,4-pentadionate gold —
Dimethyl-(1,1,1-trifluoro-2,4-
pentadionate) gold
Dimethyl-(1,1,1,5,5,5 hexafluoro-

2,4-pentadionate) gold

Cd  Dimethyl cadmium 10 Torr

Cr  Dicumene chromium 320-545°C

Cu  Copper acetylacetonate 260-340°C
Copper hexafluoroacetylacetonate ~ 200°C

Ni  Nickel alkyl 200°Cin H,
Nickel chelate 250°C

Pt Platinum hexafluoro-2,4- 200-300°C

pentadio nate in H,

Tetrakistrifluorophosphine

Rh  Rhodium acetylacetonate 250°C, 1 atm
Rhodium trifluoroacetylacetonate ~ 400°C,1 atm

Sn  Tetramethyl tin 500-600°C
Triethyl tin

Ti  Tris(2,2'bipyridene) titanium <600°C

10.3.2 Thermal oxidation for silicon dioxide

Thermal oxidation is the method by which a thin film of
Si0, is grown on a silicon wafer. This is a key method in
modern IC technology. The basic thermal oxidation
apparatus is shown in Figure 10.7. This comprises a
resistance-heated furnace, a cylindrical fused-quartz tube
containing the silicon wafers held vertically in a slotted-
quartz boat and a source of either pure, dry oxygen or
pure water vapor. The loading end of the furnace tube
protrudes into a vertical flow hood where a filtered flow
of air is maintained. The hood reduces dust in the air
surrounding the wafers and minimizes contamination
during wafer loading.

The thermal oxidation of silicon in oxygen or water
vapor can be described by the following two chemical
reactions:

Si(solid) + 05 (gas) 2—2C §j0,(solid)  (10.1)
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Figure 10.7 Schematic of the furnace used for thermal oxida-
tion of silicon wafers.

and:

900—1200°C
—_—

Si(solid) + 2H,0(gas) SiO; (solid)

+ 2H,(gas)
(10.2)

Using the densities and molecular weights of silicon and
silicon dioxide, it can be shown that by consuming an ‘x-
thick’ layer of silicon, a ‘2.27x’ thick oxide layer can be
grown.

10.3.3 CVD of dielectrics

Three methods based on chemical vapor deposition
(CVD) are commonly used to form a dielectric thin
film, such as silicon dioxide or silicon nitride, on a
substrate. These are:

(1) Atmospheric-pressure chemical vapor deposition
(APCVD).

(2) Low-pressure chemical vapor deposition (LPCVD).

(3) Plasma-enhanced chemical vapor deposition (PECVD).

The appropriate method from among these three deposi-
tion methods is based on the substrate temperature, the
deposition rate and film uniformity, the morphology, the
electrical and mechanical properties and the chemical
composition of the dielectric films.

Schematics of two CVD systems (LPCVD and
PECVD) are shown in Figure 10.8. In Figure 10.8(a),
the quartz tube is heated by a three-zone furnace and gas
is introduced at one end of the reactor and pumped out at
the opposite end. The substrate wafers are held vertically
in a slotted quartz boat. The type of LPCVD reactor

shown in Figure 10.8(a) is a ‘hot-wall’ LPCVD reactor
where the quartz tube wall is heated by the furnace, in
contrast to a ‘cold-wall’ LPCVD, such as the horizontal
epitaxial reactor that uses radio frequency (RF) heating.
Usually, the reaction-chamber LPCVD process para-
meters are in the following ranges:

e Pressure — 0.2-2.0 torr
e Gas flow — 1-10cm’/s
e Temperature — 300-900°C

Figure 10.8(b) shows two views of a parallel-plate,
radial-flow PECVD reactor that comprises a vacuum-
sealed cylindrical glass chamber. Two parallel aluminum
plates are mounted in the chamber with an RF voltage
applied to the upper plate while the lower plate is
grounded. The RF voltage causes a plasma discharge
between the plates (electrodes). Wafers are placed in the
lower electrode, which is heated between 100 and 400 °C
by resistance heaters. Process gas flows through the
discharge from outlets located along the circumference
of the lower electrode.

CVD is used extensively in depositing SiO,, silicon
nitride (Si3N4) and polysilicon. The CVD of SiO, does
not replace thermally grown SiO, which has superior
electrical and mechanical properties to CVD oxide.
However, CVD oxides are used, instead, to complement
thermal oxides and in many cases to form oxide layers
that grow much thicker in relatively very short times than
thermal oxides. SiO, can be deposited by CVD by
several methods. It can be deposited from reacting silane
and oxygen in an LPCVD reactor at 300 to 500°C
where:

SiH, + 0, 2% $i0, + 2H, (10.3)
SiO, can also be deposited by LPCVD by decomposing
tetraethyl orthosilicate (TEOS) (Si(OC,Hs)4). TEOS is
vaporized from a liquid source. Alternatively, dichloro-
silane can be used as follows:

SiCLH, + 2H,0 —25, Si0, + 2H, + 2HCI  (10.4)

Likewise, SizN, can be deposited by LPCVD by an
intermediate-temperature process or a low-temperature
PECVD process. In the LPCVD process, which is the
more common process, dichlorosilane and ammonia
react according to the reaction:

3SiCLH, + 4NH; 225, SisNy + 6HCI + 6H, (10.5)
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Figure 10.8
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10.3.4 Polysilicon film deposition

Polysilicon comprises small crystallites of single-crystal
silicon, separated by grain boundaries. Polysilicon is often
used as a structural material in MEMS. It is also used in
MEMS and microelectronics for electrode formation and
as a conductor or high-value resistor, depending on its
doping level (must be highly doped to increase conduc-
tivity). Polysilicon is commonly used for MOSFET gate
electrodes since it can form an ohmic contact with Si, its
resistivity can be made up to 500-525 pf2 cm by doping,
and it is easy to pattern.

A low-pressure reactor, such as the one shown in
Figure 10.8(a), operated at a temperature of between
600 and 650°C, is used to deposit polysilicon by pyr-
olyzing silane according to the following reaction:

600°C

SiH; 25 Si+2H, (10.6)

Most common low-pressure processes used for polysili-
con deposition operate at pressures between 0.2 and 1.0
torr using 100 % silane.

10.3.5 Deposition of ceramic thin films

Ceramics are another major class of materials widely used
for silicon-based MEMS. These materials generally have
better hardness and high-temperature strength. Both crys-
talline as well as non-crystalline materials are used in the
context of MEMS. Examples of ceramic-based MEMS
include ceramic pressure microsensors for high-tempera-
ture pressure measurement [33] and silicon carbide
MEMS for harsh environments [34]. In addition to these
structural ceramics, functional ceramics such as ZnO, BST
and PZT have also been incorporated into MEMS.

Ceramic thin films have been fabricated by conven-
tional methods, such as RF sputtering [35], laser ablation
[36], MOCVD [37] and hydrothermal processes [37].
Even though sputtering is widely used for the deposition
of thin films, it has the potential for film degradation by
neutral and negative-ion bombardment during its growth.
This ‘re-sputtering’ can lead to ‘off-stoichiometric’ films
and degradation of electrical properties.

Figure 10.9 illustrates the inverted cylindrical magne-
tron (ICM) RF sputtering gun set-up [38]. This consists
of a water-cooled copper cathode which houses a cylind-
rical target material surrounded by a ring magnet con-
centric with the target. A stainless steel thermal shield is
mounted to shield the magnet from the thermal radiation
coming from the heated table. The anode is recessed in
the hollow-cathode space. It aids in collecting electrons
and negative ions minimizing ‘re-sputtering’ the growing
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Figure 10.9 Schematic of an ICM sputter gun [38].

film. Outside the deposition chamber, a copper ground
wire is attached between the anode and the stainless steel
chamber. A DC bias voltage could be applied to the
anode to alter the plasma characteristics in the cathode/
anode space. The sputter gas enters the cathode region
through the space surrounding the table.

Using the above set-up, Cukauskas et al. [38] were able
to deposit BST films at temperatures ranging from 550 to
800°C. The substrate temperature was maintained by two
quartz lamps, a type-K thermocouple and a temperature
controller. The films were deposited at 135W to a film
thickness of 7000 A The films were cooled to room
temperature in 1 atm of oxygen before removing them
from the deposition unit. This was then followed by
annealing the films in 1 atm of flowing oxygen at a
temperature of 780°C for 8h in a tube furnace.

10.4 BULK MICROMACHINING
FOR SILICON-BASED MEMS

Starting in the early 1960s, bulk micromachining has
since matured as the principal silicon micromachining
technology. Bulk micromachining is employed to fabri-
cate the majority of commercial devices available today.
The term ‘bulk micromachining’ arises from the fact that
this type of micromachining is used to realize micro-
mechanical structures within the bulk of a single-crystal
silicon wafer by selectively removing the wafer material.
The microstructures fabricated using bulk micromachin-
ing may have thicknesses ranging from sub-microns to
the full thickness of a wafer (usually 200 to 500 pm), and
lateral dimensions ranging from microns to the full
diameter of a wafer (usually 75 to 200 mm).

For bulk-micromachined silicon microstructures, a
wafer-bonding technique is necessary for the assembled
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MEMS devices. The bulk micromachining technique
allows us to selectively remove significant amounts of
silicon from a substrate to form membranes on one side
of a wafer, a variety of trenches, holes or other structures
(Figure 10.3). In recent years, a vertical-walled bulk
micromachining techniques known as single crystal
reactive etching and metallization (SCREAM) which is
a combination of anisotropic and isotropic plasma etch-
ing, is used [29].

The construction of any complicated mechanical device
requires not only the machining of individual components
but also the assembly of the components to form a
complete set. In micromachining, bonding techniques
are used to assemble individually micromachined parts
to form a complete structure. For example, wafer bonding,
when used in conjunction with micromachining techni-
ques, allows the fabrication of 3-dimensional structures
that are thicker than a single wafer. Several processes have
been developed for bonding silicon wafers. The most
common bonding process is fusion bonding. These tech-
niques are described in Section 10.2.5. In the following
sections, we will describe the commonly used bulk micro-
machining processes.

10.4.1 Wet etching for bulk micromachining

Wet chemical etching is widely used in semiconductor
processing. It is used for lapping and polishing to give an
optically flat and damage-free surface and to remove
contamination that results from wafer handling and
storing. Most importantly, it is used in the fabrication
of discrete devices and integrated circuits of relatively
large dimensions to delineate patterns and to open
windows in insulating materials. It is to be noted that
most of the wet etching processes are isotropic. That is,
etch rate is unaffected by crystallographic orientation.

However, some wet etchants are orientation depen-
dant, i.e. have the property of dissolving a given crystal
plane of a semiconductor much faster than other planes
(see Table 10.4). In diamond and zinc blende lattices, the
(111) plane is more closely packed than the (100) plane
and, hence, for any given etchant the etch rate is expected
to be slower.

A commonly chemical used orientation-dependent
etchant for silicon consists of a mixture of KOH in
water and isopropyl alcohol. The etch rate is about
2.1 ym/min for the (110) plane, 1.4 pum/min for the
(100) plane and only 0.003 pm/min for the (111) plane
at 80 °C; therefore, the ratio of the etch rates for the (100)
and (110) planes to the (111) plane are very high, at
400:1 and 600:1, respectively.

Table 10.4 Anisotropic etching characteristics of
different wet etchants for single-crystalline silicon.
Reprinted from Applied Surface Science, vol. 164,
R.K. Kupka, F. Bouamrane, C. Cremers, and

S. Megtert, Microfabrication: LIGA-X and
applications, pp. 97-110, Copyright 2000, with
permission from Elsevier

Etchant  Temperature (°C) Etch rate (um/h)

Si (100) Si (110) Si (111)
KOH:H,O 80 84 126 0.21
KOH 75 25-42 39-66 0.5
EDP 110 51 57 1.25
N,H,H,O 118 176 99 11
NH,OH 75 24 8 1

10.4.2 Etch-stop techniques

Properties that make etchants indispensable to the micro-
machining of three-dimensional structures are their
selectivity and directionality. As etching processes in
polar solvents are fundamentally charge-transport phe-
nomena, the etch rate will depend on the type of dopant
and its concentration, and an external bias. Etch pro-
cesses can therefore be made selective by the use of
dopants — heavily doped regions etch slower or are halted
electrochemically when observing the sudden rise in
current through an etched n—p junction.

A region at which wet (or dry) etching tends to slow
down (or halt) is called an ‘etch stop’. There are several
ways in which an etch-stop region can be created. In the
following paragraphs, we discuss such methods by which
etch selectivity is achieved.

In the electrochemical etching of silicon, a voltage is
applied between the silicon wafer (anode) and a counter-
electrode (cathode) in the etching solution. The funda-
mental steps of the etching mechanism are:

(1) Injection of holes into the semiconductor to raise it to
a higher oxidation state, Si™.

(2) Attachment of negatively charged hydroxyl groups
(OH") to positively charged Si.

(3) Reaction of the hydrated silicon with the complexing
agent in the solution.

(4) Dissolution of the reaction products into the etchant
solution.

The conventional electrochemical etch-stop technique is
an attractive method for fabricating microsensors and
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micro-actuators since it has the potential for allowing
reproducible fabrication of moderately doped n-type
silicon microstructures with good thickness control.
However, a major limiting factor in the use of this
process is the effect of a reverse-bias leakage current in
the junction. Since the selectivity between n-type and
p-type silicons in this process is achieved through the
current-blocking action of the diode, any leakage in this
diode will affect the selectivity. In particular, if the
leakage current is very large, it is possible for etching
to terminate well before the junction is reached. In some
situations, the etching process may fail completely
because of this leakage. This effect is well known, and
alternative biasing schemes employing three (or four)
electrodes have been proposed to minimize this problem.
Alternately, dopant-selective techniques that use pulsed
anodizing voltages applied to silicon samples immersed
in etching solutions can be used [39].

In bias-dependent etching, oxidation is promoted by a
positive voltage applied to the silicon wafer, which causes
an accumulation of holes at the Si-solution interface.
Under these conditions, oxidation at the surface proceeds
rapidly while the oxide is readily dissolved by the solu-
tion. Holes, such as H' ions, are transported to the cathode
and are released as hydrogen (gas). Excess hole—electron
pairs can, in addition, be created at the silicon surface, e.g.
by optical excitation, to increase the etch rate.

Silicon membranes are generally fabricated using the
etch-stop phenomenon of a thin, heavily boron-doped layer,
which can be epitaxially grown or formed by the diffusion
or implantation of boron into a lightly doped substrate. This
stopping effect is a general property of basic etching
solutions such as KOH, NaOH, ethylene diamine pyroca-
techol (EDP) and hydrazine (see Table 10.5). Due to the
heavy boron-doping, the lattice constant of silicon
decreases slightly. This leads to highly strained membranes
that often show slip planes. They are, however, taut and
fairly rugged, even at a few micron thickness and ~ 1cm
diameter. The technique, however, is not suited to stress-
sensitive microstructures as this could lead to the movement
of structures without an external load.

The main benefits of the high-boron etch stop are the
independence of crystal orientation, the smooth surface
finish and the possibilities it offers for fabricating
released structures with an arbitrary lateral geometry
in a single etch step. On the other hand, the high levels
of boron required are known to introduce considerable
mechanical stress into the material, which may cause
buckling or even fracture in a diaphragm or other
‘double-clamped’ structures. Moreover, the introduction
of electrical components for sensing purposes into these
microstructures, such as the implantation of piezoresis-
tors, is inhibited by the excessive background doping.
The latter consideration constitutes an important limita-
tion to the applicability of the high-boron-dose etch
stop.

The pulsed potential anodization technique is used to
selectively etch n-type silicon [39]. The difference in the
dissolution time of anodic oxide formed on n-type and
p-type silicon samples under identical conditions is used
for etch selectivity. However, the difference in dissolution
time is believed to be due to a difference in oxidation rates
caused by the limited supply of holes in n-type samples
[39]. This technique is applicable in a wide range of
anodizing voltages, etchant compositions and tempera-
tures. It differs from the conventional p—n junction etch
stop in that the performance of the etch stop does not
depend on the rectifying characteristics or quality of a
diode. Using this technique, p-type microstructures of both
low and moderate doping can be fabricated. Hence, the
pulsed potential anodization technique opens up the pos-
sibility for the creation of fragile microstructures in p-type
silicon.

The main problems with the conventional electroche-
mical etch stop and the pulsed potential anodization
techniques are related to the etch holders required for
contacting the epitaxial layer (and the substrate with
several electrodes) and for protecting the ‘epitaxial-side’
of the wafer from the etchant. Any leakage in these
holders interferes with proper operation of the etch stop.
Moreover, mechanical stress introduced by the holder
reduces production yield substantially. The development

Table 10.5 Dopant-dependent etch rates of selected silicon wet etchants. W.C. Tang, ‘“Micromechanical devices
at JPL for space exploration,” IEEE Aerospace Applications Conference Proceedings, vol. 1, © 1998 IEEE

Etchant Temperature (100) Etch rate (um/min) for (100) Etch rate (um/min) for
(diluent) O boron doping < 10" cm ™ boron doping ~ 10%°cm ™
EDP (H,0) 115 0.75 0.015

KOH (H,0) 85 1.4 0.07

NaOH (H,0) 65 0.25-1.0 0.025-0.1
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of a reliable wafer holder for anisotropic etching with an
electrochemical etch stop is not straightforward. The
process of making contact to the wafer itself can also be
critical and difficult to implement. Therefore a single-step
fabrication of released structures with either a conven-
tional electrochemical etch stop or pulsed potential ano-
dization techniques may be troublesome.

An alternative etch-stop technique which does not
require any external electrodes (or connections to be
made to the wafer) has been recently developed. This
new technique is referred to as the photovoltaic electro-
chemical etch-stop technique (PHET) [40]. The PHET
approach can be used to produce the majority of struc-
tures that can be formed by either the high-boron or the
electrochemical etch-stop process [40]. PHET does not
require the high impurity concentrations of the boron
etch stop and does not require external electrodes or an
etch holder as in the conventional electrochemical etch-
stop or pulsed anodization techniques. Free-standing
p-type structures with an arbitrary lateral geometry can
be formed in a single etch step. In principle, PHET is to
be seen as a two-electrode electrochemical etch stop
where the potential and current required for anodic
growth of a passivating oxide is not applied externally,
but is generated within the silicon itself. The potential
essentially consists of two components, being the photo-
voltage across an illuminated p-n junction and the
‘Nernst’ potential of an n-Si/metal/etchant solution elec-
trochemical cell.

The buried oxide process generates microstructures by
means of exploiting the etching characteristics of a
buried layer of silicon dioxide. After implanting oxygen
into a silicon substrate using suitable ion-implantation
techniques, high-temperature annealing causes the oxy-
gen ions to interact with the silicon to form a buried layer
of silicon dioxide. The remaining thin layer of single-
crystal silicon can still support the growth of an epitaxial
layer from a few microns to many tens of microns thick.
In micromachining, the buried silicon dioxide layer is
used as an etch stop. For example, the etch rate of an
etchant such as KOH slows down markedly as the etchant
reaches the silicon dioxide layer. However, this process
has the potential for generating patterned silicon-dioxide-
buried layers by appropriately implanting oxygen.

10.4.3 Dry etching for micromachining

As discussed above, bulk micromachining processes
using wet chemical etchants, such as EDP, KOH and
hydrazine, can yield microstructures on single-crystal
silicon (SCS) by ‘undercutting’ the silicon wafer. The

etch stop in these cases can be either crystal-orientation-
dependent or dopant-concentration-dependent. How-
ever, the type, shape and size of the SCS structures
that can be fabricated with the wet chemical etch
techniques are severely limited. On the other hand, a
dry-etch-based process sequence has been developed to
produce suspended, SCS mechanical structures and
actuators [41]. This process is known as the SCREAM
(single crystal reactive etching and metallization) pro-
cess. SCREAM uses RIE processes to fabricate released
SCS structures with lateral feature sizes down to 250 nm
and with arbitrary structure orientations on a silicon
wafer. SCREAM includes process options to make
integrated, ‘side-drive’ capacitor actuators. A compati-
ble high step-coverage metallization process using
metal sputter deposition and isotropic metal dry etch
is used to form ‘side-drive’ electrodes. The metalliza-
tion process complements the silicon RIE processes
used to form the ‘movable’ SCS structures.

The SCREAM process can be used to fabricate com-
plex circular, triangular structures in SCS, often with a
single mask. These structures can include integrated,
high-aspect-ratio and conformable capacitor actuators.
The capacitor actuators are used to generate electrostatic
forces and so produce micromechanical motion.

10.5 SILICON SURFACE MICROMACHINING

Since the beginning of the 1980s, much interest has been
directed towards micromechanical structures fabricated
by a technique called surface micromachining. The
resulting “2Y2-dimensional’ structures are mainly located
on the surface of a silicon wafer and exist as a thin film —
hence, the ‘half-dimension’. The dimensions of these
surface-micromachined structures can be an order of
magnitude smaller than bulk-micromachined structures.
The main advantage of surface-micromachined structures
is their easy integration with IC components, since the
same wafer surface can also be processed for the IC
elements.

Surface micromachining does not shape the bulk
silicon, but instead builds structures on the surface of
the silicon by depositing thin films of ‘sacrificial layers’
and ‘structural layers’ and by removing eventually the
sacrificial layers to release the mechanical structures
(Figure 10.10). The dimensions of these surface-
micromachined structures can be several orders of mag-
nitude smaller than bulk-micromachined structures. The
prime advantage of surface-micromachined structures is
their easy integration with IC components, since the
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Figure 10.10 Processing steps for a typical micromachining process [23]. Reproduced by permission of Gabor Kiss

wafer is also the ‘working’ one for the IC elements.
Surface micromachining can therefore be used to build
monolithic MEMS devices.

Surface micromachining could also be performed
using dry-etching methods. Plasma etching of the silicon
substrate with SF¢/O,-based and CF,/H,-based gas mix-
tures is advantageous since high selectivities for the
photoresist, silicon dioxide and aluminum masks can
be achieved. However, when using plasma etching, a
large ‘undercut’ of the mask is observed. This is due to
the isotropic fluorine-atom-etching of silicon which is
known to be high compared with the vertical etch
induced by ion bombardment. In contrast, reactive-ion
etching of poly-Si using a chlorine/fluorine gas combina-
tion produces virtually no ‘undercut’ and almost vertical
etch profiles when using a photoresist as a masking
material. Thus, rectangular silicon patterns which are
up to 30pum deep can be formed by using chlorine/
fluorine plasmas out of poly-Si films and silicon wafer
surfaces.

Silicon microstructures fabricated by surface micro-
machining are usually planar (or two dimensional) struc-
tures. Other techniques involving the use of thin-film
structural materials released by the removal of an under-
lying sacrificial layer have helped to extend conventional

surface micromachining into the ‘third dimension’. By
connecting polysilicon plates to the substrate and to each
other with hinges, 3-D micromechanical structures can
be assembled after release. Another approach to 3-D
structures have used the conformal deposition of poly-
silicon and sacrificial oxide films to fill deep trenches
previously etched in the silicon substrate.

Sacrificial-layer technology generally uses polycrys-
talline rather than single-crystal silicon (SCS) as the
structural material for the fabrication of microstructures.
Low-pressure chemical vapor deposition (LPCVD) of
polysilicon is well known in standard IC technologies
and has excellent mechanical properties similar to those
of SCS. When polycrystalline silicon is used as the
structural layer, sacrificial-layer technology normally
employs silicon dioxide as the sacrificial material. This
sacrificial layer is required during the fabrication process
to realize some microstructures but does not constitute
any part of the final device.

The key processing steps in sacrificial-layer technol-
ogy are:

(1) Deposition and patterning of a sacrificial silicon
dioxide layer on the substrate.
(2) Deposition and definition of a polysilicon film.
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(3) Removal of the sacrificial oxide by lateral etching in
hydrofluoric acid (HF), i.e. etching away of the oxide
underneath the polysilicon structure.

Here, we refer to polysilicon and silicon dioxide as the
structural and sacrificial materials, respectively. Several
other material combinations are also used in surface
micromachining.

10.5.1 Material systems in sacrificial layer
technology

An important consideration in the fabrication of an ideal
mechanical microstructure is that it is without any residual
mechanical stress, so that the films deposited have no
significant residual strain. In particular, doubly supported
free-standing structures will buckle in the presence of a
relatively modest residual compressive strain in the struc-
tural material. By choosing the appropriate deposition
conditions and by optimizing the annealing step, an almost
strain-free structural material layer can be obtained.

Surface micromachining requires a compatible set of
structural materials, sacrificial materials and chemical
etchants. The structural materials must possess the phy-
sical and chemical properties that are suitable for the
desired application. In addition, the structural materials
must have appropriate mechanical properties, such as
high yield and fracture strengths, minimal creep and
fatigue and good wear resistance. The sacrificial materi-
als should also be able to avoid device failure during the
fabrication process. Furthermore, they should have good
adhesion and a low residual stress in order to eliminate
device failure by delamination and/or cracking. The
etchants must have excellent etch selectivity and they
must be able to etch-off the sacrificial materials without
affecting the structural ones. In addition, the etchants
must also have appropriate viscosity and surface tension
characteristics.

The common IC-compatible materials used in surface
micromachining are as follows. (1) Poly-Si/silicon diox-
ide — LPCVD-deposited poly-Si as the structural material
and LPCVD-deposited oxide as the sacrificial material.
The oxide is readily dissolved in HF solution without the
poly-Si being affected. Together with this material sys-
tem, silicon nitride is often used for electrical insulation.
(2) Polyimide/aluminum - in this case, polyimide is the
structural material and aluminum is the sacrificial mate-
rial. Acid-based etchants are used to dissolve the alumi-
num sacrificial layer. (3) Silicon nitride/poly-Si — silicon
nitride is used as the structural material, whereas poly-Si
is the sacrificial material. For this material system,

silicon anisotropic etchants, such as KOH and EDP, are
used to dissolve the poly-Si. (4) Tungsten/silicon dioxide
— CVD-deposited tungsten is used as the structural
material with oxide as the sacrificial material. HF solu-
tion is used to remove the sacrificial oxide. Other IC-
compatible materials, such as silicon carbide, ‘diamond-
like’ carbon, zinc oxide and gold, are also used.

10.5.1.1 Polycrystalline silicon/silicon dioxide

The poly-silicon/silicon dioxide material system is the
most common one used in the silicon-surface micro-
machining of MEMS. This uses poly-silicon deposited
by LPCVD as the structural material and a thermally
grown (or LPCVD) oxide as the sacrificial material. The
oxide is readily dissolved in HF solution, without
affecting the poly-silicon. Silicon nitride is often used,
together with this material system for electrical insula-
tion. The advantages of this material system include the
following:

(1) Both poly-silicon and silicon dioxide are used in IC
processing and, therefore, their deposition technolo-
gies are readily available.

(2) Poly-silicon has excellent mechanical properties and
can be doped for various electrical applications. Dop-
ing not only modifies the electrical properties but can
also modify the mechanical properties of poly-silicon.
For example, the maximum ‘mechanically-sound’
length of a free-standing beam is significantly larger
for a phosphorous-doped compared with undoped
poly-silicon. However, in most cases the maximum
length attainable is limited by the tendency of the
beam to stick to the substrate.

(3) The oxide can be thermally grown and deposited by
CVD over a wide range of temperatures (from about
200 to 1200°C) which is very useful for various
processing requirements. However, the quality of
oxide will vary with the deposition temperature.

(4) The material system is compatible with IC processing.
Both poly-silicon and silicon dioxide are standard
materials for IC devices. This commonality makes
them highly desirable in sacrificial-layer-technology
applications which demand integrated electronics.

10.5.1.2 Polyimide/aluminum

In this second material system, the polymer ‘polyimide’
is used for the structural material while aluminum is used
for the sacrificial material. Acid-based aluminum etch-
ants are used to dissolve the aluminum sacrificial layer.
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Table 10.6 Comparison of bulk-and surface-micromachining processes for MEMS fabrication.

Aspect Bulk Surface
micromachining micromachining
Maturity Well established Relatively new
Ruggedness Yes — structures can withstand vibration Less rugged
and shock

Die area Large mass/area Small mass/area (reduced

(suitable for accelero meters,increases cost) sensitivity, reduces cost)
IC Not fully integrated IC compatible
compatibility
Structural Limited Wide range
geometry possible
Materials Well characterized Relatively new

The three main advantages of this material system are:

(1) Polyimide has a small elastic modulus which is ~ 50
times smaller than that of polycrystalline silicon.

(2) Polyimide can take large strains before fracture.

(3) Both polyimide and aluminum can be prepared at
relatively low temperatures (< 400 °C).

(4) However, the main disadvantage of this material system
lies with polyimide in that it has unfavorable viscoe-
lastic characteristics (i.e. it tends to creep) and so such
devices may exhibit considerable parametric drift.

10.5.1.3 Other material systems

In the third material system of silicon nitride/poly-Si,
silicon nitride is used as the structural material and
poly-Si as the sacrificial material. For this material
system, silicon anisotropic etchants such as KOH and
EDP are used to dissolve the poly-Si.

In the fourth material system of tungsten/oxide, tung-
sten deposited by CVD is used as the structural material
with the oxide as the sacrificial material. Here again, an
HF solution is used to remove the sacrificial oxide.

Similarly, silicon nitride is employed as the structural
material with aluminum as the sacrificial layer instead of
poly-Si.

10.6 PROCESSING BY BOTH BULK
AND SURFACE MICROMACHINING

Many MEMS devices are fabricated by either bulk
micromachining or surface micromachining, as described
in the previous sections. Their relative merits and demer-
its are compared in Table 10.6. It is possible to combine

advantages of both of these approaches by following a
‘mixed route’ for fabricating MEMS. The process flow
for a ‘microgripper’ fabricated with this mixed approach
is shown in Figure 10.11. In the first step, with thermally
grown silicon dioxide as a mask, boron is diffused into
the wafer at 1125 °C. The masking SiO, and borosilicate
glass (BSG) grown during this diffusion are removed.
Then, a 2 um thick layer of phosphosilicate glass (PSG)
and a 2.5um thick polysilicon layer are deposited by
LPCVD. This polysilicon layer is patterned by RIE in a
CCly plasma. Polysilicon at the back side of the wafer is
later removed. Then, the PSG film is deposited in three
steps to reach a thickness of 6 um. This is used for
diffusing phosphorous into the polysilicon layer (by
annealing at 1000 °C) and to protect it while bulk micro-
machining. The alignment window in Figure 10.11(c) is
used for ‘front-to-back’ reference. Break lines are pat-
terned on the PSG around the polysilicon gripper area to
prevent cracks. The PSG film on the back side is also
patterned. Unwanted silicon from the back side is removed
by etching in EDP (bulk micromachining). On the front
side, the EDP causes undercut etching of channels beneath
the PSG break line, eventually connecting to the open
space caused from the back side etch. The PSG film
(sacrificial layer) is then removed from both the top and
bottom. Thus, the structure on the top side of the wafer is
thought of as being fabricated by surface micromachining.

10.7 LIGA PROCESS

Even though miniaturization is immensely increased by
silicon surface micromachining, the small sizes/masses
created are often insufficient for viable sensors and,
particularly, actuators. The problem is most acute in
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Figure 10.11 Process flow for MEMS ‘microgripper’ fabricated with bulk and surface micromachining. C.-J. Kim, A.P. Pisano, and
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capacitive mechanical microsensors and especially capa-
citively driven micro-actuators because of the low cou-
pling capacitances. Deep etching techniques, such as
LIGA, have been developed in order to address this
problem but are difficult to realize for silicon.

‘LIGA’ is a German acronym for Lithographie,
Galvanoformung, Abformung (lithography, galvanoform-
ing, molding). This versatile technique was developed by
the Research Center in Karlsruhe in Germany in the early
1980s using X-ray lithography for mask exposure, galva-
noforming to form the metallic parts and molding to
produce micro-parts with plastics, metals, ceramics, or
their combinations [42,43]. A schematic diagram of the
LIGA process flow is shown in Figure 10.12. The X-ray

LIGA relies on synchrotron radiation to obtain necessary
X-ray fluxes and uses X-ray proximity printing. Inherent
advantages are its extreme precision, depth of field and
very low intrinsic surface roughness [44]. With the LIGA
process, the microstructure heights can be up to hundreds
of microns to several millimeters, while the lateral resolution
is kept at the submicron level due to the advanced X-ray
lithography. Various materials can be incorporated into the
LIGA process, allowing electrical, magnetic, piezoelec-
tric, optical and insulating properties of sensors and
actuators with a high-aspect ratio, which are not possible
to make with the silicon-based processes. In addition, by
combining the sacrificial layer technique and the LIGA
process, advanced MEMS with moveable microstructures
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Figure 10.12 Schematic of the LIGA process [23]. Reproduced by permission of Gabor Kiss

can be built (Figure 10.13). However, the high production
cost of the LIGA process, due to the fact that it is not easy
to access the X-ray source, limits the application of LIGA.
Another disadvantage of the LIGA process relies on the
fact that structures fabricated using LIGA are not truly
three-dimensional, because the third dimension is always
in a ‘straight’ feature. The quality of fabricated structures

often depends on secondary effects during exposure and
effects like resist adhesion. A similar technique, UV-LIGA,
relying on thick UV resists, is a useful fabrication process,
but with less precision. Modulating the spectral properties
of synchrotron radiation, 3-D components with different
size regimes can be fabricated using X-ray lithography [44].
Considerations for these cases are shown in Table 10.7.
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Table 10.7 X-ray lithography for various feature sizes [44]. Reprinted from Applied Surface Science, vol. 164,
R.K. Kupta, F. Bouamrane, C. Cremers, and S. Megtert, Microfabrication: LIGA-X and applications, pp. 97-110,

Copyright 2000, with permission from Elsevier

Feature Low-aspect-ratio High-aspect-ratio High-aspect-ratio High-aspect-ratio
nanostructures nanostructures microstructures ‘cm structures’

Photon energy range  500eV-2keV 2-5keV 4-15keV > 15keV

Exposable resist <5pm <50 pm <1mm <2cm

(PMMA) thickness

Membrane SiC, 2 pm; diamond, Be, 50 pm; Be, 300 pm; Be, 500 pm;
thickness 5 um Be, 20 pm D263, 5pum D263, 15 um D263, 50 um

Absorber (Au, W) 100-500 nm 500 nm to 10-20 pm 20-50 um
thickness 10 um

Proximity contrast <10dB 10-15dB 15-20dB >20dB

Development time s—min min-h h—days days

Application Rapid mass production 2-D photonic Micromechanics, —

of nanostructures crystals

micro-optics
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Table 10.8 Various technologies used in MEMS fabrication [46]. W.C. Tang, ‘‘Micromechanical devices at JPL for
space exploration,” IEEE Aerospace Applications Conference Proceedings, vol. 1, © 1998 IEEE

Feature Bulk (100) wafer Surface LIGA
Maximum structure thickness Water thickness <50 pm <500 pm
Planar geometry Rectangular Unrestricted Unrestricted
Minimum planar feature size 1.4 x depth 1 pm 3pm
Side-wall features 54.74° slope Limited by 0.2 pm runout
dry etch over 400 pm
Surface and edge definitions Excellent Mostly adequate Very good
Material properties Very well controlled Mostly adequate Well controlled
Integration with electronics Demonstrated Demonstrated Difficult
Capital investments and cost Low Medium High

LIGA-based fabrication procedures of various systems
for micromechanics (such as micromotors, microsensors,
spinnerets, etc.) and micro-optics, micro-hydrodynamics,
microbiology, medicine, biology and chemistry (micro-
chemical reactors) are under various stages of develop-
ment. A comparison of LIGA with the bulk and surface
micromachining technologies used in MEMS is given in
Table 10.8 [46].
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Polymeric MEMS Fabrication Techniques

11.1 INTRODUCTION

The advancement of silicon-based micro electromecha-
nical systems (MEMS) closely follows developments in
silicon semiconductor processing technology. Various
processing approaches have already been established for
the integration of silicon-based MEMS with standard
CMOS processing. For precision devices, and for devices
requiring integrated electronics, silicon is presently unri-
valed. However, it is not necessarily the best material
for all applications. For example, silicon is brittle, it is
only available in specific shapes (wafers), it is limited to
2-D or very limited 3-D structures, it is incompatible
with many chemical and biological substances and fab-
rication requires sophisticated, expensive equipment
operated in a clean-room environment. These often
limit the low-cost potential of silicon-based MEMS.
Polymer-based MEMS are gaining momentum rapidly
due to their potential for conformability and other special
characteristics not available with silicon. In general,
polymer-based devices may not be as small or as com-
plex as those with silicon. However, polymers are flex-
ible, chemically and biologically compatible, available in
many varieties and can be fabricated in truly 3-D shapes.
Most of these materials and their fabrication methods are
inexpensive.

Polymer MEMS are particularly advantageous in mod-
erate-performance devices which are low cost or dispo-
sable. Many silicon devices are packaged inside
polymers. On the other hand, polymer MEMS can be
‘self-packaged’. Active polymer components can take
advantage of several functional polymers to increase
their functionality. MEMS can definitely benefit from
the fairly large polymer industry. While conventional
integrated circuits cannot be made in polymers, electro-
nic circuits based on organic thin-film transistors (TFTs)

are feasible. The technology of organic TFTs is nearing
its maturity, and is finding several applications in systems
requiring large coverage area, structural flexibility and
low cost. These noticeable advantages are also common
for polymer MEMS. Although the existing technology of
organic TFTs cannot rival the well-established silicon
semiconductor technology, especially in terms of speed,
they are still useful in displays, several high-volume,
low-performance, disposable devices and sensors.

Polymers are very large molecules (macromolecules)
made up of a number of small molecules. The small
molecules that connect with each other to build up the
polymer are referred to as monomers, and the reaction by
which they connect together is called polymerization.
Two types of polymers are employed for micromachining
polymeric MEMS devices — structural polymers and
sacrificial polymers. The structural polymer is usually a
UV-curable polymer with urethane acrylate, epoxy acry-
late or acryloxysilane as the main ingredient. Its low
viscosity allows easy processing through automatic
equipment or manual methods without the addition of
solvents or heat to reduce the viscosity. It also complies
with all VOC regulations. It has excellent flexibility and
resistance to fungus, solvents, water and other chemicals.
Other physical, chemical, mechanical and thermal prop-
erties are given in Table 11.1 [1]. This structural polymer
may be used as a backbone structure for building the
multifunctional polymer described below.

For 3-D MEMS devices, the polymers need to have
conductive and possibly piezoelectric or ferroelectric
properties. In addition, for these polymers to be used
for polymeric MEMS, they should have strong interfacial
adhesion between the functional polymer and conducting
polymer layers, elastic moduli to support the deformation
initiated by MEMS devices, excellent overall dimen-
sional stability (allowing local mobility) and long-term
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Table 11.1 General properties of polymers used
in MEMS.

Physical properties
Adhesion (#600 ‘Cellotape’) Excellent
Clarity Transparent
Flammability, ASTM D635 Self-extinguishing
Flexibility Good
Weather resistance Excellent

Chemical properties

Fungus resistance, ASTM G21 Excellent
Resistance to chemicals Excellent
Resistance to solvents Excellent
Resistance to water Excellent

Thermal properties

65-125
242

Continuous operating range (°C)
Decomposition temperature (°C)

Mechanical properties

Tensile strength (psi), 3454
ASTM D 683

Percentage elongation, 5.2
ASTM D 683

Dielectric properties

Dielectric permittivity 1.9-2.0
(200-1000 MHz)
Loss tangent 0.023-0.05

(200-1000 MHz)

environmental stability. In addition, their processes
should help attachment of nanoceramics and/or conduc-
tive phases and formation of a uniform coating layer.
Furthermore, many of these polymers provide a large
strain under an electric field and thus can be used
as actuators for MEMS-based devices such as micro
pumps.

The polymer processing techniques include photopoly-
merization, electrochemical polymerization and vacuum
polymerization, either stimulated by electron bombard-
ment or initiated by ultraviolet irradiation or microwave-
assisted polymerization. These methods are also widely
used for processing and curing thin and thick polymer
films on silicon-based electronic components.

Several polymeric materials useful in MEMS have
already been discussed in Chapter 2. It has been men-
tioned that UV-radiation curing has significant advan-
tages in the context of fabricating MEMS devices. In this

chapter, we discuss the technologies involved in such
fabrication.

Stereolithography has evolved as a viable technique
for rapid prototyping used in several industries. Micro-
stereolithography is a natural extension of this for fabri-
cating objects at a smaller scale. Another common
technique for fabricating three-dimensional polymer
structures is by molding. Microstereolithography and
micromolding can be extended to fabricate ceramic and
metallic structures by starting with a mixture of their
powders in a suitable polymer matrix. Special techniques
such as electroplating can also be used to fabricate 3-D
metallic structures. Fabrication techniques for 3-D struc-
tures with both polymers and metals are discussed next.
The last section in this chapter addresses combined
architectures where silicon-based and polymer-based
techniques are combined for increased flexibility.

11.2 MICROSTEREOLITHOGRAPHY

Several new manufacturing technologies that build
devices ‘layer-by-layer’ have emerged recently. Using
these technologies, the time for fabricating these devices
of virtually any complexity has become short, measur-
able in hours rather than in days, weeks or months. These
rapid prototyping (RP) technologies consist of various
manufacturing processes by which a solid physical model
of a device is fabricated directly from its 3-D CAD
model, without the need for any special tooling. This
CAD model is generated by 3-D CAD software pro-
grams, scan or model data created by 3-D digitizing
systems. An important difference between RP and tradi-
tional micromachining techniques is that here devices are
built by adding a material (e.g. ‘layer-by-layer’) instead
of removing it.

11.2.1 Overview of stereolithography

Stereolithography (SL) is the best known rapid prototyping
system. SL was introduced in the early 1980s by teams
around the world [2-4], as a three-dimensional manufac-
turing process based on photopolymerization, where a laser
beam is directed onto the surface of a optically curable
liquid plastic (resin) to produce solid objects. The stereo-
lithography process begins with the generation of a three-
dimensional CAD model of the desired object, followed by
slicing this model into a series of closely spaced horizontal
planes representing the two-dimensional cross-sections of
the 3-D object, each at a slightly different z-coordinate. All
of these 2-D models are next translated into numerical
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Figure 11.1 Principle of Stereolithography.

control codes and merged together into a final ‘build file’ to
control the laser beam scanning and z-axis movement. The
desired object is then built from a UV-curable resin in a
layer-by-layer additive fashion (Figure 11.1).

SL is a photopolymerization process, linking small
molecules (monomers) into larger molecules (polymer).
Most SL systems utilize the principle of UV-radiation
curing of polymers. Different photopolymers based on
free-radical photopolymerization and cationic photo-
polymerization are normally used in SL prototyping. In
general, photopolymerization is a process initiated by the
photons generated by UV light leading to either breaking
of the monomer double bonds or ring opening (so-called
‘reactive species’), resulting in chain propagation and the
cross-linked polymer chain is finally formed when the
chain propagation is terminated.

The generalized molecular structures of three major
photopolymer systems, namely monofunctional acrylate,
epoxy and vinyl ether, are shown in Figure 11.2. The
selection of the photopolymer for a particular SL fabrica-
tion process depends on the requirements for dimensional
accuracy and mechanical properties of each individual
photopolymer formulation.

Three-dimensional modeling for the prototypes is done
with CAD software on a PC or workstation. The design
model and the support data are converted to a STL format
through a specific interface [5]. STL files comprise a
mesh of connected triangles, representing the 3-D object.
These triangle categories determine how the vectors are
generated to represent the surfaces to build the part.
Vectors are very small lines which are traced by the
laser to fabricate polymer objects [6].

After necessary corrections to the model, the designed
object is then sliced into a number of layers consisting of
cross-sections of a 3-D object (slice files or SLI files).
The slicing layer thickness may be selected from con-
sideration of the ‘stair-casing’ effect. When these trian-
gles are sliced, three types of vectors are created to define

H H
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Acrylate \\C -~ \H
7
R
(6]
H
E \C/ C /H
poxy -
R / \ -
H \C . . H
Vinyl ether -
o H
R /

Figure 11.2 General structures of monofunctional acrylate,
epoxy, and vinylether monomers [5].

the surface boundaries and internal structure on a layer-
by-layer basis — layer borders, cross-hatches and skin fill.
The cross-hatch vectors in the internal grid structures are
created to strengthen the walls and maintain structure
integrity. The skin-filling vectors, usually a series of
closely located parallel vectors, define the horizontal
surfaces.

All slice files (support and object files) are then
merged to generate SLA format data in the form of
four files (layer, vector, range and parameter files). The
layer file defines the types of vector blocks in each layer.
The vector file contains vector data used to build each
layer and the range file contains user-specified ranges and
parameters for fabrication. The parameter file has the
control for global part building. The numerical control
(NC) codes for controlling the light scanning and eleva-
tor movement are included in these files. Parameters,
such as laser intensity and scanning speed, should also be
selected before executing these NC codes.

SL systems have components with CAD design and
layer preparation functions and a laser scanning or imaging
system. A typical SL system is shown schematically in
Figure 11.3. The imaging system for SL includes a light
source (laser or lamp) and beam delivery and focusing
elements (Figure 11.3). The laser or lamps must be appro-
priate for the resin used. Wavelength, output beam shape
and available power are important characteristics. Helium—
cadmium (He-Cd) and argon lasers are preferred in
most SL systems due to the availability of appropriate
wavelengths. The key advantages of He—Cd lasers are
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Figure 11.3 Block schematic of a typical stereolithography system [5].

low power consumption, long lifetime and low instal-
lation and operation costs. One disadvantage of this is
the low output power. At present, He—Cd lasers with
output powers of 50 to 100 mW are available at 325 nm.
In contrast, argon lasers with high UV output powers
(over 1 W) at 351 and 364 nm are available. However,
disadvantages of argon-laser-based SL systems include
higher power consumption, shorter lifetimes and higher
installation and operating costs.

Beam-delivery elements are used to limit the laser beam
path, to keep the overall size compact and to provide an
appropriately sized laser spot on the surface of the resin. A
typical SL system may employ two orthogonally mounted,
servo-controlled, galvanometer-driven mirrors to direct the
laser beams onto the surface of the vat. A focused beam
with a small-beam-spot size is obtained when the beam
passes through a focusing objective and shoots onto the
resin surface. An optical shutter is usually used to control
the beam ‘on/off” which functions according to the build
files. Mechanical shutters requiring about 1 ms to change
the state have been replaced with an acoustic optical
modulator with a typical response time of 1 s, allowing
faster and more precise fabrication.

11.2.2 Introduction to microstereolithography

Microstereolithography (MSL) is a method derived from
conventional stereolithography and works on similar
principles, but in much smaller dimensions. MSL (also

called ‘micro-photoforming’) was introduced in 1993
to fabricate high-aspect-ratio and complex 3-D micro-
structures [7,8]. In contrast to conventional subtractive
micromachining, microstereolithography is an additive
process, which enables fabrication of high-aspect-ratio
microstructures with novel smart materials. MSL is com-
patible in principle with silicon processes and batch
fabrication [9,10].

In MSL, a UV laser beam is focused to a spot size of
about 1 to 2um to solidify a thin layer of about 1 to
10 um thickness. Submicron resolution of the x—y—z
translation stages and a very fine UV beam spot enable
precise fabrication of complex 3-D microstructures using
MSL. Unlike SL, MSL usually does not need supports
during the fabrication because the solidified polymer is
strong enough to support its own weight and the float-
ation force can support free-standing polymer micro-
structures [7]. Monomers used in MSL and SL are both
UV-curable systems, but their viscosity requirements are
different. In MSL, the viscosity of the monomers should
be kept low to ensure a good layer recoating since surface
tension may prevent efficient filling of the liquid and
the formation of a flat surface on the micro-scale. The
viscosity of the monomer systems used in SL [11] varies
from 170 cps to 3800 cps, while in MSL the viscosity of
the monomer is two orders of magnitude lower (e.g. 6
cps for HDDA) [7]. Another difference is that some
of the monomer systems used for most projection-type
MSL are visible-light curable.
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An MSL system operates with the same working
procedure as an SL system. A 3-D solid model designed
with CAD software is sliced into a series of 2-D layers
with uniform thickness. The NC codes generated for each
sliced 2-D file is then executed to control the UV beam
scanning. The focused scanning UV beam is absorbed
by an UV-curable solution consisting of monomer and
photoinitiators, leading to the polymerization. As a result,
a polymer layer is formed according to each sliced 2-D
layer. After one layer is solidified, the elevator moves
downward and a new layer of liquid resin can be solidi-
fied. With the synchronized beam scanning and the z-axis
motion, complicated 3-D micro-parts are built in a layer-
by-layer fashion.

Various MSL systems aimed at improving the precision
and speed of fabrication have been developed. Scanning
MSL [7-9,11,12] and projection MSL [10,13-15] are the
two major approaches. Scanning MSL builds the solid
micro-objects in a spot-by-spot and line-by line fashion,
while projection MSL builds one layer with one exposure,
significantly saving the time of fabrication.

11.2.3 MSL by scanning methods

Most of the MSL systems developed thus far are based
on a scanning method which is similar to the widely used
conventional stereolithography. A 3-D microstructure
can be fabricated with the scanning method in which a
well-focused laser beam (with spot size of ~ 1pum) is
directed onto the resin surface to initiate the polymeriza-
tion, scanning either the light beam or the work piece and
by repeating the layer preparation. This scanning method
is also called vector-by-vector MSL [16].

Although the classical MSL system has a focusing
problem which prevents high-resolution fabrications,
its fast fabrication speed is a definite advantage due to
its implication in industrial mass production. One of the
limitations of conventional MSL is that commercially
available galvanometric mirrors are not suitable for high-
resolution MSL because of de-focusing and the resulting
poor scanning resolution (hundreds of microns). A series
of integrated hardened (IH) polymer stereolithography
processes have been developed to overcome this limitation
[7,17]. These IH processes are based on the scanning
method.

The schematic for an MSL system with the IH process
is shown in Figure 11.4, where the light source used is
UV lamp (xenon lamp) and the beam is focused on the
resin surface through a glass window. The focus point of
the apparatus remains fixed during the fabrication and
the workpiece in a container attached to an x—y stage is

UV source

microcomputer

I

Figure 11.4 Schematic of a system for the IH process [7].
K. Ikuta, and K. Hirowatari, Real three dimensional microfab-
rication using stereo lithography and metal molding, Proc. IEEE
MEMS’ 93, © 1993 IEEE

moved, in order to emulate the scanning done by the
galvanometric mirrors in the conventional system. Using
an x—y stage to move the workpiece leads to a smaller
focus spot, indicating a higher fabrication resolution. In
addition, there is no need of a dynamic focus lens as the
focal point is fixed. The glass window was attached to the
z-stage for precise control of the layer thickness.

Typical specifications of the IH process are listed
below:

e Spot size of UV beam, 5 pm.

e Position accuracy, 0.25 pm (in the x—y direction) and
1.0 pm in the z-direction.

e Minimum unit size of hardened polymer, 5pm X
Spm x 3 pm (in the x, y, and z directions).

e Maximum size of fabricated structure,
10mm x 10 mm.

10 mm x

Features of the IH process include a capability for
building real 3-D and high-aspect-ratio microstructures,
processibility of various materials, a ‘mask-less’ and cost-
effective process, a medium range of accuracy (3-5 pm)
and the possibility of ‘desktop’ micro-fabrication. It should
be pointed out that the fabrication speed is relatively lower
than that of classical MSL, because the scanning speed
of the x—y stage with the container is lower than that of
galvanometric scanning.

To overcome the limitation of fabrication speed of the
basic IH process, a mass-producible IH process, called
the Mass-IH process, was proposed by Ikuta et al. in
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1996 to demonstrate the possibility of mass production of
3-D microstructures by MSL [10]. The Mass-IH process
uses optical fibers for multi-beam scanning. An array
composed of numerous single-mode optical fibers is used
here to enable high-speed production of multiple struc-
tures. Other specifications of the system remain the same
as those of the original IH process. Although the fabrica-
tion speed can be improved significantly, this Mass-IH
process needs further improvements in its resolution and
capability for integration of more fibers.

Both the IH and Mass-IH processes are based on a
scanning method with layer-by-layer fabrication, sharing
the same principles of conventional SL. Problems caused
by this fabrication approach include limitation of the
depth resolution by thickness of the stacked-up layer and
the micro-scale deformation and destruction of the soli-
dified microstructures due to the viscous nature of the
liquid monomer. The surface tension of the liquid mono-
mer decreases the precision of the 3-D fabrication [18].

The Super IH process can be used to solidify the
monomer at a specific point in the 3-D space by focusing
a laser beam into the liquid monomer. Thus, 3-D struc-
tures are fabricated by scanning the focused spot in three
dimensions inside the liquid, enabling 3-D fabrication
without any supports or sacrificial layers. Since there is
no layer preparation step in the super IH process, the
influence of viscosity and surface tension is minimal. A
schematic diagram of the super IH process is shown in
Figure 11.5, which consists of an He—Cd laser (442 nm),
optical shutter, galvano-scanner set, x—y—z stages, objec-
tive lens, etc. The laser beam was focused inside the
monomer volume and by co-ordinating the beam scan-
ning and z-stage movement, any 3-D structures can be
formed inside the liquid. The properties of a UV-curable
monomer system must be precisely tuned to ensure that
the polymerization happens only in the focus point,
similar to two-photon MSL [11]. A typical UV monomer
system used in this case is a mixture of urethane acrylate
oligomer, monomer and photoinitiator [18].

Although the resolution of the super IH process is less
than 1 pm and the fabrication speed can be increased by
combining the galvano-scanning mirror and x—y stage,
the optics system used in this case is more expensive than
the other two types of IH processes. This process also
requires the development of specific monomer systems.

A limitation of most scanning MSL processes is the
minimum thickness of the resin layer during the layer
preparation due to the viscosity and surface tension of the
liquid monomer. The two-photon MSL process over-
comes this problem since the resin does not have to be
layered. Usually, only one photon is absorbed during the

UV polymer

X—y—z-stage
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Figure 11.5 Schematic of the super IH process [18]. K. Ikuta,
S. Maruo, and S. Kojima, New micro stereo lithography for
freely moved 3D micro structure- super IH process with sub-
micron resolution, Proc. IEEE MEMS’ 98, © 1998 IEEE

photochemical change. However, recently a large number
of experiments in which multiple photons are absorbed
for the photochemical change in a single particle have
been observed. Multi-photon excitation is a non-linear
process, observed only at high intensities [19].

Two-photon absorption is one of the most popular
methods of multiple-photon excitation for photochemical
change. There are two kinds of mechanisms for two-
photon excitation. The first is called sequential excita-
tion, which involves a real intermediate state of the
absorbing species. This intermediate state becomes
very populated by the first photon, and can act as the
starting point for the absorption of the second one. The
real intermediate state A* has a well-defined lifetime,
typically 107 to 10%s. This means that the second
photon must be absorbed by the same particle within the
lifetime of A to cause the photochemical change. Since
in sequential excitation the particle is best excited by a
resonantly absorbed photon, the overall sequential process
is also referred to as resonant two-photon excitation.

A set-up for the two-photon MSL is shown in Figure 11.6.
The beam from a mode-locked titanium sapphire laser
is directed to the galvanic-scanning mirrors and is
focused with an objective lens into the resin. The monitor-
ing system including a camera is used to ensure focusing
and to monitor fabrication. A z-stage moves along the
optical axis for multilayer fabrication. The longest total
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Figure 11.6 Schematic of 3-D micro-fabrication with two-
photon absorption [20]. S. Maruo, and S. Kawata, Two-photon-
absorbed near-infrared photopolymerization for threedimen-
sional microfabrication, J. of Microelectromechanical Systems,
Vol. 7, No. 4, © 1998 IEEE

length of a structure in the direction of the optical axis
is a limitation of two-photon MSL although this has a very
good depth resolution. In addition, the system is more
expensive than most of the other MSL systems.

Another widely used MSL apparatus for 3-D micro-
fabrications is based on a free-surface method that
utilizes x—y stage scanning (Figure 11.7) [9,12]. In this
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Figure 11.7 Schematic of free-surface microstereolithography
[12]. Microsystem Technologies, 2-2, 1996, pp. 97-102, Stereo-
lithography and microtechnologies, S. Zissi, A. Bertsch, J.Y.
Jezequel, S. Corbel, J.C. Andre, and D.J. Lougnot, with kind
permission of Springer Science and Business Media

method, all of the optics for the beam delivery remain
fixed, but an x—y stage moves simultaneously the resin
tank and the vertical axis onto which the plate supporting
the fabrications was attached. The scanning method is
similar to the one used in the IH process, but the galvano-
scanning is replaced with an x—y stage scanning so that
system is simplified and the focus precision is enhanced.
In this MSL process, a free-surface method was adopted
for layer preparation, rather than the constrained surface
(with a window) method used in the IH process. This
overcomes the disadvantage of the latter, where micro-
structures may be destroyed because of the parts sticking
to the window, by utilizing free-surface layer preparation.
With the free-surface method, the time needed to obtain a
fresh layer of resin on top of a cured layer depends on the
rheological properties of the resin, and so a resin with a
low viscosity is preferred. Free-surface MSL is a single-
photon-based photopolymerization process, and hence
the curing volume is relatively large. However, by adding
a light-absorbing medium into the resin, the line width
and depth can be decreased as required [9,12]. If the
beam delivery system is optimized to obtain the finest
beam spot size, the line width of 1-2 um and a depth of
10 pm can be obtained with free-surface MSL [12].

The advantages of free-surface MSL include a simple
set-up, good focusing and high resolution. However, the
workpiece scanning has a limitation in the scanning speed
due to the fact that relative movement between the work-
piece and the liquid resin may cause a waved surface on
the fabricated micro-objects. In addition, precision stages
are required for this MSL because any stage motion errors
will be reflected directly in the fabricated parts.

11.2.4 Projection-type methods of MSL

As seen from the previous section, although the scanning
MSL can be used for the fabrication of very fine, high-
aspect-ratio, 3-D microstructures, the fabrication speed
for mass production of components is low. The scanning
MSL builds objects in a layer-by-layer fashion, but each
layer is built in a line-by-line way. The projection MSL is
proposed for building 3-D microstructures more rapidly,
although still in a layer-by-layer way. However, in this
case each layer is built by just one exposure through a
mask, thus significantly saving time. Two types of
projection MSL are introduced here: one is with real
mask to generate pattern projection for exposure curing
[14] and the other is with dynamic-mask projection
(LCD projection method) [13].

In real-mask-projection lithography, similar to photo-
lithography, an image is transferred to the liquid
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Figure 11.8 Microstereolithography using real-mask projec-
tion [14].

photopolymer by irradiating a UV beam through a
patterned mask (as shown in Figure 11.8) and another
fresh layer of liquid photopolymer is then prepared on
top of the patterned solid polymer. By repeating the
above mask-based exposure and layer preparation, mul-
tilayer 3-D microstructures will be finally built by the
described mask-projection MSL [14,17,21].

Similar to scanning MSL, the fabrication precision in
this case can be related to the exposure. The curing depth
strongly depends on the laser exposure and the distance
between the mask and the resin surface. The lateral
dimension is marginally influenced by the exposure but
is determined mainly by the mask pattern if the distance
between mask and resin surface is fixed. A large distance
between the mask and resin surface results in relatively
large lateral dimensions due to diffraction of the beam
[14]. Therefore, in high-precision mask-projection MSL,
the mask should be located close to the resin surface to
reduce light diffraction. This real-mask-projection MSL
can produce high-aspect-ratio micro-fabrications with a
few different cross-sections at a high fabrication preci-
sion. However, for truly 3-D micro-fabrications, a num-
ber of masks are needed, making it not only time-
consuming but also expensive.

Dynamic-mask-projection MSL utilizes a dynamic-mask
generator instead of the real mask and allows the fabrica-
tion of a complete layer by just one exposure. This leads
to quick fabrication of complex 3-D micro objects. A
schematic of a dynamic-mask-projection MSL is shown in
Figure 11.9 [13]. For the exposure of a complete layer, the
irradiation beam is shaped with a computer-controlled liquid
crystal display (LCD) used as a dynamic-mask generator.

In general, an addressed LCD light valve array (or
panel) acting as a projector is used to control light ‘on/
off’. The liquid crystal effect is adopted to modulate the
light transparency of the panel. By the liquid crystal
effect the electrical and optical characteristics of the
liquid crystal materials are changed upon application of
an electric field. The nematic phase is one of the most
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Figure 11.9 Schematic of dynamic-mask-projection microster-
eolithogrphy [13]. Microsystem Technologies, 1997, pp. 42-47,
Microstereolithography using a liquid crystal display as dynamic
mask-generator, A. Bertsch, S. Zissi, J.Y. Jezequel, S. Corbel,
and J.C. Andre, Fig 4, with kind permission of Springer Science
and Business Media

important materials for light valves applications. It con-
sists of rod-like molecules, more or less parallel to each
other. The vector that defines the orientation of the long
axes of these molecules is called the ‘director’. The
optical properties of nematic liquid crystals can be varied
by manipulation of the orientation of the director in a
device by an electric field. The LCD panel is made of
pixels physically separated by a thread of electrical con-
nections being used for control. Every pixel is a small cell
which contains matter in its liquid crystal state, and can
be set either to its transparent or to its opaque state by
changing the orientation of the molecules it is made of.
The pixels in their opaque state stop the light, in contrast
to those in their transparent state. Usually, the LCD panel
is addressed by a thin-film-transistor (TFT) array.

For using an LCD in projection MSL, a CAD file with
white and black coloring is translated into a numerical
control code which is sent to the LCD device via a
computer; the LCD can then function as a dynamic
mask with controlled imaging. When a beam passes
through this LCD, it carries the pattern of the layer. The
light beam is focused on the resin surface, allowing
selective polymerization of the exposed areas corre-
sponding to the transparent pixels on the LCD. The
remaining principles of operation, such as layer pre-
paration, beam on/off control, etc., are similar to the
standard MSL. It may be noticed that the z-stage is the
only movable element in the system.

The dynamic-projection MSL fabrication process has
a reasonably good accuracy. Even though dynamic-
projection MSL has disadvantages, such as low lateral
resolution and small scope of fabrication (currently
only several millimeters), this MSL process has great
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potential due to its capability for batch fabrication of 3-D
microstructures.

11.3 MICROMOLDING OF POLYMERIC
3-D STRUCTURES

Although a number of micro-fabrication techniques,
including silicon micromachining, LIGA and microster-
eolithography, have been developed for MEMS, many of
them are faced with problems of low speed of fabrication
and/or high cost of production [22]. In this context,
micromolding technology assumes significance in
MEMS fabrication because of its capability of large
volume capacity. The micromolding techniques useful
for MEMS include injection molding [23], hot emboss-
ing [24], jet molding [25], replica molding [26], micro-
transfer molding [27], micromolding in capillaries [28]
and solvent-assisted micromolding [29] (Table 11.2).
In principle, the first three processes can be used for
fabrication of micro-parts with high-aspect-ratios and
even 3-D features and the last four are especially useful
for thin microstructures.

The key aspects in micromolding include degassing
prior to molding, thermal or photochemical curing and
‘demolding’” [23]. Vacuum molding and hot isostatic
pressing have been demonstrated as helpful to exempt

gas [30]. In order to remove the polymer mold, selective
plasma etching is preferred to using the burnout process, to
prevent ‘topple’ in fine structures with high-aspect-ratios
[30,31]. The micromolding techniques are fairly well
established for plastics and ceramics.

‘Master molds’ are often built using polymers, metals or
silicon. ‘Polymer masters’ can be built using photolitho-
graphy, stereolithography, etc. ‘Metal masters’ are formed
mostly by micro-electroplating, LIGA and the DEEMO
process utilizing metallic molds [32,33]. ‘Silicon masters’
are fabricated using wet or dry etching [24,33].

The polymer mold inserts should withstand a certain
level of mechanical strength and thermal resistance since
pressure and heating are necessary during molding.
Materials used for such mold inserts range from common
photoresists to UV-curable resins used in microstereo-
lithography. To fabricate elastomer mold inserts, the
photoresist is first patterned using photolithography, the
elastomer solution (PDMS and solvent) is then poured
into the pattern followed by solvent evaporation and
curing. The PDMS mold insert is then obtained by
dissolving the photoresist pattern (Figure 11.10).

Most micromold inserts used for micromolding are
made of metals. These are widely used for plastic, metal
and ceramic micro-moldings. The fabrication approaches
include precision mechanical machining (e.g. micro
electro-discharge machining (EDM)) and lithography

Table 11.2 A brief comparison of micromolding techniques.

Molding Molding Feature Mold insert Notes Reference
type material size material
Injection Plastic Hundreds of Nickel LIGA [32]
molding microns high
Embossing Polymer ~ 100 pm Nickel DEEMO [33]
Photoreaction; Polymer ~ mm Brass Faster curing than [23]
injection (photocuring) thermal reaction
molding molding
Jet molding PZT ~40 um thick — Slow process. [25]
Embossing Plastic ~ 21 pm thick, Silicon Limited 3-D [24]
30 um wide
Pyrolysis Ceramic Aspect ratio Polymer Good filling, degassing, [34]
molding of 5 but too high
shrinkage (~ 60 %)
Microtransfer Polymer Several pm Polymer Small thin structure, [27]
molding limited 3-D
Injection Plastics, Aspect ratio Polymer A broad variety of [35]
molding ceramics, of 20 materials can be

metals

molded
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Figure 11.10 Elastomer mold inserts fabrication.

Lithography

Pattern transfer

Mold insert

(e.g. E-beam, UV, X-ray) or excimer laser ablation or
microstereolithography followed by electroplating [22].

Through-mask electroplating has been used exten-
sively in the fabrication of metal mold inserts. Nickel
is the most commonly used material for the fabrication of
such inserts because of its well-known electroplating
potential, the high replication accuracy and low internal
stresses. However, the hardness of nickel is relatively low
compared with iron or stainless steel, resulting in a
limited lifetime for nickel mold inserts. Other materials
such as nickel-iron or tungsten—cobalt alloys with
enhanced hardness are also considered [22].

Laser micromachining is also used for the fabrication
of metal mold inserts [36]. As shown in Figure 11.11, a
polymer (e.g. PMMA) is machined by an excimer laser
beam. The polymer structure is then coated with a thin
evaporated metal layer which serves as the ‘seed’ layer
for the following electroplating. After electroplating, the
polymer is removed and the metal mold insert is ready
for molding. Features of mold inserts fabricated by laser
micromachining include the possibility of a large variety
of 3-D shapes, a lateral resolution of the order of microns

Laser ablation

Metal evaporation coating [e.
and Electroplating

Polymer removal

Polymer removal

Figure 11.11 Metal mold insert fabrication using laser ablation
and electroplating [36].

and the feasibility for ‘hundreds-of-micron-high’ struc-
tures. This is a mask-less process.

Mechanical machining processes such as micromill-
ing, sawing, grinding and micro-EDM are suitable for the
fabrication of metal micromold inserts. Several materials
are available for such precision machining processes.
Since the fabrication of metal mold inserts by precision
mechanical machining results in large structures, lithogra-
phy can be used for micro-scale mold insert fabrication
[22]. However, lithography-based mold insert fabrications
have limited applications due to abrasion and wear of
nickel, slow speed of electroplating and the possibility of
voids in the electroplated mold insert structures.

Silicon micromold inserts are useful for micromolding
with flat and even surfaces [37]. Both silicon wet and dry
etching can be used for their fabrication. For example, a
silicon mold insert with a lateral dimension of 5 um and
an aspect ratio of 2 has been fabricated by RIE etching
[37]. Although silicon mold inserts have limited shaping
variations, a high resolution of mold insert is possible
by the approach. Silicon mold inserts are useful for hot
embossing of polymer structures and isotropic pressing
casting of ceramic microstructures [24,31].

11.3.1 Micro-injection molding

Injection molding is a widely used technique for shaping
plastics, metals, metal alloys and ceramics. However,
several modifications should be made in the conventional
injection molding technique to facilitate micro-scale
injection molding. There are many air-vent slots in
conventional injection molding to facilitate the escape
of air during molding. Since the dimensions of these vents
are generally close to the size of the microstructures,
similarly sized unwanted structures will be formed if
they are used in micro-injection molding. To avoid this,
the air inside the mold is removed before molding, and
hence air-vent slots are not necessary in micro-injection
molding. In addition, a temperature-variation program
must be included in micro-injection molding because of
the high aspect ratio of the microstructures. The tempera-
tures of the mold inserts should be kept higher and for
longer durations, to ensure good mold filling. Further-
more, since the microstructures are relatively weak at high
temperatures, it is necessary to cool the mold down to a
stable temperature at which the molded part has sufficient
mechanical strength and stable chemical properties.
Therefore, in addition to the heating used in conventional
injection molding, an inside heating and cooling technique
(called the variotherm process) should be used in micro-
injection molding [35].
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A typical micro-injection molding process has the
following steps:

Placing mold insert into the molding chamber.
Evacuation of the chamber.

Heating the plastic pellets to above the melting point.
Injection of polymer at controlled pressure and tem-
perature.

Cooling.

De-molding.

The molding temperature is set above the melting point
of the polymer being used. The pressure applied ranges
from 500 to 2000 bars. Typically, injection-molded micro-
parts have a minimum wall thickness of 20 pm and an
aspect ratio of more than 20. However, structural details
below 0.2 um have been achieved. The thermoplastics used
in micro-injection molding include polysulfonate (PSU),
polycarbonate (PC), polyoxymethylene (POM), polyamide
(PA) and poly(ether ether ketone) (PEEK) [35,39].

11.3.2 Micro-photomolding

Micro-photomolding is a process based on micro-injection
molding that uses a photocuring technique to solidify
the feedstock system instead of the heating/cooling-
based phase change in micro-injection molding. The
feedstock system is a reactive polymer resin with a low
viscosity (e.g. methyl methacrylates, unsaturated poly-
esters). The steps involved in the micro-photomolding
process are [23]:

e Sealing the molding chamber and its evacuation.

o Injection of the liquid resin (injection pressure < 20 bar).

e Curing using intense UV/visible radiation under con-
stant holding pressure to compensate curing shrinkage.

e Removal of the molded micro-component from the
molding tool.

The curing time of the micro-photomolding process
depends on the photochemical properties of the resin,
mold thickness and radiation intensity. Usually, a few
minutes are needed to complete photomolding. The
photomolding of powders is made possible by the addi-
tion of ceramic or metal powders into the resin [23].

11.3.3 Micro hot-embossing

Hot embossing is a process for the replication of plastics
by heating and pressing the polymer thick films to fit into
the mold insert, as shown in Figure 11.12. Hot embossing

Mold insert

Heating and pressing Polymer film

-V W

De-molding

A4

Figure 11.12 Hot embossing for polymer micro-component

fabrication.

differs from injection molding in the fact that the heating
temperature is just above the glass transition temperature
in hot embossing, while the temperature should be above
the melting point used in injection molding. Another
difference is that polymer films are used as the starting
materials in this case, compared to the pellets of poly-
mers used in injection molding.

The embossing tool and the polymer film substrate are
mounted in the hot embossing machine and are heated
separately to a temperature just above the glass transition
temperature of the polymer material. For most thermo-
plastic materials, the glass transition temperature is in
the range 120-180°C. The tool is then driven into the
substrate under a controlled force, which is kept up for
several seconds. The tool-substrate—sandwich is then
cooled below the glass transition temperature of the
polymer material. After the polymer material solidifies,
the tool is taken out of the structure. Advantages of this
method are its flexibility and the low internal stresses
and high structural replication accuracy due to the small
thermal cycle (ca. 40°C), which facilitate structural
replications in the nm-range [37].

11.3.4 Micro transfer-molding

Micro transfer-molding (LW TM) was developed to fabri-
cate 3-D polymer and ceramic microstructures with sub-
micron-and nanometer-scale features. A schematic diagram
of micro transfer-molding is shown in Figure 11.13. As
a mold insert, an elastomeric tool must be fabricated first.
Unlike injection molding and hot embossing where
the hardness of the mold inserts should be high, a soft
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Figure 11.13 Schematic diagram of micro-transfer molding:
(a) Process flow for a single layer; (b) multiple layer structure
fabrication [27]. Reproduced with permisison of John Wiley &
Sons, Ltd.

elastomeric material should be used to fabricate the mold
inserts for pTM. Usually, polydimethylsiloxane (PDMS) is
used for elastomeric tool fabrication. The Micro contact-
printing process or RIE etching may be used for fabricat-
ing the PDMS molding tool [27]. The thickness of this
tool is controlled to be less than 2mm to ensure its
flexibility.

A drop of liquid precursor is placed on the patterned
surface of the PDMS tool and the excess liquid is
removed by a piece of flat PDMS, followed by blowing
away any drops of liquid left on the raised areas of the
mold. The filled PDMS tool is then placed onto a
substrate where the polymer structure will be built. The
prepolymer is next fully cured thermally or photochemi-
cally and the PDMS tool is finally peeled away and the
polymer microstructure is left on the substrate.

Multilayer microstructures can be fabricated with this
technique. Another characteristic of uTM is that polymer
microstructures can be formed on non-planar surfaces
[27]. One of the limitations of using uTM is that there is a
thin (<0.1 um) film formed between the polymeric

features due to the polymer transfer of prepolymer
from the raised surfaces of the mold and capillary
‘wicking’ of prepolymer from the PDMS relief tool.

11.3.5 Micromolding in Capillaries (MIMIC)

The micromolding in capillaries process is used to
fabricate polymeric microstructures by generating a net-
work of capillaries formed by contacting an elastomeric
master with a surface embossed with an appropriate
relief structure, and by allowing the liquid precursor to
fill the channels by capillary action [26,28]. Figure 11.14
shows the procedure of an MIMIC process. Similar to
micro transfer-molding, an elastomer (PDMS) tool is
fabricated first and is patterned with a relief structure
on its surface. It is then placed on the surface of a
substrate to form a network of channels between them.
When a drop of precursor solution is then placed at one
end of these channels, it fills the channels by capillary
action. After the solvent is evaporated and the PDMS
tool is carefully removed, the polymer microstructures
are left on the surface of the substrate. Although the
capillary action takes a long time (hours) to fill the
channels with solution, especially for small-diameter
channels (microns) and highly viscous precursor

l Place PDMS mold on support
PDMS mold

l Place a drop of polymer
solution at one end

~N~—

l Fill channels by
capillary action

Evaporate solvent and
remove PDMS mold

e —

Figure 11.14 Schematic of micromolding in capillaries [40].
Reproduced with permisison of John Wiley & Sons, Ltd.
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solutions, the MIMIC process has advantages such as
high fabrication resolution and processibility of a vari-
ety of precursor materials.

Care should be taken in choosing the solvent, as this
should not swell the PDMS mold. MIMIC is usually used
for micro-fabrications of structures ranging from 350 nm
to 50 um size, with low processing temperatures and no
pressure applied. This method is compatible with the
semiconductor micromachining process.

11.4 INCORPORATION OF METALS AND
CERAMICS BY POLYMERIC PROCESSES

The fabrication of several advanced MEMS for
special applications often requires the integration of poly-
mers, ceramics, metals and metal alloys to utilize their
unique properties. These functional and structural ceramic
materials possess unique properties, such as high tempera-
ture/chemical resistance, low thermal conductivity, ferroe-
lectricity and piezoelectricity. The use of ceramic
materials in MEMS has attracted a great deal of attention
recently [41-45]. The three-dimensional (3-D) ceramic
microstructures are of special interest in applications such
as microengines [42] and microfluidics [43]. Various novel
approaches for ceramic micro- fabrication have been
developed. In this section, some fundamental processes
are introduced to show how these can be incorporated into
the fabrication cycle, starting with some of the processes
described thus far for polymeric materials.

11.4.1 Burnout and sintering

In 3-D ceramic and metallic micro-fabrications, poly-
mers are usually used as binders to bond solid particles to
form the desired shape. Since in most of the cases, pure
metal or ceramic structures are required, the binder is
removed (debinding) and the structures are sintered for
densification. Since binders are used in most ceramic and
metallic 3-D micro-fabrications, an understanding of the
burnout and sintering process is necessary for obtaining
highly dense ceramic and metal parts. In addition, electro-
chemical deposition is one of the most frequently used
processes for 3-D micro-fabrications. Some of the recently
developed 3-D micro-fabrication processes for ceramics,
metals and polymer/metals will also be introduced.
Debinding techniques can be done by either a solvent or
a thermal process. Since in most of the photoforming
processes the polymer is cross-linked, solvent cannot be
used to dissolve the binders and hence thermal degradation
is preferred. Therefore, the debinding process is often

called the burnout process. Thermal degradation involves
several basic steps [46]. During the early stages of heating,
thermal expansion of the liquid binder induces an hydrau-
lic pressure in the fully saturated part. As the temperature
rises, binder removal, due to evaporation from the surface,
increases. When the saturation level of the binder is
sufficiently reduced, the liquid remaining in the mix is
driven to the surface by capillary pressure, where it
evaporates. As binder removal by liquid transfer con-
tinues, gas pockets begin to coalesce, forming a network
of interconnected pores. Finally, this internal structure
creates passages for gas to flow through, allowing diffu-
sion to play an important role in debinding.

Once the overall debinding time is determined, the
heating rate and peak temperature must be carefully
selected. The heating rate is directly related to the
retaining shape. Since rapid heating often leads to cracks
and distortion, slow heating is necessary at the beginning
of the degradation. In some cases, the debinding, however,
cannot be processed in air, to avoid oxidation, e.g.
debinding of metallic structures. A controlled atmosphere
should be provided for the debinding. Hydrogen, argon or
nitrogen is often used in these cases.

Sintering is the term used to describe the consolidation
of the product by firing. Consolidation requires that
within the components, particles have to be joined
together into an aggregate for better strength. Geometric
shrinkage and densification usually occurs during sinter-
ing. Sintering densification occurs close to the melting
temperature of the material. The bonds between particles
grow by the motion of individual atoms, which is related
to the temperature. This relationship between atomic
motion and temperature varies for different materials
with different melting temperatures. For example, steel
is often sintered near 1250°C, alumina near 1600 °C,
copper near 1045 °C and PZT near 1200 °C. Measures of
sintering include shrinkage and final sintering density.
Successful sintering leads to a density p, close to the
material density. Theoretically, a final sintering density
level can be 95-100 %. [47].

Recently, microwave sintering has been used for bulk
ceramics [48,49]. The obvious advantage of microwave
sintering is the possibility of quick heating, but its non-
uniformity is a concern. However, for micro-scale sinter-
ing, microwave sintering may be a good choice since the
heating uniformity will be fairly good.

11.4.2 Jet molding

Jet molding is a process developed for microfabrication
of metal and ceramic microstructures. Mixture of gas and
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ultra-fine particles (< 0.1 pm) is heated and ejected to the
substrate and form microstructures. There are three major
forming methods: free forming, insert molding and mask
deposition. The fabrication is controlled by the substrate
movement in the case of free forming, while the fabricated
object is defined by the mold insert or mask in the cases of
insert molding and mask deposition, respectively.

Figure 11.15 shows schematically a jet-molding sys-
tem [25]. There are two chambers and nozzles for
different materials supply: one for metal materials and
the other for ceramics. A heating system is used to heat
the powders in a crucible so that the powders have good
bonding after being ejected. An excimer laser is used for
mold-insert fabrication and mask generation to facilitate
a rapid fabrication. As an example, the typical experi-
mental conditions required for jet molding of silver and
PZT are listed in Table 11.3.

11.4.3 Fabrication of ceramic structures with MSL

Unlike these molding or printing-based micro-fabrication
processes, microstereolithography can be used to build
complex ceramic 3-D microstructures in a rapid ‘free-
form’ fashion without high pressure or a heat-curing
process [50]. Ceramic MSL differs from polymeric
MSL in several aspects. First, the resin system for
ceramic MSL is composed of ceramic powders, disper-
sant and diluents in addition to monomers and photo-

Table 11.3 Typical experimental conditions for
jet molding of Ag and PZT.

Experimental Jet molding Jet molding
parameters with Ag with PZT
Pressure in 3 torr 0.55 torr
molding chamber
Distance between 100 mm 400 mm
mask and substrate
Distance between 3mm 5 mm
mask and nozzle
Orifice of 5 mm 5 mm
the nozzle X 150 mm x 350 mm
Deposition time 20 min 120 min
Substrate Room Room
temperature temperature temperature
Crucible temperature ~ 1250°C —

initiators that are used in polymer MSL [50-52].
Dispersant and diluent are used to obtain a homogeneous
ceramic suspension with relatively low viscosity. After
UV polymerization, the ceramic particles are bonded by
the polymer and the ceramic ‘green body’ is thus formed.
Generally, the viscosities of ceramic suspensions used for
MSL are higher than the viscosities of most liquid
polymers, leading to a slow layer preparation. A
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Figure 11.15 Schematic of a jet-molding system [25]. J. Akedo, et al., Fabrication of three dimensional micro structure composed
of different materials using excimer laser ablation and jet molding, Proc. MEMS’ 97, © 1997 IEEE
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precision blade may be used for layer preparation to
solve this problem [50]. Secondly, light transmission
during MSL processing is complicated in the two-phase
medium (solid and liquid). Light scattering by solid
ceramic particles affects both the curing depth and the
line width.

In general, UV curing of ceramic suspensions for MSL
can be considered to be similar to UV curing with
pigmentation. Two effects may occur as the UV radiation
travels into a highly concentrated suspension. Particles
scatter the radiation and the UV-curable solution absorbs
part of the radiation, thereby reducing its intensity. The
radiation which is not absorbed travels further into the
suspension. The energy of the radiation reaches a critical
level, E., at which the radiation energy is absorbed by the
monomer system. This critical level of energy is required
for the gellation of the monomer.

The fabrication of ceramic microstructures using MSL
follows the steps shown in Figure 11.16. A homogeneous
ceramic suspension is first prepared. Submicron ceramic
powders are mixed with monomer, photoinitiator, dis-
persant, diluents, etc. by ball-milling for several hours.
The prepared ceramic suspension is then put into the vat
for MSL based on the CAD design. After MSL, the
‘green bodies’ of ceramic micro-parts are obtained. To
get dense micro-ceramic parts, the ‘green body’ is first
kept inside a furnace to burn out the polymer binders and
is then sintered in a high-temperature furnace. The binder
burnout and sintering temperature vary for different
polymers and ceramics.

Materials preparation:
ball milling of UV
monomer system and
Ceramic powders

CAD design

A

A4

Microstereolithography

v

De-binder (burnout)
and sintering

Figure 11.16 Schematic of the flow for ceramic microstereo-
lithography and post-processing.

Table 11.4 Micro-photomolding with powders in
an unsaturated polyester- or PMMA-based resins.

Powder Particle Maximum solid Curing time
materia size (um) loading (vol%)  (min/mm)
Si0, 10 64 10

AL O3 0.4-0.6 54 20
ZrO, 0.2-0.4 24 17
SiC 0.5 42 20
TiO, 0.021 23 17
Carbonyl-Fe 4.5 53 5
Ag/Al 44 52 14

The photomolding of powders is made possible by the
addition of ceramic or metal powders into the resin [23].
The addition of solid powders inside resins will introduce
problems of radiation scattering and absorption, hence
resulting in a longer curing time. However, the addition
of a thermal initiator will help to decrease the curing time
[23]. Table 11.4 shows the particle sizes, volume solid
loadings to and curing times of some resin systems.

11.4.4 Powder injection molding

Powder injection molding (PIM) extends the shaping
advantages of injection molding to metals and ceramics.
The PIM process starts with the feedstock preparation by
mixing a small quantity of a polymer with an inorganic
powder. During injection molding, the metal or ceramic
parts are shaped by the bonding of the polymer binder
containing these inorganic powders. The polymeric binder
is later removed by the burnout process and the object is
sintered, to yield pieces that are as dense as the bulk
material.

Micro powder injection molding (MPIM) has been
used for fabricating MEMS with metallic and ceramic
micro-components [53]. Materials, such as carbonyl iron
powder, aluminum oxide and zirconium oxide, have been
used for MPIM. The powder with mean particle sizes
ranging from 0.6 to 5 um is mixed with polyclefin/wax
to make the feedstock. The nickel mold inserts used
for MPIM is fabricated via the LIGA process. The de-
binding process is critical to obtain crack-free metal and
ceramic micro-parts. Thermal elimination of the organic
components or catalytical de-binding can be used for a
polyacetal-based polymer system. The sintering proce-
dure is done inside a tube furnace. A reducing N,/H,
atmosphere is necessary to sinter metal microstructures,
although ceramic micro-parts can be sintered in air. The
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fabrication resolution and the final density of the fabri-
cated micro-parts obtained by MPIM vary with the
different powders used and the solid loading in the
feedstock system. Although the fabrication resolution is
not comparable with silicon micromachining, it is good
enough for many metal and ceramic micro-component
applications. A high density of the feed stock will ensure
high strength, stiffness and other mechanical properties
of the metal and ceramics micro-parts.

11.4.5 Fabrication of metallic 3-D microstructures

Metallic microstructures have been fabricated extensively
for MEMS. Three-dimensional metallic microstructures
have been built by spatial forming, electrochemical fabri-
cation (EFAB), localized electrodeposition, selective
laser sintering and laser cladding [54-57]. Some of these
processes are introduced in this section due to their
relatively higher fabrication resolution and prospects.

11.4.5.1 Electroplating

Electroplating is a process of electrodeposition in which
an electric current is carried across an electrolyte in an
effort to deposit material onto a substrate at one of the
electrodes. A simple electrodeposition system may con-
tain an electrolyte, an anode, a cathode and an electric
power supply, as shown in Figure 11.17.

The electrolyte is a conducting medium which allows
the flow of electric current as a means of movement of
the matter. Any liquid or solution containing ions can be
used as the electrolyte. A large majority of commercial
electrolytes, however, use water as the solvent and
are therefore called aqueous electrolytes. Deposition
occurs at the cathode. This deposition reaction is related
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Figure 11.17 Schematic of electrodeposition.

to the quantity of current that reaches the cathode. The
current flow into the cathode is usually expressed as
current density or quantity of current per unit surface
area of the electrode. Hence, current density is more
frequently used as the ‘control parameter’ in electro-
plating. The anode is the electrode which acts as the
source for deposition at the cathode. The position of the
anode has much to do with the distribution of current
at the cathode and further influencs the plating rate and
quality.
Electrodeposition follows Faraday’s laws:

e The quantities of different elements liberated at the
anode or cathode during electrolysis are proportional
to the quantity of electricity that passes through the
electrolyte.

e The quantities of different elements or radicals liber-
ated by the same quantity of electricity are propor-
tional to their equivalent weights.

One gram equivalent weight of ions is discharged at the
cathode by 1 faraday (F) (=965 00 coulombs (c) ) charge
flow. One gram equivalent weight of a metal is its atomic
weight divided by its valency (equal to the number of
charges available in the ion). Based on these definitions,
one can calculate the metal deposited (in grams) on the
cathode per faraday (Table 11.5).

The total deposition thickness d is an important factor
in electroplating [58]:

Mit
d =
ZF pA

(11.1)

where M is the molar mass (atomic weight (g/mol)), [ is
the current, 7 is the time, Z is the valency, F is the Faraday

Table 11.5 Calculation of the metals deposited
at the cathode.

Metal Ion Atomic Valency Metal deposited
weight per faraday (g)
Silver Ag" 107.88 1 107.88
Copper Cu™  63.57 1 63.57
Copper cu®t 6357 2 31.78
Gold Aut 197.20 1 197.20
Tin sn*t 118.70 4 29.67
Chromium Cr’™  52.02 3 17.34
Nickel Ni** 587 2 29.35
Zinc T 65.38 2 32.69
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constant (F=96500C), p is the mass density and A is
the area of the substrate.

The above calculation is useful for estimating an
approximate value of the plating thickness and plating
rate, assuming a cathode efficiency of 100 %. In practice,
the cathode efficiency is not as high because some
fraction of the current is consumed in producing hydro-
gen. In addition, the distribution of deposition may vary
over the surface of an object. To achieve a desired
deposition with expected properties, such as hardness,
strength and functional properties, there are two para-
meters that can be modified. These include altering the
bath composition and changing the operating conditions
of plating. Among the operating conditions for plating,
three principal changes that may be made for a given
bath are (i) current density, (ii) method or degree of
agitation and (iii) temperature.

In general, it is desirable to use high current densities
to increase the plating rate in accordance with the above.
It is noticed that within certain limits, an increase in
current density decreases the crystal size [59]. However,
once the current density exceeds such a limit, there is a
tendency to produce ‘rough’ or ‘treed’ depositions. The
current density far beyond this limit may yield ‘spongy’
or ‘burnt’ depositions. Agitation of the solution brings up
a fresh supply of metal salts or ions to the cathode and
thus replenishes the metal ions or compounds at the
cathode surface. Another advantage of agitation is that
it removes gas bubbles. The increase in the temperature
causes an increase in the crystal size and increases the
mobilities of the metal ions and decreases the viscosity of
the solution, so that the cathode film is replenished more
rapidly. Another advantage of relatively high tempera-
tures is that there is usually less absorption of hydrogen
in the deposits, less stress and tendency toward cracking.

11.4.5.2 Micro-electroplating

Micro-electroplating works on the same principles as
electrodeposition discussed in the previous section.
Micro-electroplating has advantages in forming thick
metallic films, metallic microstructures with high-aspect-
ratios and even 3-D features [60]. Micro-electroplating
can be divided into two major categories: through-
mask-plating (or through-mold-plating) and mask-less
plating. The electroplated micro-parts can be either
directly used for functional devices or act as molds for
subsequent micromolding. Most of the micro-electro-
plating processes used for MEMS belong to through-
mask-plating (Figure 11.18), which has been used for
electronics fabrication since the 1960s [60]. Electro-
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Figure 11.18 Schematic of the through-mask-plating process.

plating used for MEMS differ from that used for con-
ventional electronics in several aspects. First, thick
photoresist molds (several microns to hundreds of
microns thick) are used for MEMS while several-
microns-thick molds are sufficient for conventional elec-
tronics. Secondly, multilayer electroplating may be
necessary for MEMS to form micro-metallic structures
with 3-D and high-aspect-ratio features. In contrast, only
single-layer electroplating is often required for electronics.
Materials electroplated for MEMS include gold, copper,
aluminum, nickel and their alloys, for micro systems with
different applications (Table 11.6).

Mask less electroplating is done by either localized
electroplating or laser-enhanced electroplating [53,61].
Although rapid fabrication of 3-D structures is a unique
property of mask-less electroplating, its limitation for
mass production restricts its usefulness.

11.4.5.3 Spatial forming

The spatial forming process combines several technol-
ogies to generate solid metallic microstructures from
fine powders, as shown in Figure 11.19 [56]. As in
projection MSL, data for cross-sections of objects from
their solid CAD models are used for patterning a chrome
mask with images. A custom-built offset printing press
prints negative materials (space around the solid parts) on
a ceramic substrate with multiple registered layers of
pigmented organic ink (~0.5pum thick) and are cured
with UV light. After forming a certain number of layers
(~30) of negative materials, the positive ink heavily
loaded with metal powders (e.g. 50vol%) is ‘knifed’
onto the assembly, filling the voids (Figure 11.19).
This step is followed by curing of the filled material
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Table 11.6 Micro-electroplating: materials and features.

Type* Material Material of Formation of Feature Functional Reference
plated plating mold plating mold size device
TMP Ni PMMA X-ray ~ 1000 pm thick — [62]
TMP Ni, Cu Polyimide UV lithography ~ ~ 150 um thick — [63]
TMP Ni Si UV, plasma ~ 140 pm — [50]
etching
TMP Al Polyimide Uv Aspect ratio — [63]
of 21
TMP NiFe AZ4562 (positive uv ~20pum Used for [64]
photoresist) thick data storage
T™MP Au, Cu, AZ 4000 uv Aspect ratio > 10 Micro-coil [65]
NiFe
TMP Ni, NiFe PMMA X-ray ~ hundreds Electrostatic —
of pm actuator
TMP Ni Polyimide uv — Micro- [66]
accerometer
TMP Cu, Ni Polymer, metal uv — RF inductor [67]
TMP Cu, NiFe Polyimide uv — Magnetic [68]
device
MLP Cu, Ni — — Ar" laser — [69]
MLP Ni — — Tool tip Helical spring [53]

“TMP, through-mask plating ; MLP, mask-less plating.

L

—

7

Application of ink Curing

L

Filling Curing
D Ink (cured . Cured filling D Uncured filling
and uncured) (and substrate)

Figure 11.19 Schematic of the spatial-forming process [56].
C. S. Taylor, P. Cherkas, H. Hampton, J.J. Frantzen, B.O. Shah,
W. B. Tiffany, L. Nanis, P. Booker, A. Salahieh, R. Hansen, A
spatial forming—three dimensional printing process, Proc. IEEE
MEMS’ 94, © 1994 IEEE

with UV light. The above steps are repeated until the
desired thickness (typically 500 pm) of the ‘green-body’
metallic micro-parts is reached. The ‘green-body’ parts
are then ‘de-binderized’ to remove organic binders and
are sintered in controlled atmosphere furnaces to obtain
the finished pure metallic micro-parts. In principle,
mass production is feasible with the spatial forming
process [56].

11.4.5.4 Electrochemical fabrication process

Electrochemical fabrication (EFAB) is a micromachining
process, based on solid freeform fabrication principles,
for high-aspect-ratio and 3-D metallic microsystems [55].
The major fabrication steps in EFAB include instant
masking and selective electroplating, blanket deposition
and planarization (Figure 11.20).

Instant masking makes use of photolithographically
patterned masks on the anode for the following selective
electroplating. The instant mask consists of a conform-
able insulator since the pattern may be topologically
complex. Instant masking patterns a substrate by simply
pressing the insulator mask against it and depositing
electroplating materials onto the substrate through aper-
tures in the insulator mask. The mask consists of a layer
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Figure 11.20 The EFAB process: (a) electroplating through an instant mask; (b) instant-mask removal; (c) blanket deposition of
the structural material; (d) planarization by polishing; (e) repetition of electroplating, blanket deposition and planarization until the
final structure is formed; (f) remove of the sacrificial materials; (g) cross-sectional view of one layer consisting of structural material
and sacrificial materials [55]. A. Cohen, G. Zhang, F. Tseng, U. Frodis, F. Mansfeld, P. Will, EFAB: rapid, low-cost desktop
micromachining of high aspect ratio true 3-D MEMS, Proc. IEEE MEMS’ 99, © 1999 IEEE

of insulator patterned on a flat Cu disk. In selective
electroplating, pressure is applied between the Cu anode
with the mask and the Ni substrate (cathode).

Blanket deposition is also based on the electroplating
technique, but without a mask. Basically, the blanket-
deposited material (e.g. Ni) is different from the selective
plated one (Cu), so that one of them acts as the sacrificial
material and could be removed later. The planarization
is done by lapping the surplus materials to achieve a
precise layer thickness and flatness before deposition
of the subsequent layer. By repeating the above steps,
a metallic 3-D microstructure can be formed
(Figure 11.20).

The EFAB process is in its development stage. The
resolution obtained is around 25pm and the smearing
caused by lapping and ‘misregistration’ also affects the

fabrication precision. Moreover, the fabrication speed is
a concern since too many time-consuming electroplating
steps are involved, although a throughput of two planar-
ized 5 mm layers per hour or about 50 layers per day was
anticipated [55].

11.4.5.5 Localized electrochemical deposition

A localized electrochemical deposition apparatus is
schematically shown in Figure 11.21 [53]. The tip of a
sharply pointed electrode is placed in a plating solution
and brought near the surface where deposition is to
occur. A potential is applied between the tip and the
substrate. The electric field generated for electrodepo-
sition is then confined to the area beneath the tip, as
shown in Figure 11.21(a).
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Figure 11.21 Localized electrochemical deposition for 3-D
micro-fabrication: (a) concept; (b) apparatus [53]. Madden, J.D.;
Hunter, . W., “Three-dimensional microfabrication by localized
electrochemical deposition,”” Journal of Microelectromechanical
Systems, Volume 5, Issue 1, © 1996 IEEE

In principle, truly 3-D microstructures can be formed
by using localized electrochemical deposition, provided
it is ‘electrically continuous’ with the substrate. The
spatial resolution of this process is determined by the
size of the microelectrode. Another important parameter
that needs to be considered in this process is the electro-
deposition rate. The deposition rate in this case can be
6 um/s — two orders of magnitude greater than those of
conventional electroplating [53]. The shape and geome-
try of the microelectrode used for localized electroche-
mical deposition is critical for the deposition profile.

Figure 11.22 Complex 3-D metal-polymer part [70].

11.4.6 Metal-polymer microstructures

Composite metal/polymer microstructures are becoming
very popular for MEMS. A process developed in cabrera
et al. [70] allows build layer-by-layer the 3-D object so
as to obtain conductive and non-conductive parts
together, instead of manufacturing them separately and
assembling afterwards, for example, to build the cylind-
rical object described in Figure 11.22, which consists of a
metallic element (‘Part 1°) freely rotating inside a poly-
mer housing (‘Part 2”). The major steps involved in the
fabrication include the following:

Electroplating of copper to make Part 1.

‘Local’ laser silver plating on the polymer to get the
conductive base for the following.

Electroplating of copper.

Microstereolithography (MSL) with an insoluble resin
to make Part 2.

MSL with a soluble resin to make a sacrificial
structure between Parts 1 and 2.

11.5 COMBINED SILICON AND POLYMER
STRUCTURES

The MSL process can be used for fabrication of polymer
3-D microstructures, while the silicon micromachining
processes have their own advantages in circuit and
sensing and actuating element fabrication. Hence, a
combined silicon and polymeric microstructure will be
attractive for MEMS applications. Some of the research
efforts in this direction are introduced in this section.

11.5.1 Architecture combination by MSL

Architecture combination is a technology for building
complicated structures by mechanically connecting two
or more architectures made by different micromachining
processes. This approach can enable fabrication of a system
consisting of LIGA linkages driven by a Si micromotor
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