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Foreword 

How can a robot decide what motions to perform in order to achieve tasks in 
the physical world ? 

The existing industrial robot programming systems still have very limited 
motion planning capabilities. Moreover the field of robotics is growing: space 
exploration, undersea work, intervention in hazardous environments, servicing 
robotics . . .  Motion planning appears as one of the components for the neces- 
sary autonomy of the robots in such real contexts. It is also a fundamental issue 
in robot simulation software to help work cell designers to determine collision 
free paths for robots performing specific tasks. 

R o b o t  M o t i o n  Planning and Cont ro l  requi res  interdisciplinarity 

The research in robot motion planning can be traced back to the late 60's, 
during the early stages of the development of computer-controlled robots. Nev- 
ertheless, most of the effort is more recent and has been conducted during the 
80's (Robot Motion Planning, J.C. Latombe's book constitutes the reference in 
the domain). 

The position (configuration) of a robot is normally described by a number 
of variables. For mobile robots these typically are the position and orientation 
of the robot (i.e. 3 variables in the plane). For articulated robots (robot arms) 
these variables are the positions of the different joints of the robot arm. A 
motion for a robot can, hence, be considered as a path in the configuration 
space. Such a path should remain in the subspace of configurations in which 
there is no collision between the robot and the obstacles, the so-called free 
space. The motion planning problem asks for determining such a path through 
the free space in an efficient way. 

Motion planning can be split into two classes. When all degrees of freedom 
can be changed independently (like in a fully actuated arm) we talk about 
hotonomic motion planning. In this case, the existence of a collision-free path 
is characterized by the existence of a connected component in the free config- 
uration space. In this context, motion planning consists in building the free 
configuration space, and in finding a path in its connected components. 

Within the 80's, Roboticians addressed the problem by devising a variety 
of heuristics and approximate methods. Such methods decompose the config- 
uration space into simple cells lying inside, partially inside or outside the free 
space. A collision-free path is then searched by exploring the adjacency graph 
of free cells. 
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In the early 80's, pioneering works showed how to describe the free config- 
uration space by algebraic equalities and inequalities with integer coefficients 
(i.e. as being a semi-algebraic set). Due to the properties of the semi-algebraic 
sets induced by the Tarski-Seidenberg Theorem, the connectivity of the free 
configuration space can be described in a combinatorial way. From there, the 
road towards methods based on Real Algebraic Geometry was open. At the 
same time, Computational Geometry has been concerned with combinatorial 
bounds and complexity issues. It provided various exact and efficient meth- 
ods for specific robot systems, taking into account practical constraints (like 
environment changes). 

More recently, with the 90's, a new instance of the motion planning problem 
has been considered: planning motions in the presence of kinematic constraints 
(and always amidst obstacles). When the degrees of freedom of a robot sys- 
tem are not independent (like e.g. a car that cannot rotate around its axis 
without also changing its position) we talk about nonholonomic motion plan- 
ning. In this case, any path in the free configuration space does not necessarily 
correspond to a feasible one. Nonholonomic motion planning turns out to be 
much more difficult than holonomic motion planning. This is a fundamental 
issue for most types of mobile robots. This issue attracted the interest of an 
increasing number of research groups. The first results have pointed out the 
necessity of introducing a Differential Geometric Control Theory framework in 
nonholonomic motion planning. 

On the other hand, at the motion execution level, nonholonomy raises an- 
other difficulty: the existence of stabilizing smooth feedback is no more guaran- 
teed for nonholonomic systems. Tracking of a given reference trajectory com- 
puted at the planning level and reaching a goal with accuracy require non- 
standard feedback techniques. 

Four main disciplines are then involved in motion planning and control. 
However they have been developed along quite different directions with only 
little interaction. The coherence and the originality that make motion plan- 
ning and control a so exciting research area come from its interdisciplinarity. 
It is necessary to take advantage from a common knowledge of the different 
theoretical issues in order to extend the state of the art in the domain. 

A b o u t  the  bo ok  

The purpose of this book is not to present a current state of the art in motion 
planning and control. We have chosen to emphasize on recent issues which 
have been developed within the 90's. In this sense, it completes Latombe's 
book published in 1991. Moreover an objective of this book is to illustrate the 
necessary interdisciplinarity of the domain: the authors come from Robotics, 
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Computational Geometry, Control Theory and Mathematics. All of them share 
a common understanding of the robotic problem. 

The chapters cover recent and fruitful results in motion planning and con- 
trol. Four of them deal with nonholonomic systems; another one is dedicated 
to probabilistic algorithms; the last one addresses collision detection, a critical 
operation in algorithmic motion planning. 

Nonholonomic Systems The research devoted to nonholonomic systems is mo- 
tivated mainly by mobile robotics. The first chapter of the book is dedicated 
to nonholonomic path planning. It shows how to combine geometric algorithms 
and control techniques to account for the nonholonomic constraints of most 
mobile robots. The second chapter develops the mathematical machinery nec- 
essary to the understanding of the nonholonomic system geometry; it puts 
emphasis on the nonholonomic metrics and their interest in evaluating the 
combinatorial complexity of nonholonomic motion planning. In the third chap- 
ter, optimal control techniques are applied to compute the optimal paths for 
car-like robots; it shows that a clever combination of the maximum principle 
and a geometric viewpoint has permitted to solve a very difficult problem. The 
fourth chapter highlights the interactions between feedback control and motion 
planning primitives; it presents innovative types of feedback controllers facing 
nonholonomy. 

Probabilistic Approaches While complete and deterministic algorithms for mo- 
tion planning are very time-consuming as the dimension of the configuration 
space increases, it is now possible to address complicated problems in high di- 
mension thanks to alternative methods that relax the completeness constraint 
for the benefit of practical efficiency and probabilistic completeness. The fifth 
chapter of the book is devoted to probabilistic algorithms. 

Collision Detection Collision checkers constitute the main bottleneck to con- 
ceive efficient motion planners. Static interference detection and collision detec- 
tion can be viewed as instances of the same problem, where objects are tested 
for interference at a particular position, and along a trajectory. Chapter six 
presents recent algorithms benefiting from this unified viewpoint. 

The chapters are self-contained. Nevertheless, many results just mentioned 
in some given chapter may be developed in another one. This choice leads to 
repetitions but facilitates the reading according to the interest or the back- 
ground of the reader. 
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On the  origin of  the  book  

All the authors of the book have been involved in PROMotion. PROMotion 
was a European Project dedicated to robot motion planning and control. It has 
progressed from September 1992 to August 1995 in the framework of the Basic 
Research Action of ESPRIT 3, a program of research and development in In- 
formation Technologies supported by the European Commission (DG III). The 
work undertaken under the project has been aimed at solving concrete prob- 
lems. Theoretical studies have been mainly motivated by a practical efficiency. 
Research in PROMotion has then provided methods and their prototype im- 
plementations which have the potential of becoming key components of recent 
programs in advanced robotics. 

In few numbers, PROMotion is a project whose cost has been 1.9 MEcus 1 
(1.1 MEcus supported by European Community), for a total effort of more 
than 70 men-year, 179 research reports (most them have been published in 
international conferences and journals), 10 experiments on real robot platforms, 
an International Spring school and 3 International Workshops. This project has 
been managed by LAAS-CNRS in Toulouse; it has involved the "Universitat 
Politecnica de Catalunya" in Barcelona, the "Ecole Normale Sup@rieure" in 
Paris, the University "La Sapienza" in Roma, the Institute INRIA in Sophia- 
Antipolis and the University of Utrecht. 

J.D. Boissonnat (INRIA, Sophia-Antipolis), A. De Luca (University "La 
Sapienza" of Roma), M. Overmars (Utrecht University), J.J. Risler (Ecole Nor- 
male Sup6rieure and Paris 6 University), C. Torras (Universitat Politecnica de 
Catalunya, Barcelona) and the author make up the steering committee of PRO- 
Motion. This book benefits from contributions of all these members and their 
co-authors and of the work of many people involved in the project. 

On behalf of the project committee, I thank J. Wejchert (Project oflicier 
of PROMotion for the European Community), A. Blake (Oxford University), 
H. Chochon (Alcatel) and F. Wahl (Brannschweig University) who acted as 
reviewers of the project during three years. Finally I thank J. Som for her 
efficient help in managing the project and M. Herrb for his help in editing this 
book. 

Jean-Paul Laumond 
LAAS-CNRS, Toulouse 

August 1997 

1 US $ 1 ~ 1 Ecu 



List of Contributors 

A. Bella'iche 
D4partement de Math@matiques 
Universit4 de Paris 7 
2 Place Jussieu 
75251 Paris Cedex 5 
France 
abellaic©mathp7, j u s s i e u ,  f r  

A. De Luca 
Dipartimento di Informatica 
e Sistemistica 
UniversitA di Roma "La Sapienza" 
Via Eudossiana 18 
00184 Roma 
Italy 
adeluca©giannutri, caspur, it 

P. Jim@nez 
Institut de Robbtica 
i Inform~tica Industrial 
Gran Capita, 2 
08034-Barcelona 
Spain 
j imenez©iri,  upc. es 

J.P. Laumond 
LAAS-CNRS 
7 Avenue du Colonel Roche 
31077 Toulouse Cedex 4 
France 
jpl©laas, fr 

J.D. Boissonnat 
INRIA Centre de Sophia Antipolis 
2004, Route des Lucioles BP 93 
06902 Sophia Antipolis Cedex, 
France 
boissonn©sophia, inria, fr 

F. Jean 
Institut de Math@matiques 
Universit@ Pierre et Marie Curie 
Tour 46, 5~me @tage, Boite 247 
4 Place Jussieu 
75252 Paris Cedex 5 
France 
j ean~math, j u s s i e u ,  fr 

F. Lamiraux 
LAAS-CNRS 
7 Avenue du Colonel Roche 
31077 Toulouse Cedex 4 
France 
lamiraux©laas, f r  

G. Oriolo 
Dipartimento di Informatica 
e Sistemistica 
Universit£ di Roma "La Sapienza" 
Via Eudossiana 18 
00184 Roma 
Italy 
oriolo@giannutri, caspur, it 



X 

M. H. Overmars 
Department of Computer Science, 
Utrecht University 
P.O.Box 80.089, 
3508 TB Utrecht, 
the Netherlands 
markov@cs, ruu. nl 

C. Samson 
INRIA Centre de Sophia Antipolis 
2004, Route des Lucioles BP 93 
06902 Sophia Antipolis Cedex, 
France 
Claude. Samson@sophia. inria, fr 

P. Sou~res 
LAAS-CNRS 
7 Avenue du Colonel Roche 
31077 Toulouse Cedex 4 
France 
soueres@laas, f r  

F. Thomas 
Institut de Robbtica 
i Informatica Industrial 
Gran Capita, 2 
08034-Barcelona 
Spain 
thomas©iri, upc. es 

J.J. Risler 
Institut de Math@matiques 
Universit4 Pierre et Marie Curie 
Tour 46, 5~me e~age, Boite 247 
4 Place Jussieu 
75252 Paris Cedex 5 
France 
risler@math, jussieu, fr 

S. Sekhavat 
LAAS-CNRS 
7 Avenue du Colonel Roche 
31077 Toulouse Cedex 4 
France 
sepanta©laas, fr 

P. Svestka 
Department of Computer Science, 
Utrecht University 
P.O.Box 80.089, 
3508 TB Utrecht, 
the Netherlands 
petr@cs, ruu.nl 

C. Torras 
Institut de Robbtica 
i Informatica Industrial 
Gran Capita, 2 
08034-Barcelona 
Spain 
torras@iri, upc. es 



Table of Contents 

G u i d e l i n e s  in N o n h o l o n o m i c  M o t i o n  P l a n n i n g  for  M o b i l e  R o b o t s  1 

J.P. Laumond, S. Sekhavat, F. Lamiraux 
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

2 Controllabilities of mobile robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

3 Path planning and small-time controllability . . . . . . . . . . . . . . . . . . . . . . .  10 

4 Steering methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

5 Nonholonomic path planning for small-time controllable systems . . . . .  23 

6 Other approaches, other systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

G e o m e t r y  o f  N o n h o l o n o m i c  S y s t e m s  . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

A. BeUa~'che, F. Jean, J.-J. Risler 
1 Symmetric control systems: an introduction . . . . . . . . . . . . . . . . . . . . . . .  55 

2 The car with n trailers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

3 Polynomial systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

O p t i m a l  T r a j e c t o r i e s  for  N o n h o l o n o m i c  M o b i l e  R o b o t s  . . . . . . . .  93 

P. Sou~res, J.-D. Boissonnat 
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 

2 Models and optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 

3 Some results from Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . .  97 

4 Shortest paths for the Reeds-Shepp car . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 

5 Shortest paths for Dubins' Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 

6 Dubins model with inertial control law . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 

7 Time-optimal trajectories for Hilare-tike mobile robots . . . . . . . . . . . . . .  161 

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166 

F e e d b a c k  C o n t r o l  o f  a N o n h o l o n o m i c  C a r - L i k e  R o b o t  . . . . . . . . . .  171 
A. De Luca, G. Oriolo, C. Samson 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171 

2 Modeling and analysis of the car-like robot . . . . . . . . . . . . . . . . . . . . . . . .  179 

3 Trajectory tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 

4 Pa th  following and point stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247 

6 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249 



XII 

Probabi l i s t ic  P a t h  P lann ing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
P. Svestka, M. 1t. Overmars 

255  

1 I n t r o d u c t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 
2 T h e  P robab i l i s t i c  P a t h  P l anne r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258 
3 App l i ca t i on  to  holonomic  robo t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266 
4 App l i ca t i on  to  nonholonomic  robo t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270 
5 On probab i l i s t i c  comple teness  of p robab i l i s t i c  p a t h  p lann ing  . . . . . . . . .  279 
6 On the  expec ted  complex i ty  of p robab i l i s t i c  p a t h  p l ann ing  . . . . . . . . . .  285 
7 A m u l t i - r o b o t  ex tens ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291 
8 Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300 

Coll i s ion D e t e c t i o n  Algor i thms  for M o t i o n  P l a nn i n g  . . . . . . . . . . .  305 
P. Jimdnez, F. Thomas, C. Torras 

1 I n t r o d u c t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305 
2 In te r fe rence  de tec t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306 
3 Coll is ion de tec t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317 
4 Coll is ion de t ec t ion  in mo t ion  p l ann ing  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  335 
5 Conclus ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338 



Guidelines in Nonholonomic Motion Planning 
for Mobile Robots 

J.P. Laumond, S. Sekhavat and F. Lamiraux 

LAAS-CNRS, Toulouse 

1 I n t r o d u c t i o n  

Mobile robots did not wait to know that they were nonholonomic to plan and 
execute their motions autonomously. It is interesting to notice that the first 
navigation systems have been published in the very first International Joint 
Conferences on Artificial Intelligence from the end of the 60's. These systems 
were based on seminal ideas which have been very fruitful in the development 
of robot motion planning: as examples, in 1969, the mobile robot Shakey used 
a grid-based approach to model and explore its environment [61]; in 1977 Jason 
used a visibility graph built from the corners of the obstacles [88]; in 1979 Hilare 
decomposed its environment into collision-free convex cells [30]. 

At the end of the 70's the studies of robot manipulators popularized the 
notion of configuration space of a mechanical system [53]; in this space the 
"piano" becomes a point. The motion planning for a mechanical system is 
reduced to path finding for a point in the configuration space. The way was open 
to extend the seminal ideas and to develop new and well-grounded algorithms 
(see Latombe's book [42]). 

One more decade, and the notion of nonholonomy (also borrowed from 
Mechanics) appears in the literature [44] on robot motion planning through 
the problem of car parking which was not solved by the pioneering mobile 
robot navigation systems. Nonholonomic Motion Planning then becomes an 
attractive research field [52]. 

This chapter gives an account of the recent developments of the research in 
this area by focusing on its application to mobile robots. 

Nonholonomic systems are characterized by constraint equations involving 
the time derivatives of the system configuration variables. These equations are 
non integrable; they typically arise when the system has less controls than 
configuration variables. For instance a car-like robot has two controls (linear 
and angular velocities) while it moves in a 3-dimensional configuration space. 
As a consequence, any path in the configuration space does not necessarily 
correspond to a feasible path for the system. This is basically why the purely 
geometric techniques developed in motion planning for holonomic systems do 
not apply directly to nonholonomic ones. 



2 J.P. Laumond, S. Sekhavat and F. Lamiraux 

While the constraints due to the obstacles are expressed directly in the man- 
ifold of configurations, nonholonomic constraints deal with the tangent space. 
In the presence of a link between the robot parameters and their derivatives, 
the first question to be addressed is: does such a link reduce the accessible con- 
figuration space ? This question may be answered by studying the structure of 
the distribution spanned by the Lie algebra of the system controls. 

Now, even in the absence of obstacle, planning nonholonomic motions is 
not an easy task. Today there is no general algorithm to plan motions for any 
nonholonomic system so that the system is guaranteed to exactly reach a given 
goal. The only existing results are for approximate methods (which guarantee 
only that the system reaches a neighborhood of the goal) or exact methods for 
special classes of systems; fortunately, these classes cover almost all the existing 
mobile robots. 

Obstacle avoidance adds a second level of difficulty. At this level we should 
take into account both the constraints due to the obstacles (i.e., dealing with 
the configuration parameters of the system) and the nonholonomic constraints 
linking the parameter derivatives. It appears necessary to combine geometric 
techniques addressing the obstacle avoidance together with control theory tech- 
niques addressing the special structure of the nonholonomic motions. Such a 
combination is possible through topological arguments. 

The chapter may be considered as self-contained; nevertheless, the basic 
necessary concepts in differential geometric control theory are more developed 
in Bella'iche-Jean-Risler's chapter. 

Finally, notice that Nonholonomic Motion Planning may be consider as the 
problem of planning open loop controls; the problem of the feedback control is 
the purpose of DeLuca-Oriolo-Samson's chapter. 

2 Controllabilities of mobile robots 

The goal of this section is to state precisely what kind of controllability and 
what level of mobile robot modeling are concerned by motion planning. 

2.1 Controllabilities 

Let us consider a n-dimensional manifold, U a class of functions of time t 
taking their values in some compact sub-domain/~ of R m. The control systems 

considered in this chapter are differential systems such that 

= f (Z)u  + g(X). 

u is the control of the system. The i - t h  column of the matrix f (X)  is a vector 
field denoted by fi. g(X) is called the drift. An admissible trajectory is a 
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solution of the differential system with given initial and final conditions and u 
belonging to L/. 

The following definitions use Sussmann's terminology [83]. 

Definit ion 1. ~ is locally controllable from X if the set of points reachable 
from X by an admissible trajectory contains a neighborhood of X .  It is small- 
time controllable from X if the set of points reachable from X before a given 
time T contains a neighborhood o] X for any T. 

A control system will be said to be small-time controllable if it is small-time 
controllable from everywhere. 

Small-time controllability clearly implies local controllability. The converse 
is false. 

Checking the controllability properties of a system requires the analysis of 
the control Lie algebra associated with the system. Considering two vector fields 
] and g, the Lie bracket [f, g] is defined as being the vector field Of.g - Og..f 1 
The following theorem (see [82]) gives a powerful result for symmetric systems 
(i.e.,/C is symmetric with respect to the origin) without drift (i.e, g(X) = 0). 

Theor e m 2.1. A symmetric system without drift is small-time controllable 
from X iff the rank of the vector space spanned by the family of vector fields fi 
together with all their brackets is n at X .  

Checking the Lie algebra rank condition (LARC) on a control system con- 
sists in trying to build a basis of the tangent space from a basis (e.g., a P. Hall 
family) of the free Lie algebra spanned by the control vector fields. An algo- 
rithm appears in [46,50]. 

2.2 Mobi le  robots: from dynamics to kinematics  

Modeling mobile robots with wheels as control systems may be addressed with 
a differential geometric point of view by considering only the classical hypoth- 
esis of "rolling without slipping". Such a modeling provides directly kinematic 
models of the robots. Nevertheless, the complete chain from motion planning 
to motion execution requires to consider the ultimate controls that should be 
applied to the true system. With this point of view, the kinematic model should 
be derived from the dynamic one. Both view points converge to the same mod- 
eling (e.g., [47]) but the later enlightens on practical issues more clearly than 
the former. 

1 The k-th coordinate of If, g] is 

ts, gt[kl =  (g[il Slkl - Stil glkl) 
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Let us consider two systems: a two-driving wheel mobile robot and a car 
(in [17] other mechanical structure of mobile robots are considered). 

T w o - d r i v i n g  w h e e l  m o b i l e  r o b o t s  A classical locomotion system for mobile 
robot is constituted by two parallel driving wheels, the acceleration of each 
being controlled by an independent motor. The stability of the platform is 
insured by castors. The reference point of the robot is the midpoint of the two 
wheels; its coordinates, with respect to a fixed frame are denoted by (x, y); the 
main direction of the vehicle is the direction 0 of the driving wheels. With t 
designating the distance between the driving wheels the dynamic model is: 

o j / ( /  
 (vl + v2)cosO  o o 

• o ° 
U = ~(Vl V2) "~ ~1 + u2 (1) 
?iX 10 01 
~2 

with lull _< Ut,max, lull ___ u~,,~a~ and vl and v2 as the respective wheel speeds. 
Of course vl and v2 are also bounded; these bounds appear at this level as 
"obstacles" to avoid in the 5-dimensional manifold. This 5-dimensional system 
is not small-time controllable from any point (this is due to the presence of the 
drift and to the bounds on ul and u2). 

By setting v = ½(Vl + v2) and w = ~(Vl - v2) we get the kinematic model 
which is expressed as the following 3-dimensional system: 

(i) ( o0) (i) = si 0 0 v + w (2) 

The bounds on Vl and v2 induce bounds vmax .and Wm,~ on the new controls v 
and w. This system is symmetric without drift; applying the LARC condition 
shows that  it is small-time controllable from everywhere. Notice that  v and w 
should be C 1. 

Ca r - l ike  r o b o t s  From the driver's point of view, a car has two controls: the 
accelerator and the steering wheel. The reference point with coordinates (x, y) 
is the midpoint of the rear wheels. We assume that  the distance between both 
rear and front axles is 1. We denote w as the speed of the front wheels of the 
car and ~ as the angle between the front wheels and the main direction 0 of the 
car 2. Moreover a mechanical constraint imposes [~t -< ~max and consequently a 

2 More precisely, the front wheels are not exactly parallel; we use the average of their 
angles as the turning angle. 
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minimum turning radius. Simple computation shows that  the dynamic model 
of the car is: 

(i) ,,,wcos cos0 , (i)Ill • i w c o s e s i n e /  ° ° + 
: /  / +  '<' u2 (3) 

with lull _< ul ,m,:  and lu21 _< u2,m::. This 5-dimensional system is not small- 
time controllable from everywhere. 

A first simplification consists in considering w as a control; it gives a 4- 
dimensional system: 

/ cos ~ sin 0 / 

= t si0~ ) w-i- u2 (4) 

This new system is symmetric without drift; applying the LARC condition 
shows that  it is small4ime controllable from everywhere. Notice that  w should 
be C 1. Up to some coordinate changes, we may show that  this system is equiv- 
alent to the kinematic model of a two-driving wheel mobile robot pulling a 
"trailer" which is the rear axle of the car (see below). The mechanical con- 
straint [~] < ~ma~ < "~ appears as an "obstacle" in R 2 x ($1) 2. 

Let us assume that  we do not care about the direction of the front wheels. 
We may still simplify the model. By setting v = w cos ~ and w = w sin ~ we get 
a 3-dimensionated control system: 

(i) ( o 0)0 (i) = sin 0 v + w (5) 

By construction v and w are C 1 and their values axe bounded. This system 
looks like the kinematic model of the two-driving wheel mobile robot. The 
main difference lies on the admissible control domains. Here the constraints 
on v and w are no longer independent. Indeed, by setting wmax = vf2 and 
¢ , ~  = ~ we get: 0 <_ lwl < Ivl <_ 1. This means that  the admissible control 
domain is no longer convex. It remains symmetric; we can still apply the LARC 
condition to prove that  this system is small-time controllable from everywhere. 
The main difference with the two-driving wheel mobile robot is that  the feasible 
paths of the car should have a curvature lesser than 1. 

A last simplification consists in putting Ivl - 1 and even v _= 1; by ref- 
erence to the work in [65] and [22] on the shortest paths in the plane with 
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bounded curvature such systems will be called Reeds&Shepp's car and Dubins' 
car respectively (see Sou~res-Boissonnat's chapter for an overview of recent 
results on shortest paths for car-like robots). The admissible control domain of 
Reeds&Shepp's car is symmetric; LARC condition shows that it is small-time 
controllable from everywhere 3. Dubins' car is a system with drift; it is locally 
controllable but not small-time controllable from everywhere; for instance, to 
go from (0, 0, 0) to (1 - cos e, sin e, 0) with Dubins car takes at least 27r - c unity 
of time. 

The difference between the small-time local controllability of the car of 
Reeds & Shepp and the local controllability of Dubins' car may be illustrated 
geometrically. Figure 1 shows the accessibility surfaces in R 2 x S 1 of both sys- 
tems for a fixed length of the shortest paths. Such surfaces have been computed 
from the synthesis of the shortest paths for these systems (see [76,51,15] and 
Sou~res-Boissonnat's chapter). In the case of Reeds&Shepp's car, the surface 
encloses a neighborhood of the origin; in the case of Dubins' car the surface is 
not connected and it does not enclose any neighborhood of the origin. 

2.3 Kinematic  model  of  mobi le  robots  with  t rai lers  

Let us now introduce the mobile robot with trailers which has been the canoni- 
cal example of the work in nonholonomic motion planning; it will be the leading 
thread of the rest of the presentation. 

Figure 2 (left) shows a two-driving wheel mobile robot pulling two trailers; 
each trailer is hooked up at the middle point of the rear wheels of the previous 
one. The distance between the reference points of the trailers is assumed to be 
1. The kinematic model is defined by the following control system (see [47]) : 

2 = f l ( x ) v  (6) 

with 
X -- ( x , y , O , ~ l , ~ 2 )  T 
f l ( X )  = (cos~, sin6, 0, - s i n ~ l ,  s i n a i - c o s ~ l  sin~2) T and 
/2(x) = (0, 0, 1, 1, 0) r 

Note that the first body can be viewed as the front wheels of a car; the 
system then appears as modeling a car-like robot pulling a trailer. 

After noticing that [f2, If1, f2]] = fl,  one may check that the family com- 
posed of {fl, f2, [fl, f2], Ill, [f l ,  f2]], Ill, I l l ,  Ill, f2]]]} spans the tangent space 
at every point in R 2 x ($1) 3 verifying ~1 ~ ~ (regular points). The family 
{]1, f2, [fl, f2], [fl, [£,  f2]], [£,  If1, [•, [fl, f2]]]]) spans the tangent space else- 
where (i.e., at singular points). Thanks to the LARC, we conclude that the 

a A geometric proof appears in [44]. 
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Fig. 1. Accessibility domains by shortest paths of fixed length 

system is small-time controllable at any point. Its degree of nonholonomy 4 is 4 
at regular points and 5 at singular points. A more general proof of small-time 
controllability for this system with n trailers appears in [47]. 

Another hooking system is illustrated in Figure 2 (right). Let us assume 
that  the distance between the middle point of the wheels of a trailer and the 
hookup of the preceding one is 1. The control system is the same as (6), with 

4 The minimal length of the Lie bracket required to span the tangent space at a point 
is said to be the degree of nonholonomy of the system at this point. The degree of 
nonholonomy of the system is the upper bound d of all the degrees of nonholonomy 
defined locally (see Bellai'che-Jean-Pdsler's Chapter for details). 
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Y [-- '\\\\\ " 

\,\ ,, e 

Fig. 2. Two types of mobile robots with trailers. 

f l ( X )  = (cosS, sin0, 0, - s ina i ,  - sin~o2 cos~l+cos~o2 sin~l+sin~al)  T and 
f2 (X)  = (0, 0, 1, - 1  - cos~l ,  sin~al sin~o2 + cos~al cos~o2 + cos~al) T 

The family { f l ,  f2, [/1, f2], [fl, [fl, f2]], [f2, [fl, f2]]} spans the tangent space 
at every point in R 2 x ($1) 3 verifying ~al ~ ~r, ~a2 ~ r and ~ol ~ ~2 (regular 
points). The degree of nonholonomy is then 3 at regular points. The family 
{ f l ,  f2, If1, ]2], If1, If1, f2]], If1, [fl, If1, ]2]]]} spans the tangent space at points 
verifying ~Ol -= ~2. The degree of nonholonomy at these points is then 4. When 
~1 - 7r or ~2 = 7r the system is no more controllable; this is a special case of 
mechanical singularities. 

2.4 A d m i s s i b l e  p a t h s  and  t r a j e c t o r i e s  

Constrained paths and trajectories Let C$ be the configuration space of 
some mobile robot (i.e., the minimal number of parameters locating the whole 
system in its environment). In the sequel a trajectory is a continuous function 
from some real interval [0, T] in C$. An admissible trajectory is a solution of the 
differential system corresponding to the kinematic model of the mobile robot 
(including the control constraints), with some initial and final given conditions. 
A path is the image of a trajectory in CS. An admissible path is the image of 
an admissible trajectory. 

The difference between the various kinematic models of the mobile robots 
considered in this presentation only concerns their control domains (Figure 3). 
It clearly appears that admissible paths for Dubins' car are admissible for 
Reeds&Shepp's car (the converse is false); admissible paths for Reeds&Shepp's 
car are admissible for the car-like robot (the converse is true); admissible paths 
for the car-like robot are admissible for the two-driving wheel mobile robot (the 
converse is false). 
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Car-like 

fD 

Reeds & Shepp Dubins 

Fig. 3. Kinematic mobile robot models: four types of control domains. 

Remark 1: Due to the constraint [w] < Iv[, the admissible paths for the car-like, 
Reeds&Shepp's and Dubins' robots have their curvature upper bounded by 1 
everywhere. As a converse any curve with curvature upper bounded by 1 is an 
admissible path (i.e., it is possible to compute an admissible trajectory from 
it). 

Remark 2: This geometric constraint can be taken into account by consid- 
ering the four-dihmnsionated control system (4) with I~] < ~" _ ~, the inequality 
constraint on the controls for the 3-dimensionated system is then transformed 
into a geometric constraint on the state variable ~. Therefore the original con- 
trol constraint [w[ < Iv[ arising in system (5) can be addressed by applying 
"obstacle" avoidance techniques to the system (4). 

F r o m  pa ths  to  t r a jec to r ies  The goal of nonholonomic motion planning 
is to provide collision-free admissible paths in the configuration space of the 
mobile robot system. Obstacle avoidance imposes a geometric point of view 
that dominates the various approaches addressing the problem. The motion 
planners compute paths which have to be transformed into trajectories. 

In almost all applications, a black-box module allows to control directly the 
linear and angular velocities of the mobile robot. Velocities and accelerations 
are of course submitted bounds. 

The more the kinematic model of the robot is simplified, the more the trans- 
formation of the path into a trajectory should be elaborated. Let us consider 
for instance an elementary path consisting of an arc of a circle followed by a 
tangent straight line segment. Due to the discontinuity of the curvature of the 
path at the tangent point, a two driving-wheel mobile robot should stop at 
this point; the resulting motion is clearly not satisfactory. This critical point 
may be overcome by "smoothing" the path before computing the trajectory. 
For instance clothoids and involutes of a circle are curves that account for the 
dynamic model of a two driving-wheel mobile robot: they correspond to bang- 
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bang controls for the system (1) [35]; they may be used to smooth elementary 
paths [25]. 

Transforming an admissible path into an admissible trajectory is a classical 
problem which has been investigated in robotics community mainly through the 
study of manipulators (e.g., [67] for a survey of various approaches). Formal 
solutions exist (e.g., [75] for an approach using optimal control); they apply 
to our problem. Nevertheless, their practical programming tread on delicate 
numerical computations [40]. 

On the other hand, some approaches address simultaneously the geometric 
constraints of obstacle avoidance, the kinematic and the dynamic ones; this is 
the so-called "kinodynamic planning problem" (e.g., [20,21,66]). These methods 
consist in exploring the phase space (i.e., the tangent bundle associated to the 
configuration space of the system) by means of graph search and discretiza- 
tion techniques. In general, such algorithms provide approximated solutions 
(with the exception of one and two dimensional cases [62,19]) and are time- 
consuming. Only few of them report results dealing with obstacle avoidance for 
nonholonomic mobile robots (e.g., [28]). 

The following developments deal with nonholonomic path planning. 

3 P a t h  p l a n n i n g  a n d  s m a l l - t i m e  c o n t r o l l a b i l i t y  

Path planning raises two problems: the first one addresses the existence of a 
collision-free admissible path (this is the decision problem) while the second 
one addresses the computation of such a path (this is the complete problem). 

The results overviewed in this section show that the decision problem is 
solved for any small-time controllable system; even if approximated algorithms 
exist to solve the complete problem, the exact solutions deal only with some 
special classes of small-time controllable systems. 

We may illustrate these statements with the mobile robot examples intro- 
duced in the previous section: 

- Dubins' robot: this is the simplest example of a system which is locally 
controllable and not small-time controllable. For this system, the decision 
problem is solved when the robot is reduced to a point [27]. An approx- 
imated solution of the complete problem exists [34]; exact solutions exist 
for a special class of environments consisting of moderated obstacles (mod- 
erated obstacles are generalized polygons whose boundaries are admissible 
paths for Dubins' robot) [2,13]. Notice that the decision problem is still 
open when the robot is a polygon. 
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- Reeds&Shepp's, car-like and two-driving wheel robots: these systems are 
small-time controllable. We will see below that exact solutions exist for 
both problems. 

- Mobile robots with trailers: the two systems considered in the previous 
section are generic of the class of small-time controllable systems. For both 
of them the decision problem is solved. For the system appearing in Figure 2 
(left) we will see that the complete problem is solved; it remains open for 
the system in Figure 2 (right). 

Small-time controllability (Definition 1) has been introduced with a control 
theory perspective. To make this definition operational for path planning, we 
should translate it in purely geometric terms. 

Let us consider a small-time controllable system, with H a class of control 
functions taking their values in some compact domain ]C of R m. We assume that 
the system is symmetric 5. As a consequence, for any admissible path between 
two configurations X1 and X2, there are two types of admissible trajectories: 
the first ones go from X1 to X2, the second ones go from X2 to XI. 

Let X be some given configuration. For a fixed time T, let T~eachx (T) be 
the set of configurations reachable from X by an admissible trajectory before 
the time T. K: being compact, Tteachx(T) tends to {X} when T tends to 0. 

Because the system is small-time controllable, Tieachx (T) contains a neigh- 
borhood of X. We assume that the configuration space is equipped with a 
(Riemannian) metric: any neighborhood of a point contains a ball centered at 
this point with a strictly positive radius. Then there exists a positive real num- 
ber r/such that the ball B(X, rl) centered at X with radius ~/is included in 
7~eachx(T). 

Now, let us consider a (not necessarily admissible) collision-free path 7 with 
finite length linking two configurations Xstart and Xgoal. 7 being compact, it is 
possible to define the clearance e of the path as the minimum distance of 7 to 
the obstacles 6, e is strictly positive. Then for any X on 7, there exists Tx > 0 
such that ~eachx(Tx) does not intersect any obstacle. Let ~/Tx be the radius 
of the ball centered at X whose points are all reachable from X by admissible 
trajectories that do not escape T~eachx (Tx). The set of all the balls B(X, rlTx), 
X E 7, constitutes a covering of % 7 being compact, it is possible to get a finite 
sequence of configurations (Xi)l<i<k (with X1 = Xsta~t, Xk = X~oal), such 
that the balls B(XI, rlTx, ) cover 7- 

Consider a point Yi,i+l lying on 7 and in B(Xi,rlTx, )f l  B(Xi+l, ~Txi+l ). 
Between Xi and Y/,i+l (respectively Xi+a and Y/,i+I) there is an admissible 

5 Notice that, with the exception of Dubins' robot, all the mobile robots introduced 
in the previous section are symmetric. 
We consider that a configuration where the robot touches an obstacle is not 
collision-free. 
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trajectory (and then an admissible path) that does not escape ~eachx~ (Tx~) 
(respectively 7~eachx~+l (Tx,+I)). Then there is an admissible path between Xi 
and Xi+l that does not escape Tteachx, (Tx~)U ~eachx~+~ (Tx,+~); this path is 
then collision-free. The sequence (Xi)l_<i<k is finite and we can conclude that 
there exists a collision-free admissible path between Xstart and Xgoat. 

T h e o r e m  3.1. For symmetric small-time controllable systems the existence o] 
an admissible collision-free path between two given configurations is equivalent 
to the existence of any collision-free path between these configurations. 

Remark 3: We have tried to reduce the hypothesis required by the proof to a 
minimum. They are realistic for practical applications. For instance the com- 
pactness of E holds for all the mobile robots considered in this presentation. 
Moreover we assume that we are looking for admissible paths without contact 
with the obstacles: this hypothesis is realistic in mobile robotics (it does not 
hold any more for manipulation problems). On the other hand we suggest that 
two configurations belonging to the same connected component of the collision- 
free path can be linked by a finite length path; this hypothesis does not hold for 
any space (e.g., think to space with a fractal structure); nevertheless it holds 
for realistic workspaces where the obstacles are compact, where their shape is 
simple (e.g., semi-algebraic) and where their number is finite. 

Consequence 1: Theorem 3.1 shows that the decision problem of motion plan- 
ning for a symmetric small-time controllable nonholonomic system is the same 
as the decision problem for the holonomic associated one (i.e., when the kine- 
matics constraints are ignored): it is decidable. Notice that deciding whether 
some general symmetric system is small-time controllable (from everywhere) 
can be done by a only semi-decidable procedure [50]. The combinatorial com- 
plexity of the problem is addressed in [77]. Explicit bounds of complexity have 
been recently provided for polynomial systems in the plane (see [68] and refer- 
ences therein). 

Consequence 2: Theorem 3.1 suggests an approach to solve the complete prob- 
lem. First, one may plan a collision-free path (by means of any standard meth- 
ods applying to the classical piano mover problem); then, one approximates 
this first path by a finite sequence of admissible and collision-free ones. This 
idea is at the origin of a nonholonomic path planner which is presented below 
(Section 5.3). It requires effective procedures to steer a nonholonomic system 
from a configuration to another. The problem has been first attacked by ignor- 
ing the presence of obstacles (Section 4); numerous methods have been mainly 
developed within the control theory community; most of them account only 
for local controllability. Nevertheless, the planning scheme suggested by Theo- 
rem 3.1 requires steering methods that accounts for small-time controllability 
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(i.e., not only for local controllability). In Section 5.1 we introduce a topological 
property which is required by steering methods in order to apply the planning 
scheme. We show that some among those presented in Section 4 verify this 
property, another one does not, and finally a third one may be extended to 
guaranty the property. 

4 Steering methods 

What we call a steering method is an algorithm that solves the path planning 
problem without taking into account the geometric constraints on the state. 
Even in the absence of obstacles, computing an admissible path between two 
configurations of a nonholonomic system is not an easy task. Today there is 
no algorithm that guarantees any nonholonomic system to reach an accessible 
goal exactly. In this section we present the main approaches which have been 
applied to mobile robotics. 

4.1 F r o m  vec tor  fields to effective paths 

The concepts from differential geometry that we want to introduce here are 
thoroughly studied in [79,90,80,81] and in Bella'iche-Jean-Risler's Chapter. 
They give a combinatorial and geometric point of view of the path planning 
problem. 

Choose a point X on a manifold and a vector field f defined around this 
point. There is exactly one path 7(~-) starting at this point and following f .  
That is, it satisfies 7(0) = X and ~/(T) = f(7(Z)). One defines the exponential 
of f at point X to be the point 7(1) denoted by e f . X .  Therefore e f appears 
as an operation on the manifold, meaning "slide from the given point along 
the vector field f for unit time". This is a diffeomorphism. With a being a 
real number, applying eaf amounts to follow f for a time a. In the same way, 
applying J + g  is equivalent to follow f + g for unit time. 

It remains that, whenever [f, g] ~ 0, following directly a f  + fig or following 
first a f ,  then fig, are no longer equivalent. Intuitively, the bracket If, g] mea- 
sures the variation of g along the paths of f ;  in some sense, the vector field g 
we follow in a f  + fig is not the same as the vector field g we follow after having 
followed a f  first (indeed g is not evaluated at the same points in both cases). 

Assume that f l , . . .  , fn  are vector fields defined in a neighborhood Af of 
a point X such that at each point of A/', { f l , . . .  ,fn} constitutes a basis of 
the tangent space. Then there is a smaller neighborhood of X on which the 
maps ( a l , . . .  , an) ~-~ e alfl'k'''-t'°~"'f" • X and ( a l , . . .  , an)  ~-> e c~'J'' ". .  e c~Ifl • X 
are two coordinate systems, called the first and the second normal coordinate 
system associated to ( f l , . . .  , f ,} .  
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The Campbell-Baker-Hausdorff-Dynkin formula states precisely the differ- 
ence between the two systems: for a sufficiently small T, one has: 

eVf . erg _~ evf÷rg - lr2[f,g]'~r2e(T) 

where e(r) --+ 0 when 7 -+ 0. 
Actually, the whole formula as proved in [90] gives an explicit form for the 

e function. More precisely, e yields a formal series whose coefficients ch of ~.k 
are combinations of brackets of degree k, 7 i.e. 

o o  

k-~.3 

Roughly speaking, the Campbell-Baker-Hansdorff-Dynkin formula tells us 
how a small-time nonholonomic system can reach any point in a neighborhood 
of a starting point. This formula is the hard core of the local controllability 
concept. It yields methods for explicitly computing admissible paths in a neigh- 
borhood of a point. 

4.2 Nilpotent systems and nilpotentization 

One method among the very first ones has been defined by Lafferiere and 
Sussmann [39] in the context of nilpotent system. A control system is nilpotent 
as soon as the Lie brackets of the control vector fields vanish from some given 
length. 

For small-time controllable nilpotent systems it is possible to compute a 
basis Y of the Control Lie Algebra L A ( A )  from a Philipp Hall family (see 
for instance [46]). The method assumes that  a holonomic path 7 is given. If 
we express locally this path on B, i.e., if we write the tangent vector ~/(t) 
as a linear combination of vectors in B(7(t)), the resulting coefficients define 
a control that  steers the holonomic system along 7. Because the system is 
nilpotent, each exponential of Lie bracket can be developed exactly as a finite 
combination of the control vector fields: such an operation can be done by 
using the Campbell-Baker-Hausdorff-Dynkin formula above. An introduction 
to this machinery through the example of a car-like robot appears in [48]. It 
is then possible to compute an admissible and piecewise constant control u for 
the nonholonomic system that  steers the system exactly to the goal. 

For a general system, Lafferiere and Sussmann reason as if the system were 
nilpotent of order k. In this case, the synthesized path deviates from the goal. 
Nevertheless, thanks to a topological property, the basic method may be used 

T As an example the degree of [[f, g], If, [g, If, g]l]] is 6. 
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in an iterated algorithm that produces a path ending as close to the goal as 
wanted. 

In [33], Jacob gives an account of Lafferiere and Sussmann's strategy by 
using another coordinate system. This system is built from a Lyndon basis of 
the free Lie algebra [93] instead of a P. Hall basis. This choice reduces the 
number of pieces of the solution. 

In [11], Bella'/che et al apply the nilpotentization techniques developed in 
[10] (see also [31]). They show how to transform any controllable system into a 
canonical form corresponding to a nilpotent system approximating the original 
one. Its special triangular form allows to apply sinusoidal inputs (see below) to 
steer the system locally. Moreover, it is possible to derive from the proposed 
canonical form an estimation of the metrics induced by the shortest feasible 
paths. This estimation holds at regular points (as in [92]) as welt as at singular 
points. These results are critical to evaluate the combinatorial complexity of 
the approximation of holonomic paths by a sequence of admissible ones (see 
Section 5.7). 

The mobile robots considered in this presentation are not nilpotent s. A 
uilpotentization of this system appear in [39]. We conclude this section by the 
nilpotentization of a mobile robot pulling a trailer [11]. 

Example: Let us consider the control system 6: 

\_~ / ul + u2 

= f l U l  -I- f2u2 

where (x, y) defines the position of the mobile robot, 8 its direction and 9 the 
angle of the trailer with respect to the mobile robot. 

The coordinates of vector fields f3 := [fl, f2] and f4 = [fl, [fl, f2]] are 
respectively: 

= 

sin0  
-oS J s4: 
cos ~ / 

We check easily that {fl, f2, f3, f4} is a basis of the tangent space at every point 
of the manifold R 2 x ($1) 2. Let Xo = (xo,yo,O0,9o) and X = (x,y,O,~o) be 

s Consider the system (2); let us denote fl and f~ the two vector fields corresponding 
to a straight line motion and a rotation respectively. By setting adI(g ) -.-- [f, g], we 
check that a d ~ ( f l )  = (-1)'~fl # 0. 
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two points of the manifold. By writing Ax = x - Xo, Ay = y - Yo, A0 = 0 - 8o 
and Aqv = ~v - ~ o ,  the coordinates (YI,Y2,Y3,Y4) of X in the chart a t tached to 
Xo with the basis {f l ,  f2, f3, f4}(Xo) are: 

Yl = cos 0oAx + sin OoAy 
Y2 --- AO 
Y3 = sin~o Ax - cos~oAy 
Y4 = sin(~vo - 00)Ax + cos(~oo - ~o)Ay - A0 + A~v 

The  goal of the following computat ions is to provide a new coordinate sys- 
t em (zl,z2,z3,z4) at  Xo such that:  

- k ,  

- there exists i and j such that  ((fi.fj)z3)(Xo) ~ O, 
- for any i and j, ((£.fj)z4)(Xo) = O, and 
- there exists i, j and k such that  ((fh.fi.fj)z4)(Xo) ~ 0 

with h, i , j  e {1,2} and k e {1,2,3,4};  5~ = 1 iff i = k; ( f )  designates the 
differential operator  associated to the vector field f ;  (f.g) is the product  of 
the corresponding differential operators.  Such coordinates axe called privileged 
coordinates. 

One may  check tha t  ((]~)yk)(Xo) = ~ik for i e {1,2} and k e {1,2,3,4}.  
Moreover ((fl)2y3)(Xo) : ((f2)2y3)(Xo) -- 0 and ((f2.£)y3)(Xo) = 1. Now, it 
appears  tha t  ((fl)2y4)(Xo) = sin ~Vo cos ~o0; then (Yl, Y:, Y3, Y4) is not a privi- 
leged coordinate system if sin ~o cos ~o ~ 0. 

One gets privileged coordinates by keeping 

z l = y l ,  z 2 = y ~ ,  z3=ya 

and taking 
1 

z4 = Y4 - ~ sin ~o cos ~oy 2. 

In such coordinates, we have 

where 

( C°o 2 ) 
f l  = | - sinz2 f2 = 

\ F(zl, z3, z4) 

F(zl,  z2, z3, z4) = - z l  (cos z2 sin 2~Vo)/2 + sin(~vo + z2) 
- sin(~o - zl s in~o + z12(sin 2~vo)/4 + z2 + z3 cos ~oo + z4). 
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The nilpotent approximation is obtained by taking in the Taylor expansions 
of (7) the terms of homogeneous degree wi - 1 for the i-th coordinate where wi 
is the degree of the vector field fi (i.e., W 1 = W 2 = 1,w3 = 2, w4 = 3). We get 

where 

L= --Z 2 

l~(Zl, Z2, Z3) 

F ( z 1 ,  z2,  z3)  ~-- -z~(sin ~0 cos 2~0)/2 - zlz2 sin 2 ~o0 - z3 cos 2 ~o0. 

It is easy to check that this new system is nilpotent of order 3. 

4.3 Steering chained form systems 

At the same time as Lafferiere and Sussmann work, Murray and Sastry explored 
in [58,59] the use of sinusoidal inputs to steer certain nonholonomic systems: 
the class of systems which can be converted into a chained form. A chained 
system has the following form: 

Xl = V  

~2 = Y2(zl)v 

It3 -'~ f3(Xi, :r2)V 

Xp = f p ( X i , . . .  , xp)v  

with xi E R m~ and ~ mi = n. 
Because of this special form, there exists simple sinusoidal control that may 

be used for generating motions affecting the ith set of coordinates while leaving 
the previous sets of coordinates unchanged. The algorithm then is: 

1. Steer Xl to the desired value using any input and ignoring the evolutions 
of the x~'s (1 < i), 

2. Using sinusoids at integrally related frequencies, iteratively find the inputs 
steering the xi's without changing the xj's, j < i. 

Extensions [86] by Tilbury and Sastry allow to use sinusoidal control to steer 
all the coordinates at once for systems with two inputs. They show also how 
polynomial controls may be used to this end. Moreover Monaco and Normand- 
Cyrot show that multirate controls (i.e., piece-wise constant controls) provide 
an exact steering method for chained form systems [57]. 
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Even if a system is not triangular, it may be possible to transform it into 
a triangular one by feedback transformations (see [59,60]). Moreover, notice 
that  the nilpotentization techniques introduced in the previous section leads to 
approximated systems which are in chained form. 

E x a m p l e :  Let us consider our canonical example of a mobile robot with two 
trailers (Figure 2, left). The clever idea which enables the transformation of 
the system into a chained form was to consider a frame attached to the last 
trailer rather than attached to the robot [86]. Denoting by 01 and 02 the angle 
of the trailers, and by x2 and Y2 the coordinates of the middle point of the last 
trailer, the system (6) may be re-written as: 

{ ~ ----- C0802C08(01 -- 82)C08(00 -- 81)u l  
iJ = s i n O 2 c o s ( 0 1  - 02)cos(00 - 01)ul  
~0 ---- U2 

01 = sin(0o - 01)Ul 
02 = sin(01 - 02)cos(0o - 01)ul 

Let us consider the following change of coordinates: 

r Z  1 m X  
1 tan(Oo--O1) 

z2 = ~ .  cos(ol-eD × (1 + tan2(01 - 82)) 
+ ~ x tan(01 - 02)(3tan(01 - 02)tan82 - (1 - tan2(81 - 82))) 

tan(Ol--$2) 
Z3 m C083~2 

z4 = tan02 

Z5 m y  

This transformation is a local diffeomorphism around configurations for 
which the angle between bodies are not equal to y." In this new coordinates, 
the kinematic model of the system has the following chained form: 

Z2 ---- V2 
~3 = z 2 . v l  (8) 
Z4 Z3 .Vl 
Z5 ~- Z4.Vl  

Notice that  Sordalen generalizes this result by providing a conversion of the 
car with an arbitrary number of trailers into a chained form [78]. 

S inuso ida l  inputs :  Let us consider the following inputs [86]: 

I v1 (t) = ao + al sin w t  
v2 (t) bo + bl cos w t  + b2 cos 2wt  + b3 cos 3wt  

(9) 
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Let Z start be a starting configuration. Equations (8) are integrable. Then 
each z i (T)  can be computed from the five coordinates of Z start and the six 
parameters (ao,al,bo,b:,b2,b3).  For a given al ¢ 0 and a given configu- 
ration Z ~t~rt, Tilbury et al show that the function computing Z ( T )  from 
(ao, bo, b:, b2, b3) is a C 1 diffeomorphism at the origin; then the system is invert- 
ible and the parameters (ao, b0, bl, b2, b3) can be computed from the coordinates 
of two configurations Z st~r~ and Z g°al. The system inversion can be done with 
the help of any symbolic computation software. The corresponding sinusoidal 
inputs steer the system from Z ~ta~t to Z 9°at. 

The shape of the path only depends on the parameter a:. Figure 4 from [71] 
illustrates this dependence. Moreover the shape of the paths is not invariant 
by rotation (i.e., it depends on the variables 0 star~ and 0 g°at and not only on 
the difference (0 start - Og°al) ). 

Fig. 4. Three paths solving the same problem with three values of a:: -30, 70, 110 

Polynomial inputs: Another steering method is also proposed in [86]. The poly- 
nomial inputs: 

Vl(t) = I 

V2(t) CO -b Cl t -{- C2 t2 -t- C3 t3 q- C4 t4 

goal steer the system from any configuration Z 8tart to any Z g°al verifying z 1 
z l  tart. In this case T should be equal to ]z~ °al - zltart t. As for the case of 
the sinusoidal inputs, the system can be inverted by symbolic computation. 
To reach configurations such that ~:'g°at = z~t~rt it is sufficient to choose an 
intermediate configuration respecting the inequality and to apply the steering 
method twice. 
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Extensions: The previous steering methods deal with two-input chained form 
systems. In [16] Bushnell, Tilbury and Sastry extend these results to three-input 
nonholonomic systems with the fire-truck system as a canonical example 9. They 
give sufficient conditions to convert such a system to two-chain, single generator 
chained forms. Then they show that  multirate digital controls, sinusoidal inputs 
and polynomial inputs may be used as steering methods. 

4.4 S t ee r ing  fiat  systems 

The concept of flatness has been introduced by Fliess, Ldvine, Martin and 
Rouchon [26,63]. 

A flat system is a system such that  there exists a finite set of variables Yi 
differentially independent which appear as differential functions of the system 
variables (state variables and inputs) and of a finite number of their derivatives, 
each system variable being itself a function of the yi's and of a finite number 
of their derivatives. The variables yi's are called the linearizing outputs of the 
system. 

Example: In [63] Rouchon et al show that  mobile robots with trailers are flat 
as soon as the trailers are hitched to the middle point of the wheels of the 
previous ones. The proof is based on the same idea allowing to transform the 
system into a chained form: it consists in modeling the system by starting from 
the last trailer. 

Let us consider the system (6) (Figure 2, left). Let us denote the coordinates 
of the robot and the two trailers by (x, y, O), (xl, Yl, 81) and (x2, Y2, 82) respec- 
tively. Remind that  the distance between the reference points of the bodies is 
1. The holonomic equations allow to compute x, y, Xl and Yl from x2, Y2, 81 
and 82: 

Xl --~ x2 --~ c0882 x = x 2 -~- cos82 -[- cosSl 

Yl = Y2 -k sin 82 Y : Y2 q- sin 82 + sin 81 

The rolling without slipping conditions lead to three nonholonomic equations 
xisin0i -~)icosSi = 0 allowing to compute 62 (resp. 81 and 8) from (i2,~/2) 
(resp. (~h,yh) and (J/2,~/2)). Finally the controls v and w are given by v = cos0 

A_ =~. (or  V = sin 8 ) and w 
Therefore any variable of the system can be computed from x2 and y2 and 

their derivatives. The system is flat with x2 and Y2 as linearizing outputs. 

9 The fire-truck system is a car-hke robot (two inputs) with one trailer whose direc- 
tion of the wheels is controllable (third input). 
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A steering method: Let us consider a path ~/2 followed by the reference point 
P2 of the second trailer (Figure 5). ~/2 is parametrized by arc length s2. Let 

d us assume that 72 is sufficiently smooth, i.e., d-~P2 is defined everywhere and 
the curvature t~2 can be differentiated at least once. The point P1 belongs to 
the tangent to ~/2 at P2 and P1 = P2 + ~'2, with v2 the unitary tangent vector 

d to 72. Differentiating this relation w.r.t, s2 leads to d--~2Pl = r2 + a2v2 with 
~'2 the unitary vector orthogonal to 1"2. The angle of the first trailer is then 
O~ = 82 + atan(a2). We then deduce the path 71 followed by the first trailer. 
Parametrizing ~ with s~ defined by ds~ = (1 + g2)½ds2 leads to 

1 1 d 

as2 

Applying the same geometric construction from P1 we can compute the path 
7 followed by the robot when the second trailer follows ~'2- The only required 

d 2 . condition is the existence of ~ a 2 ,  moreover the relative angles ~Pl and ~2 

should belong to ] - ~, ~[ (see [26] for details). 
Two configurations X s~art and X g°al being given, one computes geomet- 

goat rically the values of ~start ~s~a~tl , ~ ta~t  ~aoa~, '~l~g°at and ~2 ; each of them 
being a function of a2 and its derivative, it is straightforward to compute 72 
satisfying such initial and final conditions (e.g., by using polynomial curves). 

'.: ,~ :~ :~(.. 

Fig. 5. Geometric construction of P1 (resp. P) path from P2 (resp. P1) path. 

Remark: Because the curvature of "?2 should be defined everywhere, the method 
can not provide any cusp point; nevertheless such points are required in some 
situations like the parking task; in that case, Rouchon et al enter the cusp point 
by hand [63]. We will see below how to overcome this difficulty. 

Flatness conditions: In cite [64], Rouchon gives conditions to check whether 
a system is flat. Among them there is a necessary and sufficient condition for 
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two-input driftless systems: it regards the rank of the various vector space 
A k iteratively defined by glo = span{f1, f2}, A1 = span{f1, f2, [fl, f2]} and 
A/+I = Ao + [Ai, Ai] with [Ai, Ai] = span{[f,g] , f E A~, g E Ai}.  A system 
with two inputs is flat iff rank(Ai)  = 2 + i. 

Let us apply this condition to the mobile robot system with two trailers. 
According to the computations presented in Section 2.3: 

- for the case shown in Figure 2 (left), we get: 

rank(Ao) = 2, rank(A1) = 3, rank(A2) = 4 and rank(A3) = 5 

the system is fiat. 
- for the case shown in Figure 2 (right), we get: 

rank(Ao) = 2, rank(Z~l) = 3 and rank(A2) = 5 

the system is not flat. 
- for the same case shown in Figure 2 (right) but with only one trailer, one 

can check that: 

rank(Ao) = 2, rank(A1) = 3 and rank(A2) = 4 

the system is flat. 

We have seen that the linearizing outputs in the first case are the coordinates 
of the reference point of the second trailer. In the last case, the linearizing 
outputs are more difficult to translate into geometric terms (see [63]). Notice 
that there is no general method to compute the tinearizing outputs when the 
system is flat. 

4.5 Steer ing  wi th  op t imal  control  

Optimal length paths have been at the origin of the very first nonholonomic 
motion planners for car-like mobile robots (see for instance [48,43] and below). 
Nevertheless, today the only existing results allowing to compute optimal paths 
for nonholonomic systems have been obtained for the car-like systems (see 
Sou~res-Boissonnat's Chapter). For general systems, the only possibility is to 
call on numerical methods. 

We sketch here the method developed by Fernandez, Li and Gurvitz in [24]. 
Let us consider a dynamical system: J( = B ( X ) u  together with a cost 

function J = f J  < u(r), u(~-) > dT. Both starting and goal configurations 
being given, the optimization problem is to find the control law (if any) that 
steers the system from the starting configuration to the goal in time T by 
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minimizing the cost function J. The path corresponding to an optimal control 
law is said to be an optimal path. 

Let us consider a continuous and piecewise C 1 control law u defined over 
[0, T]. We denote by fi the periodic extension of u over R.  We may write fi in 
terms of a Fourier basis: 

oo 
i2k?rt i2k~ 

k = 0  

We then approximate fi by truncating its expansion up to some rank N. 
N 

The new control law ~ is then defined by N real numbers 1° ~ = ~-,k=l akek, 
i 2_2__~ e k e  {e r , p e Z}. The choice of the reals ak being given, the point X(T)  

reached after a time T with the control law fi appears as a function f ( a )  from 
R N to R n. 

Now, we get a new cost function 

N 

J(a) = ~ [akl 2 + 71IX(T) - XgoatH 2. 
k = l  

The new optimization problem becomes: for a fixed time T, an initial point 
Xinit and a final point Xgoat , find ~ E R N such as 

N 

: I kl + 7llf( ) - Xgoatll 
k = l  

is minimum. 
One proves (e.g., see [24]) that  the solutions of the new finite-dimensional 

problem converge to the solutions of the original problem as N and 7 go to 
infinity. 

Because we do not know f and 6f /Sa explicitly we use numerical methods 
(numerical integration of the differential equations and numerical optimization 
like Newton's algorithm) to compute a solution of the problem. Such a solution 
is said to be a near-optimal solution of the original problem. 

Figure 6 from [71] shows three examples of near-optimal paths computed 
from this method for a mobile robot with two trailers [49]. 

5 Nonholonomic path planning for small-time 
controllable s y s t e m s  

Consider the following steering method for a two-driving wheel mobile robot. 
To go from the origin (0,0,0) to some configuration (x,y,  8) the robot first 

10 This approximation restricts the family of the admissible control laws. 
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Fig. 6. Three examples of near-optimal paths. 

executes a pure rotation to the configuration (0, 0, atan~), then it moves along 
a straight line segment to (x,y, atan~), and a final rotation steers it to the 
goal. This simple method accounts for local controllability: any point in any 
neighborhood of the origin can be reached by this sequence of three elementary 
paths (when x = 0, replace atan~ by ~ ) .  Nevertheless such a method does 
not account for small-time controllability. If the space is very constraint it does 
not hold. Think to the parking task (Figure 17): the allowed mobile robot 
orientations 0 vary in some interval ] - ~/, 7[. To go from (0, 0, 0) to (0, e, 0) the 
steering method violates necessarily this constraint. 

Therefore, obstacle avoidance requires steering methods accounting for 
small-time controllability. Such a requirement can be translated into geometric 
terms. 

5.1 Toward steering methods accounting for small-time 
controllability 

Let des be the following distance over the configuration space gS: 

n 

dc (x',x = Z l x {  - 
i = 1  

The set of configurations X 2 such that  dcs (X 1 , X 2) < e is denoted by B(X', e); 
this is the ball centered at X 1 with radius e. 

Let ~' be the set of feasible paths defined over an interval of the type [0, T]. 
A steering function is a mapping from gS x gS into :P: 

(X 1 , X 2) -+ Steer(X 1 , X 2 ) 

where Steer(X 1, X 2) is defined over the interval [0, T], such that  
Steer(X 1 , X 2 ) (0) = X 1 , Steer(X 1 , X 2 ) (T) = X 2. 
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Def ini t ion 2. Steer verifies the weak topological property iff: 

Ve > 0,VX 1 E CS, 3/] > 0,VX 2 E CS, (10) 

dcs(X1,X 2) < ~7 ~ Vte  [0,T], dcs(Steer(X1,X2)(t),X 1) < e 

By using a steering method that verifies the weak topological property, 
it is possible to approximate any collision-free path 7Iree. Nevertheless, this 
property is not sufficient from a computational point of view. Indeed, it is local: 
the real number ~/depends on X 1 . Situations as shown in Figure 7 may appear: 
let us consider a sequence of configurations X i converging to the critical point 
X c, and such that limx~-~x¢ ~I(X i) = 0; to be collision-free any admissible 
path should necessary goes through the configuration X c. The computation of 
X c may set numerical problems. To overcome this difficulty, we introduce a 
stronger property for the steering methods. 

X~ 

B(X, cE) 

Fig. 7. Weak topological property 

Definit ion 3. Steer verifies the topological property iff: 

Ve > 0,3~/> 0,V(XI,X 2) E (C8) 2, (11) 

dcs(X1,X 2) < T/ ~ Vt E [0,T], dcs(Steer(X1,X2)(t),X 1) < e 

In this definition ~/does not depend on any configuration (Figure 8). This 
is a global property that not only accounts for small-time controllability but 
also holds uniformly everywhere. 
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X goal 

X start 

% 
/ 
t 
X \ 

Fig. 8. Topological property 

Remark 1: Proving that a given steering method verifies the topological prop- 
erty is not an easy task. The following sufficient condition appears in [71,74]. 
Let us equip 7 ~ with a metric d~, between paths:/"1 and F2 being two paths on 
[0, 1], we define 47, (/"1, F2) = max~e[0j] dcs (1"1 (t), F2 (t)). 

Let us consider a steering method Steer continuous w.r.t, to the topology 
induced by dT,. Steer is uniformly continuous on any compact set ]C included 
in CS 2, i.e., 

Vc> 0,  3r/> 0, V{(X 1,X2),(Y1,Y2)} eK: 

dcs((X 1, y1) < r/ and dcs((X 2, y2) < ~/ 

dp(Steer(X 1, X2), Steer(Y1, y2))  < e 

Choosing X 2 = Y' = y2 we deduce: 

V~ > 0 ,3 ,1  > 0, V(X1,X 2) e CS 2 

d c s ( X 1 , X  2) < r/===tr dTa(Steer(X1,X1),Steer(X1,X2)) < e 

Now, let us assume that Steer(X, X) = {X} at any point X. Then: 

V£ > 0, ~] ~> 0 V(X1,X 2) E C8 2 

d c s ( X z , X  2) < r/ ~ Vte  [0,1], dcs(Xl,Steer(XZ,X~)(t)) < e 
Therefore a sufficient condition for a steering method Steer to verify the topo- 
logical property is that (1) Steer is continuous w.r.t, the topology associated 
with d~ and (2) the path Steer(X, X) is reduced to the point X. Notice that 
the second condition is obviously a necessary condition. 
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Remark 2: The first general result taking into account the necessary uniform 
convergence of steering methods is due to Sussmann and Liu [84]: the authors 
propose an algorithm providing a sequence of feasible paths that uni]ormty con- 
verge to any given path. This guarantees that one can choose a feasible path 
arbitrarily close to a given collision-free path. The method uses high frequency 
sinusoidal inputs. Though this approach is general, it is quite hard to imple- 
ment in practice. In [87], Tilbury et al exploit the idea for a mobile robot with 
two trailers. Nevertheless, experimental results show that the approach cannot 
be applied in practice, mainly because the paths are highly oscillatory. There- 
fore this method has never been connected to a geometric planner in order to 
get a global planner which would take into account both environmental and 
kinematic constraints. 

5.2 Steering methods and topological property 

In this section we review the steering methods of Section 4 with respect to the 
topological property. 

Optimal pa ths  Let us denote by Steeropt the steering method using optimal 
control. Steeropt naturally verifies the weak topological property. Indeed the 
cost of the optimal paths induce a special metric in the configuration space; 
such a metric is said to be a nonholonomic [92], or singular [14], or Carnot- 
Caratheory [56], or sub-Riemannian [80] metric. By definition any optimal path 
with cost r does not escape the nonholonomic ball centered at the starting 
point with radius r. A general result states that the nonholonomic metrics 
induce the same topology as the "natural" metrics des. This means that for 
any nonholonomic ball Bah(X, r) with radius r, there are two real numbers e 
and ~ strictly positive such that B(X,y) C Bnh(X,r) C B ( X , @  

The nonholonomic distance being continuous, to get the topological prop- 
erty, it suffices to restrict the application of Steeropt to a compact domain of 
the configuration space 11. 

There is no general result that gives the exact shape of the nonholonomic 
balls; nevertheless the approximated shape of these balls is well understood 
(e.g., see Bella'iche-Jean-PSsler's chapter). 

The metric induced by the length of the shortest paths for Reeds&Shepp's 
car is close to a nonholonomic metric; car-like robots are the only known cases 
where it is possible to compute the exact shape of the balls (see Figure 1). 

11 Notice that the steering method Steeropt is not necessarily continuous w.r.t, the 
topology induced by d~,. 
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Sinusoidal inputs and chained form systems Let us consider the two- 
input chained form system (8) together with the sinusoidal inputs (9) presented 
in Section 4.3. We have seen that the shape of the paths depends on al (Fig- 
ure 4). The only constraint on the choice of al is that it should be different 
from zero. 

The steering method using such inputs is denoted by a~ Steersi n. For a fixed 
a l  value of al, Steersi n does not verify the topological property. Indeed, for any 

a l  configuration Z, the path Steersin(Z, Z) is not reduced to a point 12. 
Therefore, the only way to build a steering method based on sinusoidal 

inputs and verifying the topological property is not to keep al constant. One 
has to prove the existence of a continuous expression of al (Z 1, Z 2) such that: 

lim at(Z  I , Z  2 ) = 0  

lim ao(Z 1, Z2 ,a l (Z  1, Z2)) = 0 
Z2  --~. Z 1 

lim bi(Zl ,Z2,a l (Z1,Z2))  = 0 
Z2~Z 1 

The proof appears in [73]. It first states that, for a fixed value of al, 
Steers~ n is continuous w.r.t, to the topology induced by dp. This implies that 
when the final configuration Z 2 tends to the initial configuration Z 1, the 
path Steera~n(Z 1, Z 2) tends to the path Steera~n(Z I, Z1). Moreover, for any 

a l  Z, Steersin(Z, Z) tends to {Z} when al tends to zero. Combining these two 
of Steers~ n to a compact domain/C statements and restricting the application ~1 

of CS 2, one may conclude that: 

Ve > 0 ,  3A1 > 0 Val < A1, 3y(al), V ( Z I , Z  2) E Y~, 

d c s ( Z l , Z  2) < ~?(al), ~ Vte  [0,1], dcs(Zl ,S teer~n(Zl ,Z2)( t ) )  < e 

Then, by tuning al, it is a priori possible to design a steering method 
Steersi,~ based on sinusoidal inputs and verifying the topological property. It 
remains to define a constructive way to tune the parameter al. The problem is 
not easy. Indeed the general expression of parameters ao and bi are unknown. 
Then we do not dispose of a unique expression of Steersin. Nevertheless, it is 
possible to "simulate" a steering method verifying the topological property, by 

Steersi n according to the distance between the start switching between different al 
and goal configurations. The principle of the construction presented in Annex 
consists in introducing the possibility to iteratively compute subgoals and then 
a sequence of subpaths that reaches the final goal without escaping a bounded 
domain. 

12 The first coordinate of points lying on the path is zl(t) = zx + ~-(1 -coswt). 
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A flatness based steering m e t h o d  for mobi le  robots  wi th  trailers We 
have seen in Section 4.4 that  a mobile robot with two trailers (with centered 
hooking up system) is flat with the coordinates (x2, Y2) of the second trailer 
reference point P2 as linearizing outputs. Planning an admissible path for the 
system then consists in finding a sufficiently smooth planar curve 72(s) for 
P2- All the coordinates (x, y, 0, ~1, ~2) of a configuration can be geometrically 

d ~  deduced from (x2,y2,02, ~2, ~ 2). Nevertheless this steering method cannot 
verify the topological properties. Indeed, due to the conditions on ~/2 (absence of 
cusp points), going from a configuration (x2, Y2,82, . ,  . ) to some configuration 
(x2,y2 + e,02, . , • ) should necessarily contain a configuration ( . , . ,82 4- 
7r ~ , . ,  . ) .  

[74] takes advantage of the flatness property of a mobile robot with one 
trailer to design a steering method verifying the topological property. [41] gen- 
eralizes the method to a system with n trailers. Let us sketch the method for 
a mobile robot with two trailers. 

Let us consider a configuration X = (x, y, O, ~Ol, ~2) of the system. If F is an 
admissible path in the configuration space, we will denote by ~/2 the curve in R 2 
followed by P2. Among all the admissible paths containing a configuration X,  

d there exists exactly one path F such that  ~7~2a2 remains constant everywhere: 
the corresponding curve 72 is a clothoid 13. 

Let X s~ar~ and X g°at be the initial and goal configurations respectively. 
Let 72,s~r~ and 72,~oal be the associated clothoids defined on [0,1] and such 
that  Fstart(O ) -~- X start and Fgoal(1) = X g°al. Then any combination 7(t) = 
a(t)72,s~r~(t) ÷ (1 - a(t))72,goal(t ) is a C 3 path; it then corresponds to an 
admissible path for the whole system. To make this path starting at  X start 

and ending at X 9°~1, a should verify: a(0) = &(0) = &(0) = ~ (0) = &(1) = 
5(1) = K (1) = 0 and a(1) = 1 (indeed, the three first derivatives of 7 should 
be the same as those of 72,~t~rt at 0 and the same as those of 72,go~l at  1). 

At this level we get a steering method (denoted by Steer~la~ ) that  allows 
the mobile robot with its two trailers to reach any configuration from any 
other one. Nevertheless, this method does not verify the required topological 
property: indeed it cannot generate cusps and the steering method we want to 
provide should be able to do it when it is necessary. 

Let X s~ar~ be an initial configuration and 72,sta~, the corresponding 
elothoid in R 2. In [41] we prove that,  for any e > 0, if we choose a configuration 
X within a "cone" Cs~ar~,~ centered around Fs~ar~ with vertex X st~r~ (see Figure 
9), then the path Steer~la~(X st~r~, q) does not escape the ball B ( X  star~, e). 

Moreover, if X s~ar~ moves within a small open set, the clothoid ^/2,s~a~ is 
submitted to a continuous deformation: for instance a change on the coordinates 

13 If we consider only one trailer, we impose m to remain constant; in this case the 
trailer follows a circle with radius Lcota.nTh 
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(x2, y2) (respectively 82) of X st~t corresponds to a translation (respectively ro- 
tation) of the clothoid 72,st~t. Then for a small deformation, the corresponding 
path in the configuration space necessarily intersects Cst~t,e. 

Let us now consider a configuration X g°~t sufficiently close to X ~ta~t. The 
local planner Steer/t~t then works as follows: 

- If X 9°al belongs to Cuart,e, Steeryg~t (X 8tar~, X g°al) = 
S÷~r,~* { y s t a r t  ygoal~ 

-o therwise ,  we choose a point X cusp on 72,goaZ within Cstart, e and 
Steer* { X  start X cusp] SteerIlat(Xstart,x g°al) is constituted by Ilat~ , j followed 

by the arc of the clothoid 72,go~t between X c~'p and X g°~t. 

With this construction Steerflat(XStart,X g°al) is guaranteed to remain 
within the ball B ( X  s~art, ~) (Figure 9). 

M 

J 

Fig. 9. Topological property of Steer/~at. 

Figure 10 shows an example of the path generated by Steerllat. 

Figures 11 shows paths computed by Steer flat for a mobile robot with one 
traiier (the curve is the path followed by the robot). 
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robot ~ ~ ~  

first traile_..._ r °°°~I 

last trailer ~ ° ~  

~0.002 

-Q.0O6 

Fig. 10. An admissible path for a mobile robot with 2 trailers 

5.3 Approximating holonomic paths: a two step approach 

Principle Everything being in place, we may now define a first nonholonomic 
path planning scheme for small-time controllable systems. It consists in ap- 
proximating a collision-free (holonomic) path by a sequence of collision-free 
admissible ones. Applying this scheme requires three main components: 

- A geometric path planner that computes collision-free paths without taking 
into account the kinematic constraints. 

- A steering method verifying the topological property. 
- A geometric routine checking whether a given path is collision-free or not. 

The algorithm itself is then very simple: 

1. Step 1: Plan a collision-free path with the geometric path planner. If no 
such path exists, the algorithm stops: there is no solution. 

2. Step 2: Perform subdivisions on the path until all endpoints can be linked 
to their neighbors by an admissible collision-free path. 

Convergence and completeness: By Theorem 3.1, the convergence of Step 2 is 
guaranteed as soon as the steering method verifies the topological property. 
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Fig. 11. Admissible paths computed by Steer/l~t for a mobile robot with one trailer 

Then the completeness of the algorithm only depends on the completeness of 
the geometric planner that computes a first collision-free path 14. 

Geometric planner: There are no general and practical algorithm solving the 
classical "piano mover" problem with completeness property 15. Numerous tech- 
niques are available to address dedicated problems [42]. Moreover new general 
principles appeared in the past few years. Among them one should notice the 
"distributed representation approach" [5] that leads to resolution-complete al- 
gorithms (such algorithms are guaranteed to find a solution when a solution 
exists at a given resolution when modeling the search space by a grid). Another 
notion is related to the behavior of probabilistic algorithms: an algorithm is 
said to be probabilistically complete if it includes random choices and if it is 
guaranteed to find a solution in finite (possibly unbounded) time when a so- 
lution exists; such algorithms cannot terminate with a negative answer on the 
existence of a solution. Nevertheless resolution and probabilistically complete 
algorithms are well understood [8] and they lead today to fast and practical 
motion geometric planners even for highly dimensionated systems. 

Smoothing step: Step 2 provides a sequence of elementary admissible paths 
computed by the chosen steering method. The length of the sequence mainly 
depends on the clearance of the first collision-free path: the closer to the obsta- 
cles the path is, the more it should be subdivided. The sequence may be shorten 
in a third step by applying the steering method to link randomly chosen pairs 

14 An algorithm is complete if it is guaranteed to report a negative answer when a 
solution does not exist and to compute a solution otherwise. 

15 General algorithms have been provided within the framework of real algebraic ge- 
ometry [69,18]; nevertheless the performance of the existing algebraic computing 
software and the intrinsic computational complexity of the general problem do not 
allow effective implementations of these algorithms. 
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of points lying on the first solution path. Unfortunately there is today no result 
insuring the convergence of this third step to any "optimal" sequence. 

Several nonholonomic path planners have been designed in this way. Here 
is a review of the main ones. 

Application to mobi le  robo t s  (wi thout  trai ler)  The seminal ideas of the 
algorithm above have been introduced in [48]. This reference deals with car-like 
robots. When the robot is a polygon, the geometric planner is derived from the 
algorithm based on an analytical representation of the configuration space of 
a polygon moving amidst polygonal obstacles [4]. When the robot is a disk, 
the geometric planner works from the Voronoi diagram of the environment. 
In both cases, the steering method is Steeropt: it consists in computing the 
shortest length admissible paths for a car-like robot as characterized in [65]. 
Due to the completeness of the geometric planners the proposed algorithms are 
complete. Nevertheless they are delicate to implement and fragile in practice 
(indeed the basic geometric routines are sensitive to numerical computations; a 
robust implementation could be done by using software computing with rational 
numbers). 

Another version of this algorithm appears in [43] where the geometric plan- 
ner has been replaced by a distributed representation approach; the search 
consists in exploring the discretized configuration space with an A* algorithm 
heuristically guided by a potential function. It is then resolution-complete, less 
fragile than the original version, and sufficiently efficient to be integrated on 
real robots. Figure 12 shows an example of a solution from a software developed 
for the mobile robots Hilare at LAAS. 

A clever idea appears in [55]. It tends to minimize the length of the short- 
est path sequence approximating the geometric path. It consists in computing 
a skeleton gathering the set of points with maximum clearance with respect 
to the obstacles. The key point is that the clearance is measured with the 
metric induced by the length of the shortest admissible paths (the so-called 
Reeds&Shepp metric). Then the geometric planner works by retracting the ini- 
tial and goal configurations on the skeleton and by exploring it. Even if one 
cannot conclude to any optimality of the solution, the sequence of shortest paths 
provided the approximation step is shorter than a sequence approximating a 
path that would lie closer to the obstacles. A critical point of the approach is 
the computation of the metric. The distance between two configurations being 
inwriant by translation and rotation, the authors use a lookup table storing 
all the distance value over a discretized compact region around the origin. This 
table is computed off-line once and may be used to compute the skeleton of 
various environments. 
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r 

Fig. 12. A planned path for a car-like robot: the workspace is modeled by a grid of 
250 x 150 pixels; the total running of the algorithm is 2 seconds on an Indy Silicon 
Graphics. 

Recent results derived from the synthesis of the shortest paths for a car- 
like robot (see above and Sou~res-Boissonnat's Chapter) provide an analyti- 
cal way to compute the shortest path distance to a polygonal obstacle for a 
point car-like robot [91]. This means that  all the distance computations in the 
Reeds&Shepp metric can be done on-line. This property has been exploited 
to include dynamic obstacle avoidance when the robot executes its trajectory. 
Figure 13 from [38] shows an example of on-line updating of an admissible path 
when an unexpected obstacle (the black box) occurs during the execution of 
the motion. The various balls covering the path in the figure are the projection 
onto R 2 of the maximal collision-free Reeds&Shepp balls covering the path in 
the configuration space. Up to now, the distance function are known for a point 
robot; its extension to a polygonal robot has to be done. 

T h e  case of  mobi le  r obo t s  w i t h  t ra i le rs  The case of mobile robots with 
n trailers has been solved by using RPP as geometric planner and the three 
steering methods Steeropt, Steersin (for n = 1 and n = 2) and Steerftat (for 
n = 1) [71]. 

To compute a collision-free path we use the algorithm RPP, the random 
path planner presented in [5]. We consider n + 1 control points: two are located 
on the robot and one is located on each trailer. The start configuration and 
the goal being given, a potential field is computed for each control point in the 
workspacel~; the n + 1 potential fields are then combined to create a potential 
field in the configuration space; the search consists in following the gradient of 

~6 The potential field are computed from a bitmap representation of the workspace. 
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Fig. 13. A planned path is updated in real-time when an unexpected moving obstacle 
O c c u r s .  

the potential; when it stops at some local minimum, the algorithm generates 
a random path and follows again the gradient until the goal is reached. The 
algorithm is probabilistically complete. 

From the various experiments reported in [71], it appears that the the algo- 
rithm based on Steers~n is much faster than the algorithm based on Steerop~ (in 
terms of computation time) for a mobile robot with one or two trailers. For a 
mobile robot with one trailer the computation time are roughly the same when 
using Steerilat and Steers/n; nevertheless the smoothness of the final path is 
better with Steer/la~ than with Steersin. 

In the examples on Figures 14 and 15 the workspace is modeled by a grid 
of 600 x 470 pixels. 

5 . 4  P r o b a b i l i s t i c  a p p r o a c h e s  

Svestka-Overmars' chapter reviews recent results provided by applying a new 
general paradigm in motion planning. This is a probabilistic approach consist- 
ing in two phases: 

- In a first learning phase an incremental roadmap is built by randomly 
choosing collision-free configurations and by linking them with admissible 
paths. Admissible paths are computed with a (not necessarily complete) 
local path planner. 

- In the query phase, paths are to be found between some given start and goal 
configurations. The local path planner is used to connect the configurations 
to some nodes of the roadmap. If this succeeds, a graph search is performed. 

As for the approach using a holonomic path approximation, the algorithm 
includes a last step consisting in smoothing the computed solution. 
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Fig.  14. Solutions using Steersi~: the total computation time is 30 seconds (left) and 
114 seconds (right) on a Sun-Sparc-20. 

Fig.  15. Solutions using Steerfzat: the total computation time is 21 seconds (left) and 
6 seconds (right) on a Sun-Sparc-20. 
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Such a scheme applies for nonholonomic systems as soon as the local path 
planner is a steering method verifying the topological property. The algorithm 
is probabilistically complete. It has been applied to mobile robots with trailers 
on the basis of Steersln [70]. An analysis of the approach together with practical 
results are overviewed in Svestka-Overmars' chapter. 

5.5 An  approach  using opt imiza t ion  techniques  

At the same time, a slightly different approach has been proposed by Bessi~re 
et al [12]. Its principle consists in exploring the free space from the initial 
configuration along admissible paths by spreading landmarks, each being as 
far as possible from one another. In parallel, a local path planner checks if the 
target may be reached from each new landmark. Both phases are solved by using 
optimisation techniques (e.g., genetic algorithms). This general paradigm has 
been applied to nonholonomic mobile robots in [3] by using the Steersin as local 
path planner. Because Steersin verifies the topological property the algorithm 
may be proved to be complete as soon as the convergence the optimization 
routines is guaranteed. 

5.6 A multi-level approach 

It remains that the computational cost of the nonholonomic path planners in- 
creases with the dimension of the systems. Facing the intrinsic complexity of 
the problem for practical applications requires a good understanding of the 
kinematic structures of the systems as well as a good experience in evaluat- 
ing the performance of a given planning scheme. [70] presents a multi-level 
nonholonomic path planner. 

Let us illustrate the idea from a car-like robot pulling two trailers: from 
the collision avoidance point of view the system is of dimension five (three 
parameters for the car and one parameter for each trailer); from the control 
point of view the direction of the front wheels of the car is taken into account: 
the system is then six-dimensionated. 

The underlying idea consists in introducing the nonholonomic constraints of 
the bodies iteratively. In a first step one plans a "semi-holonomic" path feasible 
by the car, but not necessarily by the trailers (i.e. at this step the trailers are 
assumed to be holonomic). Then the nonholonomic constraint due to the first 
trailer is introduced: this step consists in searching a path feasible by both the 
car and the first trailer. Finally, all the kinematic constraints are taken into 
account. 

Each step should benefit from the path computed by the previous one, via 
a specific nonholonomic motion planner. In [70], the first semi-holonomic path 
is computed with a probabilistic approach that considers only the kinematic 
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constraints of the car. Then a probabilistic search using Steersin is applied 
within a tube surrounding the path; it provides a second semi-holonomic path 
that takes into account the first three kinematic constraints. Finally the second 
path is approximated via Steersin accounting for all the constraints. The global 
algorithm is then based on a combination of the holonomic path approximation 
scheme and the probabilistic one. 

Three examples of solutions provided by the algorithm appear in Fig- 
ure 16: the left column shows the first "semi-holonomic" paths (the two trailers 
"slide"); the right column shows the corresponding final paths. The total time 
to compute the solutions ranges from less than one minute for the first example 
to around three minutes for the third one, on a 136 MIPS workstation. 

5.7 On the computational complexity of nonholonomic path 
planning 

Evaluating the computational complexity of the approaches introduced above 
is a difficult task. More generally, the complexity of the nonholonomic path 
planning problem is an open problem. 

For small-time controllable systems, we have seen that the existence of 
a solution is characterized by the existence of any collision-free path for the 
associated holonomic system. The complexity of deciding whether a solution 
exists is then equivalent to the complexity of the classical piano mover problem 
(see [42] for an overview). The complexity for other systems (e.g., with drift) 
is an open problem. 

In this section we give an account of results providing lower bounds on the 
complexity of nonholonomic paths for small-time controllable mobile robots. 
By reference to the approximation scheme, we may define the complexity of 
a collision-free nonholonomic path by the length of the sequence of admissi- 
ble paths approximating a holonomic one. This definition depends a priori on 
the steering method used to approximate a holonomic path. A more intrinsic 
definition consists in considering the approximation scheme that uses $teero~. 
Indeed the cost of the optimal paths induces a (nonholonomic) metric in the 
configuration space. A possible definition of the complexity of a path is the 
minimum number of balls computed with the nonholonomic metric and cover- 
ing the path. For instance the complexity of the paths appearing in Figure 13 is 
7 in both cases. This definition allows to link the complexity of nonholonomic 
path planning with the clearance of the free-space. 
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-% 

Fig. 16. Examples of solutions computed by the multi-level approach (the left column 
shows the first "semi-holonomic" paths) 
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Let us consider the classical parking task problem illustrated in Figure 17 
for a car-like robot. The solutions have been computed by the algorithm pre- 
sented in Section 5.3. The steering method to approximate the holonomic path 
is Steeropt which computes Reeds&Shepp's shortest paths. The length of the 
shortest paths induces a metric dRs in configuration space. The shape of the 
balls computed with this metric appears in Figure 1 (top). Let us consider a 
configuration X = (x, y, 8) near the origin O. It has been proved in [48] that: 

~(lxl + + 181) < ~Rs(O,Z) < 12(1xl + + I81) lyt ½ 

As a consequence, the number of balls required to cover the "corridor" where 
the car has to be parked varies as e -2 with e being the width of the corridor. 
Moreover each elementary shortest path providing a motion in the direction of 
the wheel axis requires exactly two cusps. Then the number of maneuvers to 
park a car is in ~(e-2) .  

m 

Fig. 17. The number of maneuvers varies as the inverse of the square of the free 
space. 

Such a reasoning may be generalized to small-time controllable systems. 
Let us consider a control system defined by a set of vector fields; let us assume 
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that the tangent space at every point can be spanned by a finite family of these 
vector fields together with their Lie brackets (i.e., the system verifies the LARC 
at every point). The minimal length of the Lie bracket required to span the 
tangent space at a point is said to be the degree of nonholonomy of the system 
at this point. 

The cost of the optimal paths induces a metric in the configuration space of 
the system. A ball of radius r corresponding to this metric is the set of all the 
points in the configuration space reachable by a path of cost lesser than r. The 
balls grow faster in the directions given by the vector fields directly controlled 
than in the directions defined by the Lie brackets of these vector fields. A 
powerful result from sub-Riemannian geometry shows that the growing law 
depends on the degree of bracketing (see [9,29,92,56] or Bella'iche-Jean-Risler's 
chapter): when r is small enough, the ball grows as r in the directions directly 
controlled; it grows as r d in the directions spanned by Lie brackets of length d. 

E 

, ,S  

C2 
Fig. 18. The complexity of admissible paths for a mobile robot with n trailers are 
respectively f2(e -~-s) (case on the left side) and J'-~(e -Fib(rid-3)) (case Oil the right 
side). 

Figure 18 illustrates this complexity modeling on a mobile robot with two 
trailers. We have seen in Section 2.3 that the degree of nonholonomy of this 
system is 4 when ~ol ¢ ~ (regular points) and 5 everywhere else. This means 
that the complexity of the parking task is i n / 2 ( C  4) while the complexity of 
the exotic example on the right side (the mobile robot can not escape from the 
room . . .  ) is in JT(e-5). These worst case examples may be generalized to an 
arbitrary number of trailers: the degree of nonholonomy for a mobile robot with 
n trailers has been proved to be n + 2 at regular points and Fib(n -t- 3) when all 
the relative angles of the trailers are ~ [54,36] (Fib(n+3) is the (n+3)th number 
of the famous sequence of Fibonacci defined by Fib(i + 2) = Fib(i + 1) + Fib(i), 
i.e., 1, 1, 2, 3, 5, 8, 13 . . .  ). This means that the complexity of the problems 
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appearing in Figure 18 and generalized to n trailers are respectively ~(e -n-2) 
(simply exponential in n) and/2(e -Fib('~+3)) (doubly exponential in n). 

6 O t h e r  a p p r o a c h e s ,  o t h e r  s y s t e m s  

This section overviews other works related to nonholonomic path planning 
for mobile robots. They deal either with direct approaches based on dynamic 
programming techniques, or with specific systems. 

Combining discrete configuration space and piece-urise constant inputs: Bar- 
raquand and Latombe propose in [6,7] a direct approach to nonholonomic path 
planning. It applies to car-like robots with trailers. The model of the car cor- 
responds to the control system (4) introduced in Section 2.2. Four input types 
are chosen in {-1,  1} x {~min, ~max}; they correspond to backward or forward 
motions with an extremal steering angle. The admissible paths are generated 
by a sequence of these constant inputs, each of them being applied over a fixed 
interval of time fit. Starting from the initial configuration the search generates 
a tree: the successors of a given configuration X are obtained by setting the 
input to one of the four values and integrating the differential system over St. 
The configuration space is discretized into an array of cells of equal size (i.e. 
hyperparallelepipeds). A successor X ~ of a configuration X is inserted in the 
search tree if and only if the computed path from X to X ~ is collision-free and 
X ~ does not belong to a cell containing an already generated configuration. The 
algorithm stops when it generates a configuration belonging to the same cell 
as the goal (i.e., it does not necessarily reach the goal exactly). 

The algorithm is proved to be asymptotically complete w.r.t, to both 5t and 
the size of the cells. As a brute force method, it remains quite time-consuming 
in practice. Its main interest is that the search is based on Dijkstra's algorithm 
which allows to take into account optimality criteria such that the path length 
or the number of reversals. Asymptotical optimality to generate the minimum 
of reversals is proved for the car-like robot alone. 

Progressive constraints: In [23] Ferbach combines the two step approach pre- 
sented in Section 5.3 and a so-called variational approach. It applies for small- 
time controllable system. First, a collision-free path is generated. Then the 
nonholonomic constraints are introduced progressively. At each iteration, a 
path is generated from the previous one to satisfy more severe nonholonomic 
constraints. The search explores the neighborhood of the current path accord- 
ing to a dynamic programming procedure. The progressiveness of the search 
is obtained by taking random tangent vectors chosen in neighborhoods of the 
admissible ones and by making these neighborhoods decreasing to the set of 
admissible tangent vectors. 
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The method is neither complete nor asymptotically complete. Completeness 
would require back-tracking that would be expensive. Nevertheless simulations 
have been performed with success for a mobile robot with three trailers and 
for two tractor-trailer robots sharing the same environment. 

Car-like robots moving forward: After the pioneering work of Dubins who char- 
acterized the shortest paths for a particle moving with bounded curvature [22], 
attempts have been done to attack the path planning for car-like robots moving 
only forward. Except some algorithms that do not verify any general complete- 
ness properties (e.g., [45,89,94]), they are only few results addressing the gen- 
eral problem. All of them assume that the robot is reduced to a point. In [27], 
Fortune and Wilfong propose an algorithm running in exponential time and 
space to decide if a path exists; the algorithm does not generate the solution. 
Jacobs and Canny's algorithm [34] is a provably good approximation algorithm 
that generates a sequence of elementary feasible paths linking configurations 
in contact with the obstacles. According to the resolution of a contact space 
discretization, the algorithm is proved to compute a path which is as close as 
possible to the minimal length path. More recent results solve the problem ex- 
actly when the obstacles are bounded by curves corresponding to admissible 
paths (i.e., the so-called moderate obstacles) [2,13]. 

Nonholonomic path planning for Dubins' car then remains a difficult and 
open problem 17. 

Multiple mobile robots: Nonholonomic path planning for the coordination of 
multiple mobiles robots sharing the same environment has been addressed along 
two main axis: centralized and decentralized approaches is. 

In the centralized approaches the search is performed within the Cartesian 
product of the configuration spaces of all the robots. While the problem is 
PSPACE-complete [32], recent results by Svestka and Overmars show that it 
is possible to design planners which are efficient in practice (until five mobile 
robots) while being probabilistically complete [85]: the underlying idea of the 
algorithm is to compute a probabilistic roadmap constituted by elementary 
(nonholonomic) paths admissible for all the robots considered separately; then 
the coordination of the robots is performed by exploring the Cartesian product 
of the roadmaps. The more dense is the initial roadmap, the higher is the 
probability to find a solution in very cluttered environments. 

In [1], Alami reports experiments involving ten mobile robots on the basis of 
a fully decentralized approach: each robot builds and executes its own plan by 

lr Notice that Barraquand and Latombe's algorithm [6] may be applied to provide an 
approximated solution of the problem. 

is We refer the reader to Svestka-Overmars' chapter for a more detailed overview on 
this topic. 
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merging it into a set of already coordinated plans involving other robots. In such 
a context, planning is performed in parallel with plan execution. At any time, 
robots exchange information about their current state and their current paths. 
Geometric computations provide the required synchronization along the paths. 
If the approach is not complete (as a decentralized schemes), it is sufficiently 
well grounded to detect deadlocks. Such deadlocks usually involve only few 
robots among the fleet; then they may be overcome by applying a centralized 
approach locally. 

7 C o n c l u s i o n s  

The algorithmic tools presented in this chapter show that the research in motion 
planning for mobile robots reaches today a level of maturity that allows their 
transfer on real platforms facing difficult motion tasks. 

Numerous challenging questions remain open at a formal level. First of all, 
there is no nonholonomic path planner working for any small-time controllable 
system. The case of the mobile robot with trailers shown in Figure 2 (right) is 
the simplest canonical example which can conduce new developments. A second 
issue is path planning for controllable and not small-time controllable systems; 
Dubins' car appears as another canonical example illustrating the difficulty of 
the research on nonhonomic systems. Sou~res-Boissonnat's chapter emphasizes 
on recent results dealing with the computation of optimal controls for car-like 
robots; it appears that extending these tools to simple systems like two-driving 
wheel mobile robots is today out of reach. 

Perhaps the most exciting issues come from practical applications. The mo- 
tion of the robot should be performed in the physical world. The gap between 
the world modeling and the real world is critical. Usually, path planning as- 
sumes a two-steps approach consisting in planning a path and then executing 
it via feedback control. This assumption holds under the condition that the 
geometric model of the environment is accurate and that the robot's Cartesian 
coordinates are directly and exactly measured. Designing a control law that 
executes a planed path defined in a robot centered frame may be sufficient in 
manufacturing applications; it is not when dealing with applications such as 
mobile robot outdoor navigation for instance. In practice, the geometric model 
of the world and the localisation of the robot should be often performed through 
the use of embarked extereoceptive sensors (ultrasonic proximeters, infrared or 
laser range finder, laser or video cameras . . .  ). 

Uncertainties and sensor-based motions are certainly the two main key- 
words to be considered to reach the ultimate objectives of the motion plan- 
ning. Addressing these issues requires to revisit the motion planning problem 
statement: the problem is to plan not a robot-centered path but a sequence of 
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sensor-based motions that guaranty the convergence to the goal. The solution is 
no more given by a simple search in the collision-free configuration space. This 
way is explored in manufacturing applications for several years; it is difficult in 
mobile robotics where nonholonomy adds another difficulty degree. 
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Annex: Sinusoidal inputs and obstacle avoidance 
(comments on the tuning of al)  

As we have seen in Section 5.2, we do not dispose of a unique expression 
of Steersin verifying the topological property. In this annex we show that  it is 
possible to switch between " al different Steersi n to integrate such a steering method 
within a general nonholonomic path planning scheme. 

Let us consider the two input chained form system (8) introduced in Sec- 
tion 4.3: 

{ '~'1 = Vl 

~2 v2 
Z3 Z2 .Vl 

i : 
Zn Zn--1 .Vl 

a l  Steersi  n is defined by: 

vl ( t )  = a0 + al sin wt 
v2(t) = b0 + bl coswt + b2 cos 2wt + . . .  bn-2 cos(n - 2)wt 

We have proved that  for a given al small enough, the maximal gap between 
Z start~ a n d  t h e  al start goal path Steers~ n (Z , Z ) decreases when Z g°al tends to Z start. 
But this gap do not tends to zero. In other words, for a fixed value of al ,  
trying to reach closer configurations on the geometric path decreases the risk 
of collision but does not eliminate it. Moreover to tend this gap to zero we have 
also to decrease Jail. But these two decreasings are not independent. Indeed, 

Steersi n and so we by changing the value of al  we change the steering method al 
change the family of the paths. For a given couple of extremal configurations, 
a decreasing of al increases in most of the cases the extremal gap between 
the start point and the path. In other words, in order to reduce the risk of 
collision we have to choose close goal configurations but we also have to reduce 
al.  Which in turn increase again the clearance between the path and the start 
point. So we have again to bring the goal closer . . .  If the decreasing of lall is 
too fast with respect to the one of the distance between the start configuration 
and the current goal, the approximation algorithm will not converge. 

A strategy for tuning these two decreasings can be integrated in the approx- 
imation algorithm (Section 5.3) while respecting its completeness. The follow- 
ing approach has been implemented; it is described with details in [72,71]. It is 
based on a lemma giving an account of the distance between a path generated 
by al o by ~i(t). Steers~ n and its starting point Z °. Let us denote z~(t) - z~ 
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a l  L e m m a  7.1. For any path computed by Steersin, for any t E [0,T] : 

I(~l(t)l ~_ laoTI + ]alTI = A 1 
152(t)l <- F, [b~Tt = A2 (12) 
[Sk+l(t) I < [z~[A1 q_ . . . .~  [Zu[AI0 k-~ + ([zO[ + A~)A k-1 withk > 2 

Proof :  By definition ~1 (t) = ao + al sinwt. Then: 

I~l(t)l <_ I$1(r)ldr <_ (1~ol + la~l) dr < laoTt + la~TI 

By setting A1 = [aoT I + [alT] we have the intermediate result that for all t, 
f~ I$1(T)ld~- <_ Ai. The same reasoning holds to prove that 152(t)1 < ~ IbiTI. 

Now, for any k > 2: 

An upper bound Ak on I~k(t)l being given, we get: 

Then 
z~k+l <_ (z~k + Iz°l)z~l 

And by recurrence: 

[~k+l(t)l _< tz°lz~ + . . .  + Iz°lal  k-2 + (Iz°l + A2)Alk-1 1-1 

Given a start configuration Z s~art, we first fix the value of al and two other 
parameters A'~ in and A~ in to some arbitrary values (see [71] for details on 
initialization). Then we choose a goal configuration on the straight line segment 
[Z start, Z g°~l] (or on any collision-free path linking Z start and zg°al]) closer 
and closer to Z start. This operation decreases the parameters a0, b0 , . . . ,  bn so 
it decreases A~ and A2 (the detailed proof of this statement appears in [71,74]). 
We continue to bring the goal closer to the initial configuration until a collision- 
free path is found or until A 1 _< A~ in and A2 < A'~irL In the second case, we 
substitute al, A'~ in and A ~  in respectively by k.al,  k.A'~ in and k . A ~  i'~, with 
k < 1 and we start the above operations again. The new starting path may or 
may not go further away from Z start than the previous one but in any case, 
from equations (12) we have the guarantee that following this strategy, the 
computed path will lie closer and closer to Z 8tart. We have then the guarantee 
of finding a collision-free path. 
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Nonholonomic motion planning is best understood with some knowledge of 
the underlying geometry. In this chapter, we first introduce in Section 1 the 
basic notions of the geometry associated to control systems without drift. In 
the following sections, we present a detailed study of an example, the car with 
n trailers, then some general results on polynomial systems, which can be used 
to bound the complexity of the decision problem and of the motion planning 
for these systems. 

1 Symmetr ic  control  systems: an introduct ion 

1.1 Control systems and motion planning 

Regardless of regularity hypotheses, control systems may be introduced in two 
ways. By ascribing some condition 

where V~ is, for every x, some subset of the tangent space %M, or in a para- 
metric way, as 

= f ( x ,  u) 

where, for every x, the map u ~ f(x,u) has V~ as its image. 
In mechanics or robotics, conditions of the first kind occur as linear con- 

straints on the velocities, such as rolling constraints, as well in free movement - -  
the classical object of study in mechanics, as in the case of systems propulsed 
by motors. 

Equations of the second kind may represent the action of "actuators" used 
to move the state of the system in the configuration space. One can show that  
if the action of two actuators are represented by ~ = f l  (x) and ~ = f2(x),  
we may also consider the action of any convex combination of vector fields f l  
and f2, and add it to the possible actions without changing in an essential way 
the accessible set A(x) or A(x, T). For this reason, one may suppose Vx to be 
convex, or equivalently, u ~-~ ] (x ,  u) to be affine, of the form ( u l , . . . ,  urn) 



56 A. Bella'iche, F. Jean and a.-J. Risler 

Xo(x) + ulXl(x) +""  + umX,~(x), and defined on some convex subset Ks of 
R 'n, for some m. This is responsible for the form 

-~ Xo(x) ' -  ~- ? ~ l X l ( X )  2 t - . . -  7 t- u r n X m ( x  ) 

under which control systems are often encountered in the literature. (It makes 
no harm to suppose m and Kx to be independent of x, and to suppose that  the 
origin is an interior point of K = Kx.) The vector field Xo is called the drift. 

Now, we will use only systems without drift, that  is with Xo = 0, for the 
study of the problem of motion planning for robots. We may content with such 
systems as long as no dynamics is involved. That  is, if the state of the system 
represents its position, and if we control directly its velocity. As opposed to 
a system whose state would represent position and velocities, and where the 
control is exerted on accelerations. Consider the simplest possible of such a 
system: a mobile point on a line, submitted to the control equation 

~=u.  

Introducing the velocity y = 2, we see that  this system is equivalent to a system 
governed by the equation 

2 = y  

~l=u 

which can be written as 

that  is: with a non-zero drift X0. 
For some applications, our study will be valid in the case of slow motion only, 

and resemble to the thermodynamics of equilibriums, where all transformation 
are supposed to be infinitely slow. 

1.2 Definitions. Basic problems 

To sum up, we shall be intereste'd in control systems of the form 

m 

= ~ uiXi(x), x E M, (Z) 
i=l 

where the configuration space M of the system is a C °O manifold, X 1 , . . . ,  Xm 
are Coo vector fields on M, and the control function u(t) = ( u l ( t ) , . . . ,  ut(t)) 
takes values in a fixed compact convex K of R TM, with nonempty interior, and 
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symmetric with respect to the origin. Such systems are called symmetric (or 
driftless). One also says that  controls enter linearly in (Z). 

For any choice of u as a measurable function defined on some interval [0, T], 
with value in K ,  equation (Z) becomes a differential equation 

ic = ~ ui(t)X~(x). (1) 
i=1 

Given any point xo on M, we can integrate (1), taking 

x(0)=x0 (2) 

as an initial condition. For the sake of simplicity, we shall suppose that  this 
equation has a well-defined solution on [0, T] for all choices of u (this is guaran- 
teed if M is compact or if M = R n, and vector fields X~ are bounded). Call this 
solution x~. One says that  xu is the path with initial point x0 and controlled 
by u. We shall mainly be interested in its final value x~(T). Classically, points 
in M are called the states of the system. One says for example that  the system 
is steered from state Xo to state xu(T) by means of the control function u. 

One also says that  xu (T) is accessible, or reachable, in time T from Xo. We 
shall denote by A(x, T) the set of points of M accessible from x in time T (or 
in time < T, it is the same thing for symmetric systems), and by A(x) the set 
of points accessible from x, that  is 

A(x) = U A(x,T). 
T>0  

Basic problems of Control Theory are: 

- determine the accessible set A(x); 
- given a point y, accessible from x, find control functions steering the system 

from x to y; 
- do the preceding in minimal time; 
- more generally, find control function u ensuring any given property of xu (t), 

the path controlled by u. 

Given xo, the control function u(t) is considered as the input of the system, 
and xu(t) as the output. In a more general setting, the output is only some 
function h(x) of the state x, h being called the observation: the state is only 
partially known. Here we will take as observation h = Id, and call indifferently 
x the state or the output. 

We can now state another basic problem: 
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- can one find a map k : M - ~ / (  such that  the differential equation 

= f (x ,  k(x)) (3) 

has a determined behaviour, for example, has a given point xo as an at- 
t ractor? 

Since in this problem, the output is reused as an input, such a map k is called 
a feedback control law, or a closed-loop control. If (3) has xo as an attractor,  
one says that  k is a stabilizing feedback at x0. 

1.3 T h e  c o n t r o l  distance 

Return to the control system (Z).  For x, y E M, define d(x, y) as the infimum 
of times T such that  y is accessible from x in time T, so d(x, y) = +co if y is not 
accessible from x. It  is immediate to prove that  d(x, y) is a distance [distance 
function] on M. Of course, this is the case only because we supposed that  K 
is symmetric with respect to the origin in R m. 

Distance d will be called the control distance. 
We can define d in a different way. First, observe that  since K is convex, 

symmetric, with nonempty interior, we can associate to it a norm I1' IlK on 
R TM, such that  K is the unit ball llu[[g ___ 1. Now, for a controlled path c = x~ : 
[a, b] ~ M obtained by means of a control function u e Ll([a, b], Rm), we set 

length(e) = IJu(t) Hg dt. (4) 

If c carl be obtained in such a way from several different u's, we take the infimum 
of the corresponding integrals. Then, d(x, y) is the infimum of the lengths of 
controlled paths joining x to y (and, of course, this is intended in the definition 
of an infimum, +co if no such path exists). 

A slightly variant construction may be useful. ~5:ansfer the function I1" IlK 
to T~M, by setting 

IlVllK = inf{ II(ul, . . . , Um)NK I V ---- Ul X I  (X) ~" " " + u m X m ( x )  }. 

We get in this way a function on T x M  which is a norm on span(Xl (X) , . . . ,  
Xm(x))  and takes the value +co for vector not in this subspace. We can now 
define the length of any absolutely continuous path e : [a, b] -¢ M as 

b 

length(c) = ]a lla(t)ilK dt 

and the distance d(x, y) as the infimum of length of paths joining x and y. 
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Note that distances corresponding to different K,  say K1 and/(2, are equiv- 
alent: there exists some positive constants A and B such that 

Adl (x, y) <_ d2 (x, y) < Bdl (x, y). 

The most convenient version of the control distance is obtained by taking 
for K the unit ball of R m, which gives 

2 i/2 
Ilull = (u~ + - . .  + Urn) • 

In this case, the distance d is called the sub-Riemannian distance attached 
to the system of vector fields X1, . . . ,  Xm. As a justification for this name, 
observe that, locally, any Riemannian distance can be recovered in such a way 
by taking m = n, and as Xl (x) , . . . ,  Xn(x) an orthonormal basis, depending 
on x, of the tangent space TxM. A more general, more abstract, definition of 
sub-Riemannian metrics can be given, but we shall not use it in this book. 

Now, observe that d(x, y) < oo if and only if x and y are reachable from 
one another, that A(x, T) is nothing else that the ball of center x and radius 
T (for d), and that controlled paths joining x to y in minimal time are simply 
minimizing geodesics. 

Many problems of control theory, or path planning, get in this way a geo- 
metric interpretation. For another example, one could think to obtain a feed- 
back law k(x) stabilizing the system at x = Xo by choosing k so as to ensure 
](x,k(x)) to be the gradient of d(x, xo). Unfortunately, this does not work, 
even if we take the good version of the gradient, i.e., the sub-Riemannian one: 

g r a d . f  = + . . .  + (x .f)xm. 

and take k(x) = (Xl.f , . . .  ,Xmf)  for that purpose. But studying the reasons 
of this failure is very instructive. Such a geometric interpretation, using the 
sub-Riemaniann distance, really brings a new insight in theory, and it will in 
several occasions be very useful to us. 

1.4 Accessibility. The  theorems  of  Chow and Sussmann  

We shall deduce-the classical theorem of Chow (Chow [7], Rashevskii [28]) from 
a more precise result by Sussmann. Sussmann's theorem will be proved using 
L 1 controls. However, it can be shown that the results obtained are, to a great 
extend, independent of the class of control used (see Bella'iche [2]). 

Consider a symmetric control system, as described above, 

m 

= E u ' X i ( x ) '  x E M ,  u E K .  (Z) 
i = 1  
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Recall the configuration space M is a C ~ manifold, X1, . . . ,  Xm are C ~ vector 
fields on M, and K, the control set, or parameter set, is a fixed compact convex 
of R m, with nonempty interior, symmetric with respect to the origin. 

In all this section, we fix a point x0 E M, the initial point, and a positive 
time T. Set 

nT = L 1 ([0, T], am).  

We shall call this space the space o] controls. It may be considered as a normed 
space by setting 

// Ilull = Ilu(t)llK dt. 

Given u E 7/T, we consider the differential equation 

{ ~ = ~i~=1 ui(t)Xi(x), 0 < t < T 
x(0)  = x0 (5) 

Under suitable hypotheses, the differential equation (5) has a well defined so- 
lution x~(t). We will denote by 

Endxo,T : 7/T -+ M 

the mapping wich maps u to x~(T). We will call End~o,T, or End for short, the 
end-point map. 

Now, the accessible set A(xo) (the set of points accessible from Xo for the 
system ~ ,  regardless of time) is exactly the image of Endxo,T. Indeed, every 
controlled path c : [0, T'] -~ M, defined by the control u : [0, T t] ~ M may be 
reparametrized by [0, T]. Conversely, if u E 7/, and L = length(x~), the control 
function 

u(¢(t)) 0 < t < L, v( t )  = 

where ¢ is defined as a right inverse to the mapping 

// s ~+ []U(T)llK dT 

from [0, T] to [0, L] takes its values in K, and defines the same geometric path 
as u. 

T h e o r e m  1.1 (Sussmann  [36], Stefan [35]). The set A(xo) of points ac- 
cessible from a given point Xo in M is an immersed submanifold. 

We shall prove this theorem using arguments from differential calculus in 
Banach spaces, taking advantage from the fact that the end-point map is a 
differentiable mapping from 7i to M, a finite dimensional manifold. 
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Recall the rank of a differentiable mapping at a given point is by definition 
the rank of its differential at that point. The theorem of the constant rank 
asserts that the image of a differential map with constant rank is an immersed 
submanifold (for more details about this part of the proof, see Bella'iche [2]). 

Defini t ion.  Let p the maximal rank of the end-point map Endz0,T : 7-/T --+ M. 
We say that a control function u E "]'IT is normal if the rank of End~o,T at u 
is equal to p. We shall say that the path xu defined by u is a normal path. 
Otherwise, u is said to be an abnormal control, and Xu an abnormal path. 
A point which can be joined to xo by a normal path is said to be normally 
accessible from Xo. 

L e m m a  1.2. Every point accessible from Xo is normally accessible from xo. 

Proof. Let y be a point accessible from x0, and let u E 7-/T a control steering 
x0 to y. Choose a normal control z E 7/T, steering x0 to some point z. Such 
a control exists by definition. We claim that the control function w E ~'/3T 
defined by 

fv( t )  if0 < t < T 
[ 

w(t) = ~ v(2T - t) i f T < t < 2 T  

( u ( t - 2 T )  i f 2 T < t < 3 T  

is normal and steers x0 to y. 
The second part of our assertion is evident: the path xw steers x0, first to 

z, then back to x0, then to y. Now, the image of DEndxo,3T consists of the 
infinitesimal variations ~xw(3T) obtained from infinitesimal variations 6w of 
w. We can consider special variations of w, namely variations of the first part 
of w only, leaving the two other parts unchanged. In other words, we consider 
tile control functions 

f v(t) + ~v(t) i f 0 < t < T  

w(t) + ~w(t) = ~ v(2T - t) if T < t < 2T 
| 

( u ( t  - 2T) if 2T < t < 3T 

Since v is a normal control, these variations yield infinitesimal variations 
of Jx~(T) = x,~+~(T) - xw(T) which form a subspace of dimension p 
at that point. Now, the corresponding variations of xw(3T) are obtained 
from those of xw (T) by applying the flow of the time-dependent vector field 
~ l< i<m wi(t)Xi(x) between time T and time 3T. Since this flow is a diffeo- 
mor'pl~ism of M, these variations of x,v(3T) form a subspace of dimension p of 
the tangent space TyM. The space formed by variations of the xw(3T) caused 
by unrestricted variations of the control w has thus dimension > p, an so has 
dimension p. This proves that w is normal. 

Of course, the fact that w is in ~f~3T instead of being in "~T is harmless. • 
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Proof of Sussmann's theorem. The normal controls form an open subset N~o,T 
of 74T. From Theorem 1.2, the accessible set A(xo) is the image of N~o,T by 
a constant rank map. By using the Theorem of constant rank, the proof is 
done. m 

T h e o r e m  1.3 (Chow [7], Rashevski i  [28]). If M is connected (for its orig- 
inal topology), and if the vector fields X1,. . . ,  Xm and their iterated brackets 
[Xi, Xj], [[Zi, Xj], Xk], etc. span the tangent space TxM at every point of M, 
then any two points of M are accessible from one another. 

Proof. Since the relation y E A(x) is clearly an equivalence relation, we can 
speak of accessibility components. Since 

y E A(x) ¢=~ d(x, y) < c~, 

the set A(x) is the union of open balls B(x, R) (for d), so it is itself an open 
set. Whence it results that the accessibility components are also the connected 
component of M for the topology defined by d. 

It is clear that the accessibility components of M axe stable under the flow 
exp tX~ of vector field Xi (i = 1, . . . ,  m). Therefore, the vector fields X1, . . . ,  Xm 
are, at any point, tangent to the accessibility component through that point 
(see [2] for details). And so are their brackets [Xi, Xj], their iterated brackets 
[[X~, Xj], Xk], etc. 

If the condition on the brackets is fulfilled, then 

T~A(x) = T~M 

at every point x, as the preceding discussion shows. In that case, the acces- 
sibility components are open. Since M is connected, there can be only one 
accessibility component. [] 

Definit ion.  The following condition 

(C) The vector fields X1, . . . ,Xm and their iterated brackets [Xi, Xj], 
[[Xi, Xj], Xk], etc. span the tangent space TxM at every point of M, 

is called Chow's Condition. 

When the Chow's Condition holds, one says that system (Z) is controllable. 
The reciprocal of Chow's theorem, that is, if (Z:) is controllable, the Xi's and 
their iterated brackets span the tangent space at every point of M, is true if 
M and the vector fields are analytic, and false in the C ¢~ case (see Sussmann 
[36]). 

Chow's Condition is also known under the name of Lie Algebra Rank Con- 
dition (LARC) since it states that the rank at every point x of the Lie algebra 
generated by the Xi's is full (self-evident definition). In the context of PDE, 
it is known under the name of HSrmander's Condition: if it is verified, the 
differential operator X~ + . . -  + X2m is hypoelliptic (HSrmander's Theorem). 
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1.5 The  shape of  the  accessible set in t ime 6 

The purpose of this section is to study the geometric structure of A(x, ~) for 
small ~. Let us recall that  A(x, E) denotes the set of points accessible from x 
in time ~ (or in time < ~, it is the same thing) by means of control ui such 
that  ~ u~ < 1. In other words, A(x, s) is equal to B(x, ~), the sub-Riemaniann 
closed ball centered at x with radius e. 

We suppose in the sequel that  Chow's condition is satisfied for the control 
system (~).  Choosing some chart in a neighbourhood of x0, we may write (1) 
a s  

m 

i----1 

The differential equation (1) thus appear as a perturbation of the trivial equa- 
tion 

iTS 

= (7)  

Classical arguments on perturbation of differential equations show that  the 
solution of (6) is given by 

x(T) = x(O) + ui(t) dt Xi(O) + O(llull2), (8) 

where, for u, we use the L 1 norm. Thus, with a linear change of coordinates, 
the set of points accessible from x(0) = 0 in time T < ~ satisfies, for small 

A(x, e) C C[-~,  e]~' x [-E 2, ~2]~-~1, 

where nl is the rank of the family XI (0) , . . .  ,Xm(0). As a first step, the set 
A(x, E) is then included in a flat pancake. 

The expression (8) implies also that  the differential of the end-point map- 
ping at the origin in 7 / i s  the linear map 

u ~-~ ~=l (~oTu~(t) dt) X~(O) • 

Since, typically, we suppose m < n, this linear map has rank nl < n and the 
end-point mapping is not a submersion at 0 E 7-/. Following our definition, this 
means that  the constant path at Xo is an abnormal path. This result has a lot 
of consequences. 
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Given a neighbourhood U of xo, there may not exist a smooth mapping 
x ~ u ~ of U into 7/ such that  the control u ~ steers xo to x, or, as well, x 
to xo. A stronger result is Brockett 's theorem asserting the non-existence of 
a continuous feedback law, stabilizing system (Z) at a given point Xo, when 
m<n.  

To go further in the description of the set A(x, ~) we can use the so-called 
iterated integrals. For example, the system 

Xl = Ul 

X2 = u2 (9) 
X3 ~ Xl~t2 - -  X2Ul 
x l ( 0 )  = x (0) =  3(0) = o 

is solved by 

T 

xi(T)= fo ul(t) dt 
T 

x2(T) = ~o u2(t) dt (I0) 

x 3 ( T )  = ]i T (~otl Ui (t2) dt2) u2(tl) dti - ~0 T ( fot' U2(t2) dt2) ui (ti) dtl 

This scheme works for chained or triangular systems, that  is, 2j depends only 
on the controls and x i , . . . ,  x j - i .  But we shall see that  it can be put to work 
for any system. To begin with, let us rewrite (9) as 

.T ---- U l X l ( x )  -{- u2X2(x), x(O) : O. 

Then (10) can be read as 

x(T) = x(O) + ul(t)dt XI(O)+  u~(t)dt X2(O)+ 

Put  this way, the formula for x(T) can readily be generalized to any control 

system of the form 
x" = E uiXi(x). 

i<~<m 
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One gets (the proof is not hard, cf. Brockett [5]) 

(L" ) z(r)  = z(O) + ~ u~(t) dt + O(llnll ~) X~(O) + 
i_<i<m 

loT (/otlUj(t2) dt2) ui(tx)dtl) [Xi, Xj](O)-~'O(llul,3), 
or, written in a more civilized manner 

x(T) = x(O) + ~ (AT(u) + O(llull2))X~(O) + 
l < i < r a  

AT (u)[Xi,X~]( 0 ) + O(llull 3) l <i<j<rn 
which can, for given T, be considered as a limited expansion of order 2 of the 
end-point mapping about 0 in 7-/. Observe that  AT(u) is a linear function with 
respect to u E 7-/, and AT(u) is a quadratic function on 7-/. This expansion 
generalizes the expansion (8) and the set A(x, e) satisfies now 

A(x,e) C C[-a,e] m × [-e2,e2] "2-"1 x [-ea,ez] '~-n2. (11) 

Having shown that  A(x, ~) is contained in some box, one can ask whether 
it contains some other box of the same kind. Of course, before this question 
can be taken seriously, one has to replace inclusion (11) by 

A(x, e) C C[-e,  el" '  x [ -e  2, e2] n=-"l x [ -e  a, ca] "a-"= x . . .  

where the integers nl ,  n2, na, . . .  are the best possible. 
Now, except for the case n2 = n which can be dealt with directly, the proof 

of an estimate like 

C'[-a,e] m x [-e2,e2] nz-nl x [-ea,e3] ha-ha x . . .  c A(x,e) 

requires new techniques and special sets of coordinates. Instead of computing 
limited expansion up to order r, we will compute an expansion to order 1 only, 
but by assigning weights to the coordinates. This will be done in §§1.6-1.8. 

1.6 Regular and singular points 

In the sequel we will fix a manifold M, of dimension n, a system of vector 
fields X 1 , . . . ,  Xrn on M. We will suppose that X1 , . . . ,  Xm verify the condition 
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of Chow. We will denote by d the distance defined on M by means of vector 
fields X1, . . . , Xm.  

Let £1 = £ 1 ( X 1 , . .  " ,Xm) be the set of linear combinations, with real 
coefficients, of the vector fields X 1 , . . . ,  Xm.  We define recursively £s = 
£s(X1,  . . . , Xm)  by setting 

Ls= £s-1 + I t ,e f t  
iq-j=s 

for s = 2 , 3 , . . . ,  as well as L ° = 0. The union £ = £ ( X I , . . . , X m  ) of all £s is 
a Lie subalgebra of the Lie algebra of vector fields on M which is called the 
control Lie algebra associated to (E). 

Now, for p in M,  let LS(p) be the subspace of TpM which consists of the 
values X(p)  taken, at the point p, by the vector fields X belonging to £s. Chow's 
condition states that  for each point p E M, there is a smallest integer r = r(p) 
such that  L r(p) (p) = TpM. This integer is called the degree of nonholonomy at 
p. It  is worth noticing that  r(q) < r(p) for q near p. For each point p E M, 
there is in fact an increasing sequence of vector subspaces, or flag: 

{0} = L°(p) C LI(p) C , . .  C LS(p) C , - "  C Lr(P)(p) = TpM. 

We shall denote this flag by ~T(p). 
Points of the control system split into two categories: regular states, around 

which the behaviour of the system does not change in a qualitative way, and 
singular states, where some qualitative changes occur. 

De f in i t i on .  We say that  p is a regular point if the integers dimLS(q) (s = 1, 
2, . . .  ) remain constant for q in some neighbourhood of p. Otherwise we say 
that  p is a singular point. 

Let us give an example. Take M = R 2, and 

(0) 
X1 = ,X2 = x ~ 

(k is some integer). Then for c = (x,y) we have dimLX(c) = 1 if x = 0, 
dim L 1 (c) = 2 if x ~ 0, so all points on the line x = 0 are singular and the 
others are regular. For other examples, arising in the context of mobile robot 
with trailers, see Section 2. 

It is worth to notice that ,  when M and vector fields X 1 , . . .  , X m  are an- 
alytic, regular points form an open dense set in M. Moreover, the sequence 
dim LS(p), s = 0, 1, 2 , . . . ,  is the same for all regular points in a same connected 
component of M and is streactly increasing for 0 < s < r(p). Thus the degree 
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of nonholonomy at a regular point is bounded by n - m + 1 (if we suppose that  
no one of the Xi's is at each point a linear combination of the other vector 
fields). It may be easily computed when the definition of the Xi's allows sym- 
bolic computation, as for an analytic function, being non-zero at the formal 
level is equivalent to being non-zero at almost every point. 

Computing, or even bounding the degree of nonholonomy at singular points 
is much harder, and motivated, for some part, sections 2 and 3 (see also 
[9,11,19,24]). 

1.7 D i s t a n c e  e s t i m a t e s  a n d  p r iv i l eged  c o o r d i n a t e s  

Now, fix a point p in M, regular or singular. We set n8 = dim LS(p) (s = 
0 , 1 , . . . , r ) .  

Consider a system of coordinates centered at p, such that  the differentials 
dyl , . . . ,  dyn form a basis of T~,M adapted to Y(p) (we will see below how to 
build such coordinates). If r = 1 or 2, then it is easy to prove the following 
local estimate for the sub-Riemannian distance. For y closed enough to 0, we 
have 

d(0, (Yl,..., Yn)) X lYl ]-'~-''" + lYnl I ''~ ]Ynl+l I 1/2 or' '" q-[y.[ 1/2 (12) 

where nt  = dim L l(p) (the notation f(y) × g(y) means that  there exists con- 
stants c, C > 0 such that  cg(y) < f(y) <_ Cg(y)). Coordinates y l , . . . , y m  are 
said to be of weight 1, and coordinates Ynl+l,... ,Yn are said to be of weight 
2. 

In the general case, we define the weight wj as the smallest integer s such 
tha t  dyj is non identically zero on LS(p). (So that  wj = s if ns-1 < j < ns.) 
Then the proper generalization of (12) would be 

d(0,(yl,... ,y~))xlYll 1/wl +- - .+ ly ,  l 1/~-. (13) 

It turns out that  this estimate is generically ]alse as soon as r > 3. A simple 
counter-example is given by the system 

(i) (°1) X1 = , X 2 =  
x 2 + y  

(14) 

on R 3. We have 

L I ( 0 ) = L 2 ( 0 ) = R  2×{0} ,  L a ( 0 ) = R  a, 
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so that  yl = x, y2 = Y, y3 = z are adapted coordinates and have weight 1, 1 
and 3. In this case, the estimates (13) cannot be true. Indeed, this would imply 

Izl const.(d(0, (x,y, z)) 3, 

whence 
z (exp(tX2)p)] <const. t 3, 

but this is impossible since 

)h - ~  z exp(tX2)(p) = (X~z)(p) = 1. 
t=O 

However a slight nonlinear change of coordinates allows for (13) to hold. It is 
sufficient to replace yl, y2, Y3 by zl = x, z2 = y, z3 = z - y2/2. 

In the above example, the point under consideration is singular, but one can 
give similar examples with regular p in dimension > 4. To formulate conditions 
on coordinate systems under which estimates like (13) may hold, we introduce 
some definitions. 

Call X l f , . . .  , X m f  the nonholonomic partial derivatives of order 1 of f 
relative to the considered system (compare to O~lf, . . . ,Ox, f) .  Call further 
X i X j f ,  X i X j X k f ,  . . .  the nonholonomic derivatives of order 2, 3, . . .  of f .  

P r o p o s i t i o n  1.4. For a smooth function f defined near p, the following con- 
ditions are equivalent: 

(i) One has f(q) = 0 (d(p, q)S) for q near p. 
(ii) The nonholonomic derivatives of order < s - 1 of f vanish at p 

This is proven by the same kind of computations as in the study of example 
(14). 

Def in i t ion .  If Condition (i), or (ii), holds, we say that  f is of order >__ s at p. 

Def in i t ion .  We call local coordinates z l , . . . ,  zn centered at p a system of 
privileged coordinates if the order of zj at p is equal to wj (j = 1 , . . . ,  n). 

If z l , . . .  ,zn are privileged coordinates, then dzl , . . .  ,dzn form a basis of 
T i M  adapted to ~'(p). The converse is not true. Indeed, if dzl , . . .  ,dzn form 
an adapted basis, one can show that  the order of zj is < wj, but it may be 
< wj: for the system (14), the order of coordinate ys = z at 0 is 2, while w3 = 3. 

To prove the existence, in an effective way, of privileged coordinates, we 
first choose vector fields Y1,. . . ,  Y, whose values at p form a basis of TpM in 
the following way. 
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First, choose among X 1 , . . . ,  Xm a number nl of vector fields such that  
their values form a basis of Ll(p). Call them Y1, . . . ,  Y,~I. Then for each s 
(s = 2 , . . . ,  r) choose vector fields of the form 

Y~.~. , . _ . .  = [x~l, [ x ~ , . . .  [x~._l, x~.] ...]] (15) 

which form a basis of LS(p) mod LS-l(p), and call them Yn,_~+I,. . . ,  ym.  
Choose now any system of coordinates y l , . . . ,  yn centered at p such that  

the differentials dy l , . . .  ,dyn form a basis dual to YI(P), . . .  ,Yn~) .  (Starting 
from any system of coordinates x t , . . .  ,xn centered at p, one can obtain such 
a system Yt , . . . ,  Y, by a linear change of coordinates.) 

T h e o r e m  1.5. The functions z l , . . . ,  zn recursively defined by 

Zq = yq - E 1 . . . . .  Zq_ 1 (~1[. . .aq-l!  (Y~I "Y:Jl~Yq)(P) z?~ "q-~ (16) 

form a system of privileged coordinates near p. (We have set w(a) = wla l  + 
• . .  + wna..) 

The proof is based on the following lemma. 

L e m m a  1.6. For a function f to be of order > s at p, it is necessary and 
sufficient that 

( Y ~  . . . Yr'" f )  (P) = 0 

for all ~ = ( a t , . . .  ,an)  such that wta t  + - . .  + wnan <_ s. 

This is is an immediate consequence of the following, proved by J.-J. Risler 
[4]: any product Xi~Xi2 . . .  X i . ,  where i t , . . . ,  is are integers, can be rearranged 
as a sum of ordered monomials 

E c,~..., .  ( x l Y ~  . . . Yg" 

with Wlal + --. + wnOln <~ 8, and where the ca~...a.'s are smooth functions. 
This result reminds of the Poincarfi-Birkhoff-Witt theorem. 

Observe tha t  the coordinates zl, • . . ,  zn supplied by the construction of The- 
orem 1.5 are given from original coordinates by expressions of the form 

Zl = Yl 

z2 --  y~ + pol (y~)  

z ,  = Yn + pol (y l , . . .  , Y , - I )  
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where pol denotes a polynomial, without constant or linear term, and that the 
reciprocal change of coordinates has exactly the same form. 

Other ways of getting privileged coordinates are to use the mappings 

( z l , . . . , z n )  ~ exp(zlY1 + ... +znYn)p  (see [14]), 

(z l , . . . , zn)  ~-~ exp(znYn) ' "exp(z lY1)p  (see [18]). 

Following the usage in Lie group theory, such coordinates are called canonical 
coordinates of the first (resp. second) kind. 

1.8 Ball-Box T h e o r e m  

Using privileged coordinates, the control system (Z) may be rewritten near p 
a s  

m 

(j= 
i = l  

where the functions fij  are weighted homogeneous polynomials of degree wj - 1. 
By dropping the o(llzll ;), we get a control system (~) 

Zj-~- ~Ui[f i j(Z1, . . . ,Zj_l)  ] (j = 1 , . . . ,n ) ,  
i = 1  

or, in short, 
m 

by setting Xi = ~j~=l fij(2"l,..., Zn)Ozj. This system is nilpotent and the vec- 

tor fields )(i are homogeneous of degree -1 under the non-isotropic dilations 
(z l , . . . ,  zn) ~ (A~.lzl,..., Aw~ zn). The system (~) is called the nitpotent ho- 
mogeneous approximation of the system (Z). For the sub-Riemaniann distance 

associated to the nilpotent approximation, the estimate (17) below can be 
shown by homogeneity arguments. The following theorem is then proved by 
comparing the distances d and d (for a detailed proof, see Bella'/che [2]). 

T h e o r e m  1.7. The estimate 

d (O, ( Z l ,  . . . , Zn)  ) x 12"1t 1 /w'  - 1 - ' "  Jr Iznl x/wn (17) 

holds near p if and only if 2'1,  . . . ,  2"n form a system of privileged coordinates at 
p. 
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The estimate (17) of the sub-Riemannian distance allows to describe the 
shape of the accessible set in time ~. A(x, ~) can indeed be viewed as the sub- 
Riemannian ball of radius ~ and Theorem 1.7 implies 

A(x,e) × [_e~1,¢~1] × . . . ×  [_Ew.,e~.]. 

Then A(x, ~) looks like a box, the sides of the box being of length proportionnal 
to cu'~,..., ew'. By the fact, Theorem 1.7 is called the Ball-Box Theorem (see 
Gromov [16]). 

1 . 9  A p p l i c a t i o n  t o  c o m p l e x i t y  o f  n o n h o l o n o m i c  m o t i o n  p l a n n i n g  

The Ball-Box Theorem can be used to address some issues in complexity of 
motion planning. The problem of nonholonomic motion planning with obstacle 
avoidance has been presented in Chapter [Laumond-Sekhavat]. It can be for- 
mulated as follows. Let us consider a nonholonomic system of control in the 
form (Z). We assume that Chow's Condition is satisfied. The constraints due 
to the obstacles can be seen as closed subsets F of the configuration space M. 
The open set M - F is called the free space. Let a, b E M - F. The motion 
planning problem is to find a trajectory of the system linking a and b contained 
in the free space. 

From Chow's Theorem (§1.4), deciding the existence of a trajectory linking 
a and b is the same thing as deciding if a and b are in the same connected 
component of M - F.  Since M - F is an open seL the connexity is equivalent 
to the arc connexity. Then the problem is to decide the existence of a path in 
M - F linking a and b. In particular this implies that the decision part of the 
motion planning problem is the same for nonholonomic controllable systems as 
for holonomic ones. 

For the complete problem, some algorithms are presented in Chapter 
[Lanmond-Sekhavat]. In particular we see that there is a general method (called 
"Approximation of a collision-free holonomic path"). It consists in dividing the 
problem in two parts: 

- find a path in the free space linking the configurations a and b (this path 
is called also the collision-free holonomic path); 

- approximate this path by a trajectory of the system close enough to be 
contained in the free space. 

The existence of a trajectory approximating a given path can be shown as 
follows. Choose an open neighbourhood U of the holonomic path small enough 
to be contained in M - F. We can assume that U is connected and then, from 
Chow's Theorem, there is a trajectory lying in U and linking a and b. 
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What is the complexity of this method? 

The complexity of the first part (i.e., the motion planning problem for 
holonomic systems) is very well modeled and understood. It depends on the 
geometric complexity of the environment, that is on the complexity of the 
geometric primitives modeling the obstacles and the robot in the real world 
(see [6,30]). 

The complexity of the second part requires more developments. It can be 
seen actually as the "complexity" of the output trajectory. We have then to 
define this complexity for a trajectory approximating a given path. 

Let 7 be a collision-free path (provided by solving the first part of the 
problem). For a given p, we denote by Tube(% p) the reunion of the balls of 
radius p centered at q, for any point q of 7. Let e be the biggest radius p such 
that Tube(y, p) is contained in the free space. We call e the size of the free space 
around the path 7. The output trajectories will be the trajectories following 7 
to within e, that is the trajectories contained in Tube(% e). 

Let us assume that we have already defined a complexity a(c) of a trajectory 
c. We denote by a(7, e) the infimum of a(c) for c trajectory of the system linking 
a and b and contained in Tube(7, s). a(7, e) gives a complexity of an output 
trajectory. Thus we can choose it as a definition of the complexity of the second 
part of our method. 

It remains to define the complexity of a trajectory. We will present here 
some possibilities. 

Let us consider first bang-bang trajectories, that is trajectories obtained 
with controls in the form (ul,.. . ,Um) = (0, . . . , : t :1 , . . . ,0) .  For such a tra- 
jectory the complexity a(c) can be defined as the number of switches in the 
controls associated to c. 

We will now extend this definition to any kind of trajectory. Following 
[3], a complexity can be derived from the topological complexity of a real- 
valued function (i.e., the number of changes in the sign of variation of the 
function). The complexity a(c) appears then as the total number of sign changes 
for all the controls associated to the trajectory c. Notice that, for a bang- 
bang trajectory, this definition coincides with the previous one. We will call 
topological complexity the complexity at(7, ~) obtained with this definition. 

Let us recall that the complexity of an algorithm is the number of elemen- 
tary steps needed to get the result. For the topological complexity, we have 
chosen as elementary step the construction of a piece of trajectory without 
change of sign in the controls (that is without manoeuvring, if we think to a 
car-like robot). 
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Another way to define the complexity is to use the length introduced in §1.3 
(see Formula (4)). For a trajectory c contained in Tube(7, ~), we set 

length(c) 
o (c) - g 

and we call metric complexity the complexity am(V, ~) obtained with aE(c). Let 
us justify this definition on an example. Consider a path 7 such that, for any 
q E 7 and any i E {1,.. .  ,m}, the angle between Tq7 and Xi(q) is greater than 
a given 0 ~ 0. Then, for a bang-bang trajectory without switches contained 
in Tube(7, ~), the length cannot exceed ~/sin 0. Thus, the number of switches 
in a bang-bang trajectory (C Tube(7, ~)) is not greater than the length of the 
trajectory divided by ~ (up to a constant). This links ae(c) and am(7, ~) to the 
topological complexity. 

Let us give an estimation of these complexities for the system of the car-like 
robot (see Chapter [Laumond-Sekhavat]). The configurations are parametrized 
by q = (x, y, ~)T E R 2 × 81 and the system is given by: 

~=u lX l+u2X2 ,  with X I =  ~si00 ) ,  X2= • 

It is well-known that, for all q E R 2 × S 1, the space Le(q) has rank 3 (see 
Section 2). 

Let us consider a non-feasible path 7 C R 2 x 31. When 7 is C 1 and its 
tangent vector is never in Ll(q), one can link the complexity am(V,E) to the 
number of e-balls needed to cover 7. By the Ball-Box Theorem (§1.8), this 
number is greater than Kc -2, where the constant depends on 7. 

More precise results have been proven by F. Jean (see also [22] for weaker 
estimates). Let T(q) (I]TH = 1) be the tangent vector to 7. Assume that T(q) 
belongs to L2(q) - Ll(q) almost everywhere and that 7 is parametrized by its 
arclength s. Then we have, for small ~ ~ 0: 

// at(V,e) and am(7, s) × e -2 det(X1,X2,T)(7(s)) ds 

(let us recall that the notation a(7, ~) × f(7,  ~) means that there exist c, C > 0 
independant on 7 and e such that c](7, e) < a(7, e) < C](7,  e)). 

2 T h e  car  w i t h  n t r a i l e r s  

2.1 Introduction 

This section is devoted to the study of an example of nonholonomic control 
system: the car with n trailers. This system is nonholonomic since it is subject 
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to non integrable constraints, the rolling without skiding of the wheels. The 
states of the system are given by two planar coordinates and n + 1 angles: the 
configuration space is then R 2 x (S 1)n+1, a (n + 3)-dimensional manifold. There 
are only two inputs, namely one tangential velocity and one angular velocity 
which represent the action on the steering wheel and on the accelerator of the 
c a r .  

Historically the problem of the car is important, since it is the first non- 
holonomic system studied in robotics. It has been intensively treated in many 
papers throughout the litterature, in particular from the point of view of find- 
ing stabilizing control laws: see e.g. Murray and Sastry ([25]), Fliess et al. ([8]), 
Laumond and Risler ([23])• 

We are interested here in the properties of the control system (see below 
§2.2). The first question is indeed the controllability. We will prove in §2.4 that 
the system is controllable at each point of the configuration space. The second 
point is the study of the degree of nonholonomy. We will give in §2.6 an upper 
bound which is exponential in terms of the number of trailers. This bound is 
the sharpest one since it is a maximum. We give also the value of the degree 
of nonholonomy at the regular points (§2.5). The last problem is the singular 
locus. We have to find the set of all the singular points (it is done in §2.5) and 
also to determinate its structure. We wilt see in §2.7 that one has a natural 
stratification of the singular locus related to the degree of nonholonomy. 

2.2 Equations and notations 

Different representations have been used for the car with n trailers. The problem 
is to choose the variables in such a way that simple induction relation may 
appear. The kinematic model introduced by Fliess [8] and Scrdalen [33] satisfies 
this condition. A car in this context will be represented by two driving wheels 
connected by an axle. The kinematic model of a car with two degrees of freedom 
pulling n trailers can be given by: 

:~ = COS OOVO, 
= sin Oovo, 

/~o = sin(01 - Oo) ~ ,  

v l /  r i + l  ' 

0 . - 1  = sin(O. - O . - 1 ) k ,  
~n. = 02, 

(18) 
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where the two inputs of the system are the angular velocity w of the car and 
its tangential velocity v = v n .  The state of the system is parametrized by 
q = (x,y,  O0,... ,On) T where: 

- (x, y) are the coordinates of the center of the axle between the two wheels 
of the l a s t  trailer, 

- On is the orientation angle of the pulling car with respect to the x-axis, 
- 8i, for 0 < i < n - 1, is the orientation angle of the trailer (n - i) with 

respect to the x-axis. 

Finally ri is the distance from the wheels of trailer n - i + 1 to the wheels of 
trailer n - i, for 1 < i < n - 1, and rn is the distance from the wheels of trailer 
1 to the wheels of the car. 

The point of this representation is that the system is viewed from the last 
trailer to the car: the numbering of the angles is made in this sense and the 
position coordinates are those of the last trailer. The converse notations would 
be more natural but  unfortunately it would lead to complicated computations. 

The tangential velocity vi of the trailer n - i is given by: 

or vi = f i v  where 

n 

j= i+ l  

= f l  cos(0j - 0 j - l ) .  
j= i+ l  

The motion of the system is then characterized by the equation: 

(t = (q) + vX2(q)  

with the control system {X1, X2) given by: 

X x  = X 2  = 

cos Oo fo ) 
sin 8o fo 

¼ sin(O,, - 
0 
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2.3 Examples :  t he  car wi th  1 and 2 t r a i l e r s  

Let us study first the example of the car with one trailer. The state is q = 
(x, y, 00, 01) T and the vector fields are: 

If) /cos,cos,,) [ sin 9o cos(01 - 00) 
X1 = X2--  I 1_.sin(01_00) 

,1 0 

We want to solve the three problems above (controllability, degree of nonholon- 
omy, singular set). For that, we have to study the Lie Algebra generated by the 
control system (see §1.6). Let us compute the first brackets of X1 and X2: 

/ -  cosgo sin(01 - 0o) ~ [ singo 

It is straightforward that, for any q, the vectors Xl(q), X~(q), [X1, Xe](q) and 
IX2, [X1, X2]](q) are independant. This implies that, for each q: 

dim LI(X1, X2)(q) = 2, 
dim L2 (X1, X2) (q) = 3, 
dim L3(X1, X2)(q) = 4, 

where Lk(X1, X2)(q) is the linear subspace generated by the values at q taken 
by the brackets of X1 and X2 of length _< k. 

These dimensions allow us to resolve our three problems. First, the condi- 
tions of the Chow theorem are satisfied at each point (since the configuration 
space is 4-dimensional), so the ear with one trailer is controllable. On the other 
hand, the dimensions of the Lk(X1,X2)(q) doesn't depend on q, so all the 
points are regular and the degree of nonholonomy is always equal to 3. 

Let us consider now the car with 2 trailers. If we compute the first brackets, 
we obtain the following results: 

- i f  0 2  - 01 # 4-~, then the first independant brackets are X1 (q), X2(q), 
IX1, x2l(q), IX2, x l](q) and [X2, IX2, [X1, x2lll(q); 

- if 05 - 01 = 4-~, then the first independant brackets are X1 (q), X2(q), 
[Xx, X~](q), [X2, IX1, X2l](q) and [Xl[X2, [X~, IX1, X~]]]](q). 

Thus the car with 2 trailers is also controllable since, in both cases, the subspaee 
L5 (X1, X2)(q) is 5-dimensional. However we have now a singular set, the points 
q such that 02 - 0 1  = :t:~. At these points, the degree of nonholonomy equals 
5 and at the regular points it equals 4. 
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2.4 Control labi l i ty  

The controllability of the car with n trailers has first been proved by Lau- 
mond ([21]) in 1991. He used the kinematic model (18) but a slightly different 
parametrization where the equation were given in terms of ~i = 0i - 8i-1 and 
(x ~, y~) ((x ~, y~) is the position of the pulling car). The proof of the controllabil- 
ity given here is an adaptation of the proof of Laumond for our parametrization. 
This adaptation has been presented by Sordalen ([33]). 

T h e o r e m  2.1. The kinematic model of a car with n trailers is controllable. 

Proof. Let us recall some notations introduced in §1.6. 
Let L:I(X1,X2) be the set of linear combinations with real coefficients of 

X1 and X2. We define recursively the distribution £k = ~.k(X1,X2) by: 

£k = /:k-1 + Z [L:i,~:j] (19) 
i+j=k 

where [~i, l:j] denotes the set of all brackets [V, W] for V E L:i and W E Ej. 
The union L:(X1, )(2) of all ~k (X1, X2) is the Control Lie Algebra of the system 

Let us now denote L~(X1,X2) the set of linear combinations of X1 and 
)(2 which coefficients are smooth ]unctions. By the induction (19) we construct 
from L:~ (X1, X2) the sets £~(X1, X2) and L'(XI, X2). 

For a given state q, we denote by Lk(X1,X2)(q), resp. L~(X1,X2)(q), the 
subspace of Tq(R 2 x (81) n+l) wich consists of tile values at q taken by the 
vector fields belonging to Lk (X1, X2), resp. £~ (X1,)(2). 

Obviously, the sets/:k (X1, X2) and £~ (X1, X2) are different. However, for 
each k _ 1 and each q, the linear subspaces Lk(X1, X2)(q) and L~(X1, X2)(q) 
are equal. We are going to prove this equality for k = 2 (the proof for any k 
can be easily deduced from this case). 
By definition L2 (X1, X2)(qo) is the linear subspace generated by X1 (qo), X2 (q o) 
and [X1,X2](qo). L~2(Zl,X2)(qo) is generated by Xl(qo), X2(qo) and all the 
[f(q)Xl,g(q)X2](qo) with f and g smooth functions. Then L2(XI,X2)(qo) C 
L~ (X1,3(2) (qo). 
From the other hand a bracket [fX1, gX2](qo) is equal to: 

fg[X1, X2](q0) - g(X2.f)Xl(qo) + f(Xl.g)X2(qo). 

Thus [fXl,gX2](qo) is a linear combination with real coefficients of X1(q0), 
X2(q0) and [X1,X2](qo). Then i~(X1,X2)(qo) = i2(X1,X2)(qo), which prove 
our statement for k -- 2. 

To establish the controllability, we want to apply Chow's theorem (see §1.4): 
we have then to show that the dimension of L(X1,X2)(q) is n + 3. For that, 
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we are going to prove that LI(X1,X2)(q) is n + 3-dimensionnal and use the 
relation L'(X1, X2)(q) = L(X1, X2)(q). 

Let us introduce the following vector fields, for i E {0, . . .  , n -  1}, which 
belong to L'(X1, X2): 

Wo = X1 Wi+1 = ri+x (sin ~oir~ + cos ~iZi) 
Vo = X2 V/+I = cos ~oiV/- sin~iZi) 
z0 = Ix1, x2] z +l = 

The form of these vector fields can be computed by induction. We give only 
the expression of the interesting ones: 

Wi = (0 , . . .  , 0 , 1 , 0 , . . .  ,0) T, i = 0 , . . .  , n  

. - i + 2  i (20)  
~/Vn = (cos qOo, I sin ~o, 0 , . . . ,  O) T, 
l Zn = ( - s i n  tool r~ costa0,0, . . .  ,0) T. 

We have n + 3 vector fields which values at each point of the configu- 
ration space are independant since their determinant equals l/r1. Therefore 
L'(Xa, X2)(q), and then L(X1, X2)(q), are equal to Tq(R 2 x (s1)n+l). We can 
then apply Chow's theorem and get the result. • 

R e m a r k .  A stronger concept than controllability is given by the following 
definition: the system {XI, X2} is called well-controllable if there exists a basis 
of n + 3 vector fields in L(X1, X2)(q) such that the determinant of the basis is 
constant for each point q of the configuration space. 
The n + 3 vector fields that  we have constructed in the proof satisfy this con- 
dition. So the car with n trailers is well-controllable. 

2.5 R e g u l a r  p o i n t s  

Let us denote fin(q) the degree of nonholonomy of the car with n trailers. It 
can be defined as: 

fin(q) = min{k I dimLk(Xl,X2)(q) = n + 3}. 

We have already computed (§2.3) the values of this degree for n = 1 and 2: 

(q) = 3,  2(q) = 4 or  5. 

It appears, for n = 2, that the configurations where the car and the first 
trailer are perpendicular have particular properties. This fact can be generalized 
as follows ([19]): 
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T h e o r e m  2.2. The singular locus of the system is the set of the points for 
which there exists k E [2,n] such that Ok -- Ok-1 = ±~.  

The regular points are then the configuration where no two consecutives 
trailers (except maybe the last two) are perpendicular. It results from §1.6 
that the degree of nonholonomy at regular points is < n + 2. In fact this degree 
is exactly n + 2. It can be shown for instance by converting the system into the 
so-called chained form as in Scrdalen ([33]). This gives us a first result on the 
degree of nonholonomy: 

Theorem 2.3. At a regular point, i.e., a point such that Ok -- Ok-1 ~ q-~ 
Vk = 2 , . . . ,  n, the degree of nonholonomy equals n + 2. 

2.6 B o u n d  for the degree of  nonho lonomy 

A first bound for this degree has been given by Laumond ([21]) as a direct 
consequence of the proof of controllability: we just have to remark that the 
vector fields (20) belong to/:~.+1 (X1, X2). Thus the degree of nonholonomy 
is bounded by 2 n+l. However this bound is too large, as it can be seen in the 
examples with 1 or 2 trailers. 

It has been proved in 1993 ([24,34]) that a better bound is the (n+3)-th 
Fibonacci number, which is defined by F0 = 0, F1 = 1, Fn+3 = Fn+2 + Fn+a. 
Luca and Risler have also proved that this bound is a maximum which is 
reached if and only if each trailer (except the last one) is perpendicular to the 
previous one. 

Theorem 2.4. 
satisfies: 

The degree of nonholonomy /3'*(q) for the car with n trailers 

~n(q) < Fn+3. 

Moreover, the equality happens if and only i] Oi -0 i -1  = 4-~, i = 2, . . .  ,n. 

Let us remark that this bound is exponential in n since the value of the 
n-th Fibonacci number is given by: 

2.7 Fo rm of  the  singular  locus 

The last problem is to determinate the form of the singular locus, which is given 
in Theorem 2.2. We already know the values of the degree of nonholonomy in 
two extremal cases: 
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- if no two consecutive trailers are perpendicular, Bin(q) = n + 2; 
- if each trailer is perpendicular to the previous one, f=(q) = Fn+3. 

We have now to characterize the states intermediate between these both cases. 
For a given state q, we have the following sequence of dimensions: 

2 = dimLl(X1,X2)(q) <_... <_ dimLk(X1,X2)(q) _<... _ n + 3. (21) 

Let us recall that,  if this sequence stays the same in an open neighbourhood 
of q, the state q is a regular point of the control system; otherwise, q is a 
singular point (see §1.6). Thus to give the sequence (21) at any state q allows 
to characterize the singular locus. 

To determinate the sequence (21), we only need the dimensions of the spaces 
Lk(Zl, X2)(q) such that  Lk (X1, X2)(q) • Lk-1 (X1, X2) (q). For that  we define, 
for i e {1, n + 3}: 

f~(q) = min{k I dimLk(X1,X2)(q) >_ i} 

In other words, the fact that  k = / ~ ( q )  is equivalent to: 

dimLk(X1,X2)(q) >_ i 
dim Lk-I(X1, X2)(q) < i 

(22) 

The sequence (21) can be entirely deduced from the sequence fl~(q), i = 
1 , . . . ,  n + 3. Hence the singular locus is completly characterized by the f~(q) 's  
which we are going to study. Let us remark that  f~+3 (q) is the degree of non- 
holonomy f n  (q). 

According to its definition, /~(q) increases with respect to i, for i lesser 
than dim L(X1, X2)(q) (when i is strictly greater than this dimension, f~  (q) is 
equal to -co) .  In fact we will establish (in Theorem 2.5) that  this sequence is 
strictly increasing with respect to i for 2 < i < n + 3. In other words, we will 
prove that,  for 2 < i < n + 3, f~(q) > -o0  and that  k = f~(q) is equivalent to 
(compare with (22)): 

dimLk(X1,X2)(q) = i 
dimLk- l (X1,  X2)(q) = i - 1 

We can also calculate easily the first values of these sequences. It is clear 
that  the family X1, X2, [X1, X2] is three dimensional for all q (see the examples 
u = 1 and 2). Then the dimensions of LI(X1,X2)(q) and L2(Xi,X2)(q) are 
respectively 2 and 3 and we have, for all state q: 

,~ (23) f ~ ( q )  = 1 f ~ ( q )  = 1 83 (q) = 2. 
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Finally, for q E R 2 × (S 1)n+1 and 1 g p < n, we will denote the projection on 
the first (n + 3 - p )  coordinates of q by qP, that  is qT = (X, y, 00 , . . . ,  On-T) T. 
qV belongs to R 2 × (S 1)"-p+I and it can be seen as the state of a car with 
n - p  trailers. Hence we can associate to this state the sequence f~-P(qT), 
j = 1 , . . . , n - - p + 3 .  

We can now give the complete characterization of the singular locus, i.e., the 
computation of the/3~(q) and the determination of a basis of Tq(R 2 × (S1)n+l). 
The following theorem has been proved by F. Jean in ([19]). We restrict us to 
the case where the distances ri equal 1. 

T h e o r e m  2.5. Let a T defined by at = 7r/2 and a T = arctansinaT_l.  Vq E 
R 2 × (S1) n+l, for 2 < i < n + 3 , /~ (q )  is streactly increasing with respect to i 
and can be computed, for i e {3, n + 3}, by the following induction formulae: 

I. if  On - 0n-1 = ± ~ ,  then 

Z~(q) = Z~_ -1 (qt) + ZT:~(q~) 

2. i f 2 p  E [1, n - 2 ]  and e = ±1 such that Ok --Ok-1 = eak-p for every 
k E {p+ 1,n}, then 

3. otherwise, 

~.~(q) n-1 t n-2 2 
= ~i-2 ( q )  2~_~ (q ) -  

Moreover, 
Tq(R 2 × (Sl)  ~+1) by: 

B1 = Xt  
B2 = X~ 
Bi = [X1 ,X2 , . . . ,  Z2, 

~ n - - l ~  1 ~ 
Pi -1  (q ) 

~ ( q )  n-1 1 = / ~ - 1  ( q ) + 1 .  

at a point q, we can construct a basis B = {B~,i = 1 . . .  n + 3} of 

Xt , . . .  ,X 1 ] f o r i  > 2, 

~' (q)  - ~7---~ (q~)  - 1 

where [X,1,..., X,.] aenotes [[... [X,1, X,~],..., X,._I], X,.]. 

Let us consider the sequence (~(q)) i=2 ..... ~+~ (we remove fl~(q) because it 
is always equal t o /~ (q ) ) .  For example, for n = 2, the sequence (/~i2(q)) is equal 
to (1, 2, 3, 5) on the hyperplanes 02 - 0 1  = :t:{. The complementary of these 
two hyperplanes are the regular points of the system and corresponds to the 
values (1, 2, 3, 4) of the sequence (/32(q)). 

As we have seen in Theorem 2.2, the singular locus is the union of the the 
hyperplanes 0k - 0k-1 = ±~ ,  2 < k < n. On each hyperplane we have a generic 
sequence (j3~(q)) and the non generic points are: 
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- either in the intersection with another hyperplane 0j - 0j-1 = =t:~ which 
corresponds to the case 1 of Theorem 2.5; 

- either in the intersection with an hyperplane 8~+1 - 8h = ±a2, (a2 = ~) 
which corresponds to the case 2 of Theorem 2.5. 

For these "more singular" sets, we have again some generic and some singular 
points that  we can find with Theorem 2.5. We have then a stratification of 
the singular locus by the sequence (fl~(q)). Let us consider for instance the 
hyperplane ~2 - 81 = ~. The generic sequence (jJ~(q)) is equal to (1, 2 , . . . ,  n + 
1, n+3)  (it is a direct application of the recursion formulae of Theorem 2.5). The 
non generic points are at the intersection with the hyperplanes 8j - 8 j - 1  = ~= ~, 
j = 3 , . . . , n  and with 83 - 8 2  = =t:~. On 82 - 8 1  = y ~, 83 - 8 2  = ~ " ,  the generic 
sequence is (1, 2 , . . . ,  n + 1, n + 4) and we can continue the decomposition. 

Let us remark at last that Theorem 2.5 contains all the previous results. 
For instance, it proves that ~nn+3(q) is always definite ( i.e., > -co) :  the rank 
of L(X1, X2)(q) at any point is then n + 3 and the system is controllable. We 

O n can also compute directly the values f ~n+3(q) and then its maximum, and so 
o n .  

3 P o l y n o m i a l  s y s t e m s  

3.1 I n t r o d u c t i o n  

We will deal in this section with polynomial systems, i.e., control systems in R n 
made with vector fields V~ = ~=1 P~OX{, where the P~'s are polynomials in 
X 1 , . . . ,  Xn. Polynomial systems are important for "practical" (or "effective") 
purpose, because polynomials are the simplest class of functions for which sym- 
bolic computation can be used. Also, we can hope of global finiteness properties 
(on R n) for such systems, and more precisely of effective bounds in term of n 
and of a bound d on the degrees of the P~. 

In this section, we will study the degree of nonholonomy of an affme sys- 
tem without drift Z made with polynomial vector fields V1, . . . ,  Vs on R n, and 
prove that it is bounded by a function ¢(n, d) depending only on the dimension 
n of the configuration space R ' ,  and on a bound d on the degrees of the P / .  
As a consequence, we have that the problem of controllability for a polyno- 
mial system (V1,. . . ,  Vs) of degree < d (with rational coefficients) is effectively 
decidable: take x E R n, compute the value at x of the iterated brackets of 
(V1, . . . ,  Vs) up to length ¢(n, d). Then the system is controllable at x if and 
only if the vector space spaned by the values at x of these brackets is R n (see 
above §1.4). For the controllability on R n, take a basis of £¢(n,d), i.e., of the 
elements of degree < ¢(n, d) Of the Lie algebra £.(V1,..., Vs). Then the system 
Z is controllable on R n if and only if this finite family of vector fields is of 



Geometry of Nonholonomic Systems 83 

rank n at any point x E R ~. But this is known to be effectively decidable: one 
has to decide if a matrix M with polynomial entries is of rank n at any point 
of R n. The matrix M is the matrix (VI, . . . ,  V~, V8+t,.. . ,  Vk), where the V~'s 
are the vector fields of 2Y for 1 < i < s, and for s + 1 < i < k a set of brackets 
of the form [[... [Vii, V~2], V~3,] ...]Vip], with 1 < ij < s, spaning ~¢(n,d) Let I 
be the ideal of R[X1, . . . ,  X,~] spaned by all the n × n minors of the matrix M. 
Then ~ is controllable on all R n if and only if the zero set of I is empty, and 
that is effectively decidable (see for instance [15] or [17]). 

The bound described here for the degree of nonholonomy is doubly expo- 
nential in n. A better bound (and in fact an optimal one) would be a bound 

simply exponential in n, i.e., of the form O(d n) or d °(n),  or again d n°(1) . For 
an optimal bound in a particular case, see Section 2 of this chapter, for the 
case of the car with n trailers. Note that this system is not polynomial. 

3.2 Contac t  b e t w e e n  an integral  curve and an algebraic variety  in 
d i m e n s i o n  2 

In this section, we will work over the field C, but all the results will be the same 
over the field R. By the contact (or intersection multiplicity) between a smooth 
analytic curve q' going through the origin O in C n and an analytic germ of 
hypersurface at O, {Q = 0}, we mean the order of QI~ at O. More precisely, let 
X1 ( t ) , . . . ,  Xn(t), Xi(0) = 0 be a parametrization of the curve 7 near the origin 
(Xi ( t )  are convergent power series in t). Then the contact of 7 and {Q = 0} at 
O is the order at 0 of the power series Q ( X l ( t ) , . . .  , X n ( t ) )  (i.e., the degree of 
the non zero monomial of lowest degree of this series). Let us give an example, 
for the convenience of the reader. Set n = 2, Q ( X , Y )  = y 2  _ X 3, 7(t) defined 
by X ( t )  = t2 + 2t 5, Y ( t )  = t3 + t  4. We have Q]7 = (t3 + t 4 ) 2 - ( t 2  + 2th) 3 "~ 2t7+ 
higher order terms; then the contact exponent between V and the curve {Q = 0) 
is 7. 

Let us first recall some classical facts about intersection multiplicity. If 
Q t , - . - ,  Qv are analytic functions defined in a neighborhood of O, we will set 
Z ( Q I , .  . . ,  Qv) for the analytic germ at O defined by Q1 = " "  = QB = O, and 
C{X1, . . . ,  X~} for the ring of convergent power series. 

Then, if in C n we have {O} = Z ( Q 1 , . . . ,  Qn), the intersection multiplicity 
at O of the analytic germ defined by {Qi = 0} (1 < i < n) is by definition 

C{Xl,...,xn) 
#(Q1,...,Q,~) = dime (Q1,. ~Q--~ (24) 

Recall that the condition {O} = Z ( Q 1 , . . . ,  Qn) (locally at O) is equivalent 
to the fact that the C-vector space c(xl  ..... xn } (Q1 ..... Q,) is of finite dimension. Recall 
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at last that  when Q1, . - . ,  Qn are polynomials of degrees q l , . . . , qn ,  we have 
#(Q1,. .  •, Qn) _< q l ' "  "qn by Bdzout's theorem, if dime c(XI(Q1 ..... ..... Q.)x"} < +c~. 

Let V = PIO/aXI + . . .  + PnO/OXn be a polynomial vector field such that  
V(O) ~ O, deg(Pi) _< d. Let Q(X1, . . . ,  Xn) be a polynomial of degree q. Set 

Q1 = PtOQ/OX1 + . . .  + P ,  OQ/OXn 
Q2 = PIOQ1/OX1 + . . .  + PnOQ1/OX~ 

Q~-I = PIOQn-2/OX1 + . . .  + PnOQn_2/OXn 

(i.e., Qo = Q and Qi = <  P, gradQi-1 > =  ~j=IPjOQi-1 /OXj ,  for 1 < i < 
n -  1); Q1 is the Lie derivative of Q along the vector field V, and more generally, 
Qi is the Lie derivative of Qi-1 along the vector field V. 
We have the following: 

T h e o r e m  3.1. Let V be a vector field in C n whose coordinates are polyno- 
mials of degree < d, and such that V(O) ~ O. Let ~/ be the integral curve of 
V going through O, and Q a polynomial of degree q. Assume QI~ ~ O, and 
that 0 is isolated in the algebraic set Z(Q, Q1,. . .  ,Qn-1) (which means that 
dime c(x l  ..... x~} (Q ..... Q._~) < +co). Then the contact exponent y between Q and 9' sat- 

isfies 

v < qql""qn-1 + n -  1, (25) 

where qi is a bound ]or the degree of Qi, namely qi = q + i(d - 1). 

Proof. We may assume u >_ n. Let -y(t) : t ~ (Xl ( t ) , . . .  ,Xn(t)) be a smooth 
analytic parametrization of % By definition, v is the order of the power series 
Q o 7(t) = Q(X1(t) , . . .  ,Xn(t)). Now, Q1 o 7(t) = Ql(Z l ( t ) , . . .  ,Xn(t)) is the 
derivative of Q o 7(t), and therefore is of order u - 1 at  O. Similarly Qi o 7(t) is 
of order u - i  for 1 < i < n - 1. We have that  the series Q(Xl( t ) , . . .  ,Xn(t)) is 
of the form t~v(t), i.e., belongs to the ideal (t v) in C{X1 , . . . ,  Xn}. Similarly, 
Qi(Xt ( t ) , . . . ,  Qn(t)) belongs to the ideal (tv-i). 
Set 7* for the ring homomorphism : C{X1 , . . . ,  Xn} ---+ C{t)  induced by the 
parametrization of 7. The image of ~'* contains by assumption a power series 
of order one, i.e., of the form v(t) = tu(t), with u(O) ¢ O. Then the inverse 
function theorem implies that t itself is in the image of 7*, i.e., that  7" is 
surjective. Hence we have a commutative diagramm of ring homomorphisms: 

C{Xl,...,X,} ~" - c { t }  

2 
c{x~ ..... x~} ~* 

( Q , Q I , . . . Q ~ - I )  ~ - 
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where the vertical arrows represent the canonical maps. Since V* is surjective, 
we have also that  9" is surjective. 

This implies that  

c{t} c{xl , . . . ,x,}  
u - n +  1 = dimc (t ,_n+l)  < dimc (Q, . . .  ,Qn-1) <- qql"" "q,~-I 

or v _< qql -'" q , - I  + n -  1 as asserted, the last inequality coming from B~zout's 
theorem. • 

R e m a r k .  One may conjecture that  such a kind of result is valid (may be with 
a slightly different bound) without the hypothesis d ime c{x1 ..... x~} finite. This (Q ..... Qn-1) 
would imply a simply exponential bound (i.e., of the form C(n)d n, or d n°(1)) 
for the degree of nonholonomy. 

Notice that  for Theorem 3.1, we may always assume that  the polynomial 
Q(X1 , . . . ,  Xn) is reduced (or even irreducible), because if Q = R 1 . . .  Rs, the 
bound (25) for the R~'s implies the same bound for Q. In fact, it is enough to 
prove that  if Q = RS, r = degR, s = degS, q = r + s, then 

r(r+ d -  1) . . .  (r + ( n -  1) (d-  1))+ s(s + d -  1 ) . . - ( s +  ( n -  1) (d-  1 ) ) + 2 ( n -  1) < 

q(q+ d -  1 ) . . . ( q +  ( n -  1 ) ( d -  1)) + n -  1 

which is immediate by induction on n. 
If A is a C-algebra, let us denote by dim A its dimension as a ring (it is its 

"Krull dimension"), and dime A its dimension as a C-vector space. If A is an 
analytic algebra, i.e., A = c(x1 ..... I x~} where I is an ideal, I = ( S t , . . . ,  Sq), 
then its dimension as a ring is the dimension (over C) of the germ at O of the 
analytic space defined by Z(S I , . . . ,  Sq). We have that  dime A < +oc if and 
only if dim A = 0. 

Notice that  Q1 cannot be divisible by Q (since Q o 7(t) is of order u, and 
Q1 o 7(t) of order u - 1). Therefore, if Q is irreducible, we have 

dim C{X1, . . .  ,X~} = n - 2. 
(Q,Q1) 

This implies that  in Theorem 3.1, we may always assume that  we have 
dim C(xl ..... xn) (Q ..... Q~,~) _< n - 2 .  

In particular, (25) is true in dimension 2 without additional hypothesis: 

C o r o l l a r y  3.2. Let V = Pla/OX + P20/OY be a polynomial vector field in the 
plane o] degree < d, such that V(O) i~ O, V the integral curve of V by O, and 
Q(X, Y) a polynomial o] degree q such that QI~ ~ O. Then the contact exponent 
u of Q and V satisfies 

< q(q+ d -  1) + 1. 



86 A. Bella~che, F. Jean and J.-J. Risler 

This corollary has first been proved by A. Gabrielov, J.-M. Lion and R. 
Moussu, [10]. 

3.3 The case of  d imension n 

We have the following result, due to Gabrielov ([12]) 

Theorem 3.3. Let V = ~ PiO/OXi be a polynomial vector field, with P~ C 
C [ Z l , . . . ,  Zn] of degree <_ d, such that V(O) # O, Q(X1, . . . ,  Xn) a polynomial 
of degree ~_ q such that Qf~ ~ O. Then the contact exponent v between Q and 
7 satisfies 

< 2 + (k - 1)(d - 1)] (26)  
k = l  

Remark .  This bound is polynomial in d and q and simply exponential in n. It 
is optimal (up to constants) since it comes from Example 2) below that there 
exists a lower bound also polynomial in d and q and simply exponential in n. 

R e m a r k .  In 1988 Nesterenko ([27]) found a bound ~f the form 

v ~ c(n)dn2q n, 

namely simply exponential in n when d is fixed, but doubly exponential in the 
general case. 

R e m a r k .  In dimension 3, the following bound has been found by A. Gabrielov, 
F. Jean and J.-J. Risler, [9]: 

v < q + 2q(q + d - 1) 2. 

3.4 Bound for the degree of  nonholonomy in the plane 

In the two-dimensional case, we have the following bound for the degree of 
non-holonomy (see [29]): 

Theor e m 3.4. Let Z = (~/~,..., Vs) be a control system made with polynomial 
vector fields on R 2 of degree <_ d; let r(x) be the degree o] nonholonomy o] E 
at x E R 2. Then, 

r(x) < 6d 2 - 2d + 2 (27) 
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Proof. Take x = O. Let as above (see §1.6) Li(O) be the vector space spaned 
by the values at O of the brackets of elements of Z of length _< i. We may 
assume d imLl(O)  = 1, because otherwise the problem of computing r(O) is 
trivial (if d imLl(O)  = 0, then Ls(O) = {0} Vs > 1, and if d imLl(O)  = 2, 
we have LI(O) = R 2 and r(O) = 1 by definition). We therefore assume that  
V 1(O) ~ 0, and set V = V1. • 

L e m m a  3.5. Assume r(O) > 1, which in our case implies that the system Z 
is controllable at 0 .  Then there exists Y E Z such that det(V,Y)i, r ~ 0. 

Proof. Assume that  det(V,Y)l ~ -- 0 VY E Z.  Then, in some neighborhood 
of O, any vector field Y E Z is tangent to the integral curve ~, of V from 
O. This implies that  the system cannot be controllable at O, since in some 
neighborhood of O the accessible set from O would be contained in % • 

Let us now state a Lemma in dimension n. 

L e m m a  3.6. Let V, Y1, . . . ,  Yn be vector fields on R n. Then 

n 

V.det(Y1,.. . ,  Y,~) -- ~ det(Y1,. . . ,  [V, Yi] , . . . ,  Yn) + 
i=1 
Div(V).det(Y1,. . . ,  yn). 

Let us recall that Div(V) = OP1/OXi + OP:/OX2 + ... + OPn/OXn, where 
V = PlO/OXl + . . .  -t- PnO/OX,~. 

Proof. This formula is classical. See for instance [13, Exercice page 93], or [26, 
Lemma 2.6]. • 

of Theorem 3.4, continued. Let -y be the integral curve of V by O. By Lemma 
3.5, there exists Y E ~U such that  det(V,Y)l ~ ~ 0. Set Q = det(V, Y)I ~. 

By Lemma 3.6, we have V.det (V, Y) = det(V, [V, Y]) + DivVdet(V, Y). Let v 
be the order of contact of Q and % We have that  QI~ = avtV + ' " ,  with a~ ~ 0, 
and that  (V.Q)i~ = vast v-1 + . . .  because V~ can be identified with O/Ot. Then 
det(V, [V, Y])I~ is of order v - 1 in t, and we see that  when differentiating v 
times in relation to t, we find that  

det(V, [V[V,... [V, Y] . . .  ]])(O) ~ 0, 

the bracket inside the parenthesis being of length v+  1. This means by definition 
of r(O) that  r(O) ~ ~ + 1. 
The polynomial Q is of degree < 2d, and V is a polynomial vector field of 
degree < d. Then Corollary 3.2 gives v < 2 d ( 2 d + d - 1 ) +  1 = 6d 2 - 2 d +  1. • 
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E x a m p l e .  1) Set 
v1 = O/OX + x d o / O Y  

z v~ = YaO/OX 

Then it should be easily seen that  for this system, r(O) = d 2 + 2d + 1. The 
inequality r(O) _> d 2 + 2d + 1 has been checked by F. Jean. This proves that  
the estimation (27) is asymptotically optimal in term of d, up to the constant 
6. 

2) Let in R n 

{ v1 = O/OXl 
v~ = x ~ a / a x ~  

27 

d X G = X._~O/O , ,  

We see easily that  for this system, r(O) = d n- l ,  which means that  in general 
¢(n, d) is at least exponential in n. 

3.5 T h e  gene ra l  case 

We have the following result, where for simplicity, and because it is the most 
important case, we assume the system controllable. 

T h e o r e m  3.7. Let n > 3. With the above notation, let r(x) be the degree of 
non-holonomy at x E R n for the control system Z made with polynomial vector 
fields of degree <_ d. Let us assume that the system E is controllable. Then we 
have the following upper bound: 

n+3 

r(x) G¢(n ,d ) ,  with¢(n,d)  < 2"-2(l  + 22n(n-2)-2d2n y~.k2n). (28) 
k=4 

Proof. We first state without proof a result of Gabrielov [11]. 

L e m m a  3.8. Let (V1, . . . ,  17,) be a system of analytic vector fields controllable 
at 0 such that V1 (0)  ~6 0. Let f be a germ of an analytic function such that 
f (O)  = 0 and fl~(yl) ~ 0 (v(V1) denotes the trajectory oJV1 going through 0 ) .  
Then there exists n vector fields X1, . . . , X ,  satisfying 

- X1 = 1/'1, X2 is one of the Vi, and, for 2 < k G n, Xk is either one of the Vi 
or belongs to the linear subspace generated by [Xt, ]Xm], for l, m < k; 

- there exists a vector field Xe = X1 + e2X2 + "'" + en-lXn-1 such that 

de t (x l , . . . ,  Xn)l,(x.) ~ o. 
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Let us assume x = O. For a generic linear function f ,  the conditions f(O) = 
0 and f[~(yl) ~ 0 are ensured. We can then apply the lemma and obtain n vector 
fields X1,..-,  Xn. From the first point of Lemma 3.8, Xk is a polynomial vector 
field of degree not exceeding 2k-2d. Thus the vector field X~ is polynomial of 
degree not exceeding 2n-ad and the determinant Q = det(x1, . . . ,  Xn) is also 
polynomial. Its degree does not exceed d + d + . . .  + 2'~-2d = 2n-ld. 

The second point of Lemma 3.8 ensures that Q and Xe fulfill the conditions 
of Theorem 3.3. Then, applying (26), the contact exponent v between Q and 
7(X~) satisfies 

n 

v < 22n3-4n-1 ~ ( 4 d  + k - 1) 2n. 

k = l  

Each derivation of Q along X~ decreases this multiplicity by 1. Hence the 
result of v consecutives derivations of Q along x~ does not vanish at O. By using 
Lemma 3.6, that means that there exists n brackets ~k = [X~,..., [XE, Xk]... ], 
with at most v occurences of Xe, such that: 

det(~l(O),. . .  ,~n(O)) ~ O. 

/,From the first point of Lemma 3.8, each Xk is a linear combination with 
polynomial coefficient of brackets of the vector fields V/of length not exceeding 
2 k-2. This implies Xk(O) e L2k-2(Z)(O) (this is the same reasoning as in the 
proof of Theorem 2.1). We have then x~(O) E L2~-~(z~)(O) and, Vk, ~k(O) E 
L2.-~+~2.-3 (Z)(O). 

Since det(~l , . . . ,  ~ )  ~ 0, the subspace L2~-2+v2.-3(Z)(O) is of dimension 
n and then 

n-b3 

r(O) < 2~-2(1 + 2~n(~-2)-2d 2n ~ k2n). 
k----4 
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1 I n t r o d u c t i o n  

From a kinematic point of view, the main characteristic of wheeled robots is 
the nonholonomic rolling without slipping constraint of the wheels on the floor, 
which forces the vehicle to move tangentially to its main axis. This reduction 
of the set of accessible velocities at each time makes the path planning problem 
particularly difficult. Among the different methods devoted to solve this prob- 
lem we want to focus on those based on the characterization of shortest paths 
or time-optimal paths, which turn out to be particularly efficient. Indeed, the 
knowledge of an optimal strategy for linking any two configurations allows to 
determine simple canonical paths and provides a topological modeling of the 
problem by defining a new "distance function" taking into account the non- 
holonomic nature of the system. Unfortunately, the characterization of optimal 
paths for this class of nonlinear systems is not an easy task. 

The works presented in this chapter are based on Pontryagin's Maximum 
Principle (PMP) which constitutes a generalization of Lagrange's problem of 
the calculus of variation. PMP is a local reasoning based on the comparison of 
trajectories corresponding to infinitesimally close control laws. It provides nec- 
essary conditions for paths to be optimal. Nevertheless, though this condition 
brings a very strong information about the nature of optimal paths for certain 
kind of systems, it turns out to be insufficient to solve the optimal control 
problems we are interested on. 

Indeed, on the one hand the nonlinear nature of these systems makes the 
adjoint differential equations seldom integrable. Therefore, in the most part of 
cases, the necessary condition of PMP only provides a local characterization of 
optimal trajectories. On the other hand, the study of such systems has shown 
that the set of accessible configurations at each time, is neither smooth nor 
convex. More precisely, it appears that the boundary of this set is made up by 
several smooth pieces corresponding to the propagation of several wave fronts. 
This is due at one and the same time to the difficulty of moving sideways and 
the natural symmetries of the problem. 
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For these latter reasons, the local nature of PMP cannot provide a tool to 
compare the cost of trajectories corresponding to different wave fronts. There- 
fore, this local information needs to be completed with a global study. 

By combining these two approaches it is sometimes possible to get a better 
characterization of the solution. In this way, a first interesting result is the 
determination of a sufficient family of trajectories i.e. a family of trajectories 
containing an optimal solution for linking any two configurations. Whenever 
this family is small enough and sufficiently well specified it is possible to com- 
pare the cost of trajectories by means of a numerical method. Nevertheless, the 
ultimate goal one wants to reach is to achieve the determination of an optimal 
control law for steering the representative point from any point of the phase 
space to a given target set, i.e. to solve the synthesis problem. 

Four works are presented in this chapter, devoted to the search of optimal 
paths for various models of wheeled robots. These problems are stated in the 
free phase space i.e. without obstacles. We have been able to solve the syn- 
thesis problem for only two of these models. The two other works provide an 
incomplete characterization of optimal solutions, bringing to the fore various 
kind of difficulties that can be encountered in studying such problems. 

The paper is organized as follows: The models of wheeled robots and their 
related optimization problems are presented in section 2. The third section 
constitutes a survey of the definitions and results from optimal control theory 
which have been useful for these different works: Fillipov's existence theorem, 
Pontryagin's Maximum Principle (PMP) and Boltianskii's sufficient optimality 
condition. In particular, we give a geometric description of PMP in order to 
point out the local nature of this reasoning. The last four sections present 
successively the works related to each model. 

2 M o d e l s  a n d  o p t i m i z a t i o n  p r o b l e m s  

The aim of the works presented in this chapter is to characterize optimal tra- 
jectories verifying the nonholonomic constraints of mobile robots. Therefore, in 
order to get the simplest expression of the problem, we consider mathematical 
models defined upon the kinematic constraints inherent in these wheeled vehi- 
cles, without taking into account their dynamics. Classically, these models are 
described by differential autonomous 1 systems such as: 

dxi = fi(x 1,x2,..o , x  n , u  1 u2,.  . , u  m) (1) 
d t  ' " 

1 The function f does not depend explicitly on time. 
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where the x i characterize the robot's coordinates in the phase space and 
the control parameters u i express the existence of "rudders" such as the steer- 
ing wheel or the brake-accelerator function. Once the control parameters are 
defined as time-varying functions u j  = u j ( t ) , j  = 1,. . .  ,m, the correspond- 
ing trajectory solution of (1) is uniquely determined by the choice of initial 
conditions x i ( t o )  = Xio,i = 1 , . . .  , n .  

2.1 Dubins  ~ and  Reeds-Shepp 's  car 

The model of a car-like robot considered here, describes the two principal kine- 
matic constraints of an usual car. The first one is the rolling without slipping 
constraint which obliges the vehicle to move tangentially to its main axis. The 
second constraint is due to the bound on the turning wheels' angle and pre- 
vents the car from moving on trajectories whose radius of curvature is lower 
than a given threshold R. A configuration of the car is represented by a triple 
(x, y, 0) E R 2 x S 1, where (x, y) are the coordinates of a reference point of the 
robot with respect to a Cartesian frame, and 0 is the angle between the positive 
x-axis and the robot's main axis, see figure (1). With this modeling, the rolling 
without slipping constraint is expressed by the following equation: 

y c o s 0 -  &sin0 = 0 

For our purpose, the direction of front wheels is not relevant, we only need to 
consider that the bound on the angle of steer ¢ induces an upper bound on the 
trajectories' curvature. 

Therefore, the kinematics of the vehicle is described by the differential sys- 
tem (2) involving two control parameters ul and u2 which represent respectively 
the algebraic value of the linear and angular velocities. 

(cos0) 
= si; 0 ul + u2 (2) 

This kinematic model was introduced by Dubins in 1957 [16] who set the 
problem of characterizing the shortest paths for a particle moving forward in 
the plane with a constant linear velocity (Ul = k). Later, Reeds and Shepp [31] 
considered the same problem, when backwards motions are allowed (tult = k). 
In both cases, as the modulus of the linear velocity keeps constant, the shortest 
path problem is equivalent to the minimum-time problem. 

In the sequel without lost of generality we will fix the value of the constants: 
R = I  and k = 1. 
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Fig. 1. The car-like model 

2.2 Dubins '  car wi th  inert ial  angular  velocity  

As we will see later in detail, the optimal solutions of Dubins' problem are 
sequences of line segments and arcs of circle of minimal radius. Therefore, the 
curvature along the trajectory does not vary continuously. As a consequence, 
any real robot following such a trajectory would be constrained to stop at each 
curvature discontinuity. 

In order to avoid this problem, Boissonnat, Cerezo and Leblond [3] have 
proposed a dynamic extension of Dubins' problem by controlling the angular 
acceleration of the car instead of its angular velocity. The curvature ~ is now 
considered as a new phase variable, and the angular acceleration v is bounded 
inside a compact interval I -B,  B]. 

= + v (3 )  

For this problem, as for Dubins problem, minimizing the time comes to the 
same as minimizing the length. 

2.3 The  robot  H I L A R E  

The locomotion system of Hilare the robot of LAAS-CNRS consists of two 
parallel independently driven wheels and four slave castors. The velocities vr 
and vl of the right and left driven wheels are considered as phase variables and 
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a configuration of the robot is a 5-uple (x, y, 0, vr, vt). The accelerations ar and 
at of each driven wheel are the inputs to the following control system: 

(// cos0, (i/ • o ° 

= /  / +  ar + al (4) 

where at, a~ E [-amax, a~x],  and d > 0 is the distance between the wheels. 
In this case the trajectories' curvature is not bounded and the robot can turn 
about its reference point. 

For this model, we consider the problem of characterizing minimum-time 
trajectories linking any pair of configurations where the robot is at rest i.e 
verifying vr = vt = 0. 

3 S o m e  r e s u l t s  f r o m  O p t i m a l  C o n t r o l  T h e o r y  

3.1 Definit ions 

Let us now define the notion of dynamical system in a more precise way. Let M 
be a n-dimensional manifold, and U a subspace o f R  m. We study the motion of a 
representative point x(t)  = (x l(t), .  .. , xn(t))  in the phase space M, depending 
on the control law u(t) = (u 1 ( t) , . . .  , urn(t)) taking its values in the control set 
U. In this chapter, we define the set of admissible control laws as the class of 
measurable functions from the real time interval [t0,h] to U. As we said in 
the previous section, the motion of the representative point is described by an 
autonomous differential system of the form: 

dx  i 
- - ~  = f i ( x ( t ) , u ( t ) )  i = 1 , . . .  , n  (5) 

We consider now a function L(x ,  u) defined on the product M x U, contin- 
uously differentiable with respect to its arguments. Given any two points Xo 
and xl in the phase space M, we want to characterize, among all the control 
laws steering the representative point from x ° to x 1, one (if exists) minimizing 
the functional: 

~o 1 J = L(x(r ,  u), u(T))dr 
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R e m a r k  1. The initial and final time to and tt are not fixed a priori, they 
depend on the control law u(t). 

D e f i n i t i o n  1. Two trajectories are said to be equivalent for transferring the 
representative point from Xo to xl if they their respective costs are equal. 

In the sequel we restrict our study to the minimum-time problem. In this 
case L(x, u) _-- 1 and J = tl - to. 

In chapter 1 it has been shown that  the models described in the previ- 
ous section are fully controllable in their phase space M, i.e. given any two 
configurations xo and xl in M there always exists a trajectory, solution of 
(5), linking x0 to xl .  Nevertheless it is not possible to deduce from this result 
whether a minimum-time feasible path from Xo to xl exists or not. This last 
question constitutes an important  field of interest of optimal control theory 
(cf [13] for a detailed survey). In particular, there exist some general theorems 
due to Fitlipov, ensuring the existence of optimal paths under some convexity 
hypotheses. The next subsection presents two theorems that  will be sufficient 
for our purpose'. 

3.2 E x i s t e n c e  o f  o p t i m a l  p a t h s  

Let M be an open subset of R ~ or a n-dimensional smooth manifold, and U a 
subset of R m. 

T h e o r e m  1. (Fillipov's general theorem for minimum-time problems) 
Let x0, xl be two points in M. Under the following hypotheses there exists 

a time-optimal t rajectory solution of (5) linking x0 to xl .  

H1 - f is a continuous function of t, u, x and a continuously differentiable 
function of x. 

H2 - the control set U is a c o m p a c t  subset of R m. Furthermore, when u 
varies in U, the image set F(t,x) described by f(x(t),  u(t)) is c o n v e x  for 

all t ,x  E [t0,tl] x M. 
Hs - there exists a constant C such that  for all (t, x) E [to, tl] x M: 

< x , f ( t , x , u ) >  < C ( l + l x [  2) 
/-/4 - there exists an admissible trajectory from x0 to xl 

R e m a r k  2. - The hypothesis Ha prevents from a finite escape time of the phase 
variable x for any admissible control law u(.). 

When f is a linear function of the control parameters ui of the form: 

f (X,~)  = gl(~) Ul + - . .  + gin(X) Urn, (6) 

there exists a simpler version of this result given by the next theorem. 
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T h e o r e m  2. Let xo and xl be two points in M. Under the following hypothe- 
ses there exists an optimal t rajectory solution of (6) linking x0 to xl .  

//1 - the gl are locally lipschitzian functions of x. 
//2 - the control set U is a c o m p a c t  convex  subset of R m 
//3 - there exists an admissible t rajectory from xo to xl 
//4 - The system is complete, in the sense that  given any point Xo E M,  and any 

admissible control law u(.), there exists a corresponding t rajectory x(t,  u) 
defined on the whole time interval [to, tl] and verifying x(to, u) = Xo. 

3.3 N e c e s s a r y  cond i t i ons :  P o n t r y a g i n ' s  M a x i m u m  P r i n c i p l e  

Pontryagin's Maximum Principle (PMP) provides a method for studying vari- 
ational problems in a more general way than the classical calculus of variation 
does. Indeed, when the control set U is a closed subset of R m, the Weierstrass' 
condition characterizing the minimum of the cost functional is no more valid. 
The case of closed control set is yet the most interesting one for modeling con- 
crete optimal control problems. PMP provides a necessary condition for the 
solutions of a general control systems to be optimal for various kind of cost 
functional. In this chapter we restrict our statement of PMP to minimum-time 
problems. 

We consider the dynamical system (5) where x belongs to an open subset 
C R n or a smooth n-dimensional manifold M. 

D e f i n i t i o n  2. 
- Let ¢ be a n-dimensional real vector, we define the Hamittonian of system 

(5) as the R-valued function H defined on the set Rn. x t? x U by: 

H ( ¢ ,  u) =< ¢, I(x, > (7) 

where R .  n -- R n \ {0}, and < .,. > is the usual inner product of R n. 
- / ]  u(.) : [to, tl] --~ U is an admissible control law and x(t) : [to, tl] -4 J? 

the corresponding trajectory, we define the adjoint vector for the pair (x, u) as 
the absolutely continuous vector function ¢ defined on [to, tl ], taking its values 
in R~. which verifies the following adjoint equation at each time t E [to, tl]: 

OH 
¢(t )  = - x(t) ,  u(t)) (8) 

R e m a r k  3. As H is a linear function of ¢,  ~h is also a linear function of ¢.  
Therefore, either ¢( t )  i~ 0 Vt E [to, tl], or ¢( t )  - 0 on the whole interval [to, tl]; 
in the latter case, the vector ¢ is said to be trivial. 
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T h e o r e m  3. (Pontryagin's Maximum Principle) Let u(.) be an admissible con- 
trol law defined on the closed interval [t0,tl] and x(t) the corresponding tra- 
jectory. A necessary condition for x(t) to be time-optimal is that there exists 
an absolutely continuous non trivial adjoint vector ¢(t)  associated to the pair 
(x, y), and a constant Co _< 0 such that Vt E [to, tl]: 

H(¢( t ) ,  x(t), u(t)) = mea~(H(¢(t), x(t), v(t)) = - ¢ 0  (9) 

De f in i t i on  3. 
- A control law u(t) satisfying the necessary condition of PMP is called an 

extremal control law. Let x(t, u) be the corresponding trajectory and ¢(t) the 
adjoint vector corresponding to the pair (x, u); the triple (x, u, ¢)  is also called 
extremal. 

- To study the variations of the Hamiltonian H = S~ ~( t )  ¢~(t) one can 
rewrite H in the form: H = ~i¢i(t) ui(t) where the ¢i, called switching func- 
tions determine the sign changes of ui. 

Sometimes the maximization of the function H does not define a unique 
control law. In that case the corresponding control is called singular. 

Def in i t i on  4. A control u(t) is singular if there exists a nonempty subset W C 
U and a non empty interval I C [to, tl] such that Vt E I, Vw(t) E W: 

H(¢( t ) ,  x(t), u(t)) = H(¢( t ) ,  x(t), w(t)) 

In particular, when a switching function vanishes over a non empty open 
interval of time, the corresponding control law comes singular. In that  case, 
all the derivatives of the switching function also vanish on this time interval, 
providing a sequence of equations. From these relations, it is sometimes possible 
to characterize the value of the corresponding singular control. 

The following theorem allows to compute easily those derivatives in terms 
of Lie brackets. 

T h e o r e m  4. Let Z be a smooth vector field defined on the manifold M and 
(x, u, ¢)  an extremal triple for the system (6). 

The derivative of the function ¢z(.)  : t r < ¢(t) ,  Z(x(t)) > is defined 
by: 

Cz(t) = < ¢ ,  Z]x(t)  > 
i = 1  

Let us now define the notion of reachable set" 



Optimal Trajectories for Nonholonomic Mobile Robots 101 

Defini t ion 5. - We denote by T6(xo,T), and we call set of accessibility from 
xo in time T, the set of points x E M such that there exists a trajectory solution 
of (5) transferring the representative point from xo to x in a time t < T. 

- The set T~(xo) = (Jo<T<~ ~(xo, T) is called set of accessibility from xo. 

When the system is fully controllable (controllable from any point) the set 
of accessibility T~(Xo) from any point Xo is equal to the whole manifold M. 
Otherwise, T~(x0) is restricted to a closed subset of M. In this latter case there 
exists another version of PMP. 

T h e o r e m  5. (PMP for boundary trajectories) Let u(.) : [to, tl] -~ U be an 
admissible control law, and x(t) the corresponding trajectory transferring the 
representative point from Xo to a point xl belonging to the boundary OTi(Xo) 
of the set 7~(x0). A necessary condition for the trajectory x(t, u) to be time- 
optimal, is that there exists a non-trivial adjoint vector ¢ verifying relation (9) 
with Co = 0 

Defini t ion 6. An extremal triple (x, u, ¢) such that Co = 0 is called abnormal 

Commentary about PMP: It is often difficult to extract a precise information 
from PMP. Indeed, it is seldom possible to integrate the adjoint equations or to 
characterize the singular control laws. Furthermore, one can never be sure to 
have got all the information it was possible to deduce from PMP. Sometimes, 
the information obtained is very poor, and the set of potential solutions too 
large. 

An interesting expected result is the characterization of a sufficient fam- 
ily of trajectory i.e. a family of trajectory containing an optimal solution for 
linking any pair of points (x0,xl) E M. When this family is small enough, 
and sufficiently well specified the optimal path may be selected by means of a 
numerical test. 

Nevertheless, the ultimate goal one wants to reach is the exact characteri- 
zation of the optimal control law allowing to steer the point between any two 
states of M. However, though it is possible to deduce directly the structure of 
minimum-time trajectories from PMP for linear systems, the local information 
is generally insufficient to conclude the study in the case of nonlinear systems. 
As we will see in the sequel, it is yet sometimes possible to complete the local 
information provided by PMP by making a geometric study of the problem. 
When the characterization of optimal path is complete, a synthetic way of rep- 
resenting the solution is to describe a network of optimal paths linking any 
point of the state space to a given target point. The following definition due to 
Pontryagin states this concept in a more precise way. 
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Defini t ion 7. For a given optimization problem, we call synthesis function, a 
]unction v(x) (if it exists) defined in the phase space M and taking its values 
in the control set U, such that the solutions of the equation: 

dx 
d-7 =/(x,  v(x)) 

are optimal trajectories linking any point of M to the origin. The problem 
o/characterizing a synthesis function is called synthesis problem and the cor- 
responding network of optimal paths is called a synthesis of optimal paths on 
M. 

A geometric illustration o] PMP: In the statement of PMP, optimal control 
laws are specified by the maximization of the inner product of two vectors. 
In the rest of this section, drawing our inspiration from a work by H. Halkin 
[21], we try to give a geometric interpretation of this idea by pointing out the 
analogy between optimal control and propagation phenomena. In this, we want 
to focus on the local character of PMP in order to point out its insufficiency 
for achieving the characterization of shortest paths for nonholonomic problems. 
This remark emphasizes the necessity to complete the local reasoning by making 
use of global arguments. 

At the basis of the mathematical theory of optimal process stands the prin- 
ciple o] optimal evolution which can be stated as follows: 

"I /x( t ,  u) is an optimal trajectory starting from Xo at time to, then at each 
time t >_ to the representative point must belong to the boundary OT~(xo, t) o/ 
the set 7~(xo, t)" 

For some physical propagation phenomena, such as the isotropic propaga- 
tion of a punctual perturbation on the surface of water, the wave]font associated 
with the propagation coincides at each time with the boundary of the set of 
accessibility. Let us consider first the simple propagation of a signal starting at 
a point x0 such that the set of accessibility 7~(Xo, t) at each time t be smooth 
and convex with a unique tangent hyperplane defined at each boundary point. 

As in geometrical optics, at each time t and at each boundary point x, we 
can define the wavefront velocity as a nonzero vector V(x,  t) = V(x, t) k(x, t) 
where V(x, t) is a R-valued function of x and t, and k(x, t) a unit vector 
outward normal to the hyperplane tangent to T~(x0, t) at x. Now, according to 
the principle of optimal evolution, if x(t, u) is an optimal trajectory starting at 
x0, the following two conditions must be verified: 

- For any admissible motion, corresponding to a control w(t), the projection 
of the representative point velocity &(t, w) = ](x,w) on the line passing 
through x(t, w) and whose direction is given by the vector k(x, t), is at most 
equal to the wavefront speed V(x, t). 
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< f(x(t) ,  k(x, t) > < t) 

- With the optimal control u, the representative point must keep up with the 
wavefront OTC(Xo, t) i.e. the projection of the representative point's velocity 
on the normal vector k(x, t) determines the wavefront velocity. 

< f(x(t) ,u(t)) ,k(x, t)  > = V(x,t)  (11) 

Now, by identifying the adjoint vector ¢(x, t) with V(x, t) we can make 
a link between relations (10, 11) and the maximization of the Hamiltonian 
defined by (9). 

Though this analogy with propagation phenomena provides a good ge- 
ometric meaning of this principle of optimization, it is not easy to gener- 
alize this idea to any dynamical system. Indeed, for a general system, the 
set Ti(xo,t) is not necessarily convex and its boundaries are not necessar- 
ily smooth. In order to get a geometric meaning of Pontryagin's result in 
the general case, it is convenient to consider the cost functional J as a new 
phase variable x °, and to manage our reasoning in the augmented phase space 
t t  x ~ C R n+l. Therefore, at each time, the velocity vector of the representa- 
tive point X = (x °, x) = (x °, x l , . . . . x  n) corresponding to the control law u(.) 
is given by ](X,  u) = (L(x, u), f l  (x, u ) , . . .  , fn(x,  u)). With this representation 
the optimization problem becomes: 

"Let g) be the line passing through (O, xl) parallel to the x°-axis. Among 
all the trajectories starting at Xo = (0,x0) and reaching g), find one, i/ 
exists, which minimizes the first coordinate x ° of the point of intersection 
X1 = (x°,xl) with 2)." 

As before we define the set of accessibility TO(X0, t) from Xo in the aug- 
mented phase space. Now, it is easy to prove that any optimal path must verify 
the principle of optimality. Indeed, if the point X1 of g~, reached at time tl 
with control u, lies in the interior of 7~(X0, tl), there exists necessarily a neigh- 
bourhood of X1 containing a point of 9 located "under" X1 and the control u 
cannot be optimal. Furthermore, due to the smoothness properties of the func- 
tion ] ,  if the point X, reached at time v E [to, tl] with u, is in the interior of 
TO(X0, r), then for all t >_ T the representative point will belong to the interior 
of re(Xo, t). 

Now, let X(t ,u)  be a trajectory starting at X0, optimal for reaching the 
line T~. In order to use the same reasoning as before, Pontryagin's et al have 
proven that it is still possible to construct a separating hyperplaae by using the 
following idea: By replacing u(.) by other admissible control laws on "small" 
time intervals they define new admissible control laws fi infinitesimaly close to 
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u. Then, a part of their proof consists in showing that the set of point X(t, ~) 
reached at each time t by the "perturbed" trajectories constitutes a convex cone 
g with vertex X(t,u), contained in T~(X0, t). This cone locally approximates 
the set TC(Xo,t) and does not contain the half-line 7)- starting at X(t,u) in 
the direction of the decreasing x °. It is then possible to find an hyperplane 
7/tangent to g at X(t,u), separating g and the half-line 7)-, and containing 
the vector ](t, u). Now, the reasoning is the same as before; the adjoint vector 

= (¢0, ¢1 , . . .  , Cn) is defined, up to a multiplicative constant, as the vector 
outward orthogonal to this hyperplane at each time. Following the principle of 
optimal evolution, the projection of the vector ](t ,  u) on the line parallel to 
¢(t), passing through x(t, u), must be maximal for the control u. 

The case o/nonholonomic systems: As we will see later, the nonhotonomic 
rolling without slipping constraint, characteristic of wheeled robots, makes their 
displacement anisotropic. Indeed, although forwards motion can be easily per- 
formed, moving sideways may require numerous manoeuvres. For this reason, 
and due to the symmetry properties of such systems, the set of accessibility 
(in time) is generally not convex and its boundary does not coincide every- 
where with the wavefront associated with the propagation. Instead of this, 
we will show later that the boundary is made up by the propagation of sev- 
eral intersecting wavefronts. Therefore, a local method like PMP, based on the 
comparison of very close control laws cannot be a sufficient tool to compare the 
cost of trajectories corresponding to different wavefronts. This very important 
point will be illustrated in section 4 through the construction of a synthesis of 
optimal paths for the Reeds-Shepp car. 

So far, we only have stated necessary conditions for trajectories to be op- 
timal. We now present a theorem by V. Boltyanskii which states sufficient 
optimality conditions under very strong hypotheses. 

3.4 Bol tyanski i ' s  sufficient conditions 

In this section we recall Boltianskii's definition of a regular synthesis as stated 
in [4]. This concept is based on the definition of a piecewise-smooth set. 

Let M be a n-dimensional vector space, and f2 an open subset of M. Let 
E an s-dimensional vector space (s < n) and K C E a bounded, s-dimensional 
convex polyhedron. Assume that in a certain open set of E containing K are 
given n continuously differentiable functions ~o ~ (41, 42,...  , 4 s), (i = 1, 2, . . .  , n) 

o such that the rank of the matrix of partial derivatives ( ~ ) ,  (i = 1, 2 , . . .  , n), 
(j = 1,2, . . .  ,s) be equal to s at every point 4 E K. 
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~~( x~ x~ ) ~ Jo~ 
Fig. 2. Hyperplane 7-/separating the half-line D -  and the convex cone C. 
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Def in i t ion  8. - If the smooth vector mapping ~o = (~o1,~o2,... ,~o n) from K 
to M is injective, the image L = ~o(K) is called a s-dimensional curvilinear 
polyhedron in M.  

- Any set X C [2 which is the union of a finite or countable number of 
eurvilinear ployhedra, such that only a finite number of these polyhedra intersect 
every closed bounded set lying in [2, will be called a piecewise-smooth set in [2. 
The dimension of this set will be the highest dimension of polyhedra involved 
in the construction. 

R e m a r k  4. It has been proven in [12] that any non-singular smooth surface 
of dimension less than n, closed in [2, can be decomposed in a finite number of 
eurvilinear polyhedra. Therefore, such a surface is is a pieeewise-smooth set in 
[2. 

Now let us state the problem: In the n-dimensional space M, we consider 
the following system: 

- p ( x l , . .  , z n , u )  i = 1 , . .  , n  (12) 
dt 

where the control u = ( u l , . . .  ,Urn) belongs to an open set U C Rrn. The 
problem is the following one: Given any two points Xo and xl  E [2, among all 
the piecewise continuous controls u(t) transferring the point from xo to xl  find 

the one which minimizes the Junctional J = fito f ° (x( t ) ,  u(t))dt. 
Now, let us assume that  are given a piecewise-smooth set N of dimension 

lower or equal to n - l ,  and n + l  piecewise-smooth sets p0, p 1 . . .  , pn  verifying 

pO C P~ C p2 C . . .  C pn = [2, (13) 

and a function v defined in [2 and taking its values in U. Now, we can introduce 
Boltianskii's definition of a regular synthesis. 

De f in i t i on  9. The sets, N,  pO, . . .  , pn  and the Junction v effect a regular syn- 
thesis for (12) in the region [2, if the following conditions are satisfied. 

A The set po is the target point. Every smooth component o f P i \  ( p i - 1 U N ) ,  
i = 1 , . . .  , n, is an i-dimensional smooth manifold in [2; these components 
will be called/-dimensional cells. The function v is continuously differen- 
tiable on each cell and can be extended into a continuously differentiable 
function on the neighbourhood of the cell. 

B All the cells are grouped into cells of the first or second type ~1 or T2) in 
the following manner: 

(1) If cr is a 1-dim cell of type T1, then it is a segment of a phase trajectory 
solution of (12) approaching the target po with a nonzero phase velocity. 
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If  a is a i-dim cell of type T1 (i > 1), then through every point of a, 
passes a unique trajectory solution of equation (12). Furthermore, there 
exists an (i - 1)-dim cell II(a) such that every trajectory solution of 
(12) leaves a after a finite time, and strikes against the cell II(a) at a 
nonzero angle and with a nonzero phase velocity. 

(2) If  a is a ( i -  1)-dim cell of type T2 (i >_ 1), then, from any point 
of a there issues a unique trajectory of (12), moving in an (i + 1)- 
dim cell Z(a) of type T1. Moreover, the function v(x) is continuously 
differentiable on a U Z(a). 

(3) All 3-dim cells are of type T1. 
C The conditions B(1), B(2) and B(3) ensure the possibility of extending 

the trajectories solutions of (12) from cell to cell. 2 It is required that each 
trajectory "pierces" cells of the second kind only a finite number of times. 
In this connection every trajectory terminates at the point O. We will refer 
to these trajectories as being marked. 

D From every point of the set [2 \ N there exists a unique marked trajectory 
that leads to O. From every point of N there issues a trajectory, solution 
of (12), not necessarily unique and which is also said to be marked. 

E All the marked trajectories are extremals. 
F The value of the functional J computed along the marked trajectories ending 

at the point O, is a continuous function of the initial point. In particular, 
if several trajectories start from a point xo of N,  then, J takes the same 
value in each ease. 

From this definition, we can now express Boltianskii's sufficient optimality 
condition: 

Theorem 6. If a regular synthesis is effected in the set /2 under the as- 
sumption that the derivatives ~ and ~ exist and are continuous, and that 
f ° (x ,u)  > 0, then all the marked trajectories are optimal (in the region ~2). 

4 S h o r t e s t  p a t h s  f o r  t h e  R e e d s - S h e p p  c a r  

4.1 The pioneer works by Dubins and Reeds and Shepp  

The initial work by Dubins from 1957 considered a particle moving at a constant 
velocity in the plane, with a constraint on the average curvature of trajectories. 
Using techniques close to those involved in the proof of Fillipov's existence 
theorem, Dubins proved the existence of shortest paths for his problem. He 
showed that the optimal trajectories are necessarily made up with arc of circles 

2 Trajectories are extended from the cell a into lI(a) if H(a) is of type T1, and from 
a to ,U(H(a)) if H(a) is of type T2. 
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C of minimal turning radius and line segments S. Therefore, he proved that 
any optimal path must be of one of the following two path types: 

[CaCbCe , CaSdCe} where: 0 <: a, e < 2r, ~r < b < 27r, and d > 0 (14) 

In order to specify the direction of rotation the letter C will sometimes 
be replaced by a "r" (right turn) or a "/" (left turn). The subscripts a, e , . . .  
specify the length of each elementary piece. 

Later, Reeds and Shepp [31] considered the same problem, when backwards 
motions are allowed (lull = k). In both cases, as the modulus of the linear veloc- 
ity keeps constant, the shortest path problem is equivalent to the minimum-time 
problem. Contrary to Dubins, Reeds and Shepp did not prove the existence of 
optimal paths. Indeed, as the control set is no more convex the existence of op- 
timal paths cannot be deduced directly from Fillipov's theorem. From Dubins's 
result, they deduced that any subpath of an optimal path, lying between two 
consecutive cusp-points, must belong to the sufficient family (14). Finally, they 
proved that the search for a shortest path may be restricted to the following 
sufficient family (the symbol I indicates a cusp): 

{ ClClC, ccjc, ctcc, ccotc c, clc, colc, (15) 
ClC=/=sc, csc=/=lC, ClC /2sc=/=lC, c s c }  

However the techniques used by Reeds and Shepp in their proof are based 
on specific ad hoc arguments from differential calculus and geometry, specially 
developed for this study, and cannot constitute a framework for further studies. 

The following two subsections present a sequence of more recent works 
based on optimal control theory and geometry which have led to characterize 
the complete solution of Reeds and Shepp's problem. Section (4.2) presents a 
result simultaneously obtained by Sussmann and Tang [36] on the one hand, 
and by Boissonnat, Cerezo and Leblond [2] on the other hand, showing how 
Reeds and Shepp's result can be found and even slightly improved by using 
optimal control theory. 

Section (4.3) presents a work by Sou~res and Laumond [33] who achieved 
the characterization of shortest paths by completing the local reasoning of PMP 
with global geometric arguments. 

The last section (section 4.4) concludes the study by providing, a posteriori, 
a new proof of the construction by using Boltianskii's sufficient conditions [35]. 

4.2 Characterization of  a sufficient family: A local approach 

This section summarizes the work by Sussmann and Tang [36]; we use the 
notations introduced by the authors. 
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T h e  s t r u c t u r e  of  commuta t i ons  As the control set URs = {-1, +1} x 
[-1, 1] related to Reeds and Shepp's problem (RS) is not convex, it is not 
possible to deduce the existence of optimal paths directly from Fillipov's exis- 
tence theorem. For this reason, the authors have chosen to consider what they 
call the convexified problem (CRS) corresponding to the convexified control set 
UcRs = [-1, +1] x [-1, +1] for which Fillipov's existence theorem (theorem 2) 
applies. The existence of optimal paths for RS will be established a posteriori 
as a byproduct. 

Let gl(x) -- [ sinn0 ) ,  and g2(x) ---- denote the two vector fields on 

which the kinematics of the point is defined. With this notation system (2) 
becomes : 

= f ( ~ , u ) = g l ( ~ )  ~1+g~(~) u~ 

the corresponding hamiltonian is: 

(16) 

H = < ¢ , f > =  ¢ l c o s O u 1 + ¢ 2 s i n O u l + ¢ 3 u 2 = C l u l + ¢ 2 u 2  

where ¢1 = < ¢,gl  >, and ¢2 = < ¢,g2 > represent the switching func- 
tions. From PMP, a necessary condition for (ul(t),u2(t)) to be an optimal 
control law, is that there exists a constant ¢o _< 0 such that at each time 
t e [~o, t,] 

- ¢ 0  = < ¢(t) ,g l (x(~))  > ~ l ( t )+  < ¢(t) ,g2(x(t))  > ~2(t) 
= max~=(vl,.2)eu(< ¢( t ) ,  gl (x(~)) > v 1 (~)--~ < ~b(~), g2 (x(~)) > v 2 (~)) 

(17) 

- O H  

A necessary condition for t to be a switching time for ui is that ¢i = 0. 
Therefore, on any subinterval of [to, tl] where the switching function ¢i does 
not vanish the corresponding control component ui is bang i.e. maximal or 
minimal. 

Now, by means of theorem 4 we can express the derivative of the switching 
functions in terms of Lie brackets: 

¢~ = <  ¢,  m > ~ ¢~ = u2 < ¢,  [g2, m] > 
¢2 = <  ¢,g2 > = ~  ¢2 = -u~ < ¢,[g~,m] > 
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Thus the function ¢3 = < ¢ , g a  >, where g3 = [gl ,g2]  = ( -  sin~,cosO,0) T, 
seems to play an important  role in the search for switching times. We have 
then: 

Maximizing the Hamiltonian leads to: 

(18) 

ul( t)  = sign(¢l(t)) and us(t) -- sign(¢2(t)) (19) 

where / +~ if s > 0  
s ign(s )=  - if s < 0  

I. any element of [-1,1] 

Then from PMP we get: 

i f s = 0  

I¢l(t)l  + t¢2(t)l + ¢0 = 0 (20) 

On the other hand, at each point of the manifold M, the vector fields gl, g2 

and g3 define a basis of the tangent space. Therefore, as the adjoint vector 
never vanishes, ¢1, ¢2 and ¢3 cannot have a common zero. It  follows that: 

[¢1(t)[ 4 [¢2(t)[ + [¢3(t)1 ~ 0 (21) 

Equations (18), (19), (20) and (21) define the structure of commutations; 
several properties may be deduced from these relations as follows: 

L e m m a  1. There do not exist (non trivial) abnormal extremals for CRS. 

Proof:  If ¢o = 0 then (20) ==~ ¢1 ~ 0 and q~2 - 0. Then (21) ~ ¢3 ~ 0 but 
(18) ==~ u1¢~ = u2¢3 = 0 ==~ u~ = u2 = 0. The only remaining possibility is a 
trivial trajectory i.e. of zero length in zero time D. 

L e m m a  2. On a non trivial extremal trajectory for CRS, ¢1 and ¢2 cannot 
have a common zero. 

Proof:  If 3t E [to, t~] such that (~ l ( t )  = (~2(t)  = 0 then (20) ==# ¢o = 0, we 
conclude with lemma 1 [] 

.~2 -b ¢2 is constant. Furthermore, L e r n m a  3. Along an extremal for CRS a = ~'i 3 
= 0) ¢ = .  (¢1 - 0) 
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P roo f :  As ¢1 -- u~53 and ¢3 -- u251 we deduce that  ~ -- 52 + 523 is constant. 
,~ = 0 =~ 51 -- 0, obvious. Inversely, suppose ¢1 - 0 but ,¢ ~ 0; from lemma 2 it 
follows that  52 ¢ 0. Therefore as u2 --- s ign(52),  us ¢ O. But then (18) ==~ 0 = ¢1 = 
u2.53 ==~ 53 = 0 that  leads to a contradiction [3. 

L e m m a  4. Along an ex t remal  for CRS,  ei ther  the  zeros of  ¢1 are all isolated,  
or 51 - 0. Fur the rmore ,  a t  an  isolated zero of ¢1, ¢1 exists and  does not  vanish.  

P roo f :  Let x(t ,  u) be an extreinal for CRS on [to, hi .  Suppose ¢1 ~ 0; it follows 
that  ,~ > 0. Let r E ] t0 ,h[  such that  e l ( r )  = 0, from lemma 2 ¢2(r) ~ 0 and 
as ¢2 is continuous there exists a subinterval I C ]to, t1[ containing r such that  
Vt e I ,  ¢2(t) ~ 0. Therefore the sign of ¢2 is constant on I .  From this, we deduce 
that  u2 - 1 or u2 - - 1  on I .  In either case, since the equation ¢1 = u2(t) ¢3(t) 
holds on I ,  it comes ¢1(t) = =t=¢3(t), the sign keeping constant on I.  s > 0 and 
51(T) ---- 0 ~ ¢a(r)  ¢ 0 ~ ¢1(r) = :t:¢3(r) ¢ 0. therefore, r is an isolated zero. 
[] 

Therefore ,  there  exist two kinds of  ex t remal  t ra jec tor ies  for CRS: 

- type  A: t ra jec tor ies  with a finite number  of  switch on u l ,  
- t ype  B: t ra jec tor ies  along which ¢1 - 0 and  ei ther  us - 1 or Us - - 1 .  

Before s ta r t ing  the  s tudy  of these two p a t h  types ,  we need to s ta te  a s imple 
p re l imina ry  lemma.  

L e m m a  5. I f  an  op t ima l  t r a j ec to ry  for CRS is an arc bang  Ca then  necessari ly 
a <~ 7r. 

P r o o f :  When a > Ir it suffice to follow the arc of length 2~ - a in the opposite 
direction. Zt 

C h a r a c t e r i z a t i o n  o f  t y p e  A t r a j e c t o r i e s  First ,  let us consider the  t ype  
A t ra jec tor ies  wi th  n o  c u s p  i.e. t ra jec tor ies  along which ul  -= 1 or ul  - - 1 .  
According to  the  s y m m e t r y  of the  p rob lem we can restr ic t  the  s tudy  to  the  
case t h a t  Ul - 1. T h e  corresponding t ra jec tor ies  are the  solutions of  Dubins '  
p rob l em (DU) which are op t imal  for CRS. 

Let  7 ( t ) , t  E [t0,tl] be such a t ra jec tory .  F rom l e m m a  4 we know t h a t  the  
zeros of  ¢1 are  all isolated. Fur thermore ,  ¢1 cannot  vanish on ]to, t l [  because  
in t h a t  case the  sign of ¢1 would have to  change,  and  u l  would have to  switch. 
Therefore ,  as 7 is a t r a j ec to ry  for DU, ¢1(t) > 0 on [ to ,h i  and  ¢, > 0 on 
]to, t l[ .  E..quations (18) become:  ¢2 = - ¢ 3  and  ¢3 = -u2¢.1. T h e n  ¢2 is of class 
C 1 and  ¢2 = u2¢1. Fur thermore ,  u2 = sign(C2), then  ¢2 = ¢ls ign(¢2) .  This  
means  t h a t  ¢2 is convex, (resp. concave) on the  whole interval  where  ¢2 > 0 
(resp. ¢2 < 0). F rom t h a t  we deduce the  following proper ty :  
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L e m m a  6. A t r a j ec to ry  7 wi th  no cusp, op t imal  for CRS, is necessari ly of one 
of the  following three  kinds: 

- C~ O < a < T r  
-CaCb O < a < ~  and O < b < ~  
-CaS~Cb O < c ,  O < a < ~  and 0<b<i  

Proo f :  
As before we consider only the trajectories along which ul - 1. If ¢2 does not 

vanish, 7 is an arc bang; from lemma 5 we can conclude. 
If ~b2 vanishes, let us denote by I the time interval defined by I = it ,  t E 

[to, tl], ¢2(t) # 0}. As ¢21(0) is closed, I is relatively open in [to, tl]. Let/7 be the set 
of connected components of I .  First, let us prove that  2: does not contain any open 
interval J =]t', t"[C [to, tl]. Indeed, if J is such an interval, then ¢2(t') = ¢2(t") = 0. 
Since ¢2 is either negative and concave, or positive and convex on J ,  then neces- 
sarily ¢2 = 0 on J which is a contradiction. So [t0,tl] is partitioned into at most 
three intervals Ii,I2,Ia such that  ¢2 never vanishes on /1 U I3, and ¢2 -- 0 on I2. 
On each interval J in 17 u2 is constant and equals 1 or -1 .  From equations (18) we 
get ¢'3 + q~3 = 0. We have shown that  ¢2 vanishes o n / 2  = [t ' ,t"]; if to < t '  then ¢2 
is convex and positive (or concave and negative) on [to, t '[ and ¢2(t') = 0. Therefore 
both q~a and q~a have a constant sign on ]to, t '[ !for instance, if ¢2 > 0 on [t0,f[,  then 
¢3 = -u2¢1 and u2 = -sign(¢2) = - 1  = v ¢ a  = ¢1 # 0). Also ¢a = -¢2 ,  so ¢a 
has no zero either because the derivative of a convex function only vanishes at its 
minimum. This implies that  t '  - t o  < {. By applying a same reasoning on ]t", tl] we 
conclude the proof for the case ul - 1. The case ul -= - 1  can be derived from the 
same arguments [:3. 

R e m a r k  5, The previous lemma does not solve Dubins' problem. It just de- 
termines the structure of Dubins' trajectories which are CRS-optimal. Indeed, 
a time optimal trajectory for DU is not necessarily optimal for CRS. 

Now let us go back  to the  general  form of t ype  A t ra jector ies .  B y  in tegra t ing  
the  adjoint  equat ions  type  A t ra jec tor ies  m a y  be  very well character ized.  Let  
us consider  the  adjoint  system:  

l ~l OH ---- ---g~- = 0 
42 -- 0,OH 0 

3 -- ~ 0  R ¢1 sin 8 ul  -- ~b2 cos ~ ul  = ¢1 Y - ¢2 

Hopefully,  these equat ions  are  easily integrable:  ¢1 and  ¢2 are cons tan t  on 
[to, t1] and  if we suppose  x(to) --- y(to) -= 0 we get ¢2(t) = ¢3(t)  -- Ca(to) + 
¢ l y ( t )  - ¢2x( t ) .  Therefore ,  f rom relat ion (17) we can deduce t ha t  the  switching 
points  are  loca ted  on three  paral lel  lines. 
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- when Cs(t) = 0, the point lies on the line Do: ¢1Y - Csx + ¢3(t0) = 0 
- when ¢1(t) = 0, we deduce from (17) that  ¢3(t)u2(t) + ¢0 = 0: 

• If us = 1 the point is on the line D + : ¢1Y - Csx + ¢3(t0) + ¢o = 0 
• If u2 = - 1  the point is on the line D -  : ¢ly-¢sx+¢3(to)-¢o = 0 

- If ¢2(t) vanishes over a non empty interval [rl,r2] C [t0,ta], we get from 
relation (17): Cx c o s 0 ( t ) +  ¢ 2 s i n 0 ( t ) +  Co = 0. According to lemma 2, the 
constant ¢1 and ¢2 cannot be both zero, it follows that  0 remains necessarily 
constant on [TI,~'2], the singular control component u2 is equal to 0, and the 
corresponding trajectory is a segment of Do. 

- At a cusp point ¢1 = ¢1 cos 0 + Cs sin 0 = 0. It follows that  the point is 
oriented perpendicularly to the common direction of the three lines. 

To sum up, type A trajectories are made up with arcs of circle (C) of 
minimal turning radius which correspond to the regular control laws (ul = 
+1, u2 = +1) and line segments (S) which correspond to the singularity of the 
second control component: (ul = 4-1, us = 0). The line segments and the point 
of inflection are on Do, the cusp point are on D + or D -  and at each cusp the 
direction of the point is perpendicular to the common direction of the lines, see 
figure (3). We have the following lemma: 

L e m m a  7. In the plane of the car's motion any trajectory of type A is located 
between two parallel lines D + and D - .  The points of inflection and the line 
segments belong to a third line Do having the same direction as D + and D -  
and located between them at equal distance I¢~1 < ~. The cusp-points are 

located on D + when u2 = 1 and on D -  when u2 = -1 ;  at a cusp point the 
representative point 's orientation is perpendicular to these lines. 

At this stage, by using a geometric reasoning it is possible to prove that  
some sequences of arcs and line segments are never optimal. 

D" D" 

Do 

D + D + 

r+r - 1" r+r~ s - r -  

Fig. 3. Optimal paths of type (A) lie between two parallel lines D + and D - .  

L e m m a  8. The following trajectories cannot be CRS-optimal paths. 
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1. c~tc~ a>O 
2. CalC~SeC~ a > 0,e > 0, with the same direction of rotation ( I or r ) on 

the arcs C_- located at each extremity of S. 
2 

3. C-~ SeC~ tC~, e _> 0, with an opposite direction of rotation on the arcs C-_2 
located at each extremity of S. 

4. CalC'bCbICbCb a,b > 0 

Proofi  The method of the proof consists in showing that each trajectory is equiv- 
alent to another one which is clearly not optimal. The reasoning is illustrated at figure 
(4): By replacing a part of the initial path by the equivalent one drawn in dotted line, 
we get an equivalent trajectory i.e. having the same cost and linking the same two 
configurations. Then, using the preceding lemmas 6 and 7 we prove that this new 
trajectory does not verify the necessary conditions of PMP. On figure (4) the path 
1, l+l~ is equivalent to a path + + l~ r ,  and from lemma 6 we now that such a path is 
not optimal. The three other path types (2, 3 and 4) do not satisfy lemma 7. Indeed, 
either the points of inflection and the line segment do not belong to the same line Do 
or the direction of the point at a cusp is not perpendicular to Do. [] 

t 't ~ 

1 2 

\ 

Fig. 4. Non-optimal equivalent trajectories 

Finally, Using the theory of envelopes, Sussmann and Tang showed that  a 
path C~[CbCbiCb is never optimal. Due to the lack of space we cannot present 
here this technical part  of the proof, the reader will have to refer to [36]. 
This last result eliminates type A trajectories with more than two cusps. The 
remaining possible sequences of (C) and (S) determine eight path types which 
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are represented by the types (II) to (IX) of the sufficient family (22) presented 
at section 4.2. 

Charac te r i za t ion  of  t y p e  B t ra jec to r ies  Let us first consider the case that 
u2 - 1; we call this subproblem LTV (Left Turn Velocity). In order to lead their 
reasoning the authors considered what they called the lifted problem LLTV 
(Lifted Left Turn Velocity) obtained from LTV by regarding the variable 8 as 
a real number x3. For this last problem, as x3 - 1, any trajectory ~/linking the 
point x0 at time to to the point xl at time tl has the cost: At = x3(tl)  -x3(t0). 
The same phenomenon occurs for LTV, but only for trajectories whose duration 
is lower or equal to Iv. For this reason the problem LLTV is called degenerate 
whereas the problem LTV is locally degenerate. 

Using the techniques presented in chapter 1 it is straight forward to deduce 
from the structure of the Lie algebra L = Lie(gl,g2) generated by the vector 
fields gl and g2, that the problem LTV has the accessibility property. Neverthe- 
less, as the corresponding system is not symmetric (i.e. an admissible trajectory 
followed backwards is not necessary admissible) we cannot deduce directly the 
controllability of LTV. This can be done by considering the "bang-bang" sys- 
tem (BB) corresponding to the control set (ul,u2) E { -1 ,+1}  x {-1,  +1}. As 
the BB system has the accessibility property and is symmetric on the connected 
manifold R 2 x S 1 it is controllable. Any admissible trajectory for BB is a se- 
quences of tangent arcs C. By replacing every arc ra by the complementary 
part 12.-a followed backwards, we can transform any BB trajectory into an 
admissible trajectory for LTV. Therefore, we deduce the controllability of the 
problem LTV. This is no more true for the problem LLTV in R 3. It suffice to 
note that no point (x, y, 0) verifying (x, y) ¢ (0, 0) is reachable from the origin. 

By using the Ascoli-Arzel~ theorem, Sussmann and Tang proved that the 
reachable set for LLTV from x0, 7~(xo), is a closed subset of R 3. Now, let 
Lo be the ideal of the lie algebra L generated by gl- As L0 is the smallest 
linear subspace S of L, such that VX e S, VY E L, [X, Y] E S. It follows that 
Lo -= Lie(g1, g3)- 

Def ini t ion 10. (Sussmann) - Lo is called strong accessibility Lie algebra. 
- Let x E R 3, Lo(x) = span(gl(x),g2(x)); a trajectory of L L T V  is called a 

strong extremal if  the corresponding adjoint vector ¢ is not trivial on Lo(v( t) ), 
i.e. the projection ore( t )  on L0(v(t)) never vanishes. 

- We will call boundary trajectory of L L T V  any trajectory V: [to, tl] -+ R 3 
such that v(tl) belongs to the boundary O~(xo) of 7~(Xo). 

L e m m a  9. Any boundary trajectory of LLTV is a strong extremal of the form 
laSo l~Sl .. "°~18~Is~+'°b where 0 _< a,b _< ~- and the signs si E { + , - }  alternate. 
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Proof." Let 7 : [to,t1] --+ R 3 be a boundary trajectory for LLTV, xo = 7(to) and 
xl = 7(tl) e OTi(xo). From theorem 5 we know that there exists a nontrivial adjoint 
vector ¢ = (¢0, ¢1, . . .  , Cn) verifying ¢0 - 0. From relation (20) we get I¢11+1¢zl = 0. 
On the other hand, ~ = ¢1(t) ~ + ¢3(t) 2 ¢ 0 otherwise ¢1 = ¢2 = Cs = 0. It  follows 
that < ¢, gl > =  ¢1 and < ¢, g~ > =  ¢3 do not vanish simultaneously and therefore 
7 is a strong extremal for LLTV. Now, as uz -- 1 we know from equations (18) that 
¢1 must be a nontrivial solution of ~1 + ¢1 = 0. Therefore, the distance between two 
consecutive zeros of ¢1 is exactly 7r and the sign of ¢1 changes at each switch. [:3 

L e m m a  10. Given any pa th  7 solution of LLTV, there exists an equivalent 
solution 71 of LLTV which is a concatenation of a boundary  t ra jectory and an 
arc bang of LLTV for the control ul - 1. 

Proof." Let 7 be defined on [to, tl], 7(t0) = zo and 7(tl) = xl a trajectory solution 
of LLTV. If xl E OTi(xo) the conclusion follows. Suppose now that Xl E Int(Ti(xo)). 
let us consider an arc bang for LLTV corresponding to the control ul - 1, ending 
at xl. As the set T~(xo) is closed, by following this path backwards from xl the 
representative point reaches, after a finite time, a point x~ belonging to the boundary. 
The problem being degenerate, the trajectory 7 made up by the boundary trajectory 
from xo to x~ followed by the arc bang from x~ to xl is equivalent to 7. [] 

Now Suppose 7 : [to, tl] -4 R 2 x S 1 is an LTV trajectory t ime optimal for 
CRS. Let rr : R 3 -4 R 2 x S 1 be the canonical projection, then ^ / =  7r o 7" where 
7* : [to, tl] -4 R 3 is a t rajectory of LLTV. From the previous lemma we can 
replace 7* by the concatenation * 7new of a boundary t ra jectory 7~ and a bang 
t ra jectory 73 for ul = 1, and then project these down to trajectories 7new, 
71,72 in R 2 x S z. Then 71 is of the form lS°l sl IS~ts~+l -~ -~ . . . .  ~ "b . But  from lemma 8 a 
pa th  CalC~ with a > 0 cannot be optimal. I t  follows that  71 contains at most  
one cusp, and the length of 72 is lower or equal to ~r. Therefore, 7new is a pa th  
I a+l b-1 c+ or I a-l d +l e + = l~l++~ with a, b, c and d + e at  most  equal to 7r. Hence, the 

type  l+ I~ l +, 0 < a, b, c <_ 7r constitutes a sufficient family for LLTV. 
Using the same reasoning for the dual problem RTV (Right Turn Velocity), 

the pa th  type r + r b r +  with 0 < a, b, c _< 7r appears to be also sufficient. 

R e m a r k  6. The reasoning above cannot be directly held in R 2 x S 1 for L T V  
because in this case the length of a trajectory steering the point from xo to xl  
is not necessarily equal to O(tl) - O(to). 

Suff ic ien t  f a m i l y  for  R S  From the reasoning above it appears  tha t  the search 
for optimal trajectories for CRS may be restricted to the following sufficient 
family containing nine pa th  types: 
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(I)  q l ; 1  + or r~+~fr$ 0 < a < ~ ,  0 < b < ~ ,  0 < e < 
( I I ) ( I I I )  Ca]CbC~ or CaCb[Ce O < a < b , O < e < b , O < b < 
(IV) CaCb]CbCe O ~ a < b ,  O<_e<b,  O<_b<~ 
(V) C~ICbCb]C~ 0 < a < b ,  O <_ e < b , 0 < b < ~  
(VI) C~lC~S~C~lCb O_<a<~, O_<b<-~, O_<l 
(VII)(VIII) C~[C~S~Cb or CbS:C~]C~ O < a < ~r , O < b < ~ , O <_ l 
( IX)  C~SzCb 0 < a < ~ ,  0 ~ l ,  0 < b < ~  

(22) 

However, all the path contained in this family are obtained for ul = 1 or 
ul = -1 ,  and by this, are admissible for RS. Therefore, this family constitutes 
also a sufficient family for RS which contains 46 path types. This result improves 
slightly the preceding statement by Reeds and Shepp of a sufficient family 
containing 48 path types. 

On the other hand, as Fillipov's existence theorem guarantees the existence 
of optimal trajectories for the convexified problem CRS, it ensures the existence 
of shortest paths with bounded curvature radius for linking any two configura- 
tions of Reeds and Shepp's car. Applying PMP to Reeds and Shepp's problem 
we deduce the following lemma that will be useful in the sequel. 

L e m m a  11. (Necessary conditions of PMP) 
Optimal trajectories for RS are of two types: 

- A / P a t h s  lying between two parallel lines D + and D-  such that the straight 
line segments and the points of inflection lie on the median line Do of both 
lines, and the cusp points lie on D + or D- .  At a cusp the point's orientation 
is perpendicular to the common direction of the lines (see figure 3), 

- B / P a t h s  C]C l . . .  IC with length(C) < 7r for any C. 

4.3 A geometr ic  approach: cons truc t ion  of a synthesis  of op t imal  
pa ths  

S y m m e t r y  and reduct ion  propert ies  In order to analyse the variation of 
the car's orientation along the trajectories let us consider the variable 8 as 
a real number. To a point q = (x,y,8*) in R 2 x S I correspond a set Q = 
{ ( x , y , 8 )  / 8 6 8*} in R 3 where 8* is the class of congruence modulus 27r. 
Therefore, the search for a shortest path from q to the origin in R 2 x S 1 
is equivalent to the search for a shortest path from Q to the origin in R 3. 
By considering the problem in R 3 instead of R 2 x S 1 we can point out some 
interesting symmetry properties. First let us consider trajectories starting from 
each horizontal plane P0 = {(x,y,8), x , y  6 R 2} C R 3. 
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In the plane P of the robot 's motion, or in the plane P0, we denote by A0 
the line of equation: y = - x  cot ~ and A~ the line perpendicular to Ao passing 
through 0. Given a point (M,0),  we denote by M1 the point symmetric to M 
with respect to O, M2 the point symmetric to M with respect to A0, and M3 
the point symmetric of M1 with respect to Ao. Let T a be path from (M, 0) 
to (o, 0). 

L e m m a  12. There exist three paths ~ ,  T2 and T3 each isometric to T,  starting 
respectively from (M1,0), (M2, 0) and (M3,0) and ending at (O,0) (see figure 
5). 

A o 

M2 

Fig. 5. A path gives rise to 3 isometric ones. 

Proofi  (see Figure 5) 7~ is obtained from T by the symmetry with respect to O. 
Proving the existence of T2 requires us to consider the construction illustrated at 

figure (6): We denote by 5 the line passing through M and making an angle 8 with the 
x-axis, and s the axial symmetry with respect to g. Let A be the intersecting point of 
with the x-axis and r the rotation by the angle - 8  around A. Let us note L = r(M). 

Finally, t, represents the translation of vector LO. We denoteby 7~ the image of 
T by the isometry .~ = t o r o s. 7~ links the directed point (M, 8) = -~((O, 0)) to 
(O, 0) = .~(M, 8). 0 clearly equals 0. We have to prove that M = M2. Let respectively 

and/~ be the angles made by (O,M) and (O,/~/) with the x-axis. The measure of 

the angle made by the bisector of (M, O, ]vl) and the x-axis is: (1+ ~ = ~ = ~2 --A. 
As tan ~-~ = - cot ~, we can assert that ~/ is  the symmetric point of M with respect 
to Ale, i.e. M2. 
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Finally 73 is obtained as the image of 7" by ~ followed by the symmetry with 
respect to the origin. [:] 

M=M2 

Fig. 6. Construction of the isometry ~. 

L e m m a  13. If  T is a pa th  from (M(x,y),O) to (O,0),  there exists a pa th  T ,  
isometric to T ,  from ( M ( x , - y ) , - 8 )  to (0 ,  0). 

Proof :  It suffices to consider the symmetry s~ with respect to the abscissa axis. 

R e m a r k  7. - By combining the symmetry with respect to Ao and the sym- 
metry with respect to O, the line A~ appears to be also an axis of symmetry. 
According to lemmas 12 and 13 it is enough to consider paths starting from 
one quadrant in each plane Po, and only for positive or negative values of 
O. 

- The constructions above allow us to deduce easily the words wl, w2, w3 and 
w4 describing ~ ,  7-2, 7-3 and 7-4 from the word w describing T. 

• wl is obtained by writing w, then by permutating the superscripts + 
and - 

• w2 is obtained by writing w in the reverse direction, then by permutating 
the superscripts + and - 

• w3 is obtained by writing w in the reverse direction 
• ~ is obtained by writing w, then by permutating the r and the t [] 
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As a consequence of both lemmas above a last symmetry property holds in 
the case that  0 -- q-zr: 

L e m m a  14. If 7" is a path from (M(x, y), ~r) (resp. (M(x, y), -Tr)) to (0 ,  0), 
there exists an isometric path T ~ from (M(x,  y) , -~r)  (resp. (M(x, y), lr) ) to 
(o, 0). 

The word w ~ describing 7 "1 is obtained by writing w in the opposite direction, 
then by permutating on the one hand the r and the l, and on the other hand 
the + and - .  

R e m a r k  8. The points (M(x,y),Tr) and (M(x,y),-Tr) represent the same 
configuration in R 2 x S 1 but are different in R 3. This means that the tra- 
jectories 7" and T I are isometric and have the same initial and final points, but 
along these trajectories the car's orientation varies with opposite direction. 

P r o o f  of l emma 14: We use the notation of lemma 12 and 13. Let (M(x,y),1r) 
be a directed point and T a trajectory from (M, zr) to (0, 0). When 0 = :klr the axis 
Ao is aligned with the x-axis. By lemma 12, there exists a trajectory 7~ = ~(T), 
isometric to T, starting at (M2(x,-y),rc) and ending at (O,0). Then by lemma 12 
there exists a trajectory ~ -- sx (7~), isometric to T2, starting at ("~2(x, y),-Tr) and 
ending at (O, 0). Let us call T' the trajectory ~ ,  then T' = s, o .~(T) is isometric 
to T and by combining the rules defining the words w2 and ~ we obtain the rule 
characterizing ~-~ = w r (the same reasoning holds when 0 = -zr.) D 

Now by using lemma 14 we are going to prove that  it suffice to consider 
paths starting from points (x, y, 0) when 0 E [-lr ,  ~r]. In the family (22) three 
types of path may start  with an initial orientation 0 that  does not belong to 
[-~r, ~r]. These types are (I) and (VII) &~ (VIII). Combining lemma 14 with the 
necessary condition given by PMP we are going to refine the sufficient family 
(22) by rejecting those paths along which the total angular variation is greater 
than ~. 

L e m m a  15. In the family (22), types (I), (VII) and (VIII) may be refined as 

follows: 

(I) l+lbl+ or r+rb r+ O < a + b + e < ~ r  

(VII) (VIII) { 0 < a < ~ , 0 < b < 9 ,  0 < d  
CalC~SdCb or CbSdC~ICa and a+b<_ ~ if u2 is constant 

on every arc C 

Proof:  Our method is as follows: 

1. We consider a path T linking a point (M, 0) to the origin, such that Igl > ~r. 
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2. We select a part of T located between two configurations (M1,01) and (M2, 02) 
such that [01-021 = ~r. According to lemma 14 we replace this part by an isometric 
one, along which the point's orientation rotates in the opposite direction. In this 
way we construct a trajectory equivalent to 7" i.e having the same length and 
linking (M, 0) to the origin. 

3. We prove that this new trajectory does not verify the necessary conditions given 
by PMP. As 7" is equivalent to this non optimal path we deduce that it is not 
optimal. 

Let us consider first a type (I) path. Due to the symmetry properties it suffices to 
regard a path l+l~l + with a + b + e = ~r + e, (e > 0) and a > e. If we keep in place a 
piece of length e and replace the final part using lemma 14, we obtain an equivalent 
path l+r[r+r~_~ which is obviously not optimal because the robot goes twice to the 
same configuration. 

We use the same reasoning to show that a path C~IC~Sd with d # 0 cannot be 
optimal if a > ~. Without lost of generality we consider a path l + +l~_ s d . According 

to lemma 14 we can replace the initial piece l + . l~ by the isometric one r+ r~+  . 

The initial path is then equivalent to the path r+_~r~+J[s - which cannot be optimal 

as the point of inflection do not belong to the line supporting the line segment. 
Consider now a path C~]C~SdCb or CbSdC~IC~ with u2 constant on the arcs. 

We show that such a path cannot be optimal if a+b > ~. Consider a path l+l~_Sdlb 
2 

with a + b = ~ + e and a > e. We keep in place a piece of length e and replace 
the final part by an isometric one according to lemma 14. We obtain an equivalent 
path l+r+bS+dl+ra_ ~. As the point of inflection does not lie on the line D0, this path 

2 

violates both necessary conditions A and B of PMP (see lemma 11) and therefore is 
not optimal. [3 

R e m a r k  9. In the sufficient family (22) refined by lemma 15, the orientation 
of initial points is defined in [-~r, 7r]. So, to solve the shortest path problem in 
R 2 x S 1, we only have to consider paths starting from R 2 x [ - ~ ,  7r] in R 3. 

C o n s t r u c t i o n  o f  d o m a i n s  For each type of pa th  in the new sufficient family, 
we want to compute the domains of all possible s tar t ing points for paths ending 
at  the origin. According to the symmet ry  properties it suffices to consider 
paths  s tar t ing from one of the four quadrants  made by A0 and A~, in each 
plane Po, and only for positive or negative values of 0. We have chosen to 
construct  domains covering the first quadrant  (i.e. x tan 2°- < y ~ - x  cot ~), for 
e e o]. 

As any pa th  in the sufficient family is described by three parameters ,  each 
domain is the image of the product  of three real intervals by a continuous 
mapping.  I t  follows tha t  such domains are connected in the configuration space. 

To represent the domains, we compute their restriction to planes Po. As 0 
is fixed, the cross section of the domain in Po is defined by two parameters .  By 
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fixing one of them as the other one varies, we compute a foliation of this set. 
This method allows us, on the one hand to prove that only one path starts from 
each point of the corresponding domain, and on the other hand to characterize 
the analytic expression of boundaries. 

In order to cover the first quadrant we have selected one special path for 
each of the nine different kinds of path of the sufficient family; by symmetry 
all other domains may be obtained. 

In the following we construct these domains, one by one, in Pe. For each 
kind of path, integrating successively the differential system on the time inter- 
vals during which (ul, u2) is constant, we obtain the parametric expression of 
initial points. In each case we obtain the analytical expression of boundaries; 
computations are tedious but quite easy (a more detailed proof is given in [33]). 

We do not describe here the construction of all domains. We just give a 
detailed account of the computation of the first domain, the eight other domains 
are constructed exactly the same way. Figure 9 presents the covering of the first 
quadrant in P_ ~, the different domains are represented. 

, /  

~y 

r X 

F i g .  7 .  P a t h  + - + 

Construction of domain of path CICIC: As we said in the introductive section, 
Sussmann and Tang have shown that the study of family CICIC may be re- 
stricted to paths types l+l-l + and r+r-r +. As we only consider values of 8 in 
[-7r, 0] it suffice to study the type l+l[l + (figure 7). By lemma 15, a, b and e 
are positive real numbers verifying: 0 < a + b + e < r. 
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Along this trajectories the control (ul,u2) takes successively the values 
( + 1 , + 1 ) , ( - 1 , + 1 )  and (+1,+1) .  By integrating the system (4) for each of 
these successive constant values of ul and u2, from the initial configuration 
(x, y, 8) to the final configuration (0, 0, 0) we get: 

[ i-sinS + 2sin(b +e) -2sine 
- cos 8 + 2 cos(b + e) - 2 cos e + 1 
- a - b - e  

(23) 

Let us now consider that  the value of 8 is fixed. The arclength parameter e 
varies in [0,-8]; given a value of e, b varies in [ 0 , - 8 -  e]. When e is fixed as 
b varies, the initial point traces an arc of the circle ~e of radius 2 centered at 
Pe (sin 8 + 2 sin e, - cos 8 - 2 cos e + 1) 

One end point of this arc is the point E ( s i n S , - c o s 8  + 1) (when b = 0), 
depending on the value of e the other end point (corresponding to b = - 8  - e) 
describes an arc of circle of radius 2 centered at the point H ( -  sin 8, cos 8 + 1) 
and delimited by the point E (when e = -8 )  and its symmetric F with respect 
to the origin O (when e = 0). 

For different values of e the arcs of ~e make a foliation of the domain; this 
ensures the existence of a unique trajectory of this type starting form every 
point of the domain. Figure (8) represents this construction for two different 
values of 8. The cross section of this domain appears at figure (9) with the 
eight other domains making the covering of the first quadrant in P_ ~. 

- As this domain is symmetric about the two axes A0 and A~, it follows 
from lemma 12 that  the domain of path 1-1+l - is exactly the same one. 
This point corroborates the result by Sussmann and Tang which states that  
the search for an optimal path of the family CICIC (when 8 < 0) may be 
limited to one of these two path types. 

- When 8 = -~r the domain is the disc of radius 2 centered at the origin. 

Following the same method the eight other domains are easily computed 
(see [33]), they are represented at figure 9 in the plane P_~.  The domain's 
boundaries are piecewise smooth curves of simple sort: arcs of circle, line seg- 
ments, arcs of conchoids of circle or arcs of cardioids. 

Ana l y s i s  o f  the  cons truct ion  As we know exactly the equations of the 
piecewise smooth boundary curves, we can precisely describe the domains in 
each plane P0. This construction insures the complete covering of the first 
quadrant, and by symmetry the covering of the whole plane. All types in the 
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Fig. 8. Cross section of the domain of path l+l[l  + in 1:>o, (0 = - ~  left side) and 
(0 = - ~  right side). 

sufficient family are represented 3. Analysing the covering of the first quadrant, 
we can note that  almost all the domains are adjacent, describing a continuous 
variation of the path shape. Nevertheless some domains overlap and others are 
not wholly contained in the first quadrant. Therefore, if we consider the covering 
of the whole plane (see fig 10), many intersections appear. In a region belonging 
to more than one domain, several paths are defined, and finding the shortest 
one will require a deeper study. At first sight, the analysis of all intersections 
seems to be combinatorially complex and tedious, but we will show that  some 
geometric arguments may greatly simplify the problem. First, let us consider 
the following remarks about the domains covering the first quadrant: 

- Except for the domain r + l + l - r  - ,  all domains are adjacent two-by-two (i.e. 
they only have some parts of their boundary in common). Then, inside 
the first quadrant we only have to study the intersection of the domain 
r + l + l - r  - with the neighbouring domains. 

- Some domains are not wholly contained in the first quadrant, therefore, 
they may intersect domains covering other quadrants. Nevertheless, among 

3 However, each domain is only defined for 0 belonging to a subset of [-~r, r]. So 
in a given plane Pe only the domains corresponding to a subfamily of family (22) 
refined by lemma 15 appear. 
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Fig. 9. The various domains covering the first quadrant in P_ ~ (foliations appear in 
dotted line). 
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Fig. 10. Overlapping of domains covering the plane P_ ~_.  
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the domains overlapping other quadrants, some are symmetric about A0 
or A~-. These domains are: 

* the domains l + l - l  + and r + l + l - r -  symmetric about Ao, 
, the domains l + l - l  + and 1 - s - l -  symmetric about A~,  (i.e. all domains 

intersecting A~-.) 
In this case, we consider that  only one half of the domain belongs to the 
covering of first quadrant. Therefore, no intersections may occur with the 
symmetric domains. 

Finally, we only have to study two kinds of intersections: on the one hand 
the intersections of pairs of symmetric domains with respect to A0, (section 
4.3), and on the other hand the intersections inside the first quadrant between 
the domain r+l+bl~r - and the neighbouring domains (section 4.3). 

R e f i n e m e n t  o f  d o m a i n s  i n t e r s ec t i ng  Ao In this section we prove that  the 
path l + l - r  - ,  l + I b r b r + ,  l + l ~ s - r ~ r  +, and l + l T s  r stop being optimal as 
soon as their projections in Pe cross the Ae-axis. This will allow us to remove 
the part of these domains lying out of the first quadrant. 

1 / P a t h  l+ l - r  - 

L e m m a  16. A path l + l - r  - linking a directed point (M(x, y), 0) to (0, 0, 0), 
with y > - x  cot ~, is never optimal. 

Proof:  Suppose that there is a path 7~ of type l + l - r  - from a directed point 
( M 1 ( x l , y l ) , 8 1 )  to (0,0,0), verifying yl > - x l c o t ~ .  Let /1//2 be the cusp point 
(Figure 11). M2 is such that 4 ys < -x2cot ~ .  Let us consider a directed point 
(M,0) moving along the path from (M1,81) to (Ms,02). As M moves, the direction 
8 increases continuously from 01 to 0s. As a result, the corresponding line Ao varies 
from A01 to A0:. Its slope increases continuously from --cot ~ to --cot ~ .  Then, 
by continuity, there exists a directed point (M~,a) on the arc (M1, Ms), verifying 
y~ = -x~ cot 8" From lemma 12, there exist two isometric paths of type l + l - r  - and 
r+l+l - linking (M~,a) to the origin. Thus, (M1,81) is linked to the origin by a path 
of type l+r+l+l - having the same length as 7i. Such a path violates both necessary 
conditions A and B of PMP (lemma 11): (A: Do and D + cannot be parallel) and 
(B: us is not constant). As a consequence, 7~ is not optimal. 

2 / P a t h  l + l T s  r 

4 This assertion can be easily deduced from the construction of the domain of path 
l - s  r . 
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Y /Ae2 /,As A01 

0 ".,', x 

Fig. 11. There exists a point M~ such that M~ E Am. 

The shape of this path  is close to the shape of the pa th  l+Ibr [ ( b = ~ and 
a line segment is inserted between the last two arcs). Then, we can use exactly 
the same reasoning to prove the following lemma: 

L e m m a  17. A path  I+lZsr - linking a directed point (M(x,y) ,O) to (0, 0,0), 
2 

with y > - x  cot ~, is never optimal. 

3 /  P a t h  l+lbrbr+ 

L e m m a  18. A path  t+lbrbr+ linking a directed point (M(x,  y), 8) to (0, 0, 0), 
with y > - x c o t  ~, is never optimal. 

Proof-  The reasoning is the same as in the proof of lemma 16. Assume that there 
is a path 71 of type l+Ibrbr + linking a directed point (Ml(xl, yl), 81), verifying yl > 
- x l  cot 9 ,  to (0,0,0). Let M2 be the cusp-point; the subpath of 7~ from (M2,01) 
to the origin is of the type l - r - r  + symmetric to the type treated in Lemma 16. 
Therefore, the coordinates of M2 must verify y2 < -x2  cot s2~. Now, let us consider a 
directed point (M, 8) moving along the arc from (M1, 81) to (M2, 8). With the same 
arguments as in the proof of Lemma 16, there exists a directed point (Ma, a) on this 
arc, with 8t _<: a _< 82, verifying ya ---- - x ~  cot ~. From lemma 12, there exist two 
isometric paths of types l+l[rb r+ and r-r+l+l - linking (Ma, a) to the origin. As a 
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result, (M1,01) is linked to the origin by a path of the type l+r-r+l+l - having the 
same length as 7]. This path is not optimal because the robot goes twice through the 
same configuration; therefore 7] cannot be optimal. [] 

4 / P a t h  l+lT_s-rT_r + 
2 2 

The shape of this path is close to the shape of the path l+lbrbr+ ( b - " 
and a line segment is inserted between the two middle arcs). Then, we can use 
exactly the same arguments to prove the next lemma. 

L e m m a  19. A path l + l T s - r T r  + linking a directed point (M(x ,y ) ,O)  to 
2 2 

(0,0,0), with y > - x c o t  ~, is never optimal. 

Now, with lemmas 16 to 19 we can remove the part of domains l+l -r  - ,  
l+tT_s-r - ,  t + l - r - r  + and l + l T s - r T r  + lying out of the first quadrant (on the 

2 2 2 

other side of A0). Moreover, according to the analyse made at section 4.3, we 
only have to consider, the half part of the domains symmetric about A9 or A~ 
located in the first quadrant. As every domain intersecting A~ is symmetric 
about this axis, we can construct the covering of all other quadrants with- 
out generating new intersections. Inside each quadrant, it remains to study 
the intersection between the domain of path CICbCb]C and the neighbouring 
domains. Once again we restrict ourselves to the first quadrant. 

I n t e r s e c t i o n s  i n s i d e  t h e  f i r s t  q u a d r a n t  From the construction of domains 
covering the first quadrant, it appears that the domain r+l+lb r -  may intersect 
the following three adjacent domains:/+/~r~r +, l + l T s - r T r  + and l+lTs r . 

Furthermore the intersection between the domain r+l+lb r -  and the domains 
l + l T s - r T r  + and l+lTs r only happens when b is strictly greater than " 

2 2 2 

First, as a corollary of lemma 16, we are going to prove that a path r+l+l[r  - 
is never optimal when b > ~. Therefore the corresponding part of this domain 
will be removed and the intersections of domains inside the first quadrant will 
be reduced to the overlapping of domains r+l+lb r -  and l+l~,r~r +. 

Corol lary  1. A path of the family CCb[CbC verifying b > ~ cannot be opti- 
mal. 

Proof: Let us consider a path of the type r+l+lbr[. If this path is optimal, then 
the subpath l+Ibr~ is also optimal. Integrating the corresponding system we obtain 
the expression of initial points coordinates: 

x = sin 0 - 2 s in(e - b) + 2 sin e 
y = - cos 0 + 2 cos(e - b) - 2 cos e + 1 
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with ~ = e - 2b (since the first two arcs of circles have the same length) and from 
lemma 16 the coordinates must verify y _< - c o t  ~x. Replacing x and y by their 
parametric expression, we obtain after computation: 

~T e 7r (since 0 < e <  ~ )  [] s i n ~ ( 2 c o s b - 1 ) > 0  then b <  ~ 

Therefore  according to  the  previous construct ion we may  remove the part, 
of  the domain  r+l+l[r  - located beyond the point  H with respect  to O. (see 
figure 9). 

Now, only one intersection remains inside the first quadrant ,  between the 
+ -  - + .  

domains  r+l+lbr[  and la, lb, rvre, ,  let us call Z this region. In  order  to  deter-  
mine which pa ths  are opt imal  in this region, we compute  in each plane Po the 
set of  points  t ha t  may  be linked to  the origin by a pa th  of each kind having 
the same length. Initial point  of  these two paths  are respectively defined by the 
following paramet r ic  systems: 

( r+ l+l [ r : )  { Y = - s i n O +  2(2 cosb - 1) sin(e - b) 
cos0 - 2(2 cosb - 1)cos(e - b) + 1 

+ _ _ + { x = s i n ~ - 4 s i n e  t + 2 s i n ( e  ~ + b  l) (2a) 
(la'lb'rb're') y = -- COS~ + 4COSd -- 2 cos(e I + b r) - 1 

the  length of these paths  are respectively: 

L = a +  2 b ÷  e = 4 b +  6 with ~ = e -  2 b + a  (25) L t = e I + 2b I + a  t = 2(b t + e  I ) - 8  with 8 = e I -  d 

The  required condit ion L = L ~ implies t ha t  ~ + 2 b -  b r - e t = 0. By  replacing 
e I + b ~ by ~ + 2b in the  second system, then writ ing tha t  b o t h  systems are 

equivalent we obtain:  

siu(e - b)(1 - 2 cos b) + s i n O  - 2 s i n e  r + sin(~ + 2b) = 0 
cos(e - b)(1 2 cos b) + cos ~ - 2 cos e r +cos(O + 2b) + 1 = 0 

we eliminate the parameter  d writing tha t  sin 2 (d)  + cos 2 (d )  = 1; then after 
computa t ion ,  we obtain  the following relation between e and b: 

4cos  2 b - 2cosb  ÷ (1 - 2 cos b)(2 cos(e - 2b - 8) cosb 

+ cos(e - b)) + cos ~ + cos(~ + 2b) - 1 = 0 (26) 
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As e - 25 - 0 = e - b - (b + 0), this equation may be rewritten as follows: 

A sin(e - b) + B cos(e - b) + C = 0 

where A, B and C are functions of b and 0 defined by: 

A = 2(1 - 2 cos b) sin(b + 8) cos b 
B -- (1 - 2 cos 5)(2 cos(b + 0) cos b ÷ 1) 
C = 4 cos 2 b - 2 cos b + cos 0 + cos(~ + 2b) - 1 

Therefore we can express sin(e - b) and cos(e - b) by solving a second degree 
equation; we obtain: 

- A C  d: tBI~/A2 + B 2 - C 2 
sin(e - b) = A2 + B2 

The discriminant D = A 2 ÷ B 2 - C 2 may be factored as follows: 

(27) 

7) = 4 cos(b) s i n 2 ( : - ~ ) ( c o s ( 2 b  + 0) + cos(0) ÷ 6 cos(b) - 4) 

therefore, as b E [0, ~], the sign of 7) is equal to the sign of 

E(b) = cos(2b + 0) + cos(0) + 6 cos(b) - 4 

Let us call bmax the value of b solution of E(b) = O. As E(b) is a decreasing 
function of b, E(b) is positive when b < bmax. We will see later that  the maximal 
value of b we have to consider verifies this condition, ensuring our problem to 
be well defined. 

Now, as the region 1: is delimited by the vertical line (P2, N3), each point 
belonging to 2: must verify: x < sin 0. Moreover, as the type r+l+Ib r -  is defined 
for b E [ -0 ,  §], we can deduce from the first line of system (24) that  sin(e - b) 
is negative. As a result, the choice of the positive value of the discriminant in 
(27) cannot be a solution of our problem. From this condition we determine a 
unique expression for sin(e - b) and cos(e - b). Replacing these expressions in 
system (24) we obtain the parametric equation of a curve ~/0 issued from P2 
(when b = - 0 ) ,  dividing the region Z into two subdomains, and crossing the 
axis A0 at a point T (see figure 12). The value bT of b corresponding to the 
point T may be characterized in the following manner: 

From lemma 12 we know that  any path of type r+l + I - ~ -  starting on A0 a b ~b " e  
verifies a ---- e; it follows that  e - b - ~ = 0. Replacing e - b by ~ in (26) bT 
appears as being the solution of the implicit relation R(b) = 0, where: 
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0 0 
R(b) = 4 cos 2 b - 2 cos b + (1 - 2 cos b)(2 cos(b + 5) cos b + cos 5) + 

cos0 + cos(0 + 2b) - 1 (28) 

Now, combining the relation R(bT) = 0 with the expression of E(bT) we 
can prove simply that bT <bmax in order to insure the sense of our result. 
Therefore, R(b) being a decreasing function of b, the values of b e [-8, bT] are 
the values of b e [-8, ~] verifying R(b) >_ O. The curve 7a is the only set of 
points in I where both paths have the same length. As the distance induced 
by the shortest path is a continuous function of the state, this curve is the real 
limit of optimality between these two domains. This last construction achieves 
the partition of the first quadrant, and by the way the partition of the whole 
plane. 

A 0 

Q 
# 

/ 

I f 

/ l 1 + 1-~-~- 
HI' ~ 1 lb,~tb,l  

~ T  ~ intersection I 

/ 
,,=/ ~r÷l; lgr  - 

t I 

Fig. 12. The curve 7a splitting the intersection of domains r+l+i[r - and l+l~,r~,r - 
in the first quadrant of P_ 

Descr ipt ion of  the  par t i t ion  Figures (13),(14) and (15) show the partition of 
the plane P0 for several values of 0 all these pictures have been traced from the 
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Fig. 13. Partitions of planes Po and P_ 
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analytical equations of boundaries by using the symbolic computation software 
Mathematica. Each elementary cell consists of directed points that may be 
linked to the origin by the same kind of optimal path. The 46 domains never 
appear together in a plane Po; the following table presents the values of 0 for 
which each domain exists 5 

Type 
cc,,IC,,C 
ctc.c. lc 

Intervals o] validity 
[-~--~ 0] and 'z~ , [O,,,T] 

and P , d  

CtC~SC and CSC~ tC 
if sign(u2) is constant 

CiCC and CCiC 
CIC]SC and CSC~IC [-~r,0] and [0,r] 

if sign(u2) changes 
71" [-~r,-~]  and [y, ] 

ClClC 
CSC 

if sign(u2 ) changes 

' o] and [0 , . ]  

CSC [-~r, 0] and [0, ~r] 
if sign(u2) is constant 

CIC ~ SC~ IV [-2 arccot(2), 2 arccot(2)] 

When 0 varies in [-Tr, ~] the partition of planes P0 induces a partition of 
R 2 x [ - r ,  ~r]. Identifying the planes P_~ and P ,  we obtain a partition of the 
configuration space R 2 x S 1. 

In most part of domains the optimal solution is uniquely determined. How- 
ever, there exist some regions of the space where several equivalent path are 
defined. To describe these regions we introduce the following notation. 

In the first quadrant of each plane P0, we denote by A T the half-line defined 
as the part of A0 located beyond the point T (with respect to O). According to 
lemmas 16 to 19, paths l+l-r -, l+lTs-r -, t+l-~rbr +, and l+l~s-rTr + stop 

being optimal as soon as they cross AT, but are still optimal on A T. As the 
same reasoning holds for the domains symmetric with respect to Ao, there exist 
two equivalent paths optimal for linking any point of A T to the origin. The 
same phenomenon occurs on the curve T0 where paths r+l+blb r- and l+l~rb r+ 
have the same length. Hence, in the first quadrant, two equivalent paths are 
defined at each point of A T U 70. By symmetry with respect to A0 and A~, we 
can define such a set inside the four other quadrants. Let us call No the union 
of these four symmetric sets. 

5 These values of 0 have been deduced from the bounds on the parameters given by 
the partition. Details are given in [34]. 
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At any point of Po \ No = {p E Po, P ~. No} a unique path is defined if 
0 ~ zc mod(2zc). Inside each domain the uniqueness is proven by the existence of 
a foliation, and on the boundaries (outside No) any path is defined as a contin- 
uous transition between two types (and belongs to both path types). However, 
according to lemma 14, when ~ - 7r mod(21r), two equivalent (isometric) paths 
are defined at any point of Po \ No and therefore, four equivalent paths are 
defined at any point of No. As we have seen in the construction, there always 
exist two equivalent paths ( l+l-l + and l-l+l - when 0 > 0) and ( r + r - r  + and 
r - r + r  - when 0 < 0) linking any point of the central domain C[C[C to the 
origin. Furthermore, when the initial orientation 9 equals +r ,  there exist two 
equivalent strategies for linking any point of the plane to the origin, each one 
corresponding to a different direction of rotation of the point (see lemma 14). 
In that case each of the four paths CICIC is optimal in the central disc of 
radius 2. 

By choosing one particular solution in each region where several optimal 
path are defined, one can determine a synthesis of optimal paths according to 
definition 7. Therefore, the determination of such a synthesis is not unique. 

In each cross section Po, the synthesis provides a complete analytic de- 
scription of the boundary of domains which appear to be of simple sort: line 
segment, arc of circle, arc of cardioid of circle, etc. Therefore, to characterize an 
optimal control law for steering a point to the origin, it suffice to determine in 
which cell the point is located, without having to do further test. This provides 
a complete solution to Reeds and Shepp's problem. 

On the other hand, this study constitutes an interesting way to focus on the 
insufficiency of a local method, such as Pontriagyn's maximum principle, for 
solving this kind of problem. The A0 axis appeared as a boundary and we had 
to remove the piece of domains lying on one side of this axis. More precisely, 
we have shown that any trajectory stops being optimal as it crosses the set 
No. This phenomenon is due to the existence of several wavefronts intersecting 
each other on this set. For this reason two equivalent paths are defined at each 
point of No. (each of them corresponds to a different wave front). PMP is a 
local reasoning based on the comparison of each trajectory with the trajectories 
obtained by infinitesimally perturbating the control law at each time. As this 
reasoning cannot be of some help to compare trajectories belonging to different 
wave fronts, it is necessary to use a geometric method to conclude the study, as 
we did in section 4.3 and 4.3. The main problem remains to determine a priori 
the locus of points where different wave fronts intersect. 

The construction we have done for determining a partition of the phase 
space required a complex geometric reasoning. In the following section we will 
show how Boltianskii's verification theorem can be applied a posteriori to pro- 
vide a simple new proof of this result. 
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4.4 A n  e x a m p l e  o f  r egu la r  syn thes i s  

In this section, we prove that the previous partition effects a regular synthesis in 
any open neighbourhood of O in R 2 × S 1. First of all, we need to prove that  the 
curves and surfaces making up the partition define piecewise smooth sets. From 
the previous construction we know that the restriction of any domain to planes 
Po is a connected region delimited by a piecewise smooth boundary curve. 
Except for the curve T0 (computed at section 4.3) each smooth component 
Ci(0) of the boundary remains a part  of a same geometric figure Y (line, circle, 
conchoid of circle, . . .  ) as 0 varies. Let Mi(0) and Ni(0) be the extremities of 
the curve C~(0). As 0 varies, the position and orientation of Y" as well as the 
coordinates of M~(0) and Ni(8) vary as smooth functions of 0. Therefore, in 
R 2 × [-Tr, ~r], the lines trace smooth ruled surfaces, and the circles and conchoids 
draw smooth surfaces. In each case we have verified that the boundary curves 
Mi(0) and Ni(0) of these surfaces never connect tangentially, making sure that  
all these surfaces are non singular 2-dimensional smooth surfaces. 

The study of the surface T', made up by the union of the horizontal curves 
"~0 when 0 varies in [ - ~ ,  -~] requires more attention. As ?'0 is the region of P0 
where paths r+l+'-a "b ~b re- and l+lbrbr+ have the same length, the surface/"  is 
defined as the image of the set D r  = {(0,b) e R2,0  E [ -~ ,0 ] ,b  E [-O, bT]} by 
the following mapping: 

x ---- - sin 0 + 2(2 cos b - 1) sin(e - b) 
y = cos0 - 2(2 cosb - 1) cos(e - b) 4- 1 
O--e-2b+a 

where sin(e - b) and cos(e - b) are deduced from formula (27) and bT is the 
solution of the implicit equation R(b) = 0 where R(b) is given by (28). 

U s i n g  the symbolic computation software Mathematica we have checked 
that the matrix of partial derivatives has full rank 2 at each point of D r .  
Therefore, as the domain D r  is a 2-dimensional region of the plane (8, b) with- 
out singularities, delimited by two smooth curves, F constitutes a 2-dimensional 
smooth surface (see figure 16). 

All the pieces of surfaces, making up the partition are 2-dimensional smooth 
surfaces and from remark 4 we know that they constitute 2-dimensional piecewi- 
se-smooth sets. If p2 is the union of these surfaces, p1 the union of their smooth 
boundary curves Mi(O) and Ni(0),  po the target point O, then in any open 
neighbourhood 1) of O we can write the required relation: p0 C p1 C p2 C 1). 

In order to check the regularity conditions we have considered each trajec- 
tory one-by-one, following the representative point from the initial point to the 
origin we have analysed the different cells encountered. We have checked that 
the cell's dimension varies according to the hypothesis B of definition 9. In each 
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0 

.2 I 0 

8 
-i -0.6 -o12 o 

Fig. 16. Set Dr (left) and surface/'  (right) 

case we have verified that  the point never reaches the next cell tangentially. For 
each trajectory we can represent this study within a table by describing from 
the top to the bottom the cells ai successively crossed. Each cell corresponds 
to a subpath type represented by a subword of the initial word. In each case 
we specify the dimension and the type (T1) or (T2) of the cells encountered. 
When the point passes from a cell ai to a cell H(ai) = ai+l we verify that  the 
trajectory riches ai+l with a nonzero angle ai.  This is done by comparing the 
vector vi tangent to the trajectory with a vector ni+l  normal to ai+l (if ai+l is 
a 2-dim cell), or with a vector wi+l tangent to ai+l (if ai+l is a 1-dim celt). In 
any case the last cell, described in the bottom of the table, is a 1-dimensional 
cell which is a piece of trajectory linking the point to Po. 

Due to the lack of place we just present here the table corresponding to 
paths l+17 s-~rTr +, an exhaustive description of all path types may be found 
in [35]. 
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P a t h  l+i~_s~r~re + 2 2 
................ ceil . . . .  Dim Type v~ n~ or o~ 

/cosek 
0"1 :l+al~Sdrire+ 3 T1 Vltsi~0 ) 

/cosek 

t3+ / 
[-cose  

1 / 

/-cose k /r sin6 
,,4: ~,~r:_,¢ 2 T~ n,~ [ - c o s e  / 

2 \ 2 + d ]  

/ cos8  - 2 sin ~ 
as : r~r+2 1 T 2  os tsinO+2cosO ) 

/ - c o s 6 ~  

a7 : r + 1 T1 

angle t~i 

n2.vl = d + 4 ~ 0  
because d ) 0 

then c~2 ~ 0 

n4.v3=2+d¢O 
because d :> 0 

then a4 ~ 0 

v4 and o5 
not colinear 
then a5 ¢ 0 

/cos  e~  v~ and o7  
oTtsin_/) not colinear 

then (~7 ~ 0 .... 

Now, let us analyse carefully the other regularity conditions: Let N be the 
set defined by N = tA0e[_~,~]Ne where No is the set defined at  section 4.3 
as the union of 7e, A T and their image by the axial symmetries with respect 
to A6 and A~. From the previous reasoning we know that  N is a piecewise 
smooth set. Let v be the function defined in 1;, taking its values in the control 
set U = {(ul ,u2),  lull = 1,and u2 E [ -1 ,  1]} which defines an optimal control 
law at each point. In each cell where more than one optimal solution exists the 
choice of a constant control has been done in order to define the function v in 
a unique way. 

A - As stated in the beginning of this section, all the /-dim cells are i- 
dimensional smooth manifolds. Moreover, as each cell corresponds to a 
same path type, the control function v takes a constant value at each point 
of the cell. Therefore, v is obviously continuously differentiable inside each 
cell, and may be prolonged into an other constant function when the point 
reaches the next cell. 

B - All the 3-dim cells are of type TI 
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- When the representative point passes from a cell to another it never arrives 
tangentially. Furthermore, as ul = 1, the velocity never vanishes. 
- Along the trajectory, the variation of cell types (T1) or (T2) follows the 
rule stated by Boltianskii. 

C - Along any trajectory, the representative point pierces at most three cells 
of type T2 and reaches the point O after a finite time. 

D - From every point of N there start two trajectories having the same length 
and from any point of ]) \ N there issues a unique trajectory. 

E - All these trajectories satisfy the necessary conditions of PMP. 
F - By crossing a border (except the set N) from a domain to another, either 

the length of one elementary piece making up the trajectory vanishes, or a 
new piece appears. When the point crosses the set N, the optimal strategy 
switches suddenly for an isometric trajectory. Therefore, in any case, the 
path length is a continuous function of the state in ]) (see [26] for more 
details). 

With this conditions the function v and the sets Pi effect a regular synthesis 
in ];. As the point moves with a constant velocity, it is equivalent to minimize 
the path length or the time, we have f°(x,u) - 1. Finally, as the coordinate 
functions f l  (x, u) = cos ~Ul, f2 (X, U) = sin 8Ul and f3 (x, u) = u2 have contin- 
uous partial derivatives in x and u, the hypotheses of theorem 6 are verified 
providing a new proof of our preceding result. 

To our knowledge, this construction constitutes the first example of a regular 
synthesis for a nonholonomic system in a 3-dimensional space. 

5 S h o r t e s t  p a t h s  f o r  D u b i n s '  C a r  

Let us now present more succinctly the construction of a synthesis of optimal 
paths for Dubins' problem (DU). This results is the fruit of a collaboration 
between the project Prisme of INRIA Sophia Antipolis and the group Robotics 
and Artificial Intelligence of LAAS-CNRS see [10] for more details. 

At first sight, this problem might appear as a subproblem of RS. Neverthe- 
less, the lack of symmetry of the system, due to the impossibility for the car to 
move backwards, induces strong new difficulties. Nevertheless, the method we 
use for solving this problem is very close to the one developed in the preceding 
section. 

The work is based on the sufficient family of trajectories determined by 
Dubins (14). Note that this sufficient family can also be derived from PMP 
(see [36]). The study is organized as before. First, we determine the symmetry 
properties of the system and we use them to reduce the state space and to refine 
Dubins' sufficient family. Then, in a second time we construct the domains 



142 P. Sou~res and J.-D. Boissonnat 

corresponding to each path type and we analyse their intersections. As we did 
in studying the problem RS, we consider the restriction of domains to planes 
P0 where the orientation O is constant. 

R e m a r k  10. As Dubins' ear only moves forwards its more convenient to fix 
the initial configuration of the car to be at the origin (0, O) of the space, and 
to search for the configuration (M, 0) reachable from this point. 

5.1 Symmetry  and reduction properties 

As the linear velocity Ul is fixed to 1 we can rewrite system 2 as follows: 

{ 2 = cos 0 
= sin 0 

O = u  
(29) 

where u E [-1,1] represents the angular velocity. In the study of Reeds 
and Shepp's problem we have shown that it was possible to construct several 
isometric trajectories by using simple geometric arguments. Nevertheless, as 
system (29) is no more symmetric, these properties are not valid for Dubins' 
problem. In particular, if T is a trajectory admissible for DU, the trajectory 
symmetric to T with respect to the point O is no more admissible. Therefore, 
the sole symmetry property that remains valid for DU, is the existence of 
isometric trajectories ending at points symmetric with respect to A0~ in each 
plane Pc. This result can be easily proven by using the same reasoning as the 
one developed in the proof of lemma 12. We use the notations introduced for 
the study of Reeds and Shepp's problem. 

L e m m a  20. In the plane of the car's motion (O, x, y) let (M, 0) be a config- 
uration of the car and M 3 the point symmetric to M with respect to A~-. If 
T is a trajectory admissible for DU starting at the origin (O, 0) and ending 
at (M, 0), there exists another admissible trajectory 7 -a isometric to T which 
links the origin to the configuration (M a, 0). 

As for RS the word describing T 3 is obtained by reversing the word describ- 
ing T. On the other hand, the symmetry with respect to the x-axis provides 
another isometric admissible trajectory as follows: 

L e m m a  21. If T is an admissible trajectory for DU, starting at the origin and 
ending at (M(x, y), 0), there exists another admissible trajectory T isometric 
to T, which starts at the origin and ends at ( M ( x , - y ) , - 0 ) .  

Dubins' sufficient family (14) contains two path types: 
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- CaSdCe wi th  a, e G [0, 2~r[ and  d > 0, 
- CaCbCe wi th  a,  e e [0, 2~r[ and  b el~r, 2~r[. 

F r o m  l e m m a  20, we can  res t r i c t  our  s t u d y  to  pa ths :  lrl, rlr,  rsr,  1st a n d  
e i ther  rsl  or Isr. F u r t h e r m o r e  t h a n k s  to  l e m m a  21 we only  have  to  consider  
t he  values of 0 such t h a t  a r ep resen ta t ive  of  the i r  class modu lo  2~r belongs to  
[0, 7r]. Le t  us now s t a t e  t h r ee  l emmas  p rov id ing  add i t i ona l  necessary  o p t i m a l i t y  
condi t ions .  

L e m m a  22.  A necessary  condi t ion  for a p a t h  CaCbCe to  be  o p t i m a l  is t ha t :  

{ Tr < b <  2~r 

0 < a < b  and  0 < e < b  
O ~ a < b - T r  or O ~ e < b - T r  

P r o o f :  The first condition on b has been already given by Dubins [16] or in [2,36]. 
A characteristic straight line Do is defined for each optimal pa th  (as in lemma 11), 
which supports  line segments and where inflection points occur. On one side of this 
line the path  turns clockwise, and on the other side, counterclockwise. Thus if a > b 
(resp. e > b), the first (resp. last) arc must cross the line Do; this is not possible. 

For the last condition, suppose tha t  the contrary is true: a :> b - ~r and e > b - ~r. 
Consider the circle tangent to both extremal arcs. Tracing an arc of this new circle we 
can build a shorter pa th  as follows (see figure 17): an arc shortened to length a -  b + Ir 

on the first circle, concatenated to an arc of length 2~r - b on the new circle followed 
by an arc of length e - b -t- ~r on the last circle.[] 

L e m m a  23.  P a t h s  r s r  (resp. lsl) such t h a t  the  sum of  the  l eng th  of t he  two 
arcs  of  circle is equal  to  2Ir can  be rep laced  by  an  i somet r ic  p a t h  lsl (resp. r s r ) .  

P r o o f :  I t  suffice to consider figure 18. Whenever there exists a pa th  of type rasdre 
(resp. laSdl~) with a+e  = 2 r  there also exists an equivalent path  lesdl~ (resp. r~sdra) 
[] 

L e m m a  24.  Along  any  op t ima l  t r a j e c t o r y  the  m a x i m a l  var ia t ion  of  0 is 2 r .  

P r o o f :  

- Types rsl and lsr: As the directions of rotat ion on each arcs are opposite and 
the length of each arc is lower or equal to 21r, the result follows. 

- From lemma 22, on types r~Ibr~ and larbl~ the arclength verify: 0 < a < b and 
0 < e < b. therefore la - e + b I < v < 2m 

- Types rsr and lsl: Suppose that  the  initial and final orientations axe equal. From 
lemma 23 we know that  in the case that  a + e --- 2~r, if a path  of type r~s~re 
(resp. l~sdl¢) exists, there also exists an equivalent pa th  of type I~sdl~ (resp. 
reSdra). I t  follows tha t  a pa th  ras~r~ (resp. lasdl~) with a + e ---- 21r + e cannot 
be optimal because it is equivalent to a path  lesdlar~ which does not verify the 
necessary conditions of PMP (points of inflection and line segment must belong 
to the  same line Do). [] 
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(\_! ° 

Fig. 17. Non optimal CaCbCe trajectory 

Fig. 18. Simultaneous existence of path r~sr~ and l~sl~ when a + e = 2~r 

Now, taking into account these new bounds on arclength, and the symmetry 
properties we construct the domains corresponding to each path type in planes 
Pe. 

5.2 C o n s t r u c t i o n  of  d o m a i n s  

From lemma 20 it suffice to construct the domains of paths tsl, rsr, lsr, rlr 
and lrl. The domain of path rsl will be obtained from the domain of path lsr 
by symmetry with respect to the A~-axis. 

From lemma 24 we know that  the final orientation ~ E S I may be viewed 
as a real number belonging to [-2zr, 2zr]. Therefore, according to lemma 21 and 
lemma 23, we only have to consider the cross sections of domains belonging to 
planes Pe with t? E [0, v] or t~ + 27r E [0, 7r]. 

Integrating the differential system (29) for the successive constant values of 
the input u (as we did for RS in section 4.3) we compute the cross section of 
each domain. We do not give here the detail of the construction (see [11]). To 
describe the construction we need to introduce the following notations. 

* E is the point of coordinates (sin 8, 1 - cos 8), 
* G is the point of coordinates (sinO, - 1  - cosS), 
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* F (resp. H )  is the point symmetric to E (resp. G) w.r.t, the origin O, 
, J (resp. K )  is the point symmetric to H (resp. G) w.r.t, point E, 
* /)o (resp./)1) is the ray from E towards positive x-coordinates, of orienta- 

tion 0 (resp. 0), 
* /)2 (resp./)3) is the ray from F parallel to/)0 (resp./)1),  
, we denote by Cp the circle (or the disc) centered at the generic point P 

and with radius 2. 

CK// 

...... /" ..... " , /  ./ Z~o 
/" ~ ~ " K  / 

~f\ V W/:Jf-"-. 

- "  ( \  ) / 

"I-~ ............ " CG 

Fig. 19. Particular points, lines and circles 

Then we have: 

- the Isl domain is the internal angular sector defined by Do and/)1, 
- the rsr domain is the external angular sector defined by/)2 and/)3, 
- the rsl domain is the exterior'of circle C a , 
- the lrl domain is the union of the intersections between the pairs of discs 

C o and C.,  C a and C j,  C. and CK, 
- the rlr  domain is the union of discs C o and C H . 

Notice that these domains intersect each other and do not partition P0. 
Each domain is defined upon two parameters. By fixing one parameter as the 
other one varies, we trace iso-parametric curves creating a foliation of each 
domain. From this construction it appears that a unique path of each type 
starts from each point located in the interior of the domain. 
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5.3 Cons t ruc t ion  o f  t h e  par t i t ion  

At this stage, we have to determine which path type is actually optimal in each 
region of P0 covered by more than one domain. We are sure of the optimality of 
the whole Isl domain for the Isl type, even if other domains intersect it. Indeed, 
this domain is optimal for RS, and Dubins' sufficient family is included in the 
Reeds and Shepp one (except for CCC paths, which are shortened by CICIC 
paths). Clearly, a path type with no cusp which is optimal for RS is afortiori 
optimal for DU. 

So, let us consider the other intersections. Due to the lack of the symmetry 
with respect to the A0-axis, we cannot use a geometric reasoning to compare 
isometric trajectories, as we did in section 4.3 for RS. Therefore, in each region 
where more than one path type occur (see fig. 19), we use the method developed 
at section 4.3 for RS to compute the boundaries of the subdomains in which 
each path type is optimal. This method is based on the computation of the set 
of points reachable by a path of each type having the same length and starting 
at the origin. We conclude with arguments of continuity based on the foliation 
of domains by iso-length curves. 

We will only present here the final equations of these boundary curves, since 
the calculation are really tedious (see [11] for more details). 

In te rsec t ion  rsr  / rsl  The intersection of these two domains, is defined by 
the complementary in Pe to the set made by the union of the disc ga and the 
internal angular sector defined by the rays l)2 and :D3. Writing that the final 
point are identical~ and that both curves have the same length, we get a system 
of three equations with four variables. Fixing one variable as a parameter, we 
obtain the parametric expression of a curve ~ :  

{y= ) ~cosa+ 2s i na+ s i nO  
:To -As ina  + 2cosa - cos~ - 1 

p(a+e-~)~+2(cos(a+0)-l) where A = - sin(a+O)-(a+0-~) , and a is the length of the first arc in the rsl 
path. This parameter varies within the interval ]~r - 0, #] for 0 E [0, ~[ where p 
is defined as follows: 

- for t? < ~ + ~, # = ~r - 0 + y where y is the solution of the non-algebraic 
equation cost = t, 

- for ~ >_ ~ + r ,  # is the value of a obtained when Io and :D2 intersect. This 
value can be computed by equating the parametric system of both curves. 

This curve divides the region of intersection into two sub-domains, and 
admits the line of orientation 0, passing through G, as asymptote. We define 
the symmetric curve I1 for the intersection between rsr and Isr. 
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In te r sec t ion  rs l  / Isr  Let ~? defined as in section 5.3. For 8 _< ~ + ~ we 
deduce from the analysis of iso-distance curves of each type that Isr paths are 
always shorter than rsl paths in the infinite region delimited by DI, :/)3, and 
the arc (E, K) of circle CH. Symmetrically with respect to the A~- axis, in the 
infinite region delimited by Do, D2, and the arc (E, J) of circle Ca the paths 
rsl are shorter than the lsr ones. 

For ~ > ~ + ~r a new boundary curve :/6 appears; it is the locus of points 
reachable from the origin by a path rsl and Isr having the same length. This 
curve is determined by equating the parametric system of both curves. The 
curve/:7 is obtained by symmetry with respect to A~- (see fig. 24) 

In te r sec t ion  r s r  / r l r  This region of intersection is made up by the parts 
of the discs C c and C H lying inside the external angular sector defined by 
D~ and D3. We find geometrically that the set of points reachable from the 
origin by a path of each type rsr and r/r having the same length belongs to 
a circle called Z2 of radius 4~/ and centered at F. Thus, this set is made of 
two arcs of the circle :/2 respectively defined by the interval of polar angles: 
[max(0, ~r/2 - ~), min(~, ~r/2 + ~)] and the symmetric interval w.r.t. 8/2. This 
intersection only occurs if ~ < ~r/2 + ~/. 

In te r sec t ion  r l r  / lrl  Using the same reasoning as in the study of the first 
intersection, we deduce that inside the region determined by the union of the 
intersections of discs C c and C j ,  and the intersection of discs C, and CK, rlr 
paths are always shorter than IrI paths. However, for 8 > r /2 ,  the region of 
intersection of discs C c and C, is divided into two subdomains by a curve called 
~ .  Paths rlr are optimal in the first subdomain, whereas paths Irl are optimal 
in the other one. 

After a change of variables, due to the rotation of angle 8/2, we obtain the 
following parametric equations for Z3: 

X = c,°sv + cos(v + 8) 
sin e 

:/3 y2 = (4 sin~)2 ~_ ( X -  2sin~)2 

where v is the length of the middle arc of the lrl path. See [11] for the detail 
relative to the determination of the interval in which v varies. 

In te r sec t ion  r l r  / r s l  This last intersection occurs in the region of the disc 
C, located outside the disc C a and inside the internal angular sector delimited 
by D2 and D3. Using the same method as before we determine a curve Z4 
delimiting two subdomains in which rlr and rsl are respectively optimal. The 
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curve Z5 symmetric of 1:4 with respect to A~- determines the boundary between 
the subdomains of paths rlr and lsr in the symmetric region. The parametric 
equations of 2:4 are: 

y -- 2 ( a c o s a  + s i n a )  + s i n 0  
Z4 2 ( g s i n a -  cosa)  - c o s 0 -  1 

with a = 2~r - arccos a 
a 2 A + B  ~/4 (l+cos 0")2+4 (a+sin q)2_a4 

O~ = 2 ( A 2 T B  ~) 

A = cos0 (1 + cosa) - sin0 (a + sing) 
B = cos 0 (a + sin a) + sin 0 (1 + cos a) 

where a is the length of the first arc and 2g the length of the line segment in 
the rsl path. We can notice that,  here again, equations are non-algebraic. This 
intersection only occurs for 0 >_ 7r/2 - ~. See [11] for the determination of the 
range of a. 

5 . 4  D e s c r i p t i o n  o f  t h e  p a r t i t i o n  

With the refinement provided by the previous section we finally obtain a par- 
tition of P0, for values of 0 having a representative modulus 2~r in [0, 7r]. Using 
the symmetry properties given by lemmas 20 and 21 we obtain the partition 
for any 0 E S 1. The shape of domains varies continuously with respect to 0. In 
the sequel we describe four successive states of the partition according to four 
successive intervals of 0. We also describe the cross sections corresponding to 
two particular values: 0 = 0 and zr: 

- 0 = 0 (Figure 20) 
All the domains are represented but notice that, for three of them, not only 
one but two equivalent optimal paths are defined at each point. Notice 
also that,  in fact, the Irl and Isl domains are not connected: the initial 
configuration O can be viewed as a point of the domain Irl (isolated in Po), 
and the horizontal half-line (x >_ 0, y = 0) also belongs to the domain 1st. 

- 0 e]0, ~r/2 - 7] (Figure 21) 
For 0 ~ 0, a unique path type is defined in each domain, but some domains 
are not connected (rlr, rsl and lsr). For 0 = ~r/2 - 7, the segment of :D2 
(resp. 7)3) and Z2 intersect each other on ga (resp. gn). 

- e e]~/2 - 7, ~r/2] (Figure 22) 
Here, the intersection curves 2:4 and 2:5 appear, and for 0 = ~r/2 the two 
crescents of the rlr domain are connected at one point on the A~/~ axis. 

- 0 e]~r/2, 7r/2 + ~] (Figure 23) 
The intersection curve Z3 has appeared between rlr and Irl. Everything 
varies continuously until 2:2 disappear when 0 = r / 2  + 7, since the segment 
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RSR 

i o r  ~ " - -  } ~ . - - ~ - - -  

LSR 

RSL 

Fig. 20. Partition of Po 

LSR 

S ]  " ns\ 
RSR / t  

I2 RSL 

Fig. 21. Partition of P~ 
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- LSR 

Z~'-~ LSL 

. . . . . . . . . .  4 

~ RSL 

Zo/ l 

Fig. 22. Partition of P~ 

of / )2  (resp. ~)3), 274 (resp. Zs), Zo (resp. Z1) and the circle C a (resp. CH) 
are concurrent. 

L S R ~  LSL 

. . . .  

J Z2~, / RSL 

Fig. 23. Partition of P2_~ 
3 

- 9 e]lr/2 + ~, 7r[ (Figure 24) 
Domains are still varying continuously until 1:4 and 5[5 disappear, $4 and 
275 become horizontal half-lines, and I3 becomes an horizontal segment of 
length 4. 

- 0 = r (Figure 25) 
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R S R  I 

Fig. 24. Partition of P ~  
6 

In this case the parti t ion contains six types; the domains of paths lsr and 
rsl are still not connected. 

L: ~L 

1, 

R S L  

R" 'R 

R S L  

4 

L S R  

Fig. 25. Partition of P~ 

Analysing this construction we can make the following remarks: 

1. Optimal domains are not necessarily connected, unlike the Reeds and Shepp 
case. This is due to the fact that  a configuration (x, y, 0) can sometimes be 
reached in different ways: either mostly turning left until the algebraic sum 
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of angles equals 0, or mostly turning right so that the algebraic sum equals 
2~r - 0. For the Reeds and Shepp case, these two solutions cannot be both 
optimal since the algebraic sum of angles has to be lower than 7r. 

2. The shape of the shortest paths varies continuously when crossing the 
boundary of any domain, except the boundary arcs of discs ga and gxx, 
and the intersection curves Zi. 

3. The shortest path's length is a continuous function of (x, y, 8) everywhere, 
except on the boundary arcs of discs ga and gn. This discontinuity (in 
shape and length) is due to the fact that inside the circle ga (resp. gu) 
the rsl (resp. Isr) path does not exist. Figure 26 represents the iso-distance 
curves in the plane P0 for 0 = 1 tad. The two thicker arcs in the center 
of the picture represent the locus of points where the length function is 
discontinuous. 

4. For 0 = 0, there exist two regions where two equivalent optimal solution 
are defined. Therefore, to define a synthesis of optimal paths (uniqueness 
of the solution), it suffice to choose arbitrarily a constant values for the 
control in each region where several optimal strategies are available. 

R e m a r k  11. Due to the lack of continuity of the length function, this synthesis 
of optimal paths does not verify Boltianskii's regularity conditions (condition 
F of definition g fails). This illustrates the fact that the very strong hypotheses 
defining Boltianskii's regular synthesis restrict the application area to a very 
small class of problems. This example raises up the interest of searching for 
sufficient conditions, weaker than Bolitanskii's ones, that still guarantee the 
optimality of marked trajectories. 

5.5 R e l a t e d  works 

Using also the frame of geometric control, R. Felipe Monroy P@rez has studied 
Dubins' problem in the case of Euclidean and non-Euclidean geometries [28]. 

In the Euclidean case (classical problem of Dubins) he provided a new proof 
of the non optimality of the concatenation of four arcs of circle. He proved 
that in two dimensional simply connected manifold with constant sectional 
curvature, trajectories of minimal length necessarily follow Dubin's pattern 
(CLC and CCC) where L denotes a piece of a geodesic and C an arc of curve 
with constant curvature. The study was done by means of optimal control on 
Lie groups. 

For the three dimensional case, he exhibited an explicit expression of the 
torsion of optimal arcs. In particular, he determined a parametric equation 
of curves satisfying optimality conditions in R 3, providing a representation of 
potentiM solutions for Dubins' problem in R 3. 
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Fig. 26. Iso-distance curves in P1 and discontinuity of the length function. 

Dubins' problem in R 3 has been also studied by H. J. Sussmann in [37]. 
By applying PMP on manifolds he proved that every minimizer is either an 
helicoidal arc or a path of the form CSC or CCC. 

6 D u b i n s  m o d e l  w i t h  i n e r t i a l  c o n t r o l  l a w  

From the previous section we know that optimal solutions of Dubins' problem 
are sequences of line segments and arcs of circle of minimal radius. Therefore, 
there exist curvature discontinuities between two successive pieces, line-arc or 
arc-arc (with opposite direction of rotation) and to follow (exactly) such a tra- 
jectory a real robot would be constrained to stop at the end of each piece. In 
order to avoid this problem, Boissonnat, Cerezo and Leblond [3] have proposed 
a generalization of Dubins' problem by suggesting to control the angular ac- 
celeration of the car instead of its angular velocity. This section presents the 
analysis of the shortest paths problem for this model. 

Using the same notation as for Dubins' problem, let M(x, y) be the coordi- 
nates of the robot's reference point with respect to a fixed orthonormal frame, 
and t? its orientation with respect to the x-axis.  We use ~(t) to represent the 
signed curvature of the path at each time (t~(t) > 0, meaning that the car is 
turning left). 

In the plane of the robot's motion we consider a class g of C 2 paths joining 
two given configurations X0 = (M0,00, n0) and Xf  = (Mr, Of, t~f). 
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Definit ion 11. A path belongs to class C if it satisfies the following two prop- 
erties: 

1. Regularity: the path is a C 2 concatenation of an at most countable number 
o[ open C 3 arcs of finite length, and the set of endpoints of these arcs, also 
called the switching points, admits at most a finite number of accumulation 
points. 

2. Constraint: along the path, the absolute value of the derivative of the cur- 
vature, with respect to the arc length, is upper bounded by a given constant 
B > O, at every point where it is defined. 

With these notations and the above definition, the motion of the oriented 
point M(t)  = (x(t) ,y(t) ,O(t) ,~(t))  along paths of class C in R 2 x S 1 x R is 
well-defined and continuous. 

In the sequel we consider that the robot moves at constant speed 1, so that 
time and arc length coincide. 

A path in class g between any two configurations X0 = (xo, Yo,/9o, no) and 
X !  = (x I,  yf ,  Oy, ~f ), if it exists, is entirely determined by the function v(t) = 
k(t), defined and continuous everywhere, except at the switching points, by the 
following differential system: 

{~(t) = cos o(t) 
) ( ( t ) =  ~I:I =sin0(t)= •(t) (30) 

~(t) = v(t) 

If we add the boundary conditions X(0) = X0, X ( f )  = XI ,  and the constraint: 

Vt e [0,T], iv(t) I </3, (31) 

and if we search for a path of minimum length in class C, we have turned the 
geometric problem into a classical question of optimal control theory where the 
functional: 

// J(v) = T = dt (32) 

is to be minimized among the set of control functions v satisfying (31). 

6.1 Exis tence  of  an optimal solution 

System (30) may be written as: 

= F ( Z ,  v) = f ( X )  + v g ( Z ) ,  
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where the analytic vector fields f and g are given by: 

/ ( x )  = , g ( x ) =  . 
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C o m p l e t e  control labi l i ty  of  the  sys t em We first observe that the Lie 
algebra £(f ,  g) generated by f and g is, at each point, of dimension 4. Indeed, 
v x  e R  4, 

and 

det 

cos 0 0 0 - sin 8" 
sin ~ 0 0 cos 

a 01 0 
0 10 0 

Moreover, the solutions of the associated autonomous system X = f (X)  are 
circles (of radius l /a ) ,  thus periodic. Hence, Bonnard's theorem [27, thm.III.4] 
applies, to establish the complete controllability of (30) under the constraint 
(31). This means that any Xo and X l can always be joined by a path satisfying 
(30) and (31). 

Exis tence  of  an o p t i m a l  control  The existence of an optimal control for 
the problem (30), (31), (32), with given X0 and XI,  is ensured by Fillipov's ex- 
istence theorem (see [13, 5.1.ii] for example). Indeed, the hypotheses of the the- 
orem are satisfied. The dynamic F(X,  v) and the cost J(v) are smooth enough, 
the set I -B,  +B] of control is convex, and the initial and final configurations 
X0 and Xf are fixed. Finally, one can easily check the existence of a constant 
C such that t X F ( X , v )  <_ C(IXI 2 + 1) for all t e [0,T], X E R 2 x S 1 x R,  
v e I - B ,  + B ] .  

Fillipov's theorem then asserts the existence of some T* > 0 and of an 
optimal control v* (t) which is a measurable (thus locally integrable) function 
which satisfies (31) on [0, T*]. The solution of (30) for v = v* is a path from 
X0 to X/which  minimizes cost (32) under constraint (31). 
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6.2 Necessary conditions for a solution to be optimal 

Pontryagin's Maximum Principle We are going to apply Pontryagin's 
Maximum Principle in order to obtain necessary conditions for a solution to be 
optimal (i.e. a measurable control v and a trajectory X)  minimizing cost (32). 

Let us denote by q7 tko = (¢1,¢2,¢3,¢4) ,  the adjoint state associated to 
X. For this minimum time problem, the Hamiltonian H is defined for every 
t e [0, T] by 

H(~(t),  X(t),  v(t)) = < ~P(t), F(X(t) ,  v(t)) > 

This yields in the case of system (30): 

H(O(t) ,X(t) ,v(t))  = ¢ 1 ( t ) c o s 0 ( t ) +  ¢ 2 ( t ) s i n 0 ( t ) +  ¢3(t)a(t) + ¢4(t)v(t). 
(33)  

The adjoint state ~ is defined on [0, T] as a solution to the adjoint system 
OH which is here: 

{ ¢ 1 ( t )  = 0 ~ ¢ 1 ( t )  = ¢1  

~(t)  = ¢2(t) 0 ~ ¢2(t) = ¢2 (34) 
¢3(t) ¢1(t) sin0(t) - ¢2(t) cos0(t) = ¢1?~(t) - ¢22(t) 

~J4 ( t )  - - ¢ 3 ( t )  • 

Therefore, as ¢1 and ¢2 are constant on [0, T] there exists A >_ 0 and ¢ E [0, 2~r[ 
such that,  Vt E [0, T]: 

¢ 1 ( t )  - ¢1 = ~ cos  ¢ 

¢2 (t) -- ¢2 = A sin ¢ (35) 
¢ 3 ( t )  = ~ s i n ( 0 ( t )  - ¢) 
~J4(t) --~ - - ¢ 3 ( t )  • 

The Hamiltonian (33) can now be written as: 

H(k~, X, v) = A cos(0 - ¢) + ¢3a  + Ctv. (36) 

Now, according to theorem 3, a necessary condition for X(T)  to be an 
extremal trajectory for the minimum-time problem is that  ~(t)  define a nonzero 
absolutely continuous function such that Yt E [0, T]: 

H(~(t) ,X(t) ,v( t ))  = 

where ¢o _< 0 is a constant. 

m a x  
uE[--B,+B] 

H(~(t), X(t),  u(t)) = - ¢ o .  (37) 
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Characterization of  extremal  arcs From equation (37) we deduce that:  

¢4(t)v(t)  > 0 for almost every t E [0,T].  (38) 

As X belongs to class C, on each open C 3 portion of the trajectory, v(t) = :I:B 
with the sign of ¢4 if ¢4(t) # 0 or, otherwise, that  OH = ¢4 ( t )  = 0. If ¢ 4  ( t )  ---- 0 

over some interval [tl,t2] C [0,T], (35) implies that  ¢3(t) - 0 and ¢3(t) ~- 0. 
As 0 is continuous and A # 0 (otherwise ¢1 = ¢2 = ¢3 = 0 and therefore 
¢0 = 0 which is not possible), it follows that  O(t) _~ ¢ (rood ~r). Of course 
then, ~ - v - 0 on It1, t2]. Hence, on each open C 3 portion of the path, 
v(t) E { - B , + B , 0 } ,  and since v has to be continuous on such a portion, it is 
of one of the three kinds: 

1. Cl+: v(t) - B, ¢4(t) > 0 
2. CI- :  v(t) = - B ,  ¢4(t) < 0 
3. S: v(t) -~ 0, ¢4(t) = 0 

Arcs C1 ± are finite portions of clothoids. A clothoid 6 (see figure (27)), also 
known as a "Cornu spiral", is a curve along which the curvature a depends 
linearly on the arc length (here equal to t) and varies continuously from - o o  
to  +oo. Hence, all clothoids C1 + (where v(t) = B) are translated and rotated 
copies of a unique clothoid F while all clothoids C1- (where v(t) = - B )  are 
translated, rotated and reflected copies of F. Clothoids C1 + will be called direct 
clothoids and clothoids C1- will be called indirect clothoids. The canonical 
clothoid F is chosen as the one defined by the following equations: 

// B_ 
x(t) = cos( 2 r )dr 

~ t B 2 
y(t) = s in (~  r )dT. 

Arcs S are line segments, all with the same orientation ¢ (mod ~r). 
From the above discussion, we have: 

Propos i t ion  1. Any extremal path in class C is the C 2 concatenation of line 
segments (with the same orientation) and of arcs of clothoids (with k = ~:B), 
all of finite length. The control function v is constant on each piece: v = B on 
a direct clothoid C1 +, - B  on an indirect one CI- ,  and 0 on a line segment S. 

In the sequel, we denote by "CI" an arc of clothoid, by "S" an open line seg- 
ment, and by "." a switching point. "CI~" will further specify, when necessary, 
the length # of the arc. 

6 More details about clothoiods are given in the next section 
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In  order  to  character ize  the  ex t remal  pa ths ,  and,  a m o n g  them,  the  shor tes t  
ones, we consider the  following problem: how are  these arcs C1 and S arranged 
together along an extremal trajectory of class C ? 
We provide  in the  next  section a par t ia l  answer to  this question. 

C o n c a t e n a t i o n  o f  a r c s  

L e m m a  25. ¢4 = 0 a t  any switching point  (C1.C1, C1.S or S.C1). 

P roo f :  That  ¢4 = 0 at a switching point CI.S or S.Cl follows from the fact that  
¢4 ~- 0 on S and that  ¢4 is continuous. At a switching point CI.C1, the sign of v 
changes and, by (38), also the sign of ¢4. [] 

L e m m a  26.  I f  A = 0, the  ex t remal  p a t h  consists of  one or two arcs and  is of  
type  C1 or C1.C1. 

P roo f :  If )~ = 0, ¢3 is constant on [0, T] by (35). If ¢3 = 0, ¢4 is constant on 
[0, T] by (35). Moreover, ¢4 cannot be identically 0, since, otherwise, (~', ¢0) --- (0, 0), 
which contradicts the necessary conditions of PMP. Hence, it follows from Lemma 25 
that  the extremal path cannot contain a line segment nor a switching point and thus 
reduces to a single arc CI. 

If ¢3 ¢ 0, ¢4(t) is a linear function of t by (35) and then vanishes at most at one 
isolated point. Hence the extremal path is of type C1 or C1.C1, by Lemma 25. [3 

Note  t h a t  such pa ths  are not  generic: f rom any given initial  conf igurat ion 
X0 in R 2 x S 1 x R ,  the  set  of final configurations {Xf}  one can reach th rough  
such pa ths  is only 1 or 2-dimensional.  

L e m m a  27.  I f  an ex t remal  p a t h  contains a line segment  S, )~ = - ¢ 0  > 0. 

P roo f :  along a line segment ¢4 - ¢3 ~ 0 and 0 -- ¢ (rood ~r). Hence, H -- eA -- 
- ¢ o  _> 0, with c = :t=1. As Co _< 0 and :~ :> O (from Lemma 26), we must have e = +1 
and )~ = - ¢ o .  [:3 

F rom the  p roof  of  l e m m a  27, ¢ = cos(~ - ¢) = +1  on S, and  we have: 

C o r o l l a r y  1. Along a line segment  S, ~ - ¢ (mod  2~r). 

L e m m a  28. ¢3 - ¢1 Y + ¢2 x is cons tant  along any  ex t remal  pa th .  I f  A > 0, 
for any  given c E R., all the  points  of  an ex t remal  p a t h  where  ¢3 = c lie on the  
same  s t ra ight  line De, of  direction ¢ (mod ~r). 

Proof: Ca -- ¢1 y - ¢2 x from (34), and ¢i  and ¢2 are constant. Thus there exists 
a constant co such that  ¢ 1 y -  ¢2x = Ca + co, which proves the first part  of the lemma. 
If A ¢ 0, ¢i  and ¢2 cannot be both equal to 0 and ¢ l y - ¢ 2 x  = c-t-co is the equation 
of a line of direction 0 = ¢ (rood ~r). [3 

As a consequence,  we have: 
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C o r o l l a r y  2. Any line segment S of an extremal pa th  is contained in Do and 
is run with O _= ¢ (mod 2 ~r). 

Proof i  since ¢3 - 0 on S, it follows from Lemma 28 that S is contained in the 
line Do of direction ¢. By Corollary 1, 0 - ¢ (rood 2~r). [] 

L e m m a  29. If A > 0, each open arc of clothoid CI ,  with/~ > 0 of an extremal  
path,  except possibly the initial and the final ones, intersects Do at  least once. 

Proof :  let CI~ be an arc of length # of an extremal path which is not the initial 
nor the final arc. Both endpoints of such an intermediate arc are switching points. 
Let ]tl,t2[ denote the time interval during which this intermediate arc Cl~ is run. 
By Lemma 25, ~)4( t l )  = ¢4(~2)  - -  0. As t2 - tl = # > 0, there exists at least one 
t E]tl,t2[, say t3, such that ¢4(ts) = 0 and thus, from (35), ¢3(ts) --- 0. Finally, it 
follows from Lemma 28 that M(ta) belongs to Do. n 

Observe tha t  the hypothesis )~ > 0 along an extremal pa th  is true as soon 
as it contains either a line segment (Lemma 27) or more than  only two arcs of 
clothoid (Lemma 26). 

L e m m a  30. An extremal path  contains no portion of type S.CI~.C1 or of sym- 
metric type C1.C1,.S with # > 0. 

Proof:  assume that there exists such a portion S.CI~.C1 and let ]tl, t2[ denote the 
time interval during which Cl~ is run, with t2 - tl =/~ > 0. From Lemma 2, S C Do, 
and since the variables (x,y,~,  ~;) are continuous on [tl,t2], Cl~ is tangent to Do at 
M(t i )  and ~(~1) = O. Hence, M(tl)  is the inflection point of the clothoid supporting 
CI~ and Do is the tangent to the clothoid at M(tl ) .  This implies that Cl~ \ {M(tl)} 
is entirely contained in an open half-plane delimited by Do, see figure (27), which 
contradicts Lemma 29. [] 

The  last l emma is in fact superseded by the following one, due to H.J. 
Sussmann. 

L e m m a  31. An extremal pa th  contains no portion of type S.Cl~ (or Cl~.S) 
with # > 0. 

Proof :  assume that there is a portion of type S.CI~, with # > 0, in an extremal 
trajectory and let tl be the switching time between S and Cir. From (35) and (36) 
we obtain the following expressions of the four first derivatives of ¢4 (valid on S as 
well as on C1,): 

{ ¢4 = -,k sin(O- ¢) 

~; - ~  cos(0- ¢) 

¢4 AI¢ 2 sin(0 - ¢) + (¢3 t¢ + ¢4 v + ¢o) v. 
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Hence, the adjoint variable ¢4 is of class C a in the neighbourhood of tl. Moreover, 
on S, ¢4 = ~J4 -- 0, 0 ~ ¢ (mod 27r), Cs - 0, a = 0. From the above equations, we 
also have ~'4 =¢4= 0 on S, and, by continuity, at tl. Moreover, ¢'4 (tl) = ¢ o v .  Thus, 
there exists an e, 0 < z < p, such that for t E [tl,tl +e[  we have: 

¢ 4 ( t )  = ¢o  v( t )  (t - t l )  4 4! + o ( ( t -  tl)5). 

Now, from Lemma 27, ¢o < 0, so that ¢4 and v have opposite signs on [tl, tl + ~[ 
which contradicts (38). [] 

A consequence of Lemmas 30 and 31 is the following proposition: 

P r o p o s i t i o n  2. If an extremal path of class C contains but is not reduced to a 
line segment, then it contains an infinite number of concatenated clothoid arcs 
which accumulate towards each endpoint of the segment which is a switching 
point. 

Proposition 2 together with the fact that  a clothoid C1 is contained in a 
ball of bounded diameter Dvt (depending on the parameter B) implies the 
following: 

P r o p o s i t i o n  3. The number n of C 3 pieces contained in a generic extremal 
path cannot be uniformly bounded from above (with respect to Xo, Xf). How- 
ever, if d(Mo, Mr) denotes the Euclidean distance in the plane between M0 and 
My, we have that: 

d(Mo,M~) 
n >_ Dcl  

Proof-. either the shortest path contains (and is generically not reduced to) a line 
segment, and Proposition 2 implies that there are infinitely many arcs of clothoid, or 
it is made only with arcs of clothoid, the number of which clearly depends on (and 
increases with) the distance between Xo and Xf. The bound from below is obvious. 
D 

6.3 C o n c l u s i o n  

Note that  it is not clear whether or not extremal trajectories described in 
Proposition 2, and, among them, the optimal ones, belongs to class C: indeed, 
the set of switching points on an optimal trajectory (points where the control 
v is undefined) might even be uncountable. Moreover, we don' t  know yet if the 
statement of this proposition remains true without the assumption that  the 
path contains a line segment. 
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However, Propositions 2 and 3 already indicate that the optimal control 
associated to problem (30), (31), (32) has a complex behavior. Contrarily to 
what occurs for Dubins or Reeds and Shepp problems, for which every optimal 
trajectory contains at most a prescribed (finite) number of line segment and 
arcs of circles, the number of switching points is unbounded here and might be 
infinite. 

6.4 Re l a t ed  works  

Lemma 31 is due to H.J. Sussmann who provided a complete study of this 
problem described as "Markov-Dubins problem with angular acceleration con- 
trol" [38]. In this paper, the author uses results by Zelikin and Borisov [39] to 
show that there exist extremals involving infinite chattering. 

7' Time-optimal trajectories for Hilare-like mobile robots 

The last model we consider is the model of Hilare the robot of LAAS-CNRS 
whose locomotion system consists of two parallel driven wheels and four slave 
castors. 

Let (x, y) be the coordinates of the reference point located between the 
driven wheels, and 8 the robot's orientation with respect to the x-axis,  vr and 
'vl denote respectively the velocities of the contact point of the right and left 
driven wheel with the floor. These virtual point velocities are considered as 
two state variables while their acceleration ar and al constitute the two system 
inputs. Therefore, a configuration of the robot is a 5-uple (x, y, 8, vr, vl). Using d 
to denote the distance between the driven wheels we get the following dynamic 
representation: 

• | ~ sin~ / 
e =I I 
vr 
"6z 

+ O o a r + O o a l  (39) 

Each wheel is driven by an independent motor and the power limitation is 
expressed by the constraint: ar,al E [-a,a] ,a  > 0. For this model there is no 
curvature constraint and the robot can turn about its reference point. 

We consider the problem of characterizing minimum-time trajectories link- 
ing any pair of configurations where the robot is at rest i.e verifying vr -= vl = O. 

This problem has been initially studied by Jacobs et al [25]. After having 
shown that the system is controllable, the authors have proven that minimum- 
time trajectories are necessarily made up with bang-bang pieces• To illustrate 
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the reasoning of their proof let us suppose that  the first control a~ is singular 
while the second control al is bang-bang. 

For this minimum-time problem, denoting by ¢ = (¢1, ¢2, ¢3, ¢4, ¢5) T the 
adjoint vector, the Hamiltonian corresponding to system (39) is: 

and therefore, 

Vr + Vl .~ Vr + Vl . ~ . , Vr -- Vl 
H = ¢1 - - T - -  cos ~ + ¢2 ~ sm . ~3 - - - T - -  + ¢4 a~ + ¢5 al 

As we suppose ar to be singular, the corresponding switching function ¢4 
vanishes over a nonzero interval of time. From the adjoint equation we get: 

Ovr = cos 0 + sin 0 + --~ = 0 

d 
¢3 = - 2 ( ¢ 1  cos ~ + ¢2 sin 8) 

Taking the derivative of ¢3 and replacing/~ by its expression given by (39) we 
get: 

Vr -- Vl ) ¢3 = (¢1 sin~ - ¢2 c o s ~ ) ( ~ )  (40) 

The expression of 43 can also be deduced directly from the adjoint equation: 

¢3  = O H  . . . .  v~ + v l ) ,  
0t9 -- (¢1 sin~ - ~2 c o s e ) t ~ )  (41) 

Equating (40) and (41) we deduce that  

1. either v2 -- 0 
2. either ¢1 sin 8 - ¢2 cos ~ = 0 

As al is supposed to be bang-bang the first case leads to a contradiction. 
On the other hand, as ~ = ~v  g = 0, we deduce from the adjoint equation 
that  ¢1 and ¢2 are constant. Thus, in the second case, the car is moving on a 
straight line, but a necessary condition for such a motion to be time-optimal is 
that  the acceleration of wheels be both maximal or both minimal, and therefore 
correspond to bang-bang control. 

Using the same reasoning in the case that  at is singular and a r regular, or 
in the case that  both control are singular, one can prove that  extremal controls 
are necessarily bang-bang. 

Therefore, optimal trajectories are obtained for larl = lall = a; these ex- 
tremal curves are of two types. 
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• a r - ~ - a l - - ~ a  
In this case the robot 's  linear acceleration is null: ~)(t) = ½(~)d + ~)g) = 0. 
v(t)  is constant equal to vo, therefore the curvilinear abscissa s(t) = vot. 
~)r(t) = :t:a while 7)l(t) .-- Ta.  Integrating we get: vr(t) = ± a t  + vro, vz(t) = 
T a t  + Vto and 03(t) O(t) 2a = = d=--£t + 030. The curvature ~ is then: 

03O n(t)  = :t:~-t + wo = +kcs(t)  + - -  (42) 
V0 V0 

where kc 2a = dv--~o. In the (x, y ) -p lane ,  the curve is a clothoid with charac- 

teristic constant kc. When Xo --- Yo = 03o = 0o the curve is expressed by the 
following parametric expression in terms of Fresnel sine and cosine. 

x( t )  = s i g n ( v o ) v ~  S o V ~ t c o s (  ~T2)dT 
(43 ) ~ 2]~a2a t 

y(t) = 8ign(Voar) Jo 

Figure (27) shows a clothoid obtained for ar "- - a l  -- a. The part  located 
above the x - a x i s  describes the robot 's motion for Vo > 0, while the part  
located under the x -  axis corresponds to v0 < 0. A curve symmetric with 
respect to the x - a x i s  is obtained for ar ( O. 

R e m a r k  12. When vo = 0 the curve is reduced to a pure rotation about 
the origin. 

In this case the angular velocity is null: 5~(t) = ~(Or(t) - ~)l(t)) = 0. 
Therefore w(t) = wo, and O(t) = wot + Oo. The linear acceleration is 
iJ(t) = sign(a~)a,  thus v(t)  = s ign(a t )a t  + vo. The curvature radius p(t) is 
given by: 

v(t)  = sign(a~)k.(O(t)  - 0o) + Vo (44) 
p(t)  = 03(t) 030 

where ka = ~oo" In the (x, y ) - p l a n e  the curve is an involute of a c i rc l J  

whose characteristic constant is k~. When xo = Yo = Vo = Oo the curve is 
expressed by the following parametric expression: 

x( t )  = sign(ar)ka(cos(wot)  + wot sin(wot) - 1) (45) 
y( t )  = sign(ar)ka (sin(wot) - wot cos(w0t)) 

The involute of a circle is the curve described by the end of a thread as it is unwound 
from a stationary spool. 
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Fig. 27. clothoid obtained for a~ = -at  = a 

Figure (28) represents an involute of a circle obtained for a r  = at  = a .  

The robot turns in the counterclockwise direction when wo > 0 and in the 
clockwise direction when w < 0. For a r  < 0 the resulting curve is symmetric 
with respect to the origin. 

R e m a r k  13. W h e n  wo = O, t h e  c u r v e  is  a l i ne ,  

This description achieves the local characterization of extremal curves. Op- 
timal trajectories are made up with pieces of clothoids and involute of circles. 
The question is now to determine how many control switches occur along an 
optimal trajectory and how to determine the switching times. This difficult 
problem has motivated several research works. 

A first work by Reister and Pin [30] was based on the conjecture that op- 
timal paths contain at most four control switches. Using an interesting time 
parameterization they presented a numerical study of bang-bang trajectories 
containing only five elementary pieces. By computing the set of accessible con- 
figurations in fixed time they tried to state that trajectories containing more 
than five pieces are not optimal. Unfortunately this numerical analysis could 
not provide a mathematical proof to bound the number of control switches. 
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Fig. 28. Involute of circle obtained for ar -- al = a 

More recently, the work by Renaud and Fourquet [32] has invalidated the 
conjecture by Reister and Pin, showing that certain configurations of the space 
could not be reached by extremal trajectories containing only five elementary 
pieces. Furthermore, they pointed out the existence of extremal solutions al- 
lowing to reach these configurations and containing more than four switches. 

To our knowledge this work constitutes the last contribution to the problem. 
Therefore, to date, there does not exist any result allowing to bound the number 
of control switches along an optimal trajectory. It is then not possible at this 
stage to try to characterize a sufficient family as we did at section (4). In fact, 
the very first question we need to answer is to determine whether the number 
of switches is finite or not. 

In spite of solving the minimum-time problem the local description of ex- 
tremal curves can be used to deduce interesting geometric properties for path 
planning. 

- Equation (42) show that clothoid allow to link smoothly curves with zero 
curvature (lines) and curves with nonzero curvature (arcs of circle). 

- Equation (44) show that involutes of circle can link smoothly curves with 
infinite curvature (turn about) and curves with nonzero curvature. In par- 
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ticular, following this curve the robot can make a cusps while keeping a 
nonzero angular velocity. 

This result has been used by Fleury et al [17] to design primitives for 
smoothing mobile robots' trajectories. In this work several sub-optimal strate- 
gies are proposed to smooth broken lines trajectories in a cluttered environ- 
ment. 

8 Conclusions 

The study of these four problems corresponding to different models of wheeled 
robots illustrates the strengths and weaknesses of the use of optimal control 
for path planning. 

By constructing a shortest paths synthesis for the models of Reeds and 
shepp and the model of Dubins, we have definitely solved the path planning 
problem for a car-like robot moving in a plane free of obstacles. Obviously, as 
the vehicle is supposed to move at a constant speed along arcs of circle and line 
segments this result does not constitute a real feedback control for the robot. 
However, it constitutes a canonical way to determine a path, for linking any 
two configurations, upon which path following techniques can be developed. 

Furthermore, from this construction, it has been possible to determine a dis- 
tance function providing a topological analysis of the path planning problem. 
In particular, for the Reeds and Shepp problem, we have proven that the dis- 
tance induced by the shortest path is Lipschitz equivalent to a sub-Riemannian 
metric. Such a metric constitutes a very useful tool to compute the distance 
between the robot and its environment. 

However, whereas optimal control may provide a very complete result for 
a small number of systems, the characterization of optimal path is in general 
incomplete. This is illustrated by the last two problems. In such cases, the local 
characterization of extremals can be used to determine suboptimal strategies 
for planning. 

Beyond solving the path planing problem, this study has permitted to get 
very interesting results. 

First, we have shown the existence of symmetry properties common to the 
different models of wheeled robots. On this basis, by constructing the set of 
reachable configuration for the model of Reeds and Shepp and for the model 
of Dubins, we have shown the existence of several propagating wave fronts in- 
tersecting each other. From this, we have proven the insufficiency of the local 
information provided by PMP and the need to be compare the cost of trajecto- 
ries corresponding to different wave fronts, by means of global arguments. Using 
this reasoning we have completely solved the problem of Reeds and Shepp as 
well as the problem of Dubins. 
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On the other hand, by showing that the synthesis constructed for the Reeds 
and Shepp problem verifies the required regularity conditions we have found 
another proof to confirm this result a posteriori  by applying Boltianskii's suf- 
ficient optimality conditions. Though this theorem allows to prove very strong 
results in a very simple way, we have shown the narrowness of its application 
area by considering the neighbouring example of Dubins for which the regular- 
ity conditions no longer apply because of the discontinuity of path length. 

The last two examples illustrate the difficulty very often encountered in 
studying of optimal control problems. First, the adjoint equations are seldom 
integrable making only possible the local characterization of optimal paths. 
The search for switching times is then a very difficult problem. Furthermore, 
as we have seen in studying the problem of Dubins with inertial control, it is 
possible to face Fuller-like phenomenon though the solution could seem to be 
a priori intuitively simple. 
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1 I n t r o d u c t i o n  

The subject of this chapter is the control problem for nonholonomic wheeled 
mobile robots moving on the plane, and in particular the use of ]eedback tech- 
niques for achieving a given motion task. 

In automatic control, feedback improves system performance by allowing the 
successful completion of a task even in the presence of external disturbances 
and/or initial errors. To this end, real-time sensor measurements are used to 
reconstruct the robot state. Throughout this study, the latter is assumed to 
be available at every instant, as provided by proprioceptive (e.g., odometry) or 
exteroceptive (sonar, laser) sensors. 

We will limit our analysis to the case of a robot workspace free of obstacles. 
In fact, we implicitly consider the robot controller to be embedded in a hierar- 
chical architecture in which a higher-level planner solves the obstacle avoidance 
problem and provides a series of motion goals to the lower control layer. In this 
perspective, the controller deals with the basic issue of converting ideal plans 
into actual motion execution. Wherever appropriate, we shall highlight the in- 
teractions between feedback control and motion planning primitives, such as 
the generation of open-loop commands and the availability of a feasible smooth 
path joining the current robot position to the destination. 

The specific robotic system considered is a vehicle whose kinematic model 
approximates the mobility of a car. The configuration of this robot is repre- 
sented by the position and orientation of its main body in the plane, and by 
the angle of the steering wheels. Two velocity inputs are available for motion 
control. This situation covers in a realistic way many of the existing robotic 
vehicles. Moreover, the car-like robot is the simplest nonholonomic vehicle that 
displays the general characteristics and the difficult maneuverability of higher- 
dimensional systems, e.g., of a car towing trailers. As a matter of fact, the 
control results presented here can be directly extended to more general kine- 
matics, namely to all mobile robots admitting a chained-form representation. 
In particular, our choice encompasses the case of unicycle kinematics, another 
ubiquitous model of wheeled mobile robot, for which simple but specific feed- 
back control methods can also be derived. 
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The nonholonomic nature of the car-like robot is related to the assump- 
tion that the robot wheels roll without slipping. This implies the presence of 
a nonintegrable set of first-order differential constraints on the configuration 
variables. While these nonholonomic constraints reduce the instantaneous mo- 
tions that the robot can perform, they still allow global controllability in the 
configuration space. This unique feature leads to some challenging problems 
in the synthesis of feedback controllers, which parallel the new research issues 
arising in nonholonomic motion planning. Indeed, the wheeled mobile robot 
application has triggered the search for innovative types of feedback controllers 
that can be used also for more general nonlinear systems. 

In the rest of this introduction, we present a classification of motion control 
problems, discussing their intrinsic difficulty and pointing out the relationships 
between planning and control aspects. 

1.1 P r o b l e m  classification 

In order to derive the most suitable feedback controllers for each case, it is 
convenient to classify the possible motion tasks as follows: 

- P o i n t - t o - p o i n t  m o t i o n :  The robot must reach a desired goal configuration 
starting from a given initial configuration. 

- P a t h  f o l l o w i n g :  The robot must reach and follow a geometric path in the 
cartesian space starting from a given initial configuration (on or off the 
path). 

- T r a j e c t o r y  t r a c k i n g :  The robot must reach and follow a trajectory in the 
cartesian space (i.e., a geometric path with an associated timing law) start- 
ing from a given initial configuration (on or off the trajectory). 

The three tasks are sketched in Fig. 1, with reference to a car-like robot. 
Using a more control-oriented terminology, the point-to-point motion task is 

a s t a b i l i z a t i o n  problem for an (equilibrium) point in the robot state space. For a 
car-like robot, two control inputs are available for adjusting four configuration 
variables~ namely the two cartesian coordinates characterizing the position of 
a reference point on the vehicle, its orientation, and the steering wheels angle. 
More in general, for a car-like robot towing N trailers, we have two inputs for 
reconfiguring n = 4 + N states. The error signal used in the feedback controller 
is the difference between the current and the desired configuration. 
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Fig. 1. Motion tasks: Point-to-point motion (a), Path following (b), Trajectory track- 
ing (c) 
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In the path following task, the controller is given a geometric description of 
the assigned cartesian path. This information is usually available in a param- 
eterized form expressing the desired motion in terms of a path parameter a, 
which may be in particular the arc length along the path. For this task, time 
dependence is not relevant because one is concerned only with the geometric 
displacement between the robot and the path. In this context, the time evolu- 
tion of the path parameter is usually free and, accordingly, the command inputs 
can be arbitrarily scaled with respect to time without changing the resulting 
robot path. It is then customary to set the robot forward velocity (one of the 
two inputs) to an arbitrary constant or time-varying value, leaving the second 
input available for control. The path following problem is thus rephrased as the 
stabilization to zero of a suitable scalar path error function (the distance d to 
the path in Fig. lb) using only one control input. For the car-like robot, we shall 
see that achieving d = 0 implies the control of three configuration variables-- 
one less than the dimension of the configuration space--because higher-order 
derivatives of the controlled output d are related to these variables. Similarly, 
in the presence of N trailers, requiring d - 0 involves the control of as many 
as n - 1 = N + 3 coordinates using one input. 

In the trajectory tracking task, the robot must follow the desired carte- 
sian path with a specified timing law (equivalently, it must track a moving 
reference robot). Although the trajectory can be split into a parameterized ge- 
ometric path and a timing law for the parameter, such separation is not strictly 
necessary. Often, it is simpler to specify the workspace trajectory as the de- 
sired time evolution for the position of some representative point of the robot. 
The trajectory tracking problem consists then in the stabilization to zero of 
the two-dimensional cartesian error e (see Fig. lc) using both control inputs. 
For the car-like robot, imposing e - 0 over time implies the control of all four 
configuration variables. Similarly, in the presence of N trailers, we are actually 
controlling n = N + 4 coordinates using two inputs. 

The point stabilization problem can be formulated in a local or in a global 
sense, the latter meaning that we allow for initial configurations that are arbi- 
trarily far from the destination. The same is true also for path following and 
trajectory tracking, although locality has two different meanings in these tasks. 
For path following, a local solution means that the controller works properly 
provided we start sufficiently close to the path; for trajectory tracking, close- 
ness should be evaluated with respect to the current position of the reference 
robot. 

The amount of information that should be provided by a high-level motion 
planner varies for each control task. In point-to-point motion, information is 
reduced to a minimum (i.e., the goal configuration only) when a globally sta- 
bilizing feedback control solution is available. However, if the initial error is 
large, such a control may produce erratic behavior and/or large control effort 
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which are unacceptable in practice. On the other hand, a local feedback solu- 
tion requires the definition of intermediate subgoals at the task planning level 
in order to get closer to the final desired configuration. 

For the other two motion tasks, the planner should provide a path which 
is kinematically feasible (namely, which complies with the nonholonomic con- 
straints of the specific vehicle), so as to allow its perfect execution in nominal 
conditions. While for an omnidirectional robot any path is feasible, some degree 
of geometric smoothness is in general required for nonhotonomic robots. Nev- 
ertheless, the intrinsic feedback structure of the driving commands enables to 
recover transient errors due to isolated path discontinuities. Note also that the 
unfeasibility arising from a lack of continuity in some higher-order derivative of 
the path may be overcome by appropriate motion timing. For example, paths 
with discontinuous curvature (like the Reeds and Shepp optimal paths under 
maximum curvature constraint) can be executed by the real axle midpoint of 
a car-like vehicle provided that the robot is allowed to stop, whereas paths 
with discontinuous tangent are not feasible. In this analysis, the selection of 
the robot representative point for path/trajectory planning is critical. 

The timing profile is the additional item needed in trajectory tracking con- 
trol tasks. This information is seldom provided by current motion planners, 
also because the actual dynamics of the specific robot are typically neglected 
at this level. The above example suggests that it may be reasonable to enforce 
already at the planning stage requirements such as 'move slower where the path 
curvature is higher'. 

1.2 Cont ro l  issues 

From a control point of view, the previously described motion tasks are defined 
for the nonlinear system 

q=G(q)v ,  (1) 

representing the kinematic model of the robot. Here, q is the n-vector of robot 
generalized coordinates, v is the m-vector of input velocities (m < n), and the 
columns gi (i = 1 , . . . ,  m) of matrix G are smooth vector fields. For the car-like 
robot, it is n = 4 and m = 2. 

The above model can be directly derived from the nonintegrable rolling 
constraints governing the system kinematic behavior. System (1) is driftless, 
a characteristic of first-order kinematic models. Besides, its nonlinear nature 
is intrinsically related to the nonholonomy of the original Pfaffian constraints. 
In turn, it can be shown that this is equivalent to the global accessibility of 
the n-dimensional robot configuration space in spite of the reduced number 
of inputs. 
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Interestingly, the nonholonomy of system (1) reverses the usual order of dif- 
ficulty of robot control tasks. For articulated manipulators, and in general for 
all mechanical systems with as malay control inputs as generalized coordinates, 
stabilization to a fixed configuration is simpler than tracking a trajectory. In- 
stead, stabilizing a wheeled mobile robot to a point is more difficult than path 
following or trajectory tracking. 

A simple way to appreciate such a difference follows from the general discus- 
sion of the previous section. The point-to-point task is actually an input-state 
problem with m = 2 inputs and n controlled states. The path following task 
is an input-output problem with m = 1 input and p = 1 controlled output, 
implying the indirect control of n - 1 states. The trajectory tracking task is 
again an input-output problem with m = 2 inputs and p = 2 controlled out- 
puts, implying the indirect control of n states. As a result, the point-to-point 
motion task gives rise to the most difficult control problem, since we are try- 
ing to control n independent variables using only two input commands. The 
path following and trajectory tracking tasks have a similar level of difficulty, 
being 'square' control problems (same number of control inputs and controlled 
variables). 

This conclusion can be supported by a more rigorous controllability analysis. 
In particular, one can test whether the above problems admit an approximate 
solution in terms of linear control design techniques. We shall see that if the 
system (1) is linearized at a fixed configuration, the resulting linear system 
is not controllable. On the other hand, the linearization of eq. (1) about a 
smooth trajectory gives rise to a linear time-varying system that is controllable, 
provided some persistency conditions are satisfied by the reference trajectory. 

The search for a feedback solution to the point stabilization problem is 
further complicated by a general theoretical obstruction. Although the kine- 
matic model (1) can be shown to be controllable using nonlinear tools from 
differential geometry, it fails to satisfy a necessary condition for stabilizabil- 
ity via smooth time-invariant feedback (Brockett's theorem). This means that 
the class of stabilizing controllers should be suitably enlarged so as to include 
nonsmooth and/or time-varying feedback control laws. 

We finally point out that the design of feedback controllers for the path 
following task can be tackled from two opposite directions. In fact, by separat- 
ing the geometric and timing information of a trajectory, path following may 
be seen as a subproblem of trajectory tracking. On the other hand, looking at 
the problem from the point of view of controlled states (in the proper coordi- 
nates), path following appears as part of a point stabilization task. The latter 
philosophy will be adopted in this chapter. 
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1.3 Open- loop  vs. closed-loop control 

Some comments are now appropriate concerning the relationships between the 
planning and control phases in robot motion execution. 

Essentially, we regard planning and open-loop (or feedforward) control as 
synonyms, as opposed to feedback control. In a general setting, a closed-loop 
controller results from the superposition of a feedback action to a coherent 
feedforward term. The latter is determined based on a priori knowledge about 
the motion task and the environment, which may have been previously acquired 
by exteroceptive sensors. Feedback control is instead computed in real-time 
based on external/internal sensor data. 

However, the borderline between open-loop and closed-loop control solu- 
tions may not be so sharp. In fact, we may use repeated open-loop phases, 
replanned at higher rates using new sensor data to gather information on the 
actual state. In the limit, continuous sensing and replanning leads to a feedback 
solution. Although this scheme is conceptually simple, its convergence analysis 
may not be easy. Thus, we prefer to consider the planning and control phases 
separately. 

For wheeled mobile robots, the usual output of the planning phase, which 
takes into account the obstacle avoidance requirement, is a kinematically fea- 
sible path with associated nominal open-loop commands. To guarantee fea- 
sibility, the planner may either take directly into account the nonholonomic 
constraints in the generation of a path, or create a preliminary holonomic path 
with standard techniques and then approximate it with a concatenation of 
feasible subpaths. 

In the planning phase, it is also possible to include an optimality criterion 
together with system state and input constraints. It is often possible to obtain 
a solution by applying optimal (open-loop) control results. A typical cost cri- 
terion for the car-like robot is the total length of the collision-free path joining 
source to destination, while constraints include bounds on the steering angle 
as well as on the linear and angular velocity. In any case, the resulting com- 
mands are computed off-line. Hence, unmodeled events at running time, such as 
occasional slipping of the wheels or erroneous initial localization, will prevent 
the successful completion of a point-to-point motion or the correct tracing of a 
desired path. 

The well-known answer to such problems is resorting to a feedback con- 
troller, driven by the current task error, so as to achieve some degree of ro- 
bustness. However, this should by no means imply the abdication to the use 
of the nominal open-loop command computed in the planning phase, which is 
included as the feedforward term in the closed-loop controller. As soon as the 
task error is zero, the feedback signal is not in action and the output command 
of the controller coincides with the feedforward term. 
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The path and trajectory tracking controllers presented in this chapter agree 
with this combined approach. In fact, the feedforward represents the anticipa- 
tive action needed to drive the robot along the desired nominal motion. We 
point out that a shortcoming arises when the planner generates optimal feed- 
forward commands that are at their saturation level, because this leaves no 
room for the correcting feedback action. This is a common problem in open- 
loop optimal control; unfortunately, optimal feedback control laws for nonlinear 
systems are quite difficult to obtain in explicit form. 

On the other hand, it follows from the discussion in Sect. 1.1 that no feedfor- 
ward is required in principle for the point stabilization task, so that the executed 
trajectory results from the feedback action alone. While this approach may be 
satisfactory for fine motion tasks, in gross motion a pure feedback control may 
drive the mobile robot toward the goal in an unpredictable way. In this case, a 
closer integration of planning and control would certainly improve the overall 
performance. 

1.4 Organiza t ion  of  contents  

We will present some of the most significant feedback control strategies for the 
different robot motion tasks. For each method, we discuss the single design steps 
and illustrate the typical performance by simulations. Results are presented in 
a consistent way in order to allow for comparisons. The organization of the rest 
of the chapter is as follows. 

Section 2 is devoted to preliminary material. The kinematic model of the 
car-like robot is introduced, stating the main assumptions and distinguishing 
the cases of rear-wheel and front-wheel driving. We analyze the local control- 
lability properties at a configuration and about a trajectory. Global controlla- 
bility is proved in a nonlinear setting and a negative result concerning smooth 
feedback stabilizability is recalled. This section is concluded by presenting the 
chained-form transformation of the model and its essential features. 

In Sect. 3 we address the trajectory tracking problem. The generation of 
suitable feedforward commands for a given smooth trajectory is discussed. In 
particular, we point out how geometric and timing information can be handled 
separately. A simple linear controller is devised for the chained-form represen- 
tation of the car-like robot, using the approximate system linearization around 
the nominal trajectory. Then, we present two nonlinear controllers based on 
exact feedback linearization. The first uses static feedback to achieve input- 
output linearization for the original kinematic model of the car-like robot. The 
second is a full-state linearizing dynamic feedback designed on the chained-form 
representation. Both guarantee global tracking with prescribed linear error dy- 
namics. 
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In Sect. 4 two time-varying feedback control laws are presented, both solving 
the point stabilization as well as the path following problem. The two controllers 
are globally defined on chained-form representations. The first is a smooth 
time-varying controller based on a Lyapunov analysis of skew-symmetric forms. 
The second is a nonsmooth time-varying feedback controller inspired by the 
backstepping approach. Convergence rates of the two methods are discussed 
and illustrated by simulations. 

Section 5 summarizes the obtained results and indicates some possible ex- 
tensions of the control problem to address the limitations arising in real-world 
problems. 

In the exposition, we shall limit the references only to the basic sources from 
which the presented material is drawn. In the concluding section, however, a 
reasoned guide to further related literature is given. 

2 M o d e l i n g  a n d  a n a l y s i s  o f  t h e  c a r - l i k e  r o b o t  

In this section, we shall first derive the kinematic equations of a car-like robot 
and then analyze the fundamental properties of the corresponding system from 
a control viewpoint. 

2.1 K inema t i c  mode l ing  

The main feature of the kinematic model of wheeled mobile robots is the pres- 
ence of nonholonomic constraints due to the rolling without slipping condition 
between the wheels and the ground. The case of a single wheel is analyzed first. 

Consider a wheel that rolls on a plane while keeping its body vertical, 
as shown in Fig. 2. This kind of system is also referred to as a unicycle. Its 
configuration can be described by a vector q of three generalized coordinates, 
namely the position coordinates x, y of the point of contact with the ground 
in a fixed frame and the angle ~ measuring the wheel orientation with respect 
to the x axis. The system generalized velocities q cannot assume independent 
values; in particular, they must satisfy the constraint 

[ sin ~ - cos 8 0 ] -= 0, (2) 

entailing that the linear velocity of the wheel center lies in the body plane of 
the wheel (zero lateral velocity). 

Equation (2) is a typical example of P]aJfian constraint C(q)(l = O, i.e., 
linear in the generalized velocities. As a consequence, all admissible generalized 
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Fig. 2. Generalized coordinates of a unicycle 

velocities are contained in the null space of the constraint matrix C(q). In this 
case, one obtains 

rcosol 
[ ioOj v,-,- ,,2, (3) 

where vl and v2 are respectively the linear velocity of the wheel and its angular 
velocity around the vertical axis. As the choice of a basis for the null space of 
matr ix C is not unique, the components of v may also assume different mean- 
ings. Moreover, they may have no direct relationship with the actual controls 
available, that  are in general forces or torques. For this reason, eq. (3) is called 
the kinematic model of the unicycle. 

Let us now turn to a robot having the same kinematics of an automobile, as 
shown in Fig. 3. For simplicity, assume that  the two wheels on each axle (front 
and rear) collapse into a single wheel located at the midpoint of the axle (car- 
like model). The front wheel can be steered while the rear wheel orientation 
is fixed. The generalized coordinates are q = (x,y,O,¢), where x ,y  are the 
cartesian coordinates of the rear wheel, 0 measures the orientation of the car 
body with respect to the x axis, and ¢ is the steering angle. 

The system is subject to two nonholonomic constraints, one for each wheel: 

:~I sin(O+ ¢) - ~)I cos(O+ ~b) = 0 
ksinO - ycos0  = O, 

with xi,  yf denoting the cartesian coordinates of the front wheel. By using the 
rigid-body constraint 

x! = x + ~cos0 
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Fig. 3. Generalized coordinates of a car-like robot 

YI = Y + l sin 0, 

where g is the distance between the wheels, the first kinematic constraint be- 
comes 

5:sin(0 + ¢) - 9 cos(0 + ¢) - 0 g cos ¢ = O. 

The Pfaffian constraint matrix is 

[sin(0 + ¢) - cos(0 + ¢) - t c o s ¢  ~] 
C(q)= [ sin/9 - c o s O  0 ' 

and has constant rank equal to 2. 
If the car has rear-wheel driving, the kinematic model is derived as 

/ sin/? / 

= Lto,/,  j v,÷ 
v2, (4) 

where vl and v2 are the driving and the steering velocity input, respectively. 
There is a model singularity at ¢ = 4-~r/2, where the first vector field has a 
discontinuity. This corresponds to the car becoming jammed when the front 
wheel is normal to the longitudinal axis of the body. However, the importance 
of this singularity is limited, due to the restricted range of the steering angle ¢ 
in most practical cases. 
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The model for front-wheel driving is obtained as 

[i] rcos0cos l [i] = | s i n 0 c o s ¢ |  
V2, 

where the driving velocity Vl refers now to the front wheel. Note that  the 
previous singularity does not occur in this model; in fact, at ¢ = 4-r/2 the car 
can still (in principle) pivot about its rear wheel. 

An interesting format for the kinematic equations of a front-wheel drive 
car can be obtained by means of a change of coordinates and an input trans- 
formation. In particular, define the alternative set of generalized coordinates 
(x], y / ,  5, 0), where 5 = 0 + ¢ is the absolute steering angle with respect to the 
x-axis (see Fig. 3). By using the input transformation 

Wl --'= Vl 

1 
w2 = ~ sin(~ - O)vl + v2, 

it is easy to show that  

[i] ---- Wl + W2- 

L sin(5 - e ) /eJ  

Note that  the first three equations are those of a unicycle. As a mat ter  of fact, 
the above model is equivalent to a unicycle with one trailer hooked at the center 
of the wheel. Correspondingly, the new input w2 is the absolute (i.e., measured 
w.r.t, the x axis) steering velocity of the front wheel. Other state and input 
transformations of the car-like kinematics will be presented in Sect. 2.3. 

Throughout the rest of this chapter, we shall be dealing with the rear-wheel 
drive model (4). It has to be mentioned that  a more complete kinematic model 
should include also the rotation angles of each wheel as generalized coordinates, 
in order to account for the presence of actuators and sensors on the wheel axis 
as well as for typical nonidealities such as tire deformation. Nevertheless, our 
model captures the essence of the vehicle kinematics and is well suited for 
control purposes. 
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2.2 C o n t r o l l a b i l i t y  ana lys i s  

Equation (4) may be rewritten as 

q=gl(q)vl÷g2(q)v2, with 

r cos01 
| sine | 

g l =  [tano¢/gj' g2= " 
(5) 

The above system is nonlinear, driftless (i.e., no motion takes place under zero 
input) and there are less control inputs than generalized coordinates. 

Although any driver's experience indicates that  a car-like robot should be 
completely controllable, it is not trivial to establish such property on a math- 
ematical basis. In particular, we shall see that  an approximate linear analysis 
is not sufficient in general to achieve this goal. 

C o n t r o l l a b i l i t y  a t  a p o i n t  As system (5) is driftless, any configuration qe 
is an equilibrium point under zero input. The easiest way to investigate its 
controllability at qe is to consider the corresponding linear approximation 

~=gl(qe)vl-t-g2(qe)v2=G(qe)v, 

where ~ = q-qe. The rank of the controllability matrix G(qe) is two. Hence, the 
tinearized system is not controllable so that  a linear controller will not work, 
not even locally. 

A useful tool that  allows to test the controllability of driftless nonlinear 
systems is the Lie Algebra rank condition [18]. In our case, this boils down to 
check whether 

rank[gl g2 [gl,g2] [gl, [gl,g2]] [g2,[gl,g2]]... ] = 4. 

For system (5), the first two Lie brackets are computed as 

[gl,  g2] = 
0 

- 1 / ~  c o s  2 ' 

0 

[gl,  [gl,  g2]] : 

" -  sin O/g cos 2 ¢] 
c°sO/ic°s2 ¢ ] " 

It is easy to verify that,  away from the model singularity ¢ = =k~r/2, the above 
rank is 4, so that  the car-like robot is certainly controllable whenever the steer- 
ing angle is different from :kr/2.  Using the fact that  ¢ can be modified at 
will through the control input v2, it can be shown that  the system is actually 
controllable everywhere. 



184 A. De Luca, G. Oriolo and C. Samson 

As for the stabilizability of system (5), the failure of the previous linear 
analysis indicates that exponential stability in the sense of Lyapunov cannot 
be achieved by smooth feedback [45]. However, things turn out to be even worse: 
it is not possible to stabilize at all the system at qe by using a smooth (in fact, 
continuous) time-invariant feedback law v = v(q). This negative result can be 
readily established on the basis of Brockett's theorem [6], which implies that a 
necessary condition for smooth stabilizability of a driftless regular system (i.e., 
such that the input vector fields are linearly independent at qe) is that the 
number of inputs equals the number of states. Since this is not the case, such 
condition is violated. 

The above limitation has a deep impact on the control design approach. 
To obtain a point stabilizing controller it is either necessary to give up the 
continuity requirement, or to resort to time-varying control laws v = v(q, t). In 
Sect. 4 we shall pursue the latter approach. 

Control labi l i ty  abou t  a t r a j ec to ry  Consider now a desired reference state 
trajectory qd(t) = (xd(t), yd(t), Od(t), Cd(t)) for the car-like robot. In order to be 
feasible, this trajectory must satisfy the nonholonomic constraints on the vehi- 
cle motion. The generation of such trajectories as well as of the corresponding 
reference velocity inputs Vdl and vd2 will be addressed in Sect. 3. 

Defining ~(t) = q(t) - qd(t) and ~(t) = v(t) - va(t), the approximate lin- 
earization of system (5) about the reference trajectory is obtained as 

= A(t)q  + B(t)~,  (6) 

with 

2 Ogi t A(t)  = E Vdi(t)~q q=qd( )' 
i=1 

B(t)  = G(qd(t)). 

Simple computations yield 

i 0 - sin Od(t)vdl (t) 0 ] 
A(t)  = 0 0 cosOd(t)vdl(t) 0 

0 0 (t)/e cos 2 On(t) ' 
0 0 0 

B(t)  = 
cos0d(t) i] 
sinOd(t) 

tan0d(t)/~ " 
0 

Note that the linearized system is t ime-varying through the dependence on 
time of the reference trajectory. As a consequence, the controllability analysis 
is more involved than in the time-invariant case, and would consist in testing 
whether the controllability Gramian is nonsingular [19]. 

For illustration, we consider the special case of a linear trajectory with 
constant velocity, in which one falls upon a time-invariant system. In fact, in 
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this situation we have vdl (t) =_ Vdl (a constant nonzero value) and vd~ (t) = 0. 
Besides, Od(t) =-- Od(tO) and ¢(t) = 0. The controllability condition is 

rank [B A B  A2B A3B] = 4. 

It is easy to verify that the controllability matrix has a single nonzero 4×4 minor 
whose value is -u31/g 2 cos 40d. Therefore, the linearized system is controllable 
as long as Od ~ ±~r/2 and Udl ~ 0 (which is not unexpected, since for udl = 0 
the trajectory would collapse to a point). This implies that system (5) can be 
locally stabilized about the reference trajectory by a linear feedback. 

Although the above analysis has been carried out for a linear reference 
trajectory, we shall see in Sect. 3 that it is possible to design a locally stabilizing 
linear feedback for arbitrary feasible trajectories provided they do not come to 
a stop. 

2.3 Cha ined  forms 

The existence of canonical forms for kinematic models of nonhotonomic robots 
is essential for the systematic development of both open-loop and closed-loop 
control strategies. The most useful canonical structure is the chained ]orm. 

The two-input driftless control system 

Xl = Ul 

X2 = U2 

X3 "~ X2Ul 

:~n = :~n- - lUl ,  

(7) 

is called (2, n) single-chain form [28]. The two-input case covers many of the 
kinematic models of practical wheeled mobile robots. A more general study 
would involve multiple chains, with rather straightforward extensions of the 
results presented in this chapter. 

The chained system (7), although nonlinear, has a strong underlying linear 
structure. This clearly appears when ua is assigned as a function of time, and 
is no longer regarded as a control variable. In this case, eq. (7) becomes a 
single-input, time-varying linear system. 

The (2, n) chained form can be shown to be completely controllable by ap- 
plication of the Lie Algebra rank condition. In performing this calculation, one 
finds that all Lie brackets above a certain order (namely, n - 2) are identically 
zero; this property of the system is called nilpotency. 

Necessary and sufficient conditions have been given in [29] for the conversion 
of a two-input system like (5) into chained form by means of (i) a change of 
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coordinates x -- ¢(q), and (ii) an invertible input transformation v -- ~(q)u.  
By applying these conditions, one can show that  nonholonomic systems with 
m -- 2 inputs and n = 3 or 4 generalized coordinates can be always put  in 
chained form. 

For example, consider the kinematic model (3) of a unicycle. By letting 

xl ---- --9 

x2 = xcos9  + y s i n 9  

x3 = --xsin9 + ycosg,  

and 

vl  = x3ul  + u2 = ( - x  sin 9 + y cos 0)ul  + u2 

Y 2 -~- - - U  1 , 

it is easy to see that  the transformed system is in (2,3) chained form. Besides, 
both  the coordinate and the input transformation are globally defined. Note 
that  the new variables x2 and x3 are simply the cartesian coordinates of the 
unicycle evaluated in the mobile frame attached to the robot body and rotated 
so as to align the x2 axis with the vehicle orientation. 

Let us now consider the car-like robot model (5). Using the change of coor- 

dinates 

Xl ----~ 
x2 = t an¢ /gcosa9  
x3 = tan 9 
X4 = y ,  

(s) 

together with the input transformation 

vl  = u l /  cos9  

v2 = - 3  singsin 2 C u l / g c o s  2 9 + gcos 3 9cos 2 ¢u2,  
(9) 

the system is in (2, 4) chained form 

X2 ~ U2 

X 3 " - X 2 U l  

X 4 - . . ~ X 3 U l .  

(10) 

In this case, the transformation (and thus, the obtained chained form) is only 
locally defined in open connected domains which exclude the vehicle orienta- 
tions 9 = ~r/2 =t= k~r, k E ~W. The structure of change of coordinates (8) is 
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PATH 

J/ 

Fig. 4. Coordinate definition for a path following task 

interesting because it can be generalized to nonholonomic systems of higher 
dimension, such as the N-trailer robot [46]. In particular, the xl and xn coor- 
dinates can be always chosen as the x and y coordinates of the midpoint of the 
last trailer wheel axle. 

It is interesting to note that the (2, n) chained form can be also obtained 
starting from a different point of view. In particular, assume that the car-like 
robot must follow a given path which is parameterized by its arc length. With 
reference to Fig. 4, let d be the distance between the rear axle midpoint and 
the path, and s be the corresponding value of the path parameter. Denote by 
Ot the angle between the current tangent to the path and the x axis, and let 
Op = 0 - Or. The curvature along the path is defined as 

dot 

= Z 2 '  

which implies 

Ot =c(s)a.  (11) 

In the following, we assume that c(-) E C 1 and that the path satisfies some 
technical conditions (see [44] for details). It is easy to verify that 

--~ L~I COS Op q- 0 t d (12) 

d = Vl s i n 0 p .  (13) 
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Equations (12-13) may be COmbined with model (4) in order to derive the 
kinematic equations in terms of path coordinates qp = (s, d, 8p, ¢): 

Ii] 
1 - de(s) 

sin 0p 

( ~ . . ¢ _  c(s )cosO,  ) 
i - dc(s) / 
0 

Vl + v2. (14) 

The above model can be put in the (2, 4) chained form by using the change of 
coordinates 

• 1 ~ 8  

x2 = - d ( s ) d t a n O  v - c(s)(1 - de(s)) 1 + sin2 0p (1 - de(s))  2 tan ¢ 
cos 20p + ~ cos 30p (15) 

x3 = (1 - dc(s))  tan ~p 
x4 = d, 

together with the input transformation 

1 - de(s) 
Vl = COS Op Ul 

V2 = a 2 ( q p ) ( U 2  -- O~l(qp)Ul) .  

In the above formulas, d ( s )  denotes the derivative of c with respect to s, and 
we have set 

Ox2 ( t a n ¢ ( 1  - dc(s))  

t cos 30p cos 2 ¢ 
a2(qp) = ( 1 - d e ( s ) )  2 " 

Also this chained-form transformation is locally defined in open connected do- 
mains, because 0p = ~r/2 :k k~r, k E ~V, must be excluded. Note that  in the 
particular case c(s) - O, one recovers the previous expressions (8) and (9). In 
fact, in this situation the path may be taken as the x-axis of the world frame, 
and (s, d, 0p) become the coordinates (x, y, ~) of the vehicle. 

We conclude this section by pointing out that there are other canonical 
forms that can be successfully used in connection with nonholonomic systems, 
namely the Caplygin form and the power form. It is noteworthy that,  for m = 2 
inputs, the three canonical forms are mathematically equivalent, since there 
exist global coordinate transformations that allow to convert one into the oth- 
ers [211 • 
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3 Trajectory tracking 

In this section, we consider the problem of tracking a given cartesian trajec- 
tory with the car-like robot using feedback control. Both a local and a global 
approach will be presented. In the first, we use a standard linear control design 
and obtain convergence provided that the car starts sufficiently close to the 
desired trajectory. In the second, we pursue a feedback linearization approach, 
achieving asymptotic stability for arbitrary initial states via static as well as 
dynamic nonlinear feedback. 

In the following, extensive use is made of the chained-form representation. 
Such system transformation is not strictly necessary, but simplifies considerably 
the control design and provides at the same time a framework for the direct 
extension of the controllers to vehicles with more complex kinematics. In any 
case, the methods presented here can be applied to more general mobile robots, 
even those which cannot be put in chained form. 

Before moving to the control design, we discuss the problem of generating 
state reference trajectories for the car-like robot, both in the original kinematic 
description (5) and in the chained form (10). 

3.1 Re fe rence  t r a j e c t o r y  genera t ion  

Assume that a feasible and smooth desired output trajectory is given in terms 
of the cartesian position of the car rear wheel, i.e., 

xd = xd( t ) ,  Yd = yd( t ) ,  t >_ tO. (16) 

This natural way of specifying the motion of a car-like robot has an appealing 
property. In fact, from this information we are able to derive the corresponding 
time evolution of the remaining coordinates (state trajectory) as well as of the 
associated input commands (input trajectory) as shown hereafter. 

The desired output trajectory (16) is feasible when it can be obtained from 
the evolution of a reference car-like robot 

~d = COS0d Vdl (17) 

~)d = sin Od vm (18) 

Od -~ tan Cd Vm/t (19) 

& = v~2, (20) 

for suitable initial conditions (Xd (to), Yd (to), Od (to), d~d (to)) and piecewise-conti- 
nuous inputs vd(t), for t > to. 

Solving for vm from eqs. (17) and (18) gives for the first input 

vdl(t) = • ~ /~ ( t )  + y~(t), (21) 
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where the sign depends on the choice of executing the trajectory with forward 
or backward car motion, respectively. 

Dividing eq. (18) by (17), and keeping the sign of the linear velocity input 
into account, we compute the desired orientation of the car as 

0a(t) = ATAN2 { yd(t) 2a(t) } (22) 
Vdl( t ) '  Vdl(t) ' 

with codomain in all four quadrants. 
Differentiating eqs. (17) and (18), and combining the results so as to elimi- 

nate ~)dl, we obtain 

~d(t) = ~)d(t)2d(t) -- ~d(t)~)d(t) 
v l(t) 

Plugging this into eq. (19) provides the desired steering angle 

Cd(t) = arctan ~ [{jd(t)xd(t) -- Xd(t)~ld(t)] (23) 
V]l(t)  

which takes values in ( -0 /2 ,  r /2) .  
Finally, differentiating (23) and substituting the result in eq. (20) yields the 

second input 

Vd2 (t) = ~val (ijdkd --Xd~ld) V21 -- 3 (~)dXd -- X~yd) (XdXd + Ydfta) (24) 
V61 -1- t 2 (ydXd - -  ~d~]d) 2 

where we dropped for compactness the time dependence in the right hand side. 
Equations (21-24) provide the unique state and input trajectory (modulo 

the choice of forward or backward motion) needed to reproduce the desired 
output trajectory. These expressions depend only on the values of the output 
trajectory (16) and its derivatives up to the third order. Therefore, in order 
to guarantee its exact reproducibility, the cartesian trajectory should be three 
times differentiable almost everywhere. This fact should be taken into account 
at the motion planning level. 

For illustration, consider a circular trajectory of radius R to be traced coun- 
terclockwise at a constant linear velocity R w ,  with the rear wheel of the car 
located at the origin at time to = 0. We have 

xd(t) = Rsinwt, yd(t) = R(1 - cos~t). 

From the previous formulas, when the robot is required to move in the forward 
direction, the nominal command inputs are computed as 

v d l ( t )  = vd2(t)  = 0 ,  
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while the unique initial state enabling exact reproduction of the desired trajec- 
tory is 

Xd(O) = O, yd(O) = 0, ~d(0) = 0, ¢d(0) = arctan ~ .  

The only situation in which the reference signals (21-24) are not defined 
is when Vdl(t-) = 0 for some t > to. In this case, it is convenient to use a 
parameterized trajectory in which the geometric path description is separated 
from the timing information. Denoting by cr the path parameter (e.g., the arc 
length s) and by a = a ( t )  the time history along the trajectory, one has 

de 
~d(t )  = x e ( a )  . --~ = x '~(a( t ) )O(t )  

and a similar expression for ~)a(t) (the prime denotes differentiation with re- 
spect to the path parameter). We can then rewrite the linear pseudo-velocity 
command at a given point on the path as 

~1(~) = ±~/~2(~) + y~2(~). (25) 

The actual linear velocity input is expressed as 

Vdl(t) =Wdl (a(t))d(t). 

The situation Vd~(t-) = 0 is then obtained by letting h(t-) = O, with Wdl(a(t-))  ~t 
O. 

The desired orientation is computed as 

Od(a) = ATAN2 ~" y~(a) , 
X~(ff) 

t ~(~) ~--~) J' 
which is now always well defined. By performing the time/space separation 
also in eqs. (23) and (24), the zero-velocity singularity is similarly avoided, 
because only curvature and higher-order information about the path appear in 
the expressions of ~bd(a) and  Wd2(cr), with Vd2(t) = Wd2(a(t))gr(t) .  We have in 
fact 

Cd(a)  = arctan ~(~) 

wd~(~) = 

and  

- XdYd) 
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where we dropped the dependence on a for compactness. 
The derivation of the reference inputs that generate a desired cartesian 

trajectory of the car-like robot can also be performed for the (2, 4) chained 
form. In fact, with the reference system given by 

Xdl ~ ~tdl 

Xd2 : Ud2 

Xd3 "~" Xd2Udl  

:Bd4 : Xd3 l td l ,  

(26) 

from the output trajectory (16) and the change of coordinates (8) we easily 
obtain 

x~ l ( t )  = xd(t)  
x~2 (t) = [/Jd (t)~d (t) - Yd(t)~d ( t ) ] / ~ ]  (t) 
Xd3(t) = ~ld(t)/xd(t) 
Xd4(t) = yd(t), 

and 

~dl ( t )  = xd(t)  
Ud2(t) = [y'd(t)x2(t) --xd(t)yd(t)xd(t)  - 3~d(t)~d(t)Xd(t) + 3!]d(t)X2d(t)] /x4(t) .  

To work out an example for this case, consider a sinusoidal trajectory 
stretching along the x axis and starting from the origin at time to = 0 

Xd(t) = t, yd(t) = A s i n w t .  (27) 

The feedforward commands for the chained-form representation are given by 

Udl(t) = 1, Ud2(t) = - A w 3  coswt,  

while its initial state should be set at 

Xdt(O) =0 ,  Xd~(O) = O, xd3(O) = A w ,  Xd4(O) = 0 .  

We note that, if the change of coordinates (8) is used, there is an 'asym- 
metric' singularity in the state and input trajectory when &d(t-) = 0, for some 

> to. This coincides with the situation 8d(t-') = ~r/2, where the chained-form 
transformation is not defined. 

On the other hand, if the chained form comes from the model in path vari- 
ables (14) through the change of coordinates (15), the state and input trajectory 
needed to track the reference output trajectory s = s d ( t ) ,  d = d d ( t )  -~ O, t > to, 
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are simply obtained as 

and 

Xdl( t )  : Sd(t) 

Xd2(t) = 0 

Xd3(t) -~ 0 

Xd4(t) = 0 

Udl (t) = Sd(t) 

Ud2(t) = O, 

without any singularity. 
Similar developments can be repeated more in general, e.g., for the case of 

a nonholonomic mobile robot with N trailers. In fact, once the position of the 
last trailer is taken as the system output, it is possible to compute the evolution 
of the remaining state variables as well as of the system inputs as functions of 
the output trajectory (i.e., of the output and its derivatives up to a certain 
order). Not surprisingly, the same is true for the chained form (7) by defining 
(xl, x,~) as system outputs. 

The above property has been also referred to as differential flatness [36], 
and is mathematically equivalent to the existence of a dynamic state feedback 
transformation that puts the system into a linear and decoupled form consisting 
of input-output chains of integrators. The algorithmic implementation of the 
latter idea will be shown in Sect. 3.3. 

3.2 Control via approximate linearization 

We now present a feedback controller for trajectory tracking based on standard 
linear control theory. The design makes use of the approximate linearization of 
the system equations about the desired trajectory, a procedure that leads to a 
time-varying system as seen in Sect. 2.2. A remarkable feature of this approach 
in the present case is the possibility of assigning a time-invariant eigenstructure 
to the closed-loop error dynamics. 

In order to have a systematic procedure that can be easily extended to 
higher-dimensional wheeled robots (i.e., n > 4), the method is illustrated for 
the chained form case. However, similar design steps for a mobile robot in 
original coordinates can be found in [42]. 

For the chained-form representation (10), denote the desired state and input 
trajectory computed in correspondence to the reference cartesian trajectory 
as in Sect. 3.1 by (Xdl (t), Xd2 (t), Xd3 (t), Xd4(t)) and ud(t) : (Udl (t), Ud2(t)) . 

Denote the state and input errors respectively as 

~i=Xd~--xi, i = 1 , . . . , 4 ,  f i j=u@--uj ,  j = l , 2 .  
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The nonlinear error equations are 

Xl ---- ?~1 
5 
X2 = U2 

X 3 = X d 2 ~ d l  --  X2U 1 

X 4 --~ Xd3Udl  - -  X3~t 1. 

Linearizing about the desired trajectory yields the following linear time-varying 

[ 00 
= 0 0 
x = udl( t )  0 

0 Udl(t) 

system 

2 +  0 
xd2(t) ~ = A( t )2  + B(t)~t. 

 d3(t) 

This system shares the same controllability properties of eq. (6), which was 
obtained by linearizing the original robot equations (5) about the desired tra- 
jectory. For example, it is easily verified that the controllability rank condition 
is satisfied along a linear trajectory with constant velocity, which is obtained 
for Ud1(t) =--- Udl (a constant nonzero value) and Ud2(t) -~ 0, implying Xd2(t) -- 0 
and Xda(t) = Xd3(to). 

Define the feedback term fi as the following linear time-varying law 

~1 ---~ --klXl (28) 

~2 = -k222 k3 X3 k4 - ud-7 -  1124' (29)  

with kl positive, and k2, k3, k4 such that 

.~z + ku)~2 + k3,k + k4 

is a Hurwitz polynomial. With this choice, the closed-loop system matrix 

A a ( t )  = 

- k l  0 
0 - k 2  

- - k l X d a ( t )  0 

0 0] 0° --  k 3 / U d l  ( t )  - -~4/U2dl  ( t )  

0 

has constant eigenvalues with negative real part. In itself, this does not guar- 
antee the asymptotic stability of de closed-loop time-varying system [20]. As 
a matter of fact, a general stability analysis for control law (28-29) is lacking. 
However, for specific choices of udl(t)  (bounded away from zero) and Ud2(t), 
it is possible to use results on slowly-varying linear systems in order to prove 
asymptotic stability. 
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The location of the closed-loop eigenvalues in the open left half-plane may 
be chosen according to the general principle of obtaining fast convergence to 
zero of the tracking error with a reasonable control effort. For example, in 
order to assign two real negative eigenvalues in -A1 and -A2 and two complex 
eigenvalues with negative real part, modulus w, and damping coefficient 
(0 < ¢ < 1), the gains ki should be selected as 

_ 2 2 kl = A1, k2 = A2 + 2(w~, k3 - wn + 2(w,,A2, k4 -- WnA2. 

Note that the overall control input to the chained-form representation is 

U : U d Jc U, 

with a feedforward and a feedback component. In order to compute the actual 
input commands v for the car-like robot, one should use the input transforma- 
tion (9). As a result, the driving and steering velocity inputs are expressed as 
nonlinear (and for v2, also time-varying) feedback laws. 

The choice (29) for the second control input requires Udl ~ 0. Intuitively, 
placing the eigenvalues at a constant location will require larger gains as the 
desired motion of the variable xl is coming to a stop. One way to overcome this 
limitation is to assign the eigenvalues as functions of the input udl. For example, 
imposing (beside the eigenvalue in -)~1) three coincident real eigenvalues in 
-a[udl l ,  with ~ > 0, we obtain 

£~2 = - -3a tud115c2 - -  3012Udl X,3 - -  C~ 3 IUd l  I-~4, (30) 

in place of eq. (29). With this input scaling procedure, the second control input 
simply goes to zero when the desired trajectory Xdl stops. We point out that 
a rigorous Lyapunov-based proof can be derived for the asymptotic stability of 
the control law given by eqs. (28) and (30). This kind of procedure will be also 
used in Sect. 4.1. 

S imula t ion  results  The simple controller (28-29) has been simulated for a 
car-like robot with l = 1 m tracking the sinusoidal trajectory (27), where A = 1 
and w = 7r. The state at to = 0 is 

Xl(0)=--2, X2(0)=0, x 3 ( O ) = A w ,  x4(0)=-l, 

so that the car-like robot is initially off the desired trajectory. We have cho- 
sen A1 = )~2 = wn = 5 and ~ = 1, resulting in four coincident closed-loop 
eigenvalues located at -5.  

The obtained results are shown in Figs. 5-7 in terms of tracking errors on 
the original states x, y, 0 and ¢, and of actual control inputs Vl and v2 to the 
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car-like robot. Once convergence is achieved (approximately, after 2.5 sec), the 
control inputs virtually coincide with the feedforward commands associated to 
the nominal sinusoidal trajectory, as computed from eqs. (21) and (24). 

Since the control design is based on approximate linearization, the con- 
trolled system is only locally asymptotically stable. However, extensive simula- 
tion shows that, also in view of the chained-form transformation, the region of 
asymptotic stability is quite large--although its accurate determination may be 
difficult. As a consequence, the car-like robot converges to the desired trajectory 
even for large initial errors. The transient behavior, however, may deteriorate 
in an unacceptable way. 
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Fig. 5. Tracking a sinusoid with approximate linearization: z (--) ,  y ( - - )  errors (m) 
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3.3 Cont ro l  via  exact  feedback l inearization 

We now turn to the use of nonlinear feedback design for achieving global sta- 
bilization of the trajectory tracking error to zero. 

It is well known in robotics that, if the number of generalized coordinates 
equals the number of input commands, one can use a nonlinear static (i.e., 
memoryless) state feedback law in order to transform exactly the nonlinear 
robot kinematics and/or dynamics into a linear system. In general, the linearity 
of the system equations is displayed only after a coordinate transformation in 
the state space. On the linear side of the problem, it is rather straightforward 
to complete the synthesis of a stabilizing controller. For example, this is the 
principle of the computed torque control method for articulated manipulators. 

Actually, two types of exact linearization problems can be considered for 
a nonlinear system with outputs. Beside the possibility of transforming via 
feedback the whole set of differential equations into a linear system (full-state 
Iinearization), one may seek a weaker result in which only the input-output 
differential map is made linear (input-output linearization). Necessary and suf- 
ficient conditions exist for the solvability of both problems via static feedback, 
while only sufficient (but constructive) conditions can be given for the dynamic 
feedback case [18]. 

Consider a generic nonlinear system 

= f(x) + G(x)u, z = h(x), (31) 

where x is the system state, u is the input, and z is the output to which we 
wish to assign a desired behavior (e.g., track a given trajectory). Assume the 
system is square, i.e., the number of inputs equals the number of outputs. 

The input-output linearization problem via static feedback consists in look- 
ing for a control law of the form 

u=a(x )+B(x ) r ,  (32) 

with B(x) nonsingular and r an external auxiliary input of the same dimension 
as u, in such a way that the input-output response of the closed-loop system 
(i.e., between the new inputs r and the outputs z) is linear. In the multi-input 
multi-output case, the solution to this problem automatically yields input- 
output decoupling, namely, each component of the output z will depend only 
on a single component of the input r. 

In general, a nonlinear internal dynamics which does not affect the input- 
output behavior may be left in the closed-loop system. This internal dynamics 
reduces to the so-called clamped dynamics when the output z is constrained to 
follow a desired trajectory zd(t). In the absence of internal dynamics, full-state 
linearization is achieved. Conversely, when only input-output linearization is 
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obtained, the boundedness/stability of the internal dynamics should be ana- 
lyzed in order to guarantee a feasible output tracking. 

If static feedback does not allow to solve the problem, one can try to obtain 
the same results by means of a dynamic feedback compensator of the form 

u = a(x, ~) + B(x, ~)r (33) 
= c(x, ~) + D(x, ~)r, 

where ~ is the compensator state of appropriate dimension. Again, the closed- 
loop system may or may not contain internal dynamics. 

In its simplest form, which is suitable for the current application, the lin- 
earization algorithm proceeds by differentiating all system outputs until some 
of the inputs appear explicitly. At this point, one tries to invert the differential 
map in order to solve for the inputs. If the Jacobian of this map--referred to 
as the decoupling matrix of the system--is nonsingular, this procedure gives a 
static feedback law of the form (32) that solves the input-output linearization 
and decoupling problem. 

If the decoupling matrix is singular, making it impossible to solve for all the 
inputs at the same time, one proceeds by adding integrators on a subset of the 
input channels. This operation, called dynamic extension, converts a system 
input into a state of a dynamic compensator, which is driven in turn by a new 
input. Differentiation of the outputs continues then until either it is possible to 
solve for the new inputs or the dynamic extension process has to be repeated. 
At the end, the number of added integrators will give the dimension of the 
state ~ of the nonlinear dynamic controller (33). The algorithm will terminate 
after a finite number of iterations if the system is invertible from the chosen 
outputs. 

In any case, if the sum of the relative degrees (the order of differentiation 
of the outputs) equals the dimension of the (original or extended) state space, 
there is no internal dynamics and the same (static or dynamic, respectively) 
control law yields full-state linearization. In the following, we present both a 
static and a dynamic feedback controller for trajectory tracking. 

Input-output linearization via static feedback For the car-like robot 
model (5), the natural output choice for the trajectory tracking task is 

The linearization algorithm begins by computing 

z = [ sin 0 v = A(O)v. (34) 
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X Z 

Z2 

y 

Fig. 8. Alternative output definition for a car-like robot 

At least one input appears in both components of ~, so that  A(8) is the actual 
decoupling matrix of the system. Since this matrix is singular, static feedback 
fails to solve the input-output linearization and decoupling problem. 

A possible way to circumvent this problem is to redefine the system output 
a s  

Ix + ~cose + A cos(e + ¢)] 
z = [ Y + t sin 8 + A sin(8 + ¢) J ' (35) 

with A ¢ 0. This choice corresponds to selecting the representative point of 
the  robot as P in Fig. 8, in place of the midpoint of the rear axle. 

Differentiation of this new output gives 

[cos8 - tan¢(s in8  + Asin(8 + ¢)/~) --A sin(8 + ¢) ]  = A(8,¢)v. 
= Lsin8 + tan~b(cos8 + Acos(8 + ¢) / t )  Acos(8 + ¢) J v 

Since detA(8, ¢) = A~ cos ¢ ~ 0, we can set ~ = r (an auxiliary input value) 
and solve for the inputs v as 

v = A -1(8, ¢)r. 

In the globally defined transformed coordinates (zl ,z2,8,¢) ,  the closed-loop 
system becomes 

Zl ---- rl 

z2 = r2 
(36) 

= sin ¢ [cos(8 + ¢)rl + s~(8  + ¢)r2]/e 
= - [cos(0 + ~b) sin ~b//+ sin(0 + ¢)/A] rl (37) 

- [sin(8 + ¢) sin ¢/~ -- cos(8 + ¢)/A] r2, 
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which is input-output linear and decoupled (one integrator on each channel). 
We note that there exists a two-dimensional internal dynamics expressed by 
the differential equations for/9 and ¢. 

In order to solve the trajectory tracking problem, we choose then 

ri = Zdi + kpi(Zdi -- zi), kpi > 0, i = 1, 2, (38) 

obtaining exponential convergence of the output tracking error to zero, for any 
initial condition ( Zl (t0), z2 (to), 0 (t0), ¢(t0) ). A series of remarks is now in order. 

- While the two output variables converge to their reference trajectory with 
arbitrary exponential rate (depending on the choice of the kpi'S in eq. (38)), 
the behavior of the variables 0 and ¢ cannot be specified at will because it 
follows from the last two equations of (36). 

- A complete analysis would require the study of the stability of the time- 
varying closed-loop system (36), with r given by eq. (38). In practice, one is 
interested in the boundedness of/9 and ¢ along the nominal output trajec- 
tory. This study may not be trivial for higher-dimensional wheeled mobile 
robots, where the internal dynamics has dimension n - 2. 

- Having redefined the system outputs as in eq. (35), one has two options 
for generating the reference output trajectory. The simplest choice is to 
directly plan a cartesian motion to be executed by the point P.  On the 
other hand, if the planner generates a desired motion X d ( t ) , y d ( t )  for the 
rear axle midpoint (with associated Vdl( t ) ,Vd2( t )  computed from eqs. (21) 
and (24)), this must be converted into a reference motion for P by forward 
integration of the car-like equations, with v = Vd(t) and use of the output 
equation (35). In both cases, there is no smoothness requirement for Zd(t) 
which may contain also discontinuities in the path tangent. 

- The output choice (35) is not the only one leading to input-output lin- 
earization and decoupling by static feedback. As a matter of fact, the first 
two variables of the chained-form transformation (8) are another example 
of linearizing outputs, with static feedback given by (9). 

Ful l -s ta te  l i n e a r i z a t i o n  v i a  d y n a m i c  feedback In order to design a track- 
ing controller directly for the cartesian outputs (x, y) of the car-like robot, 
dynamic extension is required in order to overcome the singularity of the de- 
coupling matrix in eq. (34). Although the linearization procedure can be con- 
tinued using the original kinematic description (5), we will apply it here to 
the chained-form representation (10) as a first step toward the extension to 
higher-dimensional systems. 

In accordance with the task definition, choose the two system outputs as 

X4 ~ 
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namely the x and y coordinates of the robot. Differentiating z with respect to 
time gives 

= x4 x3 

where the input u2 does not appear, so that the decoupling matrix is singular. 
In order to proceed with the differentiation, an integrator (with state denoted 
by ~1) is added on the first input 

Ul = ~1, ~1 = u~, (39) 

with u~ a new auxiliary input. Using eq. (39), we can rewrite the first derivative 
of the output as 

which is independent from the inputs u~ and u2 of the extended system. In this 
way, differentiation of the original input signal at the next step of the procedure 
is avoided. We have 

As u2 does not appear yet, we add another integrator (with state denoted by 
(2) on the input u~ 

' " ( 4 0 )  u l  = = 

obtaining 

Finally, the last differentiation gives 

~ =  3x26(2 + z3(~ t.u21" 

The matrix weighting the inputs is nonsingular provided that (1 # 0. Under 
such assumption--on which we will come back later--we set~" = r (an auxiliary 
input value) and solve eq. (41) for 

[u~'] = rl 
u2j [ (r~ - x3r, - 3x2~l~2)/~21] " (42) 
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Putting together the dynamic extensions (39) and (40) with eq. (42), the 
resulting nonlinear dynamic feedback controller 

Ul = ~I 

= 

~2 =7"1 

(43) 

transforms the original system into two decoupled chains of three input-output 
integrators 

Z'I ----rl 

z'2 ----r2. 

The original system in chained form had four states, whereas the dynamic 
controller has two additional states. All these six states are found in the above 
input-output description, and hence there is no internal dynamics left. Thus, 
full-state linearization has been obtained. 

On the linear and decoupled system, it is easy to complete the control design 
with a globally stabilizing feedback for the desired trajectory (independently 
on each integrator chain). To this end, let 

r i  -~'Z'di ~- kai (Zdi  -- Zi) -~ kv i (Zdi  -- Zi) ~- kpi(Zdi  -- Zi) ,  i = 1, 2, (44) 

where the feedback gains are such that the polynomials 

A3+kai~2+kviA+kpi, i = 1,2, 

are Hurwitz, and z, ~, 5 are computed from the intermediate steps of the 
dynamic extension algorithm as 

(2 

(45) 

In order to initialize the chained-form system and the associated dynamic 
controller for exact reproduction of the desired output trajectory, we can set 
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z = zd(t) and solve eqs. (45) at time t = to: 

xl(tO) = Zdl(tO) (= Xd(tO)) 

X2(tO) = [Zdl (to)Zd2(to) -- J~dl (tO)~'dZ(to)] /Z]l(to) 

x3(to) = /~d2(to)/~dl(tO) 

x4(to) = Zdz(to) (= yd(tO)) 
= 

 2(to) = 

Any other initialization of the robot and/or the dynamic controller will pro- 
duce a transient state error that converges exponentiaUy to zero, with the rate 
specified by the chosen gains in eq. (44). 

As mentioned in Sect. 3.1, only trajectories zd(t) = (Xd(t), yd(t)) with con- 
tinuous second time derivatives are exactly reproducible. In the presence of 
lesser smoothness, the car-like robot will deviate from the desired trajectory. 
Nonetheless, after the occurrence of isolated discontinuities, the feedback con- 
troller (43-44) will be able to drive the vehicle back to the remaining part of 
the smooth trajectory at an exponential rate. 

The above approach can be easily extended to the general case of the (2, n) 
chained form (7). In fact, such representation can be fully transformed via 
dynamic feedback into decoupled strings of input-output integrators by defin- 
ing the system output as (xl ,Xn).  This result is summarized in the following 
proposition. 

P ropos i t i on  3.1. Consider the (2,n) chained-form system (7) and define its 
output as 

[xl] z = . (46) 
Xn 

By using a nonlinear dynamic feedback controller of dimension n -  2, the system 
can be fully transformed into a linear one consisting of two decoupled chains of 
n - 1 integrators, provided that ul ~ O. 

Proof We will provide a constructive solution. Let the dynamic extension be 
composed of n - 2 integrators added on input ul 

u l  n -2 )  = (47)  
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with the input u2 unchanged. Denote the states of these integrators by 
f l , . - . ,  f~-2, so that a state-space representation of eq. (47) is 

u: = f l  

~1 = ~ 

--  ?21 . 

(7) and (48) is 

X2 ---- U2 

~3 = x2~i 

~4 = x3~1 

Xn--1 ------ Xn--2~l 

~1 = ~ 
~ 2 = ~  

~n--3 = ~n--2 

~n--2 

The extended system consisting of eqs. 

(48) 

(49) 

~n--2 ---- '/1'1. 

By applying the linearization algorithm, we have for the first few derivatives of 
the output (46): 

s = [ x . _ ~  ~ 
+ x.-1~2 ] 

[ ] ~' = x,~-3(i a + x,~-1(3 + 3(1(2x,~-2 

[ ,4 ] 
z(4) = x,~_4~ + x,~_~4 + (6~(2x,~_3 + 4 ~ 3 x . _ ~  + 3~x._~)  ' 

so that the structure of the (n - 2)-th derivative is 

z('~-2) = x2(I ~-~ + x , - l ( ,~_~ + I(~1,~2,..., (,-~,x3, x4,.. . ,  x , - 2 )  ' 
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where f is a polynomial function of its arguments. The expressions of the 
output (46) together with its derivatives up to the (n - 2)-th order induce a 
diffeomorphism between (Xl,.. .  , xn, ~1,... , ~n-2) and (z, ~, . . .  , z(n-2)), which 
is globally defined except for the manifold ~1 = 0. 

We obtain finally 

0 
g(~l,~2,- . . . .  ,~n--2,3~2,Z3, ",Xn--2) "~ Xn_l ~ 2 U2 , 

where g is a polynomial function of its arguments. The decoupling matrix of 
the extended system is nonsingular provided that ~1 ¢ 0 or, equivalently, that 
ul ~ 0. Under this assumption, we can set z (n-l) = r and solve eq. (50) for 
(Ul, u2). Reorganizing with eq. (48), we conclude that the following nonlinear 
dynamic controller of dimension n - 2 

u: = f l  

= [ r =  - X _lrl - 

~n--3 = ~n--2 
~n--2 = rl 

(51) 

transforms the original chained-form system (7) with output (46) into the input- 
output linear and decoupled system 

IX~n--1)l [ rl ] 
z(n-1) = { (n-l)! = = r. 

Since the number of the input-output integrators (2(n - 1)) equals the number 
of states of the extended system (n + (n - 2)), there is no internal dynamics in 
the closed-loop system and thus we have obtained full-state linearization and 
input-output decoupling. 

The above result indicates that dynamic feedback linearization offers a vi- 
able control design tool for trajectory tracking, even for higher-dimensional 
kinematic models of wheeled mobile robots (e.g., the N-trailer system). The 
same dynamic extension technique can be directly applied to the original kine- 
matic equations of the wheeled mobile robot, without resorting to the chained- 
form transformation. In particular, for the c~r-like robot (5), similar computa- 
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tions show that the dynamic controller takes the form: 

Vl ---- ~1 
v2 = --3~2 cos 2 ¢ tan ¢/~1 -- [rl  cos 2 • sin 0 / ~  + gr2 cos 2 ¢ cos 0/~12 

= e2 (52) 

~2 = ~3 tan 2 ¢/i2 + rl cos 0 + r2 sin 0. 

The external inputs rl and r2 are chosen as in (44), with the values of z, ~ and 
5 given by 

z=[:] 
cosol 

= sin 0 J (53) 

[-~2 tan Csin 0/[  + ~2 cos 0] 
= L tan ¢ cos 0 / e  + sin 0 ]" 

The derivation of the initial conditions on (x, y, 0, ¢) and (~1, ~2) allowing for 
exact reproduction of a smooth trajectory is straightforward using eqs. (53). 

The main limitation of the dynamic feedback linearization approach is the 
requirement that the compensator state variable ~1 (which corresponds to Vl 
if linearization is performed on the original car-like equations, or to ul if it is 
performed on its chained-form representation) should never be zero. In fact, 
in this case the second control input (i.e., v2 in eq. (52) and us in eq. (43) 
or, more in general, in eq. (51)) could diverge. It has been shown that the 
occurrence of this singularity in the dynamic extension process is structural for 
nonholonomic systems [14]. Therefore, this approach as such is feasible only for 
trajectory tracking. 

In addition, we note the following facts with specific reference to the con- 
troller (52-53) for the car-like robot. 

- If the desired trajectory is smooth and persistent, the nominal control input 
Vdl does not decay to zero. As the robot is guaranteed to converge exponen- 
tially to the desired trajectory, also the actual command Vl will eventually 
be bounded away from zero. On the other hand, exact reproduction of 
trajectories with linear velocity vanishing to zero (e.g., trajectories with 
cusps, where the robot should stop and reverse the direction of motion) is 
not allowed with this control scheme. 

- Even for smooth persistent trajectories, problems may arise if the command 
vl crosses zero during an initial transient. However, this situation can be 
avoided by suitably choosing the initialization of the dynamic controller 
(i.e., the states ~1 and ~2), which is in practice an additional degree of 
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freedom in the design. As a matter of fact, a simple way to keep the actual 
commands bounded is to reset the state ~1 whenever its value falls below a 
given threshold. Note that this would result in an input command v that 
is discontinuous with respect to time. 

The problem of tracking a trajectory starting (or ending) with zero lin- 
ear velocity using the above approach can be solved by separating geometric 
from timing information in the control law, along the same lines indicated in 
Sect. 3.1. Suppose that a smooth path of finite length L has to be tracked 
starting and ending with zero velocity, and let a be the path parameter. The 
timing law a(t) can be any increasing function such that 

a(O) = O, a(T) = L, &(O) = &(T) = O, 

where T is the final time at which the motion ends. The car-like equations can 
be rewritten in the path parameter domain as 

X t ~ COS 0 W l  

yl = sin 0 wl 
0' = tan ¢ wl/~ 

I ~ W2,  

with the actual velocity commands vi related to the new inputs wi by 

v (t) = i = 1, 2. 

(54) 

For system (54), one can design a dynamic feedback achieving full-state lin- 
earization as before. In this case, tracking errors will converge exponentially 
to zero in the a-domain (instead of the t-domain). Moreover, the control law 
is always well-defined since it is possible to show that in the denominator of 
w2 only the linear pseudovelocity wl appears, a geometric quantity which is 
always nonzero being related to the path tangent. 

S imula t ion  resul t s  In order to compare the performance of linear and non- 
linear control design, the nonlinear dynamic controller (43-44) computed for 
the chained-form representation has been used to track the same sinusoidal 
trajectory (27) of Sect. 3.2. The initial condition at to = 0 of the car-like robot 
(of length ~ = 1 m) is the same as before (off the trajectory) 

x 1 ( 0 ) = - 2 ,  x2(O)=O, x 3 ( O ) = A w ,  x 4 ( 0 ) = - l ,  

with the initial state of the dynamic compensator set at 

= 1,  2(o) = o .  
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As for the stabilizing part of the controller, we have chosen the same gains 
for both input-output channels, with three coincident closed-loop eigenvalues 
located at - 5  (kai = 15, kvi = 75, kpi = 125, i = 1, 2). 

The results are shown in Figs. 9-11, again in terms of errors on the original 
states x, y, 0 and ¢, and of the actual control inputs vl, v2 for the car-like 
robot. A comparison with the analogous plots in Figs. 5-7 shows that the peaks 
of the transient errors are approximately halved in this particular case. Also, 
the control effort on the linear velocity vl in Fig. 11 does not reach the large 
initial value of Fig. 7, while the control input v2 has a lower average value. 
After achieving convergence, the input commands of the nonlinear dynamic 
controller are identical to those of the linear one, for they both reduce to the 
nominal feedforward needed to execute the desired trajectory. Moreover, as a 
result of the imposed linear dynamics of the feedback controlled system, the 
transient behavior of the errors is globally exponentially converging to zero, i.e., 
for any initial conditions of the car-like robot and of the dynamic compensator. 

We have also simulated the dynamic feedback controller (52-53) designed 
directly on the car-like model. Results for a circular and an eight-shaped tra- 
jectory are reported in Figs. 12-19, assuming a length ~ = 0.1 m for the car. 
Note that the small peak of the x error in Fig. 13 is only due to an initial mis- 
match of the robot state with respect to the value specified by the higher-order 
derivatives of xd( t )  (in particular, of ~d(0)). In fact, in view of the decoupling 
property induced by the controller, the value of the initial error along each 
cartesian direction does not affect the error behavior and the control action in 
the other direction. 
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Fig.  9. Tracking a sinusoid with dynamic feedback linearization: x (--) ,  y ( - - )  errors 
(m) vs. time (sec) 
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Fig. 10. Tracking a sinusoid with dynamic feedback linearization: 0 (--) ,  ¢ ( - - )  
errors (tad) vs. time (sec) 
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Fig. 11. Tracking a sinusoid with dynamic feedback linearization: vl ( - - )  (m/sec), v~ 
( - - )  (rad/sec) vs. time (sec) 
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Fig. 12. Tracking a circle with dynamic feedback linearization: stroboscopic view of 
the cartesian motion 
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Fig. 13. Tracking a circle with dynamic feedback linearization: x (--),  y ( - - )  errors 
(m) vs. time (sec) 
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Fig. 15. Tracking a circle with dynamic feedback linearization: vl ( - - )  (m/sec), v2 
( - - )  (rad/sec) vs. time (see) 
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Fig. 16. Tracking an eight figure with dynamic feedback linearization: stroboscopic 
view of the cartesian motion 
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Fig. 17. Tracking an eight figure with dynamic feedback linearization: z (--) ,  y ( - - )  
errors (m) vs. time (see) 
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Fig. 18. Tracking an eight figure with a dynamic feedback linearization: £~ (--), ¢ 
( - - )  (tad) vs. time (sec) 
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Fig. 19. Tracking an eight figure with a dynamic feedback linearization: Vl (--)  
(m/sec), v2 ( - - )  (rad/sec) vs. time (sec) 

4 P a t h  f o l l o w i n g  a n d  p o i n t  s t a b i l i z a t i o n  

In this section, we address the problem of driving the car-like robot to a desired, 
fixed configuration by using only the current error information, without the 
need of planning a trajectory joining the initial point to the final destination. 
In doing this, a control solution for the path following task is obtained as an 
intermediate step. 

As shown in Sect. 2, for nonholonomic mobile robots the point stabiliza- 
tion problem is considerably more difficult than trajectory tracking and path 
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following. In particular, smooth pure state feedback does not solve the prob- 
lem. Recently, the idea of including an exogenous time-varying signal in the 
controller has proven to be successful for achieving asymptotic stability [38]. 
Roughly speaking, the underlying logic is that such a signal allows all compo- 
nents of the configuration error to be reflected on the control inputs, so that 
the error itself can be asymptotically reduced to zero. 

Some physical insight on the role of time-varying feedback can be gained by 
thinking about a parallel parking maneuver of a real car. We can reasonably 
assume that a human driver controls the vehicle through a front wheel steering 
command and a linear velocity command. In order to bring to zero the error 
in the lateral direction--along which the car cannot move directly--experience 
indicates that an approximately periodic forward/backward motion should be 
imposed to the car. This motion is somewhat independent from the lateral 
position error with respect to the goal and is used only to sustain the generation 
of a net side motion through the combined action of the steering command, 
which is instead a function of the position error. 

Although natural, this strategy is hard to generalize to more complex vehi- 
cle kinematics, whose maneuverability is less intuitive. For this reason, we have 
chosen to present here two methods of wide applicability that are designed on 
the chained-form representation of the system. In order to emphasize the gener- 
ality of the controller design, the case of an n-dimensional system is considered. 
We give, however, some details for the case n = 4. 

Both the presented feedback laws are time-varying, but they differ in their 
dependence from the current state as well as in some methodological aspects. 
The first control is either smooth or at least continuous with respect to the 
robot state. The second is nonsmooth, in the sense that the state is mea- 
sured and fed back only at discrete instants of time. Nevertheless, discarding 
this time-discretization aspect, it is also basically continuous with respect to 
the state at the desired configuration, contrary to other time-invariant discon- 
tinuous feedback laws (see Sect. 6). Both controllers provide inputs that are 
continuous with respect to time and are globally defined on the chained-form 
representation. 

Throughout this section, it will be assumed without loss of generality that 
the desired configuration coincides with the origin of the state space. 

4.1 Control via smooth time-varying feedback 

The smooth feedback stabilization method presented here was proposed in [44]. 
It exploits the internal structure of chained systems in order to decompose the 
solution approach in two design phases. In the first phase, it is assumed that 
one control input is given and satisfies some general requirements. The other 
control is then designed for achieving stabilization of an (n - 1)-dimensional 
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subvector of the system state. At this stage, a solution to the path following 
problem has already been obtained. In the second phase, the design is completed 
by specifying the first control so as to guarantee convergence of the remaining 
variable while preserving the overall closed-loop stability. 

As a preliminary step, reorder for convenience the variables of the chained 
form by letting 

,3¢' = ( X 1 ,  X 2 , -  • • , Xn-1,  Xn) ----" ( Z l ,  X n ,  • • • , X 3 ,  X 2 ) .  

As a consequence, the chained form system (7) becomes 

~2 = X3ul 

~3 = X4u, 

Xn--i = Xn~l  

~n ~ U2, 

(55) 

or equivalently 

,'~ = h l ( X ) u l  + h2u2, 
X4 1 

h i ( X )  = ' h2 = 

01 
01 
01 

(56) 

01 
11 

For the car-like robot, the above reordering is simply an exchange between the 
second and fourth coordinates. Therefore, the cartesian position of the rear 
wheel is (X1, X2)- Analogously, for an N-trailer robot, Xl and X2 represent the 
cartesian coordinates of the midpoint of the last trailer axle. 

Let X = (X1, X2), with 2(2 = (X2, X3,. . . ,  Xn). In the following, we shall first 
pursue the stabilization of X2 to zero, and then the complete stabilization of 
X' to the origin. 
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P a t h  following via input  scaling When ul is assigned as a function of time, 
the chained system (56) can be written as 

~:1 = 0  
" O u l ( t )  0 . . . . . .  

0 0 ul(t) 0 . . .  

,i~2 = : 
O . . ,  

. • ,  

0 0 

. . . . . .  ~1 (t) 
• * . . . .  0 

. . .  , . . . . .  

0 
0 

0 
~ l ( t )  

0 

& +  

'0' 
0 

• U2, 
0 
0 

' 1  

(57) 

having set 

~0 ~ 
21  = X l  - u l ( r ) d r .  

The first equation in (57) clearly shows that, when the input ul is a pri- 
ori assigned, the system is no more controllable• However, the structure of the 
differential equations for 2(2 is reminiscent of the controllable canonical form 
for linear systems. In particular, when ul is constant and nonzero, system (57) 
becomes time-invariant and its second part is clearly controllable. As a matter 
of fact, controllability holds whenever ul (t) is a piecewise-continuous, bounded, 
and strictly positive (or negative) function. Under these assumptions, Xl varies 
monotonically with time and differentiation with respect to time can be re- 
placed by differentiation with respect to X1, being 

d d d 
d~ = dx1 'X1 = dx1 ut ,  

and thus 

d 1 d 
sign(ul) dx t  = lUll" ~"  

This change of variable is equivalent to an input 
Sect. 3.2). Then, the second part of the system may be rewritten as 

X~ 1] -- sign(ut)x3 
x[ll = sign(ul)x4 3 

xffl_l = sign( l)Xn 
X~ 1 = sign(ul)u~, 

scaling procedure (see 

(58) 
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with the definitions 

X" ] = sign(u1 and u2 = u'T" 
1 

Equation (58) is a linear time-invariant system, an equivalent input-output 
representation of which is 

~ n - l ]  --~ s i g n ( u l ) n - l u ~ .  

Such system is controllable and admits an exponentially stable linear feedback 
in the form 

n - 1  
u~(X2) = -sign(u1) n-1 Z kix~i-1]' (59) 

i----1 

where the gains ki > 0 are chosen so as to satisfy the Hurwitz stability criterion. 
Hence, the time-varying control 

U2 ("~'2, t)  = U 1 (~)U~ (¢~2) (60) 

globally asymptotically stabilizes the origin A'2 = 0. 
The above approach provides a solution to the path following problem. 

Consider in particular the case of a car-like robot. We have seen at the end of 
Sect. 2.3 that the system equations (14) in path coordinates can be transformed 
in chained form. By reordering the variables as in eq. (55), X1 represents the 
arc length s along the path, X2 is the distance d between the car and the path, 
while X3 and X4 are related to the car steering angle ¢ and to the relative 
orientation/gp between the path and the car. Path following requires zeroing 
the X2, X3 and X4 variables (i.e., 2(2 = 0), independently from X1. Then, for any 
piecewise-continuous, bounded, and strictly positive (or negative) ul, eq. (59) 
is particularized as 

u~ (X2, X3, X4) -= -sign(ul)[kl X2 + k2 sign(ul)x3 + k3x4]. 

Using eq. (60), the path following feedback control law is 

II2 (X2, ~3,  ~4 ,  t )  ~--- - k I lu l  (~)[~2 - k2u4 (~)/~3 - k3 [Ul ( t )1~4,  

which can be compared with eq. (30) to appreciate the analogy. Such an ap- 
proach was originally proposed in [42] for the path following of a unicycle. From 
the above developments, it is clear that it can be applied to any mobile robot 
which can be converted into chained form. 
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S k e w - s y m m e t r i c  cha ined  f o r m s  a n d  Lyapunov control des ign  We show 
now, by introducing a modified chained form, that it is possible to stabilize 
globally the origin X2 = 0 under more general hypotheses, namely that  [Ul (t)t, 
f~t (t)[ are bounded and ul (t) does not asymptotically tend to zero. An impor- 
tant  difference with respect to the previous analysis is that  Ul (t) is allowed to 
pass through zero. From there, it will be relatively simple to derive a class of 
smooth time-varying feedback laws which stabilize globally the origin X = 0 
of the complete system (point stabilization). 

Consider the following change of coordinates 

Zl = X1 
z2 = X2 (61) 
Z3 = X3 

zj+3 = kjzj+l + Lh~zj+2, j = 1, . . .  , n - 3, 

where k s (j = 1 , . . .  ,n  - 3) is a real positive number and Lh~zj = - ~ h l ( X )  
is the Lie derivative of zj along the vector field hi. One easily verifies that  
eq. (61) is a linear, invertible change of coordinates, since the associated Jaco- 
bian matrix is of full rank. In particular, X = 0 and X2 = 0 are respectively 
equivalent to Z = 0 and Z2 = 0, having set Z = (Zl, Z2), Z2 = (z2,z3,... ,Zn) .  

Moreover, it is Lh2zi = 0 (i -- 1 , . . .  ,n  - 1) and Lh2zn = 1. 
Taking the time derivative of zj+3 and using eq. (56) gives 

OZj+3 ~ = ( L h l z j + 3 ) u  1 q_ (Lh2Zj+3)u2,  

and from eq. (61) 

Lh~Zj+s = -k j+lz j+2 + zj+4. 

As a result, we obtain 

~j+3 = (-k~+~zj+2 + zj+4)Ul 

and for the last differential equation 

j = O , . . .  , n - 4  

Zn = Lhl ZnUl q" u2. 

The original chained system (55) has thus been converted into the following 
skew-symmetric chained form 

~'1 = Ul 
Z'2 = Ul Z3 

~j+3 = - k ~ + l u l z j + 2  + ulzj+4, 
Zn ~ --]gn--21$1Zn--1 -[-W2, 

j = 0 , . . .  , n - 4 ,  
(62) 
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where it was convenient to define the new input signal 

w2 = (kn-2zn-1 + Lhlzn)ul  + U2. (63) 

The skew-symmetric structure of the above form is clear when writing the 
system as follows 

Zl = Ul 
r~--2 

2~ = d iag{1 ,  k l ,  klk2,.. .  , ~ I  k j} .  ( S ( U l ) Z  2 -}- bw2) , 
j : l  

where 

S(Ul )  : -  

0 Ul 

- u l  0 ~1 

-~;~ 0 

ul 
n--3 

j=l 

ul 
n--3 

j = l  
0 

b = 

0 q 
0 I 

• I 

I 
i 0 

The interest of the skew-symmetric form is that it is naturally suited for a 
Lyapunov-like analysis, as illustrated by the following result. 

P ropos i t i on  4.1. Assume that lul(t)l and litl(t)t are bounded, and let 

w2 = - k w 2 ( u l ) z n ,  (64) 

where kw2 (') is a continuous application strictly positive on 1R - {0}. If  this 
control law is applied to system (62), the positive function 

1(z +1  t 2 _ 1 )  
v(z2) = ~ k, z3 + k-[g~, + . . .  + 1.i~\_2 k j n  

is nonincreasing along the closed-loop system solutions and asymptotically con- 
verges to a limit value V]im which depends on the initial conditions. Moreover, if 
ul (t) does not asymptotically tend to zero, it is VIim = 0 and the origin Z2 = 0 
is globally asymptotically stable. 
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Proof Computing the time derivative of V, using the last n -  1 equations in (62) 
and the skew-symmetry of the system matrix, one obtains: 

OV. 
= = z[ + = - -  

OZ2 n--2 Hj:  kj 
Zn W 2 . 

Hence, using the control law (64) 

? = kw2(ul) 2 < 0, (65) 
YIL-  kj - 

which shows that the Lyapunov-like function V is nonincreasing. This in turn 
implies that IIZ2[[ is bounded uniformly with respect to the initial conditions. 
Existence and uniqueness of the system solutions also follows. 

Since V is nonincreasing and bounded below, it converges to a non-negative 
limit value Vlim. Also, kw2(ul) is uniformly continuous as a function of time 
because kw: (-) is continuous and lul (t) l, lul (t) l are bounded. Hence, the right- 
hand side of eq. (65) is uniformly continuous along any system solution and, 
by application of Barbalat's lemma [20], V tends to zero. Therefore, k~ 2 (uJzn 
tends to zero. This in turn implies, using the properties of the function kw: (') 
and the boundedness of Jut(t)] and [zn(t)h that Ul(t)zn(t) tends to zero. 

We can now proceed in a recursive fashion, exploiting the structure of 
eq. (62). Taking the time derivative of u2zn, and using the convergence of 
UlZn to zero, one gets 

d 2 
- ~ ( u l Z n )  = -kn_2U31Zn_l -~ o( t ) ,  with lim o(t) = 0. (66) 

t--4+oo 

The function U3Zn--1 is uniformly continuous along any system solution be- 
cause its time derivative is bounded. Therefore, in view of eq. (66) and since 
u2zn tends to zero, d(u~zn)/dt also tends to zero (by application of a slightly 
generalized version of Barbalat's lemma). Hence, both u~zn-1 and UlZn-1 tend 
to zero. Taking the time derivative of u2zj and repeating the above procedure, 
one concludes that ulzj tends to zero for j = 2, . . .  ,n. Through the system 
equations, this in turn implies the convergence of Z2 to zero. 

Summing up the squared values of ulzj for j = 2, . . .  , n, it is clear that also 
u2V tends to zero, together with ulV. From the already established convergence 
of V(t)  to  Vlim, we have also that ul~im tends to zero, implying Vlim : 0 if 
Ul(t) does not asymptotically tend to zero. • 

Once a signal ul (t) satisfying the hypotheses of Prop. 4.1 h~s been chosen, 
we must design a suitable function kw2(Ul) and select the constants kj (j = 
1 , . . . ,  n - 2 )  appearing in the definition (61) of the skew-symmetric coordinates 
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z~ (i = 4 , . . . ,  n) and in the control signal (63). As it is often the case, tuning 
several control parameters may be rather delicate. However, it is easily verified 
that, with the particular choice 

k  (ul) = k'21 lt, > o, (67) 

the control u2 given by eqs. (63) and (64) coincides with the eigenvalue as- 
signment control (60) associated with the linear time-invariant system (58). 
More precisely, there is a one-to-one correspondence between the parameters 
of the two control laws. One can thus apply classical linear control methods 
to determine these parameters in order to optimize the performance near the 
point Z2 = 0, as will be illustrated in Sect. 4.1 in the application to the car-like 
robot. 

According to Prop. 4.1, any sufficiently regular input ul(t) can be used for 
the regulation of Z2 to zero, as long as it does not asymptotically tend to zero. 
This leaves the designer with some degrees of freedom in the choice of this 
input when addressing a path following problem. For instance, uniform expo- 
nential convergence of H Z2H to zero is obtained when ]Ul[ remains larger than 
some positive number. Other sufficient conditions for exponential convergence 
of [[Z2[I to zero, which do not require ul to have always the same sign, may 
also be derived. For example, if [ul [ is bounded, then it is sufficient to have lull 
periodically larger than some positive number. 

Finally, we note that the requirement that the signal ul (t) does not asymp- 
totically tend to zero can be relaxed. In fact, non-convergence of ul(t) to zero 

under the assumption that [ull is bounded implies that fo [Ul(T)[dT tends to 
infinity with t. When using the control (64) with the choice (67), divergence of 
this integral is the actual necessary condition for the asymptotic convergence 
of [[Z21[ to zero. This appears when the control (64) is interpreted as a stabiliz- 
ing linear control for the time-invariant system (58) obtained by replacing the 
time variable by the aforementioned integral. However, this integral may still 
diverge when ul (t) tends to zero 'slowly enough' (like t-½, for example). This 
indicates that [IZ21[ may converge to zero even when ul does, a fact that will 
be exploited next. 

Point stabilization via smooth t ime-vary ing  feedback Proposition 4.1 
suggests a simple way of determining a smooth time-varying feedback law which 
globally asymptotically stabilizes the origin Z = 0 of the whole system. In this 
case, the role of the control Ul is to complement the action of the control w2 
(or, through eq. (63), u2) in order to guarantee asymptotic convergence of Zl 
to zero as well. 

Proposition 4.2. Consider the same control of Prop. 4.1 

w 2  = 
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complemented with the following time-varying control 

Ul = -ku,  Zl -F q(Z2, t), kul > O, (68) 

where rl(Z2,t) is a uniformly bounded and class C v+l function (19 > 1) with 
respect to time, with all successive partial derivatives also uniformly bounded 
with respect to time, and such that: 

CI: 7(0, t) = o, vt; 
C2: There exist a time-diverging sequence {ti} (i = 1, 2, . . .  ) and a positive 

continuous function c~(. ) such that 

• 2 

> > o, v i .  
j = l  

Under the above controls, the origin Z = 0 is globally asymptotically stable. 

Proof It has already been shown that the positive function V(Z2) used in 
Prop. 4.1 is nonincreasing along the closed-loop system solutions, implying 
that tIZ211 is bounded uniformly with respect to initial conditions. 

The first equation of the controlled system is 

= -k izl + v ( z 2 , t ) .  (69) 

This is the equation of a stable linear system subject to the bounded additive 
perturbation r/(Z~, t). Therefore, existence and uniqueness of the solutions is 
ensured, and Izll is bounded uniformly with respect to initial conditions. 

From the expression of ul, and using the regularity properties of z/(Z2,t), 
it is found that Ul is bounded along the solutions of the closed-loop system, 
together with its first derivative. Therefore, Prop. 4.1 applies; in particular, 
V(Z2) tends to some positive limit value Vlim, IIZ2(t)H tends to zero, and Z2(t) 
tends to zero if ul(t) does not. 

We proceed now by contradiction. Assume that ul (t) does not tend to zero. 
Then, IIZ2(t)ll tends to zero. By uniform continuity, and in view of condition 
C1, rl(Z2,t) also tends to zero. Equation (69) becomes then a stable linear 
system subject to an additive perturbation which asymptotically vanishes. As 
a consequence, zl(t) tends to zero implying, by the expression of ul, that so 
does also ul (t), yielding a contradiction. Therefore, ul(t) must asymptotically 
tend to zero. 

Differentiating the expression of Ul with respect to time, and using the 
convergence of ul(t) and IIZ2(t)ll to zero, we get 

 1(t) = + o(t), with lim o(t) = O. 
t--~+co 
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Since (Oy/Ot)(Z2, t) is uniformly continuous (its time derivative is bounded), 
both ~l(t) and (Oy/Ot)(Z2,t) converge to zero (Barbalat's lemma). By us- 
ing similar arguments, one can also show that the total time derivative of 
(O~l/Ot)(Z2(t),t) and (027]/Ot2)(Z2(t),t) tend to zero. By repeating the same 
procedure as many times as necessary, one obtains that (OJ~l/OtJ)(Z2,t) (j = 
1, . . .  ,p) tends to zero. Hence, 

P(0J  )5 
lim Z -~-~f(Z2(t),t) = O. 

t -~oo 
j=l 

(70) 
Assume now that Vlim is different from zero. This would imply that [[Z2(t)[[ 
remains larger that some positive real number I (which can be calculated from 
Vlim). Eq. (70) is then incompatible with the condition C2 imposed on the 
function r/(Z2, t). Hence, Him is equal to zero and Z2 asymptotically converges 
to zero. Then, by uniform continuity and using condition C1, r/(Z2, t) also tends 
to zero. Finally, in view of the expression of Ul, asymptotic convergence of Zl 
to zero follows immediately. • 

We point out that controls ul and u2 resulting from Prop. 4.2 are smooth 
with respect to the state provided that the functions T/(Z2, t) and kw2(ul) are 
themselves smooth. On the other hand, if kw2 (ul) is chosen as in eq. (67), u2 
is only continuous. 

In the overall controller, the choices related to u2 (or w2) can be made 
along the same lines indicated at the end of Sect. 4.1. In particular, the same 
control law (60) based on input scaling can be used. As for ul, the gain k~l is 
typically chosen on the basis of an approximate linearization at the origin. Its 
second component 71(Z2,t), which introduces an explicit time dependence, is 
referred to as the heat function in order to establish a parallel with probabilistic 
global minimization methods. The role of y(Z2,t) in the control strategy is 
fundamental, for it 'forces motion' until the system has not reached the desired 
configuration, thus preventing the state from converging to other equilibrium 
points. 

The conditions imposed by Prop. 4.2 on the heat function ~/can be easily 
met. For example, the three following functions 

T ] l ( Z 2 , t )  = [[Z2112 sint 
n--2  

'/2(Z2, t) = E aj sin(/~jt) z2+j 
j=O 

n-2 

~/3(Z2, t) = ~ aj exp(bjz2+j) - 1 sin(f/it), 
j=o exp(bjz2+j) -+ 1 

(71) 

(72) 

(73) 
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satisfy the conditions whenever a d • 0, bj # 0, flj # O, and fli # flj for 
i ~ j .  For the first function, this is obvious. For the second function, the proof 
can be found in [43]. The same proof basically applies to the third function, 
which has the additional feature of being uniformly bounded with respect to 
all its arguments. It should be noted that it is not strictly necessary to use 
time-periodic functions. 

The choice of a suitable heat function is critical for the overall control 
performance. In general, it is observed that functions (72) and (73) behave 
better than (71) with respect to the induced asymptotic convergence rate. For 
the last two functions, the parameters aj and bj (which characterize the 'slope' 
of ~/~(Z2,t) and 7/3(Z2,t) near the origin Z2 = 0) have much influence on the 
transient time needed for the solutions to converge to zero. 

Appl ica t ion  to the  car-like robo t  For the (2, 4) chained form (10) that per- 
tains to the car-like robot, the non-trivial part of the change of coordinates (61) 
is defined by 

since we have from eq. (56) 

z 4 = k l X 2 q ' X 4 ,  

LhlZ3 : LhlX3 : X4" 

The skew-symmetric form (62) becomes in this case 

'~1 : U l  

Z2 "~ Ul Z3 

Z3 = -k lU lZ2  ~ UlZ4 

~a = -k2ulz3 + w2, 

with 

w2 ---- (kl + k2)UlZ3 + u2. 

In view of Prop. 4.1 and eq. (67), the control input u2 for the skew-symmetric 
form is chosen as 

: -- 21UlIZ4 -- (]gl -}- ]g2) 1Z3 
: - k l k : 2 i u l I x 2  - (k l  + k 2 ) u l x 3  - k : 2 [ u l I x 4 .  (74 )  

The value of the three gains kl, k2, and k~: can be selected on the basis of 
the aforementioned correspondence between the structure of eq. (74) and the 
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eigenvalue assignment control (60). In particular, by comparing the expression 
of u2 with the input-scaled version (30) of the linear tracking controller, which 
assigns three coincident eigenvalues in -~ lu l l  (with ~ > 0), we can solve for 
the three gains as 

kl -- ~2/3, k2 = 8c~2/3, k"  2 = 3c~. 

In this association, one should remember that  X2 = x4, X3 = x3, and X4 = x2. 
In particular, the following gain parameters have been used 

k 1 = 1 / 3 ,  k 2 = 8 / 3 ,  k~ 2 = 3 ,  

corresponding to three eigenvalues in - 1  for the input-scaled linear approxi- 
mation. 

As for the control input ul ,  which is given by eq. (68), we have set k~ 1 = 10, 
corresponding to an eigenvalue in -10  for the linear approximation of the x- 
error dynamics, and we have used the heat function ~/2 with the following 
parameters 

a 0  = 40, al = 20, a2 = 20, 
~ o = 1 ,  /~1=2,  & = 3 .  

The above controller has been simulated for a car-like robot with £ = 1 m 
executing a parallel parking maneuver. The desired configuration is the origin 
of the state space, while the initial configuration at to = 0 is 

x ( 0 ) = 0 ,  y ( 0 ) = - 5 ,  0 ( 0 ) = 0 ,  ¢ ( 0 ) = 0 .  

Figures 20-26 show respectively the cartesian motion of the vehicle, the time 
evolution of x, y, 8 and ¢, and the actual commands vl and v2 applied to the 
car-like robot, obtained from ul and u2 via the chained-form input transfor- 
mation (9). 

After performing several other numerical tests, we can conclude that: 

- The motion is quite natural in the first phase of approaching. 
- For any stabilization task, the final part of the motion resembles a parallel 

parking maneuver. 
- Basically, the larger are the aj parameters of the heat function Y2, the 

shorter is the transient time. On the other hand, more control effort is 
required far from the goal. 

- The final convergence close to the goal is rather slow. 

In order to achieve practical convergence to a small ball around the origin 
in finite time, a simpler, discontinuous heat function can be used. For example, 
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we have chosen 

~4(z~, z3, z 4 , t ) =  ~kn sin t ifz 2 + z 2 + z 2 >_~ 
[0 ifz22 + z  2 + z  2 < e, 

with e = 10 -~, kn = 20, and modified one of the previous gains by setting 
k~ 1 = 5. The obtained results are illustrated in Figs. 27-33. The norm of the 
final cartesian error is equal to 3 .35 .10  -2 m (only due to the y-coordinate), 
while the final values of~ and ¢ are 2.5-10 -3 rad and 5.5-10 -3 rad, respectively. 
This condition is reached in about 17 sec. 
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Fig. 20. Point stabilization with time-varying feedback 
sian motion 

and heat function ~]~: carte- 
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Fig. 21. Point stabilization with time-varying feedback and heat function T/2: x (m) 
vs. time (sec) 
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Fig. 22. Point stabilization with time-varying feedback and heat function ~/2: y (m) 
vs. time (sec) 
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Fig. 23. Point stabilization with time-varying feedback and heat function ~/2:8 (rad) 
vs. time (sec) 
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Fig. 24. Point stabilization with time-varying feedback and heat function ~/2: ~ (rad) 
vs. time (sec) 
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Fig. 25. Point stabilization with time-varying feedback and heat function ~}2: vl 
(m/sec) vs. time (sec) 
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Fig. 26. Point stabilization with time-varying feedback and heat function z/z: v2 
(rad/sec) vs. time (sec) 
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Fig. 27. Point stabilization with time-varying feedback 
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Fig. 28. Point stabilization with time-varying feedb~..k and heat function q4: x (m) 
vs. time (sec) 
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Fig. 29. Point stabilization with time-varying feedback and heat function 7/4: y (m) 
vs. time (sec) 
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Fig. 30. Point stabilization with time-varying feedback and heat function ~/4: O (rad) 
vs. time (sec) 
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Fig. 31. Point stabilization with time-varying feedback and heat function ~/4: ~ (rad) 
vs. time (sec) 
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Fig. 32. Point stabilization with time-varying feedback and heat function 74: vl 
(m/sec) vs. time (sec) 

s lO m ~ ~ ao 

Fig. 33. Point stabilization with time-varying feedback and heat function r/4:v2 
(rad/sec) vs. time (sec) 
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4.2 Control via nonsmooth time-varying feedback 

We present next the design of a nonsmooth time-varying feedback controller 
that stabilizes the chained form to the origin. The contents of this section are 
based on [48] and [49]. The idea of decomposing the system into two parts and 
sequentially defining the two control inputs is very similar to the one pursued 
in Sect. 4.1. In fact, also this technique provides as a byproduct a solution 
to the path following problem. The fundamental difference here is that the 
feedback control law will depend, in addition to the exogenous time variable, 
on a piecewise-constant function of the state. Moreover, the actual construction 
of the control law for a subvector of dimension n - 1 of the state is based on 
the so-called backstepping method. 

Preliminaries We begin with two definitions. 

Definition 1 h function h : ~ +  ~ ~ +  is said to be of class E if it is 
strictly increasing and such that h(0) = 0. 

Defini t ion 2 For a nonlinear time-varying system 

= / ( x , t ) ,  x e Q c t > to, ( 7 5 )  

the equilibrium point xe is globally /C-exponentially stable if there exists a 
positive constant A (independent of to) and a function h(.) of class ]C such that 
all solutions x(t) of eq. (75) satisfy 

Ilx(t) - x~[I < h([lx(to) - xeJ[)e -x(t-t°), Vx(to) e Q, Vt > to. 

We note that a ]C-exponentially stable system is uniformly asymptotically 
stable and, in addition, has an exponential rate of convergence. However, expo- 
nential stability in the sense of Lyapunov is stronger than the above property, 
because it involves a special function of class/C which is linear, i.e., 

h ( l l x ( t o )  - x e l l )  = h l l x ( t o )  - xe t l ,  

with tt > 0 independent from to and x(to). Nevertheless, the two properties are 
equivalent with respect to the rate of convergence, once the initial condition 
x(to) is given. 

The following technical lemma establishes sufficient conditions for obtaining 
exponential convergence in a time-varying system. Its proof can be found in [48]. 

Lemma 4.3. Consider a scalar nonlinear time-varying system 

= -a (x ,  t)x + d(x, t), t > to, (76) 

under the following assumptions: 
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- there exists a solution x(t) of eq. (76) for any x(to) and t > to; 
- a(x, t) is such that for all x(t) 

(a(x(r), T) -- #) dr <_ P, Vt >_ to, 

where # and P are some positive constants; 
- a ( x , t ) i s  bouneeefor all x(t)  as 

Id(x(r), r)l < De -'Y(t-t°), Vt >__ to, 

/or some positive constants D and 7. 

Then, 

Ix(t)l < e(lx(to)l + D)e -(p-~)(t-t°),  Vs > O, 

where/~ = rain{#, 7} > 0 and c = max{e P, e2P/s}. 

B a c k s t e p p i n g  con t ro l  des ign  For convenience, we rewrite here the chained 
system (7) 

X'I ~ Ul 
X2 ~ U2 
X3 ~--- X2Ul 

Xn ~ Xn--lUl~ 

and partition its state as X = (xl,X2), with X2 = (x2,x3, . . .  ,xn). 
As previously noted, when Ul is a predefined fimcti0n of time, X2 satisfies 

a linear time-varying equation driven by the input u2. In the following, we will 
assume that  a structure is assigned for the signal ul(t)  and address the design 
of a feedback control law for u2 so as to make X2 = 0 a ]C-exponentially stable 
equilibrium point. Later, we will add the variable xl  to the picture and choose 
the specific form of control Ul so as to obtain ]C-exponential stability of X -- 0 
for the complete system. 

The structure of ul is chosen by combining the simplicity of an open-loop 
command, which is updated as a function of the state only at discrete time 
instants, with the benefits of adding a time-varying exogenous signal. In par- 
ticular, let a sequence of equidistant time instants {to,t1, t2 , . . .  } be defined 
as 

th = hT, T -- th+l -- th > 0, 
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and define the control Ul as 

ul(t)  = k(X(th))f(t),  for t E [th,th+l). (78) 

This structure implies that  the input is a function of the state X at time t = th, 
while during the interval (th,th+l) it is defined in an open-loop fashion. For 
the time being, no restrictions are put on the form of the function k(.) beside 
its boundedness. On the other hand, some assumptions are needed for function 
f(t). 

h l :  f(t) E C~; 
h 2 : 0  _< f(t) <_ 1, Vt > to; 
A3: /(th) = 0, Vth e }; 

v j e  {3 , . . . ,n ) ,  Vth e {t0,t l , . . .  }, 

where #j and Pj are positive constants. 
Assumption A3 implies that  ul(th) = 0 for all th E (to, t1 , . . .  }, and thus 

guarantees continuity of Ul (t) with respect to time, even if function k is nons- 
mooth with respect to the state. Assumption A4 is more technical and is used to 
guarantee controllability of the linear time-varying subsystem and for proving 
exponential convergence of X2 to zero by means of Lemma 4.3. 

A simple periodic function satisfying the above assumptions is 

1 - cos wt 21r 
f ( t )  = 2 , w = --~-. (79) 

This function has a nonzero mean value, a fact which turns out to be important 
in order to have some 'control energy' sustaining the robot motion as long as 
an  error is present, i.e., X ~t 0 (see the related remarks in Sect 4.1). However, 
f(t) is not restricted to be periodic. 

Using eq. (78), the lower part of system (77) becomes 

= 

~ 3  

Xn.--1 
LX ,~J  

U2 

k(X(th))f(t)x,_~ 
k(XCth))fC0x.-1 

tE[th,th+l), h=O,  1 , . . . .  (80) 

In the following, we will often write k = k(X(th)) for compactness. 
A feedback law for u2 that  renders X2 = 0 exponentially convergent to 

zero (in fact, ~-exponentially stable) is now derived based on a backstepping 
method--a  general technique for controlling systems in cascaded form [22]. 
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Take the last equation in (80) and regard the variable x n - 1  as a 'dummy' 
input to be used for driving exponentially the state Xn to its target x d = 0. To 
this end, x n - 1  should behave as a desired reference signal x a which is chosen n--1 
to satisfy 

k i ( t ) z d  l = _ ~ . f ( n - 2 ) + ~ ( t ) x n ,  

with arbitrary An > 0, or equivalently 

d ~ f 2 ( n - 2 )  xn-1 = - (t)xn. (81) 

This choice is convenient because, if x n - 1  = x ~ _ l ,  the last equation in (80) 
becomes 

Xn = --Anf2(n--2)+l(t)Xn. 

By virtue of assumption A4, we may use Lemma 4.3 (with a( t )  = 
A n f 2 ( n - 2 ) + l ( t )  and d(t )  = 0) to infer that, at least with the nominal dummy 
input, x n  exponentially converges to zero. The convergence rate depends on 
the choice of the parameter An. 

During a transient phase, we will actually have a difference ~ n - 1  = x n - x  - 
x~_ 1 ~ 0 leading to 

~n = k l ( t ) ~ _ ~  + k l ( t )~n-~  = - A . f  (n-2)+~(t)x" + k l ( t )~n-~ .  

We can use again Lemma 4.3 (with a(t )  = Anf2(n-2)-bl (~)  and d(t )  = 
k f  (t)~n_l) to conclude that x n  exponentially converges to zero, provided that 
I k f ( t ) ~ n _ l l  is exponentially converging to zero as well. This will be guaranteed 
by the remaining steps of the recursive procedure. 

Consider now the next to last equation in (80) and regard the variable x n - 2  
as the new dummy input, to be used for driving the state Xn-1 to its target 
xd  n -1  specified by eq. (81). To obtain exponential convergence of xn-1 to zero, 
Xn-2 should behave as a desired reference x~_2 which is chosen to satisfy 

kI( t )x~_2 = - A . _ l f ( " - 3 ) + l ( t ) ( x n _ l  - Z._l)d + ~dn_x, 

with arbitrary An-1 > 0. In fact, if x n - 2  = x ~ _  2, the next to last equation 
in (80) gives 

5~n_ 1 : --An_lf2(n--3) +l(t)xn_l,  

and we can use again Lemma 4.3 to show that xn-1 exponentially converges to 
zero, with rate depending on the parameter An-1. This holds also when xn-2 = 
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X n _  2 - -  X d ~-2 i ~ 0, provided that Ikf(t)Ycn_21 is itself converging exponentially 
to zero. 

Backstepping further, x n - 3  will be regarded as the dummy input in the 
second to last equation in (80), and the same control design is repeated until 
we reach the top equation, in which the true input command u2 is present. In 
this last step, the control input will be defined as 

u2  = - + ( 8 2 )  

With this choice, one can show (under additional assumptions on the function 
k(.) to be detailed later) that x2 will converge exponentially to x d, which in 
turn implies that x3 converges exponentially to xz a, and so on until it is proven 
that xn  converges exponentially to x d = 0. 

At the end of this procedure, a reference value has been defined for each 
state component of X2, namely 

x d = 0  
x d _ l k ( X ( t h ) ) f ( t )  = - ) ~ j f 2 J - 3 ( t ) ( x j  - x  ]) + 2 ] ,  )~j > 0, j = 3, . . .  ,n. 

( 8 3 )  

By expanding the time derivatives in eq. (83), the above reference values be- 
come a combination, weighted by powers of f ( t ) ,  of the state components in 
X2. For example, in the case of the (2,4) chained form pertaining to a car-like 
robot we would obtain: 

= o 

x d = - A 4 f 4 ( t ) x 4 / k ( X ( t h ) )  

x d = [ - ~ 3 f 3 ( t ) ( x 3  - 2cd ) / k (X( th ) )  -I- x d / k ( X ( t h ) ) ]  I f ( t )  

= -- [(/~3f2(t) + ~4f4(t))/k(X(th))] x3 

- [()~3A4f6(t) + 4A4f2(t))/k2(X(th))] xa. 

Note that the order of the exponent of function f ( t )  in eq. (81) has been 
chosen large enough to guarantee that f ( t )  = 0 implies all x/a = 0. This choice 
forces the car-like robot to align its orientation and steering angle with the 
x-axis whenever it performs a cusp during the motion. In fact, the control ul 
may change sign only in correspondence to instants t in which f ( t )  = O. 

In order to obtain a compact expression for the control input u2, the refer- 
ence values (83) can be reorganized and written as 

n 

d f2(i-1)(t) Z g~J xj, i = 2,. , n -  1, X i = . .  j=i+l k J - i ( Z ( t h ) )  (84) 
d x n = O, 
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where the functions gij = g i j ( f , ] , . . . , f ( J - i - 1 ) )  are smooth with respect to 
their arguments and are defined recursively by 

gn-l ,n = - A n  

g,-1,j = gij [,kif 2('-1) + 2 ( i -  1)1] + S(gij + g, , j+If)  

g i - l , i  = - -h i  + f2g l , i+l  

gip = O, 

for i , j  = 2, . . .  ,n, being 

i f p < i  or p = n + l ,  

~ - i - 1 0 g i ~  f(m+l). 
gij = ~ Of(m ) 

m----0 

(85) 

and 

with 

Ul = k ( X ( t h ) ) f ( t )  

u2 = F T ( k ( X ( t h ) ) ,  t) X2,  

(86) 
(87) 

FT(k , t )  = [F2(k,t) . . .  Fn(k,t)] 

F2(k, t) = - ~ 2  + lag23 

k~-2(X(th)) , j = 3 , . . .  ,n. 

Convergence  resul ts  The main convergence results for the above controller 
are now presented. We start by providing conditions on k(-) so as to guarantee 
exponential convergence to zero of the state X2 in eq. (80), a result which 
provides a solution for the path following problem. 

Proposition 4.4. Consider system (80), where u2 is given by eq. (87) and 
f ( t )  has the properties A1-A~.  Assume further that: 

- k ( o )  = o ;  

- X2 7 £ 0 implies k ( X )  ~ O; 
- there exists a constant K such that Ik(X)t < K ,  V X  E J~ln; 
- whenever [k(X(th))[ < K ,  it is 

Ik(X(th))l  > ~t:~j(t)l~-r2~, Vj = 3 , . . .  ,n,  (88) 

where ~,j = xj  - x] and ~j is a positive constant. 

Summarizing eqs. (78), (82), (84), and (85), the following control structure 
is obtained 
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Then, X2 : 0 is IC-exponentially stable, i.e., there exist a constant Ax2 > 0 
and a function hx2(.,T) of class 1C such that 

tlx2(t)[t _< hx2(llX2(t)ll,T)e VX2(to) e ~n-1 ,  Vt ~ to. 

Proof (sketch of) The first three assumptions are used to prove that the 'error' 
variables 22,. . .  ,xn converge to zero, i.e., each xi (i = 2, . . .  ,n) converges to 

d defined by eq. (83). Lemma 4.3 is the main tool in this its reference value xi 
analysis, resulting in an exponential rate of convergence which can also be 
estimated. Then, one can show that the original states xj (j = 2, . . .  , n) can 
be expressed as a weighted sum of the error variables xr (r = j + 1,. . .  ,n), 

d in eq. (84). Finally, by using essentially by reversing the construction of the xi 
eq. (88),/C-exponential stability of )(2 = 0 is obtained. 

by 

where 

and 

A function k(.) satisfying the assumptions of the above proposition is given 

k ( X )  -~- sat ( - ~  Ix 1 -[- sgn(xl)G (ltX2H)], K ) ,  

f if[z[ _< K, 
sat(z, K) = {z 

gsgn(z) ifN > K, [ 

(89) 

1 ifz_>0, 
sgn(z)= -1,  if z < 0 ,  

1 
G ([[X2[I) -- ~ [[x2[l ~-c~,  

f 
th+l 

/~ = 1/ f(T)d~, 
dth 

with ~ a positive constant. 
By using Prop. 4.4, one can finally establish global/(:-exponential stability 

of the origin X = 0 of the total system in chained form (77), thus solving the 
point stabilization problem. We give this result without the proof, which is 
rather long and can be found in [49]. 

Propos i t ion  4.5. Consider system (77), where Ul is given by eq. (86), with 
k(X) chosen as in eq. (89) and f(t)  satisfying assumptions A1-A4, and u2 is 
given by eq. (87). Then, X = 0 is lC-exponentially stable, i.e., there exist a 
constant Ax > 0 and a function hx( . ,T)  of class ]C such that 

[IX(t)tl _< hx(iiX(to)ll,T) e-~x(t-t°), VX(to) e ~'~, Vt > to. 
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Note the following facts. 

- It  can be shown that  the class K-function h x ( . , T )  is not Lipschitz around 
the origin. In particular, its derivative tends to infinity when IlX(t0)H ap- 
proaches zero. 

- The exponential convergence rate Ax in Prop. 4.5 can be made arbitrarily 
fast by choosing ~ in eq. (89) and A2,... , An in eq. (85) large enough. How- 
ever, the time needed to drive xl to an arbitrarily small neighborhood of 
zero cannot be less than T. As a consequence, the class E-function hx ( . ,  T )  
increases exponentially with the 'period' T. On the other hand, reducing 
T may result in a large control effort for some initial conditions. 

- In the generic time interval [th, th+l),  the control input ul is essentially 
open-loop being only a function of the state at time th, whereas the con- 
trol input u2 is a true feedback, for it depends continuously on the state 
variables )(2. 

A p p l i c a t i o n  to  t h e  car-l ike r o b o t  For the car-like robot in (2, 4) chained 
form, we present here explicit formulas for generating u2 according to eq. (87). 
Let A2, A3, and Aa be three positive constants. Choose f ( t )  as in eq. (79) and 
k ( X )  as in eq. (89). We have 

21r 1 w 
- Vh.  th+l -- th = T = --w and j3 = fth+~ f(7)d~" : r '  

dth 

Equations (85) give 

g23 = -;~3 - ~4Y 2 
g23 = --2A4fj ~ 
g24 = --)~4(~3f 4 + 4]) 
924 = -4A3A4f 3] - 4A4] 
g25 = 0, 

to be used in 

/'2 : -A2 + f3g23 

F3 ---- f [)~2fg23 + 2]g23 -1- fg23 + f2ff24] /k(x (th)) 

r, = y [a Sg2, + 2/9 , + Sg , + S2g s]/k2(X(th)). 

The control input Ul is provided by eq. (86). 
The following parameters have been used in the various functions tha t  define 

the control laws (86) and (87): 

K = 2 ,  w = l ,  ~ : 3 ,  ~ 2 = ) ~ a = ~ 4 = 1 .  
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Note that the first control input may switch only every 2~r sec, i.e., at t E 
{0, 2~r, 4 r , . . .  }. 

The above controller has been simulated for a car-like robot with ~ = 1 m 
executing a parking maneuver. The desired configuration is the origin of the 
state space, while the initial configuration at to = 0 is 

x(O)=-l, y(O)=-l, O(O)=-r/4, ¢ ( 0 ) = 0 .  (I) 

Figures 34-40 show respectively the cartesian motion of the vehicle, the time 
evolution of x, y, 0 and ¢, and the actual commands vl and v2 applied to 
the car-like robot, obtained from ut and u2 through the chained-form input 
transformation (9). Similarly to the smooth time-varying controller of Sect. 4.1, 
the generated cartesian motion is natural and resembles a parallel parking 
maneuver in the final phase. Convergence to the desired configuration appears 
to be faster; however, x = xt converges much slower than the other variables y, 

and ¢, which are related to X2 = (x2, x3, x4). This behavior can be predicted 
by using Lemma 4.3. 

These observations have been confirmed also by other simulations. For ex- 
ample, Figs. 41-47 show the results obtained by using the same controller in 
order to execute a reorientation maneuver. The desired configuration is again 
the origin of the state space, while the initial configuration is 

x ( 0 ) = 0 ,  y ( 0 ) = 0 ,  e ( 0 ) = ~ / 6 ,  ¢ ( 0 ) = 0 .  (II) 
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Fig, 37. Point stabilization with nonsmooth time-varying feedback (I): ~ (tad) vs. 
time (sec) 
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Fig. 38. Point stabilization with nonsmooth time-varying feedback (I): ¢ (red) vs. 
time (see) 
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Fig. 39. Point stabilization with nonsmooth time-varying feedback (I): vl (m/sec) 
vs, time (sec) 
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Fig. 40. Point stabilization with nonsmooth time-varying feedback (I): v2 (rad/sec) 
vs. time (sec) 
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Fig. 41. Point stabilization with nonsmooth time-varying feedback (II): cartesian 
motion 
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Fig. 42. Point stabilization with nonsmooth time-varying feedback (II): x (m) vs. 
time (sec) 
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Fig. 43. Point stabilization with nonsmooth time-varying feedback (II): y (m) vs. 
time (sec) 
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Fig. 44. Point stabilization with nonsmooth time-varying feedback (II): 0 (rad) vs. 
time (see) 
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Fig. 45. Point stabilization with nonsmooth time-varying feedback (II): ¢ (rad) vs. 
time (sec) 
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Fig.  4?. Point stabilization with nonsmooth time-varying feedback (II): v2 (rad/sec) 
vs. time (sec) 
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4.3 A b o u t  exponent ia l  convergence 

The peculiar convergence behavior of both presented stabilizing methods de- 
serves some comments. We have already pointed out in Sect. 2.2 that the failure 
of the linear controllability test for the car-like robot indicates that smooth ex- 
ponential stability in the sense of Lyapunov cannot be obtained. Recall that 
(local) exponential stability means that the system trajectories X(t)  satisfy the 
following inequality 

HX(t)H <_ KlJX(to)lle -~(t-t°), VX(to) ~ B, Vt > to, (90) 

with K, A positive real numbers and B a neighborhood of the origin. The prac- 
tical significance of this relationship is twofold: (i) small initial errors cannot 
produce arbitrarily large transient deviations since IIX(t)ll < KIIX(to)l I, and 
(ii) all solutions converge to zero exponentially. 

While it is still unclear whether both properties can be simultaneously 
achieved for nonholonomic systems, one can still design a control law that 
guarantees at least one of the two. In the case of smooth time-varying feedback 
laws, such as the one presented in Sect. 4.1, it may be easily verified that 

tlX(t)l I _< KllX(to)ll, VX(to), Vt ___ to, (91) 

holds for some positive constant K. However, when using the control law w2 of 
Prop. 4.2, convergence to zero of ]lZ[I (and hence, of IIXIf) cannot be exponen- 
tial. In fact, if this were the case, ul would itself converge to zero exponentially, 
and thus the integral f t  o lul('r)]dT would not diverge. This is in contradiction 
with the fact that divergence of this integral is necessary for the asymptotic 
convergence of tIZ2ll to zero. As a matter of fact, it is only possible to show 
that 

[[X(t)[] _< K[IX(to)[lP(t), with p(O) = 1, thin p(t) = 0, (92) 

where p(t) is a decreasing function whose convergence rate is strictly less than 
exponential. This theoretical expectation is confirmed by the simulations results 
of Sect. 4.1. In particular, it has been observed [41] that smooth time-varying 
feedback control applied to a unicycle yields a convergence rate slower than 
t -1/2 for most initial configurations, a fact that can be proven using center 
manifold theory. 

On the other hand, existing nonsmooth feedback laws for nonholonomic 
systems do not guarantee uniform boundedness of the transient error ratio 
IIX(t)ll/llx(to)ll. For example, the piecewise-continuous time-invariant feed- 
back law proposed in [8] for the stabilization of a unicycle yields 

Hx(t)l[ <_ (K1 + K21lX(to)N)e -~'(t-t°), VX(to), Vt >__ to, (93) 
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with K1, K2 positive real numbers. All solutions converge to zero exponentially, 
but a small initial error or perturbation may produce transient deviations whose 
size is larger than some constant. 

Similarly, we have seen that the nonsmooth time-varying feedback of 
Sect. 4.2 guarantees ]~-exponential stability for general chained-form systems. 
Even if all solutions converge to zero exponentially, this type of asymptotic 
stability is weaker than property (90), in the sense that small initial errors or 
perturbations can produce transient deviations of much larger amplitude. Nev- 
ertheless, it is stronger than (93), for such deviations are not bounded below 
by some positive constant. 

The above discussion may suggest that smooth time-varying feedback laws 
are somewhat less sensitive to initial errors than nonsmooth feedback laws. 
This degree of robustness is paid in terms of the asymptotic rate of conver- 
gence, which is not exponential. However, smooth time-varying feedback may 
be modified to achieve practical exponential stability, in the sense that the sys- 
tem state may be steered to any desired small neighborhood of the origin in 
arbitrary time. This fact is illustrated by the simulation results obtained with 
the heat function qa in Sect. 4.1. 

5 Conclusions 

We have presented and compared several feedback solutions for point stabiliza- 
tion, path following and trajectory tracking control tasks executed by a mobile 
robot with car-like kinematics. 

The problem of accurate tracking of a persistent trajectory can be solved 
using either linear control synthesis, based on the approximate linearization 
of the system around the nominal trajectory, or nonlinear (static or dynamic) 
control synthesis, achieving exact linearization of the (input-output or full- 
state) closed-loop equations. Local exponential convergence to zero tracking 
error is obtained in the linear case, while global exponential convergence with 
prescribed error dynamics is guaranteed in the nonlinear case. In both ap- 
proaches, the closed-loop controller consists of a nominal feedforward term and 
of an error feedback action. 

For the stabilization to a fixed configuration, the use of new classes of time- 
varying nonlinear controllers has proven to be effective. From a theoretical point 
of view, time-varying feedback overcomes the obstruction on the existence of 
smooth time-invariant stabilizing control laws for nonholonomic systems. Two 
types of time-varying control laws were presented, respectively expressed by a 
smooth and a nonsmooth function of the robot state. In both cases, we have 
recognized that path following can be formulated as a subproblem of point 
stabilization. The asymptotic rate of convergence of the smooth controller is 
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lower than the exponential orie obtained in the nonsmooth case. However, it 
may be questioned whether the theoretical convergence rate alone is a good 
measure of the overall control performance. In practice, what really matters is 
a rapid initial decay of the error to a small neighborhood of zero under realistic 
experimental conditions. 

The reported numerical simulations have shown the benefit of feedback 
control in recovering from initial errors with respect to the desired fixed or 
moving target. In order to fully appreciate these results, we remark that errors 
(at the initial time or later) can be interpreted as the effect of an instantaneous 
disturbance acting on the system. Therefore, the robot motion under feedback 
control is robust with respect to such non-persistent disturbances. 

Most of the results have been presented using a canonical transformation of 
the system into chained form. Although the use of chained forms is not needed 
in principle, it allows to obtain systematic results that can be extended beyond 
the considered case study of a car-like mobile robot. For example, the control 
results hold true also for a car towing N trailers, each attached at the midpoint 
of the rear axle of the previous one (zero hooking). On the other hand, the 
control problem for the general case of N trailers with nonzero hooking is still 
open, because a chained-form transformation is not available for this system. 

Throughout this study, we have dealt with a first-order kinematic model 
of the mobile robot, in which velocities were assumed to be the control in- 
puts. Extension to second-order kinematics, with accelerations as inputs, and 
inclusion of vehicle dynamics, with generalized forces as inputs, are possible. 
In particular, we point out that the nominal dynamics of the vehicle can be 
completely canceled by means of a nonlinear state feedback so as to obtain a 
second-order, purely kinematic problem. 

Concerning the application of the proposed feedback controllers to real mo- 
bile robot systems, there are several non-ideal conditions that may affect the 
actual behavior of the controlled robot, notably: uncertain kinematic parame- 
ters of the vehicle (including, e.g., the wheels' radius); mechanical limitations 
such as backlash at the steering wheels and limited range of the steering an- 
gle; actuator saturation and dead-zone; noise and biases in the transformation 
from physical sensor data to the robot state; quantization errors in a digital 
implementation. Control robustness with respect to these kinds of uncertainties 
and/or disturbances is an open and challenging subject of research. For linear as 
well as nonlinear systems, Lyapunov exponential stability implies some degree 
of robustness with respect to perturbations. However, since this kind of stability 
has not been demonstrated for the point stabilization problem of nonholonomic 
systems, the connection between robustness properties and asymptotic (even 
exponential) rate of convergence is not yet well understood. 

It should also be noted that perturbations acting on nonholonomic mobile 
robots are not of equal importance, depending on which component of the state 
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is primarily affected. A deviation in a direction compatible with the vehicle 
mobility (e.g., sliding of the wheels on the ground) is clearly not as severe 
as a deviation which violates the kinematic constraints of the system (e.g., 
lateral skidding of the car-like robot). In any case, proprioceptive sensors may 
not reveal these perturbing actions and all the controllers presented in this 
chapter--which assume that the exact robot state is available--would fail in 
completing their task. A possible solution would be to close the feedback loop 
using exteroceptive sensor measurements, which provide absolute information 
about the robot location in its workspace. Currently, it is not clear whether the 
best solution would be to estimate the robot state from these measurements 
and then use the previous controllers, or to design new control laws aimed at 
zeroing the task error directly at the sensor-space level. 

6 F u r t h e r  r e a d i n g  

In addition to the references cited to support the results so far presented, many 
other related works have appeared in the literature. Hereafter, we mention some 
of the most significant ones. 

A detailed reference on the kinematics of wheeled mobile robots is [2]. The 
dynamics of general nonholonomic systems was thoroughly analyzed in [31]. A 
controllability study for kinematic models of car-like robots with trailers was 
presented in [24], while stabilizability results for both kinematic and dynamic 
models of nonholonomic systems were given in [5,7]. 

The problem of designing input commands that drive a nonholonomic 
mobile robot to a desired configuration has been first addressed through 
open-loop techniques. Purely differential-geometric approaches were followed 
in [23,50], while the most effective solutions have been obtained by resort- 
ing to chained-form transformations and sinusoidal steering [28], or by using 
piecewise-constant functions as control inputs [26]. In [36] it was shown how 
the existence of differentially flat outputs can be exploited in order to design 
efficiently open-loop controls. 

A number of works have dealt with the problem of controlling via feedback 
the motion of a unicycle. In fact, both discontinuous and time-varying feedback 
controllers were first proposed and analyzed for this specific kinematics. The 
trajectory tracking problem was solved in [39] by means of a local feedback 
action. Use of dynamic feedback linearization was proposed in [14]. A piecewise- 
continuous feedback with an exponential rate of convergence was presented 
in [8] for the point stabilization task, and later extended to the path following 
problem in [47]. Another piecewise-continuous controller, obtained through an 
appropriate switching sequence, was devised in [5]. The explicit inclusion of 
the exogenous time variable in a smooth feedback law was proposed in [38]. 
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In [34], a hybrid stabilization strategy was introduced that makes use of a 
time-invariant feedback law far from the destination and of a time-varying law 
in its vicinity. The use of a discontinuous transformation in polar coordinates 
allowing to overcome the limitation of Brockett's theorem was independently 
proposed in [1] and [3] for the point stabilization problem; strictly speaking, 
these schemes are not proven to be stable in the sense of Lyapunov, for they 
only ensure exponential convergence of the error to zero. A survey of control 
techniques for the unicycle can be found in [9]. 

For car-like robots, the trajectory tracking problem was also addressed 
in [13] through the use of dynamic feedback linearization, and in [16] via flat 
outputs design and time-scaling. Path following via input scaling was proposed 
in [15,37]. As for the point stabilization problem, the successful application of 
time-varying feedback to the case of car-like robots [43] has subsequently moti- 
vated basic research work aimed at exploring the potentialities of this approach. 
In particular, results have been obtained for the whole class of controllable drift- 
less nonlinear systems in [11,12], while general synthesis procedures were given 
in [33] for chained-form systems and in [35] for power-form systems; in the lat- 
ter, the use of a nonsmooth but continuous time-varying feedback guarantees 
exponential convergence to the desired equilibrium point. Using an analysis 
based on homogeneous norms, similar results were obtained for driftless sys- 
tems in [30], and for chained-form systems in [27] by means of a backstepping 
technique. Other related works include [17] and [51]. In the first, the problem 
of approximating a holonomic path via a nonholonomic one is solved by using 
time-periodic feedback control. In the second, the open-loop sinusoidal steer- 
ing method is converted to a stabilization strategy, by adding to the nominal 
command a mixed discontinuous/time-varying feedback action. 

Very few papers have explicitly addressed robustness issues in the control 
of nonholonomic systems. The robustness of a particular class of nonsmooth 
controllers based on invariant manifolds was analyzed in [10]. Robust stabiliza- 
tion of car-like robots in chained form was obtained in [4] and [25] by applying 
iteratively a contracting open-loop controller; exponential convergence to the 
desired equilibrium is obtained for small model perturbations. Another possible 
approach to the design of effective control laws in the presence of nonidealities 
and uncertainties is represented by learning control, as shown in [32]. 

Finally, the design of sensor-level controllers for nonholonomic mobile robots 
is at the beginning stage. The general concept of task-driven feedback control 
for holonomic manipulators is described in [40]. A first attempt to extend this 
idea to the point stabilization problem of a mobile robotic system can be found 
in [52]. 
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1 I n t r o d u c t i o n  

The robot path planning problem, which asks for the computation of colli- 
sion free paths in environments containing obstacles, has received a great deal 
of attention in the last decades [25,15]. In the basic problem, there is one 
robot present in a static and known environment, and the task is to compute 
a collision-free path describing a motion that brings the robot from its current 
position to some desired goal position. Variations and extensions of this basic 
problem statement are numerous. 

To start with, for a large class of robots (i.e., nonholonomic robots) compu- 
tation of collision-free paths is not sufficient. Not only are the admissible robot 
placements constrained by obstacles and the robot geometry, but also are the 
directions of motion subject to constraints. For example, mobile robots moving 
on wheels have such nonholonomic constraints, due to the fact that their wheels 
are not allowed to slide. Another realistic scenario is that of multiple robots 
acting in the same environment. In this case, apart from the restrictions im- 
posed by the obstacles, robot geometry, and possible nonholonomic constraints, 
one also has to avoid collisions between the robots mutually. Moving obstacles, 
uncertainties in sensing, and inexact control add further levels of difficulty. 

In order to build robots that can autonomously act in real-life environ- 
ments, path planning problems as sketched above need to be solved. However, 
it has been proven that, in general, solving even the basic path planning prob- 
lem requires time exponential in the robots number of degrees of freedom. In 
spite of this discouraging problem complexity, various such complete planners 
have been proposed. Their high complexity however makes them impractical 
for most applications. And every extension of the basic path planning prob- 
lem adds in computational complexity. For example, if we have n robots of d 
degrees of freedom each, the complexity becomes exponential in nd. Or if we 
allow for moving obstacles, the problem becomes exponential in their number 
[9,35]. Assuming uncertainties in the robots sensing and control, leads to an 
exponential dependency on the complexity of the obstacles [9]. 

The above bounds deal with the exact problem, and therefore apply to 
complete planners. These are planners that solve any solvable problem, and 
return failure for each non-solvable one. So for most practical problems it seems 
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impossible to use such complete planners. This has lead many researchers to 
consider simplifications of the problem statement. 

A quite recent direction of research, which we just want to mention briefly 
here, deals with the formulation of assumptions on the robot environment that 
reduce the path planning complexity. This is based on the belief that there 
exists a substantial gap between the theoretical worst-case bounds of path 
planning algorithms and their practical complexity. A number of researchers 
have attempted to formulate assumptions on the obstacles that prohibit the 
(artificial) constructions that cause the worst-case bounds. Examples of such 
assumptions are, amongst others, fatness [54,53], bounded local complexity [36], 
and dispersion [33]. However, this line of research has been mainly of theo- 
retical nature, and has not yet resulted in implementations of practical path 
planners. Also, it is currently not clear whether similar results can be obtained 
for extensions of the basic path planning problem. 

Instead of assuming things about the robot environment, many researchers 
have simply dropped the requirement of completeness for the planner. Heuris- 
tic planners have been developed that solve particular difficult problems in 
impressively low running times. However, the same planners also fail or con- 
sume prohibitive time on seemingly simpler ones. For autonomous robots in 
realistic environments this might be a problem, since one cannot predict the 
path planning problems such robots will face. 

So, on one hand, completeness is a preferred property of motion planners 
for autonomous robots, while, on the other hand, only heuristic algorithms are 
capable of solving many of the practical problems that people are interested in. 
This has lead to the design of path planners that satisfy weaker forms of com- 
pleteness, in particular resolution completeness and probabilistic completeness. 
In this chapter we deal with the latter. A planner is called probabilistically 
complete if, given a solvable problem, the probability of solving it converges to 
I as the running time goes to infinity. Such a planner is guaranteed to solve any 
solvable problem within finite time. And if one can estimate the probability of 
solving a problem with respect to the running time, one has an even stronger 
result. 

Two of the most successful such planners are the probabilistic path planner 
(PPP) and the randomized path planner (RPP). 

RPP [5,17] is a potential field planner, that escapes local minima by per- 
forming Brownian motions. It has successfully been applied to articulated 
robots with many degrees of freedom (dof). Also, it has been used for check- 
ing whether parts can be removed from aircraft engines for inspection and 
maintenance, and for automatically synthesising a video clip with graphically 
simulated human and robot characters entailing a 78-dimensional configuration 
space. The planner works as follows : Given a goal configuration g, a potential 
field U is computed, being a function that assigns positive real values to con- 
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figurations. Roughly, as is the case for potential fields in general, U 4s defined 
by an attracting potential of the goal configuration, and repulsing potentials of 
the obstacles, and can be seen as a landscape with the obstacles as mountains 
and the goal configuration as lowest point. Connecting the start configuration s 
to the goal configuration g is attempted by "descending" along U. Such a down 
motion always ends in a local minimum. If this local minimum is g (the global 
minimum), then the problem is solved. If this is not the case, a Brownian mo- 
tion is performed, and the process is repeated. Using well-known properties of 
Brownian motions, RPP can be proven to be probabilistically complete [17,24]. 
Moreover, a calculation of the finite expected number of Brownian motions is 
given in [24]. This calculation uses the fact that the basins Bi of attraction 
of the local minima form a partition of the free configuration space. For each 
pair (Bi, Bj) one can define the transition probability pij that a Brownian 
motion, starting at the minimum of Bi, terminates somewhere in Bj. The ex- 
pected number of Brownian motions can then be expressed as a function of 
the transition probabilities pij's. This nice theoretical result has however the 
practical drawback that the pq's are, in non-trivial cases, unknown. Although 
RPP proves to be very powerful for many practical problems, the method also 
has some drawbacks. For example, since the planner is potential field based, it 
does not memories any knowledge about the configuration space after having 
solved a particular problem, and, for this reason, each new problem requires a 
whole new search. In other words, it is a single shot approach. Furthermore, it 
appears to be easy to create seemingly simple problems for which the planner 
consumes a more than reasonable amount of time, due to very low transition 
probabilities between certain basins. Also, the method does not apply directly 
to nonholonomic robots. 

Other probabilistically complete planners for static and dynamic environ- 
ments utilising genetic algorithms are described in [1,7]. Other work on related 
probabilistic path planning approaches includes [16]. We will not go into details 
here. 

This chapter gives a survey on the probabilistic path planner PPP, which 
is a very general planner, or planning scheme, building probabilistic roadmaps 
by randomly selecting configurations from the free configuration space and 
interconnecting certain pairs by simple feasible paths. The method is proba- 
bilistically complete and not restricted to any particular class of robots. 

A first single-shot version of the planner for free-flying planar robots was de- 
scribed in [31] and subsequently expanded into a general learning approach, for 
various robot types, in [32]. Independently, "PPP-like" preprocessing schemes 
for holonomic robots where introduced in [21] and [14]. These schemes also build 
probabilistic roadmaps in the free C-space, but focus on the case of many-dof 
robots. In [23] the ideas developed in [32] and [21] have been combined, result- 
ing in an even more powerful planner for high-dof robots. Simultaneously, PPP 
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has been applied to nonholonomic robots. Planners for car-like robots that 
can move both forwards and backwards as well as such that can only move 
forwards are described in [45,47]. PPP applied to tractor-trailer robots is the 
topic of [49,39]. Probabilistic completeness of the planners for nonholonomic 
robots is proven in [47]. Recently some first results on the expected running 
times of PPP, under certain geometric assumptions on the free configuration 
space, have been obtained [22,20,3]. For a thorough survey of probabilistic path 
planning for holonomic robots we also refer to the thesis of Kavraki [19]. Fi- 
nally, extensions of PPP addressing multi-robot path planning problems have 
been presented in [46,48]. 

In this chapter an overview is given of the algorithmic aspects of PPP and 
applications of the planning scheme to various robot types are discussed. Also, 
some theory is presented regarding probabilistic completeness and expected 
running times. The chapter is organised as follows: In Section 2 the probabilis- 
tic paradigm is described in its general form. In the following two sections the 
paradigm is applied to specific robot types, i.e., to holonomic robots (free-flying 
and articulated) in Section 3, and to nonholonomic mobile robots (car-like and 
tractor-trailer) in Section 4. In both sections the robot specific components 
of the algorithm are defined, and obtained simulation results are presented. 
Sections 5 and 6 are of a more theoretical nature. In Section 5 aspects re- 
garding probabilistic completeness of the method are discussed, and proofs of 
probabilistic completeness are given for the planners described in this chapter. 
Section 6 deals with analyses of expected running time. Results by Kavraki 
et al. [22,20,3] are reviewed, and some new results are presented as well. In 
Section 7 an extension of PPP for solving multi-robot path planning problems 
is described, and simulation results are given for problems involving multiple 
car-like robots. 

2 T h e  P r o b a b i l i s t i c  P a t h  P l a n n e r  

The Probabilistic Path Planner (PPP) can be described in general terms, with- 
out focusing on any specific robot type. The idea is that during the roadmap 
construction phase a data structure is incrementally constructed in a proba- 
bilistic way, and that this data structure is later, in the query phase, used for 
solving individual path planning problems. 

The data-structure constructed during the roadn'lap construction phase is 
an undirected graph G = (l/, E), where the nodes V are probabilistically gener- 
ated free configurations and the edges E correspond to (simple) feasible paths. 
These simple paths, which we refer to as local paths, are computed by a local 
planner. A local planner L is simply a function that takes two configurations 
as axguments, and returns a path connecting them~ that is feasible in absence 
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of obstacles (that is, the path respects the constraints of the robot). Proper 
choice of the local planner guarantees probabilistic completeness of the global 
planner, as we will see in Section 5. If, given two configurations a and b, the 
path L(a, b) is collision-free, then we will say that L connects from a to b. 

In the query phase, given a start configuration s and a goal configuration 
g, we try to connect s and g to suitable nodes ~ and ~ in V. Then we perform 
a graph search to find a sequence of edges in E connecting ~ to ~, and we 
transform this sequence into a feasible path. So the paths generated in the 
query phase (that is described in detail later) are basically just concatenations 
of local paths, and therefore the properties of these "global paths" are induced 
by the local planner. 

2.1 The roadmap construction phase 

We assume that we are dealing with a robot .4, and that L is a local planner 
that constructs paths for ,4. We assume that L is symmetric, that is, for any 
pair of configurations (a, b) L(a, b) equals L(b, a) reversed. See Section 2.3 for 
remarks on non-symmetric local planners. As mentioned above, in the roadmap 
construction phase a probabilistic roadmap is constructed, and stored in an 
undirected graph G = (V, E). The construction of the roadmap is performed 
incrementally in a probabilistic way. Repeatedly a random free configuration c 
is generated and added to V. Heuristics however are used for generating more 
nodes in "difficult" areas of the free configuration space (or ]ree C-space). We 
try to connect each generated node c to previously added ones with L, and 
each such successful connection results in a corresponding edge being added to 
E. 

More precisely, this edge adding is done as follows : First, a set Nc of 
neighbours is chosen from V. This set consists of nodes lying within a certain 
distance from c, with respect to some distance measure D. Then, in order 
of increasing distance from c, we pick nodes from No. For each such picked 
node n, we test whether L connects from c to n, and, if so, (c, n) is added 
to E. However, if n is already graph-connected with c at the moment that it 
is picked, n is simply ignored. So no cycles can be created and the resulting 
graph is a forest, i.e., a collection of trees. The motivation for preventing cycles 
is that no query would ever succeed thanks to an edge that is part of a cycle. 
Hence, adding an edge that creates a cycle can impossibly improve the planners 
performance in the query phase. 

A price to be paid for disallowing cycles in the graph is that in the query 
phase often unnecessarily long paths will be obtained. Suppose that a and b are 
two configurations that can easily be connected by some short feasible path. 
Due to the probabilistic nature of the roadmap construction algorithm, it is 
very well possible that, at some point, a and b get connected by some very 
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long path. Obtaining a shorter connection between a and b would require the 
introduction of a cycle in the graph, which we prevent. So, for any pair of nodes, 
the first graph path connecting them blocks other possibilities. 

There are a number of ways for dealing with this problem. One possibility is 
to apply an edge adding method that does allow cycles in the graph [32]. These 
methods however have the disadvantage that they slow down the roadmap 
construction algorithm, due to the fact that the adding of a node requires more 
calls of the local planner. Another possibility is to build a forest as described 
above, but, before using the graph for queries, "smoothing" the graph by adding 
certain edges that create cycles. Some experiments that we have done indicated 
that smoothing the graph for just a few seconds significantly reduces the path 
lengths in the query phase. Finally, it is possible to apply some smoothing 
techniques on the paths constructed in the query phase. We briefly describe 
a simple but efficient and general probabilistic path smoothing technique in 
Section 2.4. 

Let C denote the C-space of the robot, and C / the  free portion of C (i.e., 
the free C-space). To describe the roadmap construction algorithm formally, 
we need a function D E g x C --+ R +. It defines the distance measure used, and 
should give a suitable notion of distance for arbitrary pairs of configurations, 
taking the properties of the robot ,4 into account. We assume that D is 
symmetric. The graph G = (V, E) E gf × g~ is constructed as follows: 

The  r o a d m a p  cons t ruc t ion  algorithm 

(1) V= ,E=0 
(2) loop 
(3) c = a "randomly" chosen free configuration 
(4) v = y u {c} 
(5) Nc = a set of neighbours of c chosen from V 
(6) forall n e No, in order of increasing D(c, n) do 
(7) if  -~connected(c,n) A L(c,n) C C! then  E = E tJ {(c,n)) 

The construction algorithm, as described above, leaves a number of choices 
to be made: A local planner must be chosen, a distance measure must be de- 
fined, and it must be defined what the neighbours of a node are. ~rthermore,  
heuristics for generating more nodes in interesting C-space areas should be de- 
fined. Some choices must be left open as long as we do not focus on a particular 
robot type, but certain global remarks can be made here. 

Local planner One of the crucial ingredients in the roadmap construction 
phase is the local planner. As mentioned before, the local planner must 
construct paths that are ]casiblc for A, in absence of obstacles. This simply 
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means that the paths it constructs describe motions that are performable by 
the robot, that is, motions that respect the robots constraints. For example, 
assume the robot is a car-like vehicle moving on wheels, then a local planner 
that just connects the two argument configurations with a straight-line 
segment (in C-space) is not suitable, since it describes motions that force 
the wheels of the robot to slide. 
Furthermore, we want the roa~lmap construction algorithm to be fast. For 
this, it is important that (1) the local planner constructs its paths in a 
time efficient manner and (2) the probability that local paths intersect with 
obstacles is low. The first requirement can be met by keeping the path con- 
structs as simple as possible. For obtaining low intersection probabilities, 
the local planner should construct paths with relatively small sweep vol- 
umes. That is, the volumes (in workspace) swept by the robot when moving 
along local paths should preferably be small. Clearly, local planners min- 
imising these sweep volumes also minimise the probabilities of the local 
paths intersecting obstacles. 
Finally, the local planner should guarantee probabilistic completeness of 
PPP. In Section 5 we give sufficient properties. 

Ne ighbour s  and edge adding m e t h o d s  Another important choice to be 
made is that of the neighbours Nc of a (new) node c. As is the case for 
the choice of the local planner, the definition of Nc has large impact on the 
performance of the roadmap construction algorithm. Reasons for this are 
that the choice of the neighbours strongly influences the overall structure of 
the graph, and that, regardless of how the local planner is exactly defined, 
the calls of the local planner are by far the most time-consuming operations 
of the roadmap construction algorithm (due to the collision tests that must 
be performed). 
So it is clear that calls of the local planner that do not effectively extend the 
knowledge stored in the roadmap should be avoided as much as possible. 
Firstly, as mentioned before, attempts to connect to nodes that are already 
in c's connected component are useless. For this reason the roadmap con- 
struction algorithm builds a forest. Secondly, local planner calls that fail 
add no knowledge to the roadmap. To avoid too many local planner fail- 
ures we only submit pairs of configurations whose relative distance (with 
respect to D) is small, that is, less than some constant threshold maxdist. 
Thus: 

Nc C {5 E v ln(c ,  5) <_ maxdist} (1) 

This criterion still leaves many possibilities regarding the actual choice 
for No. We have decided on taking all nodes within distance maxdist as 
neighbours. Experiments with various definitions for Nc on a wide range of 
problems lea~ to this choice. 
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Hence, according to the algorithm outline given above, we try to connect 
to all "nearby" nodes of c, in order of increasing distance D, but we skip 
those nodes that are already in c's connected component at the moment 
that the connection is to be attempted. By considering elements of Nc 
in this order we expect to maximise the chances of quickly connecting c 
to other configurations and, consequently, reduce the number of calls to 
the local planner (since every successful connection results in merging two 
connected components into one). We refer to the described edge adding 
method as the forest method. 

Dis tance  We have seen that a distance function D is used for choosing and 
sorting the neighbours Nc of a new node c. It should be defined in such a way 
that D(a, b) (for arbitrary a and b) somehow reflects the chance that the lo- 
cal planner will fail to connect a to b. For example, given two configurations 
a and b, a possibility is to define D(a, b) as the size of the sweep volume (in 
the workspace) of L(a, b), that is, as the volume of the area swept by the 
robot when moving along L(a, b). In this way each local planner L induces 
its own distance measure, that reflects the described "failure-chance" very 
well. In fact, if the obstacles were randomly distributed points, then this 
definition would reflect the local planner's failure chance exactly. However, 
in the general case, exact computations of the described sweep-volumes tend 
to be rather expensive, and in practice it turns out that certain rough but 
cheap to evaluate approximations of the sweep volumes are to be preferred. 

N o d e  adding heuris t ics  If the number of nodes generated during the road- 
map construction phase is large enough, the set V gives a fairly uniform 
covering of the free C-space. In easy cases, for example for holonomic robots 
with few degrees of freedom (say not more than 4), G is then well connected. 
But in more complicated cases where the free C-space is actually connected, 
G tends to remain disconnected for a long time in certain narrow (and hence 
difficult) areas of the free C-space. 
Due to the probabilistic completeness of the method, we are sure that even- 
tually G will grasp the connectivity of the free space, but to prevent exor- 
bitant running times, it is wise to guide the node generation by heuristics 
that create higher node densities in the difficult areas. To identify these, 
there are a number of possibilities. 
In some cases, one can use the geometry of the workspace obstacles. For 
example, for car-like robots adding (extra) configurations that correspond 
to placements of the robot "parallel" to obstacle edges and "around" con- 
vex obstacle corners boosts the performance of the roadmap construction 
algorithm significantly. 
A more general criterion is to use the (run-time) structure of the roadmap 
G. Given a node c E V, one can count the number of nodes of V lying 
within some predefined distance of c. If this number is low, the obstacle 
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region probably occupies a large subset of c's neighbourhood. This suggests 
that c lies in a difficult area. Another possibility is to look at the distance 
from c to the nearest connected component not containing c. If this distance 
is small, then c lies in a region where two components failed to connect, 
which indicates that this region might be a difficult one (it may also be 
actually obstructed). 
Alternatively, rather than using the structure of the obstacles or the road- 
map to identify difficult regions, one can look at the run-time behaviour of 
the local planner. For example, if the local planner often fails to connect 
c to other nodes, this is also an indication that c lies in a difficult region. 
Which particular heuristic function should be used depends to some extent 
on the input scene. 

2.2 The  que ry  phase  

During the query phase, paths are to be found between arbitrary start and 
goal configurations, using the graph G computed in the roadmap construction 
phase. The idea is that, given a start configuration s and a goal configuration 
g, we try to find feasible paths Ps and Pg, such that P8 connects s to a graph 
node $, and Pg connects g to a graph node ~, with ~ graph-connected to 
(that is, they lie in the same connected component of G). If this succeeds, we 
perform a graph search to obtain a path Pa in G connecting ~ to ~. A feasible 
path (in C-space) from s to g is then constructed by concatenating Ps, the 
subpaths constructed by the local planner when applied to pairs of consecutive 
nodes in PG, and Pg reversed. Otherwise, the query fails. The queries should 
preferably terminate 'instantaneously', so no expensive algorithm is allowed for 
computing Ps and Pg. 

For finding the nodes ~ and ~ we use the function query_mapping E C x C -¢ 
V x V, defined as follows: 

query_mapping(a, b) =(~, b), such that h and b are connected, and 
n(a, 5) + n(b, b) = MIN(=,u)e W : D(a, x) + n(y,  b) 

where W = {(x, y) E V x VIconnected(x,y)} 

So query_mapping(a, b) returns the pair of connected graph nodes (5, b) that 
minimise the total distance from a to 5 and from b to b. We will refer to 5 as 
a's graph retraction, and to b ~ b's graph retraction. 

The most straightforward way for performing a query with start configu- 
ration s and goal configuration g is to compute (~, ~) = query_mapping(s, g), 
and to try to connect with the local planner from s to $ and from ~ to g. 
However, since no obstacle avoidance is incorporated in the local planner, it 
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may, in unlucky cases, fail find the connections even if the graph captures the 
connectivity of free C-space well. 

Experiments with different robot types indicated that simple probabilistic 
methods that repeatedly perform short random walks from s and g, and try to 
connect to the graph retractions of the end-points of those walks with the local 
planner, achieve significantly better results. These random walks should aim at 
maneuvering the robot out of narrow C-space areas (that is, areas where the 
robot is tightly surrounded by obstacles), and hereby improving the chances 
for the local planner to succeed. For holonomic robots very good performance 
is obtained by what we refer to as the random bounce walk (see also [32]). The 
idea is that repeatedly a random direction (in C-space) is chosen, and the robot 
is moved in this direction until a collision occurs (or time runs out). When a 
collision occurs, a new random direction is chosen. This method performs much 
better than for example pure Brownian motion in C-space. For nonholonomic 
robots walks of a similar nature can be performed, but care must of course be 
taken to respect the nonholonomic constraints. 

2.3 Using a di rected graph 

In the algorithm outline of PPP, as described in the previous section, the 
computed roadmaps are stored in undirected graphs. For many path planning 
problems this is sufficient, and it appears that the method is easier and more 
efficient to implement when based on undirected graphs. For example, path 
planning problems involving free-flying robots, articulated robots, and (normal) 
car-like robots can all be dealt With using undirected underlying graphs. There 
are however path planning problems for which undirected underlying graphs 
not sufficient, and directed ones are required instead. For example, problems in- 
volving car-like robots that can only move forwards require directed underlying 
graphs. 

The existence of an edge (a, b) in the underlying graph G corresponds to 
the statement that the local planner constructs a feasible path from a to b. 
If however G is undirected, then the edge contains no information about the 
direction in which the local planner can compute the path, and, hence, it must 
correspond to the statement that the local planner constructs a feasible path 
from a to b, as well as one from b to a. So an edge (a, b) can be added only if the 
local planner connects in both directions. Doing so, useful information might be 
thrown away. This will happen in those cases where the local planner connects 
in exactly one direction, and the fact that it has successfully constructed a 
feasible path will not be stored. If however the local planner is symmetric, 
which means that it connects from say a to b whenever it connects from b 
to a, then obviously this problem will never occur. So if the local planner is 
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symmetric, the underlying graph can be undirected, and if it is not symmetric, 
then it is better to use a directed graph. 

Whether it is possible to implement (good) local planners that are sym- 
metric, depends on the properties of the robot A, defined by the constraints 
imposed on it. 

Def ini t ion 4. A robot A is C-symmetric (configuration space symmetric) i] 
and only if any feasible path ]or A remains feasible when reversed. 

All holonomic robots are C-symmetric. For nonholonomic robots this is 
not the case. For example, a car-like robot that can drive forwards as well 
as backwards is C-symmetric while one that can only drive forwards is not. In 
terms of control theory, a (nonholonomic) robot is C-symmetric if its control 
system is symmetric. That is, it can attain a velocity v (in C-space) if and only 
if it can also attain the velocity -v .  

Clearly, if ,4 is C-symmetric, then any local planner L that constructs feasi- 
ble paths for A can be made symmetric in a trivial way, by reversing computed 
paths when necessary. So this implies that for any C-symmetric robot an undi- 
rected graph can be used for storing the local paths, and otherwise a directed 
graph is required. 

For directed graphs it is less straightforward to omit the adding of redundant 
edges than was the case for undirected graphs. We refer to [45] and [47] for 
discussions on this topic, and sensitive strategies for the adding of directed 
edges. 

2.4 S m o o t h i n g  the  pa ths  

Paths computed in the query phase can be quite ugly and unnecessarily long. 
This is due to the probabilistic nature of the algorithm, and to the fact that 
cycle-creating edges are never added. 

To improve this, one can apply some path smoothing techniques on these 
'ugly' paths. The smoothing routine that we use is very simple. It repeatedly 
picks a pair of random configurations (Cl,C2) on the "to be smoothed" path 
Pc,  tries to connect these with a feasible path Qnew using the local planner. 
If this succeeds and Qnew is shorter than the path segment Qotd in Pc  from 
cl to c2, then it replaces Qolg by Q~ew (in Pc). So basically, randomly picked 
segments of the path are replaced, when possible, by shorter ones, constructed 
by the local planner. The longer this is done, the shorter (and nicer) the path 
gets. Typically, this method smoothes a path very well in less than a second 
for low dof robots, and in a few seconds for high dof robots. 

Still one can argue that this is too much for a query. In that case one must 
either accept the ugly paths, or use a more expensive edge adding method that 
builds graphs containing loops. This will result in a slowdown of the roadmap 



266 P. Svestka and M. H. Overmars 

construction phase, but the gain is that the paths (directly) retrieved in the 
query phase will be shorter. 

3 A p p l i c a t i o n  t o  h o l o n o m i c  r o b o t s  

In this section an application of PPP to two types of holonomic robots is 
described: free-flying robots and articulated robots. 

We consider here only planar holonomic robots. A free-flying robot is rep- 
resented as a polygon that can rotate and translate freely in the plane among a 
set of polygonal obstacles. Its C-space is represented by R 2 x [0, 2r[. A planar 
articulated robot .4 consists of n links L1 , . . . ,  Ln, which are some solid planar 
bodies (we use polygons), connected to each other by n - 1 joints J2, . . . ,  jn. 
Furthermore, the first link L1 is connected to some base point in the workspace 
by a joint J1. Each joint is either a prismatic joint, or a revolute joint. If Ji is 
a prismatic joint, then link Li can translate along some vector that is fixed to 
link Li-1 (or to the workspace, if i = 1), and if Ji is a revolute joint, then link 
Li can rotate around some point that is fixed to link Li-1 (or to the workspace, 
if i = 1). The range of the possible translations or rotations of each link Li is 
constrained by Ji's joint bounds, consisting of a lower bound lowi and an up- 
per bound upi. The C-space of a n-linked planar articulated robot can, hence, 
be represented by [low1, up1] x [low2, up2] x . . .  x [lown, upn]. In the scenes we 
show, the revolute joints are indicated by small black discs, and the prismatic 
joints by small black discs with double arrows. 

Since holonomic robots are g-symmetric, it is feasible to use undirected 
graphs for storing the roadmaps. Some of the (robot specific) details, left open 
in the discussion of the general method, must be specified. 

3.1 F i l l ing  in  t h e  de ta i l s  

The  local planner:  A very general local planner exists, that is directly appli- 
cable to all holonomic robots. Given two configurations, it connects them by 
a straight line segment in C-space and checks this line segment for collision 
and joint limits (if any). We refer to this planner as the general holonomic 
local planner. Collision checking can be done as follows: First, discretise the 
line segment into a number of configurations Cl , . . . ,  cm, such that for each 
pair of consecutive configurations (ci, ci+l) no point on the robot, when 
positioned at configuration ci, lies further than some e away from its po- 
sition when the robot is at configuration Ci+l (e is a positive constant). 
Then, for each configuration c~, test whether the robot, when positioned at 
ci and "grown" by e, is collision-free. If none of the m configurations yield 
collision, conclude that the path is collision-free. 
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The  d is tance  measure :  The distance between two configurations a and b 
is defined as the length (in C-space) of the local path connecting a and 
b, but scaled in the various C-space dimensions appropriately, in order to 
reflect the local planners failure chance reasonably. For example, in the 
case of of a long and thin free flying robot, small variations in orientation 
(that is, variations in the third dimension) correspond to motions sweeping 
relatively large volumes in the workspace, and should hence be reflected by 
large distances, while, on the other hand, for disc-like robots they should 
be reflected by small distances. 

The  r a n d o m  walks in the  que ry  phase:  Section 2.2 described a general 
scheme for solving a query using a graph constructed in the roadmap con- 
struction phase. Multiple random walks were performed from the query 
configurations s and g, aimed at connecting the end-points of these walks 
to their graph retractions with the local planner. Remains to define the 
specific random walks. For holonomic robots, a random bounce walk con- 
sists of repeatedly picking at random a direction of motion in C-space and 
moving in this direction until an obstacle is hit. When a collision occurs, a 
new random direction is chosen. And so on. 
The (maximal) number of these walks (per query) and their (maximal) 
lengths are parameters of the planner, which we denote by, respectively, 
Nw and Lw. 

N o d e  adding  heurist ics:  For both the free-flying robots as the articulated 
robots, we utilise the (run-time) structure of G to identify "difficult" areas 
in which more "random" nodes are to be added than in others. We increase 
the chances for node generation in areas (of C-space) where the graph shows 
disconnectivities (that is, where there are a number of separate connected 
components present). 
For high dof robots it also proves helpful to identify nodes lying in difficult 
areas by considering the success/failure ratio of the local planner. If this 
ration is low for a particular node (that is, the local planner fails to connect 
to the node relatively often), this is an indication that the node lies in some 
difficult area. In this case, more nodes are added in the (near) neighbour- 
hood of the node, in order to locally improve the graph connectivity. We 
say that the node is expanded [21],[23]. 

3.2 Simula t ion  results  

We have implemented the method for planar free-flying and articulated robots 
in the way described above, and we present some simulation results obtained 
with the resulting planners. The implementations are in C + +  and the experi- 
ments were performed on a Silicon Graphics Indigo 2 workstation with an R4400 
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processor running at 150 MHZ. This machine is rated with 96.5 SPECfp92 and 
90.4 SPECint92. 

In the test scenes used, the coordinates of all workspace obstacles lie in the 
unit square. Furthermore, in all scenes we have added an obstacle boundary 
around the unit square, hence no part of the robot can move outside this square. 

The experiments are aimed at measuring the "knowledge" acquired by the 
method after having constructed roadmaps for certain periods of time. This is 
done by testing how well the method solves certain (interesting) queries. For 
each scene S we define a query test set TO. = {(sl, sl), (s2,g2),... ,  (sra,gm)}, 
consisting of a number of configuration pairs (that is, queries). Then, we re- 
peatedly construct a graph for some specified time t, and we count how many 
of these graphs solve the different queries in TQ. This experiment is repeated 
for a number of different construction times t. The results are presented in the 
tables under the figures. The numbers in the boxes indicate the percentage of 
the runs that solve the corresponding query within the given time bound. 

The values for the random walk parameters Nw and Lw are, respectively, 
10 and 0.05. This guarantees that the time spent per query is bounded by 
approximately 0.3 seconds (on our machine). Clearly, if we allow more time per 
query, the method will be more successful in the query phase, and vice versa. 
Hence there is a trade-off between the construction time and the time allowed 
for a query. 

In Figure 1 we have a free flying L-shaped robot, placed at the configurations 
a, b, and c. Simulation results are shown for the three corresponding queries, 
and two paths are shown, both smoothed in 1 second. We see that around 1 
second of roadmap construction is required for obtaining roadmaps that solve 
the queries. These roadmaps consist of approximately 125 nodes. 

In Figures 2 to 4 results are given for articulated robots. 
In the first two scenes, just one query is tested, and well the query (a, b). 

In both figures, several robot configurations along a path solving the query are 
displayed using various grey levels. The results of the experiments are given 
in the two tables. We see that the query in Figure 2 is solved in all cases 
after 10 seconds of construction time. Roadmap construction for 5 seconds 
however suffices to successfully answer the query in more than 90% of the 
cases. In Figure 3 we observe something similar. For both scenes the roadmaps 
constructed in 10 seconds contain around 500 nodes. 

Figure 4 is a very difficult one. We have a seven dof robot in a very con- 
strained environment. The configurations a, b, c, and d define 6 different queries, 
for which the results are shown. These where obtained by a customised imple- 
mentation by Kavraki et al. [23]. In this implementation, optimised collision 
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Fig. 1. An L-shaped free-flying robot and its test configurations are shown. At the 
top right, we see two paths computed by the planner and smoothed in 1 second. 

Fig. 2. A four dof articulated robot, and a path. 
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Fig. 3. A five dof articulated robot, and a path. 

checking routines are used, as well as a robot-specific local planner. ~ r ther -  
more, "difficult" nodes are heuristically identified during the roadmap construc- 
tion phase, and "expanded" subsequently. We see that roughly 1 minute was 
sufficient to obtain roadmaps solving the 6 queries. These roadmaps consist of 
approximately 4000 nodes. 

4 A p p l i c a t i o n  t o  n o n h o l o n o m i c  r o b o t s  

In this section we deal with nonholonomic mobile robots. More specifically, we 
apply PPP to car-like robots and tractor-trailer robots. We consider two types 
of car-like robots, i.e., such that can drive both forwards and backwards, and 
such that can only drive forwards. We refer to the former as general car-like 
robots, and to the latter as forward car-like robots. First however we give a brief 
overview on previous work on nonholonomic motion planning. 

4.1 Some previous work on nonholonomic mot ion  planning 

Nonholonomic constraints add an extra level of difficulty to the path planning 
problem. The paths must (1) be collision free and (2) describe motions that 
are executable for the robot. We refer to such paths as feasible paths. 
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Fig. 4. A seven dof articulated robot in a very constrained environment and the query 
test set. 

For locally controllable robots [6], the existence of a feasible path between 
two configurations is equivalent to the existence of a collision free path, due to 
the fact that for any collision free path there exists a feasible path lying arbi- 
trarily close to it. This fundamental property has led to a family of algorithms, 
decomposing the search in two phases. They first try to solve the geometric 
problem (i.e., the problem for the holonomic robot that is geometrically equiv- 
alent to the nonholonomic one). Then they use the obtained collision-free path 
to build a feasible one. So in the first phase the decision problem is solved, 
and only in the second phase are the nonholonomic constraints taken into ac- 
count. One such approach was developed for car-like robots [26], using Reeds 
and Shepp works on optimal control to approximate the geometric path. In [34] 
Reeds and Shepp presented a finite family of paths composed of line segments 
and circle arcs containing a length-optimal path linking any two configurations 
(in absence of obstacles). The planner introduced in [26] replaces the collision- 
free geometric path by a sequence of Reeds and Shepp paths. This complete 
and fast planner was extended to the case of tractor-trailer robots, using near 
optimal paths numerically computed [27,12] (so far the exact optimal paths 
for the tractor-trailer system in absence of obstacle are unknown). The result- 
ing planners are however neither complete nor time-efficient. The same scheme 
was used for systems that can be put into the chained form. For these sys- 
tems, Tilbury et al. [50] proposed different controls to steer the system from 
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one configuration to another, in absence of obstacles. Sekhavat and Laumond 
prove in [38] that the sinusoidal inputs proposed by Tilbury et al. can be used 
in a complete algorithm transforming any collision-free path to a feasible one. 
This algorithm was implemented for a car-like robot towing one or two trail- 
ers, which can be put into the chained form, and finds paths in reasonable 
times [38]. A multi-level extension of this approach has been presented in [40] 
which further improves the running times of this scheme by separating the 
nonholonomic constraints mutually, and introducing separately. The scheme 
is however, as pointed out, only applicable to locally controllable robots. For 
example, forward car-like robots do not fall in this class. 

Barraquand and Latombe [6] have proposed a heuristic brute-force approach 
to motion planning for nonholonomic robots. It consists of heuristically build- 
ing and searching a graph whose nodes are small axis-parallel cells in C-space. 
Two such cells are connected in the graph if there exists a basic path between 
two particular configurations in the respective cells. The completeness of this 
algorithm is guaranteed up to appropriate choice of certain parameters, and it 
does not require local controllability of the robot. The main drawback of this 
planner is that when the heuristics fail it requires an exhaustive search in the 
discretised C-space. Furthermore, only the cell containing the goal configura- 
tion is reached, not the goal configuration itself. Hence the planner is inexact. 
Nevertheless, in many cases the method produces nice paths (with minimum 
number of reversals) for car-like robots and tractors pulling one trailer. For sys- 
tems of higher dimension however it becomes too time consuming. Ferbach [11] 
builds on the approach of Barraqua.nd and Latombe method in his progressive 
constraints algorithm in order to solve the problem in higher dimensions. First 
a geometric path is computed. Then the nonholonomic constraints are intro- 
duced progressively in an iterative algorithm. Each iteration consists of explor- 
ing a neighbourhood of the path computed in the previous iteration, searching 
for a path that satisfies more accurate constraints. Smooth collision-free paths 
in non-trivial environments were obtained with this method for car-like robots 
towing two and three trailers. The algorithm however does not satisfy any form 
of completeness. 

The probabilistic path planner PPP has been applied to various types of 
nonholonomic robots. An advantage over the above single shot methods is the 
fact that a roadmap is constructed just ones, from which paths can subse- 
quently be retrieved quasi-instantaneously. Also, local robot controllability is 
not required. A critical point of PPP when applied to nonholonomic robots 
is however the speed of the nonholonomic local planner. For car-like robots 
very fast local planners have been developed. Thanks to this, PPP applied to 
the car-like robots resulted in fast and probabilistically complete planners for 
car-like robots that move both forwards and backwards, as well as for such 
that can only move forwards [45,47]. Local planners for tractor-trailer robots 
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however tend to be much more time-consuming, which makes direct use of PPP 
less attractive. In [49] a local planner is presented and integrated into PPP, 
that uses exact closed form solutions for the kinematic parameters of a tractor- 
trailer robot. In [39] the local planner using sinusoidal inputs for chained form 
systems is used. For robots pulling more than one trailer, this local planner ap- 
peared to be too expensive for capturing the connectivity of the free C-space. 
For this reason, and inspired by the earlier mentioned works [26,27,12,38], in 
[39] a two-level scheme is proposed, where at the first level the portion of CSf~ee 
is reduced to a neighbourhood of a geometric path, and at the second level a 
(real) solution is searched for within this neighbourhood (by PPP). The multi- 
level algorithm proposed in [40] can in fact been seen as a generalisation of this 
two level scheme. 

4.2 Descr ip t ion  of  the  car-like and tractor-trailer robots 

We model a car-like robot as a polygon moving in R 2, and its C-space is rep- 
resented by R 2 x [0, 27r). The motions it can perform are subject to nonholo- 
nomic constraints. It can move forwards and backwards, and perform curves of 
a lower bounded turning radius rmi,~, as an ordinary car. A tractor-trailer robot 
is modelled as a car-like one, but with an extra polygon attached to it by a 
revolute joint. Its C-space is (hence) 4-dimensional, and can be represented by 
R 2 x [0, 21r) x [ - a m ~ ,  ama~], where ama~ is the (symmetric) joint bound. The 
car-like part (the tractor) is a car-like robot. The extra part (the trailer) is sub- 
ject to further nonholonomic constraints. Its motions are (physically) dictated 
by the motions of the tractor (For details, see for example [25,40]). 

For car-like robots, the paths constructed will be sequences of translational 
paths (describing straight motions) and rotational paths (describing motions 
of constant non-zero curvature) only. It is a well-known fact [25] that if for a 
(general or forward) car-like robot a feasible path in the open free C-space exists 
between two configurations, then there also exists one that is a (finite) sequence 
of rotational paths. We include translational paths to enable straight motions 
of the robot, hence reducing the path lengths. For tractor-trailer robots we will 
use paths that are computed by transformation of the configuration coordinates 
to the chained form, and using sinusoidal inputs. 

4.3 Application to general car-like robots 

We now apply PPP, using an undirected graph, to general car-like robots. This 
again asks for filling in some of the (robot specific) details that have been left 
open in the discussion of the general method. 



274 P. ~vestka and M. H. Overmars 

Filling in the  detai ls  

The  local planner:  A RTR path is defined as the concatenation of a rota- 
tional path, a translational path, and another rotational path. Or, in other 
words, it is the concatenation of two circular arcs and a straight line seg- 
ment, with the latter in the middle. The RTR local planner constructs the 
shortest RTR path connecting its argument configurations. Figure 5 shows 
two RTR paths. It can easily be proven that any pair of configurations 
is connected by a number of RTR paths (See [45] for more details). Fur- 
thermore, the RTR local planner satisfies a local topological property that 
guarantees probabilistic completeness (See Section 5). 

e S • 

! 

i el I 

Fig. 5. Two RTR paths for a triangular car-like robot, connecting configurations a 
and b. 

An alternative to the RTR local planner is to use a local planner that con- 
structs the shortest (car-like) path connecting its argument configurations 
[34], [42]. Constructing shortest car-like paths is however a relatively ex- 
pensive operation, and the construct requires more expensive intersection 
checking routines than does the RTR construct. On the other hand, RTR 
paths will, in general, be somewhat longer than the shortest paths, and, 
hence, they have a higher chance of intersection with the obstacles. 
Collision checking for a RTR path can be done very efficiently, perform- 
ing three intersection tests for translational and rotational sweep volumes. 
These sweep volumes are bounded by linear and circular segments (such 
objects are also called generalised polygons) and hence the intersection tests 
can be done exactly and efficiently. Moreover, the intersection tests for the 
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rotational path segments can be eliminated by storing some extra informa- 
tion in the graph nodes, hence reducing the collision check of a RTR path 
to one single intersection test for a polygon. 

The  d is tance  measure :  We use a distance measure that is induced by the 
RTR local planner, and can be regarded as an approximation of the (too 
expensive) induced "sweep volume metric", as described in Section 2.1. The 
distance between two configurations is defined as the length (in workspace) 
of the shortest RTR path connecting them. We refer to this distance mea- 
sure as the RTR distance measure, and we denote it by DRTR. 

The  r a n d o m  walks in the  que ry  phase:  Random walks, respecting the 
car-like constraints, are required. The (maximal) number of these walks 
(per query) and their (maximal) lengths are parameters of the method, 
which we again denote by, respectively, Nw and Lw. 
Let cs be the start configuration of a random walk. As actual length Iw of 
the walk we take a random value from [0, Lw]. The random walk is now 
performed in the following way: First, the robot is placed at configuration 
cs, and a random steering angle ¢ and random velocity v are chosen. Then, 
the motion defined by (¢, v) is performed until either a collision of the 
robot with an obstacle occurs, or the total length of the random walk has 
reached Iw. In the former case, a new random control is picked, and the 
process is repeated. In the latter case, the random walk ends. 
Good values for Nw and Lw must be experimentally derived (the values 
we use are given in the next section). 

N o d e  adding  heurist ics:  We use the geometry of the workspace obstacles 
to identify areas in which is advantageous to add some extra, geometri- 
cally derived, non-random nodes. Particular obstacle edges and (convex) 
obstacle corners define such geometric nodes (See [47] for more details). 
Furthermore, as for free-flying robots, we use the (run-time) structure of 
the graph G in order to guide the node generation. 

S imula t ion  resul ts  We have implemented the planner as described above, 
and some simulation results are presented in this section. The planner was run 
on a machine as described in Section 3. Again the presented scenes correspond 
to the unit square with an obstacle boundary, and the chosen values for Nw 
and Lw are, respectively, 10 and 0.05. The simulation results are presented in 
the same form as for the holonomic robots in Section 3. That is, for different 
roadmap construction times we count how often graphs are obtained that solve 
particular, predefined, queries. 

Figure 6 shows a relatively easy scene, together with the robot ,4 positioned 
at a set of configurations {a, b, c, d, e}. The topology is simple and there are only 
a few narrow passages. We use ((a, b), (a, d), (b, e), (c, e), (d, e)} as query test 
set TQ. (At the top-right of Figure 6 paths solving the queries (a, d) and (b, e), 
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smoothed in 1 second, are shown.) The minimal turning radius rmin used in 
the experiments is 0.1, and the neighbourhood size maxdist  is 0.5. We see that 
after only 0.3 seconds of roadmap construction, the networks solve each of the 
queries in most cases (but not all). Half a second of construction is sufficient 
for solving each of the queries, in all 20 trials. The corresponding roadmaps 
contain about 150 nodes. 

Fig. 6. A simple scene. At the top right, two paths computed by the planner and 
smoothed in 1 second are shown. 

Figure 7 (again together with a robot .4 placed at different configurations 
{a, b, c, d}), shows a completely different type of scene. It contains many (small) 
obstacles and is not at all "corridor-like". Although many individual path plan- 
ning problems in this scene are quite simple, the topology of the free C-space 
is quite complicated, and can only be captured well with relatively compli- 
cated graphs. As query test set TQ we use {(a, b), (a, c), (a, d), (c, d)}. Further- 
more, as in the previous scene, rmin --- 0.1 and maxdist  -- 0.5. Again, we show 
two (smoothed) paths computed by our planner (solving the queries (a, b) and 
(c, d)). We see that about 2 seconds of construction are required to obtain 
roadmaps that are (almost) guaranteed to solve each of the queries. Their 
number of nodes is about 350. 
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Fig. 7. A more complicated scene, and its test configurations. At the top right, two 
paths computed by the planner and smoothed in 1 second are shown. 

4.4 Application to forward car-like robots 

Forward car-like robots, as pointed out before, are not C-symmetric. Hence, 
as explained in Section 2.3, directed instead of undirected graphs are used for 
storing the roadmaps. For details regarding the exact definition of the roadmap 
construction algorithm we refer to [32]. 

The robot specific components, such as the local planner, the metric, and 
the random walks are quite similar to those used for general car-like robots, as 
described in Section 4.3. The local planner constructs the shortest forward RTR 
path connecting its argument configurations. A forward RTR path is defined 
exactly as a normal RTR path, except that the rotational and translational 
paths are required to describe forward robot motions. The distance between 
two configurations is defined as the (workspace) length of the shortest forward 
RTR path connecting them. A random walk is performed as for general car- 
like robots, with the difference that the randomly picked velocity must be 
positive, and that, when collision occurs, the random walk is resumed from a 
random configuration on the previously followed trajectory (instead of from 
the configuration where collision occurred). 
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S i m u l a t i o n  resu l t s  In Figure 8 we give some results for the same scene as 
Figure 7. We see that  the queries are most likely to be solved after 5 seconds 
of roadmap construction, and (almost) surely after 7.5 seconds, by roadmaps 
consisting of around 700 nodes. This means that  about four times more time 
is required than for general car-like robots. 

Fig. 8. Motion planning for a forward car-like robot. 

4.5 A p p l i c a t i o n  to  t r a c t o r - t r a i l e r  r o b o t s  

As last example of nonholonomic robots, we now (briefly) consider tractor- 
trailer robots, and well such that  can drive both forwards and backwards. 
These robots have symmetrical control systems and, hence, undirected under- 
lying graphs are sufficient. We will not go into many details. We refer to [39,40] 
for a more thorough discussion of the topic. We use a local planner, by Sekha- 
vat and Laumond [38], that  transforms its configuration coordinates into the 
chained form, and uses sinusoidal inputs. We refer to it as the sinusoidal local 
planner. This local planner verifies a local topological property that  guarantees 
probabilistic completeness of the global planner. As distance measure we use 
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(cheap) approximations of the workspace lengths of the local paths. The ran- 
dom walks in the query phase are basically as those for general car-like robots, 
except that the trailers orientation must be kept track of during each motion 
of the tractor. This can be done using exact closed form solutions for the kine- 
matic parameters of tractor-trailer robots under constant curvature motions of 
the tractor [49]. If, during such a motion, the tractors orientation gets out of 
bounds (relative to the orientation of the tractor), this is treated as a collision. 

S imula t ion  resul ts  See Figure 9 for two feasible paths computed by the 
Probabilistic Path Planner. The computation time of the roadmap from which 
the paths where retrieved took about 10 seconds (on the average). 

d 

Fig. 9. Two feasible paths for a tractor-trailer robot, obtained in 10 seconds. 

5 On probabilistic completeness of probabilistic path 
planning 

In this section we discuss some aspects regarding probabiIistic completeness of 
PPP, and we prove this completeness for the specific planners described in this 
chapter. We will assume a slightly simplified version of the planning scheme. 
Instead of trying to connect the start configuration s and goal configuration 
g to the graph with some graph retractions (as described in Section 2.2), we 
simply add s and g to the graph as (initial) nodes. A query consists of just a 
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graph search. This simplification of the query phase is for ease of presentation. 
All results presented in this section directly hold for the case where queries 
are performed as described earlier (in Section 2.2), using graph retractions and 
random walks. 

A path planner is called probabilistically complete if, given any problem that 
is solvable in the open free C-space, the probability that the planner solves the 
problem goes to 1 as the running time goes to infinity. Hence, a probabilisti- 
cally complete path planner is guaranteed to solve such a problem, provided 
that it is executed for a sufficient amount of time. For ease of presentation we 
introduce some shorthand notations. We denote the version of PPP using undi- 
rected underlying graphs (respectively directed graphs) by PPP~, (respectively 
PPPd). The notation PPPu(L) (respectively PPPd(L)) is used for referring to 
PPPu (respectively PPPd) with a specific local planner L. We say L is sym- 
metric iff, for arbitrary configurations a and b, L(a, b) equals L(b, a) reversed. 
Furthermore, we again denote the C-space, respectively the free C-space, by C, 
respectively g/. 

We point out that with PPP one obtains a probabilistically complete plan- 
ner for any robot that is locally controllable (see below), provided that one 
defines the local planner properly. If, in addition to the local controllability, 
the robot also has a symmetric control system then PPP~(L) is suitable, oth- 
erwise PPPd(L) must be used. In Section 5.1 we define a general property 
for local planners that is sufficient for probabilistic completeness of PPP, and 
we point out that, given the local controllability of the robot, a local planner 
satisfying this property always exists (but it must be found). We also men- 
tion a relaxation of the property, that guarantees probabilistic completeness of 
PPPu(L) as well, for locally controllable robots with symmetric control sys- 
tems. All holonomic robots, as well as for example general car-like robots and 
tractor-trailer robots, fall into this class. Forward car-like robots however are 
not locally controllable (and neither symmetric). In Section 5.2 we show that 
all the planners described in this chapter are probabilistically, complete. 

First we define the concept local controllability (in the literature also re- 
ferred to as small-time local controllability or local-local controllability), adopt- 
ing the terminology introduced by Sussman [43]. Given a robot A, let Z.4 be 
its control system. That is, ZA describes the velocities that ,4 can attain in 
C-space. For a configuration c of a robot A, the set of configurations that .4 
can reach within time T is denoted by AE,  (_< T, c). A is defined to be locally 
controllable iff for any configuration c E C A~.~(<_ T,c) contains a neighbour- 
hood of c (or, equivalently, a ball centred at c) for all T > 0. It is a well-known 
fact that, given a configuration c, the area a locally controllable robot ¢4 can 
reach without leaving the e-ball around c (for any e > 0) is the entire open 
e-ball around c. 
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5.1 The general local topology property 

We assume now that robot A is locally controllable. For probabilistic complete- 
ness of PPP a local planner L is required that exploits the local controllability 
of A. This will be the case if L has what we call the general local topologi- 
cal property, or GLT-property, as defined in Definition fi using the notion of 
e-teachability introduced in Definition 5. We denote the ball (in C-space) of 
radius e centred at configuration c by Be(c). 

Defini t ion 5. Let L be a local planner for .A. Furthermore let ~ > 0 and c 6 C 
be given. The e-reachable area of c by L, denoted by RL,e(c), is defined by 

RL,~(c) = {5 6 B~(c)lL(c, 5) is entirely contained in Be(c)} 

Def ini t ion 6. Let L be a local planner for A. We say L has the GLT-property 

V~ > 0 : 35 > 0 :Vc 6 g : B~(c) C RL,~(c) 

We refer to B~ (c) as the e-reachable g-ball of c. 

A local planner verifying the GLT-property, at least in theory, always ex- 
ists, due to the robots local controllability. Theorem 5.1 now states that this 
property is sufficient to guarantee probabilistic completeness of PPP. That is, 
of PPPu(L) if L is symmetric, and of PPPd(L) otherwise. 

T h e o r e m  5.1. If  L is a local planner verifying the GLT-propcrty, then 
PPP(L)  is probabilistically complete. 

Proof. The theorem can be proven quite straightforwardly (for both PPPu(L) 
and PPPd(L)). Assume L verifies the GLT-property. Given two configurations 
s and g, lying in the same connected component of the open free C-space, take 
a path P that connects s and g and lies in the open free C-space as well. Let e 
be the C-space clearance of P (that is, the minimal distance between P and a 
C-space obstacle), and take 5 > 0 such that Vc 6 C : B~(c) C RL,¼e(c). Then, 

consider a covering of P by balls B1 , . . . ,  Bk of radius ¼6, such that balls Bi 
and Bi+l, for i 6 {1, . . . ,  k - 1}, partially overlap. Assume each such ball Bi 
contains a node vi of G. Then, ]vi - Vi+l] < 5, and each node v~ has a C-space 
clearance of at least e - ¼5 > 43-e (since 5 <_ e). Hence, due to the definition of 
6, we have 

L(vi, vi+l) C B¼~(vi) C gl  

It follows that if all the balls B1, . . . ,  Bk contain a node of G, s and g will be 
graph-connected. Since, due to the random node adding, this is guaranteed to 
be the case within a finite amount of time, this concludes the proof. See also 
Figure 10. • 
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P 

Fig. 10. Path P has clearance e > 0. If 5 > 0 is chosen such that Vc E C : B~(c) C 
RL, ~e (C), then we see that nodes in overlapping ¼5-balls, centred at configurations of 
P, can always be connected by the local planner. 

Clearly, given a locally controllable robot, the GLT-property is a proper 
criterion for choosing the local planner (sufficient conditions for local control- 
lability of a robot are given in, e.g., [44]). Path planning among obstacles for 
car-like robots using local planners with the GLT-property has also been stud- 
ied by Laumond [28,18]. 

For locally controllable robots with symmetric control systems, a weaker 
property exists that guarantees probabilistic completeness as well. We refer to 
this property as the LTP-property. The basic relaxation is that we no longer 
require the e-reachable J-ball of a configuration a to be centred around c. We 
do however make a certain requirement regarding the relationship between 
configurations and the corresponding e-reachable (f-balls. Namely, it must be 
described by a Lipschitz continuous function. For a formal definition of the 
LTP-property and a proof of probabilistic completeness with local planners 
verifying it, we refer to [47]. 

5.2 Probabi l ls t lc  completeness  wi th  the  used local p lanners  

The local planners used for holonomic robots, general car-like robots, forward 
car-like robots, and tractor-trailer robots, as described earlier in this chapter, 
guarantee probabilistic completeness. 
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Locally controllable robots  The general holonomic local planner b for holo- 
nomic robots constructs the straight line path (in C-space) connecting its ar- 
gument configurations. It immediately follows that RE,L(C) = BE(c), for any 
configuration c and any ~ > 0. Hence, L verifies the GLT-property. 

T h e o r e m  5.2. PPPu(L),  with L being the general holonomie local planner, is 
probabilistically complete for all holonomic robots. 

The planner for general car-like robots uses the RTR local planner. One can 
prove that this planner verifies the LTP-property [47]. Again, as stated in the 
following theorem, this guarantees probabilistic completeness. 

T h e o r e m  5.3. PPP~(L), with L being the RTR local planner, is probabilisti- 
cally complete for general car-like robots. 

Regarding tractor-trailer robots, Sekhavat and Lanmond prove in [38] that 
the sinusoidal local planner, used for the tractor-trailer robots, verifies the 
GLT-property. Hence, for tractor-trailer robots we also have probabilistic com- 
pleteness. 

T h e o r e m  5.4. PPP~(L), with L being the sinusoidal local planner, is proba- 
bilistically complete for tractor-trailer robots (with arbitrary number of trailers). 

Forward car-like robots  As pointed out before, the theory of the previous 
sections applies only to robots that are locally controllable. If a robot does 
not have this property, a local planner verifying the GLT-property will not 
exist. A local planner verifying the weaker LTP-property may exist, but this 
planner will not be symmetric (this would imply the existence of a local planner 
verifying GTP). 

Forward car-like robots are not locally controllable. One can nevertheless 
prove probabilistic completeness of PPPd(L), with L being the RTR forward 
local planner. That is, one can prove that, given two configurations s and g 
such that there exists a feasible path in the open free C-space connecting them, 
PPPd(L) will surely solve the problem within finite time. The proof, which does 
not directly generalise to other cases, uses a property of RTR forward paths 
stated in Lemma 5.5. 

Lemma 5.5. Let L be the RTR forward local planner, and let Q be a RTR 
forward path connecting configurations a and b with a straight line path of non- 
zero length and both arc paths of total curvature less than 17r. Then: 

Ve > 0 : 3 5  > 0 : V(h,b) e Bz(a) × B6(b) : L(h,b) lies within distance c o fQ 1 

1 We say a path P lies within distance e of a path Q, iff Vp E P : 3q E Q : Ip - ql < e 
(in C-space) 
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T h e o r e m  5.6. PPPd(L) ,  with L being the RTR forward local planner, is prob- 
abilistieally complete for forward car-like robots. 

Fig. 11. This figure illustrates the proof of Theorem 5.6. P2 is a path~ feasible for 
a forward car-like robot, of clearance e > 0. Centred at the configurations mi are 
balls Bi of a radius 5 > 0, such that any pair of configurations (a, b) E Bi × B~+I is 
connected by the RTR forward local planner L with a path lying within distance e of 
P2, and hence lying in Of. 

We give only a sketch of the proof here (See also Figure 11). Let L be 
the RTR forward local planner. Assume PI is a path in the open free C-space 
connecting a (start) configuration s to a (goal) configuration g, that  is feasible 
for our forward car-like robot A. Then, one can prove, there exists also a feasible 
path P2 in the open free C-space, connecting s to g, that  consists of (a finite 
number of) straight line segments and circular arcs, such that  no two distinct 
arcs are adjacent and each arc has a total curvature of less than ½7r 2 

Assume k is the number of arcs in P2. Let ml = s, m k =  g, and { m 2 , . . . ,  
ink - l )  be points on P2 such that  mi is the midpoint of the i-th arc of P2 (that 
is, the unique point on the arc with equal distance to both end-points). Clearly, 
mi is connected mi+l by a forward RTR path with a straight line segment of 
non-zero length and both arc paths of total curvature less than ½r (for all 
j e { 1 , . . . , k -  1}). 

2 This does not necessarily hold if P1 consists of just one or two circular arcs of 
maximal curvature. In this case however P1 can be found directly with the local 
planner. 



Probabilistic Path Planning 285 

Let e > 0 be the clearance of P2, and take 5 > 0 such that, for all j E 
( 1 , . . . , k -  1}: 

V(a,b) E B~(mj) x B~(mj+l) :L(a,b) lies within distance e of Q 

It follows from Lemma 5.5 that such a 5 > 0 always exists. When a node of G 
is present in every ball B~(mj) for 2 _~ j < k, G will contain a path connecting 
s to g. We know, due to the probabilistic nature of the node adding, that the 
probability of obtaining such a graph grows to I when the roadmap construction 
time goes to infinity. 

6 On the expected complexity of probabilistic path 
planning 

In the previous section we have formulated properties of local planners that 
guarantee probabilistic completeness of PPP for locally controllable robots. 
If these properties are satisfied, we know that as the running time of P P P  
goes to infinity, the probability of solving any solvable problem goes to 1. 
However, nothing formal has yet been said about (expected) convergence times 
of the algorithm. In practice, one will not be satisfied with the guarantee that 
"eventually a path will be found". For real life applications, some estimate of 
the running time beforehand is desirable. 

Simulation results obtained by the application of PPP on certain "typical" 
problems can increase our trust in the planners performance and robustness, 
but they do not describe a formal relation between the probabilities of fail- 
ure and running times in general, and neither do they provide a theoretical 
explanation for the empirically observed success of the probabilistic planner. 
Recently some first theoretical results on expected running times of probabitis- 
tic planners have been obtained. 

Kavraki et al. [22,20,3] show that, under certain geometric assumptions 
about the free C-space C f, it is possible to establish a relation between the 
probability that probabilistic planners like pppa find paths solving particular 
problems, and their running times. They suggest two such assumptions, i.e., the 
visibility volume assumption and the path clearance assumption. We will discuss 
these assumptions and present the main results obtained by Kavraki et al.. Also, 
we will discuss to what extent these results hold for nonholonomic robots, and, 
where possible, we will adapt them appropriately. Furthermore, we introduce 
a new assumption on configuration space, the e-complexity assumption, under 
which it is possible to relate the success probabilities and running times of PPP 
to the complexity of the problems that are to be solved. 

a Kavraki et al. refer to PPP by the name PRM (Probabilistic RoadMap planner). 
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Throughout this section we use the notations introduced in the previous 
section, and, unless stated otherwise, we will assume that PPP with undirected 
underlying graphs (i.e., PPPu) is used. 

6.1 The  visibil i ty vo lume assumption 

The visibility volume assumption uses a notion of "visibility" defined by the 
used local planner. A free configuration a is said to "see" a free configuration 
b if the local path L(a, b) lies entirely in gf. The visibility volume assumption 
now states that every free configuration "sees" a subset of C I whose volume is 
at least an e fraction of the total volume of gl. If this holds, C I is called e-good. 

The analyses assumes a somewhat more complex planner than PPP as de- 
fined in Section 2. It differs from PPP in that after a probabilistic roadmap 
G = (V, E) has been constructed (by the roadmap construction algorithm in 
Section 2.1), an extra post-processing step is performed, referred to by the au- 
thors as Permeation. Permeation assumes the existence of a complete planner, 
that is~ a planner solving any solvable problem, and returning failure for any 
non-solvable one. What permeation does, is invoking the complete planner for 
certain pairs (a, b) E V × V that are not graph connected. Planners based on 
this scheme have been implemented by Kavraki et al. (E.g., [21]). However, 
instead of a complete planner (which, in general, is not available) the poten- 
tial field planner RPP has been utilised. Since RPP  is only probabilistically 
complete, the mentioned planners are merely approximations of the algorithm 
sketched above. 

Due to the assumed completeness of the invoked planner, provided that the 
complete planner is invoked for enough pairs of nodes in V, permeation leads 
to a roadmap where every connected component of gl contains at most one 
connected component of the roadmap G. For convenience, we will say that such 
roadmaps have perfect connectivity. 

Let us now assume that Gp has such perfect connectivity. Then, if both s 
and g "see" a node of Gp, the planner will return a path solving this problem 
if it is solvable, and return failure otherwise. In other words, on the portion 
of C I that "sees" some node of the roadmap~ the planner is complete. Note 
that during the permeation step, no nodes are added to G. Hence, the question 
whether a solvable query will be answered coITectly depends solely on the set 
of nodes V in G. Theorem 6.1 addresses this question. V is called adequate 
if the portion of g/ ,  not visible from any c E V, has a volume of at most 
1 Volume(gl). The theorem gives a lower bound for the probability of V 
being adequate. 

T h e o r e m  6.1. (Kavraki  et aL [22], Barraquand et al, [3]) Assume G = 
(V, E) is a roadmap generated by PPP in a ]ree C-space that is e-good. Let 



Probabilistic Path Planning 287 

E (0, 1] be a real constant, and let C be a positive constant large enough such 

thatVx • (0,1] : ( l - x )  (-c-'°g ~) < x {  Now, illVI > ~log 1 - - 7, then V is adequate 
with probability at least 1 - 8. 

Regarding the complexity of the roadmap construction, one must estimate 
the number of calls to the complete planner during the permeation step, re- 
quired for obtaining a roadmap Gp of perfect connectivity. Theorem 6.2 pro- 
vides such an estimate. 

T h e o r e m  6.2. (Kavraki  et al. [22], Barraquand  et al. [3]) Let wl >_ 
w2 >_ .. .  >_ Wk be the sizes of the connected components of the roadmap G = 
(V, E). There exists a (randomised) algorithm that extends G to a roadmap Gp 
of perfect connectivity, whose expected number of calls of the complete planner 
is at most: 

k 

2 ~ i .  w, - I Y l -  k 
i=1  

Furthermore, with high probability, the number of calls is at most: 

0 y ~ i .  wi.  log(lVl) 
i = I  

Symmetry of the local planner L is required and assumed in the above. 
However, apart from this, the e-goodness assumption is very general, and the 
given analysis is not only valid for holonomic robots (on which the authors 
focus), but also for nonholonomic ones. 

However, the question arises in how far the theoretical results are "practical" 
for nonholonomie robots, since the "visibility" induced by a nonholonomic local 
planner will be a quite hard to grasp concept that can hardly be regarded as 
a geometric property of C I. There does not seem to be much hope that we 
will ever be able to measure the e-goodness of C I for nonholonomic robots, in 
non-trivial cases (insofar as there is such hope for holonomic ones). 

6.2 The  p a t h  clearance a s sumpt ion  

In the path clearance assumption, there exists a collision-free path 79 between 
the start configuration s and goal configuration g, that has some clearance e > 0 
with the C-space obstacles. Throughout this section we denote the volume of 
an object A by ];(A). In [20], Kavraki et al. study the dependence of the failure 
probability of PPP (the normal version) to connect s and g on (1) the length 
of :P, (2) the clearance e, and (3) the number of nodes in the probabilistic 
roadmap G. Their main result is described by the following theorem: 
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T h e o r e m  6.3. ( K a v r a k i  et  aL [20], B a r r a q u a n d  et al. [3]) Let .4 be a 
holonomic robot, L be the general holonomie local planner (for .4), and G = 
(V, E) be a graph constructed by PPP(L) .  Assume configurations s and g are 
connectable by a path "P of length A, that has a clearance e > 0 with the (C- 
space) obstacles. Let a E (0,1] be a real constant, and let a be the constant 
~Ac)?(B1)/~;(g]), where 131 denotes the unit ball in the C-space ]~n Now i~ IV I 
is such that 

2~(1 - a ~ )  lvt < a 
g 

then, with probability at least 1 - a, s and g will be graph-connected in G (See 
also Figure 12). 

m m w ~ m u ~ m ~ m ~ m m m  
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Fig. 12. We see that configuration s is connectable to configuration g by a P of 
clearance e. Let x0 = s, x l , . . . ,  xk = g be points on P, such that [xj - x j - b l  [ _< ~e,1 for 
all j .  If each ball B½~(xj) contains a node of G, then s and g will be graph-connected. 

The proof of this theorem is quite straightforward. Given a pa th  P of clear- 
ance e > 0, one can consider a covering of P by balls of radius 1 ~e as shown 
in Figure 12, and bound the probability tha t  one of these balls contains no 
node of G. Since, if each of these balls does contain a node, G is guaranteed to 
contain a pa th  connecting the s tar t  and goal configuration, this gives an upper  
bound for the failure probabili ty of PPP. 

A number of important  facts are implied by Theorem 6.3. E.g., the number  
of nodes required to be generated, in order for the planner to succeed with 

1 
probabil i ty at least 1 - a ,  is logarithmic in ~ and )~, and polynomial in 7" 
Furthermore,  the failure probability c~ is linear in the pa th  length A. 
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The analyses assumes the use of the general holonomic local planner (as 
described in Section 3.1). Hence it is assumed that the robot is holonomic. An 
underlying assumption is namely that the e-reachable area of any configuration 
e consists of the entire e-ball B~ (c), surrounding e. From theoretical point of 
view, as pointed out in the previous section, for any locally controllable robot 
a local planner exists for which the e-reachable area of any configuration c con- 
sists of the entire open e-ball centred at c. Such a local planner would allow for 
the result assuming the path clearance to be directly applied to such robots. 
However, it is not realistic to assume the "e-ball reachability" for a nonholo- 
nomic local planner, since for most robots we are not able to construct such 
local planners, and, if we could, they would probably be vastly outperformed 
(in terms of computation time) by simple local planners verifying only weaker 
(but sufficient) topological properties, such as those presented in the previ- 
ous section. However, the analyses presented in [20] can be extended to the 
case where the local planner verifies only the GLT-property. Through this, we 
can give running time estimates for locally controllable nonholonomic robots 
that are realistic in the sense that we can actually build the planners that we 
analyse. Corollary 6.4 extends the result of Theorem 6.3 to locally controllable 
nonholonomic robots with local planners verifying the GLT-property. 

Corol la ry  6.4. Let A be a fully controllable robot, L be a local planner for A 
verifying the GLT-property, and G = (V, E) be a graph constructed by PPP(L).  
Assume configurations s and g are connectable by a path 7 ) of length ~, that 
has a clearance e > 0 with the (configuration space) obstacles. Take 5 > 0 such 
that 

Vc e C: B~ (c) c RL,~ (c) 

Let a E (0, 1] be a real constant, and 1)1 be the volume of the unit ball in the 
C-space ~'~. Now if tVI is such that 

2A ( l;1 -n \ IVl 

then, with probability at least 1 - ~, s and g will be graph-connected in G. 

Since, by definition of the GLT-property, 5 is a constant with respect to 
e, the dependencies implied by Theorem 6.3 hold for nonholonomic robots as 
well. 

6.3 The e-complexity assumption 

A drawback of Theorem 6.3 and the above corollary is that no relation is 
established between the failure probability and the complexity of a particular 
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problem. In our opinion, to a considerable extent, the observed success of PPP 
lies in the fact that not the complexity of the C-space, but the complexity of the 
resulting path defines the (expected) running time of PPP. For example, assume 
a particular problem is solvable by a path P of clearance e > 0, consisting of 
say 4 straight line segments. Consider three balls of radius e, centred at the 3 
inner nodes of P. Then, as is illustrated in Figure 13, it suffices that all the 3 
balls contain a node of G to guarantee that the problem is solved. We see in 
this example that the failure probability in no way relates to the length of the 
path, and neither to the complexity of g I. The only relevant factors are the 
clearance and the complexity of the path. Definition 7 introduces the notion 
of e-complexity, which captures this measure of problem complexity. We refer 
here to a path composed of k straight line segments as a piecewise linear path 
of complexity k. 

Defini t ion 7. Given a holonomic robot and a particular path planning problem 
(s, g), let P be the lowest complexity piecewise-linear path connecting s and g, 
that has a C-space clearance of e > O. We define the e-complexity of problem 
(s, g) as the complexity of P. 

Fig. 13. We see that configuration s is connectable to configuration g by a piecewise 
linear path P (dashed) of complexity 4 and clearance e. If each of 3 dark grey balls 
(of radius e, placed at the vertices of P) contains a node of G, then the G contains a 
path, lying in the grey area, that connects s and g. 

Theorem 6.5 gives a result relating the failure probability of PPP to the 
e-complexity of the problem to be solved. It applies only to holonomic robots 
and assumes the use of the general hotonomic local planner. 



Probabilistic Path Planning 291 

T h e o r e m  6.5. Let A be a holonomic robot, L be the general holonomic local 
planner (for A),  and G = (V, E) be a graph constructed by PPP(L).  Assume 
(s, 9) is a problem of e-complexity ~. Let a E (0, 1] be a real constant, and ~1 
be the volume of the unit ball in the C-space R n . Now if IV[ is such that 

( ¢ -  1) (1 "~1 ) IV' 
V(Cs ) e~ <_ 

then, with probability at least 1 - a, s and g will be graph-connected in G. 

This theorem can be proven quite easily. Given a problem of e-complexity 
(, there exists a piecewise linear path P of complexity ( and clearance e > 0 
solving it. We can place balls of radius e at the vertices of P,  and bound the 
probability the one of these balls contains no node of G. Since, if each of these 
balls does contain a node, G is guaranteed to contain a path connecting the start 
and goal configuration, this gives us an upper bound for the failure probability 
of PPP. 

So we now also have a linear dependence of the failure probability, and a 
logarithmic dependence of lvI, on the complezity ~ of the path P,  that is, on 
the e-complexity of the problem. We note that the existence of a path of a 
certain clearance e > 0 and implies the existence of a piecewise linear path of 
a similar clearance. 

7 A multi-robot extension 

We conclude this chapter with an extension of PPP for solving multi-robot path 
planning problems. That is, problems involving a number of robots, present in 
the same workspace, that are to change their positions while avoiding (mu- 
tual) collisions. Important contributions on multi-robot path planning include 
[37,13,10,51,41,8,30,29,4,5,17,2,52]. For overviews we refer to [25] and [15]. 

Most previous successful planners fall into the class of decoupled planners, 
that is, planners that first plan separate paths for the individual robots more 
or less independently, and only in a later stage, in case of collisions, try to 
adapt the paths locally to prevent the collisions. This however inherently leads 
to planners that are not complete, that is, that can lead to deadlocks. To 
obtain some form of completeness, one must consider the separate robots as one 
composite system, and perform the planning for this entire system. However, 
this tends to be very expensive, since the composite C-space is typically of high 
dimension, and the constraints of all separate add up. 

For example, multi-robot problems could be tackled by direct application 
of PPP. The robot considered would be composed of the separate "simple" 
robots, and the local planner would construct paths for this composite robot. 
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This is a very simple way of obtaining (probabilistically complete) multi-robot 
planners. However, as mentioned above, a drawback is the high dimension of 
the configuration space, which, in non-trivial scenes, will force PPP to construct 
very large roadmaps for capturing the structure of Cf.  Moreover, each local 
path in such a roadmap will consists of a number of local paths for the simple 
robots, causing the collision checking to be rather expensive. 

In this section we describe a scheme where a roadmap for the composite 
robot is constructed only after a discretisation step that allows for disregarding 
the actual C-space of the composite robot. See Figure 14 for an example of a 
multi-robot path planning problem, and a solution to it, computed by a planner 
based on the scheme. 

We will refer to the separate robots AI , . . . ,  An as the simple robots. One 
can also consider the simple robots together to be one robot (with many degrees 
of freedom), the so-called composite robot. A feasible path for the composite 
robot will be referred to as a coordinated path. We assume in this paper that 
the simple robots are identical, although, with minor adaptions, the presented 
concepts are applicable to problems involving non-identical robots as well. 

A roadmap for the composite robot is constructed in two steps. First, a 
simple roadmap is constructed for just one robot with PPP. Then n of such 
roadmaps are combined into a roadmap for the composite robot (consisting of 
n simple robots). We will refer to such a composite roadmap as a super-graph. 
After such a super-graph has been constructed, which needs to be done just 
once for a given static environment, it can be used for retrieval of coordinated 
paths. We will present two super-graph structures: fiat super-graphs and multi- 
level super-graphs. The latter are a generalisation of flat super-graphs, that 
consume much less memory for problems involving more than 3 robots. 

The scheme is a flexible one, in the sense that it is easily applicable to 
various robot types, provided that one is able to construct simple roadmaps 
for one such robot. Furthermore, proper construction of the simple roadmaps 
guarantees probabilistic completeness of the resulting multi-robot planners [46]. 
In this paper we apply the super-graph approach to car-like robots. We give 
simulation results for problems involving up to 5 robots moving in the same 
constrained environment. 

7.1 Discre t i sa t ion  of  the  mul t i - robo t  planning p r o b l e m  

The first step of our multi-robot planning scheme consists of computing a simple 
roadmap, that is, a roadmap for the simple robot A. We assume that this 
roadmap is stored as a graph G = (V, E), with the nodes V corresponding to 
collision-free configurations, and the edges E to feasible paths, also referred to 
as local paths. We say a node blocks a local path, if the volume occupied by ,4 
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Fig. 14. An example of a multi-robot path planning problem, with a solution shown 
(generated by the multi-level super-graph planner). Five car-like robots are in a nar- 
row corridor, and they are to reverse their order. 

when placed at the node intersects the volume swept by ,4 when moving along 
the local path. Basically, any algorithm that constructs roadmaps can be used 
in this phase. We will use PPP. 

Given a graph G = (V, E) storing a simple roadmap for robot A, we are 
interested in solving multi-robot problems using G. We assume here that the 
start and goal configurations of the simple robots are present as nodes in G 
(otherwise they can easily be added). The idea is that we seek paths in G along 
which the robots can go from their start configurations to their goal configu- 
rations, but we disallow simultaneous motions, and we also disallow motions 
along local paths that are blocked by the nodes at which the other robots 
are stationary: We refer to such paths as G-discretised coordinated paths (see 
also Figure 15). It can be shown that solving G-discretised problems (instead 
of continuous ones) is sufficient to guarantee probabilistic completeness of our 
multi-robot planning scheme, if the simple roadmaps are computed with PPP 
[46]. 

7.2 The  supe r -g raph  approach 

The question now is, given a simple roadmap G = (V, E) for a robot A, how to 
compute G-discretised coordinated paths for the composite robot (`41,.-., An) 
(with Vi : Ai = ,4). For this we introduce the notion of super-graphs, that is, 
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Fig. 15. A G-discretised coordinated path for 3 translating disc-robots. 

roadmaps for the composite robots obtained by combining n simple roadmaps 
together. We discuss two types of such super-graphs. First, in Section 7.2, we 
describe a fairly straightforward data-structure, which we refer to as fiat super- 
graphs. Its structure is simple, and its construction can be performed in a very 
time-efficient manner. However, its memory consumption increases dramati- 
cally as the number of robots goes up. For reducing this memory consumption 
(and, through this, increasing the planners power), we generalise this "flat" 
structure to a multi-level one, in Section 7.2. This results in what we refer to 
as multi-level super-graphs. 

Using fiat super -g raphs  In a fiat super-graph 9v~, each node corresponds to 
a feasible placement of the n simple robots at nodes of G, and each edge corre- 
sponds to a motion of exactly one simple robot along a non-blocked local path 
of G. So ((xl , . . . ,xr~),(yl , . . . ,yn)) ,  with all x~ E V and all yi E V, is an edge 
in ~'~ if and only if (1) xi # yi for exactly one i and (2) (xi, Yi) is an edge in E 
not blocked by any xj with j ~ i. ~'~ can be regarded as the Cartesian prod- 
uct of n simple roadmaps. See Figure 16 for an example of a simple roadmap 
with a corresponding flat super-graph. Any path in the G-induced super-graph 
describes a G-discretised coordinated path (for the composite robot), and vice- 
versa. Hence, the problem of finding G-discretised coordinated paths for our 
composite robot reduces to graph searches in ~'~. A drawback of flat super- 
graphs is their size, which is exponential in n (the number of robots). For a 
formal definition of the flat super-graph method we refer to [46]. 

Using mult i - level  super -g raphs  The multi-level super-graph method aims at 
size reduction of the multi-robot data-structure, by combining multiple node- 
tuples into single super-nodes. While a node in a flat super-graph corresponds 
to a statement that each robot J[i is located at some particular node of G, a 
node in a multi-level super-graph corresponds to a statement that each robot 
A~ is located in some subgraph of G. But only subgraphs that do not interfere 
with each other are combined. We say that a subgraph A interferes with a 
subgraph B if a node of A blocks a local path in B, or vice versa. Due to space 
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C 

Fig. 16. At the left we see a simple roadmap G for the shown rectangular robot A 
(shown in white, placed at the graph nodes). We assume here that .4 is a translational 
robot, and the areas swept by the local paths corresponding to the edges of G are 
indicated in light grey. At the right, we see the flat super-graph ~'~, induced by G 
for 2 robots. It consists of two separate connected components. 

limitations, we cannot go into much formal details regarding multi-level super- 
graphs. Here we will just describe the main points. The two main questions are 
how to obtain the subgraphs, and how to build a super-graph from these in a 
proper way. 

For obtaining suitable subgraphs, we compute a recursive subdivision of the 
simple roadmap G = (V, E), a so-called G-subdivision tree T. Its nodes consist 
of connected subgraphs of G, induced by certain subsets of V. The root of T 
is the whole graph G. The children (V1, El ) , . . . ,  (V1,/~1) of each internal node 
(t ~,/~) are chosen such that V = Ul<i<k Vi and Nl<i<k ~ = ~. Furthermore, 
all leafs, consisting of one node and no-edges, lie a t t h e  same level of the tree 
T. This of course in no way defines a unique G-subdivision tree. We just give a 
brief sketch of the algorithm that we use for their construction. After the root 
r (=G) has been created, a number of its nodes are selected heuristically, and 
subgraphs are grown around these "local roots", until all nodes of r lie in some 
subgraph. These subgraphs form the children of r, and the procedure is applied 
recursively to each of these. The recursion stops at subgraphs consisting of just 
one node, and care is taking to build a perfectly balanced tree. 

For n robots, a simple roadmap G = (V, E) together with a G-subdivision 
tree 7" uniquely defines a multi-level super-graph M~T. A n-tuple (X1 , . . . ,  Xn) 
of equal-level nodes of T is a node of .k,t~T if and only if all subgraphs 
Xi in the tuple are mutually non-interfering. We define the edges in M~,  T 
in terms of the fiat super-graph ~'~ induced by G. A pair of super-nodes 
((X1,. . . ,  X,) ,  (Y1, • • •, Yn)) forms an edge E in Jt4~, 7- if and only if there exists 
an edge e = ( ( x l , . . . , xn ) , ( y l , . . . , yn ) )  in ~'~ with, for all i e {1 , . . . ,n} ,  x~ 
being a node of Xi and yi being a node of Y~. We refer to e as the underlying 
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fiat edge of E. Also, for the i E {1, . . . ,  n} with xi ~ Yi, we refer to the simple 
robot Ai as the active robot of E (and to the others as the passive robots). 

We want to stress here that the flat super-graph 5c~, which can be enormous 
ibr n > 3 (that is, more than 3 robots), is only used for definition purposes. 
For the actual construction of our multi-level graph A4~T we fortunately need 
not to compute ~ .  

Simulation results show that the size of multi-level super-graphs is consid- 
erably smaller than that of equivalent fiat super-graphs. Further size-reduction 
can be achieved by using what we refer to as sieved multi-level super-graphs. 
From experiments we have observed that the connectivity of the free configu- 
rations space of the composite robot is typically captured by only a quite small 
portion of AJ~T, namely by that portion constructed from the relatively large 

n subgraphs in 7". For this reason, we construct A4G. T incrementally. We sort 
the subgraphs in T by size, and pick them in reversed order of size. For each 
such picked subgraph we extend the super-graph ~/[~,T accordingly. By keep- 
ing track of the connected components in ~z[~7- we can determine the moment 
at which the free space connectivity has been captured, and at this point the 
super-graph construction is stopped. 

7.3 Retrieving the coordinated paths 

Paths from multi-level super-graphs do not directly describe coordinated paths 
(as opposed to paths from fiat super-graphs). For retrieving a coordinated 
path from a multi-level super-graph fl4~7-, first the start and goal configura- 
tions must be connected by coordinated paths to nodes X and Y of 2¢I~,7-. 
Such retraction paths can be computed by probabilistic motions of the simple 
robots. Then, a path P ~ ,  connecting X and Y in jk4~T , must be found, and 
transformed to a coordinated path P. For each edge E in P ~ ,  we do the fol- 
lowing: First, we identify the underlying simple edge e = (a,b), and, within 
its subgraph, we move the active robot to a. Then, we move all passive robots 
to nodes within their subgraphs that do not block e. And finally we move the 
active robot to b (again within its subgraph), over the local path correspond- 
ing to e. Applied to all the consecutive edges of PM, this yields a coordinated 
path that, after concatenation with the two retraction paths, solves the given 
multi-robot path planning problem. 

It follows rather easily from the definition of multi-level super-graphs that 
the described transformation is always possible. 

7.4 Application to car-like robots 

We have applied both the flat super-graph method as well as the multi-level 
super-graph method to car-like robots. We have implemented the planners in 
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C++,  and tested them on a number of realistic problems, involving up to 5 
car-like robots moving in the same environment. Below, we give simulation 
results from experiments performed with the multi-level super-graph method, 
for two different environments. The planner was again run on a Silicon Graphics 
Indigo 2 workstation with an R4400 processor running at 150 MHZ, rated with 
96.5 SPECfp92 and 90.4 SPECint92 on the SPECMARKS benchmark. 

For both scenes we have first constructed a simple roadmap with PPP. The 
sizes and densities of the two constructed simple roadmaps are sufficient to allow 
for the existence of G-discretised solutions to most non-pathetic problems in the 
scenes. Then, we have constructed the multi-level super-graphs incrementally 
by picking the subgraphs from the G-subdivision tree in order of decreasing 
size, as described in Section 7.2. We stopped the construction at the point were 
the multi-level super-graphs consisted of just one major component. 

n = ( V ~ , E ~ )  and We report the sizes of the resulting super-graphs MaT 
the time required for their construction. Also we give indications of the times 
required for retrieving and smoothing coordinated paths from the resulting 
super-graphs. Smoothing is quite essential for obtaining practical solutions, 
because the coordinated paths retrieved directly are typically very long and 
"ugly". We use heuristic algorithms for reducing the lengths of the coordinated 
paths (For details, see [46]). 

V 

Fig. 17. Two scenes for the multi-robot path planner. Both scenes are shown together 
with a simple roadmap G for the indicated rectangular car-like robot. Not the edges, 
but the corresponding local paths are shown. 
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The left half of Figure 17 shows the first scene, together with the simple 
roadmap G, consisting of 132 nodes and 274 edges, constructed in about 14 
seconds. In the table below we shown the sizes and the construction times of 
the induced multi-level super-graphs, for 3, 4, and 5 robots. Retrieving and 
smoothing coordinated paths required, roughly, something between 10 seconds 
(for 3 robots) and 20 seconds (for 5 robots). See Figure 18 for a path retrieved 
from the supergraph for 5 robots. 

n Time 
-3 408 2532 18.5 
-4 2256i152i6 18.8 

23.3 

L ]! 
Fig. 18. Snapshots of a coordinated path in the first scene for 5 robots, retrieved 
from the multi-level super-graph. 

The right half of Figure 17 shows the second scene on which we test the 
multi-robot planner. In the table below, the sizes and the construction times 
of the induced multi-level super-graphs, for 3 and 4 robots, are given. Here, 
retrieving and smoothing coordinated paths required was easier. Roughly, it 
took about 6 seconds for 3 robots and 8 seconds for 4 robots. See Figure 19 for 
a path retrieved from the supergraph for 4 robots. 

n[ [V]~I I [E.M I ]Time 
'31 3018] 15630 I !:2 .......... 
4i29712115201  1 8.1 
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Fig. 19. Snapshots of a coordinated path in the second scene for 4 robots, retrieved 
from the multi-level super-graph. 

We see that the data-structures in the second scene are considerably larger 
than those required for the first, although the first scene seems to be more 
complex. The cause for this must be that the compact structure of the free 
space in the second scene as well as the relatively large size of the robot cause 
more subgraphs to interfere. Hence, in the second scene, subdivision into smaller 
subgraphs is required. 

7.5 Discussion of the super-graph approach 

The presented multi-robot path planning approach seems to be quite flexible, 
as well as time and memory efficient. The power of the presented approach 
lies in the fact that only self-collision avoidance is dealt with for the composite 
robot, while all other (holonomic and nonholonomic) constraints are solved in 
the C-spaces of the simple robots. 

There remain many possibilities for future improvements. For example, 
smarter ways of building the G-subdivision trees probably exist. For many ap- 
plications, it even seems sensible to use characteristics of the workspace geom- 
etry for determining the subgraphs in the G-subdivision tree. Also, techniques 
for analysing the expected running times need to be developed. 

We have seen that for up to 5 independent robots the method proves prac- 
tical. However, in many applications one has to deal with much larger fleets of 
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mobile robots. Due to the enormous complexity of such systems, only decoupled 
planners can be used here. Decoupled planners however can fall into deadlocks. 
Centralised planners could be integrated into existing large scale decoupled 
planners for resolving deadlock situations in specific (local) workspace areas 
where these could arise. For example, if T~ is such an area, the global decoupled 
planner could enforce a simple rule stating that, at any time instant, no more 
than say 4 robots are allowed to be present in 7%. Path planning within 7% can 
then be done by a centralised planner, like for example the planner presented 
in this section. 

8 Conclusions 

In this chapter an overview has been given on a general probabilistic scheme 
PPP for robot path planning. It consists of two phases. In the roadmap con- 
struction phase a probabilistic roadmap is incrementally constructed, and can 
subsequently, in the query phase, be used for solving individual path planning 
problems in the given robot environment. So, unlike other probabilistically 
complete methods, it is a learning approach. Experiments with applications of 
PPP to a wide variety of path planning problems show that the method is very 
powerful and fast. Another strong point of PPP is its flexibility. In order to 
apply it to some particular robot type, it suffices to define (and implement) 
a robot specific local planner and some (induced) metric. The performance of 
the resulting path planner can, if desired, be further improved by tailoring 
particular components of the algorithm to some specific robot type. 

Important is that probabilistic completeness, for holonomic as well as non- 
holonomic robots, can be obtained by the use of local planners that respect 
certain general topological properties. Furthermore, there exist some recent re- 
sults that, under certain geometric assumptions on the free C-space, link the 
expected running time and failure probability of the planner to the size of the 
roadmap and characteristics of paths solving the particular problem. For exam- 
ple, under one such assumption, it can been shown that the expected size of a 
probabilistic roadmap required for solving a problem grows only logarithmically 
in the complexity of the problem. 

Numerous extensions of the approach are possible. One such extension has 
been described in this chapter, dealing with the multi-robot path planning 
problem. Other possibilities include, for example, path planning in partially 
unknown environments, path planning in dynamic environments (e.g., amidst 
moving obstacles), and path planning in the presence of movable obstacles. 
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1 I n t r o d u c t i o n  

Collision detection is a basic tool whose performance is of capital importance 
in order to achieve efficiency in many robotics and computer graphics applica- 
tions, such as motion planning, obstacle avoidance, virtual prototyping, com- 
puter animation, physical-based modeling, dynamic simulation, and, in general, 
all those tasks involving the simulated motion of solids which cannot penetrate 
one another. In these applications, collision detection appears as a module or 
procedure which exchanges information with other parts of the system concern- 
ing motion, kinematic and dynamic behaviour, etc. It is a widespread opinion 
to consider collision detection as the main bottleneck in these kinds of appli- 
cations. 

In fact, static interference detection, collision detection and the generation 
of configuration-space obstacles can be viewed as instances of the same prob- 
lem, where objects are tested for interference at a particular position, along a 
trajectory and throughout the whole workspace, respectively. The structure of 
this chapter reflects this fact. 

Thus, the main guidelines in static interference detection are presented in 
Section 2. It is shown how hierarchical representations allow to focus on relevant 
regions where interference is most likely to occur, speeding up the whole inter- 
ference test procedure. Some interference tests reduce to detecting intersections 
between simple enclosing shapes, such as spheres or boxes aligned with the co- 
ordinate axes. However, in some situations, this approximate approach does not 
suffice, and exact basic interference tests (for polyhedral environments) are re- 
quired. The most widely used such test is that involving a segment (standing for 
an edge) and a polygon in 3D space (standing for a face of a polyhedron). In this 
context, it has recently been proved that interference detection between non- 
convex polyhedra can be reduced, like many other problems in Computational 
Geometry, to checking some signs of vertex determinants, without computing 
new geometric entities. 

Interference tests lie at the base of most collision detection algorithms, 
which are the subject of Section 3. These algorithms can be grouped into four 
approaches: multiple interference detection, swept volume interference, space- 
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time volume intersection, and trajectory parameterization. The multiple inter- 
ference detection approach has been the most widely used under a variety of 
sampling strategies, reducing the collision detection problem to multiple calls 
to static interference tests. The efficiency of a basic interference test does not 
guarantee that a collision detection algorithm based on it is in turn efficient. 
The other key factor is the number of times that this test is applied. Therefore, 
it is important to restrict the application of the interference test to those in- 
stants and object parts at which a collision can truly occur. Several strategies 
have been developed: 1) to find a lower time bound for the first collision, 2) to 
reduce the pairs of primitives within objects susceptible of interfering, and 3) 
to cut down the number of object pairs to be considered for interference. These 
strategies rely on distance computation algorithms, orientation-based pruning 
criteria and space partitioning schemes. 

Section 4 describes how motion planners adopt different strategies with 
respect to the use of static interference and collision detection procedures, de- 
pending on their global or local nature. While global planners use static in- 
terference tests, or their generalizations, to generate a detailed description of 
either configuration-space obstacles or free-space connectivity, incremental and 
local path planners avoid this costly computation by fully relying on collision 
detection tests during the search process. 

Finally, some conclusions are sketched in Section 5. 

2 I n t e r f e r e n c e  d e t e c t i o n  

Objects to be checked for interference are usually modeled by composing sim- 
ple shapes. Hierarchies of spheres (or other primitive volumes) and polyhedral 
approximations are the most commonly used. The former exploit the low cost 
of detecting interference between spheres, which reduces to comparing the dis- 
tance between their centers and the sum of their radii. This type of model is 
particularly adequate in situations not demanding high accuracy, since achiev- 
ing that would require going down many levels in the hierarchy. Objects with 
planar faces and subject to small tolerances are usually dealt with using poly- 
hedral representations of their boundaries. 

Hierarchical approximations permit focusing on the regions susceptible of 
interfering, as described in Section 2.1. Then, basic interference tests, which 
are the subject of Section 2.2, need only be applied within the focused regions. 

2.1 Focusing on relevant regions 

The two main approaches to confine the search for interferences to particular 
portions of the solids are representation dependent. On the one hand, there are 
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algorithms that bound volume portions, and they are suited for volume repre- 
sentations, like Constructive Solid Geometry (CSG), octrees, or representations 
based on spheres. On the other hand, there are procedures that restrict the el- 
ements of the boundary of the objects that can intersect, and these algorithms 
are of course used together with boundary representations. 

Hierarchica l  vo lume  represen ta t ions  Two advantages of hierarchical rep- 
resentations must be highlighted: 

- In many cases an interference or a non-interference situation can be easily 
detected at the first levels of the hierarchy. This leads to substantial savings 
under all interference detection schemes. 

- The refinement of the representation is only necessary in the parts where 
collision may occur. 

There are two types of bounding techniques for hierarchical volume rep- 
resentations, those that are based on an object partition hierarchy, and those 
where subregions of a space partition are considered. 

O b j e c t  pa r t i t ion  hierarchies  The so called "S-bounds" were developed and 
used in [8] for bounding spatially the part of the CSG tree that represents 
an intersection between two solids. S-bounds are simple enclosing volumes 
of the primitives at the leaves of the CSG tree: two examples are shown 
and discussed in [8] where rectangular parallelepipeds aligned with the 
coordinate axes and spheres are used as S-bounds. According to the set 
operations attached to every node in the tree, the S-bound corresponding 
to the root of the CSG intersection tree can be obtained after a number of 
pseudo-union and intersection operations of S-bounds. An algorithm that 
runs upwards and downwards on the tree performs all these operations 
(see Figs. 1 and 2). The main advantages of this procedure are the cut- 
off of subtrees included in empty bounds, leading to possibly important 
computational savings, and the focusing of intersection searching on zones 
where intersection can actually occur. 
The "successive spherical approximation" described in [6] allows focusing 
on the region of possible interference by checking intersection of spherical 
sectors at different levels in the hierarchy (Fig. 3). Hierarchies based on 
spheres that bound objects at different levels of refinement are also used in 
[50] and in [52]. 

Space  pa r t i t i on  hierarchies  The octree representation allows to avoid 
checking for collision in those parts of the workspace where octants are 
labelled empty, that is, where no part of any object exists. H a full (to- 
tally occupied by the solid) or mixed (partially occupied) octant is inside 
a full one of the other solid, interference occurs. Only if a full or mixed 
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Fig. 1. S-bounds. (a) The intersection (i) between two polygons described by their CSG 
representations has to be computed. (b) The rectangular boxes that bound the prim- 
itives are combined and the boxes corresponding to the higher levels are determined, 
according to the nature of the nodes (union or intersection). 
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(c) 

(d) 

Fig. 2. S-bounds (cont.). (c) The box obtained at the root node is intersected with the 
boxes of nodes at lower levels. The empty set is obtained for some nodes, which can be 
eliminated. (d) The representation is once again explored upwards, and a smaller box 
is obtained at the root. I f  the process is repeated once more every node will contain 
the small box or the empty set. This small box bounds the region where intersection 
has to be looked for. 
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Fig. 3. (a) Interference cannot be decided at the first level in the hierarchy, since 
neither the inner circles intersect nor the outer circles are disjoint. Nevertheless, the 
region of possible interference can be bounded, using the intersection points of the outer 
spheres. (b) At the next level two inner sectors intersect, thus interference exists. 
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octant is inside a mixed one, the representation has to be further refined. 
The "natural" octree primitive is a cube [1,27], but there exist also mod- 
els based on the same idea where spheres are used, as octant-including 
volumes [31] or within a different space subdivision technique, where the 
subdivision branching is 13 instead of 8 [39]. In the binary space partition 
tree [56], a binary tree is constructed that represents a recursive partition- 
ing of space by hyperplanes. The authors describe such representation as 
a "crossing between octrees and boundary representations", but partition- 
ing is not restricted to be axis-aligned, as in the octree representation, and 
therefore transformations (a change in orientation, for example) can be sim- 
ply computed by applying the transformation to each hyperplane, without 
rebuilding the whole representation. 

B o u n d a r y  r ep resen ta t ions  Hierarchical representations associated to 
bounding volumes that contain boundary features allow to restrict the effort 
of determining which parts of the objects boundaries may intersect to the 
most "promising" parts. Octrees have been used for subdividing axis aligned 
bounding boxes and constructing a bounding box hierarchy for the hull features 
(features of the polyhedron also appearing on its convex hull) and concavities 
of non-convex polyhedra [51]. Once penetration has been detected between the 
convex hulls of two polyhedra, a sweep and prune algorithm is applied to tra- 
verse the hierarchies down to the leaf level, where overlapping boxes indicate 
which faces may intersect, and exact contact points can be quickly determined. 

In dense, cluttered environments, Oriented Bounding Boxes (OBB) perform 
better than axis aligned boxes or spheres, as they do fit more tightly to the 
objects and therefore less interferences between bounding volumes are reported. 
A hierarchical structure called OBB-Tree is used in [25] to represent polyhedra 
whose surfaces have been triangulated. Overlaps between OBBs are rapidly 
determined by performing 15 simple axis projection tests (about 200 arithmetic 
operations), as proved by the authors through their separating axis theorem. 

2.2 Basic  interference tests  

Convexity plays a very important role in the performance of interference de- 
tection algorithms, and it is therefore used as classification criterion in the 
description below. 

Convex  p o l y h e d r a  As pointed out in [37], intersection detection for two 
convex polyhedra can be done in linear time in the worst case. The proof is by 
reduction to linear programming, which is solvable in linear time for any fixed 
number of variables. If two point sets have disjoint convex hulls, then there is a 



312 P. Jim@nez, F. Thomas and C. Torras 

plane which separates the two sets. The three parameters that define the plane 
are considered as variables. Then, a linear inequality is attached to each vertex 
of one polyhedron, which specifies that the point is on one side of the plane, 
and the same is done for the other polyhedron (specifying now the location on 
the other side of the plane). 

Moreover, convex polyhedra can be properly preprocessed, as described in 
[17], to make the complexity of intersection detection drop to O(logn logm). 
Preprocessing takes O(n + m) time to build a hierarchical representation of two 
polyhedra with n and m vertices. The lowest level in the hierarchical represen- 
tation is a tetrahedron. At each level of the hierarchy, vertices of the original 
polyhedron are added, such that they form an independent set (i.e. , are not 
adjacent) in the polyhedron corresponding to this hierarchical level, and the 
corresponding edge and face adjacency relationships are updated. 

In fact, this algorithm computes the distance between two convex polyhedra. 
Likewise, all algorithms developed for distance computation can be adapted to 
detect interference. We refer the reader to Section 3.2. 

One  convex a n d  o n e  o n e  n o n - c o n v e x  An algorithm for computing the 
intersection between a convex and a non-convex polyhedron is described in 
[45]. A by-product of intersection computation is interference detection. Let P 
and Q be the surface of P (convex, n edges) and of Q (possibly non convex, 
m edges), respectively. The algorithm needs to solve the support problem, that 
is, to determine at least one point of each connected component of P f3 Q (this 
set of points will be called S). The methods for interference detection between 
convex polyhedra and linear subspaces developed by Dobkin and Kirkpatrick 
[16] are used for determining the intersections of P with edges and faces of Q: a 
hierarchical representation is used for P ,  so that the intersection between a line 
l, supporting an edge of Q, and P is computed in time O(log n), and a point in 
h N P ,  where h is a plane supporting a face of Q, can also be computed in time 
O(logn). Therefore, an algorithm can be constructed that solves the support 
problem in O(m log n). The next step consists in determining C = P f3 Q, by 
taking points of S, which are intersections between a face and an edge, and 
determining the intersections between the face and the two faces which are 
adjacent to the edge. Finally, the segments of edges of P and Q which are 
inside the intersection have to be determined. Figure 4 illustrates the main 
steps of the strategy. The overall complexity is O((n + m + s) log(n + m + s)), 
where s is the number of edges in the intersection. 

Non-convex  p o l y h e d r a :  D e c o m p o s i t i o n  i n t o  c o n v e x  p a r t s  It is possible 
to extend the usage of the above algorithms to non-convex polyhedra just by 
decomposing these polyhedra into convex entities. Typically, decomposition 
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Fig. 4. (a) Intersection computation (and -implicitly- interference detection) between 
two polyhedra, one of which is allowed to be non-convex (here, both have been depicted 
as convex for clarity). (b) Solving the support problem, the set of black (intersections of 
edges of Q and P)  and white (intersections of edges of P and Q)points are obtained. 
Each pair of adjacent faces to these edges is intersected with the face of the other 
polyhedron that intersects this edge. (c) The segments of edges of one polyhedron 
inside the other one (and vice-versa) are finally computed (dotted lines). 
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is performed in a preprocessing step, and therefore has to be computed only 
once. The performance of this step is a tradeoff between the complexity of its 
execution and the complexity of the resulting decomposition. For example, the 
extreme case of solving the minimum decomposition problem is known to be 
NP-hard in general [3]. On the other hand, algorithms such as that in [13] can 
always partition a polytope of n vertices into at most O(n 2) convex entities. 

Consider two polyhedra. Discarding the case in which one is fully inside the 
other, they intersect if their surfaces do. The detection of intersections between 
polyhedral surfaces reduces to detecting that an edge of one surface is piercing 
a face of the other sm'face. 

Although interference detection becomes quite simple when faces are de- 
composed into convex polygons, and easy to implement, as explained below, 
the sequence of reductions used implies that the final complexity is O(nm). 

This reduction of the problem to detect edges piercing faces, formulated 
using the idea of predicates associated with the basic contacts, was introduced 
in [12]. The concept of basic contacts was introduced in [40], and its name 
derives from the fact that all other contacts can be expressed as a combination 
of them. 

There are two basic contacts between two polyhedra. One takes place when 
a face of one polyhedron is in contact with a vertex of the other polyhedron 
(Type-A contact), and the other when an edge of one polyhedron is in con- 
tact with an edge of the other polyhedron (Type-B contact). Although in [40] 
and in [18] two different contacts between vertices and faces were considered, 
depending on whether they belong to the mobile polyhedron or the obstacle, 
avoiding to make this distinction greatly simplifies the presentation. 

It is possible to associate a predicate with each basic contact, which will be 
true or false depending on the relative location between the geometric elements 
involved, as we will describe next. 

Let us assume that face Fi is represented by its normal vector fi; edge Ej, 
by a vector ej along it; and vertex V~ by its position vector vk. Although 
this representation is ambiguous, any choice leads to the same results in what 
follows. 

According to Fig. 5(a), predicate Ave,F~, associated with a basic contact of 
Type-A, is defined as true when 

(fj,vi - v k )  > 0, (1) 

for any vertex Vk in face Fj, and false otherwise. 
According to Fig. 5(b), predicate BE,  Ej, associated with a basic contact of 

Type-B, is defined as true when 

(ei × ej,Vm -- vk) > O, (2) 
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Fig. 5. Geometric elements involved in the definition of the predicates associated with 
Type-A (a) and Type-B (b) basic contacts. 

Vm and Vk being one of the two endpoints of Ei and Ej, respectively, and false 
otherwise. 

It can be checked that if one of the following predicates 

OOUt E~,Fi = -~Av~ ,Fj A A%,v~ A A BE~ ,Ek 
E~ Eedges( Fj ) 

OE~ ,Fj ---" Av .  ,Fj A "~Avt t ,Fj A A -~BE~,E~ 
EiEedges(Fj) 

(a) 

is true (see Fig. 6), then edge Ei intersects face Fj, provided that its edges (Ek) 
are traversed counter-clockwise. 

Non-convex  po lyhedra :  Direc t  approach  If faces are not decomposed into 
convex polygons, two simple steps can be followed to detect whether an edge 
intersects a face. First, check if the edge endpoints are on opposite sides of 
the face plane. If so, check if the intersection point between the edge and the 
face plane is located inside the face by simply casting a ray from this point 
and determining how many times the ray intersects the polygon. Then, if this 
number is odd, the intersection does exists (odd-parity rule). Note that the 



316 P. Jim6nez, F. Thomas and C. Torras 

rj 

ei y "  

Yy 

Fig. 6. Basic edge-face intersection test (convex faces). 

latter step corresponds directly to solving a point-in-polygon problem, for which 
several alternatives, different from that of shooting a ray, have been proposed 
[281. 

This was the approach adopted in [7] almost twenty years ago. Although 
the final complexity of the algorithm is clearly O(nm), it is still the solution 
adopted in most implementations. Note that the only subquadratic algorithm 
developed so far [49] lacks practical interest because of the high time constants 
involved. 

A simpler approach is to reduce the problem to computing the signs of some 
determinants [58], as it has been done for many other problems within the field 
of Computational Geometry [2], 

Consider a face from one polyhedron, defined by the ordered sequence of the 
vertices around it, represented by their position vectors P l , . . . ,  Pt, expressed in 
homogeneous coordinates (that is, pi = (pz~ ,Py~,Pz,, 1)), and an edge, from the 
other, defined by its endpoints h and t. Then, consider a plane containing the 
edge and any other vertex, say v, of the same polyhedron, so that all edges in 
the face whose endpoints are not on opposite sides of this plane are discarded. 
In other words, we define, according to Fig. 7, s := sign Ih t v Pit- Then, if 
Pi and Pi+l are on opposite sides, s should have a different sign from that of 
lh t v Pi+t I. 

It can be checked that, if the number of edges straddling the plane and 
satisfying s * sign Ih t Pi Pi+I I > 0 is odd, then the face is intersected by the 
edge. Actually, this is a reformulation of the odd parity rule that avoids the 
computation of any additional geometric entities such as those resulting from 
plane-edge or line-edge intersections. 
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Fig. 7. Basic edge-face intersection test (general faces). 

The two special cases in which the arbitrary plane intersects at one vertex 
of the face or it is coplanar with one of the edges lead to determinants that are 
null. Actually, equivalent situations also arise when the ray shooting strategy 
is used. In order to take them into account, a simple modification of the odd 
parity rule has to be introduced as in [7]. 

It is also interesting to point out that, if the arbitrary point v corresponds 
to a point on one of the two faces in which the edge lies, different from its 
endpoints, the above approach is a generalization of Canny's predicates, by 
simply noting that they can also be expressed in terms of signs of determinants 
involving vertex locations [58]. 

Thus, in order to decide whether two non-convex polyhedra intersect, only 
the signs of some determinants involving the vertex location coordinates are 
required. Since the signs of all the determinants involved are not independent, 
it is reasonable to look for a set of signs from which all other signs can be 
obtained. This is discussed in [57] through a formulation of the problem in 
terms of oriented matroids. 

3 C o l l i s i o n  d e t e c t i o n  

Collision detection admits several problem formulations, depending on the type 
of output sought and on the constraints imposed on the inputs. The simplest 
decisional problem, that looking for a yes/no answer, is usually stated as fol- 
lows: Given a set of objects and a description of their motions over a certain 
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time span, determine whether any pair will come into contact. More intrincate 
versions require finding the time and features involved in the first collision, or 
even the time intervals over which objects would be intersecting if they were 
adhering to the predefined motions. Placing constraints on the inputs is a usual 
way of simplifying problems. Thus, often objects are assumed to be polyhedra, 
usually convex ones, and motions are constrained to be translational or quasi- 
linear. 

The four main approaches that have been proposed to deal with the dif- 
ferent instances of the collision detection problem are described in Section 3.1. 
After this description, it becomes clear that tests for static interference lie at 
the base of most approaches. However, the efficiency of a basic interference test 
does not guarantee that a collision detection algorithm based on it is in turn 
efficient. The other key factor is the number of times that this test is applied. 
Therefore, it is important to restrict the application of the interference test 
to those instants and object parts at which a collision can truly occur. Sec- 
tion 3.2 reviews the different strategies for time and space bounding that have 
been developed, among them distance computation, orientation-based pruning 
criteria, and prioritizing collision pairs. 

3.1 Four main approaches 

Collision detection algorithms can be grouped into four approaches: multiple 
interference detection, swept volume interference, extrusion in 4D space, and 
trajectory parameterization. As we will see, some approaches are linked to a 
particular object representation scheme (e.g. , extrusion is particularly suited 
to a CSG representation), while others do not. 

Mul t ip le  interference de tec t ion  The simplest way to tackle collision detec- 
tion consists in sampling the trajectories followed by the objects and repeatedly 
applying a static interference test. This is called the multiple interference de- 
tection approach. 

The way sampling is performed is crucial for the success of the approach. A 
too coarse sampling may lead to accepting a trajectory as safe when it actually 
leads to collision (see Fig. 8), while a too fine one may be computationally 
expensive. The reasonable way out is to apply adaptive sampling. 

Ideally, the next time sample should be the earliest time at which a collision 
can really occur. The different sampling strategies differ in the way this earliest 
time is estimated. The most crude estimation is that relating a lower bound 
on the distance between objects to an upper bound on their relative velocities 
[10,15]. 

More sophisticated strategies take not only distance into account, but also 
directional information. One such strategy [23] requires computing the closest 
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Fig. 8. Multiple interference detection approach. As the time step is too large, the 
collision between the polygons 1 and 2, which takes place between instants (b) and 
(c), is missed. At instant (d) polygons 1 and 2 have attained their final positions, 
whereas polygon 3 had already attained it between instants (b) and (c). The polygons 
and their trajectories are the same as those in the next three figures. 
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points from the objects at the current time sample, as well as the line joining 
them. The first future instant at which the projections of the objects on the 
line meet is taken as the next time sample (see Fig. 9). 

I • 

t • 

i 
i 

.-_ . . . . . .  _ ,  (b) 

, :  . . . . . .  ~ (C) (d) 

Fig. 9. Adaptive time sampling. Starting position is depicted in (a), where the closest 
points and the line joining them are computed. The projections of the objects on this 
line meet at instant (b), which is taken as the next time sample. At this instant, the 
new closest points are computed (c), and the next time sample, where the polygons do 
actually collide, is determined in the same way (d). 

Since the closest points between two objects lie always in their boundaries, 
it is usual practice to resort to boundary representations (B-rep) when following 
a multiple interference detection approach. However, to confine the application 
of the interference test to those object parts susceptible of colliding first, spa- 
tial partitioning techniques such as octrees and voxels have also been used in 
conjunction with this approach. 

Swept  vo lume  interference Given an object and a description of its motion 
over a time period, the volume containing all the points occupied by the object 
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at some time instant is called the swept volume. If the swept volumes for all 
the objects in a scene do not intersect, then no collision between them will 
occur during the specified time period. However, this is a sufficient, but not a 
necessary condition: It may happen that the swept volumes intersect but no 
collision takes place (see Fig. 10). 

Fig. 10. Swept volume interference. Polygons 1 and 2 collide, and their swept areas 
interfere. However, interference exists between the swept areas of polygons 2 and 3, 
but they do not actually collide. 

In order for the condition to be also necessary, the sweep has to be performed 
according to the relative motion of one object with respect to another one, for 
each pair of objects. This can be computationally very costly. 

The generation of the swept volume per se is also computationalty expen- 
sive. This is the reason why most works in this area deal with convex ap- 
proximations of the swept volume and, only when the global swept volumes 
intersect, they proceed to split the trajectory into pieces and to compute a 
convex approximation of the swept volume for each piece [19]. 

The union of the convex approximations for the several trajectory pieces 
constitutes a much finer approximation to the real swept volume than the initial 
global approximation for the entire trajectory. For convex objects, Foisy and 
Hayward [19] have proved that the approximations obtained in the successive 
splittings of the trajectory converge to the real swept volume. 
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Simplifying alternatives consist in restricting the kind of shapes and trajec- 
tories to very simple ones [29], or creating implicitly the swept volume from 
the volumes swept out by the primitives of the B-rep [7]. 

Ex t rus ion  in 4D space Probably the collision detection approach most at- 
tractive from a theoretical viewpoint is that based on the extrusion operation 
[9]. Given an object and a description of its motion over a time period, the 
extruded volume is the spatio-temporal set of points representing the spatial 
occupancy of the object along its trajectory. 

The intersection of two extruded volumes is a necessary and sufficient condi- 
tion for the occurrence of a collision between the corresponding objects as they 
move along their respective trajectories (see Fig. 11). Therefore, this approach 
obviates a priori all the problems derived from sampling and from having to 
consider relative motions between pairs of objects. The problem that remains, 
however, is that of generating the volumes, which are 4D in this case. 

/ 

Fig. 11. Interference between eztruded volumes. Time is ezplieitly taken into account 
and therefore collision situations can be clearly identified (such as that of polygons 
i and 2). Note the change in the shape of the volume e~truded by polygon 3, corre- 
sponding to the change in its velocity (it has stopped moving earlier than the other 
polygon#. 
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The extrusion operation is distributive with respect to the union, inter- 
section and set difference operations. This motivated the development of the 
extrusion approach in the context of CSG representations. The mentioned dis- 
tributive property guarantees that an object and its extruded volume can be 
represented through the same boolean combination of volumetric primitives 
and extrusions of these primitives, respectively. 

The formal beauty of this approach is partially occluded by the high cost 
of its practical implementation. Thus, for example, the extrusion of a linear 
subspace subject to a constant angular velocity is bounded by a helicoidal hy- 
persurface. For this reason, the implementation deals only with linear subspaces 
subject to piecewise translational motions [9]. 

T r a j e c t o r y  pa rame te r i za t i on  The collision instant can be analytically de- 
termined if the object trajectories are expressed as functions of a parameter 
(time) and the collision condition is formulated as a semialgebraic set involv- 
ing the locations of object features (faces, edges and vertices). This requires to 
perform a change of variable in order to obtain an algebraic expression for rota- 
tion, instead of equations in terms of trascendent functions. By replacing those 
locations by the corresponding parameterized trajectories, a semialgebraic set 
in terms of a single variable (time) is obtained. Once this set is explicitly com- 
puted, the time instants at which objects establish and lose contact are known. 

The trajectory parameterization approach has been followed in [12,33,54], 
where a polyhedra interference test is expressed as a combination of param- 
eterized basic contact functions. These functions reflect the spatial relation- 
ships between the primitives of the B-rep of the polyhedra. The zeros of these 
functions delimit several time intervals, whose combination according to the 
interference test provides the desired set of intervals over which objects would 
be intersecting, if they were ~lhering to the predefined trajectories. 

3.2 St ra tegies  for space and t ime  bound ing  

The first three approaches described in the preceding section eventually re- 
quire to apply a static interference test between either 3D volumes or 4D ones. 
However, even if a basic interference test is made very efficient, the collision de- 
tection algorithm can still be computationally expensive if the basic test has to 
be applied many times. Thus, the key aspect of any collision detection scheme 
is to restrict as much as possible when and where this test is applied. Knowing 
how the objects are moving and how far away they are from one another, it 
is possible to bound the time interval where the collision is likely to occur. 
Therefore, it is important to determine quickly the distance between the ob- 
jects. On the other hand, if the direction of motion is known, the search for 
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possible collisions can be restrained to those object parts which may first come 
into contact. Finally, if there are many moving objects in the scene, means to 
avoid having to check every pair of objects for collision need to be provided. 
These are the issues discussed in the next subsections. 

Dis tance  computation for collision t ime  bound ing  Spherical represen- 
tations are appealing because the elementary distance calculation between two 
spheres is trivial. The problem rather consists in determining which spheres of 
the representation have to be tested. In [59] the objects are described in terms 
of spherical cones (generated by translating a sphere along a line and changing 
its radius) and spherical planes (which are obtained by translating a sphere 
in two dimensions, and eventually changing also its radius). These primitives 
can also be viewed as a collection of spheres. Any distance can be expressed 
as a combination of the distances between two spherical cones and between a 
sphere and a spherical plane. The distance between two spherical cones is deter- 
mined in two steps: first, compute the direction where the minimum distance 
occurs, then compute the involved spheres (locate their centers on the axes of 
the spherical cones). The distance between a sphere and a spherical plane is 
found by projecting the sphere perpendicularly on the plane, and calculating 
the sphere on the plane that corresponds to this projection. In any case, once 
the spheres are located, the distance is easily found as the distance between 
their centers minus the sum of their radius. 

Most distance computation algorithms have been developed for convex poly- 
hedra. Some exploit specific features of the polyhedra and therefore cannot be 
used for other type of geometric models. Others, like the method explained in 
[24], can be used with spherical [26] or other non-polytopal surface descriptions 
[22]. 

There are two main streams in the way that the distance computation 
problem is treated, namely the geometric and the optimization approaches. 

The geometric approach 
The closest points of two polyhedra are obtained, under this approach, by 
expanding a hierarchical (incremental) representation in a given direction or 
by navigating along the boundaries of the polyhedra. The euclidean distance 
between these closest points is then computed. The methods differ in the way 
that the closest points are obtained: 

- An adequate representation may justify the effort spent in obtaining it, 
as a preprocessing step is done only once, if it allows important computa- 
tional savings in subsequent operations. This is the idea behind Dobkin and 
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Kirkpatrick's hierarchical polyhedral representation, already mentioned in 
Section 2. Using their representation leads to distance computation in op- 
timal worst-case O(log n log m) time [17]. Every step of the closest points 
search procedure corresponds to a level in the construction of the hierar- 
chical representation. In the first step the closest points of two tetrahedra 
(the lowest level in the hierarchical representation), have to be determined, 
which is trivial. Now consider the direction of the segment that joins the 
closest points found at a given step. The two planes which are perpendicu- 
lar to this direction and touch each polyhedron (in the hierarchy expanded 
so far) bound the zone where the next closest pair has to be searched for. 
This zone consists, for each polyhedron, in the intersection of the next hi- 
erarchy level polyhedron and the negative halfspace defined by the plane 
(the normal of the plane points towards the polyhedron expanded so far). 
Thus, it is either a simplex or the empty set. If the closest points are not 
the same as in the previous step, then at least one of them belongs to one 
of these intersection simptices. Therefore, every search step is restricted to 
at most two simplices. The number of steps is bounded by log n • log m. 
Figure 12 may help understand this procedure. 

Fig. 12. The hierarchical representation allows to build up and search only those parts 
of the polygons where the closest points can be found. 
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- The Minkowski difference Mp, Q ---. {p - q[p E P, q E Q} of two polytopes P 
and Q has been used in distance computation algorithms, since the distance 
between two polytopes is equal to the distance of their Minkowski difference 
to the origin (Fig. 13). This result is proved by Cameron and Culley (1986), 
and they provide also a procedure for computing Mp, Q, as well as the 
minimum translational distance (the minimum translation to be applied to 
one of the polyhedra in order to attain a situation where both polyhedra 
just touch). If Mp, Q contains the origin of coordinates, the polyhedra are 
intersecting, and the minimum translational distance is negative. 

- Efficiency is greatly increased in the procedure described in [24]. Com- 
plexity of Mp, Q is, in general, quadratic, and therefore an algorithm that 
avoids generating the whole Minkowski difference would be desirable. Here, 
a directed sequence of subsets of the Minkowski difference polyhedron is 
generated, converging to a subset that contains the point that is closest 
to the origin. The convex hull of a subset of the vertices of the Minkowski 
difference is taken, and vertices are added which lie in the direction of 
interest, closer to the origin. At the same time non-relevant vertices are 
deleted, so that the search of the closest point to the origin is always done 
on a simplex, as can be seen in Fig. 14. The "vertex-selection" part of the 
algorithm can be done in linear time: a single direction is tested over the 
set of vertices of one of the original polyhedra and the opposite direction 
over the vertices of the other one. 

- If a given point of a polyhedron is the closest one to a given feature (a 
vertex, an edge, or a face) of another polyhedron, it must be contained 
in the Voronoi region of this feature. The first step in this direction was 
done in [46] for rectangular boxes, but it was formalized and extended to 
any convex polyhedra in [37]. In their incremental distance algorithm, two 
arbitrary features are selected and the closest points that belong to them 
are obtained. In order to be actually the closest points of both polyhedra, 
these points have to belong to the Voronoi region of the other feature. 
If not, each point has to be closer to another neighboring feature, which 
is selected, and these steps are repeated until the condition of point-in- 
Voronoi-region-inclusion is met. The Voronoi regions for the three kinds of 
features are characterized in the mentioned reference (see Fig. 15). 
In their work, another important point is addressed: consider that the dis- 
taace between two polyhedra has to be computed as they move along a 
finely discretized path. The closest features do not change often, and a 
change almost always involves neighboring features, due to the convexity 
of the polyhedra and the small discretization step. Therefore, not an ar- 
bitrary pair of features, but the closest features at the previous step are 
considered for initialization for every step. Simple preprocessing of the poly- 
hedra, so that every feature has a constant number of neighboring features, 
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Fig. 13. (a) The distance between the polygons is the same as the distance from the 
origin to their Minkowski difference. (b) I f  the polygons are interfering, the origin 
will be contained in the interior of their Minkowski difference. A hint is given for the 
construction of the Minkowski difference as the convex hulls of the points resulting 
from the subtraction of the vertices of Q from the vertices of P (thin lines). 
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Fig. 14. The closest poini of the original Minkowski polygon (a) to the origin (0) 
has to be determined. The first simplex (b) has been chosen arbitrarily. A subset of 
vertices, whose convex hull contains the closest point of the simplex to the origin, is 
taken (4 and 9, although in this case also 1 and 9 could have been chosen), and a 
new vertex is selected (c). Note that this new vertex, 6, has the minimum projection 
onto the direction to the closest point found in (b). At the same time, the non-relevant 
vertex 1 is deleted. The direction to the closest point of the simplex in (c) is computed, 
and in the next step the closest point of the polygon to the origin (7 in this ease) is 
determined (d). 
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Fig. 15. Voronoi regions o] a vertex (a), an edge (b), and a face (c). 

allows the distance computation algorithm to run in expected constant 
time, once initialized (the global initialization step is typically linear in the 
total number of features). 
To overcome the difficulty associated to the basic assumption that the 
two polyhedra have to be separated (if the objects actually penetrate each 
other, the algorithm goes into a cyclic loop), some authors have extended 
the space partition to the interior of the object, defining pseudo-Voronoi  

regions whose boundaries are faces determined by the centroid of the object 
and its edges (or the edges of its convex hull) [14,51,38]. These pseudo- 
Voronoi regions are only used to determine if the objects interpenetrate or 
not. 

The optimization approach 
Distance is viewed as a quadratic function to be minimized, under linear con- 
straints due to the convexity of the polyhedra. 

- The minimization of the non-linear function f ( p ,  q) = HP - q[12/2 subject 
to the linear constraints (p, n P) < d R, i = 1 , . . . ,  k p and (q, n?)  < d~j, j = 
1 , . - - ,  k Q (these constraints mean that p E P and q E Q, where the poly- 
hedra P and Q are described as intersections of halfspaces) is solved in 
[5] by means of a gradient projection algorithm. At each step, the active 
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constraints are determined (those where equality holds, with certain toler- 
ance) and Kuhn-Tucker conditions are used to test if the global minimum 
has been attained. If this is not the case, the coefficients of the Kuhn-Tucker 
conditions are used to find the new search direction. There are two alterna- 
tives for obtaining the starting points: to perform a simplex minimization 
subalgorithm along the direction given by the centroids of the polyhedra, 
or by considering the intersection points of the polyhedra boundary and 
the segment that joins the centroids. 

- In applying Rosen's gradient projection method as Bobrow did, a conver- 
gence problem may occur, as stated in [62]. This problem is called the 
zig-zag phenomenon and it appears when the Kuhn-Tucker conditions are 
satisfied alternatively at each polyhedron. This happens because a zero vec- 
tor is given as search direction on the polyhedron where the Kuhn-Tucker 
conditions are satisfied. The solution provided by these authors to this 
problem consists in considering as search direction for this polyhedron the 
projection of the search direction of the other polyhedron on the active 
constraints of the first one, instead of the zero vector, as shown in Fig. 16. 

(a) (b) 

Fig. 16. The zig-zag phenomenon (a) is avoided if the projection of S~l on the active 
constraint of B is taken as the search direction Sbl (b). 

- Certain quadratic optimization problems can be solved in linear time, as 
shown in [44]. In [36] the distance computation problem between convex 
polyhedra is stated as described in Section 2, reducing it to a linear pro- 
gramming problem. It can be shown that the distance computation problem 
between non-intersecting convex polyhedra can be solved in O(n) (n is the 
total number of vertices) by using a quadratic programming algorithm. 
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The linear constraints are here formulated in terms of the convex hull of 
the vertices of each polyhedron. In [53] the complexity associated with the 
intersection intensity computation between two polyhedra is also discussed. 

No work has been devoted specifically to distance computation between 
non-convex polyhedra. In the context of collision detection, non-convex objects 
are usually approximated by simpler convex shapes, and a conservative lower 
bound on the distance is thus obtained. Some authors that deal with convex 
polyhedra mention the possibility of extending their algorithms to non-convex 
ones by decomposing them into convex entities, as explained in Section 2. Un- 
fortunately, this solution may be inefficient, because of the complexity incre- 
ment associated with the convex decomposition step. Moreover, if the number 
of generated convex entities is important, a large number of pairwise distances 
have to be computed, and although the individual objects are simpler, the net 
result is an important increment in the global complexity. 

Or ien ta t ion-based  p run ing  If any kind of relative motion between two solids 
is allowed, every part of their boundary may intersect. But if a polyhedron can 
only move in a specific way with respect to another one, only certain parts of 
them can actually collide. 

- Back-face culling techniques, which have been widely used in Computer 
Graphics to speed up the rendering of polyhedra, can also be used in the 
collision detection context to avoid unnecessary checking of boundary ele- 
ments for collision, as shown in [61]. The basic idea consists in comparing 
the normal vectors of the faces of the polyhedra with the relative velocity 
vectors. A face is culled if its normal has a negative projection on the mo- 
tion vector, as can be seen in Fig. 17. On the average, half of the faces of 
the two polyhedra are eliminated in this way. An algorithm that performs 
culling is described in the above reference. 

- The incremental minimum distance realization technique [36] has already 
been mentioned in Section 3.2. At a given instant, the boundary elements 
that realize the minimum distance must be close to those realizing it at the 
previous instant, which are therefore taken as initial points for the search. 
In this case it is not a specific orientation, but a neighborhood criterion 
which is used for saving computational effort. 

- A third possibility to avoid having to perform unnecesary intersection tests 
arises in the context of convex polyhedra where only translational motions 
are allowed. The applicability constraints [18] permit detecting those vertex- 
face and edge-edge pairings which can really come into contact (Fig. 18). 
The vertex-face applicability condition expresses the fact that a vertex 
can touch a face only if every adjacent edge projects positively on the 
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Fig. 17. Only the faces (shown as heavy lines) whose normals have positive projections 
on the relative motion vectors (v~,l and vl,2) need to be considered. 

face's normal (taking the vertex as origin of every edge interpreted as a 
vector). Two edges can touch only if there exist a separating plane between 
their respective wedges, as formally stated in the edge-edge applicability 
condition. 

(a) (b) 

Fig. 18. (a) An applicable vertex (Vj) - face (Fi) pairing. (b) Edges Ei and Ej  are 
also applicable. 

The applicability constraints may be used as a preprocessing step in a col- 
lision detection scheme based on performing edge-face intersection tests. In 
general, ff the contact between a vertex of a convex polyhedron and a face of 
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another polyhedron is applicable, only one of the edges which are adjacent 
to the vertex have to be considered for intersection with this face to report 
collision. Any other edge-face test with this face can be cut off. In a similar 
way one can bound the number of edges to be considered with respect to 
a given face resulting from edge-edge applicability constraints. In [32] an 
efficient algorithm for geometric pruning based on applicability constraints 
for convex potyhedra is described. Experimental results show that, by using 
this pruning technique, collision detection based on the edge-face intersec- 
tion test has an expected O(n) complexity, where n is the total number of 
edges, and the constant of linearity is close to 1. The algorithm is based on 
a face orientation graph representation, where face adjacency relations are 
explicitly depicted. The authors are currently working on extensions of the 
algorithm to non-convex polyhedra. 

Pr ior i t iz ing  collision pairs The algorithms that try to avoid having to test 
for collision every possible pairing between solids in a given workspace are only 
useful if there is a large number of solids that may collide. Candidates for col- 
lision checking are prioritized in order to test only those pairs which are more 
likely to collide. The first criterion one may consider is distance, but it is not 
enough if the relative velocities are not taken into account, as pointed out in 
[20]. These authors introduce the concept of awareness or imminence of a col- 
lision. The shortest possible time at which a collision may occur is computed, 
considering mutual distance, instantaneous relative velocity, and velocity and 
acceleration bounds. This calculation is initially done for every pair, and after- 
wards the updating is done more frequently for those pairs whose awareness 
is larger. According to their value of awareness, the pairs are partitioned into 
equivalence classes whose collision imminence is similar. A binary partition 
scheme is used, where the cardinality of each class (called "bucket") is an in- 
creasing power of 2, and the value of the measure of awareness for all elements 
of a given class is greater than that for any other element in a lower bucket 
(of greater cardinality). At every time step, only one pair within each bucket is 
updated. Since the higher the bucket, the less pairs it contains, higher buckets 
are updated more frequently than lower ones. As their measures of awareness 
change, pairs can percolate from bucket to bucket. 

In [47] a heap is used to store object pairs and soonest possible collision 
times, so that the pair on the top is the nearest to collide. This soonest col- 
lision time is computed from the distance between the closest points of the 
objects, current velocities and accelerations, and acceleration bounds assuming 
a ballistic trajectory for the objects. At each time step, integration of the dy- 
namic state is done up to the time of collision for the pair on the top. Collision 
detection is performed for this pair, and if no collision actually occurs, the time 
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of impact is recomputed and the heap updated. Only the objects whose bound- 
ing boxes for their swept volumes during the frame period intersect with other 
boxes are selected and included in the heap. The intersections between these n 
boxes can be done in O(n(1 + logR)) (R is the ratio of largest to smallest box 
size), as shown in [48]. 

The same idea is followed in [35,14,51,38], where the concept of geometric 
and temporal coherence is emphasized, not only to speed up pairwise intersec- 
tion detection (as done in [36] and whose algorithm is also used here) but also 
to perform less of these pairwise tests. If time steps (frames) are small enough, 
the position and orientation of the objects undergo only small changes, and it 
has already been mentioned how this fact can be used to keep track for the 
closest feature pair of two convex polyhedra. But it also means that there will 
be little changes in the position of the bounding boxes 1, and, of course, in the 
sequence of intervals that these bounding boxes project onto the coordinate 
axes, and which overlap (in the three axes) if and only if the corresponding 
bounding boxes intersect. Interval sorting techniques exist that take into ac- 
count the sorted lists of interval endpoints in the previous frame, and allow to 
lower the effort to determine the projection intervals overlap to expected linear 
instead of O(n log n) (for n boxes). The computational cost of keeping track 
of changes in overlap status of interval pairs, following this line, is O(n + s) 
(where s is the number of pairwise overlaps). 

The so called sweep algorithms in [60] are along the same line: at a given 
instant, a plane is swept through the scene and only pairs of objects simultane- 
ously intersecting the plane are tested for possible interference, thus avoiding 
to test every pair. The algorithm mentioned in this reference due to [30] does 
not find all intersections, although it reports at least one intersection if any 
exists, in O(nlog 2 n) time between n spheres. 

It is also possible to use such a sweep algorithm in 2D for bounding collision 
pairs in 3D, as done in [31]. 4D hyper-trapezoids are used to bound the object 
during its motion. If one intersection between two hyper-trapezoids occurs, the 
corresponding objects are tested for collision. These intersections are computed 
from intersections between their faces. The problem is reduced, by succesive 
projections, to a 2D segment intersection detection problem. The 2D sweep 
algorithm is described in [4] and runs in O((m + k) log m) time for m segments 
that intersect k times. Although for N objects the worst case value of k is 
O(N2), empirical evidence shows that the average value of k is much lower 
(0.07~). 

1 Two kinds of axis aligned bounding boxes are used in [14], fixed bounding cubes and 
dynamically rectangular boxes; for the latter, object orientation changes translate 
into changes in the dimensions of the bounding box. 
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4 Collision detection in motion planning 

The goal of motion planning is to generate a collision-free path for a robot. 
Thus, collision-free trajectory planners must be able to perform some kind 
of geometric reasoning concerning collision detection between the robot and 
the obstacles [5,12]. In the generation of the path from the initial to the final 
robot configuration other criteria than mere collision avoidance may intervene, 
in order to optimize the resulting path in terms of its length, distances to 
obstacles, or orientation changes. Not to speak about extensions of the basic 
motion planning problem, that include uncertainty, kinematic constraints, or 
movable objects [34]. 

Depending on whether the static interference or collision detection tests are 
performed in a preprocessing step or during the path planning process, three 
kinds of planners can be distinguished: global, incremental, and local planners. 

4.1 Global  p lanners  

In general, the configuration of a robot is given by a set of parameters, or 
degrees of freedom, that determine its location and orientation. The space 
defined by the ranges of allowed values for these parameters is usually called 
C-space. 

An obstacle in C-space (C-obstacle, for short) is defined as the connected 
set of configurations where a given mobile object intersects with an obstacle 
in workspace. C-obstacles can be interpreted as the intersection of halfspaces 
bounded by C-surfaces, each C-surface being associated with a basic contact 
(see Section 2.2). 

It can be shown that when working with polyhedra (and vertex, edge and 
face locations are expressed in terms of the degrees of freedom of the moving 
polyhedron), expressions (1) and (2) in Section 2.2 lead to the above-mentioned 
halfspaces, and using the predicate formalism in expression (3) a proper descrip- 
tion of the C-obstacles can be obtained. 

The collection of all C-obstacles constitutes the C-obstacle region. Some 
properties of the C-obstacles concerning compactness, connectedness and regu- 
larity are shown in [34]. C-obstacle generation can be viewed as a further gener- 
alization of the static interference and collision detection problems: here objects 
are not tested for interference at a particular configuration nor even along a 
given parameterized trajectory, but rather at all possible configurations in the 
workspace. Thus, once the C-obstacles are obtained, all information concerning 
interferences is captured. 

Global planners construct a complete representation of the connectivity 
of free space (the complementary of the C-obstacle region) for their planning 
purposes. Several techniques have been devised to this end, depending on the 
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degrees of freedom of the robot as well as on its shape and the shape of the 
obstacles. Nevertheless, they are only of practical interest in low-dimensional 
configuration spaces. Pioneer work in this direction was done in [42,40] for 
polytopal environments. As a result of applying these techniques, a graph-based 
representation of free space is obtained: a roadmap or the connectivity graph 
of a cell decomposition. Afterwards a graph search algorithm can be applied in 
order to find the path that connects the initial and the final configurations. 

In some simple cases, the configuration of a robot can be expressed in terms 
of the workspace coordinates of a given robot's point: for example, if the robot is 
a sphere (a disc in 2D) this reference point will be its center. The C-obstacles 
are trivially obtained from the obstacles in the workspace by performing an 
isotropic growth by the radius of the robot. Another simple case consists in a 
polytopal robot translating amidst polytopal obstacles. Any vertex of the robot 
can be taken as reference point. In this particular case, C-obstacles can also be 
interpreted as the Minkowski difference between the obstacle and the robot at a 
fixed orientation (as already mentioned in the context of distance computation 
in Section 3.2). This fact can be used for constructing the C-obstacle itself. This 
alternative representation is obviously related to the general predicate-based 
one, in the sense that the differences between the vertices corresponding to the 
features related to basic contacts are vertices of the C-obstacle. Both represen- 
tations have been developed for convex polytopes. Non-convex obstacles can 
be treated in the same way by representing them as overlapping convex parts. 

When the robot polytope is allowed to rotate, the computation of the C- 
obstacles becomes much more difficult. Although an approximate solution can 
be readily obtained by sampling the involved rotations, in general C-obstacles 
can only be accurately described using the aforementioned predicates, which 
can be formally interpreted as semialgebraic sets (see [11] for more details). 
Note that when all degrees of freedom but one are sampled, the problem be- 
comes one of detecting intervals of interference, as many times as needed, de- 
pending on the sampling rate. This technique is used with up to three degrees 
of freedom in [41]. 

4.2 Inc rementa l  planners  

While global path planners generate a detailed description of the connectivity 
of the whole free space, incremental path planners avoid this costly compu- 
tation by obtaining this description in an incremental fashion. In this case, 
the construction of the free-space representation is carried out simultaneously 
with the path planning process. A paradigmatic example of this strategy can 
be found in [21], where a restricted visibility graph in C-space is built up it- 
eratively. This subset of the whole visibility graph is granted to contain the 
optimal path. It is constructed by determining which C-obstacles intersect the 
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segments of the shortest path found so far (a straight line joining the initial 
and final positions at the first step), and rearranging the visibility graph with 
these new C-obstacles. 

Randomized path planning methods might work in a similar way: points are 
randomly generated and those lying in free space are retained. Then, attempts 
are made to link these points by means of collision-free line segments. In this 
wa3; a representation of free space is gradually built up by locally testing for 
collisions, while generating a path from the initial to the final configurations. 
The same applies to those techniques that combine a potential field approach 
with randomization to escape from local minima. More details on this kind of 
algorithms can be found in Chapter 5. 

4.3 Local  planners 

Local planners use collision detection as a subroutine whose output is used on- 
line to guide the search of a collision-free trajectory. The main difference with 
respect to incremental strategies is that local methods perform path planning 
by applying motion operators that act locally. In [18] these operators are used 
for sliding on C-surfaces and along their intersections without computing an 
explicit representation of free-space. They also allow to jump in free-space be- 
tween obstacles. In any case, each time a C-surface is traversed, an interference 
test is performed to ensure that the motion is collision-free. These operators 
are the building blocks of more sophisticated local experts, which are strategies 
for deciding which trajectory to follow, based on the local geometry as well as 
on the history of the current planning process. This combination of motion in 
free space with motion in contact (or up to a safety distance from the obsta- 
cles) is used by other local motion planners. This is the case of the algorithms 
developed for planar articulated and 3D cartesian robot arms in [43,55]. The 
intersection points of the obstacles with the main line joining the initial and 
final positions are found, and motions along the obstacle boundaries between 
these points are computed. 

Some local planners, as well as some incremental ones, can be applied in a 
recursive way: starting from an initial guess for a path between the initial and 
the final position, intermediate points are determined as collisions are detected, 
and the algorithm is recursively applied to the resulting path segments until 
a collision-free trajectory is detected or the conclusion is drawn that no such 
path exists. 

While global path planners are always complete, that is, they are able to find 
a solution if one exists, those based on local techniques only ensure completeness 
at a resolution level. In [18] a partition of C-space based on neighborhoods 
is adopted, which are marked as visited if they are traversed by a trajectory 
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generated during the path planning process. As a consequence, if neighborhoods 
are made arbitrarily small, the algorithm becomes arbitrarily slow. 

5 C o n c l u s i o n s  

The different approaches to collision detection lie within two main categories: 
algebraic and geometric. The first try to solve equations that describe collision 
situations. These equations are expressed in terms of one parameter which is 
time or a variable related to time, and collision instants are determined. The 
trajectory parameterization approach corresponds to this strategy. 

The geometric approaches compute geometric entities where time is treated 
as one more dimension, and try to determine intersections between them us- 
ing methods developed within Computational Geometry. The most general ap- 
proach is spatio-temporal volume intersection. However, no techniques exist for 
solving this problem directly, except for simple particular cases. The other two 
approaches can be viewed as particular techniques that simplify the resolution 
of the problem: the multiple interference detection approach applies sampling, 
whereas the swept volume interference approach uses projection. The draw- 
backs of these simplifying techniques have already been mentioned: sampling 
is complete only up to a given resolution, and projections may lead to report 
false collisions. Combinations of these techniques may allow to avoid these 
drawbacks, as in the adaptive sampling approach. 

This perspective permits to formulate extensions for further work in a 
straightforward way: simplifying techniques have always been formulated con- 
sidering time as a privileged dimension. Time is discretized by sampling or ob- 
viated by projection, but both techniques may also apply as well to the other 
dimensions or to combinations of them. To identify the classes of situations 
where sampling or projecting along other dimensions will ease the computa- 
tion of collisions is more than an interesting theoretical exercise and may open 
new promising trends in collision detection algorithms. 

Algebraic methods can also be viewed as a simplification of the general 
spatio-temporal problem formulation, as a projection on the time coordinate 
axis. Other dimensions instead of time could be used as parameters of the 
contact equations. However, the degree of the equations cannot be lowered in 
this way, and thus the efforts in looking for more efficient algorithms have to 
point in another direction, namely reducing the number of equations to be 
considered. This can be done by applying the complexity reduction techniques 
already mentioned in Section 3.2. In particular, orientation-based pruning may 
be applied to subdivide the trajectory into intervals where the same boundary 
primitives have to be considered for possible intersection, reducing drastically 
the number of contact equations to be considered within each interval. 
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In the line of developing complexity reduction techniques for interference 
detection we have centered our contribution to the PROMotion Project. Little 
work had previously been done on algorithms that deal directly with non-convex 
polyhedra, without decomposing them into convex parts. We have developed 
one such algorithm, based on a boolean combination of signs of vertex determi- 
nants [58]. Thus, neither line-plane intersections, nor ficticious edges and faces 
arising from a decomposition are required. Only the signs of determinants, for 
which there exist very efficient and robust algorithms, need to be computed. 
Moreover, we have developed a representation that captures the applicability 
relationships between the boundary features of two general polyhedra, that is, 
it allows to determine quickly which contacts can arise under translational mo- 
tions [32]. In the case of non-convex polyhedra a large subset of all contacts 
that cannot take place for a given relative orientation are pruned off (all of 
them in the case of convex polyhedra). As these relationships hold over whole 
ranges of orientations, this technique can also be used to perform pruning along 
a trajectory that includes rotation[33], as mentioned above in the context of 
algebraic techniques for collision detection. 

The speed-up of the basic interference and collision detection tests will nec- 
essarily improve the performance of motion planners, thus making the famous 
bottleneck a little bit wider. 
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