
Scientific Methods in Mobile Robotics

Ulrich Nehmzow

Scientific Methods in
Mobile Robotics
Quantitative Analysis of Agent Behaviour

With 116 Figures

123

Ulrich Nehmzow, Dipl Ing, PhD, CEng, MIEE
Department of Computer Science
University of Essex
Colchester CO4 3SQ
United Kingdom

British Library Cataloguing in Publication Data
Nehmzow, Ulrich, 1961-

Scientific methods in mobile robotics : quantitative
analysis of agent behaviour. - (Springer series in advanced
manufacturing)
1. Mobile robots 2. Robots - Dynamics - Simulation methods
I. Title
629.8’932

ISBN-10: 1846280192

Library of Congress Control Number: 2005933051

ISBN-10: 1-84628-019-2 e-ISBN 1-84628-260-8 Printed on acid-free paper
ISBN-13: 978-1-84628-019-1

© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

Printed in Germany

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springeronline.com

S.D.G.

Dedicated to the RobotMODIC group:

Steve Billings, Theocharis Kyriacou, Roberto Iglesias Rodrı́guez,
Keith Walker and Hugo Vieira Neto,

and its support team:

Claudia and Henrietta Nehmzow,
Maria Kyriacou, Michele Vieira and Maxine Walker

Foreword

Mobile robots are widely applied in a range of applications from transportation,
surveillance through to health care. In all these applications it is clearly important
to be able to analyse and control the performance of the mobile robot and it is
therefore surprising that formalised methods to achieve this are not readily avail-
able. This book introduces methods and procedures from statistics, dynamical
systems theory, and system identification that can be applied to address these im-
portant problems. The core objective is to try to explain the interaction between
the robot, the task and the environment in a transparent manner such that system
characteristics can be analysed, controllers can be designed, and behaviours can
be replicated in a systematic and structured manner. This aim of constructing a
formalised approach for task-achieving mobile robots represents a refreshingly
new approach to this complex set of problems.
Dr Nehmzow has done an outstanding job of constructing and describing a

unified framework, which clearly sets out the crucial issues for the development
of a theory for mobile robots. Thanks to the careful organisation of the topics
and a clear exposition, this book provides an excellent introduction to some new
directions in this subject area. Dr Nehmzow’s book represents a major departure
from the traditional treatment of mobile robots, and provides a refreshing new
look at some long-standing problems. I am sure that this is just the beginning of
an exciting new phase in this subject area. This book provides a very readable
account of the concepts involved; it should have a broad appeal, and will I am
sure provide a valuable reference for many years to come.

S A Billings
Sheffield, May 2005

vii

Preface

This book is about scientific method in the investigation of behaviour, where
“behaviour” stands for the behaviour of any “behaving” agent, be it living being
or machine. It therefore also covers the analysis of robot behaviour, but is not re-
stricted to that. The material discussed in this book has been equally successfully
presented to biologists and roboticists alike!
“Scientific method” here stands for the principles and procedures for the sys-

tematic pursuit of knowledge [Merriam Webster, 2005], and encompasses the
following aspects:

• Recognition and formulation of a problem
• Experimental procedure, consisting of experimental design, procedure for
observation, collection of data and interpretation

• The formulation and testing of hypotheses

The hypothesis put forward in this book is that behaviour — mainly mo-
tion — can be described and analysed quantitatively, and that these quantitative
descriptions can be used to support principled investigation, replication and in-
dependent verification of experiments.
This book itself is an experiment. Besides analysing the behaviour of agents,

it investigates the question of how ready we are, as a community of robotics prac-
titioners, to extend the practices of robotics research to include exact descriptions
of robot behaviour, to make testable predictions about it, and to include inde-
pendent replication and verification of experimental results in our repertoire of
standard procedures.
I enjoyed developing the material presented in this book very much. It opened

up a new way of doing robotics, led to animated, stimulating and fruitful dis-
cussion, and new research (the “Robot Java” presented in Section 6.7 is one
example of this). Investigating ways of interpreting experimental results quan-
titatively led to completely new experimental methods in our lab. For example,
instead of simply developing a self-charging robot, say, we would try to find the

ix

x Preface

baseline, the “standard” with which to compare our results. This meant that pub-
lications would no longer only contain the description of a particular result (an
existence proof), but also its quantitative comparison with an established base-
line, accepted by the community.
The responses so far to these arguments have been truly surprising! There

seems to be little middle ground; the topic of employing scientific methods in
robotics appears to divide the community into two distinct camps. We had re-
sponses across the whole spectrum: on the one hand, one of the most reputable
journals in robotics even denied peer review to a paper on task identification and
rejected it without review, and in one seminar the audience literally fell asleep!
On the other hand, the same talk given two days later resulted in the request to
stay an extra night to “discuss the topic further tomorrow” (and this was after
two hours of discussion); the universities of Palermo, Santiago de Compostela
and the Memorial University Newfoundland requested “Scientific Methods in
Robotics” as an extra mural course, changed the timetables for all their robotics
students and examined them on the guest lectures!
I am encouraged by these responses, because they show that the topic of

scientific methods in mobile robotics is not bland and arbitrary, but either a red
herring or an important extension to our discipline. The purpose of this book is
to find out which, and to encourage scientific discussion on this topic that is a
principled and systematic engagement with the argument presented. If you enjoy
a good argument, I hope you will enjoy this one!

Acknowledgements

Science is never done in isolation, but crucially depends on external input. “As
iron sharpens iron, so one man sharpens another” (Prov. 27,17), and this book
proves this point. I may have written it, but the experiments and results presented
here are the result of collaboration with colleagues all over the world. Many of
them have become friends through this collaboration, and I am grateful for all
the support and feedback I received.
Most of the experiments discussed in this book were conducted at the Uni-

versity of Essex, where our new robotics research laboratory provided excellent
facilities to conduct the research presented in this book. I benefited greatly from
the discussions with everyone in the Analytical and Cognitive Robotics Group
at Essex — Theo Kyriacou, Hugo Vieira Neto, Libor Spacek, John Ford and
Dongbing Gu, to name but a few — as well as with my colleague Jeff Reynolds.
Much of this book was actually written while visiting Phillip McKerrow’s group
at the University of Wollongong; I appreciate their support, and the sabbatical

Preface xi

granted by Essex University. And talking of sabbaticals, Keith Walker (Point
Loma Nazarene University, San Diego) and Roberto Iglesias Rodriguez (Dept. of
Electronics and Computer Science at the University of Santiago de Compostela)
made important contributions during their sabbaticals at Essex. I am also in-
debted to many colleagues from other disciplines, notably the life sciences, who
commented on the applicability of methods proposed in this book to biology,
psychology etc. I am especially grateful for the support I received from Wolf-
gang and Roswitha Wiltschko and their group at the J.W. Goethe University in
Frankfurt.
The RobotMODIC project, which forms the backbone of work discussed in

this book, would not have happened without the help and commitment of my
colleague and friend Steve Billings at the University of Sheffield, the committed
work by my colleague and friend Theo Kyriacou, and the support by the British
Engineering and Physical Sciences Research Council. I benefited greatly from all
this scientific, technical, financial and moral support, and thank my colleagues
and sponsors.
Finally, I thank all my family in Germany for their faithful, kind and generous

support and love. My wife Claudia, as with book #1, was a constructive help all
along the way, and Henrietta was a joy to be “criticised” by. Thank you all!
As before, I have written this book with Johann Sebastian Bach’s motto

“SDG” firmly in mind.

Ulrich Nehmzow
Colchester, Essex, October 2005

Contents

1 A Brief Introduction to Mobile Robotics . 1
1.1 This Book is not about Mobile Robotics . 1
1.2 What is Mobile Robotics? . 1
1.3 The Emergence of Behaviour . 5
1.4 Examples of Research Issues in Autonomous Mobile Robotics . . 7
1.5 Summary . 9

2 Introduction to Scientific Methods in Mobile Robotics 11
2.1 Introduction . 11
2.2 Motivation: Analytical Robotics . 13
2.3 Robot-Environment Interaction as Computation 15
2.4 A Theory of Robot-Environment Interaction 16
2.5 Robot Engineering vs Robot Science . 18
2.6 Scientific Method and Autonomous Mobile Robotics 19
2.7 Tools Used in this Book . 27
2.8 Summary: The Contrast Between

Experimental Mobile Robotics and Scientific Mobile Robotics . . 28

3 Statistical Tools for Describing Experimental Data 29
3.1 Introduction . 29
3.2 The Normal Distribution . 30
3.3 Parametric Methods to Compare Samples . 33
3.4 Non-Parametric Methods to Compare Samples 43
3.5 Testing for Randomness in a Sequence . 55
3.6 Parametric Tests for a Trend (Correlation Analysis) 57
3.7 Non-Parametric Tests for a Trend . 65
3.8 Analysing Categorical Data . 69
3.9 Principal Component Analysis . 80

xiii

xiv Contents

4 Dynamical Systems Theory and Agent Behaviour 85
4.1 Introduction . 85
4.2 Dynamical Systems Theory . 85
4.3 Describing (Robot) Behaviour Quantitatively Through Phase

Space Analysis . 95
4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 100
4.5 Aperiodicity: The Dimension of Attractors 116
4.6 Summary . 119

5 Analysis of Agent Behaviour — Case Studies 121
5.1 Analysing the Movement of a Random-Walk Mobile Robot 121
5.2 “Chaos Walker” . 126
5.3 Analysing the Flight Paths of Carrier Pigeons 133

6 Computer Modelling of Robot-Environment Interaction 139
6.1 Introduction . 139
6.2 Some Practical Considerations Regarding Robot Modelling 141
6.3 Case Study: Model Acquisition Using Artificial Neural Networks 143
6.4 Linear Polynomial Models and Linear Recurrence Relations 150
6.5 NARMAX Modelling . 155
6.6 Accurate Simulation: Environment Identification 156
6.7 Task Identification . 173
6.8 Sensor Identification . 184
6.9 When Are Two Behaviours the Same? . 185
6.10 Conclusion . 193

7 Conclusion . 195
7.1 Motivation . 195
7.2 Quantitative Descriptions of Robot-Environment Interaction 196
7.3 A Theory of Robot-Environment Interaction 197
7.4 Outlook: Towards Analytical Robotics . 199

References . 201

Index . 205

1

A Brief Introduction to Mobile Robotics

Summary. This chapter gives a brief introduction to mobile robotics, in order to set the scene
for those readers who are not familiar with the area.

1.1 This Book is not about Mobile Robotics

This book is not actually about mobile robotics! It is merely written from a
mobile robotics perspective, and the examples given are drawn from mobile
robotics, but the question it addresses is that of “analysing behaviour”, where
behaviour is a very loose concept that could refer to the motion of a mobile
robot, the trajectory of a robot arm, a rat negotiating a maze, a carrier pigeon fly-
ing home, traffic on a motorway or traffic on a data network. In short, this book
is concerned with describing the behaviour of a dynamical system, be it physical
or simulated. Its goals are to analyse that behaviour quantitatively, to compare
behaviours, construct models and to make predictions. The material presented in
this book should therefore be relevant not only to roboticists, but also to psychol-
ogists, biologists, engineers, physicists and computer scientists.
Nevertheless, because the examples given in this book are taken from the

area of mobile robotics, it is sensible to give at least a very brief introduction to
mobile robotics for the benefit of all the non-roboticists reading this book. A full
discussion of mobile robotics is found in [Nehmzow, 2003a], and if this book
is used as teaching material, it is advisable students read general introductions
to mobile robotics such as [Nehmzow, 2003a, Siegwart and Nourbakhsh, 2004,
Murphy, 2000] first.

1.2 What is Mobile Robotics?

Figure 1.1 shows a typical mobile robot, the Magellan Pro Radix that is used
at the University of Essex. Equipped with over 50 on-board sensors and an on-
board computer, the robot is able to perceive its environment through its sensors,

1

2 1 A Brief Introduction to Mobile Robotics

process the signals on its computer, and as a result of that computation control
its own motion through space.

Wheel Encoders (Odometry)

Colour Camera

Laser Range Finder

Differential Drive System

Infrared Sensors

Sonar Sensors

Bumpers

Figure 1.1. Radix, the Magellan Pro mobile robot used in the experiments discussed in this
book

Radix is completely autonomous, meaning that it is not dependent upon any
link to the outside world: it carries its own batteries, therefore not needing an
umbilical cord to supply power, and has its own computer, therefore not needing
a cable or radio link to an external control mechanism. It is also not remote-
controlled by a human, but interacts with its environment autonomously, and
determines its motion without external intervention.
Not all mobile robots are autonomous, but all mobile robots are capable of

moving between locations. This might be achieved using legs or wheels and
there are mobile robots that can climb walls, swim or fly. The discipline of mo-
bile robotics is concerned with the control of such robots: how can the task they
are designed for be achieved? How can they be made to operate reliably, under a
wide range of environmental conditions, in the presence of sensor noise, contra-
dictory or erroneous sensor information? These are the kinds of questions mobile
robotics addresses.

1.2.1 Engineering

Obviously, a mobile robot is made up of hardware: sensors, actuators, power sup-
plies, computing hardware, signal processing hardware, communication hard-
ware, etc. This means that there is a strong engineering element in designing

1.2 What is Mobile Robotics? 3

mobile robots, and a vast amount of background literature exists about the en-
gineering aspects of robotics [Critchlow, 1985, McKerrow, 1991, Fuller, 1999,
Martin, 2001]. Journals addressing the engineering aspects of robotics include,
among many more, Advanced Robotics, Automation in Construction, Industrial
Robot, IEEE Trans. on Robotics, IEEE Trans. on Automation Science and Engi-
neering, International Journal of Robotics Research, Journal of Intelligent and
Robotic Systems, Mechatronics, Robotica, Robotics and Autonomous Systems
and Robotics and Computer Integrated Manufacturing.

1.2.2 Science

An autonomous mobile robot closes the loop between perception and action:
it is capable of perceiving its environment through its sensors, processing that
information using its on-board computer, and responding to it through move-
ment. This raises some interesting questions, for example the question of how
to achieve “intelligent” behaviour. What are the foundations of task-achieving
behaviours, by what mechanism can behaviours be achieved that appear “intelli-
gent” to the human observer? Second, there is a clear parallel between a robot’s
interaction with the environment and that of animals. Can we copy animal be-
haviour to make robots more successful? Can we throw light on the mechanisms
governing animal behaviour, using robots?
Such questions concerning behaviour, traditionally the domain of psychol-

ogists, ethologists and biologists, we refer to as “science”. They are not ques-
tions of hardware and software design, i.e. questions that concern the robot itself,
but questions that use the mobile as a tool to investigate other questions. Such
use of mobile robots is continuously increasing, and a wide body of literature
exists in this area, ranging from “abstract” discussions of autonomous agents
([Braitenberg, 1987, Steels, 1995, von Randow, 1997, Ritter et al., 2000]) to the
application of Artificial Intelligence and Cognitive Science to robotics
([Kurz, 1994, Arkin, 1998, Murphy, 2000]
[Dudek and Jenkin, 2000]). Journals such as Adaptive Behavior or IEEE Trans-
actions on Systems, Man, and Cybernetics also address issues relevant to this
topic.

1.2.3 (Commercial) Applications

Mobile robots have fundamental strengths, which make them an attractive option
for many commercial applications, including transportation, inspection, surveil-
lance, health care [Katevas, 2001], remote handling, and specialist applications
like operation in hazardous environments, entertainment robots (“artificial pets”)
or even museum tour guides [Burgard et al., 1998].
Like any robot, mobile or fixed, mobile robots can operate under hostile con-

ditions, continuously, without fatigue. This allows operation under radiation, ex-
treme temperatures, toxic gases, extreme pressures or other hazards. Because of

4 1 A Brief Introduction to Mobile Robotics

their capability to operate without interruption, 24 h of every day of the week,
even very high investments can be recovered relatively quickly, and a robot’s
ability to operate without fatigue reduces the risk of errors.
In addition to these strengths, which all robots share, mobile robots have the

additional advantage of being able to position themselves. They can therefore
attain an optimal working location for the task at hand, and change that posi-
tion during operation if required (this is relevant, for instance, for the assembly
of large structures). Because they can carry a payload, they are extremely flex-
ible: mobile robots, combined with an on-board manipulator arm can carry a
range of tools and change them on site, depending on job requirements. They
can carry measurement instruments and apply them at specific locations as re-
quired (for example measuring temperature, pressure, humidity etc. at a pre-
cisely defined location). This is exploited, for instance, in space exploration
[Iagnemma and Dubowsky, 2004].
Furthermore, cooperative mobile robot systems can achieve tasks that are

not attainable by one machine alone, for example tasks that require holding an
item in place for welding, laying cables or pipework, etc. Cooperative robotics is
therefore a thriving field of research. [Beni and Wang, 1989, Ueyama et al., 1992]
[Kube and Zhang, 1992, Arkin and Hobbs, 1992, Mataric, 1994] and
[Parker, 1994] are examples of research in this area.
There are also some weaknesses unique to mobile robots, which may affect

their use in industrial application.
First, a mobile robot’s distinct advantage of being able to position itself in-

troduces the weakness of reduced precision. Although both manipulators and
mobile robots are subject to sensor and actuator noise, a mobile robot’s position
is not as precisely defined as it is in a manipulator that is fixed to a perma-
nent location, due to the additional imprecision introduced by the robot’s chassis
movement. Furthermore, any drive system has a certain amount of play, which
affects the theoretical limits of precision.
Second, there is an element of unpredictability in mobile robots, particularly

if they are autonomous, by which is meant the ability to operate without external
links (such as power or control). With our current knowledge of the process of
robot-environment interaction it is not possible to determine stability limits and
behaviour under extreme conditions analytically. One of the aims of this book
is to develop a theory of robot-environment interaction, which would allow a
theoretical analysis of the robot’s operation, for example regarding stability and
behaviour under extreme conditions.
Third, the payload of any mobile robot is limited, which has consequences for

on-board power supplies and operation times. The highest energy density is cur-
rently achieved with internal combustion engines, which cannot be used in many
application scenarios, for example indoors. The alternative, electric actuation,
is dependent on either external power supplies, which counteract the inherent
advantages of mobility because they restrict the robot’s range, or on-board bat-

1.3 The Emergence of Behaviour 5

teries, which currently are very heavy. As technology progresses, however, this
disadvantage will become less and less pronounced.

1.3 The Emergence of Behaviour

Why is it that a mobile robot, programmed in a certain way and placed in some
environment to execute that program, behaves in the way it does? Why does it
follow exactly the trajectory it is following, and not another?
The behaviour of a mobile robot — what is observed when the robot interacts

with its environment — is not the result of the robot’s programming alone, but
results from the makeup of three fundamental components:

1. The program running on the robot (the “task”)
2. The physical makeup of the robot (the way its sensors and motors work,
battery charge, etc)

3. The environment itself (how visible objects are to the robot’s sensors, how
good the wheel grip is, etc)

The robot’s behaviour emerges from the interaction between these three fun-
damental components. This is illustrated in Figure 1.2.

Robot

EnvironmentTask

Figure 1.2. The fundamental triangle of robot-environment interaction

This point is easily illustrated. That the robot’s behaviour changes when its
control program changes is obvious. But likewise, take an “obstacle avoiding”
mobile robot, and dump it in a swimming pool! Clearly, what was meant by
“obstacle avoiding” was “obstacle avoiding in such and such an environment”.
Finally, change the robot’s sensors, for example by unplugging one sensor, and
the behaviour will change as well. When talking about robot behaviour, it is
essential to talk about task, robot and environment at the same time. The pur-
pose of scientific methods in mobile robotics is to analyse and understand the
relationship between these three fundamental components of the generation of
behaviour.

6 1 A Brief Introduction to Mobile Robotics

1.3.1 What Makes Robotics Hard?

A mobile robot is an embedded, situated agent. Embedded, because it interacts
with its environment through its actions, situated, because its actions affect fu-
ture states it will be in. And unlike computer simulations (even those involving
pseudo random numbers) the interaction between a robot and its surroundings
is not always predictable, due to sensor and actuator noise, and chaos inherent
in many dynamical systems. What differentiates a physical mobile robot, oper-
ating in the real world from, for example, a computer simulation, is the issue of
repeatability: if desired, the computer simulation can be repeated exactly, again
and again. In a mobile robot, this is impossible.
Figure 1.3 shows the results of a very simple experiment that was designed to

illustrate this phenomenon. A mobile robot was placed twice at the same starting
location (as much as this was possible), executing the same program in the same
environment. Both runs of what constitutes the same experiment were run within
minutes of each other.
As can be seen from Figure 1.3, the two trajectories start out very similar

to each other, but after two or three turns diverge from each other noticeably.
Very shortly into the experiment the two trajectories are very different, although
nothing was changed in the experimental setup! The robot is unchanged, the
task is unchanged, and the environment is unchanged. The only difference is the
starting position of the robot, which differs very slightly between the two runs.
The explanation of this surprising divergence of the two trajectories is that

small perturbations (e.g. sensor noise) quickly add up, because a slightly differ-
ent perception will lead to a slightly different motor response, which in turn leads
to another different perception, and so on, so that soon two different trajectories
emerge. It is this behaviour (which can be “chaotic”, see Chapter 4) that makes
“real world” robotics so difficult to model, and which leads to pronounced dif-
ferences between the predictions of a computer simulation and the behaviour of
the actual robot. This is not a fault of the robot, but “a natural and proper part of
the robot-environment interaction. . . . Behaviour is not a property of an agent, it
is a dynamical process constituted of the interactions between an agent and its
environment” [Smithers, 1995].
Figure 1.4 shows the phenomenon observed during a “real world” experi-

ment, which was actually concerned with the robot exploring the environment
over a period of time. During the robot’s exploration, it happened to visit the
location indicated with “Start” twice, at different moments in time. Initially, the
two trajectories follow each other closely, but the first, small divergence is ob-
served at the first turn (point “A”). At the second turn (“B”), the divergence is
amplified, and at point “C” the initially close trajectories have diverged so far
from each other that the robot takes radically different actions in each case! The
trajectory shown as a solid line turns out not to be repeatable.

1.4 Examples of Research Issues in Autonomous Mobile Robotics 7

Figure 1.3. The behaviour of a mobile robot is not always predictable. Figures show trajecto-
ries over time, clockwise from the top left diagram

1.4 Examples of Research Issues in Autonomous Mobile Robotics

The purpose of the concluding section of this chapter is to highlight a few ar-
eas where mobile robots are used, by way of example. This section is not com-
prehensive, but merely aims to give a “feel” of what is being done in mo-
bile robotics. For a more detailed presentation of topics, see textbooks like
[Arkin, 1998, Murphy, 2000] and [Nehmzow, 2003a].

1.4.1 Navigation

The advantages of mobility cannot be fully exploited without the capability of
navigating, and for example in the realm of living beings one would be hard
pressed to find an animal that can move but doesn’t have some kind of nav-
igational skill. As a consequence, navigation is an important topic in mobile
robotics, and attracts much attention.

8 1 A Brief Introduction to Mobile Robotics

A

B
C

Start

Figure 1.4. Two trajectories observed in a “real world” experiment that set out close to each
other, but diverge within a few tens of seconds

Map-based navigation can be defined as the presence of all or at least some
of the following capabilities [Nehmzow, 2003a, Nehmzow, 2003b]:

• Self-localisation: without being able to identify one’s own position on a map,
any navigation is impossible. Self-localisation is the foundation of all navi-
gation.

• Map building: the term “map” here stands for a bijection between two spaces
A and B, with A and B not being restricted to navigational maps, but any
one-to-one mapping between two spaces (e.g. sensory perception and the re-
sponse of an artificial neural network).

• Map interpretation: the map is of no use to the agent if it is uninterpretable,
and map interpretation therefore goes hand in hand with the ability to acquire
maps.

• Path planning: this refers to the ability to decide on a sequence of actions that
will take the robot from one location to another, and usually involves at least
self-localisation and map interpretation.

• Recovery: as stated above, interaction with the real world is partially unpre-
dictable, and any navigating robot needs the ability to recover from error.
This usually involves renewed self-localisation and path planning, but some-
times also special recovery strategies, like returning to a known, fixed spot,
and navigating anew from there.

Navigational methods applied in mobile robotics broadly encompass mecha-
nisms that use global (often metric) reference frames, using odometry and metric
maps.

1.5 Summary 9

1.4.2 Learning

In a mobile robot the loop of perception, reasoning and response is closed; mo-
bile robots therefore are ideal tools to investigate “intelligent behaviour”. One
phenomenon that is frequently observed in nature, and increasingly modelled
using mobile robots, is that of learning, i.e. the adaptation of behaviour in the
light of experience.
The literature in the field of robot learning is vast, for introductions see for

instance [Franklin, 1996, Dorigo and Colombetti, 1997, Morik, 1999]
[Demiris and Birk, 2000] and [Wyatt and Demiris, 2000].

1.5 Summary

Mobile robotics is a discipline that is concerned with designing the hardware and
software of mobile robots such that the robots are able to perform their task in the
presence of noise, contradictory and inconsistent sensor information, and possi-
bly in dynamic environments. Mobile robots may be remote controlled, guided
by specially designed environments (beacons, bar codes, induction loops etc.) or
fully autonomous, i.e. independent from any links to the outside world.
Mobile robots are widely used in industrial applications, including trans-

portation, inspection, exploration or manipulation tasks. What makes them in-
teresting to scientific applications is the fact that they close the loop between
perception and action, and can therefore be used as tools to investigate task-
achieving (intelligent) behaviour.
The behaviour of a mobile robot — what is observed when the robot oper-

ates — emerges from the interaction between robot, task and environment: the
robot’s behaviour will change if the robot’s hardware is changed, or if the control
program (the task) is changed, or if the environment is changed. For example, an
unsuccessful wall following robot can be changed into a successful one by ei-
ther changing the robot’s sensors, by improving the control code, or by placing
reflective strips on the walls!
The fundamental principles that govern this interaction between robot, task

and environment are, at the moment, only partially understood. For this reason it
is currently not possible to design mobile robot controllers off line, i.e. without
testing the real robot in the target environment, and fine tuning the interaction
through trial and error. One aim in mobile robotics research, and of this book,
therefore is to analyse the interaction between robot, task and environment quan-
titatively, to gain a theoretical understanding of this interaction which would
ultimately allow off-line design of robot controllers, as well as a quantitative
description of experiments and their results.

2

Introduction to Scientific Methods in Mobile Robotics

Summary. This chapter introduces the main topic of this book, identifies the aims and objec-
tives and describes the background the material presented in this book.

2.1 Introduction

The behaviour of a mobile robot emerges from the relationship and interaction
between the robot’s control code, the environment the robot is operating in, and
the physical makeup of the robot. Change any of these components, and the
behaviour of the robot will change.
This book is concerned with how to characterise and model, “identify”, the

behaviour emerging from the interaction of these three components. Is the robot’s
behaviour predictable, can it be modelled, is it stable? Is this behaviour differ-
ent from that one, or is there no significant difference between them? Which
programs performs better (where “better” is some measurable criterion)?
To answer these questions, we use methods taken from dynamical systems

theory, statistics, and system identification. These methods investigate the dy-
namics of robot-environment interaction, and while this interaction is also gov-
erned by the control program being executed by the robot, they are not suited to
analyse all aspects of robot behaviour. For example, dynamical systems theory
will probably not characterise the relevant aspects of the behaviour of a robot
that uses computer vision and internal models to steer towards one particular
location in the world. In other words, the methods presented in this book are pri-
marily concerned with dynamics, not with cognitive aspects of robot behaviour.
This book aims to extend the way we conduct autonomous mobile robotics

research, to add a further dimension: from a discipline that largely uses iterative
refinement and trial-and-error methods to one that is based on testable hypothe-
ses, that makes predictions about robot behaviour based on a theory of robot-
environment interaction. The book investigates the mechanisms that give rise to
robot behaviour we observe: why does a robot succeed in certain environments

11

12 2 Introduction to Scientific Methods in Mobile Robotics

and fail in others? Can we make accurate predictions as to what the robot is going
to do? Can we measure robot behaviour?
Although primarily concerned with physical mobile robots, operating in the

real world, the mechanisms discussed in this book can be applied to all kinds of
“behaving agents”, be it software agents, or animals. The underlying questions in
all cases are the same: can the behaviour of the agent bemeasured quantitatively,
can it be modelled, and can it be predicted?

2.1.1 A Lecture Plan

This book is the result of undergraduate and postgraduate courses in “Scientific
Methods in Mobile Robotics” taught at the University of Essex, the Memorial
University of Newfoundland, the University of Palermo and the University of
Santiago de Compostela. The objective of these courses was to introduce stu-
dents to fundamental concepts in scientific research, to build up knowledge of
the relevant concepts in philosophy of science, experimental design and proce-
dure, robotics and scientific analysis, and to apply these specifically to the area of
autonomous mobile robotics research. Perhaps it is easiest to highlight the topics
covered in this book through this sequence of lectures, which has worked well in
practice:

1. Introduction (Chapter 2):
• Why is scientific method relevant to robotics? How can it be applied to
autonomous mobile robotics?

• The robot as an analog computer (Section 2.3)
• A theory of robot-environment interaction (Section 2.4)
• The role of quantitative descriptions (Section 2.4.2)
• Robot engineering vs robot science (Section 2.5)

2. Scientific Method (Section 2.6):
• Forming hypotheses (Section 2.6.2)
• Experimental design (Section 2.6.3)
• Traps, pitfalls and countermeasures (Section 2.6.3)

3. Introduction to statistical descriptions of robot-environment interaction:
• Normal distribution (Sections 3.2 and 3.3.2)

4. Parametric tests to compare distributions:
• T-test (Sections 3.3.4 and 3.3.5)
• ANOVA (Section 3.3.6)

5. Non-parametric tests I:
• Median and confidence interval (Section 3.4.1)
• Mann-Whitney U -test (Section 3.4.2)

6. Non-parametric tests II:
• Wilcoxon test for paired observations (Section 3.4.3)
• Kruskal-Wallis test (Section 3.4.4)
• Testing for randomness (Section 3.5)

2.2 Motivation: Analytical Robotics 13

7. Tests for a trend:
• Linear regression (Section 3.6.1)
• Pearson’s r (Section 3.6.2)
• Spearman rank correlation (Section 3.7.1)

8. Analysing categorical data (Section 3.8):
• χ2 analysis (Section 3.8.1)
• Cramer’s V (Section 3.8.2)
• Entropy based methods (Section 3.8.3)

9. Dynamical systems theory and chaos theory (Chapter 4):
• Phase space (Section 4.2.1)
• Degrees of freedom of a mobile robot (Section 4.2.1)
• The use of quantitative descriptions of phase space in robotics (Sec-
tion 2.4.2)

• Reconstruction of phase space through time-lag embedding (Section 4.2.3)
10. Describing robot behaviour quantitatively through phase space analysis (Sec-
tion 4.3)

11. Quantitative descriptors of attractors:
• Lyapunov exponent (Section 4.4)
• Prediction horizon (Section 4.4.2)
• Correlation dimension (Section 4.5)

12. Modelling of robot-environment interaction (Chapter 6)
13. ARMAX modelling (Section 6.4.3)
14. NARMAX modelling (Section 6.5):

• Environment identification (Section 6.6)
• Task identification (Section 6.7)
• Sensor identification (Section 6.8)

15. Comparison of behaviours (Section 6.9)
16. Summary and conclusion (Chapter 7)

2.2 Motivation: Analytical Robotics

The aim of this book is to throw some light light on the question “what happens
when a mobile robot — or in fact any agent — interacts with its environment?”.
Can predictions be made about this interaction? If models can be built, can they
be used to design autonomous mobile robots off-line, like we are now able to
design buildings, electronic circuits or chemical compounds without applying
trial-and-error methods? Can models be built, and can they be used to hypoth-
esise about the nature of the interaction? Is the process of robot-environment
interaction stochastic or deterministic?
Why are such questions relevant?Modern mobile robotics, using autonomous

mobile robot with their own on-board power supply, sensors and computing
equipment, is a relatively new discipline. While as early as 1918 a light-seeking

14 2 Introduction to Scientific Methods in Mobile Robotics

robot was built by John Hays Hammond [Loeb, 1918, chapter 6], and W. Grey
Walter built mobile robots that learnt to move towards a light source by way
of instrumental conditioning in the 1950s [Walter, 1950, Walter, 1951], “mass”
mobile robotics really only began in the 1980s. As in all new disciplines, the
focus was initially on the engineering aspects of getting a robot to work: which
sensors can be used in a particular task, how do they need to be preprocessed and
interpreted, which control mechanism should be used, etc. The experimental sce-
nario used was often one of iterative refinement: a good first guess at a feasible
control strategy was implemented, then tested in the target environment. If the
robot got stuck, failed at the task etc., the control code would be refined, then the
process would be repeated until the specified task was successfully completed in
the target environment.
A solution obtained in this manner constituted an “existence proof” — it

was proven that a particular robot could achieve a particular task under a partic-
ular set of environmental conditions. These existence proofs were good achieve-
ments, because they demonstrated clearly that a particular behaviour or compe-
tence could be achieved, but they lacked one important property: generality. That
a robot could successfully complete a navigational route in one environment did
not imply that it could do it anywhere else. Furthermore, the experimenter did not
really know why the robot succeeded. Success or failure could not be determined
to a high degree of certainty before an experiment. Unlike building bridges, for
instance, where civil engineers are able to predict the bridge’s behaviour before
it is even built, roboticists are unable to predict a robot’s behaviour before it is
tested.
Perhaps the time has come for us to be able to make some more general,

theoretical statements about what happens in robot-environment interaction. We
have sophisticated tools such as computer models (see Chapter 6) and analy-
sis methods (see Chapter 4), which can be used to develop a theory of robot-
environment interaction. If this research wasn’t so practical, involving physical
mobile robots doing something in the real world, I would call the discipline “the-
oretical robotics”. Instead, I use the term “analytical robotics”.
In addition there are benefits to be had from a theory of robot-environment

interaction: the more theoretical knowledge we have about robot-environment
interaction, the more accurate, reliable and cheap will the robot and controller
design process be. The more we know about robot-environment interaction, the
more focused and precise will our hypotheses and predictions be about the out-
come of experiments. This, in turn, will increase our ability to detect rogue ex-
perimental results and to improve our experimental design. Finally, the better
understood the process of robot-environment interaction, the better we are able
to report experimental results, which in turn supports independent replication and
verification of results: robotics would advance from an experimental discipline
to one that embraces scientific method.

2.3 Robot-Environment Interaction as Computation 15

The aim of this book, therefore, is to understand robot-environment interac-
tion more clearly, and to present abstracted, generalised representations of that
interaction — a theory of robot-environment interaction.

2.3 Robot-Environment Interaction as Computation

The behaviour of a mobile robot cannot be discussed in isolation: it is the re-
sult of properties of the robot itself (physical aspects — the “embodiment”), the
environment (“situatedness”), and the control program (the “task”) the robot is
executing (see Figure 2.1). This triangle of robot, task and environment consti-
tutes a complex, interacting system, whose analysis is the purpose of any theory
of robot-environment interaction.

Robot

EnvironmentTask

Figure 2.1. The fundamental triangle of robot-environment interaction

Rather than speaking solely of a robot’s behaviour, it is therefore necessary
to speak of robot-environment interaction, and the robot’s behaviour resulting
thereof.
A mobile robot, interacting with its environment, can be viewed as perform-

ing “computation”, “computing” behaviour (the output) from the three inputs
robot morphology, environmental characteristics and executed task (see Fig-
ure 2.2).
Similar to a cylindrical lens, which can be used to perform an analog compu-

tation, highlighting vertical edges and suppressing horizontal ones, or a camera
lens computing a Fourier transform by analog means, a robot’s behaviour — for
the purposes of this book, and as a first approximation, the mobile robot’s trajec-
tory — can be seen as emergent from the three components shown in Figure 2.1:
the robot “computes” its behaviour from its own makeup, the world’s makeup,
and taking into account the program it is currently running (the task).

16 2 Introduction to Scientific Methods in Mobile Robotics

Behaviour

Robot−Environment
Interaction

Input Computation Output

Robot

EnvironmentTask

Figure 2.2. Robot-environment interaction as computation: Behaviour (the output) is com-
puted from the three inputs robot morphology, task and environmental properties

2.4 A Theory of Robot-Environment Interaction

2.4.1 Definition

When referring to “theory”, we mean a coherent body of hypothetical, concep-
tual and pragmatic generalisations and principles that form the general frame of
reference within which mobile robotics research is conducted.
There are two key elements that make a theory of robot-environment interac-

tion useful, and therefore desirable for research:

1. A theory will allow the formulation of hypotheses for testing. This is an
essential component in the conduct of “normal science” [Kuhn, 1964].

2. A theory will make predictions (for instance regarding the outcome of ex-
periments), and thus serve as a safeguard against unfounded or weakly sup-
ported assumptions.

A theory retains, in abstraction and generalisation, the essence of what it is
that the triple of robot-task-environment does. This generalisation is essential;
it highlights the important aspects of robot-environment interaction, while sup-
pressing unimportant ones. Finally, the validity of a theory (or otherwise) can
then be established by evaluating the predictions made applying the theory.
Having theoretical understanding of a scientific discipline has many advan-

tages. The main ones are that a theory allows the generation of hypotheses and
making testable predictions, but there are practical advantages, too, particularly
for a discipline that involves the design of technical artefacts. For instance, the-
ory supports off-line design, i.e. the design of technical artefacts through the use
of computer models, simulations and theory-based calculations.

2.4 A Theory of Robot-Environment Interaction 17

2.4.2 The Role of Quantitative Descriptions of Robot-Environment
Interaction

Measurement is the backbone of science, and supports:

• The precise documentation of experimental setups and experimental results
• The principled modification of experimental parameters
• Independent verification of experimental results
• Theoretical design of artefacts without experimental development
• Predictions about the behaviour of the system under investigation

We have argued that robot behaviour emerges from the interaction between
robot, task and environment. Suppose we were able to measure this behaviour
quantitatively. Then, if any two of the three components shown in Figure 2.1 re-
main unaltered, the quantitative performance measure will characterise the third,
modified component. This would allow the investigation of, for instance:

• The effect of modifications of the robot
• The influence of the robot control program on robot behaviour
• The effect of modifications to the environment on the overall behaviour of
the robot

This is illustrated in Figure 2.3: the quantitative measure of the robot’s be-
haviour (the dependent variable) changes as some experimental parameter (the
independent variable) changes, and can therefore be used to describe the inde-
pendent variable. For the point γ in Figure 2.3, for example, the quantitative
performance measure has a global maximum.
Chapter 4 in particular addresses the question of how robot-environment in-

teraction can be characterised quantitatively, and how such quantitative measures
can be used to determine the influence of i) a change in the robot controller, and
ii) a change of environment.
Current mobile robotics research practice not only differs from that of estab-

lished disciplines in its lack of theories supporting design, but also in a second
aspect: independent replication and verification of experimental results in mo-
bile robotics is, as yet, uncommon. While in sciences such as biology or physics,
for instance, reported results are only taken seriously once they have been ver-
ified independently a number of times, in robotics this is not the case. Instead,
papers often describe experimental results obtained in specific environment, un-
der specific experimental conditions. These experiments therefore are “existence
proofs” — the demonstration that a particular result can be achieved — but they
do not state in general terms under which conditions a particular result can be
obtained, nor which principles underlie the result. Existence proofs are useful,
they demonstrate that something can be achieved, which is an important aspect
of science, but they do not offer general principles and theories.

18 2 Introduction to Scientific Methods in Mobile Robotics

Observed quantitative
measure of behaviour
(dependent variable)

Experimental Parameter
(independent variable,
related to robot, task
or environment)

γ

Figure 2.3. Illustration of a conceivable relationship between quantitative performance mea-
sure and experimental parameter

We argue that mobile robotics research is now at a stage where we should
move on from existence proofs to a research culture that habitually includes in-
dependent replication and verification of experiments.
Theories, experimental replication and experimental verification all depend

crucially on quantitative descriptions: quantitative descriptions are an essential
element of the language of science. For these reasons this book presents several
ways of describing robot-environment interaction quantitatively1.

2.5 Robot Engineering vs Robot Science

Arguably, there are (at least) two independent objectives of robotics research: on
the one hand, to create artefacts that are capable of carrying out useful tasks in the
real world — for example industrial, service, transportation or medical robots,
to name but a few, and on the other hand to obtain a theoretical understanding
of the design issues involved in making those artefacts — for example sensor
and actuator modelling, system identification (modelling of entire systems), or
sensor, actuator and behaviour analysis. The former can be referred to as “robot
engineering”, the latter as “robot science”. It is robot science that this book is
mainly concerned with.
While robot engineering ultimately produces the “useful” artefacts, there is

a lot that robot science can contribute to this process. Without theoretical un-
derstanding, any design process is largely dependent upon trial-and-error exper-
1 A very informative article on quantitative measures of robot-environment interaction can
be found in [Smithers, 1995].

2.6 Scientific Method and Autonomous Mobile Robotics 19

imentation and iterative refinement. In order to design in a principled way, a
hypothesis — a justified expectation — is needed to guide the design process.
The hypothesis guides the investigation: results obtained are fed back into the
process and brought into alignment with the theory, to lead to the next stage
of the experimentation and design. The better the theory underlying the design
process, the more effective and goal-oriented the design process will be. Every
process of designing technical artefacts is based on some kind of assumptions (a
“theory”), even if very little is known at all about the object being designed.
This is true for current mobile robotics research, too. When asked to design

a wall-following robot, the designer will not start with an arbitrary program,
but with a “reasonable guess”, sensibly speculating on which sensors might be
useful to achieve the desired behaviour, which general kind of control program
will perform acceptably, etc. But, given our current understanding of robotics, he
is unable to design the entire behaviour off-line!
Instead, mobile robotics researchers to-date are crucially dependent on trial-

and-error procedures. A “reasonable prototype” has to be tested in the target
environment, and refined based on observations and underlying theory (“hunch”
is often the more appropriate term for such theories). Here is a practical example:
to design the Roomba commercial robot floor cleaner (relying on very simple
sensing, and not involving any sophisticated navigation), 30 prototypes had to be
built over a period of 12 years [EXN, 2003]!
Theoretical understanding of robot-environment interaction, however, would

address this issue, and support off-line design. But not only that: it would further-
more allow the analysis of an observed behaviour, and the refinement of existing
mechanisms, based on established theoretical principles.
The argument this book makes, therefore, is this: a better theoretical under-

standing of the principles underlying a mobile robot’s operation in its environ-
ment — a theory — will result in more effective, rigorous and goal-oriented
development methods. These, in turn, will support robot engineering, leading to
robots that are better able to achieve the tasks they are designed for.

2.6 Scientific Method and Autonomous Mobile Robotics

2.6.1 Introduction

Whether mobile robotics actually is a science or an engineering discipline, it
undoubtedly benefits from clear, coherent and methodical research practice, and
the following discussion should be relevant to both “science” and “engineering”.
The discipline of mobile robotics is interested in developing artefacts (robots)

that can carry out some useful task in a real world environment. However this is
attempted, be it trial-and-error, methodical research or a mixture of both, the
designer will rely on some previously acquired knowledge, perhaps inadver-
tently. This knowledge essentially constitutes a “theory”. It is useful to analyse

20 2 Introduction to Scientific Methods in Mobile Robotics

in more detail what the elements of this theory are, and how the theory can be
improved — this is the purpose of this chapter.

2.6.2 Background: What is “Scientific Method”?

As stated earlier, the aim of this book is to open up new avenues of conducting
research in mobile robotics, to move away from existence proofs and the need
for iterative refinement, and to overcome the inability to design task-achieving
robots off line. Before we look at some practical ways of applying scientific
method to mobile robotics research, we’ll look at a very broad summary of what
has been understood by the term “scientific method” over the centuries. For a
proper treatment of this topic, however, please see dedicated books on the subject
(for example [Gillies, 1996, Harris, 1970, Gower, 1997].)
Sir Francis Bacon (1561 – 1626) first developed the theory of inductivism

[Bacon, 1878], where the basic idea is this: first, a large number of observations
regarding the subject under investigation is gathered. This includes “instances
where a thing is present”, “instances where a thing is not present”, and “instances
where a thing varies”. The nature of the phenomenon under investigation is then
determined by a process of eliminative induction. Almost mechanically, by gath-
ering more and more information and ruling out impossible hypotheses, the truth
is established. [Gillies, 1996] likens this inductive process to that of drawing a
precise circle: impossible to achieve just using pen and paper, but very easy us-
ing the mechanical device of a compass. In a similar manner, scientific truths
are to be discovered by the mechanical process of induction. The “problem of
induction”, however, is that the facts gathered can never be complete enough to
fully justify the conclusions drawn, so that any hypotheses are in effect working
hypotheses only, a first stab, so to speak.
The complete opposite view to Bacon’s induction based on many obser-

vations is Karl Popper’s argument that induction is a myth, because observa-
tion without theory is impossible [Popper, 1959, Popper, 1963, Popper, 1972].
In other words, there needs to be a theory first in order to observe, and obtaining
a theory from a large body of observations alone is impossible. Simply “observ-
ing” cannot be done, the scientist needs to know what should be observed. This
in turn requires the definition of a chosen task, a question, a problem — in other
words: a hypothesis. Instead of inductivism, he proposed a theory of conjectures
and refutations (falsificationism): the aim of scientific investigation is to refute
a hypothesis, and all experimentation is geared towards that goal. If a hypoth-
esis withstands all attempts of refutation, it is tentatively adopted as true, but
not considered proven and true without doubt. The only truth that can be firmly
established is that a theory is false, never that it is true.
How then does the scientific community accept or reject theories? Thomas

Kuhn [Kuhn, 1964] differentiates between “normal science” and a situation of
“scientific revolution”. Normal science he describes as research firmly based on

2.6 Scientific Method and Autonomous Mobile Robotics 21

past scientific achievements or “paradigms”. Paradigms here refer to theories that
create avenues of enquiry, formulate questions, select methods and define rele-
vant research areas — paradigms guide research. “Normal” scientific research
aims to extend the knowledge within an existing paradigm, to match facts with
theory, to articulate theory and to bring the existing theory into closer agreement
with observed facts. It tends to suppress fundamental novelties that cannot be
brought into agreement with existing paradigms. Normal science works within
the accepted, existing paradigm, seeks to extend the knowledge the paradigm is
revealing, and to “tie up loose ends” and plug gaps — Kuhn refers to this as
“mopping up”.
However, in the process of normal science increasingly discrepancies be-

tween fact and theory (anomalies) will be observed. There will be observations
that cannot be explained at all with the existing theory, and there will be obser-
vations that appear to disagree with existing theory. These difficult cases tend to
be ignored initially, but their weight and importance may increase until a point is
reached at which the scientific community loses faith in the existing paradigm.
A crisis has developed; it begins with a blurring of the existing paradigms, con-
tinues by the emergence of proposals for alternative paradigms, and eventually
leads to a “scientific revolution”, the transition form “normal” to extraordinary
research. Eventually, the new paradigm is adopted by the majority of scientists
and assumes the role of “normal” paradigm, and the process is repeated.

Scientific Research Methodology

As stated in the introduction, this book is no attempt to present an account of
philosophy of science and its application to mobile robotics. When we refer to
“scientific method”, the emphasis is not on the philosophical foundations of re-
search methodology.
Rather, it is on the procedure of conducting, evaluating and reporting research

and its results; that is, the material practice of science, the “recipes”. What is a
good starting point for research? How do we design experiments, how do we
document and assess the results? What do we adopt as a scientific research pro-
cedure within the community? These are the kinds of questions we should be
able to answer before we conduct the actual research!

Forming Scientific Hypotheses

The starting point for any research is a hypothesis, a thesis. This hypothesis is
a formally stated expectation about a behaviour that defines the purpose and the
goals of a study; it therefore defines, explains and guides the research. Without
a clear hypothesis in the beginning, it is virtually impossible to conduct good re-
search, as it is virtually impossible to present results in a coherent and convincing
way. The hypothesis, the question, is the foundation upon which the scientific ar-
gument is built. Obviously, an ambiguous question will result in an ambiguous

22 2 Introduction to Scientific Methods in Mobile Robotics

answer, which is why the hypothesis is the most fundamental stage of scientific
working.
To formulate the hypothesis clearly, it is useful to consider the following

points (see also [Paul and Elder, 2004]):

1. What is the question addressed?
• State it precisely
• Can it be broken down into sub questions?
• Is there one right answer to the question? Does it require reasoning from
more than one point of view? Is it a matter of opinion?

2. What assumptions are you making?
• Identify all assumptions clearly
• Are they justifiable?
• Do these assumptions affect the impartiality of your research?
• Identify key concepts and ideas that shape the research. Are they reason-
able?

3. Formulate a hypothesis
• Is this hypothesis testable and falsifiable?
• What outcome do you expect?
• What would be the implications of the different possible outcomes of
your experiment (i.e. is the question actually worth asking)?

• Experimental design
4. Which experimental setup is suitable to investigate the question/hypothesis?

• How is experimental data going to be collected?
• How is experimental data going to be evaluated?
• How much data is needed?

Hypotheses can be causal hypotheses, hypothesising about the causes of a
behaviour, or descriptive, describing a behaviour in terms of its characteris-
tics or the situation in which it occurs. Causal reasoning and causal models
are very common in science, and guide experimental design, hypothesis for-
mation and the formation of theories. Causal models guide scientific think-
ing so strongly that on occasions scientists even override the statistical infor-
mation they receive, in favour of a causal model [Dunbar, 2003] (referred to
as “confirmation bias” — “cold fusion” being a prominent example). In other
words: the hypotheses guiding research can be so dominant that the scientist
tries to generate results that confirms his initial hypothesis, rather than aiming
to disprove a hypothesis (which is, according to Popper, what he should be do-
ing!) [Klayman and Ha, 1987] — the tendency of trying to confirm a hypothesis,
rather than refute it, is difficult to overcome. The temptation to conduct experi-
ments that produce results predicted by the current hypothesis is very strong!
Popper argued that (due to the infinity of the universe) scientific hypotheses

can never be verified (i.e. proven to be true) nor the probability of their veracity

2.6 Scientific Method and Autonomous Mobile Robotics 23

established, but that they can only be falsified, i.e. shown to be incorrect. He fur-
ther argued that the most fundamental requirement for any scientific hypothesis
must therefore be that the theory is open to tests and open to revision. In other
words: it must be testable, and it must be falsifiable. If either of these conditions
isn’t met, the hypothesis will not support scientific investigation.
Popper was aware that it is possible to evade falsification by adopting “sav-

ing stratagems” (e.g. by modifying testability of a hypothesis), and therefore
introduced the supreme rule that “the other rules of scientific procedure must be
designed in such a way that they do not protect any statement in science from
falsification” [Popper, 1959, p.54].
“The aim of science is to find satisfactory explanations, of whatever strikes

us as being in need of explanation” [Popper, 1972, p. 191] — the hypothesis
underlying the research ultimately defines the degree to which an explanation is
satisfactory or not.
There are further criteria that distinguish “good” hypotheses from “bad”

ones. Popper and Kuhn identify explanatory depth as a crucial aspect — which
paradigm explains more phenomena? —, but increased verisimilitude is equally
identified by Popper as an objective for forming hypotheses. In a survey article,
summarising the views put forward by Kuhn, Lakatos and Laudan,
[Nola and Sankey, 2000] state that “Scientists prefer a theory that

• Can solve some of the empirical difficulties confronting its rivals
• Can turn apparent counter-examples into solved problems
• Can solve problems it was not intended to solve
• Can solve problems not solved by its predecessors
• Can solve all problems solved by its predecessors, plus some new problems
• Can solve the largest number of important empirical problems while gener-
ating the fewest important anomalies and conceptual difficulties”

Hypotheses must be precise, rational (that is, possibly true and in agreement
with what is already known) and parsimonious (that is, as simple as possible —
but not simpler. William of Occam’s razor — “entities are not to be multiplied
beyond necessity” — is one expression of this principle). In summary, the hall-
marks of a “good” scientific paradigm — which must be testable and falsifi-
able — are explanatory power, clarity and coherence.
How can scientific hypotheses be obtained? The most common sources are:

• Opinions, observations and experiences
• Existing research
• Theories
• Models

Karl Popper argued that scientific hypotheses are the product of brilliant cre-
ative thinking by the scientist (he refers to this as “creative intuition”).

24 2 Introduction to Scientific Methods in Mobile Robotics

2.6.3 Experimental Design and Procedure

Experimental Design

Experimental design — the experimental procedure used, the observation mech-
anisms and the way results are interpreted — is the centre of any scientific inves-
tigation, and care is necessary when designing experiments. Is the chosen design
suitable for investigating the hypothesis I am interested in? Is there a better way
of achieving my objectives? Is the design feasible in practice, or does it offer
insurmountable practical problems?
One of the most common types of scientific experiments aim to determine

a relationship between two variables: one that is controlled by the experimenter
(the independent variable, IV), and one that is dependent on it (the dependent
variable, DV). The most common aim of experimentation is to establish how the
DV changes in relation to the IV.

Evaluate results
and modify

hypotheses accordingly

State hypothesis
and research objective

(the "question")

Identify suitable

procedure
experimental

Conduct research

Figure 2.4. Experimental procedure

There are a number of aspects to be considered when designing an experi-
ment (see also Figure 2.4):

• What is the question being asked? What is the hypothesis? Every scientific
investigation is driven by the underlying question it has set out to answer.
If this question is not formulated clearly, or even not formulated at all, the
resulting research will be haphazard, ill focused without clear aim. Good
research needs a clearly formulated objective!

• Sensitivity of the experiment. Is the experimental design sensitive enough to
detect any causal relationship between DV and IV? Is it perhaps too sensitive,
and will therefore amplify noise?

2.6 Scientific Method and Autonomous Mobile Robotics 25

• Are there any confounding effects that introduce errors that hide any true
effects (see below for a discussion of this point)?

• Which predictions can be made about the outcome of the experiment? Are
there expectations, perhaps based on some prior understanding of the prob-
lem, that can be used to assess the eventual outcome of the experiment?
Predictions are important, they serve as a sanity check, helping us to identify
results that are highly unlikely, and to detect possible errors in the experi-
mental design, procedure and evaluation.

• Observation. How is the experiment going to be observed, how are results
going to be recorded? It is important to strive for consistency here. Similar
experiments should result in similar results, if they don’t, one has to check the
experimental design again for possible error sources and procedural mistakes.

• Analysis and interpretation. How are the results going to be analysed?Merely
describing experimental results in words is a possibility, but there are stronger
tools available for analysis. Chapter 3 covers a whole range of statistical
methods that can be used to detect “significant” effects.
A very important method used in analysis and interpretation is that of cre-
ating a baseline. The baseline serves as the fundamental data against which
one compares the results obtained in the experiment.
For example, in work concerned with predictions (of, for example, robot tra-
jectories, temperatures in your home town or stock market developments) one
very often compares a prediction method against the baseline of predicting
the mean. Predicting that a future signal value will be the mean of past values
is a very reasonable prediction, which tends to minimise prediction error. If a
prediction method is claimed to be “good”, it ought to outperform this simple
predictor — something that can be established by the methods described in
Chapter 3.

• Often it is useful to conduct a pilot study first, in order to minimise the exper-
imental effort. A pilot study investigates the underlying question in a “broad
shot” manner, eliminating certain possibilities, making others more likely,
while using simplified and coarser experimental procedures than the even-
tual final study.

Traps and Countermeasures

Traps

There are a number of known traps to avoid [Barnard et al., 1993]:

1. Confounding effects. If the phenomenon we are interested in is closely cor-
related with some other effect that is of no interest, special care has to be
taken to design the experiment in such a way that only the factor of interest
is investigated.

26 2 Introduction to Scientific Methods in Mobile Robotics

For example, we might be interested in measuring whether the obstacle
avoidance movements of a learning mobile robot become more “efficient”,
smoother, with time. We might find a positive correlation, and conclude that
our learning algorithm results in ever smoother movement. But unless we de-
sign our experiment carefully, we cannot be sure that the increasingly smooth
movement is not the result of decreasing battery charge, resulting in a slug-
gish response of the robot’s motors!

2. Floor and ceiling effects. It is possible that the experimental design is either
too demanding or too simple to highlight relevant phenomena.
For example, we might be interested to investigate whether one service robot
performs better than another. If we compare both robots in too simple an en-
vironment, they might not show any difference whatsoever (floor effect). On
the other hand, if we choose a very complicated environment, neither robot
may perform satisfactorily (ceiling effect). Obviously, in order to highlight
any differences between the two robots, just the right type of environment
complexity is needed.

3. Pseudo-replication (non-independence). The more costly (in terms of time
or resources) an experiment, the greater the risk to produce data that is not
independent, so-called pseudo-replication. Pseudo-replication means that the
errors of our measurements are not unique to each measurement, i.e. not
independent.
For example, we might want to measure what effect the colour of objects
has on a robot’s ability to detect them with its camera system. We could take
three different objects, say, and let the robot detect each of these objects ten
times. This does not, however, result in thirty independent measurements!
We really only have three independent measurements in this case, and need
to collapse the ten observations for each object into one value, before we
proceed with an analysis of the results.

4. Constant errors, that is systematic errors (biases) can mask true effects, and
need to be avoided.

5. “The conspiracy of goodwill” (Peter Medawar). In designing our experi-
ments we need to take great care to retain objectivity. It is very easy to have
a particular desired outcome of our experiments in mind, and to research
selectively to attain that outcome!

Countermeasures

There are a range of countermeasures that can be taken to avoid the pitfalls just
mentioned.
First of all, it is good practice to include controls in the experimental design.

Such controls can take the form of experiments within the chosen experimen-
tal setup whose results are known. Say, for example, an exploration robot is de-
signed to detect certain objects (e.g. rocks) in some remote area (e.g.Antarctica).
The usual procedure, the control, is to test the robot and its ability to detect the

2.7 Tools Used in this Book 27

objects in a laboratory environment, where the robot’s detection ability can be
observed and measured.
A second, very commonly used and very effective method to counteract pit-

falls of scientific investigation is to work in groups, and to seek independent ver-
ification and confirmation of one’s experimental setup, experimental procedure,
results and their interpretation. Usually hypotheses, setups and interpretations
benefit from independent scrutiny!
Constant errors can be avoided by counterbalancing and randomisation.

Counterbalancing stands for an experimental procedure in which each arrange-
ment of variables under investigation is used an equal number of times. If, for
instance, two different robot controllers A and B are to be tested in the same
environment, a counterbalanced experimental design would mean that A and B
are used first and second respectively for an equal number of time. This would
counterbalance constant errors introduced by wear and tear, such as decreasing
battery charge.
Another method of dealing with constant errors is that of randomisation, by

which we mean counterbalancing by chance: the arrangement of variables is
determined randomly.
Counterbalancing can only be used if there is no interaction between the

counterbalanced variables. If, for example, program B of the above example
modified the environment, for instance by rearranging objects in the environ-
ment, it does matter in which sequence programs A and B are tested. Counter-
balancing would not work in this case.
Dealing with the “conspiracy of goodwill” is relatively easy: a “blind” ex-

perimental arrangement will achieve that. Blind experimentation means that the
experimenter is unaware of the state of the independent variable, and therefore
has to log and interpret resulting experimental data at face value, rather than
inadvertently putting a slant on the interpretation.
Best known for trials in medicine, where the scientific question is whether a

particular drug is effective or not (independent of the patient’s and the doctor’s
knowledge of which drug or placebo is being administered), blind experimen-
tation actually also has a place in robotics. The temptation to interpret results
in favour or one’s own control program in comparison with a baseline control
program is always there! If the experimenter is unaware of which program is
currently being run, he cannot possibly log and interpret the data in a biased
way!

2.7 Tools Used in this Book

2.7.1 Scilab

In some chapters of this book we have included numerical examples of meth-
ods and algorithms discussed in the text. We have used the mathematical pro-

28 2 Introduction to Scientific Methods in Mobile Robotics

gramming package Scilab [Scilab Consortium, 2004] to illustrate the exam-
ples, and included listings of some programs. Many figures in this book were
generated using Scilab.
Scilab is a powerful mathematical programming language, which, as a

bonus, has the advantage that it is free for personal use. However, the examples
given in this book require few changes to run on other mathematical program-
ming languages, such as for example Matlab.

2.8 Summary: The Contrast Between
Experimental Mobile Robotics and Scientific Mobile Robotics

In summary, the contrast between mobile robotics as an experimental discipline
and mobile robotics as a scientific discipline can be described like this:

• Experimental design and procedure is guided by a testable, falsifiable hypoth-
esis, rather than based on the researcher’s personal experience (a “hunch”)

• Experimental design and procedure are “question-driven”, rather than “appli-
cation-driven”

• Results are measured and reported quantitatively, rather than qualitatively
• Experimental results are replicated and verified independently (for exam-
ple by other research groups), rather than presented as stand-alone existence
proofs

The following sections of this book will look at how these objectives can be
achieved. How can the performance of a mobile robot be assessed, and compared
with that of an alternative control program? How can robot-environment inter-
action be described quantitatively? How can testable hypotheses be formulated?
How can robot-environment interaction be modelled and simulated accurately?
These are the questions that we will investigate now.

3

Statistical Tools for Describing Experimental Data

Summary. Statistical descriptions of experimental data are one of the simplest methods of
describing quantitatively what a robot does. This chapter presents statistical methods that are
useful when analysing experimental data generated by an agent such as a robot, and gives
examples of applications in robotics.

3.1 Introduction

This chapter looks at a wide range of statistical techniques that can be used to
analyse, describe or quantify robot behaviour. Many of these procedures are
taken from the life sciences, where statistical analysis and comparison of be-
haviour is well established.
In any experimental science, be it biology, psychology, medicine or robotics,

to name but a few, we typically perform experiments designed to test our hy-
pothesis. The experiment is observed, data describing the relevant aspects of the
experiments is logged, and subsequently analysed. Once such data is logged, one
typically wants to answer some of these questions:

• Is there a statistically significant correlation between input and output vari-
ables?

• Is there a statistically significant difference between the experimental results
obtained and some “baseline” (either another method to achieve the same
task, or a well established mechanism that is well understood)?

• Alternatively: could the experimental results be explained by random events?
Are they a fluke?

“Statistically significant” here is a precisely defined technical term, meaning
that the outcome of an experiment differs from the “null hypothesis”1 by more
1 The hypothesis that the observed outcome of an experiment is due to chance alone, and not
due to a systematic cause.

29

30 3 Statistical Tools for Describing Experimental Data

than what could be attributed to random fluctuations. “Significance” is discussed
later in this chapter.
Statistical tests involve i) determining what kind of data is to be analysed, ii)

determining what kind of question (null hypothesis) is being asked, iii) selecting
an appropriate test, and iv) performing the analysis.
This chapter first introduces the kind of data that might be analysed (nor-

mally distributed or not normally distributed), then looks at methods to determine
whether two samples are drawn from the same underlying distribution or not (i.e.
whether they are significantly different from each other or not), then looks at tests
that determine whether there exists a significant trend that could describe the re-
lationship between two variables, and finally presents methods that are suitable
for analysing categorical data (basically, data that is not numerical, but based
on categories). Table 3.1 gives an overview of the procedures introduced in this
chapter.

Table 3.1. Statistical methods discussed in this chapter

Are samples from Tests for a trend
the same distribution?

Mean and std. dev (Section 3.2)
t-test (Section 3.3.4) Linear regression (Section 3.6.1)

Data is param. ANOVA (Section 3.3.6) Correlation analysis (Section 3.6)
U -statistic (Section 3.4.2) Spearman rank correlation

normally distributed Wilcoxon test (Section 3.4.3) (Section 3.7.1)
non-param. ANOVA (Section 3.4.4)

Median (Section 3.4.1) Spearman rank correlation
Data is not U -statistic (Section 3.4.2) (Section 3.7.1)

Wilcoxon test (Section 3.4.3)
normally distributed non-param. ANOVA (Section 3.4.4)

χ2 (Section 3.8.1)
Categorical Cramer’s V (Section 3.8.2)
data Entropy (Section 3.8.3)

3.2 The Normal Distribution

The most common distribution of values, for example obtained by measuring
some physical entity, is the Gaussian distribution. Because it is the usually oc-
curring distribution, it is often referred to as the “normal distribution”.

Mean, Standard Deviation and Standard Error

The Gaussian or normal distribution can be completely described by two pa-
rameters, mean µ and standard deviation σ — hence the term “parametric” for

3.2 The Normal Distribution 31

distributions like this. For the normal distribution, 68.3% of all measurements xi

lie in the interval µ± σ, 95.4% of all xi lie in the interval µ± 2σ, and 99.7% of
all xi in the interval µ ± 3σ.
In a Gaussian (normal) distribution, values are centred around the “expected

value”, the “mean” µ. The width of the bell-shaped curve is determined by the
so-called “standard deviation” σ—more about that below.
The probability density of this normal distribution, p(x), is shown in Fig-

ure 3.1 and defined by Equation 3.1.

16%68%16%

µ−σ µ µ+σ

Figure 3.1. Gaussian or normal distribution. Values are centred around the mean µ, with
outliers becoming less frequent the further from the mean they are; 68.3% of all measurements
are in the interval µ ± σ

p(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 (3.1)

The expected value of our measurement – the mean µ – is defined by Equa-
tion 3.2, the standard deviation σ is given by Equation 3.32:

µ =
1
n

n∑
i=1

xi (3.2)

where xi is one individual measurement from the series of measurements, and n
is the total number of measurements.
2 Equations 3.2 and 3.3 are approximations that are used in practice. Strictly speaking, µ =

limn→∞ 1
n

∑n

i=1
xi and σ = limn→∞

√
1

n−1

∑n

i=1
(xi − µ)2.

32 3 Statistical Tools for Describing Experimental Data

σ =

√√√√ 1
n − 1

n∑
i=1

(xi − µ)2 (3.3)

Mean and standard deviation fully describe the normal distribution, and con-
tain information about the precision of our measurements xi, in that σ indicates
what percentage of measurements will lie in a specific interval µ ± kσ. For
k = 1, for instance, this percentage is 68.3%.
As the individual measurements xi, so the mean itself is also subject to error.

We can determine the mean error of the mean, σ, as

σ =
σ√
n

(3.4)

This so-called standard error σ is a measure for the uncertainty of the mean,
and µ ± σ denotes that interval within which the true mean lies with a certainty
of 68.3%, µ±2σ the interval within the true mean lies with a certainty of 95.4%
and µ±3σ is the 99.7% confidence interval. When stating means in the literature,
or plotting them in bar graphs, it is common to report them as µ ± σ.

Reducing the Measuring Error

As the number of measurements increases the standard error σ decreases. This
means that the deviation of the mean µ from the true mean also decreases. How-
ever, as the standard error is proportional to the mean error of the individual
measurement (Equation 3.3) and inversely proportional to

√
n, it is not useful

to increase the number of measurements arbitrarily to reduce uncertainty. If we
want to reduce the measuring error, it is better to increase the measuring preci-
sion.

The Standard Normal Distribution

The normal distribution plays an important role in evaluating the outcome of
many statistical tests. Usually, the standard normal distribution of µ = 0 and
σ = 1 is used for these comparisons; this distribution is given in Table 3.2,
which gives the area underneath the normal distribution curve in the interval
µ + z (see also Figure 3.2).
Any normal distribution with means other than zero and standard deviations

other than one can be transformed into the standard normal distribution through
Equation 3.5:

z(x) =
x − µ

σ
(3.5)

3.3 Parametric Methods to Compare Samples 33

Table 3.2. Standard normal distribution table, giving the area from µ to µ + z under the
standard normal distribution of µ = 0 and σ = 1

Z .00 .02 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.000 0.004 0.008 0.012 0.016 0.020 0.024 0.028 0.032 0.036
0.1 0.040 0.044 0.048 0.052 0.056 0.060 0.064 0.067 0.071 0.075
0.2 0.079 0.083 0.087 0.091 0.095 0.099 0.103 0.106 0.110 0.114
0.3 0.118 0.122 0.126 0.129 0.133 0.137 0.141 0.144 0.148 0.152
0.4 0.155 0.159 0.163 0.166 0.170 0.174 0.177 0.181 0.184 0.188
0.5 0.191 0.195 0.198 0.202 0.205 0.209 0.212 0.216 0.219 0.222
0.6 0.226 0.229 0.232 0.236 0.239 0.242 0.245 0.249 0.252 0.255
0.7 0.258 0.261 0.264 0.267 0.270 0.273 0.276 0.279 0.282 0.285
0.8 0.288 0.291 0.294 0.297 0.300 0.302 0.305 0.308 0.311 0.313
0.9 0.316 0.319 0.321 0.324 0.326 0.329 0.331 0.334 0.336 0.339
1.0 0.341 0.344 0.346 0.348 0.351 0.353 0.355 0.358 0.360 0.362
1.1 0.364 0.367 0.369 0.371 0.373 0.375 0.377 0.379 0.381 0.383
1.2 0.385 0.387 0.389 0.391 0.393 0.394 0.396 0.398 0.400 0.401
1.3 0.403 0.405 0.407 0.408 0.410 0.411 0.413 0.415 0.416 0.418
1.4 0.419 0.421 0.422 0.424 0.425 0.426 0.428 0.429 0.431 0.432
1.5 0.433 0.434 0.436 0.437 0.438 0.439 0.441 0.442 0.443 0.444
1.6 0.445 0.446 0.447 0.448 0.449 0.451 0.452 0.453 0.454 0.454
1.7 0.455 0.456 0.457 0.458 0.459 0.460 0.461 0.462 0.462 0.463
1.8 0.464 0.465 0.466 0.466 0.467 0.468 0.469 0.469 0.470 0.471
1.9 0.471 0.472 0.473 0.473 0.474 0.474 0.475 0.476 0.476 0.477
2.0 0.477 0.478 0.478 0.479 0.479 0.480 0.480 0.481 0.481 0.482
2.1 0.482 0.483 0.483 0.483 0.484 0.484 0.485 0.485 0.485 0.486
2.2 0.486 0.486 0.487 0.487 0.487 0.488 0.488 0.488 0.489 0.489
2.3 0.489 0.490 0.490 0.490 0.490 0.491 0.491 0.491 0.491 0.492
2.4 0.492 0.492 0.492 0.492 0.493 0.493 0.493 0.493 0.493 0.494
2.5 0.494 0.494 0.494 0.494 0.494 0.495 0.495 0.495 0.495 0.495
2.6 0.495 0.495 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496
2.7 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497
2.8 0.497 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498
2.9 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.499 0.499 0.499
3.0 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499

with x being a value of the original normal distribution that is to be transformed
into the standard normal distribution.
Table 3.2 can then be used to determine areas underneath the distribution

curve. For instance, the area between µ and 1 is, according to the Table, 0.341.
Because the area underneath the entire curve of the standard normal distribution
is one, this means that 34% of all data points lie between µ + 1σ, or 68% within
the interval of µ ± σ.

3.3 Parametric Methods to Compare Samples

3.3.1 General Considerations (Significance Levels)

When conducting statistical tests, one typically determines some test statistic
S, and evaluates whether S lies within an acceptance interval µ ± zσ. z is de-
termined by the significance level specified by the user. This significance level
indicates the combined area underneath the lower and upper tail of the distri-

34 3 Statistical Tools for Describing Experimental Data

Area between µ and z

zµ

Figure 3.2. Table 3.2 gives the area between the mean µ of a normal distribution and z, in per
cent of the whole area underneath the curve

bution (shaded areas in Figure 3.3), and therefore determines the width of the
acceptance interval.
If the sample statistic falls outside the acceptance interval, the null hypoth-

esis3 is rejected; otherwise it is accepted (which simply means there is no valid
reason to reject it, but nevertheless it needn’t be true).

Determining a Suitable Significance Level

The acceptance interval obviously influences whether a null hypothesis is ac-
cepted or rejected: the wider the acceptance interval (i.e. the lower the signifi-
cance level), the greater the chance that a null hypothesis is accepted.
In selecting the appropriate significance level, one has to make a decision as

to whether in the particular situation it is preferable to potentially reject a true
null hypothesis (type I error — high significance level), or to accept a false null
hypothesis (type II error — small significance level). These errors are interde-
pendent; one can only choose one of these to be small at the cost of making the
other bigger. The appropriate significance level is usually determined by taking
the cost into account that either error would incur. In scientific research, it is
common to use the 5% significance level.
3 For example, that there is no significant difference between two distributions.

3.3 Parametric Methods to Compare Samples 35

zσ zσ
µ

µ− µ+

sample statistic falls into either

of these regions

Reject null hypothesis if

Acceptance
Interval

Figure 3.3. Illustration of significance levels. The null hypothesis is rejected if the sample
statistic falls outside the acceptance interval

Example

A normally distributed sample statistic with µK = 50 and σK = 6 has been
determined to evaluate the outcome of an experiment. What is the acceptance
interval at the 5% and the 10% significance level?
From Table 3.1 we see that z = 1.96 for an area of 47.5% (2 × 47.5% =

95%). The acceptance interval for a significance level of 5% is given as µK ±
zσK = 50 ± 1.96 × 6 (i.e. 38.2 to 61.8).
At the 10% significance level, we would obtain a z of 1.65 from Table 3.1,

resulting in an acceptance interval of 50 ± 1.65 × 6 = 40.1 to 59.9.
Therefore, if for instance a sample statistic had a value of 61, we would ac-

cept the null hypothesis at the 5% significance level, but reject it at the 10%
significance level.
The fundamental assumptions in all parametric methods is that the data be-

ing analysed follows a normal distribution — parametric methods can only be
applied to data with known distributions. Because of this restriction, parametric
methods are less “robust” than non-parametric methods, as they will give er-
roneous results if applied to data that does not follow the assumed distribution
(which is usually the normal distribution). On the other hand, they are better able
to reject a null hypothesis than non-parametric tests, a property that is usually
referred to as being more “powerful”.

36 3 Statistical Tools for Describing Experimental Data

3.3.2 Determining Whether or not a Distribution is Normal

As stated above, all parametric tests assume that the distribution underlying the
data is (approximately) normal. Often, however, this is not known a priori, and
if we want to use parametric tests it is necessary to investigate whether the a
normal distribution describes the data well or not.
For very small sample sizes (n < 10) it is usually not possible to deter-

mine whether the data points follow a normal distribution or not. Because tests
designed for normally distributed data will give erroneous results if the data fol-
lows some other distribution, it is advisable to use non-parametric tests, rather
than parametric ones, because non-parametric tests make no assumptions about
underlying distributions.
For sample sizes n > 10, the simplest method to see whether the under-

lying distribution is normal or not is to use the human eye and to compare
the histograms of the data in question with that of a normal distribution. Fig-
ure 3.4 shows the histogram of the obstacle avoidance behaviour of a mobile
robot shown in Figure 4.12, in comparison with the histogram of a normal dis-
tribution. Even with the naked eye it is obvious that that distribution is more
bimodal (two distinct peaks) rather than normal.

Figure 3.4. Histogram of robot obstacle avoidance in comparison with the histogram of a
normal distribution

A more refined graphical technique is to plot the data on so-called normal
probability paper, whose coordinates are chosen such that normally-distributed
data appears as a line. One then tests visually whether the data actually fits a line
well or not.
In Scilab, the equivalent of plotting on normal probability paper can be

achieved by the following two commands (note that the first command stretches
over three lines):

3.3 Parametric Methods to Compare Samples 37

p l o t 2 d ([0 sum (abs (a)<0 . 2 5) sum (abs (a)< 0 . 5) sum (abs (a)<1)
sum (abs (a)<2) sum (abs (a)<3) l e n g t h (a)] ,
[0 2 0 3 8 . 3 6 8 . 2 9 5 . 4 9 9 . 7 1 0 0])

xpo ly ([0 l e n g t h (a)] , [0 1 0 0])

where a is the sample to be analysed. Figure 3.5 shows plots of a normally
distributed random number sequence and a uniformly distributed random number
sequence, using this method.

Ο
Plot on normal probability paper

Distribution of variable

Ο
Plot on normal probability paper

Distribution of variable

Figure 3.5. Histogram and plot on normal probability paper of a normal distribution (left) and
a uniform distribution (right). For the normal distribution, a plot on normal probability paper
results in a straight line, for any other distribution this is not the case

3.3.3 Dependent or Independent Samples?

Some tests are given for “independent” or “dependent” samples. “Dependent
samples” refers to pairs of data, for instance measurements of the same robot’s
performance before and after some modification. As a rule of thumb, samples
are dependent if you can’t shuffle the two sets of data without losing informa-
tion: if you shuffle paired data such as before-after type data, you will lose vital
information, hence such data is dependent. On the other hand, shuffling the data
of a sample of one robot brand, and that of another robot brand, will not lose
information: such data is independent.
Another way of describing paired data is that this is data where one isn’t in-

terested in the statistical properties of either sample, but in the difference between
the samples.

38 3 Statistical Tools for Describing Experimental Data

3.3.4 Comparing Two Samples: The t-Test for Independent Samples

It is often useful to have some measure of performance of a particular algorithm,
control mechanism, etc. If, for example, two different control programs pro-
duced two different means of a particular result, it is necessary to decide whether
there is a significant difference between these two means, in order to determine
whether one of the two programs produces better results than the other.
The t-test is used to compare two means µ1 and µ2 from normally distributed

values, whose standard deviations are (roughly) equal. The null hypothesis H0

that is to be tested is µ1 = µ2.
The test statistic used in the t-test is the value T given in Equation 3.6; if T

lies outside the acceptance interval, the null hypothesisH0 is rejected:

T =
µ1 − µ2√

(n1 − 1)σ2
1 + (n2 − 1)σ2

2

√
n1n2(n1 + n2 − 2)

n1 + n2

(3.6)

with n1 and n2 being the number of data points in experiment 1 and experiment 2
respectively, µ1 and σ1 mean and standard deviation of experiment 1, and µ2 and
σ2 mean and standard deviation of experiment 2.
The test is conducted as follows: the critical value of tcrit is determined from

Table 3.3, with k = n1 + n2 − 2 being the number of degrees of freedom (this
Table gives the critical values for a so-called “two-tailed test”, testing whether
one mean is either significantly larger or smaller than the other— in other words,
testing whether the test statistic T is in either tail of the distribution). If the
inequality |T | > tcrit holds, the null hypothesis H0 is rejected, meaning that
the two means differ significantly. The probability that the outcome of the t-test
is wrong, i.e. that it indicates significance when there is none and vice versa,
is dependent on the significance level chosen (see also Section 3.3.1), i.e. the
critical value tcrit selected. It is most common to take take the values for the 5%
significance level (p=0.05), but depending on whether type I or type II errors are
less desirable a different significant level may be more appropriate.

Table 3.3. Critical values tcrit for the two-tailed t-test, at 2%, 5% and 10% significance levels,
for k degrees of freedom

k 1 2 3 4 5 6 7 8
t0.02 31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896
t0.05 12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306
t0.10 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860

k 9 10 14 16 18 20 30 ∞
t0.02 2.821 2.764 2.624 2.583 2.552 2.528 2.457 2.326
t0.05 2.262 2.228 2.145 2.12 2.101 2.086 2.042 1.960
t0.10 1.833 1.812 1.761 1.746 1.734 1.725 1.697 1.645

3.3 Parametric Methods to Compare Samples 39

Instead of using tables such as Table 3.3, the t-distribution can be easily com-
puted, using a range of commercially available software packages. In Scilab, for
instance, tcrit can be computed by typing

[T]=cdft("T",k,P,Q)

where k is the number of degrees of freedom, Q half the significance level desired
(because we are using a two-tailed test), and P=1-Q.
To determine, for instance, tcrit for k=19 at a significance level of 5%, one

gets

[T]=cdft("T",19,0.975,0.025)
T = 2.0930241

t-Test Example: Dead End Escape

A robot control program is written to enable robots to withdraw from dead ends.
In a first version of the program, the robot takes the following time in seconds to
escape from a dead end:
Exp1=(10.2, 9.5, 9.7, 12.1, 8.7, 10.3, 9.7, 11.1, 11.7, 9.1).
After the program has been improved, a second set of experiments yields

these results: Exp2=(9.6, 10.1, 8.2, 7.5, 9.3, 8.4).
These results are shown in Figure 3.6. Do they indicate that the second pro-

gram performs significantly better?

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � � � � �
� � � � � �Time taken

to escape [s]

Program 1
Program 2

Figure 3.6. Results obtained by two different dead-end-escape programs

40 3 Statistical Tools for Describing Experimental Data

Answer: Assuming that the outcome of the experiments has a normal (Gaus-
sian) distribution4, we can apply the t-test to answer this question. µ1 =
10.21, σ1 = 1.112, µ2 = 8.85, σ2 = 0.977.
Applying Equation 3.6 yields

T = 10.21−8.85√
(10−1)1.1122+(6−1)0.9972

√
10×6(10+6−2)

10+6
= 2.456 .

As k = 10 + 6 − 2, tα = 2.145 (from Table 3.3). The inequality
|2.456| > 2.145 holds, the null hypothesisH0 (i.e. µ1 = µ2) is rejected, which
means that the second program performs significantly better than the first one,
the probability for this statement to be erroneous is 0.05.

3.3.5 The t-Test for Dependent Samples

If two tests were conducted with the same subject in each test, for example the
same robot executing task x and task y, the data obtained from such an experi-
ment is paired, or “dependent”. In this case, the following t-test is applicable.
To conduct the test, the td-statistic is computed as indicated in Equation 3.7:

td =
µx − µy

SD

; (3.7)

with µx and µy being the means of the two measurements, and SD the standard
error of the difference, given in Equation 3.8:

SD =
1√
N

√√√√∑
D2 − (

∑
D)2

N

N − 1
(3.8)

D = X − Y is the difference between the score achieved in task x and the
corresponding score in task y, and N the total number of paired scores. “Score”
here refers to the measurement by which we assess the system under investiga-
tion — e.g. in the following example the speed attained by a mobile robot.
To determine significance, one compares td against the critical tcrit values

given in Table 3.3 for k = N − 1 degrees of freedom, at the desired significance
level. If |td| > tcrit, the null hypothesis (that there is no significant difference
between the two samples) is rejected.

t-Test for Dependent Samples Example: Rubber Wheels vs Plastic Wheels

The wheels of a factory transportation robot are changed from hard plastic
wheels to softer rubber wheels, which give a better grip. The robot is sent along
4 Sample sizes are really too small to make this assumption in this case, but have been chosen
so small to make the example clearer.

3.3 Parametric Methods to Compare Samples 41

identical tracks on different surfaces, first with the plastic wheels attached, then
with the rubber wheels. For each type of wheel 12 experiments are conducted,
and the average speed attained by the robot in each experiment is logged. We
would like to know whether there is a significant difference in robot speed when
using rubber wheels, as opposed to using plastic wheels. As the experiment is
carried out under identical environmental conditions, and using the same robot,
this is a paired test, the samples are dependent.
The test results obtained are shown in Table 3.4, together with some calcula-

tions useful to this test.

Table 3.4. Speeds attained by the same robot, using plastic or rubber wheels respectively,
executing the same task for each pair of data

Sum µ
Rubber 58. 31. 82. 87. 40. 42. 71. 45. 35. 23. 13. 24. 45.9
Plastic 59. 146. 111. 111. 75. 60. 57. 81. 13. 59. 106. 37. 76.3

D - 1. - 115. - 29. - 24. - 35. - 18. 14. - 36. 22. - 36. - 93. - 13. -364 -30.3
D2 1 13225 841 576 1225 324 196 1296. 484. 1296. 8649. 169 28282

From Equation 3.8 follows SD = 1√
12

√
28282− (−364)2

12
12−1

= 11.4. With
µrubber = 45.9 and µplastic = 76.3 Equation 3.7 then yields td = 45.9−76.3

11.4
=

−2.66.
With k = N − 1 = 11 degrees of freedom we can see from Table 3.3

that for the 5% significance level tcrit ≈ 2.2. As |td| > tcrit, we reject the
null hypothesis: there is a statistically significant difference between the speeds
achieved, using plastic or rubber tyres. The robot is significantly faster, using
rubber wheels.
In Scilab, we can determine the significance level exactly, using the Scilab

command [P,Q]=cdft("PQ",T,Df):

[Q P]=cdft("PQ",2.66,11)
P =

0.0110934

P is half the significance level of this two-tailed test, so that the result is
significant with p=0.022.
An alternative method of arriving at the same result is to compute an accep-

tance interval, using the t-statistic, and to determine whether the sample statistic
in question lies within the acceptance interval or not.
In this case, our null hypothesis is H0 : ∆0 = µrubber − µplastic = 0.

The mean difference in speed is µdiff = 30.3, the standard deviation σdiff =
39.6, and the standard error σdiff = σdiff√

n
= 8.8. For a two-tailed t-test at

42 3 Statistical Tools for Describing Experimental Data

a significance level of 5% we get t=2.2 for k = 12 − 1 degrees of freedom
from Table 3.3. The acceptance interval therefore is ∆0 ± t × σdiff , i.e. in this
example 0 ± 2.2 × 8.8 (-19.3 to 19.3). The mean difference of 30.3 is outside
that acceptance interval, therefore the change in speed is significant at the 5%
significance level.

3.3.6 Comparing More than Two Samples: Parametric Analysis of
Variance

In Section 3.3.4 we discussed how significant difference between two means of
parametric data can be determined. We might, for instance, have run a mobile
robot on two different kinds of floor surface, and measured the average speed
of the robot for each “treatment”, wanting to know whether the robot speed is
significantly different between the two cases.
But if we now introduce a third treatment, i.e. a third kind of floor covering

on which we let the robot run, the t-test introduced in Section 3.3.4 can no longer
be used. Do not be tempted to compare two-out-of-three treatments repeatedly!
Instead, we can apply an analysis of variance (ANOVA), which will allow

us to test for the significance of the difference between more than two sample
means, on the assumption that the underlying distributions are (approximately)
normal (if the underlying distributions are not normal, or unknown, use the non-
parametric ANOVA test described in Section 3.4.4).
The null hypothesis again is µ1 = µ2 . . . = µk. The underlying assumption

of the ANOVA test is this: if the k samples are really all taken from the same
distribution (null hypothesis), then we should be able to estimate the population
variance by two methods: i) by computing the variance among the k sample
means (“between-column-variance”), and ii) by computing the variance within
each sample individually (“within-column-variance”). If all sample means are
indeed from the same population, we should get the same variance, irrespective
of how we computed it.
To conduct the analysis of variance, then, we first need to determine the

between-column-variance σ2
b (Equation 3.9) and the within-column-variance σ

2
w

(Equation 3.10):

σ2
b =

∑
nj(µj − µ)2

k − 1
(3.9)

nj is the size of the jth sample, µj the mean of the jth sample, µ the grand
mean of all samples combined, and k the number of samples (treatments).

σ2
w =

∑
(
nj − 1
nT − k

)σ2
j (3.10)

nT =
∑

nj is the total sample size, and σ2
j is the variance of the jth sample.

3.4 Non-Parametric Methods to Compare Samples 43

Once we have determined these two variances, we determine the F ratio
given in Equation 3.11, and test it for significance:

F =
σ2

b

σ2
w

(3.11)

Parametric ANOVA: Testing for Significance

To test for significance, we use the F -distribution given in Table 3.18 on page 62.
The number of degrees of freedom f1 of the numerator is given by f1 = k − 1,
the number of degrees of freedom f2 of the denominator is given by f2 = nT−k.
If the F value calculated using Equation 3.11 exceeds the critical value obtained
from Table 3.18, the null hypothesis is rejected, meaning that there is a significant
difference between the k sample means. Otherwise, the null hypothesis that µ1 =
µ2 . . . = µk is accepted.

Parametric ANOVA Example: Dead End Escape Revisited

In the following example we will revisit the example of the two different robot
control programs to achieve dead-end-escape behaviour, given in Section 3.3.4.
For convenience, the times taken to escape from a dead end by either program

are given again in Table 3.5.

Table 3.5. Times in seconds taken by two different dead-end-escape programs

Program A 10.2 9.5 9.7 12.1 8.7 10.3 9.7 11.1 11.7 9.1
Program B 9.6 10.1 8.2 7.5 9.3 8.4

In this example, we have nA = 10, nB = 6, nT = 16, xA = 10.2, σA =
1.1, xB = 8.9, σB = 0.98, µ = 9.7 and k = 2.
Following Equations 3.9 and 3.10 we get σ2

b = 10(10.2−9.7)2+6(8.9−9.7)2

2−1
=

6.3, σ2
w = 10−1

16−2
1.12 + 6−1

16−2
0.982 = 1.1. This results in an F -value of F =

6.3
1.1

= 5.7.
The degrees of freedom for the statistical analysis are f1 = k − 1 = 1 and

f2 = nT − k = 14. From Table 3.18 we see that the critical value Fcrit = 4.6.
The computed F -value exceeds Fcrit, we therefore reject the null hypothesis,
confirming that there is a significant difference between the performance of the
two programs.

3.4 Non-Parametric Methods to Compare Samples

Some experiments do not generate actual measurable values (such as speed, time,
etc.), but merely a ranked performance. For instance, two floor cleaning robots

44 3 Statistical Tools for Describing Experimental Data

may have been assessed by human volunteers, watching the cleaning operation
and assessing the “quality” of performance on some arbitrary scale. The experi-
menter might want to know whether the performance of both robots is essentially
the same, or whether one robot is perceived to be better than the other. Parametric
methods such as the t-test cannot be used in this case, because no parametric data
is available. It may also be the case that the data to be analysed is not normally
distributed, but follows some other distribution. This is where non-parametric
methods come in.
Unlike parametric methods, non-parametric methods make no assumptions

about the distribution of the data that is being analysed; they are therefore more
“robust”, because they can be used to analyse data of any distribution. They
are, however, less powerful (able to reject a null hypothesis) than parametric
methods, and if it is established that a parametric method could be used, then
that should be the method of choice.
Most non-parametric methods analyse rank, i.e. how high or low a score was

achieved in a particular task, and compare whether the rank distribution is in
agreement with a particular null hypothesis or not. We look at several rank-based
non-parametric methods in this section.

3.4.1 Median and Median Confidence Interval

In the case of normally distributed data, we had defined the “expected value”, the
mean, by Equation 3.2, and given a confidence interval for the mean by Equa-
tion 3.4.
For data that is not normally distributed, or for data for which the distribution

is unknown, a similar measure can be given, the median. The median is simply
the central value in our data. If, for instance, the following measurements were
obtained from a noisy sensor [18 22 25 29 43 59 67 88 89], then 43 is the cen-
tral value and therefore the median (for datasets of even length the median is
determined as the average of the two central values).
To determine confidence intervals of the median, we can use Table 3.6. This

table indicates the lower and upper bound of the confidence interval as the num-
ber r of values inwards from the two extreme points of the dataset.

Table 3.6. Confidence interval for median, given as number r of data values inwards from the
two extreme values in the data set (5% significance level, after [Barnard et al., 1993])

n 1-5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
r5% not avail. 1 1 1 2 2 2 3 3 3 4 4 5 5 5 6 6 6 7 7 8 8 8 9 9 10

In our example (n=9) we get r=2, the confidence interval at the 5% signifi-
cance level for the median is therefore [22,88]. As in the case of mean and stan-

3.4 Non-Parametric Methods to Compare Samples 45

dard error, the median is often reported with its confidence interval, for example
in bar charts, or when cited in the literature.

3.4.2 Non-Parametric Testing for Differences Between Two Distributions
(Mann-WhitneyU -Test or Wilcoxon Rank Sum Test)

The Mann-Whitney U -statistic (also known as the Wilcoxon rank sum test) de-
termines whether two independent samples5 have been drawn from the same or
two different populations. It can be viewed as the non-parametric counterpart of
the t-test for independent samples, and can be used for comparing samples of
different or identical sizes.
The null hypothesis of the test is that the median and the shape of both distri-

butions is the same, the alternative hypothesis that it is not. Because the U -test
does not require knowledge of any parameters of the underlying distributions,
it is particularly useful for small sample sizes (for which it is not possible to
determine whether they are normally distributed or not) or for distributions for
which it is known that they are not normally distributed. A further strength of
the U -statistic is that it can be applied for data that has been measured on some
arbitrary scale, as long as the data is ordinal: the U -test is a non-parametric test,
making no assumptions about the underlying distributions.

Non-Parametric Testing for Differences: Example 1

As an example, let us assume that a particular household robot is marketed both
in Japan and Europe. The manufacturer would like to know whether customer
acceptance in these two markets is significantly different (at the 5% significance
level), and therefore obtains subjective “satisfaction” scores (0-100 points) from
15 European and 14 Japanese households.
The performance scores obtained are shown in Table 3.7.

Table 3.7. “Customer satisfaction” scores obtained by the robot in the two different markets

Europe 85 60 90 10 33 67 70 76 33 89 95 50 15 45 56
Japan 60 65 30 25 45 70 50 43 35 61 70 30 29 56

The data shown in Table 3.7 is non-Gaussian (not normally distributed), and
the Mann-WhitneyU test can be used to investigate the null hypothesis that there
is no significant difference between the scores obtained in the two markets.
To conduct the test, we first have to rank the performance data, as shown in

Table 3.8 (note that for tied ranks the average between the ranks is entered).
5 The Mann-Whitney test can only be used to compare two distributions. To compare more
than two data sets, the non-parametric ANOVA should be used (Section 3.4.4).

46 3 Statistical Tools for Describing Experimental Data

Table 3.8. Ranked scores obtained in Europe and Japan

Rank Score Market Score Europe Score Japan
1 95 Europe 1
2 90 Europe 2
3 89 Europe 3
4 85 Europe 4
5 76 Europe 5
7 70 Europe 7
7 70 Japan 7
7 70 Japan 7
9 67 Europe 9
10 65 Japan 10
11 61 Japan 11
12.5 60 Europe 12.5
12.5 60 Japan 12.5
14.5 56 Europe 14.5
14.5 56 Japan 14.5
16.5 50 Europe 16.5
16.5 50 Japan 16.5
18.5 45 Europe 18.5
18.5 45 Japan 18.5
20 43 Japan 20
21 35 Japan 21
22.5 33 Europe 22.5
22.5 33 Europe 22.5
24.5 30 Japan 24.5
24.5 30 Japan 24.5
26 29 Japan 26
27 25 Japan 27
28 15 Europe 28
29 10 Europe 29

Total 195 240

We then compute the so-called U -statistic (Equation 3.12) for each sample,
the mean of the U -statistic (Equation 3.13) and the standard error of the U -
statistic (Equation 3.14), with n1 and n2 being the number of items in group 1
and 2 resp., and R1 and R2 the sums of ranks for groups 1 and 2 respectively.

U1 = n1n2 +
n1(n1 + 1)

2
− R1 (3.12)

U2 = n1n2 +
n2(n2 + 1)

2
− R2

µu =
n1n2

2
(3.13)

3.4 Non-Parametric Methods to Compare Samples 47

σu =

√
n1n2(n1 + n2 + 1)

12
(3.14)

In this example, we get the following results:

U1 = 15 × 14 +
15(15 + 1)

2
− 195 = 135

U2 = 15 × 14 +
14(14 + 1)

2
− 240 = 75 (3.15)

µu =
15 × 14

2
= 105

σu =

√
15 × 14(15 + 14 + 1)

12
= 22.9

If both n1 and n2 are larger than 10, the U -statistic can be approximated by
the normal distribution [Levin and Rubin, 1980, p. 486]. This is the case here.
For smaller sample sizes, see page 49.
Figure 3.7 shows this situation. We are interested to determine whether the

two distributions differ or not at the 5% significance level, i.e. whether U is
significantly above or below the mean. This is therefore a two-tailed test, and we
are interested to determine whether U lies inside the acceptance region, or in the
5% of area outside the acceptance region.
Perhaps the easiest way to determine this is to use a table of the standard

normal distribution, such as Table 3.2. What we would like to establish is the
value z for which the area underneath the normal distribution curve between µ
and z equals the size of the acceptance region indicated in Figure 3.7. In our case
this area should be 47.5% of the total area underneath the normal distribution
curve, because we are establishing significance at the 5% level, and are using a
two-tailed test.
We see from Table 3.2 that for z=1.96 the area between µ and z underneath

the normal distribution curve is 0.475 (47.5% of the area under the curve of the
normal distribution), therefore z=1.96 is the answer we are looking for in this
example.
The lower and upper limits of the acceptance region are then given by Equa-

tion 3.16:

µu − zσu < A < µu + zσu (3.16)

where A is the acceptance region, µu the mean of the U -statistic given in Equa-
tion 3.13 and σu the standard deviation of theU -statistic, given in Equation 3.14.
In this case we get 105 − 1.96 × 22.9 < A < 105 + 1.96 × 22.9, which

results in an acceptance region of 60.12 to 149.88 (Figure 3.7).

48 3 Statistical Tools for Describing Experimental Data

2.5%
of area

2.5%
of area

Acceptance Region
for 5% Significance Level

47.5 % of area 47.5 % of area

U=135µµ−1.96σ=60.12 µ+1.96σ=149.88

Figure 3.7. Graphical representation of the household-robot-example

U1=135 and U2 = 75 are clearly inside the acceptance region, and we there-
fore have no reason to reject the null hypothesis at the 5% level of significance
(consequently, we assume that there is no significant difference between the
rankings of the robot in the two distributions).
Looking at Table 3.2, we can furthermore see that for 41% of the area un-

derneath the normal distribution curve (i.e. a significance level of 18%) we get a
z=1.34, resulting in an acceptance region of 105 ± 1.34 × 22.9 (74.3 to 135.7),
which means that even at a significance level of 18% we would not reject the null
hypothesis that the robot ranks equally highly in terms of customer satisfaction
in both markets.
The z value can, of course, also be obtained using readily available software

packages. In Scilab one obtains z by typing

cdfnor("X",0,1,P,Q)

with Q being half of the desired significance level, and P=1-Q. In this particular
case this means

cdfnor("X",0,1,0.975,0.025)
ans =

1.959964

3.4 Non-Parametric Methods to Compare Samples 49

Likewise, the significance level for a given value of U can be determined in
Scilab by

[Q P]=cdfnor("PQ",U,mu,sigma)

with P being half the significance level (two-tailed test!), mu the mean of the U -
statistic (Equation 3.13) and sigma the standard error of the U -statistic (Equa-
tion 3.14).

U-Test Example 2: Dead End Escape Revisited

In Section 3.3.4 we analysed the dead end escape behaviour achieved, using
two different control programs. For convenience, the results obtained both with
program A and with program B are shown again in Table 3.9.

Table 3.9. Results obtained using two different dead-end-escape programs

Program A 10.2 9.5 9.7 12.1 8.7 10.3 9.7 11.1 11.7 9.1 Sum
Rank A 5 10 7.5 1 13 4 7.5 3 2 12 65
Program B 9.6 10.1 8.2 7.5 9.3 8.4
Rank B 9 6 15 16 11 14 71

Here, the size of one sample is smaller than 10, and instead of assuming
a normal distribution of the U -statistic, we compare the two values U1 and U2

(Equation 3.12) against the critical valueUcrit for theU -test, given in Table 3.10.
If the smaller of < U1, U2 > falls below Ucrit, we reject the null hypothesis.

Table 3.10. Critical values for the U -statistic for sample sizes n < 10, at the 5% significance
level

n1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n2 = 3 - 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
n2 = 4 - 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 14
n2 = 5 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20
n2 = 6 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
n2 = 7 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
n2 = 8 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41
n2 = 9 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48
n2 = 10 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55

From Equation 3.12 we get

50 3 Statistical Tools for Describing Experimental Data

U1 = 10 × 6 +
10(10 + 1)

2
− 65 = 50 (3.17)

U2 = 10 × 6 +
6(6 + 1)

2
− 71 = 10 (3.18)

As U2 < Ucrit = 11 (Table 3.10), we reject the null hypothesis, confirming
our earlier result that there is a significant difference between the performance
of the two programs.

3.4.3 The Wilcoxon Test for Paired Observations

This is a variation of the test introduced in Section 3.4.2, which can be used if in
experiments where the outcomes of experiments are paired by some criterion.

Paired Observations: Example 1

Let’s assume that a robot manufacturer produces two models of domestic robots,
and would like to know whether customers in his main market prefer one model
over the other. He therefore selects 15 potential customers, and asks them to
assess both model 1 (M1) and model 2 (M2) on a subjective scale of 0 to 100,
with respect to “customer satisfaction”. Scores are “paired” in this case, because
each customer evaluates both robots. The results obtained are shown in rows i
and ii of Table 3.11.

Table 3.11. “Customer satisfaction” on a subjective scale of 1-100 of robot models M1 and
M2

i M1 54 62 67 42 13 89 56 45 68 23 30 24 35 87 70
ii M2 54 38 43 8 22 73 50 48 27 26 13 27 67 66 66
iii M1-M2 0 24 24 34 -9 16 6 -3 41 -3 17 -3 -32 21 4
iv rank 10.5 10.5 13 6 7 5 2 14 2 8 2 12 9 4

Sum
v ranks + 10.5 10.5 13 7 5 14 8 9 4 T+ = 81
vi ranks - 6 2 2 2 12 T− = 24

The null hypothesis is that there is no significant difference between the cus-
tomers’ evaluation of model 1 and model 2, in other words, that the difference
between the two satisfaction ratings is not significantly different from zero. The
manufacturer would like this hypothesis to be tested at the 10% significance
level.

Testing the Hypothesis

To conduct the test, we first need to compute the differences in evaluation for
each pair. If the null hypothesis was indeed true, the probability that model 1

3.4 Non-Parametric Methods to Compare Samples 51

obtains a higher score should be the same as the probability that model 2 scores
higher. The test is based on this assumption.
Having computed the differences between results (row iii in Table 3.11), we

rank the absolute values of these differences, in a similar way to the ranking
performed in the U -test (Section 3.4.2). Differences of zero are ignored, and
the ranks of ties are the average rank over all tied values, as before. Row iv of
Table 3.11 shows the results.
We then compute the sum T+ of all “positive” ranks, and the sum T− of all

“negative” ranks (rows v and vi of Table 3.11).
The expected value µT and the standard deviation σT are given by Equa-

tions 3.19 and 3.20:

µT =
n(n + 1)

4
(3.19)

σT =

√
(2n + 1)µT

6
(3.20)

with n being the number of non-zero differences.
In this particular example we get

µT =
14(14 + 1)

4
= 52.5

σT =

√
(2 × 14 + 1)52.5

6
= 15.9

Wilcoxon showed that if the number of non-zero differences n is greater
than 8 (n = 14 in this case), and the null hypothesis is true, then T+ and T−
approximately follow a normal distribution [Wilcoxon, 1947]. We can therefore
apply a similar technique to that used in Section 3.4.2, and compare T+ and
T− against the standard normal distribution given in Table 3.1: if T+ and T−
are outside the acceptance region given by Equation 3.16, the null hypothesis is
rejected, otherwise it is accepted.
For the 10% significance level, we find z=1.65 from Table 3.1, which gives

an acceptance region for T+ and T− of 52.5 ± 1.65 × 15.9 (i.e. 26.3 to 78.7).
T+ and T− are outside the acceptance region, and we therefore reject the null
hypothesis at the 10% significance level: customer satisfaction is not identical
for both robots.
Or, put differently, for z = 1.79 we get an acceptance region of 52.5 ±

1.79 × 15.9 (24 to 80.9). The corresponding significance level for z = 1.79 for
a two-tailed test is 7.4%, meaning that we would reject the null hypothesis at the
7.4% significance level.

52 3 Statistical Tools for Describing Experimental Data

In Scilab this significance level can be determined by

[Q P]=cdfnor("PQ",TP,mu,sigma)
P =

0.0367970

with TP being T+, mu=µT , sigma=σT and P half the significance level
(two-tailed test).

Paired Observations Example 2: Rubber Wheels vs Plastic Wheels
Revisited

Let us look at the example analysed earlier, the comparison of a robot’s speed
using rubber tyres vs the speed using plastic tyres (Section 3.3.5).
The speeds achieved are shown again in Table 3.12.

Table 3.12. Speeds attained by the same robot, using plastic or rubber wheels respectively,
executing the same task for each pair of data

Rubber 58 31 82 87 40 42 71 45 35 23 13 24
Plastic 59 146 111 111 75 60 57 81 13 59 106 37
Diff 1 115 29 24 35 18 - 14 36 - 22 36 93 13 Sum
Rank 1 12 7 6 8 4 3 9.5 5 9.5 11 2
Rank + 1 12 7 6 8 4 9.5 9.5 11 2 T+=70
Rank - 3 5 T−=8

Following Equations 3.19 and 3.20 we obtain µT = 12(12+1)

4
= 39 and

σT =
√

(2×12+1)39

6
= 12.7.

Again using a 5% significance level, we find z = 1.96 from Table 3.2, and
determine the acceptance interval as 39±1.96×12.7 = [14, 64]. T+ and T− are
outside the acceptance interval, and, as before, we reject the null hypothesis: the
speeds attained with rubber wheels are significantly different to those attained
with plastic wheels.

Paired Observations Example 3: Comparing Path Planners

Two versions of a robot path planner (A and B) are compared by running each
path planner on the same robot, in the same environment. The results obtained
are shown in Table 3.13.
Again, we compute the differences in performance, and rank their absolute

values, as shown in Table 3.14. Differences of zero are again ignored, and tied
ranks are awarded the average rank.

3.4 Non-Parametric Methods to Compare Samples 53

Table 3.13. Performance indicators of two path planners, being executed on the same robot
and performing the same task

A 30 50 40 70 20 50 40 80 70 10 10
B 20 70 30 60 50 50 50 60 20 50 20

Table 3.14. Non-parametric analysis of the data presented in Table 3.13

Sum
Performance A 30 50 40 70 20 50 40 80 70 10 10
Performance B 20 70 30 60 50 50 50 60 20 50 20
Difference 10 -20 10 10 -30 0 -10 20 50 -40 -10
RankA 3 3 3 - 6.5 10 TA=25.5
RankB 6.5 8 - 3 9 3 TB=29.5

Applying Equations 3.19 and 3.20, we get

µT =
10(10 + 1)

4
= 27.5,

σT =

√
(2 × 10 + 1)27.5

6
= 9.81.

In this example, we are interested to determine whether there is a signifi-
cant difference between the two path planners at the 8% significance level. From
Table 3.2 we get z = 1.75 for this significance level; the acceptance interval
therefore is 27.5 ± 1.75 × 9.81 (i.e. 10.3 to 44.7, Equation 3.16). Both TA and
TB are within the acceptance interval, therefore the null hypothesis (that there is
no significant difference between the two path planners) cannot be rejected.

3.4.4 Testing for Difference Between Two and More Groups
(Non-Parametric ANOVA, Kruskal Wallis Test)

Section 3.3.6 presented a method of determining whether more than two samples
are significantly different or not, assuming that the underlying distributions are
normal.
This assumption, however, is not always met, and the non-parametric analysis

of variance described in this section can be used in those cases. As in other non-
parametric tests, the non-parametric ANOVA is based on rank.
As in the case of parametric ANOVA, discussed in Section 3.3.6, we are

interested to determine whether there is a significant difference between k groups
of data, or not.

54 3 Statistical Tools for Describing Experimental Data

To conduct the test, combine the data from all groups and rank it (tied ranks
are awarded the average, as usual). Then add the ranks attained by each group,
yielding k values Rk.
We then compute theH statistic given in Equation 3.21:

H =
12

N(N + 1)
(

k∑

i=1

R2
i

ni

) − 3(N + 1) (3.21)

N is the total number of data points in all k groups, and ni the number of data
points in group i.
The sampling distribution of theH statistic is a very close approximation of

the χ2 distribution, if each of the k samples includes at least five observations
(even for three observations the relationship is close). Therefore, to determine
whether there are any differences at all between the groups, we compare theH-
statistic against the critical values given in the χ2 table (Table 3.24 on page 71),
for k − 1 degrees of freedom. If H exceeds the critical value from the table,
the null hypothesis (that there is no significant difference between groups) is
rejected.

3.4.5 Kruskal Wallis Test Example: Dead End Escape Revisited

Earlier we determined whether two different dead-end-escape programs were
significantly different, or not. We used the t-test (Section 3.3.4) and the Mann-
Whitney U -test (Section 3.4.2). We will now use the Kruskal-Wallis test as a
third method to analyse the data given in Table 3.15.

Table 3.15. Results obtained using two different dead-end-escape programs

Program A 10.2 9.5 9.7 12.1 8.7 10.3 9.7 11.1 11.7 9.1 Sum
Rank A 5 10 7.5 1 13 4 7.5 3 2 12 65
Program B 9.6 10.1 8.2 7.5 9.3 8.4
Rank B 9 6 15 16 11 14 71

In this particular example, we have k = 2, N = 16. H is computed as
H = 12

16(16+1)
(652

10
+ 712

6
) − 3(16 + 1) = 4.7, following Equation 3.21.

For k − 1 = 1 degrees of freedom we get a critical value χ0.05 = 3.84
from Table 3.24 on page 71. H exceeds χ0.05, and we therefore reject the null
hypothesis and confirm our earlier findings that there is a significant difference
between the two dead-end-escape performances.

3.5 Testing for Randomness in a Sequence 55

3.5 Testing for Randomness in a Sequence

It is sometimes interesting to know whether two samples (e.g. outcomes of a
test, result of some operation, etc.) appear in random order, or whether there is
order in the way that the two samples are drawn. For example, this information is
needed to determine whether a time series is stationary or not (see Section 4.3.2).
By way of example, let us assume we have a floor cleaning robot that is in-

tended to move in a random manner. We log the left and right turns the robot
takes, and would like to know whether they are truly randomly distributed, or
not. We obtain the following sequence: LLRRLLRRLLRRLLRRLLLRRRLLL-
RRRLLLLRRRRLLLLRRRRLLRR. This sequence does not look very random
at all, and the following one sample runs test [Bendat and Piersol, 2000] will
confirm that indeed this sequence is not random.
In order to conduct the test, we need to determine the numbers n1 and n2 of

how often symbol 1 (L) and symbol 2 (R) occur, and the number r of runs,
i.e. sub-sequences of identical symbols. In this case n1 = n2 = 24, and r =
18 (LL-RR-LL-RR-LL-RR-LL-RR-LLL-RRR-LLL-RRR-LLLL-RRRR-LLLL-
RRRR-LL-RR).
Mean µr and standard error σr of the r statistic are given by Equations 3.22

and 3.23. In this case we get µr = 25 and σr = 3.4:

µr =
2n1n2

n1 + n2

+ 1 (3.22)

σr =

√
2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 − 1)

(3.23)

where n1 is the number of occurrences of symbol 1, and n2 the number of oc-
currences of symbol 2.
The following runs test can be applied if either n1 or n2 is larger than 20,

because in this case the distribution r of runs follows the normal distribution,
which means we can apply our usual procedure of determining a confidence
interval within which the number of actually observed runs r would lie if our
null hypothesis (H0: the symbols appear in random order) were correct. We will
do the analysis at a significance level of 0.05; Figure 3.8 shows the situation.
The test is intended to determine whether our observed number of runs r is

within the acceptance interval around µr ± zσr, i.e. above the lower acceptance
limit and below the upper acceptance limit. This is, therefore, a two-tailed test,
and the acceptance interval underneath the normal distribution curve covers 95%
of the area underneath the curve.
From Table 3.2 we find that for a significance level of 0.05 (i.e. for an area

between µr and the end of the upper confidence interval of 0.475) z = 1.96, and
the the acceptance interval is therefore 25 ± 1.96 × 3.4 = [18.3, 31.7]. r = 18

56 3 Statistical Tools for Describing Experimental Data

2.5%
of area

2.5%
of area

47.5 % of area 47.5 % of area

µ=25
µ−1.96σ=18.3 µ+1.96σ=31.7

r=18

Acceptance Region
at 5% Significance Level

Figure 3.8. Acceptance interval for the example given in Section 3.5

is outside that acceptance interval, and we therefore reject the null hypothesis:
the turns performed by the robot are not in a random sequence.
The following Scilab code will conduct a runs test for randomness of a se-

quence consisting of the two symbols “T” and “F”:
f u n c t i o n [] = r u n s t e s t (run)
/ / U l r i c h Nehmzow
/ / De t e rmines whe the r a s equence ” run ” i s random or no t
/ / (” run ” i s a sequence o f %T and %F)

/ / Compute n1 , n2 and r
n1=sum (run==%T)
n2=sum (run==%F)
r =1

i f ((n1<20) & (n2<20))
p r i n t f (” There i s no t enough d a t a t o conduc t t h e t e s t \n ”)
a b o r t

end
l a s t = run (1)
f o r i =2 : l e n g t h (run)

i f (l a s t ˜= run (i))
r = r +1
l a s t = run (i)

end
end
/ / Now per fo rm t h e t e s t f o r randomness
mur=1+(2∗n1∗n2) / (n1+n2)
s igmar= s q r t ((2∗ n1∗n2∗(2∗n1∗n2−n1−n2)) / ((n1+n2−1)∗(n1+n2) ˆ 2))

/ / [P Q]= cd f no r (”PQ” , r , mur , s i gmar) / / P / 2 i s t h e s i g n i f i c a n c e l e v e l

3.6 Parametric Tests for a Trend (Correlation Analysis) 57

P= i n p u t (’ P l e a s e e n t e r t h e d e s i r e d s i g n i f i c a n c e l e v e l ’)
lowerbound= cd f no r (”X” , mur , s i gmar , P /2,1−P / 2)
upperbound= cd f no r (”X” , mur , s i gmar ,1−P / 2 , P / 2)
p r i n t f (” The a c c e p t . i n t e r v a l f o r r i s %4.1 f t o %4.1 f\n ” , lowerbound , upperbound)
i f ((r>lowerbound) & (r<upperbound))

p r i n t f (” r=%d i s w i t h i n t h a t r e g i o n , t h e r e f o r e t h e number o f r un s
i s random , H0 i s a c c e p t e d .\ n ” , r)

e l s e
p r i n t f (” r=%d i s o u t s i d e t h a t r e g i o n , t h e r e f o r e t h e number o f r un s i s no t
random , H0 i s r e j e c t e d .\ n ” , r)

end

3.6 Parametric Tests for a Trend (Correlation Analysis)

The previous sections dealt with establishing whether there are statistically sig-
nificant differences between two (or more) groups, or not. They did not address
the question whether two sets of data are correlated, i.e. whether knowing the
first data set reveals anything about the second data set or not, in other words,
whether there is a causal relationship between the two variables or not.
In this section, therefore, we will look at tests that establish exactly that: is

one data set predicted by the other data set (and if yes, to what degree), or is there
no correlation between the two sets?
In tests for a trend one selects one of the two data sets,X , as the independent

variable, and establishes to what degree the other data set, Y , is dependent on
X . Y is, not surprisingly, called the dependent variable.

3.6.1 Parametric Linear Regression Analysis

The tests discussed so far did not investigate whether there was a causal relation-
ship between two sets of data. However, in many experimental situations such a
relationship exists. For instance, people’s weight and height are linked in a causal
relationship (they are “correlated”). If one of the two variables is chosen as the
independent variable (i.e. selected by the user), the other variable is dependent
upon that choice: if I identify the height of a person as 1.80 m, then his weight
will be “determined” by that within some confidence interval.
Regression analysis investigates the relationship between independent and

dependent variable. It is a parametric test, and assumes that the dependent vari-
able is normally distributed (this is not necessary for the independent variable).
For example, let us assume we have measured speed and battery charge of a

mobile robot, and obtained the values given in Table 3.16. Plotted against each
other, these values result in the scatter-plot shown in Figure 3.9.
To the naked eye it seems obvious that there is a causal relationship between

battery charge and robot speed, indicated by the line drawn through the data. We
would like to know what this relationship is mathematically, and whether it is
significant or not.

58 3 Statistical Tools for Describing Experimental Data

Table 3.16. Example: battery charge in relation to robot speed

Charge [Volts] 12.0 11.7 11.5 11.1 10.8 10.4
Speed [cm/s] 41 45 41 40 32 34

Speed [cm/s]

Charge [Volt]

30 32 34 36 38 40 42 44 46 48
10.2

10.4

10.6

10.8

11.0

11.2

11.4

11.6

11.8

12.0

12.2

♦

♦

♦

♦

♦

♦

Figure 3.9. Example: relationship between battery charge and speed of a mobile robot

Linear Regression

Given the independent variable (battery charge), we can predict the dependent
variable (robot speed), using the linear relationship indicated in Figure 3.9. Lin-
ear regression is the method of determining parameters a and b in the equation
for a straight line given in Equation 3.24:

Y = aX + b (3.24)

with Y being the dependent variable, X the independent variable, and a and b
slope and intercept point defined in Equations 3.25 and 3.26:

b =
∑

XY − nXY
∑

X2 − nX
2 (3.25)

a = Y − bX (3.26)

3.6 Parametric Tests for a Trend (Correlation Analysis) 59

with X and Y again the independent and dependent variable resp., X and Y
their means, and n the number of pairs of independent and dependent variables
available.
In this example the independent variable (battery charge) was measured as

given in Table 3.16. Following Equations 3.25 and 3.26 this results in a linear
relationship between charge and speed as given in Equation 3.27:

speed = 6.7 × charge − 36.9 (3.27)

Instead of computing a and b by hand, using Equations 3.25 and 3.26, they
can of course also be computed using mathematical packages. In Scilab the fol-
lowing does the trick:

-->[a b]=reglin(charge,speed)
b =

- 36.906103
a =

6.7323944

This is a prediction of robot speed, given the battery charge, and the next
question that arises is: how good is this prediction?
The standard error of estimate se, defined in Equation 3.28, does this. It

measures the scatter of the observed values around the regression line:

se =

√∑
(Y − Ŷ)2

n − 2
=

√∑
Y 2 − a

∑
Y − b

∑
XY

n − 2
(3.28)

with X being the values of the independent variable, Y being a value of the
dependent variable, Ŷ being a value of the dependent variable, estimated using
Equation 3.24, and n the number of pairs of independent and dependent variable
used to obtain the regression line.
The larger the standard error of estimate se, the larger the scatter around the

regression line, and the weaker the correlation between independent and depen-
dent variable. For se = 0, on the other hand, we expect a perfect prediction of
the dependent variable, given the independent variable.
In the specific example given here, we get a standard error of estimate of

se =
√

39.15
6−2

= 3.13, as shown in Table 3.17.
Similar to the standard deviation defined earlier, and assuming that the ob-

served points are normally distributed around the regression line, we will expect
to find 68% of all points in the interval of±1se around the regression line, 95.5%

60 3 Statistical Tools for Describing Experimental Data

Table 3.17. Computing the standard error of estimate in the example given in Table 3.16

X Y Ŷ = 6.7X − 36.9 (Y − Ŷ)2

12 41 43.5 6.25
11.7 45 41.5 12.32
11.5 41 40.2 0.72
11.1 40 37.5 6.40
10.8 32 35.5 11.97
10.4 34 32.8 1.49∑

39.15

in an interval of ±2se around the regression line, and 99.7% of all points in the
interval ±3se around the regression line.
This allows us to make statements concerning the confidence we have in the

prediction made. If, for instance, we would like to predict the speed of the robot,
given a battery charge of 11.3 Volt, we predict (Equation 3.27) speed=6.7 ×
charge -36.9=38.8. We can now say that we are 68% certain the robot’s speed
will be in the interval 38.8± 3.13, or 95.5% certain that it will be in the interval
38.8 ± 2 × 3.13.
Strictly speaking, these calculations are only applicable to sample sizes of

n > 30, because for smaller sample sizes it is incorrect to apply the prediction
intervals of the normal distribution, and the conclusions drawn here are therefore
inaccurate. However, they demonstrate the mechanism. To correct for smaller
sample sizes, one needs to take the t-distribution shown in Table 3.3. If, for in-
stance, we would like to be 95% certain that the true speed of the robot lies within
the computed confidence interval, we find t=2.776 for k = n−2 = 4 degrees of
freedom and 5% significance level in Table 3.3. With 95% certainty, therefore,
the robot’s speed will be within the interval 38.8 ± 2.776 × 3.13.
One final note on relationships between independent and dependent variable

that are not linear. Although linear regression analysis assumes a linear relation-
ship, and tests for significance based on that assumption, it can be used for non-
linear relationships, too, by transforming the data sets so that a linear relationship
is established. For instance, log-transforming will linearise an exponential rela-
tionship between independent and dependent variable.

Linear Regression: Testing for Significance (F-Statistic)

There are two tests for significance that can be applied to linear regression: i) to
test whether variance in the dependent variable is accounted for by correspond-
ing changes in variance of the independent variable (F-test) and ii) to test whether
the difference between regression line and data points (the “error”) differs signif-
icantly from zero (t-test). Both of these tests will be discussed in the following—
if either fails, there is no significant causal relationship between independent and
dependent variable, and the regression line is best not used as a predictor.

3.6 Parametric Tests for a Trend (Correlation Analysis) 61

F-Statistic

The F-statistic allows us to test for significance and tests whether variance in the
dependent variable Y is accounted for by variance in the independent variable
X . F is determined by Equation 3.29:

F =
RSS

DMS
(3.29)

RSS =
S2

XY

SXX

(3.30)

DMS =
DSS

n − 2
(3.31)

DSS = SY Y − S2
XY

SXX

(3.32)

SXX =
∑

X2 − (
∑

X)2

n
(3.33)

SY Y =
∑

Y 2 − (
∑

Y)2

n
(3.34)

SXY =
∑

XY − (
∑

X)(
∑

Y)
n

(3.35)

with n the number of data pairs used in the regression analysis.
The resulting F value is checked against the critical values given in Ta-

ble 3.18, the degrees of freedom are f1 = 1 for the numerator, and f2 = n − 2
for the denominator. Table 3.18 gives the critical values for the 5% significance
level. To be significant, computed F values must be greater than those shown in
Table 3.18. Values for other significance levels can be found in statistical tables,
or computed. In Scilab, this is done by the following command:

F=cdff("F",DFN,DFD,Q,P)

with DFN being the degrees of freedom of the numerator, DFD the degrees of
freedom of the denominator, P the significance level and Q=1-P.
Coming back to the example given in Table 3.16, we get SXX = 1.775,

SY Y = 118.83, and SXY = 11.95. From Equation 3.29 follows F = 8.38.
The critical value of F for f1 = 1 andf2 = 6 − 2 = 4 is Fcrit = 7.71
(Table 3.18). The computed F value of 8.38 is greater than that, indicating that
the correlation between battery charge and robot speed is significant at the 5%
level.

t-Test

We can also test whether a predicted and an actually observed value differ sig-
nificantly or not, using the t-statistic defined in Equation 3.36:

62 3 Statistical Tools for Describing Experimental Data

Table 3.18. Critical values for the F distribution (p=0.05). f1values are the degrees of freedom
of the numerator, f2 those of the denominator

f2 V a l u e s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ∞

1 161.45 18.51 10.13 7.71 6.61 5.99 5.59 5.32 5.12 4.96 4.84 4.75 4.67 4.60 4.54 4.49 4.45 4.41 4.38 4.35 3.84
2 199.50 19.00 9.55 6.94 5.79 5.14 4.74 4.46 4.26 4.10 3.98 3.89 3.81 3.74 3.68 3.63 3.59 3.55 3.52 3.49 3.00
3 215.71 19.16 9.28 6.59 5.41 4.76 4.35 4.07 3.86 3.71 3.59 3.49 3.41 3.34 3.29 3.24 3.20 3.16 3.13 3.10 2.60

f1 4 224.58 19.25 9.12 6.39 5.19 4.53 4.12 3.84 3.63 3.48 3.36 3.26 3.18 3.11 3.06 3.01 2.96 2.93 2.90 2.87 2.37
5 230.16 19.30 9.01 6.26 5.05 4.39 3.97 3.69 3.48 3.33 3.20 3.11 3.03 2.96 2.90 2.85 2.81 2.77 2.74 2.71 2.21

V 6 233.99 19.33 8.94 6.16 4.95 4.28 3.87 3.58 3.37 3.22 3.09 3.00 2.92 2.85 2.79 2.74 2.70 2.66 2.63 2.60 2.10
a 7 236.77 19.35 8.89 6.09 4.88 4.21 3.79 3.50 3.29 3.14 3.01 2.91 2.83 2.76 2.71 2.66 2.61 2.58 2.54 2.51 2.01
l 8 238.88 19.37 8.85 6.04 4.82 4.15 3.73 3.44 3.23 3.07 2.95 2.85 2.77 2.70 2.64 2.59 2.55 2.51 2.48 2.45 1.94
u 9 240.54 19.38 8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71 2.65 2.59 2.54 2.49 2.46 2.42 2.39 1.88
e 10 241.88 19.40 8.79 5.96 4.74 4.06 3.64 3.35 3.14 2.98 2.85 2.75 2.67 2.60 2.54 2.49 2.45 2.41 2.38 2.35 1.83
s 11 242.98 19.40 8.76 5.94 4.70 4.03 3.60 3.31 3.10 2.94 2.82 2.72 2.63 2.57 2.51 2.46 2.41 2.37 2.34 2.31 1.79

12 243.91 19.41 8.74 5.91 4.68 4.00 3.57 3.28 3.07 2.91 2.79 2.69 2.60 2.53 2.48 2.42 2.38 2.34 2.31 2.28 1.75
13 244.69 19.42 8.73 5.89 4.66 3.98 3.55 3.26 3.05 2.89 2.76 2.66 2.58 2.51 2.45 2.40 2.35 2.31 2.28 2.25 1.72
14 245.36 19.42 8.71 5.87 4.64 3.96 3.53 3.24 3.03 2.86 2.74 2.64 2.55 2.48 2.42 2.37 2.33 2.29 2.26 2.22 1.69
15 245.95 19.43 8.70 5.86 4.62 3.94 3.51 3.22 3.01 2.85 2.72 2.62 2.53 2.46 2.40 2.35 2.31 2.27 2.23 2.20 1.67
16 246.46 19.43 8.69 5.84 4.60 3.92 3.49 3.20 2.99 2.83 2.70 2.60 2.51 2.44 2.38 2.33 2.29 2.25 2.21 2.18 1.64
17 246.92 19.44 8.68 5.83 4.59 3.91 3.48 3.19 2.97 2.81 2.69 2.58 2.50 2.43 2.37 2.32 2.27 2.23 2.20 2.17 1.62
18 247.32 19.44 8.67 5.82 4.58 3.90 3.47 3.17 2.96 2.80 2.67 2.57 2.48 2.41 2.35 2.30 2.26 2.22 2.18 2.15 1.60
19 247.69 19.44 8.67 5.81 4.57 3.88 3.46 3.16 2.95 2.79 2.66 2.56 2.47 2.40 2.34 2.29 2.24 2.20 2.17 2.14 1.59
20 248.01 19.45 8.66 5.80 4.56 3.87 3.44 3.15 2.94 2.77 2.65 2.54 2.46 2.39 2.33 2.28 2.23 2.19 2.16 2.12 1.57
21 248.31 19.45 8.65 5.79 4.55 3.86 3.43 3.14 2.93 2.76 2.64 2.53 2.45 2.38 2.32 2.26 2.22 2.18 2.14 2.11 1.56
22 248.58 19.45 8.65 5.79 4.54 3.86 3.43 3.13 2.92 2.75 2.63 2.52 2.44 2.37 2.31 2.25 2.21 2.17 2.13 2.10 1.54
23 248.83 19.45 8.64 5.78 4.53 3.85 3.42 3.12 2.91 2.75 2.62 2.51 2.43 2.36 2.30 2.24 2.20 2.16 2.12 2.09 1.53
24 249.05 19.45 8.64 5.77 4.53 3.84 3.41 3.12 2.90 2.74 2.61 2.51 2.42 2.35 2.29 2.24 2.19 2.15 2.11 2.08 1.52
25 249.26 19.46 8.63 5.77 4.52 3.83 3.40 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.28 2.23 2.18 2.14 2.11 2.07 1.51
26 249.45 19.46 8.63 5.76 4.52 3.83 3.40 3.10 2.89 2.72 2.59 2.49 2.41 2.33 2.27 2.22 2.17 2.13 2.10 2.07 1.50
27 249.63 19.46 8.63 5.76 4.51 3.82 3.39 3.10 2.88 2.72 2.59 2.48 2.40 2.33 2.27 2.21 2.17 2.13 2.09 2.06 1.49
28 249.80 19.46 8.62 5.75 4.50 3.82 3.39 3.09 2.87 2.71 2.58 2.48 2.39 2.32 2.26 2.21 2.16 2.12 2.08 2.05 1.48
29 249.95 19.46 8.62 5.75 4.50 3.81 3.38 3.08 2.87 2.70 2.58 2.47 2.39 2.31 2.25 2.20 2.15 2.11 2.08 2.05 1.47
30 250.10 19.46 8.62 5.75 4.50 3.81 3.38 3.08 2.86 2.70 2.57 2.47 2.38 2.31 2.25 2.19 2.15 2.11 2.07 2.04 1.46
∞ 254.3 19.50 8.53 5.63 4.36 3.67 3.23 2.93 2.71 2.54 2.40 2.30 2.21 2.13 2.07 2.01 1.96 1.92 1.88 1.84 1.00

t = |Y − Ŷ

se

| (3.36)

with Y being an observed measurement of the dependent variable, Ŷ a predicted
value, and se the standard error of the estimate defined in Equation 3.28. Let’s
assume we actually measured the robot’s speed as 36.2, having a charge of 11.3
Volt. Is this difference between actually measured value (36.2) and predicted
value (38.8) significant or not at the 5% level? Following Equation 3.36, we
get a t-value of t = | 36.2−38.8

3.13
| = 0.8. From Table 3.3 we get a critical value

(n − 2 = 6 − 2 = 4 degrees of freedom) of 2.776. However, 0.8 is below
this critical value, and therefore there is no significant difference between the
prediction and the actually measured value.

3.6.2 Pearson’s Linear Correlation Coefficient r

The linear correlation coefficient r (Pearson’s r), which measures the association
between two continuous variables x and y, is given by Equation 3.37:

r =
∑

i(xi − x)(yi − y)
√∑

i(xi − x)2
√∑

i(yi − y)2
(3.37)

with r being Pearson’s linear correlation coefficient, and x and y the means of
the xis and the yis. r assumes a value between -1 (perfect negative correlation—

3.6 Parametric Tests for a Trend (Correlation Analysis) 63

points lie on a perfectly straight line with negative slope) to +1 (perfect positive
correlation — points lie on a perfectly straight line with positive slope), with
small values of r indicating that there is no strong linear correlation between x
and y.

Testing for Significance of Pearson’s r

Even two random variables might have a non-zero r, and the question we would
like to answer is whether a specific r signifies a statistically significant correla-
tion or not.
Table 3.19 gives the significance levels for Pearson’s correlation coefficient

r for df = N − 2 degrees of freedom (N is the number of data pairs). If we
are interested whether r is significantly above or below zero, we have to use a
two-tailed test, otherwise a one-tailed test.

Table 3.19. Significance levels for Pearson’s r
Level of significance for one-tailed test
.05 .025 .01 .005
Level of significance for two-tailed test

df .10 .05 .02 .01
1 .988 .997 .9995 .9999
2 .900 .950 .980 .990
3 .805 .878 .934 .959
4 .729 .811 .882 .917
5 .669 .754 .833 .874
6 .622 .707 .789 .834
7 .582 .666 .750 .798
8 .549 .632 .716 .765
9 .521 .602 .685 .735
10 .497 .576 .658 .708
15 .412 .482 .558 .606
20 .360 .423 .492 .537
25 .323 .381 .445 .487
30 .296 .349 .409 .449
40 .257 .304 .358 .393
60 .211 .250 .295 .325
80 .183 .217 .256 .284
100 .164 .195 .230 .254

Linear Correlation Coefficient: Scilab Code

The following Scilab program will compute Pearson’s linear correlation coeffi-
cient.
f u n c t i o n [r]= pe a r s on (a , b)
/ / U l r i c h Nehmzow
/ / Computes t h e l i n e a r c o r r e l a t i o n c o e f f i c i e n t (Pea r son ’ s r)
/ / be tween two t ime s e r i e s a and b

a=a−mean (a)
b=b−mean (b)
numera t o r =0
f o r i =1 : l e n g t h (a)

64 3 Statistical Tools for Describing Experimental Data

numera t o r = numera t o r +a (i)∗ b (i)
end
r = numera t o r / (s q r t (sum (a ˆ 2)) ∗ s q r t (sum (b ˆ 2)))

/ / Now an a l y s e f o r s t a t i s t i c a l s i g n i f i c a n c e
/ / Note : t h i s program app r ox ima t e s t h e f u n c t i o n f o r t h e
/ / c r i t i c a l v a l u e s f o r d e g r e e s o f f reedom beyond df =60 ,
/ / i f t h e r e s u l t i s ” c l o s e ” , t h e r e s u l t s hou l d be checked wi th
/ / t a b u l a t e d c r i t i c a l v a l u e s

r c r i t = [0 . 9 9 7 0 00 0 . 9 5 0 0 00 0 . 8 7 8 0 00 0 . 8 1 1 0 00 0 . 7 5 4 0 00 0 . 7 0 7 0 00
0 . 6 6 6 0 0 0 0 . 6 3 2 0 0 0 0 . 6 0 2 0 0 0 0 . 5 7 6 0 0 0 0 . 5 5 3 0 0 0 0 . 5 3 2 0 0 0 0 . 5 1 4 0 0 0
0 . 4 9 7 0 0 0 0 . 4 8 2 0 0 0 0 . 4 6 8 0 0 0 0 . 4 5 6 0 0 0 0 . 4 4 4 0 0 0 0 . 4 3 3 0 0 0 0 . 4 2 3 0 0 0
0 . 4 1 3 0 0 0 0 . 4 0 4 0 0 0 0 . 3 9 6 0 0 0 0 . 3 8 8 0 0 0 0 . 3 8 1 0 0 0 0 . 3 7 4 0 0 0 0 . 3 6 7 0 0 0
0 . 3 6 1 0 0 0 0 . 3 5 5 0 0 0 0 . 3 4 9 0 0 0 0 . 3 4 4 0 0 0 0 . 3 3 9 0 0 0 0 . 3 3 5 0 0 0 0 . 3 3 0 0 0 0
0 . 3 2 5 0 0 0 0 . 3 2 1 0 0 0 0 . 3 1 7 0 0 0 0 . 3 1 2 0 0 0 0 . 3 0 8 0 0 0 0 . 3 0 4 0 0 0 0 . 3 0 1 0 0 0
0 . 2 9 8 0 0 0 0 . 2 9 4 0 0 0 0 . 2 9 1 0 0 0 0 . 2 8 8 0 0 0 0 . 2 8 5 0 0 0 0 . 2 8 2 0 0 0 0 . 2 7 9 0 0 0
0 . 2 7 6 0 0 0 0 . 2 7 3 0 0 0 0 . 2 7 1 0 0 0 0 . 2 6 8 0 0 0 0 . 2 6 6 0 0 0 0 . 2 6 4 0 0 0 0 . 2 6 2 0 0 0
0 . 2 5 9 0 0 0 0 . 2 5 7 0 0 0 0 . 2 5 5 0 0 0 0 . 2 5 2 0 0 0 0 . 2 5 0 0 0 0]

d f= l e n g t h (a)−2
i f d f<=60

c r i t i c a l = r c r i t (d f)
e l s e

c r i t i c a l =0.195+ exp (−0.05∗ df)
end
p r i n t f (” The c r i t i c a l v a l u e f o r s t a t i s t i c a l

s i g n i f i c a n c e i s %5.2 f \n ” , c r i t i c a l)
i f abs (r)> c r i t i c a l

p r i n t f (” Th e r e f o r e t h e computed r o f
%5.2 f i s s i g n i f i c a n t (p<5\%, two− t a i l e d)\ n ” , r)

e l s e
p r i n t f (” Th e r e f o r e t h e computed r o f

%5.2 f i s no t s i g n i f i c a n t (p>5\%, two− t a i l e d)\ n ” , r)
end

Linear Correlation Coefficient (Pearson’s r): Example

For the example mentioned in Section 3.6.1 on page 57, where we were inter-
ested to see whether there was a correlation between robot speed and battery
charge, the Pearson correlation coefficient is computed as r = 0.823. We would
like to know whether this r is significant at the 5% significance level.
Because we want to know whether r is either significantly smaller or bigger

than zero, a two-tailed test applies. For df = N − 2 = 4 we find a critical
value of 0.811. The r in this case is just above that critical value, and is therefore
significant.

3.7 Non-Parametric Tests for a Trend 65

3.7 Non-Parametric Tests for a Trend

3.7.1 Spearman Rank Correlation

Section 3.6.2 presented correlation analysis as a measure of closeness of as-
sociation between two variables, based on numerical values, and assuming an
underlying normal distribution.
Some experiments, however, do not generate numerical data for analysis, and

correlation analysis cannot be applied in those cases. But provided rankings re-
garding size or merit are available, a correlation analysis is still possible: the
Spearman rank correlation analysis discussed in this section.
Besides being applicable to situations where only rankings are available,

this rank correlation analysis has the further advantages that it is computation-
ally much cheaper than correlation analysis based on numerical values, is much
less influenced by extreme values in the data than analysis based on numeri-
cal values, and, in certain cases, can be used to detect non-linear correlation as
well.However, rank correlation should not be used if it is possible to calculate
the linear correlation coefficient given in Equation 3.37. The Spearman rank cor-
relation test computes a rank correlation coefficient rs between -1 (perfect corre-
lation, negative slope) and +1 (perfect correlation, positive slope), with the null
hypothesis being that there is no correlation between the data sets (rs = 0). If a
significant correlation is detected, this means that the rank correlation coefficient
rs differs significantly from zero, and that one of the two data sets can be used
to make a meaningful prediction of the other.
When there are no ties in the data, rs is given by Equation 3.386:

rs = 1 − 6
∑

d2

n(n2 − 1)
(3.38)

with d being the difference between the ranks for each pair of observations, and
n the total number of paired observations. Equation 3.38 can be used whether
the distributions of the two data sets are normal or not.

Spearman Rank Correlation Example: Cleaning Robot

A floor cleaning robot has four different types of behaviour: moving in a spi-
ral, moving in a straight line, avoiding obstacles and following a wall. The data
given in Table 3.20 shows how often wall following behaviour was observed in
a particular experiment, and how often the right bump sensor of the robot was
triggered. Figure 3.10 shows the scatter diagram for this data. The question is: is
this relationship significantly different from rs = 0 (the null hypothesis) or not?
To compute rd, we rank both columns of Table 3.20 individually, and com-

pute the difference of ranks for each pair. This is shown in Table 3.21. As always
6 Tied ranks introduce an error to Equation 3.38.

66 3 Statistical Tools for Describing Experimental Data

Table 3.20. Experiment with floor cleaning robot: relationship between signals on the robot’s
right bumper and wall following behaviour

Experiment Nr. Nr of right bumps Nr of wall follows
1 18 4
2 12 3
3 21 6
4 13 3
5 22 7
6 40 9
7 38 12
8 8 4
9 41 12

Occurrences

behaviour
wall following

Signals on
right bumper

of

0 10 20 30 40 50
2

4

6

8

10

12

14

♦

♦♦

♦

♦

♦

♦

♦ ♦

Figure 3.10. Scatter diagram for the data shown in Table 3.20

in rank analyses, tied ranks are awarded the average rank (i.e. 3rd and 4th rank
tied each get rank “3.5”, the next rank after that is “5”).
With n=9 we get rs = 1 − 6∗12.5

9(92−1)
= 0.896. Is this a significant deviation

from rs = 0, our null hypothesis?

Spearman Rank Correlation: Testing for Significance

To determine significance in the Spearman rank correlation test, one applies one
of two criteria: for n < 30 one computes the acceptance region using Table 3.22.
For larger n the sampling distribution of rs is approximately normal, and we can
use Table 3.2.

3.7 Non-Parametric Tests for a Trend 67

Table 3.21. Experiment with floor cleaning robot: relationship between signals on the robot’s
right bumper and wall following behaviour (raw data, ranks and rank differences)

Experiment Nr. Nr of right bumps Nr of wall follows Rank bumps Rank WF d2

1 18 4 4 3.5 0.25
2 12 3 2 1.5 0.25
3 21 6 5 5 0
4 13 3 3 1.5 2.25
5 22 7 6 6 0
6 40 9 8 7 1
7 38 12 7 8.5 2.25
8 8 4 1 3.5 6.25
9 41 12 9 8.5 0.25∑

12.5

We will first look at the case n < 30. This is the case of the floor cleaning
robot; we will therefore analyse the data given above.
Our null hypothesis is that there is no statistically significant correlation in

the ranked data, the alternative hypothesis is that there is a significant correlation
in the ranked data. We investigate these hypotheses at the 5% significance level.
Because we would consider both too small and too large rs as beyond expecta-
tion, a two-tailed test is appropriate.
Table 3.22 shows that for a n = 9 pairs the critical values for rs are ±0.68,

i.e. the lower limit of the acceptance region is -0.68, the upper limit is 0.68. Our
computed rank correlation coefficient of rs = 0.896 is outside the acceptance
region, we therefore reject the null hypothesis that rS = 0, meaning that there is
indeed a statistically significant correlation between bumps on the right bumper
sensor and the robot executing wall following behaviour.

Table 3.22. Critical values for Spearman’s rank correlation rs for two-tailed tests (5% signif-
icance level) (after [Levin and Rubin, 1980]). n is the number of data pairs

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
.90 .83 .75 .71 .68 .64 .61 .58 .55 .53 .52

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
.50 .49 .47 .46 .45 .44 .42 .42 .41 .40 .39 .38 .37 .37 .36

If n is larger than 30, the sampling distribution of rs is approximately nor-
mal, and we can use the standard error σrs

given in Equation 3.39 to compute
acceptance intervals for rs.

σrs
=

1√
n − 1

(3.39)

68 3 Statistical Tools for Describing Experimental Data

By way of example, let’s assume that we continued the experimentation with
the floor cleaning robot for another 31 experiments, so that n=40. rs evaluates to
0.53.
For a two-tailed test — we are interested whether the rank correlation co-

efficient is significantly below or above the null hypothesis of rs = 0 — at a
significance level of 5%, we find from Table 3.2 (page 33) z=1.96. The limits of
our acceptance region are 0± zσrs

. In this particular case, the lower limit of our
acceptance region is −1.96 1√

40−1
= −0.31, the upper limit of the acceptance

region is 0.31. The computed rs of 0.53 is outside that acceptance region, and
again the null hypothesis of rs = 0 is rejected.

Spearman Rank Correlation: Scilab Code

The following program computes the Spearman rank correlation coefficient and
tests for significance:
f u n c t i o n [r s]= spea rmanr (x , y)
g e t f (’ r a n k i n g . s c i ’)
/ / U l r i c h Nehmzow
/ / Computes t h e non−p a r am e t r i c Spearman rank c o r r e l a t i o n c o e f f i c i e n t
/ / be tween v e c t o r s x and y

rankx= r a nk i n g (x)
ranky= r a nk i n g (y)
d= rankx−r anky
n= l e n g t h (x)
r s =1−((6∗sum (d ˆ 2)) / (nˆ3−n))
p r i n t f (” Spearman rank c o r r e l a t i o n c o e f f i c i e n t : % f\n ” , r s)

/ / Now pe r f o rm ing a n a l y s i s f o r s i g n i f i c a n c e
i f n<4

p r i n t f (” Too l i t t l e d a t a f o r s i g n i f i c a n c e a n a l y s i s \n ”)
b r e ak

e l s e i f n<31
c r i t i c a l = [9 9 9 9 9 9 9 9 9 9 9 9 . 9 0 . 8 3 . 7 5 . 7 1 . 6 8 . 6 4 . 6 1 . 5 8 . 5 5

. 5 3 . 5 2 . 5 0 . 4 9 . 4 7 . 4 6 . 4 5 . 4 4 . 4 2 . 4 2 . 4 1 . 4 0 . 3 9 . 3 8 . 3 7 . 3 7 . 3 6]
i f (abs (r s)> c r i t i c a l (n))

p r i n t f (” Th i s c o e f f i c i e n t i s s i g n i f i c a n t (p<5\%)\n ”)
e l s e

p r i n t f (” Th i s c o e f f i c i e n t i s no t s i g n i f i c a n t (p>5\%)\n ”)
end

e l s e
s igma =1/ s q r t (n−1)
i f abs (r s)>1.96∗ s igma

p r i n t f (” Th i s c o e f f i c i e n t i s s i g n i f i c a n t (p<5\%)\n ”)
e l s e

p r i n t f (” Th i s c o e f f i c i e n t i s no t s i g n i f i c a n t (p>5\%)\n ”)
end

end

f u n c t i o n [rnk]= r a nk i n g (a)
/ / U l r i c h Nehmzow
/ / Pe r fo rms a r a nk i n g of v e c t o r a
/ / a s p r e p r o c e s s i n g f o r non−p a r am e t r i c s t a t i s t i c a l t e s t s

[s k]= s o r t (a)

/ / Now produce t h e r a nk i n g v e c t o r
f o r pos =1: l e n g t h (a)

3.8 Analysing Categorical Data 69

/ / r (k (pos)) = pos
r (pos)= pos

end

/ / Now check f o r t i e d r a nk s and a d j u s t t h e r−v e c t o r a c c o r d i n g l y
pos=1
wh i l e pos <= l e n g t h (a)−1

t i e s =1
wh i l e s (pos)== s (pos+ t i e s)

t i e s = t i e s +1
i f pos+ t i e s>=l e n g t h (a)

b r e ak
end

end
r (pos : pos+ t i e s−1)=mean (r (pos : pos+ t i e s −1))
pos=pos+ t i e s
end

/ / Now r e a l l o c a t e r a nk s t o p o s i t i o n i n o r i g i n a l i n p u t v e c t o r
f o r pos =1: l e n g t h (a)

rnk (k (pos)) = r (pos)
end

3.8 Analysing Categorical Data

Mean, standard deviation, t-test and many other statistical analysis methods can
only be applied to continuous-valued data. In robotics experiments, however,
there are many experiments in which results are obtained as “categories”, for
example in classification systems, whose task it is to allocate sensory data to one
of several categories. In this section, we will look at methods of analysing such
categorical data.

Contingency Tables

Nominal variables are defined as variables that are members of an unordered set,
such as for example “colour” or “taste”. It is nominal variables that we consider
here.
For the following considerations, we are interested in determining whether

two nominal variables are associated or not. This question is relevant for example
for classification tasks, where one variable is the input signal, and one the output.
In this case, the question asked is “is the output of the classifier associated with
the input signals?”, in other words, “is the classifier doing a good job?”.
Data of two variables can be displayed in a contingency table, which will al-

low us to perform a so-called crosstabulation analysis. For example, if there was
a robot contest, in which three robots compete a number of times in three differ-
ent disciplines, a contingency table which would state how often each robot won
each contest could be built, and crosstabulation analysis could be used to deter-
mine whether there was a correlation between robot and discipline. This would
establish whether any robot was particularly good at any specific discipline. Fig-
ure 3.23 shows the contingency table for this analysis.

70 3 Statistical Tools for Describing Experimental Data

Table 3.23. Example of a contingency table. nA,X is the number of times robot X won contest
A,N·A the total number of winners in contest A,NZ· the total number of wins of robot Z, etc.

Contest A Contest B Contest C
Robot X nA,X nB,X . . .
Robot Y . . .
Robot Z NZ·

N·A N·B N·C N

3.8.1 Determining the Association Between Two Variables (χ2 Test)

One test to determine the significance of an association between two variables is
the χ2 test.
Let Nij be the number of events where the variable x has value i and vari-

able y has value j. LetN be the total number of events. LetNi· be the number of
events where x has value i, regardless of y, andN·j the number of events where
y has value j, regardless of the value of x:

Ni· =
∑

j Nij ,
N·j =

∑
i Nij ,

N =
∑

i Ni· =
∑

j N·j .

Deriving the Table of Expected Values

The null hypothesis in the χ2 test is that the two variables x and y have no
significant correlation. In order to test this null hypothesis, “expected values”
need to be determined, to express what values we expect to obtain if the null
hypothesis were true. The expected values can either be derived from general
considerations dependent on the application, or from the following reasoning.
In a table such as Table 3.23, nij

N·j
is an estimate of the probability that a

certain event i happens, given j, i.e. nij

N·j
= p(i|j). If the null hypothesis were

true, the probability for a particular value of i, given a particular value of j should
be exactly the same as the probability of that value of i regardless of j, i.e.
nij

N·j
= p(i|j) = p(i).
It is also true that p(i) = Ni·

N
. Under the assumption that the null hypothesis

is true we can therefore conclude that

nij

N·j
=

Ni·
N

(3.40)

which yields the table of expected values nij :

nij =
Ni·N·j

N
(3.41)

3.8 Analysing Categorical Data 71

χ2 is defined in Equation 3.42:

χ2 =
∑

i,j

(Nij − nij)2

nij

(3.42)

The computed value for χ2 (see Equation 3.42) in conjunction with the χ2
.05

probability function (Table 3.24) can now be used to determine whether the as-
sociation between variables i and j is significant or not. For a table of size I by
J , the number of degrees of freedomm is

m = IJ − I − J + 1 (3.43)

If χ2 > χ2
.05 (see Table 3.24) there is a significant correlation between the

variables i and j.

Table 3.24. Table of critical χ2 values, for significance levels of 0.1, 0.05 and 0.01

DOF 10% 5% 1%
1 2.71 3.84 6.63
2 4.61 5.99 9.21
3 6.25 7.81 11.34
4 7.78 9.49 13.28
5 9.24 11.07 15.09
6 10.64 12.59 16.81
7 12.02 14.07 18.48
8 13.36 15.51 20.09
9 14.68 16.92 21.67
10 15.99 18.31 23.21
11 17.28 19.68 24.72
12 18.55 21.03 26.22
13 19.81 22.36 27.69
14 21.06 23.68 29.14
15 22.31 25.00 30.58
16 23.54 26.30 32.00
17 24.77 27.59 33.41
18 25.99 28.87 34.81
19 27.20 30.14 36.19
20 28.41 31.41 37.57

If m is greater than 30, significance can be tested by calculating√
2χ2 − √

2m − 1. If this value exceeds 1.65, there is a significant correlation
between i and j.
Instead of using tables such as Table 3.24, the critical values for the χ2 dis-

tribution can also be computed. In Scilab this is done by

cdfchi("X",DF,Q,P)

72 3 Statistical Tools for Describing Experimental Data

with DF being the number of degrees of freedom, P the significance level chosen,
and Q=1-P.

Practical Considerations Regarding the χ2 Statistic

In order for the χ2 statistic to be valid, the data needs to be well conditioned.
Two rules of thumb determine when this is the case:

1. In the nij table of expected values, no cell should have values below 1. In
cases wherem ≥ 8 and N ≥ 40 no values must be below 4 ([Sachs, 1982,
p. 321]).

2. In the nij table of expected values, not more than 5% of all values should be
below 5.

If either of the above conditions is violated, rows or columns of the contin-
gency table can be combined to meet the two criteria given above.

Example χ2 Test: Assessing Self-Localisation

A mobile robot is placed in an environment that contains four prominent land-
marks, A, B, C and D. The robot’s landmark identification program produces
four responses, α, β, γ and δ to the sensory stimuli received at these four loca-
tions. In an experiment totalling 200 visits to the various landmarks, contingency
Table 3.25 is obtained (numbers indicate the frequency of a particular map re-
sponse obtained at a particular location).

Table 3.25. Contingency table obtained for landmark-identification program

α β γ δ

A 19 10 8 3 NA. = 40

B 7 40 9 4 NB. = 60

C 8 20 23 19 NC. = 70

D 0 8 12 10 ND. = 30

N.α = 34 N.β = 78 N.γ = 52 N.δ = 36 N=200

Is the output of the classifier significantly associated with the location the
robot is at?
Answer: Following Equation 3.41 nAα = 40∗34

200
= 6.8, nAβ = 40∗78

200
= 15.6,

and so on (the table of expected values is Table 3.26).
The table of expected values is well conditioned for the χ2 analysis; no values

are below 4.
Following Equation 3.42, χ2 = (19−6.8)2

6.8
+ (10−15.6)2

15.6
+ . . . = 66.9. The

system has 16−4−4+1 = 9 degrees of freedom (Equation 3.43). χ2
0.05 = 16.9,

according to Table 3.24. The inequality

3.8 Analysing Categorical Data 73

Table 3.26. Table of expected values

α β γ δ

A 6.8 15.6 10.4 7.2
B 10.2 23.4 15.6 10.8
C 11.9 27.3 18.2 12.6
D 5.1 11.7 7.8 5.4

χ2 = 66.9 > χ2
0.05 = 16.9 (3.44)

holds; therefore there is a significant association between robot location and out-
put of the location identification system.

3.8.2 Determining the Strength of an Association: Cramer’s V

The χ2 test is a very general test in statistics, and as such has limited expressive
power. In fact, provided the number of samples contained in a contingency table
is large enough, the test will often indicate a significant correlation between the
variables. This has to do with the “power” of the test, which will amplify even
small correlations beyond the “significance” level, provided enough samples are
available. For this reason, it is better to re-parametrise χ2 so that it becomes
independent from the sample size. This will allow us to assess the strength of an
association, and to compare contingency tables with one another.
Cramer’s V re-parametrises χ2 to the interval 0 ≤ V ≤ 1. V = 0means that

there exists no association between x and y, V = 1 means perfect association.
V is given by Equation 3.45:

V =

√
χ2

Nmin(I − 1, J − 1)
(3.45)

withN being the total number of samples in the contingency table of size I × J ,
andmin(I − 1, J − 1) being the minimum of I − 1 and J − 1.
The following Scilab code will compute χ2 and Cramer’s V , given a contin-

gency tablem:

f u n c t i o n [X2]= c h i s q (m)
/ / U l r i c h Nehmzow
/ / Pe r fo rms a Chi s qua r ed a n a l y s i s f o r t h e c on t i n g e n cy t a b l e m

[r c]= s i z e (m)
N=sum (m)

/ / Compute t h e t a b l e o f e xpe c t e d v a l u e s
f o r i =1 : r

74 3 Statistical Tools for Describing Experimental Data

f o r j =1 : c
n (i , j)= sum (m (: , j)) ∗ sum (m(i , :)) / N

end
end

/ / Now compute c o n t r i b u t i o n s t o Chi s qua r ed
f o r i =1 : r

f o r j =1 : c
x c o n t r i b (i , j) = ((m(i , j)−n (i , j)) ˆ 2) / n (i , j)

end
end
X2=sum (x c o n t r i b)
[p s i g]= c d f c h i (”PQ” ,X2 , r ∗c−r−c +1)
i f (s i g >0.05)

p r i n t f (” There i s no s i g n i f i c a n t c o r r e l a t i o n
between t h e two v a r i a b l e s (p>0.05)\ n ”)

e l s e
p r i n t f (” There i s a s i g n i f i c a n t c o r r e l a t i o n
between t h e two v a r i a b l e s (p<%4.3 f)\ n ” , s i g)

end
v= s q r t (X2 / (sum (m)∗(−1+min (s i z e (m)))))
p r i n t f (” Cramer ’ ’ s V=%f \n ” , v)

Example: Cramer’s V

Two different map-building paradigms are to be compared. Paradigm A yields a
contingency table as given in Table 3.27, paradigm B produces the table shown
in Table 3.28.

Table 3.27. Results of map-building mechanism 1

α β γ δ

A 29 13 5 7 NA. = 54

B 18 4 27 3 NB. = 52

C 8 32 6 10 NC. = 56

D 2 7 18 25 ND. = 52

N.α = 57 N.β = 56 N.γ = 56 N.δ = 45 N=214

The question is: which of the twomechanisms produces a map with a stronger
correlation between robot location and map response?
We use Cramer’s V to answer that question.
The tables of expected values are given in Tables 3.29 and 3.30. Looking at

both tables of expected values, one can see that the data is well conditioned and
meets the criteria listed on page 72.

3.8 Analysing Categorical Data 75

Table 3.28. Results of map-building mechanism 2

α β γ δ ε

A 40 18 20 5 7 NA. = 90

B 11 20 35 10 3 NB. = 79

C 5 16 10 39 5 NC. = 75

D 2 42 16 18 9 ND. = 87

E 6 11 21 9 38 ND. = 85

N.α = 64 N.β = 107 N.γ = 102 N.δ = 81 N.ε = 62 N=416

Table 3.29. Expected values for map-building mechanism 1

α β γ δ

A 14.4 14.1 14.1 11.4
B 13.9 13.6 13.6 10.9
C 14.9 14.7 14.7 11.8
D 13.9 13.6 13.6 10.9

In the case of map-building mechanism 1, we determine χ2 = 111 and
V = 0.42, in the case of mechanism 2 we obtain χ2 = 229 and V = 0.37.
Map 1 has the stronger correlation between map response and location. Both ex-
periments are subject to some random variation, however, so that it is necessary
to run each experiment a number of times, to eliminate the influence of random
noise.

Table 3.30. Expected values for map-building mechanism 2

α β γ δ ε

A 13.8 23.1 22.1 17.5 13.4
B 12.2 20.3 19.4 15.4 11.8
C 11.5 19.3 18.4 14.6 11.2
D 13.4 22.4 21.3 16.9 13
E 13.1 21.9 20.8 16.6 12.7

3.8.3 Determining the Strength of Association Using Entropy-Based
Measures

The χ2 analysis and Cramer’s V allow us to determine whether or not there is a
significant association between rows and columns of a contingency table.
However, what we would also like is some measure of the strength of the as-

sociation. Two quantitative measures of the strength of an association will there-
fore be discussed below.

76 3 Statistical Tools for Describing Experimental Data

The particular scenario we have in mind here is this: a mobile robot explores
its environment, constructs a map, and uses this map subsequently for localisa-
tion.
Whenever the robot is at some physical location L, therefore, its localisation

system will generate a particular response R, indicating the robot’s assumed po-
sition in the world. In a perfect localisation system, the association between L
and R will be very strong, in a localisation system based on random guesswork
the strength of the association between L and R will be non-existent, zero.
Entropy based measures, in particular the entropyH and the uncertainty co-

efficient U , can be used to measure the strength of this association. They are
defined as follows.

Using Entropy to Determine the Strength of Association
Between Nominal Variables

Table 3.31. Example Contingency Table. The rows correspond to the response produced by
the particular localisation system under investigation, and the columns to the “true” location
of the robot as measured by an observer. This table represents 100 data points, and also shows
the totals for each row and column

Location (L)
R 0 2 15 0 1 18
e 10 10 0 0 0 20
s 0 2 1 0 19 22
p 5 7 3 1 1 17
. 0 0 0 23 0 23
(R) 15 21 19 24 21 100

In the example given in Table 3.31, a sample consisting of 100 data points has
been collected. Each data point has two attributes; one corresponding to the loca-
tion predicted by the robot (the robot’s response, R), and the other to the actual
location of the robot measured by an observer (the robot’s true location, L). For
example, Table 3.31 shows one cell containing 19 data points where the robot’s
response was measured as row 3 and the location as column 5.
For contingency table analysis, first of all the row totals Nr· for each re-

sponse r, column totals N·l for each location l and the table total N are calcu-
lated according to Equations 3.46, 3.47 and 3.48 respectively.Nrl is the number
of data points contained in the cell at row r and column l:

Nr· =
∑

l

Nrl (3.46)

3.8 Analysing Categorical Data 77

N·l =
∑

r

Nrl (3.47)

N =
∑

r,l

Nrl (3.48)

The row probability pr·, column probability p·l and cell probability prl can
then be calculated according to Equations 3.49, 3.50 and 3.51:

pr· =
Nr·
N

(3.49)

p·l =
N·l
N

(3.50)

prl =
Nrl

N
(3.51)

The entropy of L,H(L), the entropy of R,H(R) and the mutual entropy of
L and R,H(L,R) are given by Equations 3.52, 3.53 and 3.54 respectively:

H(L) = −
∑

l

p·l ln p·l (3.52)

H(R) = −
∑

r

pr· ln pr· (3.53)

H(L,R) = −
∑

r,l

prl ln prl (3.54)

When applying Equations 3.52, 3.53 and 3.54, bear in mind that
limp→0 p ln p = 0.
For the scenario described above, the most important question we would like

to have an answer for is this: “Given a particular response R of the robot’s lo-
calisation system, how certain can we be about the robot’s current location L?”
This is the entropy of L givenR,H(L | R). If, on the other hand, one particular
location elicits different responses R1 and R2 on different visits, we don’t care.
The important point for robot self-localisation is that each responseR is strongly
associated with exactly one location L.

H(L | R) is obtained as follows:

H(L | R) = H(L,R) − H(R) (3.55)

where

0 ≤ H(L | R) ≤ H(L) (3.56)

This last property (Equation 3.56) means that the range of values for H(L |
R) will be dependent on the size of the environment, becauseH(L) increases as
the number of location bins increases.

78 3 Statistical Tools for Describing Experimental Data

Using the Uncertainty Coefficient to Determine the Strength of Association
Between Nominal Variables

The entropyH is a number between 0 and ln N , whereN is the number of data
points. IfH is 0, the association betweenL andR is perfect, i.e. each responseR
indicates exactly one location L in the world. The largerH becomes, the weaker
is the association between L and R.
The uncertainty coefficient U provides yet another way of expressing the

strength between row and column variables in a contingency table, and it has
two very attractive properties: first of all, U always lies between 0 and 1, irre-
spective of the size of the contingency table. This allows comparisons between
tables of different size. Second, the uncertainty coefficient is 0 for a nonexistent
association, and 1 for a perfect association. This is intuitively the “right” way
round (the stronger the association, the larger the number).
The uncertainty coefficient U of L given R, U(L | R), is given as

U(L | R) ≡ H(L) − H(L | R)
H(L)

(3.57)

A value ofU(L | R) = 0means thatR provides no useful information about
L, and implies that the robot’s response never predicts its true location. A value
of
U(L | R) = 1 means that R provides all the information required about L,
and implies that the response always predicts the true location. It should also be
noted that the ordering of the rows and columns in the contingency table makes
no difference to the outcome of this calculation.
For the symmetric, general case, the uncertainty coefficient U(x, y) is given

by Equation 3.58:

U(x, y) = 2
H(y) + H(x) − H(x, y)

H(x) + H(Y)
(3.58)

Example: Computing the Uncertainty Coefficient

A robot localisation system produces the responses shown in Table 3.31. Is
there a statistically significant correlation between the system’s response, and
the robot’s location?
In order to answer this question, we compute the uncertainty coefficient

U(L | R), according to Equation 3.57. To do this, we need to compute H(L),
H(R) andH(L | R).
By applying Equations 3.52, 3.53, 3.54 and 3.57 we obtain

H(L) = −(15
100

ln 15
100

+ 21
100

ln 21
100

+ . . . + 21
100

ln 21
100

) = 1.598

H(R) = −(18
100

ln 18
100

+ 20
100

ln 20
100

+ . . . + 23
100

ln 23
100

) = 1.603

3.8 Analysing Categorical Data 79

H(L, R) = −(0 + 2
100

ln 2
100

+ 15
100

ln 15
100

+ . . . + 23
100

ln 23
100

+ 0) = 2.180

H(L | R) = 2.180 − 1.603 = 0.577

U(L | R) = 1.598−0.577
1.598

= 0.639.

This is an uncertainty coefficient that indicates a fairly strong correlation
between the the robot’s location and the localisation system’s response.
The following Scilab program computes the uncertainty coefficient:

f u n c t i o n [u]= uc (m)
/ / U l r i c h Nehmzow
/ / Computes t h e u n c e r t a i n t y c o e f f i c i e n t U(x , y) f o r t h e
/ / c o n t i n g e n cy t a b l e m of s i z e [x y]
[x y]= s i z e (m)
n=sum (m)

/ / Compute t h e n e c e s s a r y p r o b a b i l i t i e s
f o r i =1 : x

p i (i)= sum (m(i , :))
end
p i = p i / n

f o r j =1 : y
p j (j)= sum (m (: , j))

end
p j = p j / n
p i j =m/ n

/ / Now compute t h e e n t r o p i e s
hx=0
f o r i =1 : x

i f (p i (i) ˜ = 0)
hx=hx−p i (i)∗ l og (p i (i))

end
end
hy=0
f o r j =1 : y

i f (p j (j) ˜ = 0)
hy=hy−p j (j)∗ l og (p j (j))

end
end
hxy=0
f o r i =1 : x

f o r j =1 : y
i f (p i j (i , j) ˜ = 0)

hxy=hxy−p i j (i , j)∗ l og (p i j (i , j))
end

80 3 Statistical Tools for Describing Experimental Data

end
end
/ / Now compute t h e u n c e r t a i n t y c o e f f i c i e n t
u =2∗ ((hy+hx−hxy) / (hx+hy))

3.9 Principal Component Analysis

This chapter has so far discussed how data can be analysed and compared, us-
ing statistical means. In some cases, however, one is not as much interested in
whether two data sets differ or not, but rather in visualising a single data set in or-
der to understand more about the data’s structure and properties. In these cases,
it can often help to re-present the data in such a way that underlying patterns
become more visible, for example through an appropriate coordinate transfor-
mation. Principal component analysis (PCA) is one such method.
Principal component analysis allows the identification of patterns in data, and

can also be used very successfully for data compression. It is in essence a method
of coordinate transformation, representing the original data in such a way that
the standard deviation of the data is largest along the newly defined coordinates.
These new coordinates are the principal components.
Consider the data distribution shown in Figure 3.11 and Table 3.32.

X

Y

X
X

X
X

X

X

X

X
X

X

Figure 3.11. Example data for principal component analysis. Histograms show the distribution
along the x and y axes

3.9 Principal Component Analysis 81

Table 3.32. Numerical values of the data shown in Figure 3.11

x 0.9 1.2 1.7 1.3 1.4 2.2 2.5 2. 2.9 2.5
y 1.1 1.4 1.3 1. 1.5 2.6 2.2 2.2 1.9 2.1

There are clearly two clusters visible to the naked eye in the data, but using
the coordinates (x, y), as shown in Figure 3.11, neither x nor y can be used
very well to identify which cluster a data point belongs to. This is indicated by
the x and y histogram shown in Figure 3.11. It is, however, possible, to use a
coordinate transform to make the two clusters very easy to distinguish, this is
shown in Figure 3.12.

a

b

X

XX

X
X

X

X

X

X

X

Figure 3.12. The same data as shown in Figure 3.11, but presented along different coordinates
(the principal components). The a axis is the first principal component, the b axis the second.
The two clusters are now clearly distinguishable by using the a coordinate alone

To perform the PCA, data sets have to have zero mean; we therefore first
subtract the mean of x and the mean of y from x and y respectively.
The principal components — the coordinates into which we wish to trans-

form our data — are the eigenvectors of the covariance matrix of the data; we
therefore need to determine the covariance matrix, and then compute eigenvec-
tors and their eigenvalues.

82 3 Statistical Tools for Describing Experimental Data

The covariance matrix C is defined as shown in Equation 3.59, with the co-
variance cov given in Equation 3.60:

C =

⎛
⎜⎜⎝

cov(x, x) cov(x, y) cov(x, z) . . .
cov(y, x) cov(y, y) cov(y, z) . . .
cov(z, x) cov(z, y) cov(z, z) . . .

.

⎞
⎟⎟⎠ (3.59)

cov(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)
n − 1

(3.60)

with x̄ and ȳ being the mean of x and y resp. and n the number of data points
in x and y. The covariance cov(x, y) indicates whether x and y increase (pos-
itive covariance) or decrease (negative covariance) together, or whether the two
dimensions are independent from each other (zero covariance). The covariance
matrix contains all n!

2(n−2)!
covariances that can be computed from n-dimensional

data.
Eigenvalue λj and eigenvector wj of a matrix A are defined by Equa-

tion 3.61:

(A − λjIn)wj = 0 (3.61)

with In being the identity matrix, which has the value “1” along the diagonal,
and zero everywhere else.
To compute eigenvalues and eigenvectors manually, using Equation 3.61 is

difficult for matrices larger than 3x3, and best performed using mathematical
packages.
In Scilab, the covariance matrix covarmat can be constructed as follows:

covarmat=[l*corr(xa,xa,1)/(l-1) l*corr(xa,ya,1)/(l-1);
l*corr(ya,xa,1)/(l-1) l*corr(ya,ya,1)/(l-1)]

with xa and ya being the zero-mean original data, and l the number of data
points in xa and ya.
The eigenvalues can be determined by the command

eigenvalues=spec(covarmat), and the eigenvectors, the principal com-
ponents pcas, by using [eigenvalue,pcas,bs]=bdiag(covarmat).
The following program computes the eigenvectors and their eigenvalues for

two-dimensional data, and performs a coordinate transform of the original data
into PCA space.

f u n c t i o n [pcone , pctwo]= pcc (x , y)
/ / (c) U l r i c h Nehmzow
/ / Computes t h e p r i n c i p a l components o f 2D da t a x and y
/ / Then c o n v e r t s t h e o r i g i n a l d a t a from C a r t e s i a n space i n t o
/ / t h e space o f t h e two p r i n c i p a l components

3.9 Principal Component Analysis 83

xbasc ()
s u b p l o t (2 11)
p l o t 2 d (x , y ,−2)
x t i t l e (’ O r i g i n a l Data ’ , ’ X ’ , ’ Y’)

/ / F i r s t c o n v e r t d a t a i n t o z e r o mean d a t a
xa=x−mean (x)
ya=y−mean (y)

/ / Now compute c o v a r i a n c e ma t r i x
l = l e n g t h (xa)
cova rma t =[l ∗ c o r r (xa , xa , 1) / (l −1) l ∗ c o r r (xa , ya , 1) / (l −1);
l ∗ c o r r (ya , xa , 1) / (l −1) l ∗ c o r r (ya , ya , 1) / (l −1)]

/ / Compute t h e E i g e nv a l u e s
e i g e n v a l u e s = spec (cova rma t)

/ / Compute t h e E i g e n v e c t o r s , which a r e t h e PCAs
[e i g e n v a l u e , pca s , bs]= bd i ag (cova rma t)
p r i n t f (” One p r i n c i p a l component i s ”)
p r i n t f (”% f%f (EV=%f)\ n\n\n ” , pca s (1 , 1) , pca s (2 , 1) , e i g e n v a l u e (1 , 1))
p r i n t f (” The o t h e r p r i n c i p a l component i s ”)
p r i n t f (”\ n%f % f (EV=%f) ” , pca s (1 , 2) , pca s (2 , 2) , e i g e n v a l u e (2 , 2))

p1=pcas (: , 1)
p2=pcas (: , 2)
i f e i g e n v a l u e (1 , 1) < e i g e n v a l u e (2 , 2)

temp=p1
p1=p2
p2=temp

end

/ / Now recompute t h e c o o r d i n a t e s
f o r i =1 : l e n g t h (x)

pcone (i) = [x (i) ; y (i)] ’ ∗ p1
pctwo (i) = [x (i) ; y (i)] ’ ∗ p2

end

s u b p l o t (2 12)
p l o t 2 d (pcone , pctwo ,−2)
x t i t l e (’ Data a f t e r c o o r d i n a t e t r a n s f o rm ’ , ’ PC 1 ’ , ’ PC2 ’)

Applying this program to the data presented in Table 3.32 yields the follow-
ing result:

pcc(x,y);
One principal component is
0.791798 0.610783 (EV=0.650954)

84 3 Statistical Tools for Describing Experimental Data

The other principal component is
-0.610783 0.791798 (EV=0.080713)

As said above, principal component analysis can be used to identify patterns
in data (for example by visualising data along the first principal component), and
(lossy) data compression. In the example given in Figures 3.11 and 3.12, com-
pression can be achieved by representing data by using only one coordinate —
the first principal component — rather than the original two coordinates.

Further Reading

• Richard Levin and David Rubin, Applied elementary statistics, Prentice Hall
1980

• Allen Edwards, Statistical methods, Holt, Rinehart and Winston 1967
• Chris Barnard, Francis Gilbert and Peter McGregor, Asking questions in bi-
ology, Longman 1993

4

Dynamical Systems Theory and Agent Behaviour

Summary. This chapter introduces concepts of dynamical systems theory such as phase
space, phase space reconstruction and analysis of phase space, and their application to the
analysis of behaving agents.

4.1 Introduction

(Physical) systems whose behavioural descriptors are time-dependent are re-
ferred to as dynamical systems. Their behaviour can be described through sta-
tistical measures and mathematical expressions (in particular, differential or dif-
ference equations): the system’s behaviour is described mathematically as mo-
tion through “state space” (or “phase space”), the multi-dimensional space of
the system’s descriptors. The behaviour of a mobile robot is clearly a function of
time, i.e.mobile robots are dynamical systems. It is therefore interesting to apply
dynamical systems theory to the analysis of robot-environment interaction. This
is the purpose of this chapter.

4.2 Dynamical Systems Theory

Dynamical systems theory is the mathematical theory describing dynamical sys-
tems, attempting to describe the behaviour of complex dynamical systems (such
as the interaction of an agent with its environment) through differential equa-
tions. This behaviour is, broadly speaking, an agent’s motion through space,
where “space” in the first instance means “physical space”, but could also mean
other spaces, such as the concept of phase space that will be introduced in Sec-
tion 4.2.1. The concepts of dynamical systems theory have even been expanded
to described agents’ motion through “cognitive space”, in an attempt to describe
cognitive reasoning mathematically.

85

86 4 Dynamical Systems Theory and Agent Behaviour

As a discipline, dynamical systems theory encompasses methods to visualise
an agent’s motion through space, to analyse and classify it, to measure it and to
describe it mathematically. It is therefore an ideal tool to achieve the objectives
outlined in Chapter 2, namely to analyse and describe the behaviour of an agent
(such as a mobile robot) mathematically.

4.2.1 Phase Space

“Phase space” is the term used to describe that space that describes all possi-
ble states of a dynamical system. A particular state in phase space describes the
system fully, it contains all information about the system needed to make a pre-
diction of future states of the dynamical system under investigation.

The Phase Space of The Ideal Pendulum

An ideal pendulum, for instance, has one degree of freedom — the arc φ along
which it is swinging, and the knowledge of the pendulum’s position φ(t) and
its velocity φ̇(t) describes the motion of the pendulum fully, for all times t.
The phase space of the ideal pendulum, therefore, is the two-dimensional space
defined by φ(t) and φ̇(t), and the physical motion of the pendulum can be fully
described by the motion through that phase space.
It turns out that the phase space of the ideal pendulum is an ellipse (see Fig-

ure 4.1). As the pendulum swings backward and forward in physical space, its
(φ, φ̇) coordinates in phase space move from (φmax, 0) through (0,−φ̇max),
(−φmax, 0) and (0, φ̇max) back to (φmax, 0).
The trajectory (“orbit”) through phase space— in the pendulum’s case the el-

lipse shown in Figure 4.1 — is referred to as the “attractor”, because the dynam-
ical system will follow that particular orbit, irrespective of initial conditions —
it is “attracted” to that orbit through phase space.

The Phase Space of Hamiltonian Systems

The phase space of a dynamical system following Hamiltonian mechanics is
defined as position z(t) and impulse p(t) = mv(t) (v is the velocity) along
each degree of freedom the system has. This is a strict definition of “phase space”
and “degree of freedom”; however, the term “degree of freedom” is sometimes
also simply used to mean “a single coordinate of phase space”. Unless otherwise
stated, this is the notion used in this book.
It follows that if a Hamiltonian system has n degrees of freedom, its phase

space has 2n dimensions, position and impulse along each of the n degrees of
freedom of the system.

4.2 Dynamical Systems Theory 87

Physical space

Phase space

φ

+φ

φ

+φ

Figure 4.1. Physical movement and phase space of an ideal pendulum. Arrows indicate how
physical space and phase space relate to each other

Degrees of Freedom of a Mobile Robot

It is not always straightforward to state how many degrees of freedom a system
has, and therefore what the size of its phase space is. Fortunately, this knowledge
is not needed to reconstruct the attractor (see Section 4.2.3).
In the case of mobile robots, moving in a two-dimensional plane, however,

one can say something about the degrees of freedom available to the robot. In the
following, we will examine four different fundamental types of mobile robot: a
fully holonomic robot (which we will refer to as “ball”, because its motions
are equivalent to those of a ball), a robot with differential drive, a robot with
“Ackermann steering” (which we will refer to as “car”, because its motions are
equivalent to those of a conventional car), and a tracked robot (referred to as
“train”). These four types of robot are shown in Figure 4.2.
The first three of these robots are all capable of assuming any position and

orientation < x, y, φ > in space, but the means by which they can do so are
different in the three cases.
We define a full degree of freedom as an axis (x, y or φ) along which any

position can be assumed without altering the positions along the remaining two
axes. An equivalent definition would be that a full degree of freedom is an axis
along which an external force can be applied without meeting resistance (assum-
ing an “ideal” robot).
Following that definition, one can see that in the case of the ball, forces can

be applied along all three axes independently, and the position along each of the
three axes can be altered without altering the position in the other two axes. The
ball therefore has three degrees of freedom.

88 4 Dynamical Systems Theory and Agent Behaviour

φ

Motor Motor

Motor

x

y

Differential Drive Robot"Ball" "Car"

= "full degree of freedom along this axis"

Train

Figure 4.2. Different types of robot drive systems and their full degrees of freedom

The differential drive robot can change its position freely along the y and
φ axes, but to change position along the x axis, the robot also has to change
position along the φ axis at the same time. There are therefore two full degrees
of freedom (y and φ), but because the robot is able to change position along the
x axis as well, it has more than two (but less than three) degrees of freedom.
Commonly this is referred to as “2.5 degrees of freedom”.
In the case of the car, it can change its position freely along the y axis (one

degree of freedom). But to change position along the φ axis, movement along the
y axis is needed, so this isn’t a full of degree of freedom. And in order to change
position along the x axis, movement along the φ axis (and therefore also along
the y axis) is needed, so this isn’t a full degree of freedom either. How many
degrees of freedom does a car have? Perhaps one and two-halves?
Finally, the train has only one full degree of freedom, y, and is incapable

of assuming arbitrary positions in x and φ— positions along these two axes are
pre-determined by the track. It therefore has one degree of freedom, and its phase
space is two-dimensional (y and ẏ).

4.2.2 Illustration: Analysis of Robot Behaviour
Through Phase Space Reconstruction

The following hypothetical example is intended to illustrate the methods em-
ployed later in this book, to serve as a illustration of what we are trying to achieve
by applying dynamical systems theory to mobile robotics.
Assume that a mobile robot is moving in some environment, perhaps along

a trajectory similar to that shown in Figure 4.8. The three variables that describe
the robot’s trajectory fully are position x(t) and y(t) and heading φ(t). As in all
dynamical systems, these three variables can be described through differential
equations. Furthermore, in the robot’s case the three variables are coupled, be-
cause the robot’s control program, the physics of motion and the influence of the

4.2 Dynamical Systems Theory 89

environment will mean that x, y and φ cannot change completely independently
from each other.
In a real robot, we do not know which differential equations describe the

robot’s motion, but let us assume, for argument’s sake, a particular robot’s motion
was defined by the set of Equations 4.1:

dx

dt
= ẋ = −(y + φ) (4.1)

dy

dt
= ẏ = x + 0.15y

dφ

dt
= φ̇ = 0.2 + xz − 10z

The differential Equations 4.1 can be solved, for example numerically using
the Runge-Kutta method, which will result in the functions x(t), y(t) and φ(t)
shown in Figure 4.3.

t

x

y

t

t

φ

Figure 4.3. The solution of the differential Equations 4.1

It is interesting to plot x, y and φ against each other (Figure 4.4). This is the
phase space of the system defined by Equation 4.1, i.e. that space that defines
the system under investigation fully, and allows prediction of the system’s future
states.
As we said earlier, in a real mobile robot it is usually not possible to determine

equations like those given in Equation 4.1. However, it is possible to reconstruct
the robot’s phase space through a method called time-lag embedding (discussed
below in Section 4.2.3)! Figure 4.5 shows the reconstructed attractor, and reveals
a close similarity to the “real” attractor shown in Figure 4.4.

90 4 Dynamical Systems Theory and Agent Behaviour

φ

0

10

20

30

40

50

−15

−7

1

9

17

−17−13−9−5−1371115

y

x

Figure 4.4. The phase space of the system defined by Equation 4.1

φ

−15

−6

3

12

21

−15

−11

−7

−3

1

5

9

13

17

21

−15 −11 −7 −3 1 5 9 13 17 21

x

y

Figure 4.5. The reconstructed phase space of the system defined by Equation 4.1

In summary, the method of analysing the dynamics of robot-environment
interaction presented in this chapter is as follows:

1. Observe the robot’s motion in < x, y, φ > space over time.
2. Reconstruct the phase space of that motion, using the method described in
Section 4.2.3.

3. Analyse the reconstructed attractor for its dynamical properties, such as sen-
sitivity to initial conditions or dimension of the attractor.

4.2.3 Reconstruction of the Attractor

Our first step towards analysis of a dynamical system, then, is to reconstruct
its phase space. Using theoretical considerations, this is not always as easy as

4.2 Dynamical Systems Theory 91

it was in the case of the ideal pendulum. Fortunately, however, phase space
can be reconstructed from a time series x(t) of observations of the physi-
cal system, through a method called time-lag embedding [Peitgen et al., 1992,
Kantz and Schreiber, 1997, Abarbanel, 1996]. Figure 4.5 shows the result of this
method when applied to the dynamical system defined by Equation 4.1.

Time-Lag Embedding: Illustration

Suppose we had a dynamical system defined by the two differential equations
given in Equation 4.2 (see [Kaplan and Glass, 1995] for a full discussion of this
example):

ẋ = y (4.2)
ẏ = −bx

This is system is fully described by the variables x(t) and y(t), they form the
phase space of the system.
In keeping with our “observation of robot behaviour” scenario, let us assume

that we observe the behaviour of this system by logging a time series S(t) =
x(t) at discrete points t in time. To reconstruct the phase space of this system
from S(t), we obviously need to reconstruct only y(t), because x(t) is already
given through S(t).
Equation 4.2 indicates that y = dx

dt
= dS

dt
. Therefore, the phase space can be

reconstructed by plotting Ṡ(t) vs S(t).
The derivative of a variable x(t) is given by Equation 4.3.

dx

dt
= lim

h→0

x(t + h) − x(t)
h

(4.3)

Following the definition given in Equation 4.3, we can approximate Ṡ(t) by
Equation 4.4:

dS(t)
dt

= Ṡ(t) =
S(t + h) − S(t)

h
(4.4)

Because we have logged S at discrete times t, estimating Ṡ means apply-
ing Equation 4.4, using a suitable h, and consequently reconstructing the phase
space means plotting S(t) vs S(t+h)−S(t)

h
. Because all the information needed is

contained in S(t) and S(t + h), it is sufficient to simply plot S(t) vs S(t + h)!
This method can be extended to higher dimensions than two, and therefore

be used to reconstruct higher dimensional attractors. This will be discussed next.

92 4 Dynamical Systems Theory and Agent Behaviour

Reconstruction of the Attractor Through Time-Lag Embedding

Again, suppose we measure some descriptive element of the agent’s behaviour
over time, for example the movement of the agent in < x, y > space, obtain-
ing two time series x(t) and y(t). The attractor D(tn) — the trajectory taken
through phase space — can then be reconstructed through time-lag embedding
as given in Equation 4.5:

D(tn) = (x(tn − (p − 1)τ), x(tn − (p − 2)τ), . . . x(tn − τ), x(tn)) (4.5)

with x(t) being a sequential set of measurements (the time series), p being the
embedding dimension and τ being the embedding lag.
In order to reconstruct the system’s phase space through time lag embedding

from an observed time series, therefore, two parameters need to be chosen: the
embedding dimension p and the embedding lag τ .
Choosing the embedding dimension. There are three possible scenarios: (i)

the embedding dimension chosen is too small to reconstruct the attractor, (ii) it is
“just right”, or (iii) it is too large. Only the first case will result in errors, because
an attractor whose dimension is larger than the chosen embedding dimension
cannot be fully unfolded, which means that points that are distant in time end
up as close neighbours in phase space (because these neighbours in space are
distant in time they are referred to as “false nearest neighbours”). If the em-
bedding dimension is the same or just slightly larger than the dimension of the
attractor, reconstruction is obviously no problem. If the embedding dimension
chosen is much larger than the attractor’s dimension, there is theoretically no
problem — the attractor can be reconstructed perfectly — but there are practical
(computational and accuracy) reasons why this case is undesirable. It is therefore
preferable to select the minimum embedding dimension.
An established method to determine a suitable embedding dimension is to

use the false nearest neighbours method discussed in [Kennel et al., 1992]. This
method determines the number of false nearest neighbours (close in the recon-
structed phase space, but far apart in time) in the reconstructed phase space —
when this number is near zero, the attractor is properly unfolded and contains no
self-intersections.
Choosing the embedding lag. The second variable to be chosen for the time

lag embedding method is the embedding lag τ . The right choice of τ means
determining that point at which the sample x(t + τ) of the observed time series
contains new information, compared with x(t). For example, if a slow moving
system is sampled at a high sampling frequency, τ is going to be large, because
it will take many samples before x(t + τ) actually contains new information.
On the other hand, if the sampling rate is low with respect to the motion of the
system, τ is going to be small.

4.2 Dynamical Systems Theory 93

First of all, there is a qualitative method to see the influence of increas-
ing τ . For a small τ , x(t) and x(t + τ) are essentially identical. If they are
plotted against each other, therefore, all points would lie on the diagonal iden-
tity line. As τ increases, the reconstructed attractor will expand away from the
identity line. This expansion gives us an indication about a suitable choice of τ
[Rosenstein et al., 1994].
There are two further ways to determine the point in time at which x(t) and

x(t + τ) contain different information. First, [Kaplan and Glass, 1995] suggest
a suitable τ is found when the autocorrelation between x(t) and x(t + τ) has
fallen below e−1 = 0.37. Secondly, [Fraser and Swinney, 1986] suggest that the
point at which new information is contained in a sample is reached when the mu-
tual information, which can be considered a generalisation of the autocorrelation
function (Equation 4.6), has its first minimum:

MI = H(x) + H(x + τ) − H(x, x + τ) (4.6)

withH(x),H(x + τ) andH(x, x + τ) as defined in Equations 3.52 and 3.54.
We now have the tools in place to carry out a phase space reconstruction, and

will first look at a practical robotics example.

4.2.4 Reconstructing the Attractor: Robotics Example (Obstacle
Avoidance)

Figure 4.13 (right) shows part of the 26,000 data points we have of an obstacle
avoiding robot’s motion along the x axis. This data was obtained by logging the
robot’s position every 250 ms with an overhead camera.
In order to reconstruct the attractor, using Equation 4.5, we need to determine

a suitable embedding lag τ and embedding dimension p.
We will select the embedding dimension p through a practical consideration.

As discussed earlier, a differential drive robot such as the one used in this exam-
ple has between two and three degrees of freedom, so that p = 5 is probably a
sensible choice of embedding dimension.
To determine the embedding lag τ , we determine the point at which the auto-

correlation x(τ) has fallen to approximately e−1 = 0.37 [Kaplan and Glass, 1995],
or at which the mutual informationMI (see Equation 4.6) has its first minimum
[Fraser and Swinney, 1986].
Figure 4.6 shows autocorrelation and mutual information of x(t). For τ =

29 the autocorrelation has fallen below 0.37, and the mutual information has a
minimum. We therefore select τ = 29 and p = 51 to reconstruct the attractor,
using Equation 4.5.
1 p = 5 is a conservative, “safe” choice — see the discussion regarding the degrees of
freedom of a mobile robot on page 87.

94 4 Dynamical Systems Theory and Agent Behaviour

τ +1

Autocorrelation

0

−1000

1000

25 29 33
τ

Mutual Information

20 30 40

Figure 4.6. Autocorrelation (left) and mutual information (right) of x(t) for obstacle avoid-
ance behaviour. For τ ≈ 29 the autocorrelation has fallen below 0.37, and the mutual infor-
mation has the first minimum

Finally, having reconstructed the attractor, we check whether the attractor
is well “opened up” (see also page 103 for a detailed discussion). Figure 4.7
shows a reconstructed attractor for p = 3 (because higher dimensions can’t be
displayed visually), and indeed even for this lower embedding dimension the
attractor is well opened up. To analyse the phase space of an obstacle avoiding
robot, for example by computing Lyapunov exponent or correlation dimension
(see below), we would use a higher embedding dimension, based on the practical
consideration discussed above.

(Obstacle Avoidance Behaviour)
Phase Space Reconstruction

x(t−29)
x(t)

x(t−58)
...

Figure 4.7. Three-dimensional reconstruction of the phase space for an obstacle avoiding
robot

4.3 Describing (Robot) Behaviour Quantitatively Through Phase Space Analysis 95

4.2.5 Experimental Setup and the Use of Quantitative Descriptions of
Behaviour

We said earlier (Section 2.4.2) that provided we had some quantitative descrip-
tor of a robot’s behaviour — which emerges from the interaction between robot,
task and environment — we could use this descriptor to characterise exactly one
component of the triple robot-task-environment if we left two components un-
changed, and modified the third one in a principled way, using the quantitative
descriptor to characterise the relationship between changed component and ob-
served robot behaviour.
Figure 4.8 shows such an experimental setup. Operating a Magellan Pro mo-

bile robot in the arena shown in Figure 4.9, we conduct three experiments, by
differing only one component at a time of the triple robot, task and environment.
Between experiment I and II (Figure 4.8, left and middle) we keep robot

and environment constant, and change the task. Between experiment II and III
(Figure 4.8, middle and right), we keep robot and task constant, and change the
environment. The purpose of the experiments is to measure the influence of this
change on the robot’s behaviour.

Wall Following

x [cm]

y [cm]

40 60 80 100 120 140 160 180 200 220
80

100

120

140

160

180

200

220

240

260

280

Obstacle Avoidance

x [cm]

y [cm]

50 100 150 200 250 300 350
0

50

100

150

200

250

300
OA with Central Obstruction

x [cm]

y [cm]

50 100 150 200 250 300 350
0

50

100

150

200

250

300

Figure 4.8. The three different data sets (robot trajectories) used in this chapter: set 1406
(wall following), set 2406 (billiard ball obstacle avoidance) and set 0507 (billiard ball obstacle
avoidance with off-centre obstruction). From set 1406 to 2406 robot and environment have
remained the same, but the task changed. Between set 1406 and 0507 robot and task remained
the same, but the environment changed. See also Figure 1.2

4.3 Describing (Robot) Behaviour Quantitatively Through Phase
Space Analysis

4.3.1 Deterministic Chaos

When asked to predict the motion of a model train, moving at a constant velocity
on a circular track, one will have little difficulty and make only a very small

96 4 Dynamical Systems Theory and Agent Behaviour

Figure 4.9. A simple robot arena

prediction error. When asked to predict the outcome of a throw of a die, one
can only resort to a random guess, or always predict the mean of all numbers
on the die. The former system is deterministic and fully predictable, the latter is
stochastic and not predictable.
There is a third kind of system: it is deterministic rather than random, and yet

not predictable, unless predictions concern the immediate, short term future. The
weather falls into this category, so does the motion of a billiard ball, or the motion
of a mobile robot in some cases. This kind of system is said to exhibit determin-
istic chaos. “Deterministic”, because the system’s behaviour is governed by de-
terministic laws such as the laws of motion, rather than randomness. “Chaotic”,
because it appears to behave like a stochastic system, and cannot be predicted
for all times.
Specifically, deterministic chaos is said to be present if the system under

investigation exhibits these four properties:

1. The system’s behaviour is (predominantly) deterministic.
2. The system’s behaviour is bounded and stationary.
3. The system’s behaviour is sensitive to slight changes in initial conditions.
4. The system’s behaviour is aperiodic.

The first two points determine whether the methods presented below are suit-
able for the kind of signal we have, the second two question determine whether
the signal exhibits deterministic chaos or not. We are going discuss to points 1
and 2 in section 4.3.2, point 3 in section 4.4 and point 4 in section 4.5.

4.3 Describing (Robot) Behaviour Quantitatively Through Phase Space Analysis 97

4.3.2 Testing for Determinism and Stationarity

Is there a Deterministic Component to the System?

All considerations presented in this chapter refer to deterministic systems, i.e.
systems that are not mainly governed by stochastic (random) behaviour. We
therefore need to establish first whether the time series x(t) is deterministic,
i.e. casually dependent on past events, or not. To do this, we use the following
method, described by Kaplan and Glass [Kaplan and Glass, 1995, p. 324ff] (see
also
[Kennel and Isabelle, 1992]).
The underlying assumption in determining whether the signal is determinis-

tic or not is that in a deterministic signal D of length 2T , the first half of the
signal should be usable as a “good” predictor for the second half — in a purely
stochastic (random) system this assumption would not hold. In other words: if a
model-based prediction of the system is perfect (zero prediction error), the sys-
tem is purely deterministic. If there is some small prediction error, the system has
a deterministic component, and if the model-based prediction is only as good as
a random guess, the system is not deterministic at all.
To find out whether the first half ofD is a good predictor of the second half,

we split the time series D into two halves of length T each, and construct an
embeddingD as given in Equation 4.7:

D(T + i) = [D(T + i), D(T + i − 1), D(T + i − 2)],∀i = 3 . . . T (4.7)

In other words, we construct an embedding for the second half of the time
series, using an time lag τ of 1 and an embedding dimension p of 3 (of course,
one could use other values for τ and p).
To make a prediction ofD(tk +1) (T < tk ≤ 2T), we determine the closest

pointDc(tc) (0 < tc ≤ T) toD(tk) in Euclidean distance, and selectD(tc +1)
as the prediction of D(tk + 1). In this fashion all points of the second half are
predicted (we always only predict one-step ahead). Figure 4.10 shows this.
We then compute the mean squared prediction error ε. In order to decide

whether this error is “large” or “small”, we set it in relation to the error εb of a
baseline prediction of simply using the average of the first half of the signal as a
prediction of the second. In a purely stochastic signal the ratio ε/εb is 1 or larger
than 1, indicating that the mean would have been the best prediction possible,
and therefore that the system is non-deterministic. If, on the other hand, the ratio
ε/εb is smaller than 1, this indicates that the first half of the time series indeed is a
good predictor of the second, and that therefore the time series has a deterministic
component.
There is a second way of establishing whether the time series is deterministic

(i.e. signal values are dependent of signal values in the past) or stochastic (i.e.

98 4 Dynamical Systems Theory and Agent Behaviour

Data used as model Model−based prediction vs true signal

Figure 4.10. Prediction of the robot’s movement along the x-axis, performing obstacle avoid-
ance behaviour

signal values are independent from those of the past). By simply plotting x(t) vs
x(t−τ) one sees visually whether there is a causal relationship between past and
present signal values, or not. These plots are called return plots, and Figure 4.11
shows three examples.

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++
+

+

+

+

+

+

+

+

+
+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+ +
+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+
+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+++

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+ +

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

++

+

+

+ +

+

+

+

x(t)

x(t−1)

x(t)

x(t−1)

Figure 4.11. Return plots for random noise (left), wall following behaviour (middle) and ob-
stacle avoidance behaviour (right). Wall following and obstacle avoidance both clearly have a
deterministic element

Testing for Stationarity

The analysis of a dynamical system such as a mobile robot, interacting with its
environment, is the attempt to identify and to quantify the statistical characteri-
sations of that interaction. This means that if the statistical characterisations are
not constant in time — non-stationarity — the methods for time series analy-
sis presented in this book cannot be applied. Before analysing a signal using
the methods outlined in this book, therefore, it is necessary to establish that the
signal in question is stationary.

4.3 Describing (Robot) Behaviour Quantitatively Through Phase Space Analysis 99

A signal is defined as stationary if it shows similar behaviour throughout its
duration. “Similar behaviour” here is defined as having similar mean, standard
deviation and autocorrelation structure throughout the time series
[Kaplan and Glass, 1995, p.314] [Pena et al., 2001, p.29]. In practice, real world
signals often show constant mean and autocorrelation structure, but different
variance throughout the time series. Such signals are sometimes referred to as
“weakly stationary”, but considered near enough the ideal of stationarity to be
treated as stationary signals. The concept of stationarity of clearly relative to the
highest frequency component in the data, meaning that a meaningful analysis
can only be conducted if data is used that contains the longest period inherent in
the data.
To test for stationarity, therefore, entails testing whether mean and standard

deviation (we do not consider the autocorrelation function for the following tests)
of different parts of the data differ significantly from one another or not.
A simple test to investigate this is to divide the time series into a number of

sections, and to test whether the distributions underlying each section differ from
one another or not. Because it is unknown whether the underlying distributions
are normal or not (this could be tested, however, using the method described in
Section 3.3.2), a non-parametric test like the non-parametric ANOVA discussed
in Section 3.4.4 is suitable. If the underlying distributions are normal, a t-test
(Section 3.3.4) can be used instead of the non-parametric ANOVA.

Non-Parametric Runs Test

Another method for testing stationarity is this: As before, the data is divided
into segments (for the test described below, at least 41 segments are needed).
We then determine whether the mean of each segment is above or below the
median of the entire time series. This will result in a sequence of, say, 41 values
like “AABABBABBAA. . . ”, with “A” indicating that the mean of the segment is
above the median of the entire series, and “B” that it is below.
If the time series is not stationary, for example because there is a linear trend

upwards on the data, we will get a sequence with very few “runs” (see Sec-
tion 3.5 for a definition of “run”), because all the “early” data will tend to have
a mean below the median, and all the “late” data will be above the median. If,
on the other hand, the data is stationary, we expect the distribution of “As” and
“Bs” to be random. In other words: too few or too many runs indicate depen-
dency between observations, and therefore non stationarity. Therefore, we test
the time series in question for a random distribution of As and Bs as discussed
in Section 3.5. If the distribution is random, the data is considered stationary.
One note on segmenting the data. Consider, say, a pure sine wave, which is

obviously stationary. It is possible, however, to segment a sine wave so awk-
wardly that a sequence like “ABABABAB. . . ” is obtained — clearly not ran-
dom! The correct formulation of our procedure, therefore, should be: “If there is

100 4 Dynamical Systems Theory and Agent Behaviour

at least one segmentation of the time series for which randomness can be shown
through the runs test, then the time series is considered stationary.”

Making Non-stationary Data Stationary

Non-stationary signals can often be made stationary by simple transformations.
The simplest of these transformations is to compute the first difference between
successive values of the time series. If the first difference is still not stationary,
the process can be repeated (second difference).
Another obvious step to take is to remove linear trends. This is achieved by

simply subtracting that linear function y = ax + b that best fits the time series
(linear regression). This was discussed in Section 3.6.1.
If the signal x(t) shows exponential growth over time, it sometimes can be

made stationary by using x(t)/x(t − 1) for analysis [Kaplan and Glass, 1995,
p.315].
Other transformations that may render non-stationary signals stationary are

logarithmic or square root transformations. An exponential signal, for instance,
can be linearised by computing the logarithm, and then made stationary by com-
puting the first difference. Similarly, time series that follow a power law can be
linearised by computing square roots or higher order roots.
Having established that the descriptor of the agent’s behaviour (the logged

time series) is indeed mainly deterministic and stationary, we are now ready to
analyse the system’s phase space quantitatively.

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent

Consider the following thought experiment: you observe the motion of a physical
system, a pendulum, say, in physical space. That motion corresponds to a motion
in phase space, the “orbit”. In the pendulum’s case, the orbit has the shape of an
ellipse.
If you imagine starting the pendulum off at some location φ, and at the same

time (it is a thought experiment!) at a point φ + ∆, where ∆ is a small dis-
tance, we then have two motions through physical space and phase space that
have started very close to each other. For some systems, like the pendulum, these
two motions will neither get further apart nor closer together over time, for other
systems the two orbits will converge into one orbit, and for yet other systems the
two orbits will diverge and very quickly be far apart from each other (this would
happen, for example, in the case of a billiard ball). The rate of divergence or con-
vergence of two orbits that started infinitesimally close to each other describes
one property of the attractor — it is known as the Lyapunov exponent.

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 101

Lyapunov Exponent and Chaos

One of the most distinctive characteristics of a chaotic system is its sensitivity to
a variation in the system’s variables: two trajectories in phase space that started
close to each other will diverge from one another as time progresses, the more
chaotic the system, the greater the divergence.
Consider some state So of a deterministic dynamical system and its corre-

sponding location in phase space. As time progresses the state of the system fol-
lows a deterministic trajectory in phase space. Let another state S1 of the system
lie arbitrarily close to So, and follow a different trajectory, again fully determin-
istic. If do is the initial separation of these two states in phase space at time t = 0,
then their separation dt after t seconds can be expressed by Equation 4.8:

dt = doe
λt (4.8)

Or, stated differently, consider the average logarithmic growth of an initial
error E0 (the distance |x0 − (x0 + ε)|, where ε is some arbitrarily small value
and x0 a point in phase space) [Peitgen et al., 1992, p. 709]. If Ek is the error
at time step k, and Ek−1 the error at the previous time step, then the average
logarithmic error growth can be expressed by Equation 4.9:

λ = lim
n→∞ lim

E0→0

1
n

n∑

k=1

log| Ek

Ek−1

| (4.9)

λ (which is measured in s−1 or in bits/s, depending on whether the natural loga-
rithm or a logarithm to base 2 is used) is known as the Lyapunov exponent.
For an m-dimensional phase space, there are m λ values, one for each di-

mension. If any one or more of those components are positive, then the trajec-
tories of nearby states diverge exponentially from each other in phase space and
the system is deemed chaotic. Since any system’s variables of state are subject
to uncertainty, a knowledge of what state the system is in can quickly become
unknown if chaos is present. The larger the positive Lyapunov exponent, the
quicker knowledge about the system is lost. One only knows that the state of the
system lies somewhere on one of the trajectories traced out in phase space, i.e.,
somewhere on the attractor.
The Lyapunov exponent is one of the most useful quantitative measures of

chaos, since it will reflect directly whether the system is indeed chaotic, and will
quantify the degree of that chaos. Also, knowledge of the Lyapunov exponents
becomes imperative for any analysis on prediction of future states.

4.4.1 Estimation of the Lyapunov Exponent of a Time Series

One method to determine the Lyapunov of an attractor describing the behaviour
of a physical system is to estimate it from an observed time series of the system’s

102 4 Dynamical Systems Theory and Agent Behaviour

motion [Peitgen et al., 1992]. However, the estimation of a Lyapunov exponent
from a time series is not trivial, and often strongly dependent upon parameter
settings. It is therefore not sufficient to simply take an existing software pack-
age, select parameter settings that seem appropriate, and compute the exponent.
Instead, computations have to be performed for ranges of settings. There will
usually be ranges of settings for which the computed Lyapunov exponent does
not change — so-called scaling regions. These scaling regions indicate good pa-
rameter settings and reliable results.
There are a number of software packages available for the computation of

Lyapunov exponents from a time series, for example [Kantz and Schreiber, 2003],
discussed in [Kantz and Schreiber, 1997], [ANS, 2003] (discussed in
[Abarbanel, 1996]) and [Wolf, 2003], based on [Wolf et al., 1995]. The results
presented here were obtained using Wolf’s software.

Estimating the Lyapunov Exponent, using Wolf’s Program: Robotics
Example

We are interested to compute the Lyapunov exponent for two different robot be-
haviours: wall following and obstacle avoidance. Figure 4.12 shows trajectories
of a Pioneer II mobile robot executing these behaviours, logged from an overhead
camera.

Wall Following

x [cm]

y [cm]

40 60 80 100 120 140 160 180 200 220
80

100

120

140

160

180

200

220

240

260

280

Obstacle Avoidance

x [cm]

y [cm]

50 100 150 200 250 300 350
0

50

100

150

200

250

300

Figure 4.12.Wall following (data set 1406) and obstacle avoidance behaviour (data set 2406)
of a Pioneer II mobile robot, observed from an overhead camera

In order to carry out the analysis, we look at the x and y coordinate of each
behaviour individually, and estimate the Lyapunov exponent of them. Figure 4.13
shows sections of the robot’s movement in x-direction for both behaviours.
Looking at the trajectories in Figure 4.12, we conjecture that the wall follow-

ing behaviour is far more predictable than the obstacle avoidance one, and will

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 103

t [250 ms]

x [cm]

3000 3500 4000 4500 5000 5500 6000
40

60

80

100

120

140

160

180

200

220

t [250 ms]

x [cm]

6000 6500 7000 7500 8000 8500 9000
50

100

150

200

250

300

350

Figure 4.13. Sections of the x-axis of wall following (left) and obstacle avoidance behaviour
(right)

therefore have a lower Lyapunov exponent. We use [Wolf, 2003] to investigate
this.
In order to use his program, the following parameters need to be specified:

1. Embedding lag τ for the reconstruction of the underlying attractor through
time-lag embedding (see Section 4.2.3). [Kaplan and Glass, 1995] suggest
that a suitable value for τ is found when the autocorrelation of the time
series has fallen below 1/e=0.37. Alternatively, the mutual information in-
formation can be used [Fraser and Swinney, 1986], as discussed on page 93.
The general rule is: τ should be chosen such that the reconstructed attrac-
tor is properly unfolded i.e. contains no self-intersections) and shows a well
defined structure.

2. Embedding dimension p. Takens’ and Mañe’s theorem [Mañe, 1981]
[Takens, 1981] states that an attractor can be constructed perfectly through
time-lag embedding, if the embedding dimension p is chosen as p = 2d+1,
with d being the dimension of the attractor (see Section 4.5 regarding the de-
termination of the dimension of an attractor). In practice, however, a lower
embedding dimension is usually sufficient, and for most mobile robotic sys-
tems an embedding dimension of 3 to 5 is adequate. The choice of p is lim-
ited by the amount of data available: as a rough estimate, the number of data
points needed for analysis is 30d [Wolf, 2003], where d is the dimension of
the attractor (see Section 4.5).
A well established method to determine a suitable embedding dimension is
the method of false nearest neighbours. This is discussed in
[Kennel et al., 1992].

3. Time step. This is simply the sampling rate used for obtaining the time series
(in the examples used here the overhead camera logged the robot position
every 250ms).

4. Evolution time evolv. This parameter determines how many steps a pair of
points will be followed through phase space, to estimate their divergence

104 4 Dynamical Systems Theory and Agent Behaviour

over time. The right setting for this (typically 3 to 12) must be determined
through finding a scaling region.

5. Minimum separation at replacement. This indicates the minimum separation
between two points in phase space to be selected as a pair of points that is
traced through phase space. As a rule of thumb, this value should be set to
zero for noise-free data, and to 1-2% of the range of time series values for
noisy data.

6. Maximum separation maxdist for replacement. This indicates the maxi-
mum allowable separation between points in phase space before a new pair
is sought to estimate divergence. As a rule of thumb, this value can be set to
10-15% of the range of time series values for noisy data, but suitable values
need to be determined by finding a scaling region.

Bearing these considerations in mind, we can now estimate the Lyapunov
exponents for the wall following and the obstacle avoidance behaviour.

Lyapunov Exponent of the Wall Following Behaviour

For the wall following behaviour, which consists of 13,000 data points (54 min
of robot operation), at τ = 30 and a minimum separation of 2 (the range of the
x-axis time series is 164), we obtain the results shown in Table 4.1.

Table 4.1. Estimations of the Lyapunov exponent for the wall following behaviour, for a range
of different parameter settings, using Wolf’s program [Wolf, 2003]

evolv maxdist λ(p= 3) λ (p=4) λ(p=5)
2 20 0.005 0.004 0.003
3 20 0.006 0.02 0.03
4 20 0.03 0.03 0.03
5 20 0.03 0.03 0.03
6 20 0.04 0.03 0.03
7 20 0.04 0.04 0.03
8 20 0.03 0.04 0.03
9 20 0.04 0.03 0.03
10 20 0.04 0.03 0.03
6 15 0.05
6 20 0.04 0.03 0.03
6 25 0.02
6 30 0.02
6 35 0.02

Results are fairly uniform throughout, and taking an evolution time of 6 and
an embedding dimension of 4, we estimate 0.02 < λwf < 0.03 bits/s.

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 105

Lyapunov Exponent of the Obstacle Avoidance Behaviour

For the obstacle avoidance behaviour (26,000 data points, 108 min of operation,
range 239), using a τ = 29 (see Figure 4.6) and a minimum separation of 2 we
obtain the results given in Table 4.2.

Table 4.2. Estimations of the Lyapunov exponent for the obstacle avoidance behaviour, for a
range of different parameter settings, using Wolf’s program [Wolf, 2003]

evolv Max.dist. λ(p= 3) λ (p=4) λ (p=5)
2 28 0.02 0.02 0.01
3 28 0.14 0.12 0.10
4 28 0.15 0.12 0.11
5 28 0.15 0.12 0.11
6 28 0.15 0.12 0.11
7 28 0.14 0.12 0.10
8 28 0.15 0.12 0.10
9 28 0.14 0.12 0.10
10 28 0.14 0.12 0.10
6 20 0.18 0.14 0.10
6 25 0.16 0.13 0.11
6 28 0.15 0.12 0.11
6 30 0.14 0.11 0.10
6 35 0.13 0.11 0.10
6 40 0.11 0.10 0.09

We can see a scaling region for 3 < evolv < 10, and therefore select
evolv=6. The maximum separation at replacement doesn’t show such a pro-
nounced scaling region, but for values between 25 and 30 results are fairly con-
sistent. The results for p = 4 and p = 5 are in good agreement, and we select
p = 4. From this, we estimate 0.11 < λoa < 0.13 bits/s. Obstacle avoidance
behaviour indeed is more chaotic and has a higher Lyapunov exponent than wall
following behaviour, as hypothesised earlier.

4.4.2 Estimating the Lyapunov Exponent Through Information Loss and
Prediction Horizon

Information Loss

As the Lyapunov exponent is expressed as information loss per time unit, it can
be estimated by determining how much information about the system is available
at time t0, and how this information decreases with increasing t. This can be
achieved in the following manner.
Let’s assume we observe a mobile robot interacting with its environment,

logging the robot’s position x(t) and y(t). The information I(t) (in bits) we
have regarding the robot’s position is then given by

106 4 Dynamical Systems Theory and Agent Behaviour

I(t) = lnB(t)/ln2 (4.10)

where B(t) is the number of distinct locations along the x and y axes we can
identify at time t. If, for example, we can pinpoint the robot’s position on the x
axis to one out of 256 distinct locations (e.g. one camera pixel out of 256), the
information available is 8 bit.
The way we identify the robot’s position in this thought experiment is by pre-

dicting it, based on past data, in the same way described in Section 4.3.2. Initially,
the robot’s position is perfectly known, and is limited only by the resolution of
our camera logging system.
Let us assume that we use an overhead camera to log the position of the robot.

Let us also assume that at time t = 0we know the robot’s position to an accuracy
of one pixel. In order to compute the information at time t = 0, therefore, we
can simply use the range R, defined as R = xmax − xmin, with xmax and xmin

being the largest and smallest x position observed, and compute I(t = 0) using
B = 1 (Equation 4.10), because at t = 0 we are able to specify the robot’s
position to an accuracy of 1/R pixels.
As time progresses, we become increasingly less able to predict the robot’s

position, due to increasing prediction error. A prediction error of 1 at some time
t1, for example, means that we are now only able to specify the robot’s position
on the x axis to an accuracy of 2/R pixels — the identified pixel location± one
pixel.
Say we had initially 256 distinct positions at time t0. This means I0 = 8

bit. For a prediction error of 1 at time t1, we would be able to localise the robot
as one out of 128 distinct positions (7 bit). In other words, it has taken t1 − t0
seconds to lose 1 bit of information, which gives us an estimate of the Lyapunov
exponent as λ ≈ 1bit

(t1−t0)s
.

The Prediction Horizon

The Lyapunov exponent, whose unit is bits/s, indicates the loss of information
due to the chaotic nature of the signal as one predicts the signal for longer and
longer times ahead. A perfectly noise-free and non-chaotic signal, with a Lya-
punov exponent of zero, can be predicted for any length of time, without suf-
fering from a prediction error. On the other hand, a chaotic signal cannot be
predicted for arbitrary lengths of time, because with each prediction step uncer-
tainty increases, until finally the prediction is no longer better than an educated
guess. At this point “complete loss of predictability” has occurred.
If, for example, you are asked to predict the temperature in your home town

10 min ahead and to give an uncertainty indication of your prediction, you can
make a fairly good prediction with a small uncertainty interval, by simply saying
the temperature is going to be the same as it is at the moment. To predict 2 h
ahead, you will be a little less certain, even more so for 12 h ahead, and eventually

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 107

your prediction will on average be no better than an educated guess (e.g. looking
up the mean temperature in a tourist guide).
The Lyapunov exponent can be used to compute when this complete loss of

predictability will occur, i.e. when any model of your data is going to perform
no better than an educated guess (we refer to this point in time as the “prediction
horizon”). Bear in mind that the Lyapunov exponent is an averaged measure —
there may well be situations in which predictions are better than educated guesses
well beyond the estimated prediction horizon, but on average the prediction hori-
zon estimated by the Lyapunov exponent is when complete loss of predictability
occurs.
By way of illustration, let’s assume you are measuring the pressure in some

industrial plant, and you would like to predict what the pressure is going to be
at some time in the future. Having logged a sufficiently long time series of pres-
sure measurements in the past, you estimate the Lyapunov exponent to be 0.5
bit/s. The pressure sensor you are using has a resolution of 256 different pres-
sure values, i.e. log(256)/log(2)=8 bit. This means that on average total loss of
predictability will happen after 16 s. In other words: on average even a “gold
standard” model of the pressure profile will do no better than an educated guess
of the pressure after 16 s.
“Educated guess” here means a prediction of a value that is not based on

specific past values, but that exploits global properties of the signal. It is the
baseline against which we compare the prediction performance of our model
(which does take past values into account). A simple baseline to use would be for
each point x(tp) whose development over time we would like to predict to pick
some other point x(tm) randomly from the time series, and to use the successors
of x(tm) as predictions of the successors of x(tp).
As the Lyapunov exponent can be used to estimate that point in time at which

an educated guess will produce as small a prediction error (on average) as a “gold
standard” model, we should be able to do the reverse as well: determine that point
in time at which we might as well make random guesses about the signal, and
deduce the Lyapunov exponent from this.
The “gold standard” model we will use is the data itself. Splitting the data into

two equal halves of length T each, we will use the first half of the data as a model
of the second. This is a sensible procedure, since we only deal with deterministic
data here, meaning that past data points are to some degree predictive of future
data points.
In order to predict future data pointsD(t2), t2 = T +1 . . . 2T of the second

half of our data, we construct a three-dimensional embedding D(t2) as given
in Equation 4.11, and search through the first half of the data for the vector
D(t1), 1 ≤ t1 ≤ T that is closest toD(t2) (Euclidean distance):

D(t2) = [D(t2), D(t2 − τ), D(t2 − 2τ)] (4.11)

108 4 Dynamical Systems Theory and Agent Behaviour

with τ the embedding lag, as described on page 103. This is a three-dimensional
reconstruction of phase space, by now familiar to us.
We then predict the next k data pointsDm(t2 + 1) . . . Dm(t2 + k) as given

in Equation 4.12:

Dm(t2 + i) = D(t1 + i), i = 1 . . . k, 1 < t1 < T, T < t2 < 2T (4.12)

This prediction we will compare against our baseline, which states that we
select a point DB(tr), 1 < tr < T at random, and predict DB(t2 + i) as given
in Equation 4.13:

DB(t2 + i) = DB(tr + i), i = 1 . . . k, 1 < tr < T, T < t2 < 2T (4.13)

The point at which the average model error DM − D is the same as the
average baseline errorDB − D is the prediction horizon.

4.4.3 Estimating the Lyapunov Exponent Using Information Loss
and Prediction Horizon: Standard Examples

Before we apply the two methods discussed above to examples from robotics,
we test them, using equations whose chaotic properties are known. Specifically,
we estimate the Lyapunov exponent for the quadratic iterator and the Lorenz
attractor, two well understood systems. This serves as a check to confirm that the
proposed methods work for known chaotic systems.

Estimating the Lyapunov Exponent of the Quadratic Iterator

The quadratic iterator (also known as the logistic map) is a well known, chaotic
dynamical system, given by Equation 4.14:

x(t) = 4x(t − 1)(1 − x(t − 1)) (4.14)

A typical time series of the quadratic iterator is shown in Figure 4.14.
Figure 4.15 shows the computed information loss for the quadratic iterator,

as predictions are made for increasingly longer times ahead. There is a linear
region for the information loss between seconds 1 and 7, during which interval 6
bits of information are lost. This means that λ = 1bit/s for the quadratic iterator.
The estimate of the prediction horizon is shown in Figure 4.16. It indicates

that the prediction horizon — the point at which all information is lost — is
reached after 10 s. As there were 10 bits of information available initially (see
Figure 4.15), this means a Lyapunov exponent of λ = 1 bit/s, the same result as
the result obtained using the information loss. Incidentally, the correct Lyapunov
exponent of the quadratic iterator is indeed λ =1bit/s [Peitgen et al., 1992], our
results are therefore in order.

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 109

t

x

Figure 4.14. Time series obtained through Equation 4.14

10

4
2

8
6

0.00 1.88 3.75 5.62 7.50 9.38 11.25 13.12 15.00
t [s]

I [bit]

Figure 4.15. Information loss for the quadratic iterator. A linear region is visible between
seconds 1 and 7, in those 6 s 6 bits of information are lost

Baseline error

Prediction horizonModel
error

10 20 30 40 5010 20 30 40 50

t [s]

Error

Figure 4.16. Prediction horizon for the quadratic iterator shown in Figure 4.14

Estimating the Lyapunov Exponent of the Lorenz Attractor

The Lorenz attractor is another well known dynamical system that has chaotic
properties, it is defined by the differential Equations 4.15.

ẋ = 16x + 16y

ẏ = x(45.92 − z) − y

ż = −4z + xy (4.15)

Figure 4.17 shows the solution of Equation 4.15 for x(t), it is this time series
that we will use to estimate λLorenz .

110 4 Dynamical Systems Theory and Agent Behaviour

t

x

−70

−50

−30

−10

10

30

50

70

90

Figure 4.17. The solution of Equation 4.15 for x(t)

Figure 4.18 shows the estimated information loss and prediction horizon for
the Lorenz attractor.

2

0

4

6

8

0 100 200 300 400 500
Step [0.01s]

0 1 2 3 4 5
t [s]

I [bit]

Figure 4.18. Prediction horizon and information loss for the x coordinate of the Lorenz at-
tractor (see Figure 4.17)

The prediction horizon is about 400 steps, which, owing to the Runge-Kutta
method used to solve Equation 4.15, equates to 4 s. As the initial information
available was approximately 7.5 bit, we estimate λLorenz ≈ 7.5bit

4s
= 1.9 bit/s,

using the prediction horizon.
The information loss (Figure 4.18, bottom) shows a linear region which is in-

dicated in the graph. The line indicates that within 2.6 s the available information
decreases from about 5.6 bits to zero bits, resulting in an estimated Lyapunov ex-
ponent of λ ≈ 5.6

2.6
= 2.15 bit/s.

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 111

We therefore estimate 1.9 bits/s < λLorenz < 2.15 bits/s. The accurate value
is λLorenz = 2.16 bit/s [Wolf et al., 1995], a good agreement with our results.

4.4.4 Estimating the Lyapunov Exponent Using Information Loss and
Prediction Horizon: Robotics Examples

Wall Following

Figure 4.19 shows prediction horizon and information loss for the robot’s wall
following behaviour.

Prediction horizon

2
3
4
5
6
7
8
9
10

0 1000 2000 3000 4000 5000 6000
0
10
20
30
40
50
60
70

0 1000 2000 3000 4000 5000 6000
0
10
20
30
40
50
60
70

I [bit]

0 100 200 300 400

Step

Error

Information loss

t [s]

Figure 4.19. Prediction error and information loss for the wall following behaviour (data set
1406)

From Figure 4.19 we can see that in the case of the (highly predictable) wall
following behaviour the prediction horizon is very long indeed. Wall following
is so repetitive and predictable that even for predictions of 6000 steps ahead
(more than 25 min at a sampling rate of 4 Hz) we are able to predict the robot’s
position more accurately, using the robot’s past behaviour as our model, than
just randomly guessing. From this consideration it follows that the estimated
Lyapunov exponent is about zero.
Figure 4.19 also shows that the information loss is only linear for a limited

region of t, indicating that we only get an exponential information loss, as hy-
pothesised by Equation 4.8, for a limited period of time.
If any linear region can be identified in the graph for the information loss at

all (Figure 4.19, bottom), it indicates an information loss of about 4 bits in 200s,
which yields λwf ≈ 0.02 bits/s, i.e. essentially zero. These results are in very
good agreement with the results obtained using Wolf’s method (Table 4.1).

112 4 Dynamical Systems Theory and Agent Behaviour

Obstacle Avoidance

We can apply the same considerations to the obstacle avoidance behaviour shown
in Figure 4.12. As before, we split the data into two halves, and use the first half
to predict the second, reconstructing a three-dimensional phase space as given in
Equation 4.11. The results are shown in Figure 4.20.

0.0 35.7 71.4 107.1 142.9 178.6 214.3 250.0
0.0

1.8

3.6

5.4

7.2

t [s]

I [bit]

100 200 300 400 500 600
Step [250ms]

Error

Information loss

Figure 4.20. Prediction error and information loss for the obstacle avoidance behaviour (data
set 2406)

Figure 4.20 reveals that unlike in the case of wall following, which is a highly
predictable behaviour, here the prediction horizon is much shorter, about 320
steps (80 s). In other words: we reach the prediction horizon after 80 s, beyond
which model-based predictions are as good as taking a randomly selected data
point as a predictor.
We can estimate the Lyapunov exponent of the obstacle avoidance behaviour

from Figure 4.20: As the initially available information was about 7.9 bit and the
prediction horizon is 80s, we estimate λ ≈ 7.9 bit/80s = 0.1 bit/s. This is in good
agreement with the results obtained earlier, using Wolf’s method (Table 4.2).
This has interesting implications for instance for computer modelling of our

robot’s obstacle avoidance behaviour: However good a model, it cannot be able
to predict the exact trajectory of the robot further than about 80 s ahead (however,
the model may still be able to model the underlying dynamical properties of the
robot’s interaction with its environment).

RandomWalk

Figure 4.21 shows the trajectory of a third example, random walk obstacle avoid-
ance in a slightly more complex environment.
Computing information loss and prediction horizon for this example yields

the results shown in Figure 4.22. After about 80 s there is no significant differ-
ence between the baseline error and the model error, i.e. the prediction horizon
in this case is 80 s.

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 113

x

y

Figure 4.21. Random walk obstacle avoidance

The range of x-positions logged in this case is 226. As we are able to log the
robot’s position with an accuracy of 1 pixel, this means that the information I0

that is initially available about the robot’s location is I0 = ln 226
1

/ln2 = 7.8 bits.
We therefore estimate λrw ≈ 7.8bits

80s
= 0.1 bits/s.

The information loss (Figure 4.22, bottom) does not show a pronounced lin-
ear region, indicating that the exponential model of information loss does not fit
this data well.

t [s]

30 40 50 60

0
0
1
2
3
4
5
6

0
0
10
20
30
40
50
60
70
80

0
0
10
20
30
40
50
60
70
80

20 40 60 80 100 120

Step [2s]

Error

10 20

I [bit]

Figure 4.22. Prediction horizon and information loss for random walk obstacle avoidance

4.4.5 Estimating the Lyapunov Exponent from Prediction Horizon and
Attractor Size

There is an alternative way of relating the Lyapunov exponent to “the real world”,
again using the robotics example of wall following and obstacle avoidance be-
haviour.

114 4 Dynamical Systems Theory and Agent Behaviour

The Lyapunov exponent λ was defined earlier (page 100) asD(t) = D0e
λt,

where D(t) is the separation between two points in phase space at time t, and
D0 some small initial separation between two points in phase space at time t =
0. Arguably, we have lost all information about the robot’s position when all
we can say about the robot’s position is that it is “somewhere on the attractor”.
Obviously, at this point tcrit our initial error D0 has increased to the size of the
entire attractor S, so that Equation 4.16 holds:

D0e
λtcrit = S (4.16)

We can use the following simplifying assumptions to estimate the Lyapunov
exponent from graphs such as Figures 4.19 and 4.20. Let’s assume all N points
in phase space are evenly distributed, and have a separation of D0. The number
n of points along each dimension of the d-dimensional attractor is then given by
Equation 4.17:

N = nd (4.17)

with d being the dimension of the attractor.
The side length S of the attractor is consequently given by Equation 4.18:

S = D0n
d = ND0 (4.18)

From Equations 4.16 and 4.18 follows Equation 4.19. Equation 4.19 allows
us to estimate the Lyapunov exponent from tcrit, the time at which our model is
only able to make random guesses, rather than informed predictions:

D0e
λtcrit = ND0

λtcrit = lnN

λ =
lnN

tcrit

(4.19)

Applying Equation 4.19 to the wall following behaviour, we see in Fig-
ure 4.19 that the prediction error of our data-driven model essentially never
flattens out, indicating a prediction horizon of infinity (in reality, the prediction
horizon is going to be a number larger than 6000). This means that the estimated
Lyapunov exponent is λ ≈ 0, which is in agreement with our earlier computa-
tions.
The error curve of the data-model driven prediction for the obstacle avoid-

ance behaviour (Figure 4.20) approaches the baseline error after about 600 pre-
diction steps (tcrit = 150s). We have N = 26, 000 data points here, resulting
in λoa = ln26000

150s
= 0.07/s = 0.1 bits/s. This is in good agreement with our earlier

estimate, using Wolf’s method (Table 4.2).

4.4 Sensitivity to Initial Conditions: The Lyapunov Exponent 115

An alternative description of this methods was contributed by my colleague
Keith Walker, based on [Baker and Gollub, 1996, p.154f].
If the embedding dimension of a reconstructed attractor is m, then a Lya-

punov exponent is associated with each of them principal axes. If one considers
a very small hypersphere of points in an m-dimensional phase space and track
the trajectories of those points with time, the original hypersphere of points will
evolve to a shape determined by the Lyapunov exponents. This occurs since a
negative Lyapunov exponent associated with a principal axis will result in that
dimensional component of the hypersphere contracting exponentially with time
while a positive exponent will result in exponential expansion. The hypervolume
containing the trajectories at time t is expressed as V (t) = V0e

(λ1+λ2+...λm)t,
where V0 is the hypersphere of points at t = 0. Hence, for a system with a single
positive Lyapunov exponent, the initial hypersphere will evolve into an ellipsoid.
(Note: if two positive Lyapunov exponents exist, the system is cited as hyper
chaotic.)
For dissipative systems the relationship

∑
λi < 0 holds, and the hypervol-

ume approaches zero with time. If one of the Lyapunov exponents is positive (for
example λk) and all other exponents are negative, the resulting ellipsoid becomes
a fine filament along the k-principal axis. This ever-thinning filament will even-
tually trace out most of the attractor. If the initial dimension of the hypersphere in
the k-direction is dk, then the elongation of the filament is d = dke

λkt. Since the
attractor is bounded, the filament will never exist beyond the dimension of the
attractor, D. Let tcrit be the time when dk will have expanded to D. What this
means is that two points in phase space that are initially separated along the k-
principal axis by dk, will now be separated byD. It is at this time that the state of
the system is essentially indeterminate, or lost, and the only information known
about the system is that it lies somewhere on the attractor and λk = 1

tcrit
ln D

dk
.

A fairly decent prediction of λk can therefore be made, knowing tcrit and util-
ising a simplifying assumption suggested by [Baker and Gollub, 1996]. If there
are N measurements of some parameter of the system with which one recon-
structs the attractor, then the mean distance along any axis between two adjacent
points in phase space can be approximated by D

N
. If we assign this ratio as the

initial uncertainty dk between two points in phase space, then

λk ≈ 1
tcrit

lnN. (4.20)

This can be further simplified to a rule of thumb, if one considers that lnN
varies slowly with N . For example: for values of N = 1000, 10,000, 50,000,
100,000, lnN is 7, 9, 10.8, 11.5 respectively. Since most data consists of 1000
or more measurements one can roughly say that

λktcrit ≈ 10. (4.21)

116 4 Dynamical Systems Theory and Agent Behaviour

Applying this rule of thumb to the examples of wall following and obsta-
cle avoidance (page 104), we get the following results. For the wall following
behaviour, which had a prediction horizon of essentially infinity, tcrit is also in-
finite, resulting in an estimated λwf ≈ 0 (Equation 4.21). This is in agreement
with the result we got using Wolf’s method.
For the obstacle avoidance behaviour, we estimated tcrit ≈ 150s, resulting

in an estimate of λ =0.07/s = 0.1 bit/s. This is in agreement with results obtained
earlier.

4.5 Aperiodicity: The Dimension of Attractors

Another main characteristic of a dynamical system exhibiting deterministic
chaos is that the state variables never return to their exact previous values, i.e.
the system’s behaviour is not periodic. The trajectory in phase space lies on an
attractor with a fractal dimension, a “strange” attractor. There is, however, varia-
tion from system to system in how close state variables return to previous values,
and it is therefore desirable to quantify this degree of “proximity”.
The measure to quantify the degree of aperiodicity is the correlation di-

mension d of the attractor. The correlation dimension indicates whether data
is aperiodic or not, and to what degree: Periodic data has a correlation di-
mension of zero, chaotic attractors have a non-integer correlation dimension
[Kaplan and Glass, 1995, p. 321].

Determining the Correlation Dimension

The dimensionality of an attractor is related to its aperiodicity: the more aperi-
odic the dynamics, the greater the dimension of the attractor. In order to measure
how periodic a trajectory through phase space is, one uses the following idea.
Suppose you take an arbitrary point on the attractor, draw a hypersphere of

radius r — the so-called “correlation distance” — around that point, and count
how many points of the attractor lie within that hypersphere. This number of
points is referred to as the “correlation integral” C(r), given by Equation 4.22:

C(r) =
θ

N(N − 1)
(4.22)

where θ is the number of times that |D(ti) − D(tj)| < r. i and j are two
different times at which an embedding D is taken (Equation 4.5), and r is the
“correlation distance”. N(N − 1) is obviously the maximum number of cases
where |D(ti) − D(tj)| < r is theoretically possible (the trivial case i = j is
excluded).
In a perfectly periodic attractor, for example in the case of the ideal pendu-

lum, the correlation integral is not going to increase with increasing r. The slope

4.5 Aperiodicity: The Dimension of Attractors 117

C(r) vs r is zero. In other cases, C(r) is going to increase as one increases r.
It is the slope of C(r) vs r that is defined as the “correlation dimension” of the
attractor.
In practical computations, this slope is often estimated using Equation 4.23

[Kaplan and Glass, 1995, p. 354]:

d =
log C(r1) − log C(r2)

log r1 − log r2

(4.23)

where r1 is chosen such that r1 is roughly σ/4 (σ being the standard deviation
of the time series), and C(r1)/C(r2) ≈ 5 [Theiler and Lookman, 1993].
Clearly, the computation of the correlation dimension is dependent upon the

chosen embedding dimension p and the correlation distance r. To compute both
p and d from the same process is an ill-defined problem, and the goal is to find
a range of parameters p and r for which d is computed virtually identically (a
so-called “scaling region”). In other words, one aims to find a region where the
computation of the correlation dimension d, using Equation 4.23, is not critically
dependent upon the choice of embedding dimension p and correlation distance
r.
To find such a scaling region, one can plot the correlation dimension d as a

function of correlation distance r for all embedding dimensions p between, say, 1
and 10 [Kaplan and Glass, 1995, p. 323], and check whether there are regions for
which the choice of r and p does not alter the computed correlation dimension d.
That d is then our estimate of the dimension of the attractor.

4.5.1 Correlation Dimension: Robotics Examples

Obstacle Avoidance

In the following, we will estimate the correlation dimension of the attractor un-
derlying the obstacle avoidance behaviour shown in Figure 4.12 (right).
We first compute dC(r)

dr
= d, using Equation 4.22. Figure 4.23 shows the

result.
Choosing a very large correlation distance r is somewhat like looking at an

object from a great distance: it will have dimension zero [Kaplan and Glass, 1995,
p. 323]. The other extreme, choosing too small an r, will result in signal noise
being amplified, which is equally undesirable.
Figure 4.23 reveals that a scaling region — a region where d does not change

when parameters are changed — exists around r = 40; increasing the embed-
ding dimension in this region no longer changes the computed correlation di-
mension.
To obtain another representation of this result, we now fix r = 40 and plot d

vs p (Figure 4.24). Figure 4.24 shows a “levelling off” of the computed correla-
tion dimension d for an embedding dimension between 6 and 10. The computed

118 4 Dynamical Systems Theory and Agent Behaviour

35 70 105 140 155

Correlation distance r

Scaling region

C
or

re
la

tio
n

di
m

en
si

on
 d

cd

0
−1

0

1

2

3

4

5

Figure 4.23. Correlation dimension vs correlation distance for the obstacle-avoidance be-
haviour shown in Figure 4.12 (right), for embedding dimensions 5, 7, 9, 11, 13, 15 and various
correlation distances

C
or

re
la

tio
n

di
m

en
si

on
 d

Embedding dimension p

0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4.24. Correlation dimension vs embedding dimension for the obstacle avoidance be-
haviour shown in Figure 4.12 (right), for r = 40. The computed correlation dimension is
d ≈ 2.5.

correlation dimension d at this point is d ≈ 2.5, a fractal dimension indicating
that the attractor is strange and that the system’s behaviour is aperiodic, one of
the characteristics of deterministic chaos.

Wall Following

Figure 4.25 shows the correlation dimension d vs p and r for the wall following
behaviour. We estimate d ≈ 1.4 − 1.6.

RandomWalk

Table 4.3 shows results obtained when we apply Equation 4.23 to the random
walker introduced in Section 4.4.4.

4.6 Summary 119

Scaling region

75 150 225 300C
or

re
la

tio
n

di
m

en
si

on
 d

Correlation distance r

0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Figure 4.25. Correlation dimension vs embedding dimension for the wall following behaviour
shown in Figure 4.12 (left), for embedding dimensions 3, 5, 7, 9, 11, 13 and 15. The computed
correlation dimension is d ≈1.4-1.6.

Table 4.3. Estimates of d for the random walker, using different embedding dimensions p and
embedding correlation distances r. Equation 4.23 was used for the computation. Embedding
lag τ=40

p r1 r2 C(r1) C(r2) d

3 15 12 0.0093 0.0058 2.12
10 0.0039 2.14
7 0.0018 2.15

4 15 8 0.0035 0.00072 2.52
5 0.00022 2.54

5 20 10 0.0032 0.00048 2.74
6 15.8 20.7 0.0027 0.0066 3.31
8 15.8 17.3 0.00094 0.0012 2.69

From Table 4.3 we estimate the dimension of the attractor of the random
walker to be between 2.7 and 3.3.

4.6 Summary

The motion of a mobile robot is a function of time, and can be described, for
example, through differential equations (e.g. speed ẋ). The robot is therefore a
dynamical system, and in this chapter methods from dynamical systems theory
have been applied to describe and analyse robot behaviour.
The motion of a dynamical system through physical space can be fully de-

scribed by the system’s motion through phase space, the space defined by the
system’s position x(t) and speed ẋ(t) along every of its degrees of freedom.
Because there are established tools available for phase space analysis, this is an
attractive option.
The phase space of a dynamical system can be reconstructed through time lag

embedding (Section 4.2.3), using the observed values of a variable that is relevant

120 4 Dynamical Systems Theory and Agent Behaviour

to the system’s operation. In the case of a mobile robot, the robot’s trajectory is
usually one of the most relevant parameters characterising the robot’s behaviour,
and the robot’s phase space can be reconstructed for example by using its x(t)
or its y(t) positions.
Once the attractor is reconstructed, it can be characterised quantitatively, for

example by these three quantitative measures:

1. Lyapunov exponent (Section 4.4). This measures the information loss in
bits/s, and thus establishes how quickly small initial perturbations are am-
plified so much that no other statement can be made about the system than
“it is somewhere on the attractor”, which in the mobile robotics case trans-
lates to “the robot is going to be somewhere in the arena, but it is impossible
to say where.”

2. Prediction horizon (Section 4.4.2). This measure is related to the Lyapunov
exponent, and states the time after which a model-based prediction regarding
the system’s future states is, on average, as precise as a random guess.

3. Correlation dimension (Section 4.5). This is a measure of the system’s peri-
odicity: does the system ever revisit states, or does the motion through phase
space merely pass through the vicinity of previously visited states?

Besides providing useful information about the mobile robot’s interaction
with the environment — information such as “how far ahead into the future
could the best simulator possibly predict the robot’s position?” — these quan-
titative descriptors are needed in a science of mobile robotics for another reason.
The behaviour of a robot emerges from the interaction between the robot, the task
(control program) and the environment. If quantitative descriptions of the robot’s
behaviour, such as Lyapunov exponent, prediction horizon or correlation dimen-
sion are available, a new method of robot experimentation becomes available to
the researcher: two of the three components can be left unchanged, and the quan-
titative measure be used to investigate systematically how the third component
influences the robot’s behaviour. Robotics research would involve quantitative,
rather than qualitative assessment, and allow independent replication and verifi-
cation of experimental results, hallmarks of a maturing science.

5

Analysis of Agent Behaviour — Case Studies

Summary. In this section the techniques presented in Chapter 4 are applied to “real world”
experimental data. Three data sets will be analysed: the movement of a mobile robot that is
randomly moving around in its environment, a “chaos walker”, and the flight path of a carrier
pigeon.

5.1 Analysing the Movement of a Random-Walk Mobile Robot

Figure 5.1 shows the trajectory of a Magellan Pro mobile robot that has moved
in an irregularly shaped environment for just under three hours.

x

y

Figure 5.1. Trajectory of an obstacle-avoiding mobile robot (observation time: 3 h)

In Figure 5.2 x(t) and y(t) are shown separately.
We are interested in analysing this robot behaviour: is it mainly deterministic

or stochastic; therefore, is it predictable, and if yes, for how many steps ahead?
How can this behaviour be described quantitatively?

121

122 5 Analysis of Agent Behaviour — Case Studies

t [2s]

t [2s]

x

y

600050000 1000 2000 3000 4000

6000500040003000200010000

Figure 5.2. x (top) and y (bottom) vs time of the trajectory shown in Figure 5.1

5.1.1 Determinism

To establish whether x(t) (Figure 5.2) is mainly deterministic or not, we’ll apply
the techniques discussed in Section 4.3.2.
The return plot of x(t) vs x(t− 3) indicates that x(t) is deterministic, rather

than stochastic (Figure 5.3 — compare with Figure 4.11).
This result is confirmed by using a three-dimensional embedding of the first

half of x(t) (Equation 4.7) as a predictor of the second half, and comparing the
prediction error εmodel with the baseline prediction of error εb obtained when the
mean of the signal is used as a prediction. The ratio of εmodel/εmean turns out
to be 0.048, that is very small compared with 1.0, confirming that indeed x(t) is
deterministic.

5.1.2 Stationarity

Next, we will establish whether x(t) is stationary or not, using the runs test
described in Section 4.3.2. Dividing x(t) into 110 bins, a more or less arbitrary
choice, we determine whether in each bin the median value is above or below the
mean of the entire series x(t).

5.1 Analysing the Movement of a Random-Walk Mobile Robot 123

x(t)

x(t−1)

Figure 5.3. Return plot for x(t) for the random walker

It turns out that there are 55 runs, which is exactly inside the acceptance
interval [45,65], indicating that the distribution of “above mean” and “below
mean” medians is random: x(t) is stationary.
The result that x(t) is stationary is confirmed through a non-parametric

analysis of variance. There is no significant difference between x(1 − 3400s),
x(3400 − 6800s) and x(6800 − 10400s) (p=0.37).

5.1.3 Predictability and Lyapunov Exponent of Random-Walk Obstacle
Avoidance

Having established that our data is amenable to the mechanisms discussed in
Chapter 4, we will now try to make some quantitative descriptions of the data.
We’ll start by looking at the predictability of x(t), as discussed in Section 4.4.2.
In order to determine the prediction horizon of x(t), we need to determine

the correct embedding lag for reconstructing the attractor, which can be done
by establishing when the autocorrelation reaches 1/e [Kaplan and Glass, 1995],
or when the mutual information has its first minimum [Abarbanel, 1996]. Both
autocorrelation and mutual information of x(t) are shown in Figure 5.4.
The autocorrelation falls below e−1 for τ = 9, the mutual information has

its first minimum for τ = 7. We select an embedding lag of 8.
We now predict the second half of x(t), using the first half as our model, by

constructing for each point x(t) a three-dimensional embeddingD = [x(t), x(t−
8), x(t − 16)], and finding the nearest neighbour Dn to each D within the first
half of our data. The successors ofDn are then used to predict the successors to
x(t).
Figure 5.5 shows the result. We can see that for predictions of more than 35

steps ahead (which, at a data logging frequency of 0.5 Hz corresponds to 70 s) the

124 5 Analysis of Agent Behaviour — Case Studies

0

τ+15 7 9 11 13 τ5 7 9

Figure 5.4. Autocorrelation (left) and mutual information (right) of x(t) for the random
walker

average prediction error using our data as model is as big as the prediction error
obtained when using a randomly selected point from the first half as a predictor
for the second half of our data. In other words: if you wanted to predict the
precise location of the random-walk mobile robot, whose trajectory is shown in
Figure 5.1, then this could, on average, only be done better than random guessing
up to a prediction horizon of about 70 s ahead.

t [s]

30 40 50 60

0
0
1
2
3
4
5
6

0
0
10
20
30
40
50
60
70
80

0
0
10
20
30
40
50
60
70
80

20 40 60 80 100 120

Step [2s]

Error

10 20

I [bit]

Figure 5.5. Prediction horizon and information loss for x(t) for random walk obstacle avoid-
ance

Figure 5.5 also gives us an estimate of the Lyapunov exponent of x(t). The
prediction horizon is 70s, as we established above. Because we initially have
5.2 bits of information (bottom graph of Figure 5.5), we estimate the Lyapunov
exponent as λ ≈ 5.2bit

70s
= 0.07 bit/s.

UsingWolf’s method [Wolf, 2003], we obtain an estimate of 0.07 < λ < 0.1
bit/s, which confirms our result.

5.1 Analysing the Movement of a Random-Walk Mobile Robot 125

5.1.4 Analysis of the Attractor

Having established that the random walk behaviour exhibits deterministic chaos,
we are interested to analyse the robot’s phase space. First, we reconstruct the
attractor, using the time-lag embedding method described in Section 4.2.3. The
result is shown in Figure 5.6.

x(t)

x(t−8)

x(t−16)

Figure 5.6. The three-dimensional reconstruction of the phase space of the random walk be-
haviour shows an attractor that essentially consists of two loops, one much more clearly de-
fined than the other

We will now establish whether the robot’s motion is periodic or not, by esti-
mating the dimension of the attractor shown in Figure 5.6.

Dimension of the Attractor

We have by now established that the robot’s random walk obstacle avoidance be-
haviour is deterministic (not really a surprise, because the robot’s current position
is dependent on the robot’s previous positions, as the robot is physically unable
to hop around randomly) and stationary. We have estimated that the prediction
horizon is about 70 s, and that the Lyapunov exponent is about 0.07 bits/s. These
are two quantitative descriptions of the attractor underlying the random walk ob-
stacle avoidance behaviour, and we would now like to use a third, the correlation
dimension.
The computation of the random walker’s correlation dimension was already

discussed in Section 4.5.1. We then estimated 2.7 < d < 3.3, indicating that the
behaviour of the random walker is aperiodic.

126 5 Analysis of Agent Behaviour — Case Studies

5.1.5 RandomWalk: Summary of Results

In summary, we find that the random walk robot behaviour shown in Figure 5.1
is deterministic and stationary. We argued earlier that it would be beneficial if
we had quantitative descriptions of robot-environment interaction, and we now
have three: The prediction horizon of this behaviour is about 70 s, the Lypunov
exponent about 0.07 bits/s, and the correlation dimension about 3.0.

5.2 “Chaos Walker”

Figure 5.7 shows the trajectory of the Magellan robot Radix that was pro-
grammed using the strategy shown in Table 5.1. Essentially, this strategy in-
volves a straight move for a short period of time, and then a turn on the spot,
where the turning direction and turning duration is determined by the chaotic
quadratic iterator given in Equation 4.14.
The robot’s position was logged every 250 ms. The robot’s environment is

shown in Figure 5.8.

260 280 300 320 340 360 380 400 420 440 460
100

140

180

220

260

300

340

260 280 300 320 340 360 380 400 420 440 460
100

140

180

220

260

300

340

Figure 5.7. Trajectory of the “chaos walker”. The entire trajectory is shown on the left, 5 min
of robot motion on the right

Radix therefore moved predictably in a straight line for a little over 3 s, then
turned on the spot for a time determined by the chaotic equation of the quadratic
iterator given in Equation 4.14. We are interested to analyse this behaviour, and
to describe it quantitatively. To do this, we will use the robot’s motion along the
x-axis, which is shown in Figure 5.9.

5.2.1 Stationarity

First, we will establish whether x(t) is stationary or not. Dividing the entire
time series x(t) into three regions of equal size, we determine through a non-
parametric analysis of variance (Section 3.4.4) that mean and standard deviation
for the three sections are not the same, meaning that the signal is not stationary.

5.2 “Chaos Walker” 127

Figure 5.8. The environment in which Radix performed the chaos walker behaviour

Table 5.1. Pseudo code of the “Chaos Walker” behaviour

d (1)=0 . 1 25
t =1
wh i l e (1)

t = t +1
I f o b s t a c l e d e t e c t e d

Per form s t a n d a r d o b s t a c l e avo i d ance a c t i o n
e l s e

Move fo rwa rd f o r 3 . 3 s
d (t)=4 d (t−1)(1−d (t −1))
i f d (t)>0.5

TurnTime =(PI ∗ d (t) / 0 . 1 5) s econds
e l s e

TurnTime=−(PI ∗ d (t) / 0 . 1 5) s econds
Turn on s p o t a t c o n s t a n t speed f o r TurnTime s

end
end

128 5 Analysis of Agent Behaviour — Case Studies

x

t [250ms]

0 4000 8000 12000 16000 20000 24000 28000 32000
260

280

300

320

340

360

380

400

420

440

460

Figure 5.9. The x-coordinate of the motion shown in Figure 5.7

However, as discussed on page 100, the signal dx
dt

= ẋ is often stationary.
This signal is shown in Figure 5.10, and indeed it turns out to be stationary,
using the non-parametric analysis of variance. We will therefore analyse ẋ.

5.2.2 Determinism

To establish whether ẋ (Figure 5.10) is deterministic or not, we’ll apply the tech-
niques discussed in Section 4.3.2, computing the return plot of ẋ(t) vs ẋ(t + 2),
and the ratio of ε/εb.
Both the return plot of ẋ(t) vs ẋ(t + 2) and ε/εb = 0.05 indicate that ẋ is

deterministic, rather than stochastic (Figure 5.11 — compare with Figure 4.11).

5.2.3 Predictability of the “Chaos Walker”

Having established that our data is amenable to the mechanisms discussed in
Chapter 4, we will now try to make some quantitative descriptions of the data.
We’ll start by looking at the predictability of ẋ(t), as discussed in Section 4.4.2.
In order to determine the prediction horizon of ẋ(t), we need to determine

the correct embedding lag for reconstructing the attractor, which can be done
by establishing when the autocorrelation reaches 1/e [Kaplan and Glass, 1995],
or when the mutual information has its first minimum [Abarbanel, 1996]. The
mutual information of ẋ(t) is shown in Figure 5.12.

5.2 “Chaos Walker” 129

dx/dt

t [250ms]
0 4000 8000 12000 16000 20000 24000 28000 32000

−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 5.10. The first derivative of the x-coordinate of the motion shown in Figure 5.7

x(t)

x(t+2)
−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 5.11. Return plot for ẋ(t)

130 5 Analysis of Agent Behaviour — Case Studies

τ

Mutual Information

50403020100

Figure 5.12.Mutual information of ẋ(t) of the chaos walker

The mutual information has its first minimum for τ = 10, Figure 5.13 shows
a three-dimensional reconstruction of the attractor, using this embedding lag (the
attractor actually has a dimension of around 4, so that Figure 5.13 is only one of
many possible projections of the attractor onto 3D space).

x(t)

x(t−10)

x(t−20)

Figure 5.13. Reconstruction of the attractor of the chaos walker, underlying the motion along
the ẋ axis. τ = 10

5.2 “Chaos Walker” 131

We now predict the second half of ẋ(t), using the first half as our model, by
constructing for each point ẋ(t) a three-dimensional embeddingD = [ẋ(t), ẋ(t−
10), ẋ(t− 20)], and finding the nearest neighbourDn to eachD within the first
half of our data. The successors ofDn are then used to predict the successors to
ẋ(t).

6

4

2

0.00 3.75 7.50 11.25 15.00 18.75 22.50 26.25 30.00
t [s]

20 40 60 80 100 120
Step [250 ms]

Error

I [bit]

Figure 5.14. Prediction horizon for ẋ. The prediction horizon is about 19 s

The result is shown in Figure 5.14. The prediction horizon is about 19 s,
and as there are about 6 bits of information available initially, we estimate the
Lyapunov exponent from the prediction horizon as λ ≈ 6

19
bit/s = 0.3 bits/s.

The information loss shows a linear region (indicated in Figure 5.14), which
has an information loss of λ ≈ 4.3

8
bit/s = 0.5 bit/s.

To get a third estimate, we use Wolf’s algorithm to estimate λ, the results are
shown in Table 5.2.3.
Using Wolf’s algorithm we estimate λ ≈ 0.4 bit/s, so that our final estimate

of the Lyapunov exponent for the chaos walker is 0.3 < λ < 0.5 bit/s.

5.2.4 Dimension of the Attractor Underlying the Chaos Walker

To conclude, we estimate the correlation dimension of the attractor shown in Fig-
ure 5.13, using Equation 4.23. Table 5.3 shows the result for various embedding
dimensions p and correlation distances r. r1 was selected such that it was about
a quarter of the standard deviation of ẋ, r2 was selected such that C(r1) ≈ 5
C(r2).
The results given in Table 5.3 show no very pronounced scaling region, and

it is hard to give a precise dimension of the attractor, but based on the table we
estimate that the dimension of ẋ of the chaos walker is somewhere around 4.

132 5 Analysis of Agent Behaviour — Case Studies

Table 5.2. Estimates of λẋ of the chaos walker, using Wolf’s algorithm. Embedding lag τ=10,
scalmn=0.1. Parameter settings that lie in a scaling region are printed in bold

p evolv scalmx λ

3 3 0.8 1.9
5 1.4
7 1.2
9 0.8
11 0.7
13 0.7
15 0.7
17 0.6
19 0.5

3 13 0.3 1.0
0.4 0.9
0.5 0.8
0.7 0.7
0.9 0.7
1.1 0.6
1.3 0.6
1.5 0.6
1.7 0.6
1.8 0.6
2.2 0.5

3 13 1.4 0.6
4 0.5
5 0.4
6 0.4
7 0.4
8 0.4

Table 5.3. Correlation integral of ẋ for various correlation distances r and correlation dimen-
sion (Equation 4.23) for ẋ of the chaos walker

p r1 r2 C(r1) C(r2) d
3 1.77 0.8 0.101 0.023 1.9
4 1.8 0.9 0.0443 0.0079 2.5
5 1.8 1.0 0.0179 0.00297 3.1
5 2.3 1.4 0.038 0.008 3.1
6 1.8 1.2 0.00695 0.00167 3.5
6 2.5 1.8 0.024 0.00695 3.8
7 1.8 1.2 0.0027 0.000587 3.8
7 2.5 1.8 0.011 0.0027 4.3
7 3.5 2.5 0.05 0.011 4.5
8 1.8 1.2 0.0011 0.00028 3.4
9 1.8 0.6 0.0005 0.00014 1.2

5.3 Analysing the Flight Paths of Carrier Pigeons 133

5.3 Analysing the Flight Paths of Carrier Pigeons

Carrier pigeons Columba livia f. domestica have an amazing ability to return
home to their loft, when released at sites completely unknown to them, in some
cases hundreds of kilometres away from home. To achieve this they use their in-
nate magnetic compass, a learnt sun compass, and knowledge about navigational
factors such as the distribution of the strength of the earth’s magnetic field (for
details see
[Wiltschko and Wiltschko, 2003]). Although most pigeons exhibit the homing
ability reliably, there are differences between individual animals. It does mat-
ter if the release site is known to the pigeon, if the pigeon is experienced, what
the weather is like, if the pigeon meets other pigeons along the way, etc. Some
of these factors stem from the environment — they can’t easily be taken into
account when analysing pigeon behaviour — but others are specific to the in-
dividual, and it will be interesting to use the methods described in this book to
highlight differences in the behaviour of individual animals.
In this case study, we will compare the homing behaviours of two individ-

ual pigeons. Our goal is to identify similarities and differences between the two
homing behaviours; in other words: to characterise the pigeons’ behaviour.

5.3.1 Experimental Procedure

To conduct this research, a miniature GPS logging device was attached to the pi-
geons. The animals were then taken to a release site approximately 21 km away
from the loft, released, and during their flight home the pigeons’ positions (lon-
gitude and latitude) were logged every second. These coordinates were subse-
quently converted into “earth-centred earth fixed” (ECEF) coordinates. The two
flight paths we will analyse in this case are shown in Figure 5.151.
Both pigeons 569 and 97 were released the same distance from home, and

both managed to fly home in a fairly straight path. Therefore, they seem to be
very similar to each other — and yet, the following analysis will reveal important
differences in their behaviour.

5.3.2 Analysis

Before we analyse the flight paths shown in Figure 5.15, a disclaimer: we will
analyse the paths as they are, irrespective of the experimental conditions that
prevailed when the data was obtained. We will assume that the entire paths con-
tain “meaningful” information, characteristic of the behaviour of the individual
pigeon. As it will turn out, both flight paths show two very distinct phases with
1 I am grateful to Karen von Hünerbein and Roswitha and Wolfgang Wiltschko of the J.W.
Goethe University of Frankfurt for making these data available to me.

134 5 Analysis of Agent Behaviour — Case Studies

Release site

Home loft

ECEF y [m]

ECEF x [m]

Pigeon 569

2000 4000 6000 8000 10000 12000
0

0

4000

8000

12000

16000

20000

24000

Release site

Home loft

ECEF y [m]

ECEF x [m]

Pigeon 97

2000 6000 8000 10000

5000

0 4000
0

10000

15000

20000

25000

12000

Figure 5.15. Homing flight paths of pigeon 569 (top) and pigeon 97 (bottom)

different characteristics — for the analysis here we assume that these two dis-
tinct phases are both relevant parts of the pigeon’s behaviour, and not due to
some experimental parameter, such as perhaps weather, light, noise, or anything
like that.
For analysing the paths shown in Figure 5.15, the first question that needs to

be addressed is “which datum contains relevant information about the pigeon’s
behaviour?” As we are looking at homing behaviour here, one meaningful datum
is the deviation from the homeward direction at each point in time, i.e. the differ-
ence between the heading flown by the bird and the homeward direction. These
deviations are shown in Figure 5.16, the dashed zero-degree line in the Figure
denotes the direcction to home.2

2 The data shown in Figure 5.16 has been median-filtered over a window of 19 s.

5.3 Analysing the Flight Paths of Carrier Pigeons 135

Homing period
Initialisation

Pigeon 569

0 400 800 1200 1600
−140

−100

−60

−20

20

60

100
D

eg
re

es

t [s]

Initialisation Period Homing period

Pigeon 97

0 1000 2000 3000 4000

t [s]

−200

−150

−100

−50

0

50

100

D
eg

re
es

Figure 5.16. Deviations from home direction (note different time scales)

In order to apply the methods discussed in Chapter 4 to the time series shown
in Figure 5.16, we first check that they are deterministic and stationary (see Sec-
tion 4.3.2). It turns out that both deviations are deterministic (ε/εb = 0.29 and
ε/εb = 0.23 for pigeon 569 and 97 resp.), but that only the deviation for pi-
geon 569 passes the runs test for stationarity (see Section 4.3.2). The deviation
from home for pigeon 97 is stationary for the two individual sections (initialisa-
tion phase and homing phase), but not over the entire run. It is, however, weakly

136 5 Analysis of Agent Behaviour — Case Studies

stationary, in that the mean over the entire run is roughly the same. The conclu-
sion we draw from this is that the two birds differ in their behaviour, and that the
results obtained for pigeon 97 have to be interpreted with caution.
Looking at Figure 5.16, a remarkable difference between pigeon 569 and

pigeon 97 becomes clear: while initially both pigeons spend some time at the
release site, pigeon 569 heads straight home after less than 200 s (i.e. its heading
starts varying more or less symmetrically around the zero degree deviation line),
whereas pigeon 97 spends 10 times as much time at the release site before it
heads home. The reasons for this difference are unknown to us — it could be
that pigeon 569 is the better navigator, or it could equally well be the case that
pigeon 97 simply chose to spend more time with conspecifics at the release site
before heading home. Whatever the reason, the different behaviour at the release
site of the pigeons is clearly visible.
This difference becomes clear also if we analyse the dynamics of the pi-

geons’ homing behaviour. The most obvious illustration of the difference is the
phase space reconstruction of the data shown in Figure 5.16, which is given in
Figure 5.17. Reconstructing the phase space through time lag embedding reveals
the temporal relationship between deviations over time: in a pigeon that flies in
an absolutely straight line home (zero degrees deviation from home direction
throughout), the phase space should be a point of dimension zero, at position
(0,0,0). The larger the variation of the pigeon’s heading from true home, the
“fuzzier” and higher-dimensional will the state space be. This is indeed visible
in Figure 5.17.
The phase space of pigeon 569’s deviation has a clearly defined, confined

region around point (0,0,0) which corresponds to the pigeon’s homing period.
Pigeon 97’s phase space, on the other hand, indicates that the deviation at time t
is almost unrelated to the deviation at time t − τ : the phase space is diffuse and
of a larger dimension.
One quantitative descriptor of the phase spaces shown in Figure 5.17 is their

correlation dimension, as introduced earlier in Section 4.5. Figure 5.18 shows
the computation of these for the two homing behaviours, and indeed, while pi-
geon 569’s attractor has a correlation dimension of approximately 2.3, the attrac-
tor of pigeon 97 has a correlation dimension of about 6.6!
Finally, we will look at the sensitivity to initial conditions, and the pre-

dictability of the birds’ deviation. Figure 5.19 shows the prediction horizons for
both homing behaviours.
Figure 5.19 shows that the homing behaviour of pigeon 569 is very pre-

dictable, with a prediction horizon of at least 40 s and a Lyapunov exponent
of less than 0.1 bit/s, while the homing behaviour of pigeon 97 is far less pre-
dictable (prediction horizon about 15 s, Lyapunov exponent around 0.3 bit/s). Us-
ingWolf’s algorithm [Wolf, 2003], we confirm that for pigeon 569 λ ≈ 0.1 bit/s,
and for pigeon 97 λ ≈ 0.3 bit/s.

5.3 Analysing the Flight Paths of Carrier Pigeons 137

Pigeon 569
Dev(t−20)

Dev(t−40)

Homing phase
49

−40

Dev(t)

−40

−129 49

−40

−129

49

Pigeon 97

−200

−100

0

100

−200
−100

0
100

−200

−100

0

100

Dev(t−40)

Dev(t−20) Dev(t)

Figure 5.17. Phase space of the time series shown in Figure 5.16

5.3.3 Summary and Conclusion

In this last case study we compared the homing behaviour of two carrier pigeons.
Specifically, we compared the two pigeons’ deviation from the home direction
vs time.
Although both pigeons arrive at the loft successfully, and although the two

flight paths (Figure 5.15) look similar, we soon realise that the two homing be-
haviours differ considerably. Pigeon 569 heads straight home after less than 200 s
at the release site, whereas pigeon 97 spends more than 1400 s before flying
straight home. It is this initialisation period that differentiates the two pigeons;
looking at their homing period alone, they look quite similar indeed.
Assuming that the initialisation phase is a descriptive part of the pigeons’ be-

haviour, rather than an experimental fluke, we reconstruct and analyse the phase
space of both pigeons’ deviation from the true home direction, and find, not
surprisingly, that the attractors describing the homing behaviours differ. Pigeon

138 5 Analysis of Agent Behaviour — Case Studies

Pigeon 569

3 5

1.7

2.1

2.5

1

+

+

+

Embedding dimension p

Co
rre

lat
ion

 di
me

ns
ion

Pigeon 97

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

C
or

re
la

tio
n

di
m

en
si

on
Embedding dimension p

Figure 5.18. Correlation dimensions of the attractors shown in Figure 5.17 (note different
scales)

Pigeon 569

Pigeon 569

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

t [s]

t [s]

E
rr

or
In

fo
rm

at
io

n
 [b

it]

Pigeon 97

Pigeon 97

0 10 20 30 40 50 60 70 80 90 100

t [s]
0 10 20 30 40 50 60 70 80 90 100

0
1
2
3
4
5
6

In
fo

rm
at

io
n

[b
it]

E
rr

or

t [s]

Figure 5.19. Prediction horizons of the attractors shown in Figure 5.17

569’s attractor has a correlation dimension of around 2.3 and shows a clearly
defined area corresponding to homing behaviour, whereas pigeon 97’s attractor
is diffuse, has a correlation dimension of about 6.6, and no pronounced homing
region.
Furthermore, pigeon 569’s homing behaviour is well predictable (λ <

0.1 bit/s), while pigeon 97’s homing behaviour is highly unpredictable (λ ≈
0.3 bit/s) and shows characteristics of deterministic chaos.

6

Computer Modelling of Robot-Environment
Interaction

Summary. This chapter discusses modelling robot-environment interaction in general (i.e.
motivation, data logging, sampling, time series analysis), and how robot-environment interac-
tion can be modelled, using system identification techniques such as artificial neural networks,
ARMAX and NARMAX models.

6.1 Introduction

In this chapter we will investigate three different methods of modelling robot-
environment interaction, that is, obtaining a mathematical description of the rel-
evant parameters that generate a robot’s motion. There are two main reasons for
doing this. First, modelling will provide us with computer simulations of the
robot’s essential properties, which simplifies the development of robot control
code. Second, a model will retain, in abstraction, the important aspects of the
robot’s operation, and thus provide a essential tool for the analysis of behaviour
and scientific robotics.

6.1.1 Motivation

Faithful Simulation

To conduct experiments with mobile robots can be very time consuming, expen-
sive, and difficult. Because of the complexity of robot-environment interaction,
experiments have to be repeated many times to obtain statistically significant
results. Robots, being mechanical and electronic machines, do not perform iden-
tically in every experiment. Their behaviour sometimes changes dramatically, as
some parameter changes. Examples are specular reflections off smooth surfaces,
or the influence of environmental parameters such as dust, changing motor char-
acteristics as battery charge changes, etc.
Such hardware-related issues make simulation an attractive alternative. If it

was possible to capture the essential components that govern robot-environment

139

140 6 Computer Modelling of Robot-Environment Interaction

interaction in a mathematical model, predictions regarding the outcome of ex-
periments could be made using a computer instead of a robot. This is faster,
cheaper, and has the additional benefit that simulations can be repeated with
precisely defined parameters. This enables the user to identify the influence of
single parameters upon performance, something that cannot be done with real
robots (because there are never two truly identical situations in the real world).
There are many advantages to simulation, apart from precise repeatability,

speed, simplicity and low cost. Provided a faithful model can be found, sim-
ulation is a means of making predictions of systems that are too complex to
analyse, or for which there is no data (yet) to perform a rigorous analysis (e.g.
space exploration before the first man ever entered space). Simulation allows the
controlled modification of parameters, and this modification in turn can lead to
a better understanding of the model. Simulations can be used for teaching and
training, stimulating interest (e.g. games). “What if” scenarios can be analysed
using models, and simulation can give insights into how to best break up a com-
plex system into subcomponents.

Models as Scientific Tools

One main purpose of scientific methods in robotics is to understand robot-
environment interaction, to be able to identify the main contributors to a robot’s
behaviour, and to make predictions about the robot’s operation.
Robot-environment interaction is a highly complex, often chaotic process that

is so intricate that often it cannot easily be investigated on the real robot, in the
real world. One motivation of robot modelling, therefore, is to obtain abstracted,
simplified models of robot-environment interaction, which are more amenable to
rigorous analysis.
This approach is not new. [Schöner and Kelso, 1988] demonstrate that it is

possible to understand behavioural patterns, mostly in living beings, by means
of concepts taken from stochastic nonlinear dynamics. In many cases, complex
behaviour can be described by dynamics of a much lower dimension, resulting in
a smaller number of degrees of freedom (“slaving principle”), which simplifies
the analysis of the system. This is the motivation behind robot modelling, too:
to obtain a simplified, transparent and analysable model of robot-environment
interaction.

Fundamental Modelling Scenario

The fundamental modelling scenario is shown in Figure 6.1. An input vector
u(t) is associated with the output vector y(t); the objective of the modelling
process is to “identify” the relationship between u(t) and y(t) as a recurrence
relation. The term “system identification” is therefore used for this process.

6.2 Some Practical Considerations Regarding Robot Modelling 141

u(t−k)
k=0,1,... System y(t)

Figure 6.1. The fundamental simulation/computer modelling scenario

If the goal of the simulation is to obtain a faithful representation of the mod-
elled system, then the model has to be constructed using real data, rather than
general assumptions about robot and environment, due to the unpredictability of
the real world, and the robot’s susceptibility to noise and variation. This means,
of course, that each model can only model one particular robot operating in one
particular environment (see Figure 2.1)!
There are a number of possibilities to achieve this modelling task. A straight-

forward approach would be to log data at various locations in the real world, and
at the prediction stage to use interpolation to predict the datum one is interested
in. The difficulty in interpolation is that a lot of data has to be stored initially —
the more closely spaced the “known” points are, the more precise the interpo-
lation. Obviously, there is a limit to the amount of data that can be logged and
stored, and therefore there is always a trade off between accuracy and efficiency.
There are (at least) three other possibilities for modelling the relationship

between u(t) and y(t): using artificial neural networks (discussed below in
Section 6.3), using linear polynomials (Section 6.4.2) and using non-linear poly-
nomials (Section 6.5). After a discussion about data logging and sampling rates
we we will discuss these options in turn.

6.2 Some Practical Considerations Regarding Robot Modelling

6.2.1 Data Logging Example: Determining the Sampling Rate

In this example we will determine a suitable sampling rate to analyse the be-
haviour of a wall-following robot. The robot’s trajectory is shown in Figure 6.2;
it is x(t) that we want to analyse (right hand side of Figure 6.2).
In this case, data was sampled every 250 ms. The question is: is this sampling

rate adequate for this experimental scenario, or is it too high or too low? If it
is correct, then obviously x(t) can be analysed straight away. If it is too high
(oversampling), we can simply down sample the data by a rate of 1:n (use only
ever nth data point). If we have under sampled, there is nothing but to repeat the
experiment, and to log the robot’s behaviour using a higher sampling rate.
Here are four ways of determining whether the sampling rate is suitable for

the data or not:

142 6 Computer Modelling of Robot-Environment Interaction

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−100

−80

−60

−40

−20

0

20

40

60

80

−100 −80 −60 −40 −20 0 20 40 60 80
−60

−40

−20

0

20

40

60

80

100

x [cm] t [250ms]

x [cm]y [cm]

Figure 6.2.Movement of a wall-following robot, logged by an overhead camera (left), and the
x-coordinate of that movement vs time (right)

1. Analyse the autocorrelation
2. Analyse the mutual information (see Equation 4.6)
3. Analyse the frequency spectrum
4. Use general physical considerations

Obviously, when logging data, it is essential to log only “meaningful” data
points, i.e. every new data point should contain new, relevant information. If the
sampling rate is too high, subsequent data points essentially contain the same
information, and are therefore not “meaningful”. The goal is to find the sam-
pling rate at which subsequent data points contain novel information, and yet
still capture the essence of the data.
The first two measures in the list above do this by computing the point at

which the correlation between points x(t) and x(t + τ) is near zero. Figure 6.3
shows that both autocorrelation and mutual information for x(t) have fallen to
near zero for τ ≈ 65. In other words, we now have an indication that “something
interesting” happens no sooner than about every 16 s (65 steps at 4 Hz = 16.25 s).
Looking at the frequency spectrum of x(t) (Figure 6.4), we can see that there

are two relevant periods in our data, one repeating every 248 data points, and a
smaller one repeating every 84 data points. These correspond broadly to the time
taken by the robot to move from one corner of the arena to the next (84×0.25 s =
21 s), and to complete one round (248 × 0.25 s = 62 s).
In this case we get agreeing information from both the data and physical

considerations. About every 20 s the robot turns a corner, and about every 60 s
it therefore completes a round. Autocorrelation and mutual information both say
that relevant new data points occur about every 16 s, broadly corresponding to
the time elapsed between corners.
Usually an acceptable sampling rate in mobile robotics applications is about

ten samples per period. The shortest period in this case is about 20 s. This means

6.3 Case Study: Model Acquisition Using Artificial Neural Networks 143

τ+1
50 60 70 80

−1000

1000

0

τ
50 60 70 80

Figure 6.3. Autocorrelation (left) and mutual information of x(t) shown in Figure 6.2. The
autocorrelation falls to approx. zero and the mutual information has a minimum for a lag of
τ ≈ 65

250 90

Period [data points]

Figure 6.4. Frequency spectrum of x(t)

that we should log the robot’s position about every 2 s — at a sampling rate of
one sample every 250 ms this means we need to down sample at a rate of 1:8.

6.3 Case Study: Model Acquisition Using Artificial Neural
Networks

This case study presents a mechanism that can learn location-perception map-
pings through exploration, and that is able to predict sensor readings for loca-
tions that have never been visited. A multilayer Perceptron is used to achieve
this.

144 6 Computer Modelling of Robot-Environment Interaction

The structure of the two-layer network is shown in Figure 6.5. It is a multi-
layer Perceptron that associates the robot’s current position in (x, y) co-ordinates
with the range reading of the one sonar sensor being modelled. Sixteen networks
were used, one for each sonar sensor of a Nomad 200 mobile robot.

Wa
1,1

Wa
1,2

Wa1,40Wa
2,40

Wb
1,1

Wb
4,10

Wb40,10

Wc
1,1

Wc
2,1

Wc
10,1

1

1

2

10

1

2

3

4

40

1

2

T

X

Y

S

-1

T: Threshold unit
W: Weight
S: Robot’s sonar reading

X: Robot’s x position in Cartesian system

Y: Robot’s y position in Cartesian system

First hidden-layer units: 40

Second hidden-layer units: 10

Input units: 2

Output units:1

Threshold units: 51

Threshold value: -1

Total weights: 490

Figure 6.5. The multilayer Perceptron used to acquire a model of the sonar sensor perception
of a Nomad 200 robot

6.3.1 Experimental Procedure

To obtain training data, the robot was moved through the target environment in a
methodical and regular manner, obtaining sonar sensor readings in regular inter-
vals. The (x, y) location as obtained from the robot’s odometry and the reading
of the sensor were logged for later off-line training of the net. To minimise the
error introduced by odometry drift, the robot’s wheel encoders were frequently
calibrated, and the path of the robot was chosen to be straight, rather than curved,
which introduces less odometry error. Figure 6.6 shows two such experimental
setups, indicating the paths the robot took for acquiring training data.

6.3 Case Study: Model Acquisition Using Artificial Neural Networks 145

Figure 6.6. Experimental setup for data acquisition in two different environments

The robot was then led along a different, more “interesting” path to collect
test data. As can be seen from Figure 6.6, training and test paths coincide in only
very few points. If the acquired model has any general explanatory power about
the robot’s interaction with those two environments at all, it will be revealed
when the network’s predictions about sensory perception along the test path are
compared with the actual sensory perception of the robot.

146 6 Computer Modelling of Robot-Environment Interaction

6.3.2 Experimental Results

Predicting Sensory Perception

Figure 6.7 shows those predictions vs the actual sensor readings for the test path
given in Figure 6.6 (top). As can be seen, the network is able to predict the sud-
den increase in range reading at sample number 20, which is due to a specular
reflection off the smooth wooden door. The (wrong) prediction made by a sim-
plified numerical model (“Nomad simulator”) is shown for comparison.
Likewise, Figure 6.8 shows the prediction of sensory perception of the learnt

model along the test path given in Figure 6.6 (bottom).

Figure 6.7. Simulation of sonar range readings during wall following. The sudden increase at
sample number 20 (“Real sonar reading”) is due to specular reflection off a wooden door. The
generic simulator fails to predict this, because the model assumes uniform surface structure
throughout the entire environment

Again, the acquired model is able to predict the sudden rise in range reading
near location (400, -400).

Predicting Robot Behaviour

So far, there is an indication that the network model is able to predict the robot’s
sonar sensor readings in the target environment. Clearly this is useful, but really
we are interested to predict the robot’s behaviour in that environment, executing
a particular control program.
For example, one could take a hardwired control program, i.e. a program

that uses a fixed control structure without learning, to achieve a wall following

6.3 Case Study: Model Acquisition Using Artificial Neural Networks 147

Figure 6.8. Network response to test data. A generic simulator is unable to predict the sudden
increase in range reading due to specular reflection, while the learnt network simulator predicts
this correctly

behaviour, and execute that program on the real robot, on its network simulation,
and on the simple numerical simulator.
The result is astonishing! Because of the specular reflection off the door in

the environment shown in Figure 6.6 (top), the robot actually crashes into the
door, assuming there is more space ahead than there actually is. This is shown in
Figure 6.9.
Because the simple numerical model assumes a uniform surface structure

throughout the environment, it fails to predict that collision (“Nomad simulator”
in Figure 6.9), whereas the network simulator sees it all coming. Figure 6.9 is
one illustration of the fact that we are not necessarily talking about minor dif-
ferences between the behaviour of a robot and its simulation: these are major
discrepancies, leading to qualitatively completely different behaviour!
Let’s run another simple hardwired control program, this time in the environ-

ment shown in Figure 6.6 (bottom). The program now is a “find-freest-space”
program, which first takes all 16 sonar readings of the robot, then moves one
inch in the direction of the largest reading, then repeats the process until either
a distance of 100 inches has been covered, or the robot’s infrared sensors detect
an obstacle. This is a “critical” program, because even slight deviations will take
the robot into a different area of the environment, resulting in a totally different
trajectory. The results are shown in Figure 6.10.
In a uniform environment, one would expect that a find-freest-space program

would lead the robot towards the geometrical centre of the environment, and

148 6 Computer Modelling of Robot-Environment Interaction

Figure 6.9. Because it assumes a homogeneous wall surface, a generic simulator fails to pre-
dict the collision that the real robot encounters, due to specular reflections. The learnt network
simulator predicts the collision correctly

make the robot oscillate around that centre. This is precisely what the simple
numerical simulator predicts.
However, in real life the robot actually moved towards the edge of the envi-

ronment, which was predicted quite accurately by the network simulator.

Predicting the Behaviour of a Learning Controller

So far, the control programs we used to predict the robot’s behaviour were rel-
atively simple hardwired programs. These programs take sensor readings as in-
puts, and perform one specific, user-defined action in response.
Two components dominate the robot’s behaviour in these experiments: the

robot’s sensory perception, and the control strategy used. Any simulation error
will only affect the robot once when it uses a hardwired control program, i.e.
in perception. The control program is user-supplied and fixed, and therefore not
affected by simulation error.
If, on the other hand, we used a learning controller, any problems due to sim-

ulation errors would be exacerbated, in that first the robot would learn a control
strategy based on erroneous sensory perceptions, and then it would execute that
erroneous control strategy, taking erroneous sensor readings as input. Simulation
errors have a double impact in these situations, and experiments with learning
controllers could therefore serve very well as a sensitive measure of how faithful
the simulator really is.

6.3 Case Study: Model Acquisition Using Artificial Neural Networks 149

Figure 6.10. Simulated and real robot trajectories in response to the “find freest space” pro-
gram. The simple numerical model predicts that the robot will move to the geometrical centre
of the robot’s environment, which is at (450, -450). The network simulator predicts a trajectory
that is much closer to the trajectory actually taken

Experimental Setup

We therefore conducted experiments with an instinct-rule based learning con-
troller similar to the one described in [Nehmzow, 2003a, p.76ff], using a Pattern
Associator. The control strategy, therefore, was encoded in terms of the Pattern
Associator’s network weights. The objective of the learning process was to ac-
quire a wall following behaviour.
Learning took place in simulation, either in the simple numerical model, or in

the trained network model. The weights of the trained networks were then taken
and loaded into the Pattern Associator of the real robot to control the robot’s
movements.
The trajectory of the real robot was then plotted against the trajectory that the

respective simulators predicted. These trajectories are shown in Figure 6.11.
From Figure 6.11 one can see that the network simulator performs better

than the simple numerical robot simulator. However, one can also see that our
assumption of a more sensitive experiment due to the double impact of any error
is true: in comparison with Figures 6.9 and 6.10 the predicted and simulated
trajectory follow each other less closely here.

150 6 Computer Modelling of Robot-Environment Interaction

Figure 6.11. Left: The robot traces predicted by a generic simulator and the real robot using
the weights generated by the generic simulator. Right: The network predicted robot trace is
similar to the real one using the weights generated by the network simulator

6.4 Linear Polynomial Models and Linear Recurrence Relations

6.4.1 Introduction

Using real data to model the relationship between input variable u(t) and out-
put variable y(t) has the advantage that the model, being based on real-world
data obtained by the modelled agent operating in the target environment, is more
faithful to the modelled behaviour than a generic model based on general as-
sumptions. The case study given in the previous section demonstrates this.
However, modelling the opaque interdependency of robot, task and environ-

ment using an artificial neural network results in an opaque model. It is still not
possible to analyse what really is going on— in order to do that, one would need
an analysable mathematical model.
One possible way to obtain analysable models is to model the input-output

relationship as a linear or nonlinear polynomial, known as ARMAX (autoregres-
sive, moving average model with exogenous inputs) or NARMAX (nonlinear
ARMAX).
There are considerable advantages to modelling input-output relationships

using such transparent polynomial functions, rather than opaque mechanisms
such as artificial neural networks:

1. The input-output representations are very compact and require very little
space (memory) and processing time to compute.

2. They are amenable to rigorous mathematical analysis. For example, models
of robot speed can be turned into models of robot acceleration by differen-
tiating, models of acceleration can be modified to models of speed through

6.4 Linear Polynomial Models and Linear Recurrence Relations 151

integration. Also, it is easier to estimate parameters such as Lyapunov ex-
ponent or correlation dimension from a closed mathematical function than
from a time series.

3. Input-output relationships can be analysed graphically; plotting is straight-
forward, whereas in opaque models this is not possible.

4. The acquired model actually says something about the relationship between
inputs and outputs. Parameters and lags indicate relevant process compo-
nents. Questions like “What happens if a particular sensor fails?”, “Which
sensor is the most important (i.e. where would it be most effective to spend
more money on a better sensor)?” or “What happens if the environment
changes in a particular way?” can be addressed.

5. The analysis of similar behaviours, obtained by different means— for exam-
ple achieving a particular robot behaviour through both a controller derived
from control theory and one based on machine learning techniques — is eas-
ier when the models underlying those behaviours are considered: stability,
sensitivity to noise, identification of relevant and irrelevant sensor signals
are easier when a transparent mathematical expression is available for anal-
ysis.

The following sections will present two ways of obtaining such transparent
models, ARMAX and NARMAX modelling. Both methods express the relation-
ship between u and y as polynomials, ARMAX as a linear, and NARMAX as
a non-linear polynomial. In both cases, models are transparent, and can be anal-
ysed systematically.

6.4.2 ARMAXModelling

ARMAX (Auto-Regressive, Moving Average models with eXogeneous inputs)
is a discrete time series model, commonly used in system identification, that
models the relationship between the independent input variable u(t) and the
dependent output variable y(t) as the linear polynomial given in Equation 6.1:

yt = −a1yt−1 − a2yt−2 . . . − aiyt−i (6.1)
+b1ut−1 + b2ut−2 . . . + biut−i

+d1et−1 + d2et−2 . . . + diet−i + et

with u being the input, y being the output e being the noise model and ak, bk

and dk being the model parameters that have to be determined. This process is
shown in Figure 6.12.
The ARMAX model has been widely studied for system identification, de-

tailed information can be found for instance in [Pearson, 1999, Box et al., 1994].
The ARMAX model is limited, in that it is a linear model. However, as we

will see, for many robotics modelling tasks a linear model is sufficient, and it is

152 6 Computer Modelling of Robot-Environment Interaction

Modelu(t−k)
k=0,1,...

Delay

e(t)

y(t)

Noise
model

Figure 6.12. ARMAX system identification process

often possible to model input-output relationships such as sensory perception-
motor response.

6.4.3 ARMAXModelling Using Scientific Programming Packages

ARMAX system identification is part of many scientific programming packages
(for example Scilab or Matlab), and can be used without any further program-
ming. On page 176 there is an example of how this can be done by a one-line
command in Scilab. The program listed below provides a slightly more user-
friendly implementation of the ARMAX system identification process.
f u n c t i o n [ypred , a r c]= armaxid (y , u , r , s)
/ / (c) U l r i c h Nehmzow
/ / ARMAX i d e n t i f i c a t i o n f o r n−d imen s i o n a l i n p u t and one−d imen s i o n a l o u t p u t

/ / Program b u i l d s t h e model , u s i n g t h e f i r s t h a l f o f t h e t ime s e r i e s
/ / t h en d i s p l a y s t h e e n t i r e t ime s e r i e s a g a i n s t t h e model p r e d i c t i o n

/ / u i s t h e i n p u t s i g n a l o f s i z e [(d imens ion n) (s amp l e s i z e)]
/ / y i s t h e o u t p u t s i g n a l o f s i z e [(d imens ion 1) (s amp l e s i z e)]
/ / r i s t h e r e g r e s s i o n o r d e r on t h e o u t p u t y ,
/ / s t h e r e g r e s s i o n o r d e r on t h e i n p u t u

/ / yp red i s t h e model−p r e d i c t e d o u t p u t
/ / a r c i s t h e o b t a i n e d ARMAX model

[a b]= s i z e (y)
i f (a>1)

p r i n t f (” Only one−d imen s i o n a l o u t p u t s p e rm i t t e d ! − Program abo r t e d\n ”)
a b o r t

end

[ny , samples]= s i z e (y)
[nu samples]= s i z e (u)

/ / Check t h a t bo th t ime s e r i e s have even l e n g t h − o t h e rw i s e c o r r e c t
i f (s amples /2− i n t (s amples / 2) ˜ = 0)

y (samples +1)=y (samples)
u (: , s amples +1)=u (: , s amples)

6.4 Linear Polynomial Models and Linear Recurrence Relations 153

end

[ny , samples]= s i z e (y)
[nu samples]= s i z e (u)

mode l l e ng t h = i n t (s amples / 2)

/ / Add 2 nd (empty) i n p u t l i n e t o make armax r o u t i n e work
y = ([y ; z e r o s (1 : samples)])

/ / Pe r fo rm ARMAX i d e n t i f i c a t i o n , u s i n g t h e f i r s t h a l f o f t h e d a t a
[a r c , l a , l b , s i g , r e s i d]= armax (r , s , y (: , 1 : mode l l e ng t h) , u (: , (1 : mode l l e ng t h)))
d i s p (a r c)

/ / Now compute model−p r e d i c t e d v a l u e s f o r t h e second h a l f o f t h e d a t a
ypred=y (1 , 1 : mode l l e ng t h)

f o r i =mode l l e ng t h +1:2∗mode l l eng t h
ypred (i)=0
/ / add t h e o u t p u t−r e l a t e d components
f o r l a g =1: r

/ / p r i n t f (” Outpu t component % f\n ” , l a (1 , 2∗ l a g +1))
yp red (i)= ypred (i)− l a (1 , 2∗ l a g +1)∗ ypred (i−l a g)

end
/ / add t h e i n p u t−r e l a t e d components
f o r l a g =0: s

/ / p r i n t f (” Lag %d\n ” , l a g)
f o r i np =1: nu

/ / p r i n t f (” I n p u t %d\n ” , i np)
ypred (i)= ypred (i)+ l b (1 , nu∗ l a g + inp)∗u (i np , i−l a g)

/ / p r i n t f (” Adding % f x % f\n ” , l b (1 , nu∗ l a g + inp) , u (i np , i−l a g))
end

end
end

/ / Now p l o t model−p r e d i c t e d o u t p u t and a c t u a l o u t p u t
x s e t (” au t o c l e a r ” , ” o f f ”)
xbasc ()
p l o t 2 d ([mode l l e ng t h : samples] , yp red (mode l l e ng t h : samples) , 3 ,
r e c t =[mode l l e ng t h , min (min (y) , min (ypred))−0 . 1 , s amples ,
max (max (y) , max (ypred)) + 0 . 1])

p l o t 2 d ([mode l l e ng t h : samples] , y (1 , (mode l l e ng t h : samples)) , 5 ,
r e c t =[mode l l e ng t h , min (min (y) , min (ypred))−0 . 1 , s amples ,
max (max (y) , max (ypred)) + 0 . 1])

x t i t l e (’ ’ , ’ Data p o i n t ’ , ’ ’)
l e g e nd s ([’ O r i g i n a l o u t p u t ’ ’ Model−p r e d i c t e d ’] , [5 3] , 3)
p r i n t f (” E s t ima t e d s t a n d a r d d e v i a t i o n o f n o i s e and r e s i d u a l : % f\n ” , s i g (1 , 1))
p r i n t f (”Sum squa r ed e r r o r : % f\n ” , s q r t (sum ((ypred−y (1 , :)) ˆ 2)))

/ / Now compute e r r o r s i f i n d i v i d u a l i n p u t components a r e r e s e t t o z e r o
ypred=y (1 , 1 : mode l l e ng t h)

f o r b l ock =1: nu
f o r i =mode l l e ng t h +1:2∗mode l l eng t h

ypred (i)=0
/ / add t h e o u t p u t−r e l a t e d components
f o r l a g =1: r

yp red (i)= ypred (i)− l a (1 , 2∗ l a g +1)∗ ypred (i−l a g)
end
/ / i n p u t−r e l a t e d components
f o r l a g =0: s

f o r i np =1: nu
i f (i np ˜ = b lock)
ypred (i)= ypred (i)+ l b (1 , nu∗ l a g + inp)∗u (i np , i−l a g)

end
end

end

154 6 Computer Modelling of Robot-Environment Interaction

end
p r i n t f (” B lock ing i n p u t %3d : e r r o r =%6.1 f\n ” , b l ock , norm (ypred−y (1 , :) , 2))
s s e (b l ock)= norm (ypred−y (1 , :) , 2)

end

/ / Now p r i n t i n f o rma t t h a t i s u s e f u l f o r p u b l i c a t i o n s

/ / P r i n t i n p u t−r e l a t e d components
p r i n t f (” b Mat r i x\n ”)
f o r l a g =0: s

p r i n t f (” t−%d ” , l a g)
end
p r i n t f (” SSE\n ”)
f o r i np =1: nu

f o r l a g =0: s
p r i n t f (”%9.2 f ” , l b (1 , nu∗ l a g + inp))

end
p r i n t f (”%9.1 f\n ” , s s e (i np))

end

/ / P r i n t o u t p u t−r e l a t e d components
p r i n t f (”\ na Mat r i x\n ”)
f o r l a g =1: r

p r i n t f (” y (t−%d) ” , l a g)
end
p r i n t f (”\ n ”)
f o r l a g =1: r

p r i n t f (”%9.2 f ” , l a (1 , 2∗ l a g +1))
end
p r i n t f (”\ n ”)

Example: ARMAXModelling, Using Scientific Programming Packages

The following example demonstrates how linear polynomial models can be ob-
tained, using Scilab.
Let’s assume we have data that obeys the relationship given in Equation 6.2:

y(t) = 0.5u(t) − 0.3u(t − 1) + 1.5u(t − 2) − 0.7y(t − 1) (6.2)

First, we generate a random input vector u:

u=rand(1:100);

We now compute the output variable y:

y(1)=0.2
y(2)=0.2
for i=3:100

y(i)=0.5*u(i)-0.3*u(i-1)+1.5*u(i-2)-0.7*y(i-1);
end

The regression orders in Equation 6.2 are 1 for y and 2 for u. The following
Scilab command will determine the ARMAX model that describes the data:

armax(1,2,[y’;zeros(1:100)],u)

6.5 NARMAX Modelling 155

The result obtained is this:

A(zˆ-1)y=B(zˆ-1)u + D(zˆ-1) e(t)

A(x) =

! 1 + 0.7x 1.329E-16x !
! !
! 0 1 !

B(x) =

! 2 !
! 0.5 - 0.3x + 1.5x !
! !
! 0 !

which is equivalent to Equation 6.3:

y(t) + 0.7y(t − 1) = 0.5u(t) − 0.3u(t − 1) + 1.5u(t − 2) + noise, (6.3)

from which follows y(t) = 0.5u(t) − 0.3u(t − 1) + 1.5u(t − 2) − 0.7y(t −
1) + noise, which is the relationship expressed in Equation 6.2.

6.5 NARMAXModelling

The ARMAX approach described above has the great advantage of determin-
ing transparent models of the y-u input output relationship, models that can be
analysed and interpreted. However, its disadvantage is that ARMAX can only
model linear input-output relationships. This is sufficient for some applications
in robotics, but not all. This is where NARMAX (nonlinear ARMAX) comes in.
The NARMAX approach is a parameter estimation methodology for identi-

fying both the important model terms and the parameters of unknown nonlinear
dynamic systems. For single-input single-output systems this model takes the
form of Equation 6.4:

y(k) = F [y(k − 1), y(k − 2), ..., y(k − ny), (6.4)
u(k − d), ..., u(k − d − nµ),

e(k − 1), . . . , e(k − ne)] + e(k),

where y(k), u(k), e(k) are the sampled output, input and unobservable noise
sequences respectively, ny, nu, ne, are the orders, and d is a time delay. F[]

156 6 Computer Modelling of Robot-Environment Interaction

is a nonlinear function and is typically taken to be a polynomial or a wavelet
multi-resolution expansion of the arguments. Usually only the input and output
measurements u(k) and y(k) are available and the investigator must process
these signals to estimate a model of the system.
The NARMAX methodology breaks this problem into the following steps:

1. Structure detection
2. Parameter estimation
3. Model validation
4. Prediction
5. Analysis

These steps form an estimation toolkit that allows the user to build a concise
mathematical description of the system [Chen and Billings, 1989]. The proce-
dure begins by determining the structure or the important model terms, then con-
tinues to estimate the model parameters. These procedures are now well estab-
lished and have been used in manymodelling domains [Chen and Billings, 1989].
Once the structure of the model has been determined the unknown parameters in
the model can be estimated. If correct parameter estimates are to be obtained the
noise sequence e(k), which is almost always unobservable, must be estimated and
accommodated within the model. Model validation methods are then applied to
determine if the model is adequate. Once the model is accepted it can be used to
predict the system output for different inputs and to study the characteristics of
the system under investigation.
To discuss how to obtain a NARMAXmodel is beyond the scope of this book,

but is widely discussed in the literature (see especially [Chen and Billings, 1989]).
We will now turn to applications of system identification techniques to

robotics (“robot identification”) . Particularly, we will demonstrate how robot
identification can be used to simulate the operation of a mobile robot in a par-
ticular environment faithfully and accurately (environment identification), how
robot identification can be used to facilitate cross-platform programming with-
out actually writing robot code (task identification), and how it can be used to
“translate” one sensor modality into another, allowing code that was written for
a robot using one kind of sensor to be executed on a different robot that hasn’t
got this sensor (sensor identification).

6.6 Accurate Simulation: Environment Identification

6.6.1 Introduction

Our aim in environment identification is to derive accurate, transparent com-
puter models of robot-environment interaction that can be used for code devel-
opment: generic simulation programs are replaced by specific models of robot-

6.6 Accurate Simulation: Environment Identification 157

environment interaction, derived from real-world data obtained in robotics ex-
periments.
This section explains our procedure of deriving environment models, here

using a simple robot behaviour in order to make the main mechanisms clear.
Figure 6.13 shows the modelling relationship investigated in the experiments
discussed in this first example.

Sensory

perception
φ (t−k)

Robot position

x(t−k), y(t−k),
k=0,1,...

Environment

model

Figure 6.13. Environment modelling: a known function (such as the polynomial given in
Table 6.1) maps robot position to sensory perception

In this example, we have chosen to investigate the wall-following behaviour
of a Magellan Pro mobile robot (actually, the control code used to drive the robot
was not a wall-following, but an obstacle-avoidance program; however, the inter-
action of our robot with its environment resulted in a wall-following trajectory).
The robot used was the Magellan Pro shown in Figure 1.1, the trajectory we
logged every 250 ms with an overhead camera is shown in Figure 6.14.
First, this data was subsequently subsampled at a rate of 1:15, so that the

time elapsed between data points was 3.75s. The average speed of the robot in
this experiment was 8 cm/s, so that the distance travelled between logged robot
positions was about 30 cm.
To obtain the non-linear model, a NARMAX model identification methodol-

ogy was followed. First, the model structure was determined by choosing regres-
sion order and degree of the inputs and output. “Degree” is defined as the sum of
all exponents in a term, where a “term” is a mathematical expression as shown
in each line of, for example, Table 6.1.
To determine a suitable model structure, we use the orthogonal parameter es-

timation algorithm described in [Korenberg et al., 1988]. This indicates (prior to
the calculation of the model) which model terms are significant for the calcula-
tion of the output.
We then obtain the model, using the first half of the available data (“training

data”), and validate it using the remaining half (“validation data”).

158 6 Computer Modelling of Robot-Environment Interaction

Figure 6.14. The environment in which experiments were conducted (left), and the robot’s
trajectory (right). The robot is visible in the bottom right hand corner of the left image

The resulting model is shown in Table 6.1, it computes the distance measured
by the laser sensor at 67◦ from the left of the robot (L67, see Figure 6.15) as a
function of its position (x, y).

L67 line−of−sight
Travelling direction

Radix

Figure 6.15. L67 (modelled in Table 6.1) is the robot’s single-ray laser perception towards the
right hand side of the robot

The comparison between the true laser perception and that predicted by the
model of Table 6.1 is shown in Figure 6.16; it shows clearly that the robot’s laser
perception L67(t) can indeed be modelled as a function of the robot’s (x, y)

6.6 Accurate Simulation: Environment Identification 159

Table 6.1. Parameters of a polynomial modelling the robot’s single-ray laser perception L67 as
a function of the robot’s position (x,y). The time series of this model is shown in Figure 6.16.
See also Figure 6.15

L67(t)= +1.8801351
+0.0087641 * x(t)
-0.0116923 * x(t-1)
-0.0060061 * x(t-2)
+0.0116420 * y(t)
+0.0143721 * y(t-1)
-0.0064808 * y(t-2)
+0.0004983 * x(t)2

+0.0021232 * x(t-1)2

+0.0006722 * x(t-2)2

-0.0002464 * y(t)2

+0.0018295 * y(t-1)2

+0.0015442 * y(t-2)2

-0.0028887 * x(t) * x(t-1)
+0.0023524 * x(t) * x(t-2)
+0.0002199 * x(t) * y(t)
-0.0025234 * x(t) * y(t-1)
+0.0022859 * x(t) * y(t-2)
-0.0029213 * x(t-1) * x(t-2)
+0.0006455 * x(t-1) * y(t)
+0.0014447 * x(t-1) * y(t-1)
-0.0027139 * x(t-1) * y(t-2)
-0.0004945 * x(t-2) * y(t)
+0.0003262 * x(t-2) * y(t-1)
+0.0009349 * x(t-2) * y(t-2)
-0.0010366 * y(t) * y(t-1)
+0.0013326 * y(t) * y(t-2)
-0.0037855 * y(t-1) * y(t-2)

position at times t and t − 1, easily and accurately. Pearson’s correlation coeffi-
cient between modelled and true data is 0.75 (significant, p<0.01).
It is interesting to note that the robot’s orientation φ is not needed in order

to model the perception of the laser sensor. The reason for this is the restricted
motion of the robot (following the perimeter of the environment), which by spec-
ifying (x, y) essentially also specifies orientation φ, so that φ is not needed ex-
plicitly in the model.

6.6.2 Environment Modelling: ARMAX Example

For simple cases, the environment model does not have to be nonlinear, and in
the following we will develop a linear ARMAX model of the laser perception
a Magellan Pro mobile robot perceives as it follows a trajectory very similar to
that shown in Figure 6.14.

160 6 Computer Modelling of Robot-Environment Interaction

Figure 6.16. Modelling the robot’s laser perception L67 as a function of position (see also
Table 6.1). True sensor perception is shown as a line with circles, the model-predicted output
as a line without circles

As the robot followed a trajectory like the one shown in Figure 6.14, the
range data obtained from the laser range finder was logged every 250 ms, as
was the robot’s position [x, y] and rotational velocity φ̇. This data was subse-
quently subsampled at a rate of 1:15 (see Section 6.2.1 for a discussion of sub
sampling), and the laser perception of all laser values between “45◦ to the left” to
“straight ahead” were averaged to obtain the laser perception LM(t) shown in
Figure 6.17. The robot’s position [x, y] and rotational velocity φ̇ are also shown
in that figure.
We will now obtain an ARMAX model LM(t) = f(x(t), y(t), φ̇(t), x(t −

1), y(t− 1), φ̇(t− 1)), using the Scilab ARMAX package. We will use the first
500 data points to construct the model (‘model data’), and the remaining 451
data points to validate the model (‘validation data’):

armax(0,1,[y(1:500),zeros(1:500)’]’,
[u(1:500,1),u(1:500,2),u(1:500,3)]’)

ans = A(zˆ-1)y=B(zˆ-1)u + D(zˆ-1) e(t)

A(x) =
! 1 0 !
! 0 1 !

B(x) =
0.0078763 - 0.0041865x

- 0.0078344 + 0.0101931x

6.6 Accurate Simulation: Environment Identification 161

LM

180 200 220 240 260 280 300
70
110
150
190
230
270
310

180 200 220 240 260 280 300
30
70
110
150
190
230
270

180 200 220 240 260 280 300
−0.06
−0.02
0.02
0.06
0.10
0.14
0.18
0.22
0.26

180 200 220 240 260 280 300
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98
1.02
1.06
1.10

Angular velocity

y

x

t

t

t

t

Figure 6.17. Robot position (top three graphs) and laser perception (bottom graph) used for
environment identification

- 1.3727936 - 0.1602578x

D(x) =
! 1 0 !
! 0 1 !

e(t)=Sig*w(t); w(t) 2-dim white noise

| 0.0558112 0 |
Sig= | 0 0 |

This results in the model given in Equation 6.5:

162 6 Computer Modelling of Robot-Environment Interaction

LM(t) = 0.0078763x(t) − 0.0041865x(t − 1) (6.5)
−0.0078344y(t) + 0.0101931y(t − 1)

−1.3727936φ̇(t) − 0.1602578φ̇(t − 1)

Using this model to predict the laser perception of our validation data (data
points 501 to 941), we obtain the result shown in Figure 6.18.

Range [m]

t

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.7

0.8

0.9

1.0

1.1

1.2

Figure 6.18. Actual laser perception (thin, faint line) vs model-predicted perception (Equa-
tion 6.5, thick line)

6.6.3 Localisation Through Environment Modelling

The modelling scenario shown in Figure 6.13 can be reversed, and used for self-
localisation. If the relationship between the robot’s location and the sensory per-
ception obtained at that location is known, then the reverse is also true (provided
the relationship is expressed in an invertible function), and the robot’s position
can be determined from sensory perception. This is shown in Figure 6.19.

Model 1

We will illustrate this process through an example.
Experiments were conducted in an enclosed arena of roughly 2 × 2 metres

size, in which the robot performed a wall-following action. The motion of the

6.6 Accurate Simulation: Environment Identification 163

φ

Robot position

(x,y,)

Sensory

perception

Environment

model

Figure 6.19. Perception-based localisation

robot, as well as all its sensory perceptions were logged every 6.25 s, using an
overhead camera. Figure 6.20 shows a bird’s eye view of the arena, the robot is
also visible in that figure.

Robot diameter
is 40 cm

Figure 6.20. The experimental arena in which data for the localisation experiment was logged

The trajectory taken — ground truth obtained through the overhead cam-
era — is shown in Figure 6.21.
The objective of this experiment is to establish the robot’s position (x, y),

using information from the 16 sonar sensors and a selection of 12 laser readings
of the robot. We then use an ARMAX modelling process (shown in Figure 6.22)
to obtain a model of position (x, y), given the raw laser and sonar perceptions
indicated in Figure 6.22.
Using the program shown in Section 6.4.3, we obtain the models for x(t) and

y(t) shown in Tables 6.2 and 6.3 respectively.
Even though the model requires a relatively high regression order, it is possi-

ble for the robot to self-localise in our experimental arena, using sensory infor-

164 6 Computer Modelling of Robot-Environment Interaction

~ 1m

x [cm]

y[cm]

−140 −100 −60 −20 20 60 100 140 180
−140

−100

−60

−20

20

60

100

140

180

Figure 6.21. Trajectory of a wall following robot

Laser 15
Laser 30

...

Laser 180
Sonar 1
Sonar 2

...

Sonar 16

Robot position

(x,y)
ARMAX

Location
model

Figure 6.22. ARMAX identification task for self-localisation

mation alone. Figure 6.23 shows true < x, y > vs < x̃, ỹ > predicted by the
model. The Spearman rank correlation coefficients rx between x(t) and x̃(t) and
ry between y(t) and ỹ(t) are 0.96 and 0.95 respectively (significant, p < 0.05).
Figure 6.24 shows a comparison between the actual trajectory taken by the

robot, and the trajectory predicted by the robot (using the test data). The mean
localisation error is 29.5cm ± 0.84cm1. The distribution of localisation errors
is given in Figure 6.25.

Model 2: Refining Model 1

One purpose of acquiring model 1 of <x(t), y(t)>, using most of the sensory
information available to the robot, was to investigate whether all of this informa-
tion is actually needed to localise. We can use Tables 6.2 and 6.3 to establish that
it is not: in these tables the rightmost column indicates the sum-squared-error
obtained when a particular model term is removed. The six sensor signals that
1 For comparison, the robot’s diameter is 40 cm.

6.6 Accurate Simulation: Environment Identification 165

t

t

y(t) [cm]

x(t) [cm]

20 30 40 50 60 70 80 90 100
−160

−120

−80

−40

0

40

80

120

160

200

20 30 40 50 60 70 80 90 100
−160

−120

−80

−40

0

40

80

120

160

200

20 30 40 50 60 70 80 90 100
−160

−120

−80

−40

0

40

80

120

160

200

20 30 40 50 60 70 80 90 100
−160

−120

−80

−40

0

40

80

120

160

200

20 30 40 50 60 70 80 90 100
−160

−120

−80

−40

0

40

80

120

160

200

20 30 40 50 60 70 80 90 100
−100

−60

−20

20

60

100

140

180

20 30 40 50 60 70 80 90 100
−100

−60

−20

20

60

100

140

180

True y versus predicted y

True x versus predicted x

Figure 6.23. Actual robot position < x(t), y(t) > (thick, bold line) vs the position that is
estimated from sensory perception, using model 1 given in Tables 6.2 and 6.3 (faint line)

Position predicted from sensory perception

Actual position of robot

~ 1m

y [cm]

x [cm]
−180 −140 −100 −60 −20 20 60 100 140 180

−120

−80

−40

0

40

80

120

160

200

240

−180 −140 −100 −60 −20 20 60 100 140 180
−120

−80

−40

0

40

80

120

160

200

240

Figure 6.24. Actual robot trajectory (thick, bold line) vs the trajectory that is estimated from
sonar and laser perceptions, using model 1 given in Tables 6.2 and 6.3 (faint line)

166 6 Computer Modelling of Robot-Environment Interaction

Table 6.2. ARMAX model 1 of x(t) (i.e. x(t) = −47.40Laser15(t) − 89.78Laser15(t −
1) . . .). SSE indicates the sum squared error if the respective term is removed from the model

t t-1 t-2 t-3 SSE
Laser 15 -47.40 -89.78 -72.11 -21.42 2506.4
Laser 30 -12.04 -14.14 -7.05 12.05 410.0
Laser 45 -17.19 -9.57 -10.05 -2.25 634.9
Laser 60 -3.37 4.99 -2.78 7.01 337.9
Laser 75 18.90 9.85 45.78 16.14 1784.3
Laser90 2.39 9.28 -7.01 -0.52 337.9
Laser 105 -14.71 -17.80 -9.74 -12.08 1435.6
Laser 120 23.16 19.02 18.91 -1.52 1734.7
Laser 135 -18.79 1.65 6.90 19.91 555.0
Laser 150 2.05 -6.87 -11.79 10.39 402.0
Laser 165 13.44 9.04 14.84 -2.08 1195.2
Laser 180 18.36 14.95 19.65 -5.86 1597.4
Sonar 1 -4.17 -3.14 -2.45 0.76 444.1
Sonar 2 -3.02 -1.93 -0.91 -1.19 474.0
Sonar 3 -3.27 1.52 2.98 2.15 364.0
Sonar 4 -0.92 -3.96 -4.57 -3.42 636.5
Sonar 5 -4.93 -5.51 -3.06 -1.11 710.4
Sonar 6 1.46 -0.80 -2.16 -3.92 418.0
Sonar 7 -1.02 -2.63 -4.06 -3.44 622.5
Sonar 8 0.99 0.99 0.99 0.99 428.8
Sonar 9 1.24 0.50 1.16 0.48 346.5
Sonar 10 1.15 2.72 0.59 -0.07 356.7
Sonar 11 -0.17 -0.39 -0.55 -0.41 317.5
Sonar 12 -0.39 0.63 0.46 1.39 322.5
Sonar 13 -0.49 0.94 2.83 -0.07 331.3
Sonar 14 1.97 2.20 2.78 1.79 374.3
Sonar 15 0.44 2.47 1.16 0.71 357.2
Sonar 16 -3.86 -1.90 -1.01 -0.88 422.4

have the highest contribution to the model account for the majority of all con-
tributions to the model. Interestingly, sonar signals come nowhere near the top;
they obviously contain too much imprecise or contradictory information to be as
useful in the localisation process as the laser perceptions.
Based on this consideration, we obtained a refinement of model 1 by only

using the six most important sensor signals. This second model is shown in Ta-
bles 6.4 and 6.5. From these tables we see that less sensor information is needed
to localise, but that much higher regression orders are now required: the robot is
using less sensor information, but over a longer period of time. A time window
of 13 samples equates to over 80 s of movement!
Figure 6.26 shows actual and predicted positions; as in model 1 the correla-

tion is highly significant.

6.6 Accurate Simulation: Environment Identification 167

Table 6.3. ARMAX model 1 of y(t)

t t-1 t-2 t-3 t-4 sse
Laser 15 35.65 7.86 -38.68 -74.11 -38.72 1223.4
Laser 30 8.65 -5.01 -7.89 -12.35 -3.82 378.9
Laser 45 8.18 -9.80 -0.75 -3.61 1.90 295.0
Laser 60 -5.96 -0.57 13.33 10.59 -6.89 317.6
Laser 75 3.74 5.79 0.27 29.41 26.38 1285.7
Laser 90 -11.34 1.64 1.91 -1.28 -1.10 358.7
Laser 105 3.52 -3.97 -14.41 -8.67 -5.30 817.6
Laser 120 7.41 17.19 20.37 16.40 13.45 2114.1
Laser 135 4.13 -7.20 -12.44 -9.44 9.32 623.9
Laser 150 0.58 10.29 -2.45 -8.90 1.23 320.3
Laser 165 -6.16 1.86 11.38 15.51 0.53 794.1
Laser 180 -10.22 2.12 4.88 18.30 9.67 852.5
Sonar 1 -1.64 -2.72 -1.97 -2.74 -1.15 455.6
Sonar 2 -0.42 -1.85 1.14 1.18 -0.66 280.5
Sonar 3 -1.98 -3.82 -0.68 0.99 0.72 353.7
Sonar 4 2.50 1.30 0.37 -3.46 -4.25 349.6
Sonar 5 0.16 -1.91 -2.42 -1.83 -1.61 446.0
Sonar 6 2.67 1.77 0.41 -0.79 -1.54 307.3
Sonar 7 2.12 1.56 -1.13 -2.55 -1.00 297.4
Sonar 8 -2.93 -2.93 -2.93 -2.93 -2.93 1069.0
Sonar 9 0.75 0.35 1.02 1.72 1.56 333.0
Sonar 10 -1.07 -0.35 2.37 1.30 1.37 301.0
Sonar 11 0.24 1.19 0.66 -0.86 0.73 282.2
Sonar 12 -0.06 0.48 0.61 0.61 1.72 285.4
Sonar 13 -1.29 0.14 1.48 3.80 2.89 318.9
Sonar 14 -1.95 0.19 1.61 2.51 2.01 292.1
Sonar 15 -0.77 0.15 0.96 1.11 0.58 284.3
Sonar 16 -1.21 -2.46 -1.59 -1.48 -0.09 392.6

Frequency

Localisation
error [cm]

0.0 8.9 17.9 26.8 35.7 44.6 53.6
0

18

27

36

45

54

62.5

9

Figure 6.25. Distribution of localisation errors for the test data, using model 1 given in Ta-
bles 6.2 and 6.3

168 6 Computer Modelling of Robot-Environment Interaction

Table 6.4. Alternative model (model 2) to determine x from laser sensor signals

t-0 t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t-10 t-11 t-12 SSE
Laser 15 -55.94 -73.11 -75.63 -53.57 -5.18 44.67 67.42 68.19 50.96 26.88 -13.36 -39.01 -58.16 1541.2
Laser 75 -2.26 3.21 7.64 4.45 -2.06 -6.28 -12.83 -13.37 -12.57 -12.72 4.14 12.57 16.95 388.3
Laser 105 -13.16 -12.03 -8.71 -4.58 6.79 5.94 8.57 5.79 -0.24 -5.02 -13.64 -13.53 -8.21 1388.3
Laser 120 18.13 13.45 7.03 -7.22 -13.13 -18.91 -16.63 -6.17 5.74 10.95 8.52 6.19 5.97 510.7
Laser 165 11.64 15.93 13.81 9.17 5.46 0.70 -9.99 -7.16 -7.12 2.17 12.50 9.04 9.41 2133.5
Laser 180 -3.53 -0.52 -2.58 -2.42 0.12 3.72 -1.11 -5.95 -3.73 -0.24 1.46 7.79 12.13 354.3

Table 6.5. Alternative model (model 2) to determine y from laser sensor signals

t-0 t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t-10 t-11 t-12 t-13 SSE
L. 15 12.36 -13.84 -39.92 -71.09 -64.45 -45.60 7.85 37.98 47.64 61.94 48.53 12.55 -11.17 -41.20 961.4
L. 75 0.51 0.05 -0.13 13.07 8.17 4.18 2.70 -9.25 -9.91 -11.62 -15.66 -5.29 6.28 10.47 274.3
L. 105 6.92 -5.11 -9.54 -7.95 -8.41 -1.59 -0.17 8.40 8.97 8.41 3.14 -9.05 -11.26 -10.78 784.1
L. 120 6.13 18.91 15.14 10.25 4.96 -0.88 -15.79 -14.63 -12.42 -5.81 4.24 8.46 6.59 6.44 926.9
L. 165 -8.35 3.67 10.91 14.84 11.12 6.60 4.76 -6.42 -6.92 -10.99 -3.88 7.06 7.16 8.07 1245.9
L. 180 -4.24 -1.22 -1.57 -0.83 -0.78 0.06 0.61 -0.27 -2.01 -2.64 0.20 -2.38 3.65 10.78 263.8

True y versus estimated y

True x versus estimated xx [cm]

y [cm]

t [6.25s]

t [6.25s]

30 50 70 90 110 130 150 170
−90

−50

−10

30

70

110

150

190

30 50 70 90 110 130 150 170
−90

−50

−10

30

70

110

150

190

30 50 70 90 110 130 150 170
−160

−120

−80

−40

0

40

80

120

160

200

30 50 70 90 110 130 150 170
−160

−120

−80

−40

0

40

80

120

160

200

Figure 6.26. Actual robot position < x(t), y(t) > (thick, bold line) vs the position that is
estimated from sensory perception, using the alternative model 2 given in Tables 6.4 and 6.5
(faint line)

Figure 6.27 shows the actual trajectory taken vs the trajectory predicted by
the model. The mean localisation error is lower than in model 1: 22 cm± 0.7 cm.
The distribution of errors is shown in Figure 6.28.

6.6 Accurate Simulation: Environment Identification 169

x [cm]

y [cm]

−160 −120 −80 −40 0 40 80 120 160
−90

−50

−10

30

70

110

150

190

−160 −120 −80 −40 0 40 80 120 160
−90

−50

−10

30

70

110

150

190

Figure 6.27. Actual robot trajectory (thick, bold line) vs the trajectory that is estimated from
laser perception, using model 2 given in Tables 6.4 and 6.5 (faint line)

Localisation error [cm]

Frequency

0 10 20 30 40 50 60 70
0

10

20

30

40

50

0 10 20 30 40 50 60 70
0

10

20

30

40

50

Figure 6.28. Distribution of localisation errors for the test data, using model 2 given in Ta-
bles 6.4 and 6.5

Model 3: Refining Model 2 Further by Taking Motion Into Account

Models 1 and 2 demonstrate that a localisation accuracy of about half the robot’s
diameter can be achieved by either observing most of the robot’s sensors over
a time window of about 24 s, or observing the most informative sensors over a
period of about 80 s. However, wall following behaviour is clearly highly repeat-

170 6 Computer Modelling of Robot-Environment Interaction

able and predictable, and if regression on the model output is included—making
past predictions of x and y part of the model — the model ought to shrink and
become more precise. To investigate this hypothesis was the purpose of the third
experiment.
Tables 6.6 and 6.7 show that indeed we can now build a model which still

only uses the six most important sensor signals, as well as past predictions of x
or y respectively, but that now a regression order of 4 (24 s) is sufficient.

Table 6.6.Model 3 for x(t), taking previous x estimates into account

t t-1 t-2 t-3 t-4
x 1.06 - 0.72 0.65 - 0.70
L15 - 28.92 - 7.01 - 0.54 - 6.80
L75 - 2.99 + 7.08 - 2.78 + 10.33
L105 3.91 - 1.50 - 3.49 + 1.68
L120 3.63 + 1.28 - 3.85 - 0.24
L135 - 7.40 + 2.14 + 6.34 + 0.01
L180 2.59 + 3.32 - 8.06 + 3.42

Table 6.7.Model 3 for y(t), taking previous y estimates into account

t t-1 t-2 t-3 t-4
y 0.85 - 0.18 0.09 - 0.49
L15 9.96 - 5.83 - 15.84 - 8.31 + 0.88
L30 16.80 - 9.71 - 5.20 + 2.48 + 0.34
L75 1.46 + 0.41 - 5.68 + 7.11 - 0.48
L120 1.95 + 2.97 + 4.06 - 4.00 + 7.88
L135 1.99 + 1.03 - 5.28 + 2.58 + 5.50
L180 - 2.62 + 1.80 + 4.10 - 3.82 + 0.34

Figure 6.29 shows actual and predicted trajectory in this case. The localisa-
tion error has now almost halved to 13 cm ± 0.4 cm, and the correlation co-
efficients rx and ry are both 0.98 (significant, p < 0.05). The distribution of
localisation errors is shown in Figure 6.30.

Model 4: Refining Model 3 Further

The refinement of model 3 is almost a formality, but yields considerable im-
provements again. Using not only past values of the predicted variable, but also
the robot’s position <x, y >, it is possible to obtain a very compact model that
allows localisation to very high accuracy.

6.6 Accurate Simulation: Environment Identification 171

x [cm]

y [cm]

−110 −90 −70 −50 −30 −10 10 30 50 70 90
−50

−30

−10

10

30

50

70

90

110

130

Figure 6.29. Actual robot trajectory (thick, bold line) vs the trajectory that is estimated from
sonar perception, using model 3 given in Tables 6.6 and 6.7 (faint line)

Frequency

Localisation
error [cm]

0.00 3.68 7.35 11.03 14.71 18.38 22.06 25.74 29.41 33.09 36.77
0

9

18

27

36

45

Figure 6.30. Distribution of localisation errors for the test data, using model 3 given in Ta-
bles 6.6 and 6.7

Equations 6.6 and 6.7 show the result. Eight inputs over a time window of 6 s
are now sufficient to establish the robot’s location with a mean localisation error
of 10.5 cm ± 0.4 cm.

x(t) = 1.04x(t − 1) − 0.65y(t − 1) (6.6)
−6.7L15(t) − 8.84L30(t) + 4.05L75(t)

+7.1L120(t) − 5.75L135(t) + 14.53L180(t)

y(t) = −0.49x(t − 1) − 0.56y(t − 1) (6.7)

172 6 Computer Modelling of Robot-Environment Interaction

−2.54L15(t) + 11.43L30(t) + 2.19L75(t)
+5.93L120(t) − 2.14L135(t) + 3.10L180(t)

The predicted and actual trajectories taken are shown in Figure 6.31, in con-
trast to localisation based on perception alone, the two trajectories now resemble
each other very closely indeed.

−110 −70 −30 10 50 90 130
−50

−30

−10

10

30

50

70

90

110

130

Figure 6.31. Actual robot trajectory (thick, bold line) vs the trajectory that is estimated from
previous position< x, y > and laser perception, using model 4 given in Equations 6.6 and 6.7.
The solid line denotes the actual trajectory, the faint line the predicted trajectory. The mean
localisation error is 10.5 cm ± 0.4 cm.

The distribution of localisation errors for model 4 is shown in Figure 6.32.

Conclusions

As we have seen in this example, sensor-based localisation is possible, using AR-
MAX models. The section discussed four models of decreasing complexity, but
increasing precision, demonstrating which components of the robot’s perceptual
vector are useful for self-localisation, and which are not.
In the first model we demonstrated that sensor-based localisation is possible

in the arena we used. Model 1 also revealed which sensor information is partic-
ularly useful for that task: the six most useful senses are the laser perceptions
facing the nearside wall. Sonar perceptions turn out to be not particularly infor-
mative regarding position.
Based on these considerations we developed a second model that uses an

impoverished perception input. In this model, we find that higher regression or-
ders are necessary to retain the same localisation accuracy. In other words: using
sensor information alone, the roboticist has the choice of either using all sensor

6.7 Task Identification 173

Error [cm]

Frequency

0.21 3.80 7.39 10.98 14.57 18.16 21.75 25.34 28.92 32.51 36.10
0.0

9.8

19.6

29.4

39.2

49.0

Figure 6.32. Distribution of localisation errors for the test data, using model 4 given in Equa-
tions 6.6 and 6.7

information available over a shorter time window (24 s), or using less sensor
information over a longer time window (80 s).
Models 3 and 4 demonstrate that in the case of wall following, very accurate

and compact models can be obtained by regressing not only over sensor percep-
tions, but also over past position estimates. The reason for this observation is,
obviously, that wall following is a highly repetitive and predictable behaviour.
The final model achieves a mean localisation accuracy of 1

4
of the robot’s diam-

eter, using a model that contains only 8 terms and a regression of only 6 s.

6.7 Task Identification

In task identification the objective is to obtain a model of the control program
of the robot. This results in the “compression” of program code into a single
polynomial equation. An immediate advantage in doing this is the ease of com-
munication of a robot task in cases where the actual code implementation of the
task is of little interest.
Like the control program, the task model maps sensory perception to robot

motor response (see Figure 6.33). In order to obtain the model of a control pro-
gram, the robot’s sensory perception and its response to that perception is logged
while it is executing the control program. Using the sensory perception as input
and motor response as output, the same modelling technique as used in environ-
ment modelling (see Section 6.6) is used here in order to find a suitable model of
the control program.

174 6 Computer Modelling of Robot-Environment Interaction

Sensory

perception

(Motor)

response

Task

model

Figure 6.33. Task identification: a known function maps sensory perception to robot motor
response

6.7.1 Task Identification: Identifying a Wall Following Behaviour Using
ARMAX

This section presents a basic example of task identification in mobile robotics,
determining a linear ARMAX model for the task of wall following. In order to
make the fundamental mechanism of task identification clear, things have been
kept simple: the amount of data used in this example is small, inputs and outputs
are well correlated, and the model obtained is as uncomplicated as possible.
The objective of this example is to identify the relationship between sensory

perception and motor response in a mobile robot that is performing a wall fol-
lowing task.
Irrespective of how this wall following behaviour was actually implemented

on the robot, we will see whether a relationship can be determined between the
robot’s laser perceptions straight ahead (“laser 90”) and 45◦ to the right (“laser
135”) as inputs and the turning speed of the robot (φ̇) as output. This is depicted
in Figure 6.34, the actual input and output values used in this example are given
in Table 6.8 and shown in Figure 6.35.

φ
(ARMAX)

Laser 135

Laser 90 polynomial model
Linear

Figure 6.34. The identification task

One of the simplest Armax models conceivable is a model that uses no re-
gression on the output at all (regression order zero on y), and a regression order

6.7 Task Identification 175

Table 6.8. Numerical values of the data shown in Figure 6.35 (read from left to right)
Laser 135 (input)

1.64 1.6 1.55 1.54 1.55 1.54 1.62 1.76 1.98 2.04
1.92 1.89 1.88 1.92 1.91 1.91 1.86 1.79 1.77 1.7
1.64 1.62 1.57 1.55 1.54 1.53 1.53 1.64 1.71 1.9
2.01 1.92 1.88 1.87 1.87 1.89 1.89 1.81 1.75 1.71
1.65 1.63 1.57 1.55 1.54 1.51 1.44 1.57 1.55 1.72
2.03 1.99 1.93 1.86 1.87 1.92 1.93 1.9 1.78 1.78
1.7 1.67 1.6 1.58 1.55 1.5 1.48 1.53 1.5 1.49
1.69 1.94 2.04 1.94 1.89 1.89 1.92 2.02 1.91 1.86
1.81 1.74 1.71 1.64 1.63 1.6 1.54 1.55 1.57 1.51
1.64 1.7 1.87 2.01 1.92 1.88 1.89 1.92 1.93 1.87
1.87 1.78 1.76 1.68 1.67 1.62 1.57 1.55 1.54 1.51
1.58 1.66 1.67 1.97 2.01 1.91 1.87 1.87 1.9 1.87
1.89 1.8 1.76 1.69 1.65 1.64 1.57 1.55 1.59 1.48
1.51 1.52 1.56 1.72 2.1 1.99 1.92 1.87 1.89 1.91
1.93 1.92 1.81 1.77 1.71 1.67 1.62 1.53 1.57 1.47
1.49 1.49 1.48 1.48 1.63 1.84 2.06 1.95 1.89 1.89
1.95 1.99 1.92 1.84 1.81 1.75 1.71 1.65 1.63 1.62
1.54 1.55 1.52 1.55 1.55 1.75 1.93 2.02 1.93 1.89
1.91 1.91 1.9 1.92 1.88 1.79 1.75 1.7 1.63 1.66
1.57 1.58 1.54 1.53 1.53 1.58 1.75 1.8 2.01 1.93

Laser 90 (input)
1.31 1.24 1.17 1.09 1.04 0.97 0.91 0.89 0.85 0.84
0.9 1. 1.12 1.45 1.66 1.76 1.7 1.61 1.52 1.44
1.37 1.3 1.22 1.16 1.09 1.02 0.96 0.92 0.88 0.85
0.87 0.91 0.98 1.19 1.37 1.67 1.77 1.7 1.6 1.52
1.44 1.37 1.29 1.21 1.16 1.08 1. 0.96 0.91 0.87
0.86 0.84 0.88 0.97 1.19 1.55 1.8 1.75 1.76 1.59
1.52 1.43 1.35 1.27 1.23 1.14 1.07 1. 0.95 0.89
0.85 0.83 0.82 0.85 0.92 1.14 1.37 1.84 1.77 1.68
1.61 1.53 1.44 1.38 1.3 1.23 1.16 1.09 1.03 0.96
0.92 0.87 0.84 0.86 0.89 1. 1.12 1.47 1.73 1.76
1.7 1.6 1.51 1.42 1.37 1.29 1.21 1.14 1.11 1.01
0.97 0.92 0.87 0.86 0.86 0.91 1.01 1.17 1.5 1.54
1.78 1.68 1.6 1.51 1.45 1.36 1.28 1.19 1.15 1.07
1.01 0.95 0.9 0.87 0.85 0.84 0.88 0.99 1.2 1.53
1.82 1.74 1.67 1.58 1.52 1.44 1.35 1.26 1.22 1.14
1.07 1. 0.95 0.89 0.85 0.82 0.81 0.85 0.9 1.07
1.47 1.86 1.77 1.7 1.62 1.54 1.45 1.39 1.31 1.25
1.17 1.1 1.03 0.97 0.93 0.88 0.86 0.84 0.89 1.
1.2 1.36 1.6 1.76 1.7 1.6 1.53 1.44 1.39 1.3
1.23 1.16 1.1 1.03 0.97 0.91 0.88 0.84 0.87 0.9

Rotational velocity (output)
0.05 0.06 0.07 0.07 0.08 0.1 0.13 0.15 0.18 0.21
0.23 0.22 0.2 0.11 0.07 0.01 0.03 0.05 0.03 0.05
0.06 0.06 0.07 0.07 0.08 0.09 0.11 0.12 0.15 0.18
0.21 0.22 0.22 0.17 0.13 0.05 0. 0.03 0.05 0.05
0.06 0.05 0.06 0.07 0.07 0.08 0.11 0.11 0.13 0.16
0.18 0.22 0.23 0.24 0.19 0.09 0. 0. 0.08 0.04
0.06 0.03 0.07 0.06 0.05 0.08 0.08 0.08 0.1 0.15
0.15 0.18 0.22 0.24 0.26 0.21 0.15 0.04 0.03 0.02
0.03 0.06 0.04 0.07 0.05 0.06 0.07 0.07 0.08 0.11
0.12 0.15 0.18 0.21 0.23 0.22 0.2 0.11 0.05 0.04
0.03 0.06 0.03 0.06 0.05 0.06 0.07 0.07 0.07 0.1
0.1 0.13 0.15 0.18 0.21 0.23 0.22 0.18 0.09 0.09
0.01 0.03 0.04 0.05 0.06 0.04 0.07 0.06 0.05 0.09
0.09 0.11 0.14 0.16 0.19 0.22 0.24 0.23 0.18 0.11
0.02 0.04 0.02 0.03 0.06 0.06 0.04 0.08 0.04 0.09
0.09 0.09 0.11 0.1 0.15 0.18 0.22 0.24 0.27 0.23
0.12 0.01 0.02 0.05 0.04 0.05 0.04 0.06 0.06 0.05
0.07 0.07 0.09 0.1 0.12 0.16 0.18 0.21 0.23 0.22
0.17 0.13 0.08 0. 0.02 0.05 0.05 0.05 0.07 0.04
0.07 0.06 0.08 0.09 0.11 0.13 0.15 0.19 0.2 0.22

176 6 Computer Modelling of Robot-Environment Interaction

t [250 ms]
0 20 40 60 80 100 120 140 160 180 200

1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

t [250 ms]
0 20 40 60 80 100 120 140 160 180 200

0.8

1.0

1.2

1.4

1.6

1.8

2.0

t [250 ms]
0 20 40 60 80 100 120 140 160 180 200

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Turn speed

Laser 90

Laser 135

Figure 6.35. Input and output data used in the task identification example. The robot’s motor
response to sensory perception (the turning speed) is given in the top graph, the two laser
perceptions used as input to the model (laser 90 and laser 135) are given below. The numerical
values of all three graphs are shown in Table 6.8

of one on the input (i.e. only the inputs u at time t and t − 1 will be used to
estimate the output y).
In Scilab this identification can be achieved as follows:

armax(0,1,[y’;zeros(1:200)],u’)

A(x) =

! 1 0 !
! !
! 0 1 !

B(x) =

! - 0.0060399 + 0.2257918x - 0.1456451 - 0.0820220x !
! !
! 0 0 !

6.7 Task Identification 177

This results in the model given in Equation 6.8:

φ̇ = (6.8)
−0.0060399l135(t)

+0.2257918l135(t − 1)
−0.1456451l90(t)

−0.0820220l90(t − 1)

with l90 and l135 the sensor readings obtained from the laser range finder of the
robot in the direction of 90◦ (straight ahead) and 135◦ (45◦ to the right of the
travelling direction), as shown in Figure 6.35. A brief note: instead of using the
generic Scilab command armax, as we have done here, we could have used the
program given in Section 6.4.3. Because that programme uses the first half of
the data to obtain a model which is then validated against the second half of the
data, the obtained model differs slightly from the one given in Equation 6.8, but
is equally close to the original rotational velocity of the robot.
If we plot the actual rotation velocity φ̇ against the model given in Equa-

tion 6.8, we see that even this simple linear model actually provides a very good
fit (Figure 6.36)!

Turn speed

t
100 110 120 130 140 150 160 170 180 190 200

−0.1

0.0

0.1

0.2

0.3

Original output

Model−predicted

Figure 6.36. Original rotational velocity of the robot (thick, dashed line) and the polynomial
model of it given in Equation 6.8 (thin line)

In fact, it is always worthwhile trying a linear Armax model for robot identi-
fication tasks; often they prove to be adequate for the modelling task at hand. For

178 6 Computer Modelling of Robot-Environment Interaction

non-linear relationships, obviously, non-linear NARMAX models are needed,
which are, however, more complicated to determine.

6.7.2 Task Identification: Identifying Wall Following Behaviour Using
Narmax

Let us investigate the same behaviour—wall following— in a more complex en-
vironment. In this second example of task identification, a Magellan Pro mobile
robot executed the wall following task in the environment shown in Figure 6.37.

Figure 6.37. The environment in which the wall following task was executed

The “original” wall following was achieved by using a back propagation neu-
ral network that had been trained to use sonar sensor input to produce the correct
motor response, similar to the method discussed in [Iglesias et al., 1998]. The
resulting “original” trajectory is shown in Figure 6.38.
We then identified the wall following task, using a NARMAX process, and

obtained the model given in Table 6.9.
The inputs u1 to u16 of the model given in Table 6.9 were obtained by using

the robot’s sixteen sonar range readings, inverting them (so that short distances
produce large values), and then setting all values of 0.25 to zero2.
The next step, obviously, is to run the robot through the NARMAX model,

rather than the original neural network. The resulting trajectory is shown in Fig-
ure 6.39.
Comparing Figures 6.38 and 6.39 clearly shows that both trajectories resem-

ble each other well. The question of whether these two behaviours are the same
is a difficult one, and discussed further below in Section 6.9.
2 The Magellan’s sonar sensors only return a valid range reading for distances up to 4m.
Beyond that distance, “4m” is returned. By setting them to zero, we essentially remove all
1
4

= 0.25 readings.

6.7 Task Identification 179

Figure 6.38. The wall following behaviour observed in the environment shown in Figure 6.37,
using an artificial neural network controller

Table 6.9. The NARMAX model of the wall following behaviour. u specifies inputs 1 to 16
(see text for explanation), and n is the time step for which the rotational velocity r is being
modelled

r(n)= -0.3096661
-0.1243302 * u(n, 1)
-0.0643841 * u(n-2, 1)
-0.0389028 * u(n, 3)
-0.1116723 * u(n, 9)
+0.1749080 * u(n, 13)
+0.0897680 * u(n, 14)
-0.0541738 * u(n, 15)
-0.0880687 * u(n, 16)
+0.1128464 * u(n, 1)2

+0.0789251 * u(n-2, 1)2

+0.1859527 * u(n, 9)2

-0.0202462 * u(n, 13)2

+0.0531564 * u(n, 15)2

+0.0996978 * u(n, 16)2

+0.0608442 * u(n-1, 1) * u(n-1, 16)
-0.0507206 * u(n-2, 1) * u(n-2, 9)
+0.0283438 * u(n, 2) * u(n, 14)
+0.0669943 * u(n, 2) * u(n, 16)
-0.0519697 * u(n-1, 2) * u(n, 16)
+0.0714956 * u(n, 3) * u(n-1, 16)
+0.0534592 * u(n-1, 3) * u(n, 15)
-0.0297800 * u(n, 13) * u(n, 14)

6.7.3 Platform-Independent Programming Through Task Identification:
The RobotMODIC process

The task identification scenario shown in Figure 6.33 determines the association
between the robot’s sensory perception and its motor response to that percep-

180 6 Computer Modelling of Robot-Environment Interaction

Figure 6.39. The trajectory observed when the robot was controlled by the NARMAX model

tion. In other words: it identifies the robot’s control program. This relationship
is expressed in a transparent and analysable function, such as for example the
polynomial shown in Table 6.9. Whilst the original control program of the robot
could be designed by any method available to robot engineers, be it control the-
ory, machine learning techniques or any other methods, task identification leads
to one unified expression of that very same task.
The obvious application that follows from this consideration is that the be-

haviour of one robot can be transferred to another robot, using task identification.
This process, which we call RobotMODIC (Robot Modelling, Identification and
Characterisation) is depicted in Figure 6.40.
The original coupling between perception and action (left hand side of Fig-

ure 6.40) is identified through ARMAX or NARMAX identification (right hand
side of Figure 6.40). The resulting polynomial function is then used to deter-
mine motor responses to sensory perceptions (middle of Figure 6.40), resulting
in comparable behaviour to that displayed by the robot, using the original con-
troller.
The interesting point about this application of robot identification is that the

“cloned” process can be run either on the original robot — providing an alterna-
tive and simpler way of programming to the original controller — or on another,
even physically different robot (provided this second robot has access to simi-
lar sensor modalities as the original robot)! In effect, the RobotMODIC process
provides a platform-independent method of robot programming.

6.7 Task Identification 181

Task identification

Sensory perception

Motor response

Classical robot
programming

Programming through
RobotMODIC process

Polynomial model
of sensor−motor coupling

Any control program
(e.g. PID, ANN, ...)

Interpretation of
polynomial model

Figure 6.40. The RobotMODIC process

Experiment: “Robot Java”

That platform-independent robot programming through task identification works
in practice was demonstrated through the following experiment, which we con-
ducted in collaboration with the Intelligent Systems Group at the University of
Santiago de Compostela: the “identified” behaviour of a wall following Magel-
lan Pro robot was implemented on a Nomad 200 robot (resulting in a very short
control program for the Nomad, consisting essentially of one polynomial).
Although the robots differed, and the Magellan and the Nomad operated in

two different laboratories, the Nomad was able to execute wall following be-
haviour successfully in a real world environment in Santiago, without ever fail-
ing for more than one hour of operation. While this is only an existence proof, it
nevertheless demonstrates that cross-platform robot programming through robot
identification is possible.

6.7.4 “Programming” Through Training: Door Traversal using the
RobotMODIC Process

The “translation” of robot control software from one robot platform to another,
using the RobotMODIC process, is a convenient and very fast way of achieving
similar robot behaviour across many different types of robots. It still has one
weakness, though: in order to identify the robot’s behaviour and express it in the
form of a linear or nonlinear polynomial, the behaviour must first be present in
the robot. In practice, this means that we have to write robot control code by
traditional means first in order to re-express it in the form of polynomials.

182 6 Computer Modelling of Robot-Environment Interaction

There is a way round this expensive process: robot training. If we guide
the robot manually through the required sensor-motor task and identify that be-
haviour, we bypass the traditional programming process and arrive at the poly-
nomial representation of the task more or less immediately.
The following case study shows how this is done in the case of door traver-

sal, a fairly complex sensor-motor task that requires fine control of the robot’s
motion, and the use of different sensors at different stages of the motion (the
laser sensor only faces forward, and cannot be used once the robot is actually
traversing the opening. At that point, sonar or infrared sensors have to be used).
Figure 6.41 shows the experimental setup. During both the training phase and

the autonomous motion phase after task identification the robot started some-
where within the shaded area to the left of the door. The door itself had a width
of two robot diameters, which required good motion control on the side of the
robot in order not to get stuck. The robot used was again the Magellan Pro Radix
shown in Figure 1.1.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

45
o

45
o

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 � � � � � � �
300 cm 120 cm

Width=2 x robot diameter = 80 cmA

Figure 6.41. Experimental scenario for the door traversal behaviour. Starting positions of the
robot were within the trapezoid area labelled “A”

To obtain training data for the RobotMODIC process, the robot was then
taken to an arbitrary starting position within the area “A” shown in Figure 6.41,
and manually driven through the door. All sensor and motor signals were logged
at a sampling rate of 4Hz during this operation. This process of gathering data

6.7 Task Identification 183

was repeated 39 times, resulting in one time series of 39 joined sections of data,
each section consisting of several hundred data points.
This training data was then used to identify the task of door traversal, result-

ing in the nonlinear polynomial shown in Table 6.10, where d indicates averaged
laser range readings over sectors of 15◦, and s denotes sonar range readings.

Table 6.10. NARMAX model of the angular velocity θ̇ for the door traversal behaviour, as a
function of laser and sonar information d and s

θ̇(t) =
+0.272
+0.189 ∗ (1/d1(t))
−0.587 ∗ (1/d3(t))
−0.088 ∗ (1/d4(t))
−0.463 ∗ (1/d6(t))
+0.196 ∗ (1/d8(t))
+0.113 ∗ (1/d9(t))
−1.070 ∗ (1/s9(t))
−0.115 ∗ (1/s12(t))
+0.203 ∗ (1/d3(t))

2

−0.260 ∗ (1/d8(t))
2

+0.183 ∗ (1/s9(t))
2

+0.134 ∗ (1/(d1(t) ∗ d3(t)))
−0.163 ∗ (1/(d1(t) ∗ d4(t)))
−0.637 ∗ (1/(d1(t) ∗ d5(t)))
−0.340 ∗ (1/(d1(t) ∗ d6(t)))
−0.0815 ∗ (1/(d1(t) ∗ d8(t)))
−0.104 ∗ (1/(d1(t) ∗ s8(t)))
+0.075 ∗ (1/(d2(t) ∗ s7(t)))
+0.468 ∗ (1/(d3(t) ∗ d5(t)))
+0.046 ∗ (1/(d3(t) ∗ s5(t)))
+0.261 ∗ (1/(d3(t) ∗ s12))
+1.584 ∗ (1/(d4(t) ∗ d6(t)))
+0.076 ∗ (1/(d4(t) ∗ s4(t)))
+0.341 ∗ (1/(d4(t) ∗ s12(t)))
−0.837 ∗ (1/(d5(t) ∗ d6(t)))
+0.360 ∗ (1/(d5(t) ∗ d7(t)))
−0.787 ∗ (1/(d6(t) ∗ d9(t)))
+3.145 ∗ (1/(d6(t) ∗ s9(t)))
−0.084 ∗ (1/(d6(t) ∗ s13(t)))
−0.012 ∗ (1/(d7(t) ∗ s15(t)))
+0.108 ∗ (1/(d8(t) ∗ s3(t)))
−0.048 ∗ (1/(d8(t) ∗ s6(t)))
−0.075 ∗ (1/(d9(t) ∗ d16(t)))
−0.105 ∗ (1/(d10(t) ∗ d12(t)))
−0.051 ∗ (1/(d10(t) ∗ s12(t)))
+0.074 ∗ (1/(d11(t) ∗ s1(t)))
−0.056 ∗ (1/(d12(t) ∗ s7(t)))

184 6 Computer Modelling of Robot-Environment Interaction

Figure 6.42 shows the trajectories generated by the human operator (top),
which were used to generate the training data for the RobotMODIC process, and
the trajectories generated when the robot moved autonomously, controlled by the
polynomial given in Table 6.10.

Figure 6.42. Left: The robot’s trajectories under manual control (39 runs, training data). Right:
Trajectories taken under model control (41 runs, test data)

In both cases the robot moved through the opening without problems. Care-
ful analysis of the trajectories obtained under autonomous control reveals that
the robot moved a lot more smoothly and centrally through the door than when
driven by the human!
In summary, this case study of door traversal demonstrated that it is possible

to obtain precise and relatively complex motion control through robot training
and subsequent task identification, a process that is far more efficient, easier and
faster than programming a robot in the traditional way.

6.8 Sensor Identification

The platform-independent programming of robots discussed in Section 6.7.3 re-
quires, of course, that both the originally used robot (“robot A”) and the robot
that uses the identified function (the polynomial) as a controller (“robot B”) use
the same type of sensors. There is a problem, however, if robot A used, say, sonar
sensors to produce the original behaviour, and robot B only possessed laser sen-
sors. The function identified to map sonar perception to motor response cannot
be used on robot B in this case.
Or can it?
Many robot sensor modalities, in particular range sensors, generate compara-

ble signals. For example, while not identical, laser range finders and sonar range
finders can both generate similar depth maps of objects in front of the robot. If

6.9 When Are Two Behaviours the Same? 185

we had a “translation” from laser to sonar, we could use the RobotMODIC pro-
cess to translate the original behaviour, executed on robot A, to an equivalent
behaviour on robot B, even though both robots use different sensor modalities.
We refer to this method as “sensor identification’, the process is shown in Fig-
ure 6.43.

Motor
response

Motor
response

‘Sonar’
range
data

Sensor identifcation step RobotMODIC step

Original
controller

Original
controller

range
Laser

data

Sensor
identification

range
Sonar

data

Figure 6.43. Sensor identification used in the RobotMODIC process. The original process of
behaviour generation is shown at the top. The bottom depicts the behaviour generation process,
using sensor identification through the RobotMODIC process

Sensor Identification: Example

Such sensor identification is indeed possible in certain cases. In the following
example, we have logged sonar and laser perceptions of a Magellan Pro mo-
bile robot, as it was moving randomly in a real world environment. The robot’s
trajectory is shown in Figure 6.44.
The sensor identification task we were interested in here is that of translating

laser perception into sonar perception, as indicated in Figure 6.43. To achieve
this, we used the range signals of five laser sensors as inputs, and generated one
sonar perception as output. This is shown in Figure 6.45.
The polynomial NARMAX model obtained is shown in Table 6.11, and the

correspondence between actual sonar perception and the “sonar” perception pre-
dicted, using five laser range measurements, is shown in Figure 6.46.

6.9 When Are Two Behaviours the Same?

6.9.1 Static Comparison Between Behaviours

Earlier in this chapter (Section 6.7.2) we identified the task of wall following,
originally implemented through an artificial neural network, using a NARMAX

186 6 Computer Modelling of Robot-Environment Interaction

x [cm]

y [cm]

−120 −100 −80 −60 −40 −20 0 20 40 60 80
−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure 6.44. Trajectory of a randomly-moving Magellan Pro. While the robot was following
this trajectory, both the robot’s sonar and laser perceptions were logged for subsequent sensor
identification

Direction
of travel

NARMAX
Sensor
Identification

L110

L70
L80

L90

L100

L110

L100

L90

L80

L70

S90

S90

Magellan Pro
Mobile Robot

‘‘L’’ = Laser Perception
‘‘S’’ = Sonar Perception

Figure 6.45. Input and output data used in the sensor identification example

model, and then executed the model on the robot. The trajectory achieved with
the original controller is shown in Figure 6.38, the one achieved with the NAR-
MAXmodel in Figure 6.39. Both trajectories are shown together in Figure 6.473.
They do look similar, but following the principles of scientific robotics we would
like to quantify that similarity.
3 Note that the coordinate values of both trajectories have been normalised in such a way
that the geometrical relationships have been preserved, by dividing all coordinate values
bymax(xANN , yANN , xModel, yModel).

6.9 When Are Two Behaviours the Same? 187

Actual Sonar Perception

Predicted Sonar Perception

Sonar Sensor Identification

t [250 ms]

Range [m]

870 890 910 930 950 970 990 1010 1030 1050 1070
−1

0

1

2

3

4

5

6

Figure 6.46. Actual sonar perception logged (thick solid line) vs sonar perception predicted
by the model given in Table 6.11 (dashed thin line)

Figure 6.47. The trajectory of the ANN wall following controller (faint dotted line) vs the
trajectory of the NARMAX polynomial controller (solid line)

188 6 Computer Modelling of Robot-Environment Interaction

Table 6.11. Translation of laser perceptions L70 to L110 into sonar perception S90. See Fig-
ure 6.45 for an explanation of the symbols used

S90(t)= -0.09486578751437843571
+1.34090710655649880678 * L70(t)
-1.46993209143653791315 * L70(t-1)
-0.10133156027639933505 * L70(t-2)
+1.62510983787471263717 * L80(t)
-0.04077783307865779500 * L80(t-2)
-2.58382888545996491914 * L90(t)
+1.34797456078995359086 * L100(t)
-0.30776670071816458751 * L110(t-1)
-1.24584261624820435976 * L70(t)2

+0.12259678893997662252 * L70(t-1)2

-3.70451454646306554963 * L80(t)2

-0.05547179821486561413 * L80(t-1)2

-1.54497725705582955591 * L90(t)2

+0.08003594836197346074 * L100(t)2

-0.11219782488872127868 * L110(t)2

-0.22856361726059648554 * L110(t-1)2

+1.13094692355659165450 * S90(t-1)
-0.10649893253405356974 * S90(t-1)2

+1.70065894822170871059 * L70(t) * L80(t)
-0.17397893514679030336 * L70(t) * L80(t-2)
+0.16703072280923750292 * L70(t) * L90(t)
+0.24576961719240705828 * L70(t) * S90(t-1)
+0.51897979560886331463 * L70(t-1) * L80(t-2)
+0.67296902266249047919 * L70(t-1) * L90(t)
-0.21876283482185332474 * L70(t-1) * u(n-2, 4)
-0.08831850086310211179 * L70(t-1) * S90(t-1)
+0.21165059817172712786 * L70(t-2) * L110(t)
-0.20194679975663892835 * L70(t-2) * S90(t-1)
+4.51797017772498765709 * L80(t) * L90(t)
-0.42664008070691378238 * L80(t) * S90(t-1)
-0.36439534395116823795 * L80(t-1) * L100(t)
-0.21557583313895936628 * L80(t-2) * L100(t-1)
+0.54408085200311495644 * S90(t-1) * L110(t-1)
+0.30411288763928323586 * L90(t-2) * L100(t-1)
-0.11689726904905589633 * L110(t-1) * S90(t-1)

One way to say something about the similarity or dissimilarity of the two
trajectories shown in Figure 6.47 would be to treat both trajectories essentially
as images. If there is no significant difference between the distribution of the
“pixels” (x and y positions of the robot) in original and modelled behaviour,
we could argue that there is at least strong evidence that both behaviours have
fundamental properties in common. Clearly, this is a static test, and the behaviour

6.9 When Are Two Behaviours the Same? 189

of a robot is very much governed also by dynamics, but nevertheless this is a first
attempt at measuring statistically whether two trajectories are similar or not.
The distributions of the robot’s x and y coordinates for the original behaviour

and the model are shown in Figure 6.48.

0.0 33.8 67.7 101.5 135.3 169.2 203.0
0

356
713
1069
1426
1782
2139
2495

x ANN

0.0 34.2 68.3 102.5 136.7 170.8 205.0
0

366
733

1099
1466
1832
2198
2565
2931

x Model

0.0 19.7 39.3 59.0 78.7 98.3 118.0 137.7 157.3 177.0
0

804

1609

2413

3218

4022
y ANN

0.0 19.9 39.8 59.6 79.5 99.4 119.2 139.1 159.0
0

377
755

1132
1510
1887
2264
2642
3019

y Model

Figure 6.48. The occupancy probabilities for x and y position of the robot, both for the original
ANN wall follower and the NARMAX model

Using the Mann-WhitneyU -test discussed in Section 3.4.2, we find that there
is no significant difference (p<0.05) between the two distributions of the x po-
sition of the robot. For the y coordinate distribution, however, the difference
between model and original is significant. This is also visible qualitatively from
Figure 6.47. This implies that the occupancy of space generated by the modelled
behaviour is not significantly different from the original along the x axis, but
that along the y axis the model-driven robot occupies space differently to the
ANN-driven robot. Incidentally, if we scale all trajectories so that they occupy
the interval [0 1], i.e. introduce a distortion and only consider the geometrical
shape of trajectories, the significant difference between the two y distributions
disappears.

190 6 Computer Modelling of Robot-Environment Interaction

This comparison of two trajectories is static, because it only takes into ac-
count the physical positions the robot has occupied while executing its control
program. The interaction between robot and environment, however, has an im-
portant dynamic aspect as well. It does matter, at least in certain applications,
whether the robot moved fast or slowly, whether it turned fast or slowly, whether
it stopped often, etc. These dynamics are not captured by analysing physical oc-
cupancy, but they can be analysed dynamical systems theory.

6.9.2 Comparison of Behaviour Dynamics

In Chapter 4 we discussed that the behaviour of a dynamical system, such as an
autonomous mobile robot, can be described either in physical space, or in the
system’s phase space. The latter has the advantage that a number of tools and
quantitative measures are available, and we’ll apply the techniques presented in
Section 4.4.2 (prediction horizon) and Section 4.4.5 to the two trajectories shown
in Figure 6.47.

Prediction Horizon

Figure 6.49 shows the prediction horizon for the robot’s movement along the
x-axis, using the original ANN controller.

Average prediction error and baseline error

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0 800
0
1
2
3
4
5
6
7
8
9
10

t [s]

Step

I [bit] Information loss

400 1200 1600 2000 2400 2800

Error

Figure 6.49. The prediction horizon computed for the robot’s movement along the x-axis in
the original (ANN) wall follower

Figure 6.49 shows clearly that the robot’s wall following behaviour is ex-
tremely predictable. Even if we try to predict the robot’s x position 10000 time
steps ahead (that is over 40 min), we get a far smaller prediction error using the

6.9 When Are Two Behaviours the Same? 191

robot’s past position than using a random point from the first half of our data as
our prediction. This means that this behaviour essentially is deterministic, and
very predictable. The Lyapunov exponent is essentially zero.
Figure 6.50 shows the same computation for the prediction of the robot’s x

position when it executes the NARMAX model of wall following.

Average prediction error and baseline error

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Step

Error

0 400 800 1200 1600 2000 2400 2800
0
1
2
3
4
5
6
7
8
9

t [s]

Information lossI [bit]

Figure 6.50. The prediction horizon computed for the robot’s movement along the x-axis in
the identified NARMAX model wall follower

The results are similar to those obtained using the original behaviour: Even
for predictions a long time ahead the data-based prediction outperforms the pre-
diction using the baseline. Again, the Lyapunov exponent is essentially zero, and
indistinguishable from the Lyapunov exponent for the ANN wall follower.

Using Entropy

There is another way of quantifying similarities or differences between the origi-
nal behaviour and the one achieved with the model, incorporating both static and
dynamical properties: looking at the correlation between original and modelled
behaviour.
Figure 6.51, which shows 1000 s of xANN(t) and xModel(t), reveals that the

robot moves along the x-axis in a similar manner in both cases, but faster in the
case of xModel(t). The two time series are sometimes in phase, sometimes out
of phase.
This fact can be seen also from the cross correlation of xANN(t) and

xModel(t), shown in Figure 6.52.
A contingency table analysis will reveal the degree of correlation between

xANN(t) and xModel(t). For 10000 data points, the table is shown in Table 6.12.

192 6 Computer Modelling of Robot-Environment Interaction

x [cm]

t [s]

40

80

120

160

200

1000 2000 3000

Figure 6.51. 1000 s of robot movement along the x axis, for original (thick lines) and modelled
behaviour (thin lines). It is clearly visible that the model has a higher frequency

0 100 300 500

0.20

0.00

−0.20

Figure 6.52. Cross correlation of xANN (t) and xModel(t)

Table 6.12. Contingency table, relating xorig(t) to xModel(t)

57. 84. 61. 47. 172. 83. 58. 42. 24. 1.
51. 29. 26. 32. 104. 8. 14. 18. 23. 29.
58. 35. 12. 41. 61. 24. 4. 8. 16. 48.
57. 26. 61. 37. 37. 26. 33. 17. 31. 83.
88. 88. 32. 29. 60. 33. 33. 72. 78. 43.
57. 45. 13. 16. 36. 39. 48. 29. 21. 37.
74. 0. 22. 19. 33. 59. 49. 20. 20. 41.
49. 24. 1. 48. 48. 29. 25. 37. 33. 30.
29. 23. 36. 57. 40. 18. 30. 38. 54. 27.
5. 28. 60. 55. 29. 43. 37. 37. 43. 75.

6.10 Conclusion 193

As can already be seen from Figure 6.51, however, the two trajectories have
very similar shape, but different periods. For the first 1000 data points, the two
trajectories are very much in phase, but by data point 3500 they are in anti phase!
Any contingency table analysis in this case, therefore, will be dependent upon the
number of data points considered, and indeed, the uncertainty coefficient will de-
crease from 0.30 for 1000 data points to 0.01 for 14000 data points. A χ2 analysis
(Section 3.8.1) shows that there is a significant correlation between xorig(t) and
xModel(t), be it for 1000 or 14000 data points, but the correlation becomes very
small over long period of time. This indicates that there are dynamical differ-
ences between the original model and the model, although both produce very
similar trajectories and have similar Lyapunov exponents.

6.10 Conclusion

6.10.1 Summary

A common modelling scenario in mobile robotics is to model input-output rela-
tionships, for example:

• Robot position vs sensory perception (“simulation”)
• Sensory perception vs robot position (“self-localisation”)
• Sensory perception vs motor response (“robot programming”)
• Sensory perception vs sensory perception (“sensor signal translation”)

This chapter demonstrated that such models can be obtained, for example, by
using artificial neural networks (Section 6.3). The disadvantage of this approach,
particularly in view of the objectives of scientific mobile robotics to analyse robot
behaviour, is that ANNmodels are opaque, so that the relationship between input
and output, although modelled, nevertheless remains largely unknown.
We therefore presented an alternative, which yields transparent models that

can be analysed mathematically: linear or nonlinear models, using polynomials
(ARMAX and nonlinear ARMAX modelling).
Identifying input-output relationships is commonly referred to as system

identification; correspondingly we refer to its application to robots as robot iden-
tification. Examples given in this chapter show that through robot identifica-
tion it is possible to build faithful simulators of robot-environment interaction
(Section 6.6), that robot self localisation is possible (Section 6.6.3), that cross-
platform programming (“Robot Java”) is possible (Section 6.7), and that signals
from one sensor modality can be “translated” into another sensor modality (Sec-
tion 6.8). These techniques provide a powerful set of tools for the development,
analysis and refinement of robot control code.

194 6 Computer Modelling of Robot-Environment Interaction

6.10.2 Open Questions

In all modelling tasks, the big question is whether the obtained model is faithful
to the original, i.e. whether it retains the fundamental properties of the original,
despite the abstractions and generalisations employed.
This is a difficult question to answer, and largely dependent upon the defi-

nition of “faithful”. In Section 6.9 some examples were given of how two robot
behaviours can be compared, by i) comparing the static appearance of the robot’s
trajectories, and ii) comparing the dynamics of the robot’s motions in the two
cases. These are certainly not the only ways to compare behaviours, and other
ways of comparing behaviour are conceivable.
If two output streams — the original and its model — are to be compared,

the correlation between original and model can be determined and analysed for
significance. In this chapter this was done for some sensor modelling tasks, us-
ing correlation coefficients such as the Spearman rank correlation coefficient rS .
Also, contingency table analysis (χ2, Cramer’s V and entropy-based measures)
can be used to determine the significance of a correlation between original and
model.

7

Conclusion

Summary. The final chapter summarises the material presented in this book, and draws some
conclusions. It also points to open questions and outstanding issues in mobile robotics re-
search.

7.1 Motivation

Mobile robotics is continuously gaining in importance in science and industry.
On the one hand, this is due to a widening range of industrial applications, rang-
ing from the by now commonplace transportation, inspection, surveillance and
cleaning tasks, to niche applications such as hazardous materials handling, or
work in unstructured environments such as disaster sites. On the other hand,
mobile robots are gaining influence in the behavioural sciences as tools to inves-
tigate the foundations of behaviour, and to gain a better insight into the relation-
ship between robot, task and environment — in other words, which parameters
of these three categories produce which behaviour? It is the latter that this book
is mainly concerned with. The first reason for the work discussed in this book,
therefore, is this question:

• What is the relationship between robot hardware, robot software and the en-
vironment on the one hand, and the robot behaviour resulting thereof on
the other hand? This point is sometimes referred to as “theory of robot-
environment interaction”

There is a second motivation behind this book. Because of a current lack of
scientific tools and ways to describe behaviour, much of mobile robotics research
to date is confined to the presentation of existence proofs. Unlike other natural
sciences, mobile robotics research does not commonly use independent replica-
tion and confirmation of results, mostly because we haven’t got the “language”
to present our results in such a way that such replication and verification can
easily be achieved.

195

196 7 Conclusion

A research practice that goes beyond existence proofs — the once-off pre-
sentation of results that demonstrates that something can be done, but not how
something can be done in general— and that uses independent replication and
verification of experiments, requires quantitative, measurable descriptions of re-
sults. The second motivation behind this book, therefore, is expressed in this
question:

• How can robot-environment interaction be described quantitatively, i.e. mea-
sured, to allow replication and verification of results?

Satisfactory answers to these two questions would constitute a step towards
a new, enhanced research practice in robotics. We would gain understanding not
only of the “how?”, but also of the “how in general?”, i.e. we would be able to
identify fundamental principles that govern robot-environment interaction, and
exploit these to design task-achieving robots based on theoretical understanding,
rather than trial and error. We would be able to make predictions about robot
behaviour, and to analyse safety and stability of robot operation, based on theo-
retical understanding.
Mobile robotics will always be a discipline predominantly based on experi-

ments with real robots. Even the best model will not replace the real thing, but
through theoretical understanding of robot-environment interaction and quanti-
tative descriptions this experimentation will become more focused and efficient.

7.2 Quantitative Descriptions of Robot-Environment Interaction

There are two major aspects to the interaction of a mobile robot with its en-
vironment, both of which we would like to measure: static aspects, such as the
comparison between two behaviours in space, rather than over time, and dynamic
aspects, which reflect that the robot’s behaviour is a function of space and time.

7.2.1 Static Quantitative Descriptions of Robot-Environment Interaction

One typical scenario in mobile robotics research is the comparison between two
or more solutions to the same problem. For example, in robot self-localisation
one might be interested whether a landmark-based localisation performs better
than one that is based on dead reckoning. What does “better” mean in this case?
Provided the performance of both systems can be logged in some way — for the
localisation scenario constructing contingency tables that relate true position to
perceived position (see Section 3.8.1) is a suitable method — statistical meth-
ods give us the means to compare performances quantitatively and to establish
whether or not there is a statistically significant difference between them.
Section 3 presented a wide range of methods, commonly used in biology

and psychology, that are applicable to mobile robotics. These methods establish

7.3 A Theory of Robot-Environment Interaction 197

whether two distributions differ or not (Section 3.3 for normally distributed data,
Section 3.4 for data of any distribution), whether a sequence is random or not
(Section 3.5), if there is a correlation between two sets of numerical data (sec-
tions 3.6 and 3.7), or if there is a correlation between two sets of categorical data
(Section 3.8).
All of these tests are tests of comparison, where the behaviour of the robot in

one situation (one particular manifestation of the triple robot-task-environment)
is compared with the robot’s behaviour if one element of robot, task or environ-
ment has been modified (for example by changing the robot’s control code, i.e.
the task). These tests do not take the dynamics of robot-environment interaction
into account.

7.2.2 Quantitative Descriptions of the Dynamics of Robot-Environment
Interaction

There is a second kind of quantitative description we wish to obtain to describe
the robot’s behaviour, capturing the dynamics of its interaction with the environ-
ment. One way to achieve this is to use dynamical systems theory, as discussed
in Chapter 4.
A mobile robot, interacting with its environment, is a dynamical system, i.e. a

system whose behaviour has to be described by taking time into account. In other
words, the interaction of a mobile robot with the environment can be described
by differential equations.
The tools discussed in Section 4 were originally developed to describe physi-

cal systems whose behaviour is governed by differential or difference equations,
within a discipline now known as deterministic chaos. This term refers to the
fact that these systems are not stochastic, but nevertheless are only partially pre-
dictable and behave, in some circumstances, as if they were indeed random.
Deterministic chaos methods are only applicable to signals that are determin-

istic, and stationary. Having established those two facts first, the analysis of the
dynamics of robot-environment interaction then typically begins by reconstruct-
ing the robot’s phase space through time lag embedding (Section 4.2.1).
Once the phase space has been reconstructed, it can then be described quan-

titatively, for instance by estimating the Lyapunov exponent (Section 4.4), the
attractor’s correlation dimension (Section 4.5) or the prediction horizon beyond
which the system becomes unpredictable (Section 4.4.2).

7.3 A Theory of Robot-Environment Interaction

The ultimate goal of mobile robotics research, as discussed in this book, is to
develop a coherent body of hypothetical, conceptual and pragmatic generalisa-
tions and principles that form the general frame of reference within which mobile
robotics research is conducted — a “theory of robot-environment interaction”.

198 7 Conclusion

Such a theory would provide two very useful benefits:

1. A theory will allow the formulation of hypotheses for testing. This is an
essential component in the conduct of “normal science” [Kuhn, 1964].

2. A theory will make predictions (for instance regarding the outcome of ex-
periments), and thus serve as a safeguard against unfounded or weakly sup-
ported assumptions.

In other words, a theory contains, in abstraction and generalisation, the
essence of what it is that the triple of robot-task-environment does. This gen-
eralisation is essential: it highlights the important aspects of robot-environment
interaction, while suppressing unimportant ones. Finally, the validity of a the-
ory (or otherwise) can then be established by evaluating the predictions made
applying the theory.
What form could such a theory take? Clearly, it could be expressed in the

form of mathematical descriptions (formulae) of the relationships between vari-
ables that describe the robot’s behaviour, like the relationship between force,
mass and acceleration (Newton’s law). If the value of some variables is known,
then the remaining variables can be predicted.
Because a theory should generate testable and falsifiable hypotheses

[Popper, 1959], there is another way of establishing a theory: rather than trying
to unravel the intricate interaction between robot and environment, and attempt-
ing to express all aspects of it in mathematical formulae, one could construct
computer models of the robot’s interaction with the environment, and use these
to generate testable hypotheses. This method is discussed in Chapter 6.
If the computer model is to capture the essence of the robot’s behaviour,

it must be generated from real data, rather than from theoretical considera-
tions, which would be based on a theory that doesn’t exist yet. In Chapter 6
we present such a method. Based on the established methods of system identi-
fication [Eykhoff, 1974, Ljung, 1987], we construct mathematical relationships
between variables that govern the robot’s behaviour, using a process we refer to
as “robot identification”. The benefits of this process are manifold:

• Robot identification expresses relationships in transparent functions that can
be analysed by established methods

• Robot identification allows the transfer of control code between robot plat-
forms, without the need of rewriting code for a different robot

• It allows the simple modification of control code, replacing one sensor
modality with another without having to rewrite the entire control code

• It allows the construction of faithful robot simulators that support off-line
design of control code

• It allows the accurate comparison of two different control mechanisms on
the simulator, because the underlying model of robot-environment interaction
remains unchanged

• Robot identification makes testable predictions about the robot’s behaviour.

7.4 Outlook: Towards Analytical Robotics 199

7.4 Outlook: Towards Analytical Robotics

Mobile robotics is a very practical discipline, a discipline concerned with build-
ing machines that will carry out real tasks in the real world. Whether these tasks
are “factory style” tasks such as transportation and cleaning or “science style”
tasks such as learning and autonomous navigation is immaterial for the discus-
sion here; in all cases a coupling between perception and action has to be es-
tablished through the designer-supplied robot control code. As in all engineering
tasks, design benefits from analytical understanding, and it is one of the aims of
this book to add this aspect to the current robotics research agenda.
In contrast to experimental mobile robotics— the dominant aspect of robotics

research to date — scientific mobile robotics has the following characteristics
(Section 2.8):

• Experimental design and procedure are guided by testable, falsifiable hy-
potheses, rather than based on the researcher’s personal experience (i.e. on
a “hunch”)

• Experimental design and procedure are “question-driven”, rather than “appli-
cation-driven”

• Results are measured and reported quantitatively, rather than qualitatively
• Experimental results are replicated and verified independently (for exam-
ple by other research groups), rather than presented as stand-alone existence
proofs

This approach to experimentation with dynamical systems — not confined
to mobile robots, but also relevant to the behaviour of animals or technical sys-
tems — rests on three pillars:

1. Description,
2. Modelling, and
3. Analysis.

Description in a scientific context must mean quantitative description of ex-
perimental results, i.e. measurable behaviour indicators that allow precise com-
parison between different experimental observations. Statistical methods like
those discussed in Chapter 3 and descriptors of behaviour dynamics like those
discussed in Chapter 4 can serve this purpose.
Modelling is the second pillar, because a model that captures the essence of

the modelled behaviour in abstraction provides a focus, a condensed representa-
tion of those aspects that matter, omitting those that do not matter. It simplifies
the understanding of the system under investigation. Methods like the ones dis-
cussed in Chapter 6 are one step towards achieving this goal.

200 7 Conclusion

Once a model of the system under investigation is obtained, we would like to
know

• Is the model accurate, i.e. faithful to the modelled system?
• What does the model mean, i.e. how are we to interpret the model, and what
do we learn from the model about the behaviour of the original system?

• Does the model lead to new insights?

Analysis, therefore, comprises the comparison between the behaviour of the
original system and its model. In Section 6.9 some static and dynamic techniques
were presented that address this issue, but here more work is needed to clarify
what precisely we mean by “identical” behaviours.
Some interpretation of a model can be achieved, for instance, through sensi-

tivity analysis. Recent work conducted at Essex shows that methods like the one
discussed by [Sobol, 1993] can be used to quantify the importance of individ-
ual model terms, differentiating between major and minor model components.
And such model analysis can indeed lead to new insights. For example, only by
modelling the door traversal behaviour of our mobile robot, and subsequently
analysing the model through sensitivity analysis did we realise that in fact the
robot only used the sensors on its right hand side to go through a door — a
completely unexpected result for a “symmetrical” task such as driving through
a doorway. The benefits of theoretical understanding — in this case represented
by a computer model of the robot’s operation — are illustrated by this example:
having established that a task (e.g. door traversal) requires only certain sensors,
the robot’s hardware and software can be simplified, resulting in cheaper robots
that have to perform less computation.
Description, modelling and analysis, then, are the three pillars of research

presented in this book, which attempts to define a new research agenda in mobile
robotics. We are only at the beginning, though, and the examples and case studies
given in this book are just one possible approach to tackle the issues. Future work
will have to deepen the treatment of problems like the identity of behaviours, the
“meaning” of models, the relationship between the operation of physical agents
and their simulations and the theoretical limitations of computer modelling (see
[Oreskes et al., 1994] for a discussion of this specific issue).
This book, therefore, is an invitation for discussion and further development,

to refine and focus our research and experiments further in this emerging and
exciting new area of Analytical Robotics.

References

[Abarbanel, 1996] Abarbanel, H. (1996). Analysis of observed chaotic data. Springer Verlag,
New York.
[ANS, 2003] ANS (2003). Tools for dynamics. Applied Nonlinear Sciences,
http://www.zweb.com/apnonlin.
[Arkin, 1998] Arkin, R. (1998). Behavior-based robotics. MIT Press, Cambridge, Mass.
[Arkin and Hobbs, 1992] Arkin, R. C. and Hobbs, J. (1992). Dimensions of communication
and social organization in multi-agent robotics systems. In From animals to animats 2,
Cambridge MA. MIT Press.
[Bacon, 1878] Bacon, F. (1878). Novum Organum. Clarendon Press, Oxford.
[Baker and Gollub, 1996] Baker, G. and Gollub, J. (1996). Chaotic Dynamics. Cambridge
University Press, Cambridge, UK.
[Barnard et al., 1993] Barnard, C., Gilbert, F., and McGregor, P. (1993). Asking questions in
biology. Longman Scientific and Technical, Harlow, UK.
[Bendat and Piersol, 2000] Bendat, J. S. and Piersol, A. G. (2000). Random data : analyis
and measurement procedures. Wiley, New York.
[Beni and Wang, 1989] Beni, G. and Wang, J. (1989). Swarm intelligence in cellular robotic
systems. In Nato advanced workshop on robotics and biological systems, Il Ciocco, Italy.
[Box et al., 1994] Box, G., Jenkins, G., and Reinsel, G. (1994). Time Series Analysis.
Prentice-Hall.
[Braitenberg, 1987] Braitenberg, V. (1987). Vehicles. MIT Press, Cambridge, Mass.
[Burgard et al., 1998] Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lakemeyer, G.,
Schulz, D., Steiner, W., and Thrun, S. (1998). Experiences with an interactive museum
tour-guide robot. Artificial Intelligence, 114:3–55.
[Chen and Billings, 1989] Chen, S. and Billings, S. A. (1989). Representations of non-linear
systems: The narmax model. Int. J. Control, 49:1013–1032.
[Critchlow, 1985] Critchlow, A. (1985). Introduction to Robotics. Macmillan, New York.
[Demiris and Birk, 2000] Demiris, J. and Birk, A., (Eds.) (2000). Interdisciplinary Ap-
proaches to Robot Learning. World Scientific Publishing.
[Dorigo and Colombetti, 1997] Dorigo, M. and Colombetti, M. (1997). Robot Shaping: An
Experiment in Behavior Engineering. MIT Press.
[Dudek and Jenkin, 2000] Dudek, G. and Jenkin, M. (2000). Computational principles of
mobile robotics. Cambridge University Press, Cambridge, UK.
[Dunbar, 2003] Dunbar, K. (2003). Scientific thought. In Nadel, L., (Ed.), Encyclopedia of
Cognitive Science, London. Nature Publishing Group.

201

202 References

[EXN, 2003] EXN (2003). Discovery channel. http://www.exn.ca/Stories/2003/-
03/11/57.asp.
[Eykhoff, 1974] Eykhoff, P. (1974). System identification : parameter and state estimation.
Wiley, New York.
[Franklin, 1996] Franklin, J., (Ed.) (1996). Recent Advances in Robot Learning. Kluwer
Academic Publishers.
[Fraser and Swinney, 1986] Fraser, A. M. and Swinney, H. L. (1986). Independent coordi-
nates for strange attractors from mutual information. Physical Review A, 33:1134–1140.
[Fuller, 1999] Fuller, J. L. (1999). Robotics : introduction, programming, and projects.
Prentice-Hall.
[Gillies, 1996] Gillies, D. (1996). Artificial intelligence and scientific method. Oxford Uni-
versity Press.
[Gower, 1997] Gower, B. (1997). Scientific method : a historical and philosophical introduc-
tion. Routledge, London.
[Harris, 1970] Harris, E. (1970). Hypothesis and perception. George Allen and Unwin Ltd.
[Iagnemma and Dubowsky, 2004] Iagnemma, K. and Dubowsky, S. (2004). Mobile Robots
in Rough Terrain: Estimation, Motion Planning, and Control with Application to Planetary
Rovers. Springer Verlag.
[Iglesias et al., 1998] Iglesias, R., Regueiro, C. V., Correa, J., Schez, E., and Barro, S. (1998).
Improving wall following behaviour in a mobile robot using reinforcement learning. In
Proc. of the International ICSC Symposium on Engineering of Intelligent Systems. ICSC
Academic Press.
[Kantz and Schreiber, 1997] Kantz, H. and Schreiber, T. (1997). Nonlinear time series anal-
ysis. Cambridge University Press, Cambridge.
[Kantz and Schreiber, 2003] Kantz, H. and Schreiber, T. (2003). Tisean — Nonlinear time
series analysis. http://www.mpipkd-dresden.mpg.de/tisean.
[Kaplan and Glass, 1995] Kaplan, D. and Glass, D. (1995). Understanding nonlinear dynam-
ics. Springer Verlag, New York.
[Katevas, 2001] Katevas, N., (Ed.) (2001). Mobile Robotics in Health Care Services. IOS
Press.
[Kennel and Isabelle, 1992] Kennel, M. and Isabelle, S. (1992). Method to distinguish pos-
sible chaos from colored noise and to determine embedding parameters. Phys. Rev. A,
46:3111–3118.
[Kennel et al., 1992] Kennel, M. B., Brown, R., and Abarbanel, H. D. I. (1992). Determin-
ing embedding dimension for phase-space reconstruction using a geometrical construction.
Physical Review A, 45:3403–3411.
[Klayman and Ha, 1987] Klayman, J. and Ha, Y. (1987). Confirmation, disconfirmation and
information in hypothesis testing. Psychological Review, 94:211–228.
[Korenberg et al., 1988] Korenberg, M., Billings, S., Liu, Y., and McIlroy, P. (1988). Orthog-
onal paramter estimation for non-linear stochastic systems. Int. J. Control, 48:193–210.
[Kube and Zhang, 1992] Kube, C. and Zhang, H. (1992). Collective robotic intelligence. In
Meyer, J., Roitblat, H., and Wilson, S., (Eds.), From Animals to Animats 2, Cambridge MA.
MIT Press.
[Kuhn, 1964] Kuhn, T. (1964). The structure of scientific revolutions. University of Chicago
Press, Chicago.
[Kurz, 1994] Kurz, A. (1994). Lernende Steuerung eines autonomen mobilen Roboters. VDI
Verlag, Düsseldorf.
[Levin and Rubin, 1980] Levin, R. and Rubin, D. (1980). Applied elementary statistics.
Prentice-Hall, Englewood Cliffs.

References 203

[Ljung, 1987] Ljung, L. (1987). System identification : theory for the user. Prentice-Hall.
[Loeb, 1918] Loeb, J. (1918). Forced movements, tropisms and animal conduct. J.B. Lippen-
cott, Philadelphia.
[Mañe, 1981] Mañe, R. (1981). On the dimension of the compact invariant set of certain
nonlinear maps. In Lecture Notes in Mathematics 898, pages 230–242, Berlin, Heidelberg,
New York. Springer Verlag.
[Martin, 2001] Martin, F. G. (2001). Robotic explorations, a hands-on introduction to engi-
neering. Prentice Hall.
[Mataric, 1994] Mataric, M. (1994). Learning to behave socially. In Cliff, D., Husbands, P.,
Meyer, J., and Wilson, S., (Eds.), From Animals to Animats 3, Cambridge MA. MIT Press.
[McKerrow, 1991] McKerrow, P. (1991). Introduction to Robotics. Addison-Wesley, Sydney.
[Merriam Webster, 2005] Merriam Webster (2005). Online dictionary. http://www.m-
w.com/.
[Morik, 1999] Morik, K., (Ed.) (1999). Making Robots Smarter: Combining Sensing and
Action Through Robot Learning. Kluwer Academic Publishers.
[Murphy, 2000] Murphy, R. (2000). Introduction to AI Robotics. MIT Press, Cambridge,
Mass.
[Nehmzow, 2003a] Nehmzow, U. (2003a). Mobile Robotics: A Practical Introduction.
Springer, Berlin, Heidelberg, London, New York.
[Nehmzow, 2003b] Nehmzow, U. (2003b). Navigation. Encyclopedia of Cognitive Science.
[Nola and Sankey, 2000] Nola, R. and Sankey, H. (2000). A selective survey of theories of
scientific method. In Nola, R. and Sankey, H., (Eds.), After Popper, Kuhn and Feyerabend,
Dordrecht. Kluwer.
[Oreskes et al., 1994] Oreskes, N., Shrader-Frechette, K., and Belitz, K. (1994). Verification,
validation and confirmation of numerical models in the earth sciences. Science, 263.
[Parker, 1994] Parker, L. (1994). Heterogeneous multi-robot cooperation. PhD thesis, Mas-
sachussetts Institute of Technology, Department of Electrical Engineering and Computer
Science.
[Paul and Elder, 2004] Paul, R. and Elder, L. (2004). The miniature guide to critical thinking.
Foundation for Critical Thinking, Dillon Beach CA.
[Pearson, 1999] Pearson, R. (1999). Discrete-time dynamic models. Oxford University Press,
Oxford.
[Peitgen et al., 1992] Peitgen, H., Jürgens, H., and Saupe, D. (1992). Chaos and fractals —
new frontiers of science. Springer Verlag, New York, Berlin, Heidelberg, London.
[Pena et al., 2001] Pena, D., Tiao, G., and Tsay, R., (Eds.) (2001). A course in time series
analysis. Wiley, New York.
[Popper, 1959] Popper, K. (1959). The logic of scientific discovery. Hutchinson, London.
[Popper, 1963] Popper, K. (1963). Conjectures and refutations: the growth of scientific
knowledge. Routledge and K. Paul, London.
[Popper, 1972] Popper, K. (1972). Objective knowledge. Clarendon Press, Oxford.
[Ritter et al., 2000] Ritter, H., Cruse, H., and Dean, J., (Eds.) (2000). Prerational intelligence,
Dordrecht. Kluwer.
[Rosenstein et al., 1994] Rosenstein, M. T., Collins, J. J., and De Luca, C. J. (1994). Re-
construction expansion as a geometry-based framework for choosing proper delay times.
Physica D, 73:82–98.
[Sachs, 1982] Sachs, L. (1982). Applied statistics. Springer Verlag, Berlin, Heidelberg, New
York.
[Schöner and Kelso, 1988] Schöner, G. and Kelso, J. (1988). Dynamic pattern generation in
behavioral and neural systems. Science, 239:1513–1520.

204 References

[Scilab Consortium, 2004] Scilab Consortium (1989–2004). The Scilab programming lan-
guage. http://www.scilab.org.
[Siegwart and Nourbakhsh, 2004] Siegwart, R. and Nourbakhsh, I. R. (2004). Introduction to
Autonomous Mobile Robots. MIT Press.
[Smithers, 1995] Smithers, T. (1995). On quantitative performance measures of robot be-
haviour. Robotics and Autonomous Systems, 15(1-2):107–133.
[Sobol, 1993] Sobol, I. (1993). Sensitivity estimates for nonlinear mathematical models.
Mathematical Modelling and Computational Experiment, 1:407–414.
[Steels, 1995] Steels, L., (Ed.) (1995). The biology and technology of intelligent autonomous
agents, Berlin, Heidelberg, New York. Springer Verlag.
[Takens, 1981] Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical
Systems and Turbulence, pages 366–381, Berlin, Heidelberg, New York. Springer Verlag.
[Theiler and Lookman, 1993] Theiler, J. and Lookman, T. (1993). Statistical error in a chord
estimator of the correlation dimension: the rule of ‘five’. Bifurcation and Chaos, 3:765–771.
[Ueyama et al., 1992] Ueyama, T., Fukuda, T., and Arai, F. (1992). Configuration and com-
munication structure for distributed intelligent robot system. IEEE Trans. Robotics and
Automation, pages 807–812.
[von Randow, 1997] von Randow, G. (1997). Roboter. Rowohlt, Reinbek.
[Walter, 1950] Walter, W. G. (1950). An imitation of life. Scientific American, 182:43–45.
[Walter, 1951] Walter, W. G. (1951). A machine that learns. Scientific American, 51:60–63.
[Wilcoxon, 1947] Wilcoxon, F. (1947). Probability tables for individual comparisons by rank-
ing methods. Biometrics, 3:119–122.
[Wiltschko and Wiltschko, 2003] Wiltschko, R. and Wiltschko, W. (2003). Avian navigation:
from histgorical to modern concepts. Animal Behaviour, 65:257–272.
[Wolf, 2003] Wolf, A. (2003). Chaos analysis software. http://www.cooper.edu/∼wolf/-
chaos/chaos.htm.
[Wolf et al., 1995] Wolf, A., Swift, J., Swinney, H., and Vastano, J. (1995). Determining
lyapunov exponents from a time series. Physica 16D.
[Wyatt and Demiris, 2000] Wyatt, J. and Demiris, J., (Eds.) (2000). Advances in Robot Learn-
ing: 8th European Workhop on Learning Robots. Springer-Verlag.

Index

χ2 analysis, program, 73
χ2 test, 70
χ2 test, example, 72

Analytical robotics, 13, 14, 199, 200
ANOVA, non-parametric, 53
ANOVA, parametric, 42
ANOVA, parametric example, 43
ANOVA, parametric, testing for significance,

43
Aperiodicity, 116
ARMAX, 150, 151
ARMAX, Scilab code, 152
Association between nominal variables, 73
Association between nominal variables

(entropy), 75
Attractor reconstruction, 90
Attractor reconstruction, example, 93
Attractor, definition, 86
Attractor, dimension, 116
Autocorrelation, 142

Bacon, F., 20
Baselines in experimental design, 25
Behaviour dynamics, comparison, 190
Behaviour, emergence, 5
Blind experimentation, 27
Boundedness, 98

Carrier pigeon, 133
Categorical data, χ2 test, 70
Categorical data, analysis, 69
Ceiling effect, 26
Chaos walker, 126

Chaos walker, attractor, 130
Chaos, deterministic, 197
Confidence interval for mean, 32
Confirmation bias, 22
Confounding effects, 25
Conspiracy of goodwill, 26
Constant errors, 26, 27
Contingency table analysis, 69
Contingency tables, 69
Controls in experimental design, 26
Cooperative robots, 4
Correlation analysis, parametric, 57
Correlation coefficient, linear, 62
Correlation coefficient, Pearson, 62
Correlation coefficient, testing for

significance, 63
Correlation dimension, 116
Correlation distance, 116
Correlation integral, 116
Counterbalancing, 27
Cramer’s V, 73
Cramer’s V, program, 73
Cramer’s V: example, 74
Crosstabulation analysis, 69

Degrees of freedom (mobile robot), 87
Degrees of freedom, χ2 analysis, 71
Description, quantitative, 200
Deterministic chaos, 197
Deterministic signal, 97
Dimension of attractors, 116
Dimension, correlation, 116
Door traversal, 181
Down sampling, 141

205

206 Index

Dynamical systems, 85
Dynamical systems theory, 11, 85, 197

Embedding dimension, 92
Embedding lag, 92
Embedding lag, determination, 93
Entertainment robots, 3
Entropy, 75, 76
Errors, constant, 27
Existence proof, x, 14, 17

F-statistic, 61
F-statistic, critical values table, 62
False nearest neighbours, 92, 103
Falsificationism, 20
Floor effect, 26
Frequency spectrum, 142

Gaussian distribution, 30, 31
Gaussian distribution, table, 33

Hardwired control program, 146
Health care robots, 3
Hypothesis, 21
Hypothesis, causal, 22
Hypothesis, descriptive, 22

Induction, 20
Induction, problem, 20
Inductivism, 20
Information loss, estimation, 105
Information, mutual, 93
Inspection robots, 3
Iterative refinement, 14, 19

Kruskal Wallis test, 53
Kruskal Wallis test, example, 54
Kuhn, T., 20

Learning controller, simulation, 148
Linear correlation coefficient, 62
Linear correlation, Scilab code, 63
Linear regression, 57, 58
Linear regression Scilab, 59
Linear regression, testing for significance,

60
Logistic map, 108
Lyapunov exponent, 100
Lyapunov exponent, estimate from a time

series, 101

Lyapunov exponent, estimation from
information loss, 113

Lyapunov exponent, robotics example, 102

Magellan Pro robot, 2
Mann-Whitney U-test, 45
Mean, 30, 31
Model, meaning, 200
Mopping up, 21
Multilayer Perceptron, 143
Museum tour guide robot, 3
Mutual information, 93, 142

NARMAX, 150, 155
Nominal variables, 69
Nominal variables, association, 70
Non-parametric ANOVA, 53
Non-parametric methods, 43
Non-parametric tests for a trend, 65
Non-stationary data, making stationary, 100
Normal distribution, 30, 31, 36
Normal distribution, table, 33
Normal probability paper, 36
Normal science, 20
Null hypothesis, 29

Obstacle avoidance, phase space reconstruc-
tion, 94

Occam’s razor, 23
Orbit, 86, 100

Paired samples, parametric example, 40
Paradigm, scientific, 20
PCA, 80
Pearson correlation coefficient, 62
Pearson’s r, 62
Pearson’s r, Scilab code, 63
Pearson’s r, significance, 63
Perceptron, multilayer, 143
Phase space, 85, 86
Phase space reconstruction, 90
Phase space reconstruction, example, 93
Pigeon, 133
Platform-independent programming, 179
Popper, K., 20
Prediction horizon, 106, 190
Prediction horizon, example, 111
Prediction of robot behaviour, 146
Prediction of sensory perception, 146

Index 207

Principal component analysis, 80
Problem of induction, 20
Pseudoreplication, 26

Quadratic iterator, 108
Quantitative descriptions, role, 17

Randomisation, 27
Randomness, 55
Rank correlation, non-parametric, 65
Rank correlation, Spearman, 65
Rank correlation, testing for significance, 66
Regression, linear, 57, 58
Regression, linear (testing for significance,

60
Repeatability of robot behaviour, 6
Replication of experiments, 17
Return plots, 98
Revolution, scientific, 20
Robot behaviour, prediction, 146
Robot engineering, 18
Robot identification, 156, 193, 198
Robot Java, 179
Robot science, 18
Robot training, 181
Robot-environment interaction, dynamic

analysis, 197
Robot-environment interaction, static

analysis, 196
Robot-environment interaction, theory, 195,

197
RobotMODIC, 179
Runs test, 55, 99

Scaling region, 102, 117
Scientific paradigm, 20
Scientific research methodology, 21
Scientific revolution, 20
Scilab, 27
Self-localisation through environment

identification, 162
Sensitivity analysis, 200
Sensitivity to initial conditions, 100
Sensor identification, 184
Sensor identification, example, 185

Sensory perception, prediction, 146
Significance level, 33, 34
Simulation, advantages, 140
Simulation, limitations, 200
Slaving principle, 140
Spearman rank correlation, 65
Spearman rank correlation, example, 65
Spearman rank correlation, Scilab code, 68
Spearman rank correlation, testing for

significance, 66
Standard deviation, 30, 32
Standard error, 30, 32
State space, 85
Stationarity, 98
Stochastic signal, 97
Surveillance robots, 3
System identification, 11, 140, 193, 198

T-test, 61
T-test for independent samples, example, 39
T-test for paired data, example, 40
T-test, dependent samples, 40
T-test, dependent samples example, 40
T-test, in linear regression, 61
T-test, independent samples, 38
Theory of robot-environment interaction, 16,

197
Theory, definition, 16
Time lag embedding, 92
Training of robots, 181
Trend, non-parametric tests, 65
Trend, testing for, 57
Trial and error procedures, 19
Type I error, 34
Type II error, 34

U-test, 45
Uncertainty coefficient, 76, 78
Uncertainty coefficient, example, 78
Uncertainty coefficient, program, 79

Verification, independent, 17

Wilcoxon rank sum test, 45
Wilcoxon test, paired observations, 50

Printing: Krips bv, Meppel
Binding: Stürtz, Würzburg

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

