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PREFACE

This book presents a unified exposition of the physical principles at the 
heart of NanoMEMS-based devices and applications. NanoMEMS exploits 
the convergence between nanotechnology and microelectromechanical 
systems (MEMS) brought about by advances in the ability to fabricate 
nanometer-scale electronic and mechanical device structures. In this context, 
NanoMEMS-based applications will be predicated upon a multitude of 
physical phenomena, e.g., electrical, optical, mechanical, magnetic, fluidic, 
quantum effects and mixed domain.  

Principles and Applications of NanoMEMS Physics contains five 
chapters. Chapter 1 provides a comprehensive presentation of the 
fundamentals and limitations of nanotechnology and MEMS fabrication 
techniques. Chapters 2 and 3 address the physics germane to this 
dimensional regime, namely, quantum wave-particle phenomena, including, 
the manifestation of charge discreteness, quantized electrostatic actuation, 
and the Casimir effect, and quantum wave phenomena, including, quantized 
electrical conductance, quantum interference, Lüttinger liquids, quantum 
entanglement, superconductivity and cavity quantum electrodynamics. 
Chapter 4 addresses potential building blocks for NanoMEMS applications, 
including, nanoelectromechanical quantum circuits and systems (NEMX) 
such as charge detectors, the which-path electron interferometer, and the 
Casimir oscillator, as well as a number of quantum computing 
implementation paradigms, including, the ion-trap qubit, the NMR-qubit, 
superconducting qubits, and a semiconductor qubit. Finally, Chapter 5 
presents NanoMEMS applications in photonics, particularly focusing on the 
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generation, propagation, and detection of surface plasmons, and emerging 
devices based on them.  

The book assumes a preparation at the advanced 
undergraduate/beginning graduate student level in Physics, Electrical 
Engineering, Materials Science, and Mechanical Engineering. It was 
particularly conceived with the aim of providing newcomers with a much 
needed coherent scientific base for undertaking study and research in the 
NanoMEMS field. Thus, the book takes great pains in rendering transparent 
advanced physical concepts and techniques, such as quantum information, 
second quantization, Lüttinger liquids, bosonization, and superconductivity. 
It is also hoped that the book will be useful to faculty developing/teaching 
courses emphasizing physics and applications of nanotechnology, and to 
Nanotechnology researchers engaged in analyzing, modeling, and designing 
NanoMEMS-based devices, circuits and systems. 
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Chapter 1 

NANOELECTROMECHANICAL SYSTEMS 

1. 1 NanoMEMS Origins 

  The field of Nanotechnology, which aims at exploiting advances in the 
fabrication and controlled manipulation of nanoscale objects, is attracting 
worldwide attention. This attention is predicated upon the fact that obtaining 
early supremacy in this field of miniaturization may well be the key to 
dominating the world economy of the 21st century and beyond. NanoMEMS 
exploits the convergence between nanotechnology and 
microelectromechanical systems (MEMS) brought about by advances in the 
ability to fabricate nanometer-scale electronic and mechanical device 
structures. Indeed, the impact of our ability to make and control objects 
possessing dimensions down to atomic scales, perhaps first considered by 
the late Richard Feynman in his 1959 talk “There is Plenty of Room at the 
Bottom” is expected to be astounding [1], [2]. In particular, miniaturization, 
he insinuated, has the potential to fuel radical paradigm shifts encompassing 
virtually all areas of science and technology, thus giving rise to an unlimited 
amount of technical applications. Since high technology fuels the prosperity 
of the world’s most developed nations, it is easy to see why the stakes are so 
high. 
  Progress in the field of miniaturization benefited from the advent of the 
semiconductor industry in the 1960s, and its race to increase profits through 
the downscaling of circuit dimensions which, consequently, increased the 
density and the yield of circuits fabricated on a given wafer area. This 
density, which derived from progress in photolithographic tools to produce 
the ever smaller two-dimensional patterns (device layouts) of an integrated 
circuit (IC), has increased since by more than seven orders of magnitude and 
has come to be captured by Moore’s law: The number of components per 
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chip doubles every 18 months [2]. The culmination of such miniaturization 
program, it is widely believed, is the demise of Moore’s law, whose 
manifestation is already becoming apparent due to an increasing 
predominance of the quantum mechanical nature of electrons in determining 
the behaviour of devices with critical dimensions (roughly) below 100 nm. 
  This line of development is closely related to the field of quantum 
devices/nanoelectronics, which was prompted by the conception of a number 
of atomic-level deposition and manipulation techniques, in particular, 
molecular beam epitaxy (MBE), originally exploited to construct laboratory 
devices in which the physics of electrons might be probed and explored, 
following the discovery of electron tunnelling in heavily-doped pn-junctions 
[3]. Nanoelectronics did produce interesting physics, for instance, the 
discovery of Coulomb blockade phenomena in single-electron transistors, 
which manifested the particle nature of electrons, and resonant tunnelling 
and conductance quantization in resonant tunnelling diodes and quantum 
point contacts, respectively, which manifested the wave nature of electrons 
[4-6]. These quantum devices, in conjunction with many others based on 
exploiting quantum phenomena, generated a lot excitement during the late 
1980s and early 1990s, as they promised to be the genesis for a new digital 
electronics exhibiting the properties of ultra-high speed and ultra-low power 
consumption [7-8]. While efforts to realize these devices helped develop the 
skills for fabricating nanoscale devices, and efforts to analyze and model 
these devices helped to develop and mature the field of mesoscopic quantum 
transport, the sober reality that cryogenic temperatures would be necessary 
to enable their operation drastically restricted their commercial importance. 
A few practical devices, however, did exert commercial impact, although 
none as much as that exerted by silicon IC technology, in particular, 
heterojunction bipolar transistors (HBTs), and high-electron mobility 
transistors (HEMTs), which exploit the conduction band discontinuities 
germane to heterostructures, and modulation doping to create 2-D electron 
confinement and quantization, respectively, and render devices superior to 
their silicon counterparts for GHz-frequency microwave and low-transistor-
count digital circuit applications [9-14]. 
  The commercial success of the semiconductor industry, and its 
downscaling program, motivated emulation efforts in other disciplines, in 
particular, those of optics, fluidics and mechanics, where it was soon 
realized that, since ICs were fundamentally two-dimensional entities, 
techniques had to be developed to shape the third dimension, necessary to 
create mechanical devices exhibiting motion and produced in a batch planar 
process [15]. These techniques, which included surface micromachining, 
bulk micromachining, and wafer bonding, became the source of what are 
now mature devices, such as accelerometers, used in automobile air bags, 
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and pressure sensors, on the one hand, and a number of emerging devices, 
such as, gyroscopes, flow sensors, micromotors, switches, and resonators, on 
the other. Coinciding, as they do, with the dimensional features germane to 
ICs, i.e., microns, these mechanical devices whose behavior was controlled 
by electrical means, exemplified what has come to be known as the field of 
microelectromechanical systems (MEMS).   
 Three events might be construed as conspiring to unite nanoelectronics 
and MEMS, namely, the invention of a number of scanning probe 
microscopies, in particular, scanning tunneling microscopy (STM) and 
atomic force microscopy (AFM), the discovery of carbon nanotubes (CNTs), 
and the application of MEMS technology to enable superior RF/Microwave 
systems (RF MEMS) [16-18]. STM and AFM, by enabling our ability to 
manipulate and measure individual atoms, became crucial agents in the 
imaging of CNTs and other 3-D nanoscale objects so we could both “see” 
what is built and utilize manipulation as a construction technique. CNTs, 
conceptually, two-dimensional graphite sheets rolled-up into cylinders, are 
quintessential nanoelectromechanical (NEMS) devices, as their close to 1-
nm diameter makes them intrinsically quantum mechanical 1-D electronic 
systems while, at the same time, exhibiting superb mechanical properties. 
MEMS, on the other hand, due to their internal mechanical structure, display 
motional behavior that may invade the domain of the Casimir effect, a 
quantum electrodynamical phenomenon elicited by a local change in the 
distribution of the modes in the zero-point fluctuations of the vacuum field 
permeating space [19-21]. This effect which, in its most fundamental 
manifestation, appears as an attractive force between neutral metallic 
surfaces, may both pose a limit on the packing density of NEMS devices, as 
well as on the performance of RF MEMS devices [22].  
 In the balance of this chapter, we present the fundamentals of the 
fabrication techniques which form the core of NanoMEMS devices, circuits 
and systems. 

1. 2 NanoMEMS Fabrication Technologies 

NanoMEMS fabrication technologies extend the capabilities of 
conventional integrated circuit (IC) processes, which are predicated upon the 
operations of forming precise patterns of metallization and doping (the 
controlled introduction of atomic impurities) onto and within the surface and 
bulk regions of a semiconductor wafer, respectively, with the performance of 
the resulting devices depending on the fidelity with which these operations 
are effected. Excellent books on IC fabrication, giving in-depth coverage of 
the topic, already exist [23] and the reader interested in process development 
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is advised to consult these. The exposition undertaken here is cursory in 
nature and only aims at providing an understanding of the fundamentals and 
issues of present and future NanoMEMS fabrication technologies. 

1.2.1 Conventional IC Fabrication Processes 

Conventional IC processes are based on photolithography and chemical 
etching, and are synthesized by the iterative application to a wafer of a cyclic 
sequence of steps, namely: Spin-casting and patterning, material deposition, 
and etching. The salient elements of these steps are presented in what 
follows. 

1.2.1.1 Spin-Casting  

The first step (after thoroughly cleaning the wafer), in defining a pattern 
on a wafer, is to coat it with a photoresist (PR), Figure 1-1, a viscous light- 

Figure 1-1. Coating  wafer with photoresist. (a) Spin-casting. (b) Soft-bake in oven. (c) Hard 
bake in hot plate. 

sensitive polymer whose chemical composition changes upon exposure to 
ultraviolet (UV) light. The process of applying the PR to the wafer in order 
to achieve a uniform thickness is called spin-casting, and usually involves 
the following steps: 1) Pouring a few drops of the PR at the wafer center; 2) 
Spinning the wafer for about 30 seconds once it reaches a prescribed 
rotational speed of several thousand revolutions-per-minute; and 3) Baking it 
at temperatures of several hundred degrees Celsius to produce a well-adhered 
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solvent-free dry layer. The resulting PR film thickness is inversely 
proportional to the square root of the rotational speed, and directly 
proportional to the percent of solids in it. Determining these parameters is 
one of the first steps in developing a process. 

1.2.1.2 Wafer Patterning 

 Once a uniform solid PR layer coats the wafer, this is ready for 
patterning. This is accomplished by interposing a glass mask, which contains 
both areas that are transparent and areas that are opaque, between a UV 
source and the PR-coated wafer. As a result, selective chemical changes are 
effected on the PR in accordance with the desired pattern, Figure 1-2. When 
it 

SiO2

Photoresist (PR)

Si

Si

Si Si

Si Si

Negative PRPositive PR

M ask

SiO2

SiO2

SiO2

SiO 2

(a)

(b)

(c)

(d)
SiO2

SiO2

Photoresist (PR)

Si

Si

Si Si

Si Si

Negative PRPositive PR

M ask

SiO2

SiO2

SiO2

SiO 2

(a)

(b)

(c)

(d)
SiO2

Figure 1-2. Wafer patterning with positive and negative photoresists. (After [24]). 

is desired that the created pattern be identical to that in the glass mask, a 
positive PR, which hardens when exposed to UV light, is employed. 
Otherwise, when it is desired that the created pattern be the negative of that 
in the mask, a negative PR is employed. In the former case, UV exposure 
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hardens the PR, whereas in the latter, UV exposure weakens the PR. Thus, 
subsequently, when the UV-exposed wafer is etched, the weakened parts of 
the PR will be dissolved and the desired pattern revealed. There are two 
techniques to dissolve the PR, namely, wet and dry etching. These are 
presented next. 

1.2.1.2.1 Lithography 

The highest resolution (minimum size) and quality of the pattern to be 
defined on a wafer depends on how well the mask image is transferred to the 
PR. Image formation, in turn, is determined by the lithographic process and 
type of PR employed. The lithographic process can make use of an optical 
source, an electron beam source, or an X-ray source for creating the desired 
pattern on the wafer. In this section we deal with the first and the last 
approaches. 

Optical lithography, Figure 1-3, may be employed in conjunction with 

Light Source

Optical
System

Mask

Photoresist

Wafer

Gap

(a) (b) (c)

Light Source

Optical
System

Mask

Photoresist

Wafer

Gap

(a) (b) (c)

Figure 1-3. Sketches of common approaches to optical lithography. (a) Contact printing. (b) 
Proximity. (c) Projection. (After [23]). 

either, contact printing, in which the image is projected through a mask that 
is in intimate contact with the wafer, or proximity printing, in which the 
image is projected through a mask separated by ~ mµ2510 −  from the 
wafer, or projection printing, in which the mask is separated many 
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centimeters away from the underlying wafer. Because, the contact and 
proximity approaches are prone to suffer from dust particles present between 
the mask and the PR, the projection approach is preferred for creating 
nanoscale-feature patterns. The resolution of a good projection optical 
lithography system is given by ( )NAλ5.0 , where λ  is the exposure 
wavelength and NA is the numerical aperture of the projection optics, at a 
depth of focus capability of ( )22 NAλ±  [23]. The highest resolution of 
optical photolithography appears to be about 250nm-100nm for production 
devices, down to 70nm for laboratory devices, and is set by diffraction, i.e., 
at smaller sizes features become blurred. Overcoming these technical issues, 
which involves developing smaller wavelength light sources and optics, is 
difficult. Thus, the cost of optical lithography production equipment capable 
of reaching resolutions below 100 nm, is deemed by industry as prohibitive 
[24]. 
 X-ray lithography, see Fig. 1-4, utilizing the low energy of soft x-rays at 
wavelengths between 4 and 50 Å, is relatively impervious to scattering 
effects.  

φX -ray Source
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d
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D

X -ray M ask

Substrate

W afer 

L

g
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δ
d

r

D

X -ray M ask

Substrate

W afer 

L

g

Figure 1-4. Sketch of factors eliciting geometrical limitations in x-ray lithography.  Typical 

values for the geometrical parameters are: mm3=φ , mg µ40= , cmL 50= ,

mmr 63= . (After [23].)

This makes them amenable for use in exposing thick PRs which, because of 
their low absorption, can penetrate deeply and produce straight-walled PR 
images with high fidelity. Because of difficulty in creating optical elements 
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at these wavelengths, however, the method of image projection employed is 
proximity printing through a mask containing x-ray absorbing patterns. The 
mask is separated from the PR-wafer a distance of just about mµ25 , but 
since dust particles with low atomic number do not absorb x-rays, no 
damage is caused to the pattern. Despite the potential for highest resolution 
germane to x-ray lithography, two factors have been identified as potentially 
limiting it. Both factors originate in geometrical aspects of the illumination. 
In particular, there is the possibility that a significant penumbral blur 

Lgφδ =  be introduced on the position of the resist image by the extended 
point source of diameter φ  located a distance L above a mask separated 
from the wafer a distance g. Also, a potential for lateral magnification error 
is present, due to the divergence of the x-ray from the point source and the 
finite mask to wafer separation. Accordingly, images of the projected mask 
are shifted laterally by an amount Lgrd = .
 Even with perfect resolution, pattern formation quality depends on how 
the PR responds to the impinging lightwave or electron beam. This is 
addressed next. 

1.2.1.2.2 Photoresist 

The mechanism for image transfer to the PR involves altering its 
chemical or physical structure so the exposed area may subsequently be 
easily dissolved or not dissolved. According to the previous sections, pattern 
formation is effected on optical resists, electron beam resists, or x-ray resists. 
 Optical lithography resists may be negative or positive. The fundamental 
difference, in terms of how they affect the resolution of the image 
transferred, is rooted in their chemical composition. 
 In the negative resist, which combines a cyclized polyisopropene polymer 
material with a photosensitive compound, the latter becomes activated by the 
absorption of energy with wavelengths in the 2000- to 4500-Å range. The 
photosensor acts as an agent that causes cross linking of the polymer 
molecules by transferring to them the received energy. As a result of the 
cross linking, the molecules’ molecular weight increases and this elicits their 
insolubility in the developing system. The highest resolution limit of a 
negative PR derives from the fact that during development the exposed 
(cross linked) areas swell, whereas the unexposed low molecular weight 
areas are dissolved. The minimum resolvable feature when using a negative 
resists is typically three times the film thickness [23].

In response to light the positive resist, which also contains a polymer and 
a photosensitizer, the latter becomes insoluble in the developer and, thus, 
prevents the dissolution of the polymer. Since the photosensitizer precludes 
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the developer from permeating the PR film, no film swelling is produced and 
a greater resolution is possible [23].   
 Electron beam lithography also utilizes negative and positive resists. In a 
negative resist, the electron beam prompts cross-linking of the polymer, 
which results on increased molecular weight, increased resistance to the 
developer, and swelling during development. A common negative resist used 
with electron beam lithography is COP, poly (glycidylmethacrylate-co-ethyl 
acrylate), which renders a resolution of  mµ1 . In a positive resist, the 

electron beam causes chemical bond breaking, reduced molecular weight, 
and reduced resistance to dissolution during development. Common positive 
resists used with electron beam lithography include poly(methyl 
methacrylate) (PMMA) and poly(butane-1 ketone) (PBS), which render a 
resolution of mµ1.0 .

 X-ray lithography also utilizes negative and positive resists, in particular, 
COP, PBS and PMMA with resolution similar to that stated above is 
obtained. 

1.2.1.3 Etching 

Defining the desired pattern on the PR coating the wafer is crucial. The 
pattern fidelity is defined its selectivity and aspect ratio, Figure 1-5.  
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Figure 1-5. Pattern transfer definition. (a) Ideal. (b) Realistic.  (After [25].) 
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It is seen in this figure that the fidelity of the pattern transferred is function 
of how precisely the resulting width of the etched layer resembles that of the 
PR pattern, as quantified by the selectivity and aspect ratio. Accordingly, 
four scenarios may be envisioned, Figure 1-6, which reflect the relative 
strength with which the etchant attacks the PR, the etched material, and the 
etch stop. In particular, it may be surmised from Figure 1-6(d) that the 
minimum width of a pattern, i.e., how narrow it may be, is limited by the 
lithography process to define the pertinent width in the PR and the resulting 
degree of undercut of the PR mask. Thus, etchants producing isotropic 
profiles (ones in which the vertical and horizontal etching rates are equal), 
are not amenable to pattern the narrowest features. In general, the results 
depend on a number of factors controlling the etching chemical reaction, 
such as temperature and mixing conditions, whether or not the etching agent 
employed is in the liquid or gaseous state, how well the PR adhered to the 
wafer during spin-casting. In the next section we address two of the most 
important factors, namely, the state of the etchant. 

( a ) ( b )

( c ) ( d )

( a ) ( b )

( c ) ( d )

Figure 1-6. Etching characterization. (a)  Over Etch<<Etch Depth Selective. (b) Over 
Etch~Etch Depth Non-selective. (c) Side Etch<<Etch Depth. (d) Side Etch~Etch Depth. 
(After [25].)  

1.2.1.3.1 Wet Etching 

In this approach to dissolve the weakened PR, the patterned wafers are 
immersed in a liquid chemical etchant, Figure 1-7. The etched profile may 
be isotropic or anisotropic depending of the wafer orientation. If this is 
amorphous, an isotropic profile will result, i.e., the horizontal and vertical 
etching rates are similar. Otherwise, if it is single-crystal, an anisotropic 
profile may result. A number of chemicals employed to effect anisotropic 
etching in silicon are in use. These include tetramethylammonium hydroxide 
(TMHA), potassium hydroxide (KOH), and ethylene diamine pyrochatecol 
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(EDP). Detailed experiments to elucidate the mechanism responsible for 
anisotropic etching have been undertaken [23]. The fundamental principle
behind anisotropic etching appears to be this: when different crystal planes
possess different atomic densities, those planes with greater density will etch 
at a slower rate than those with lower atomic density. 

Figure 1-7. Etching of wafer immersed in liquid chemical solution.

An exhaustive compilation of chemical reactions for pertinent etching
chemicals/wafer materials has been published by Williams and Muller [29].
Table 1-1 below gives some of typical etched material/etching solvent pairs.

Table 1-1. Wet etching targets and solvents 
Etched Material Etching Solvent 
Silicon KOH, TMAH, EDP 
Silicon oxide HF
Silicon nitride H3PO4

Aluminum H3PO4

When it comes to creation of free-standing structures via surface
micromachining techniques (described below), wet etching is accompanied 
by various drawbacks. For instance, the surface tension exerted on the
delicate free-standing structures by the fluid’s hydrodynamic forces may
preclude their complete release, or may even break them. Dry etching 
techniques, circumvent these drawbacks and are discussed next. 

1.2.1.3.2  Dry Etching 

In this approach, shown in Figure 1-8, a gas/vapor or plasma is used as a 
source of reactive atoms that dissolve the weakened PR. Typical matching
pairs of etched material and etching gas used in IC fabrication are shown in
Table 1-2.
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Table 1-2. Etched material-etching gas pairs. 
Silicon or Polysilicon SF6, CF4

Silicon dioxide                    CHF4/H2

Silicon nitride                       CF4/O2 
Aluminum BCl2

Two fluorine-containing gases have been recently adopted for dry 
etching processes, namely, Xenon difluoride, XeF2 [30] and Boron Fluoride,
BrF3 [30]. XeF2 enables an isotropic dry-etch process for silicon, which is 
very selective to aluminum, silicon dioxide, silicon nitride and photoresist. 
The XeF2 gas is particularly useful in the post-processing of CMOS ICs. It 
can be sublimated from its solid form at 1 Torr and room temperature and, 
when applied to solid-phase Si, it obeys the following reaction:  

2XeF2 + Si 2Xe+SiF4

XeF2 etching of Si achieves high selectivity with a number of masking 
materials, such as, SiO2, Si3N4, Al, PR, and phosphosilicate glass (PSG), at 
etching rates ranging from minm /31 µ−  to as high as minm /40µ  [30], 

and is characterized by the production of measurable amounts of heat. When 
in the presence of water or vapor, XeF2 reacts with them to form HF. In 
terms of its potential application to nanostructure formation, XeF2 etching 
has the drawback that the resulting surfaces tend to have a granular finish 
with a feature size of about mµ10 .

Etch

Gas Pump

Ground

Shield
Cathode

Wafers

RF

Etch

Gas Pump

Ground

Shield
Cathode

Wafers

RF

Figure 1-8. Etching of wafer immersed in plasma 
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BrF3 on the other hand, enables isotropic etching of Si with masking 
materials such as Al, Au, Cu, Ni, PR, SiO2, and Si3N4, while achieving 
surface finish feature size of 40-150nm. Dry etching, it may be concluded, is 
not amenable to creating nanostructures.

1.2.1.4 Chemical Vapor Deposition 

The result of patterning a wafer is to render some areas of its surface bare 
to receive the deposition of various atomic species, while preventing such 
deposition in other areas. Chemical vapor deposition (CVD) is one of the 
techniques utilized to introduce atoms into the exposed wafer areas and, for 
silicon wafers, entails the dissociation of gasses, such as silane, SiH4, arsine 
(AsH3), phosphine (PH3), and diborane (B2H6), on the wafer surface at high 
temperatures, usually in the 450-800°C range. The chamber containing the 
wafers during the deposition, Fig. 1-9, is usually held at pressures between 
0.1 and 1Torr, and the resulting properties of the deposited materials varies.  

Wafers
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Pump

Pressure

Sensor

Load

Door
Gas

Inlet
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3-Zone Furnace

Pump

Pressure

Sensor

Load

Door
Gas

Inlet

Figure 1-9. Schematic of hot-wall, reduced pressure CVD reactor. 

For instance, under appropriate parameters of temperature, deposition 
rate, and crystallinity of the wafer, the deposited material may grow 
epitaxially, i.e., maintaining the same crystallographic nature of the substrate 
wafer, or become polycrystalline, i.e., exhibiting an agglomeration of 
randomly oriented crystallites. In the context of silicon processes, typical 
materials deposited via CVD include: polycrystalline silicon (polysilicon), 
silicon dioxide (SiO2), and stoichiometric silicon nitride (SixNy), to 
thicknesses ~ mµ2 . The most common reactions for depositing these 
materials are shown in Table 1-3. 
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                     Table 1-3. Common CVD reactions and deposition temperatures for 
                                        pertinent materials. [24]

Product Reactants Deposition temperature (°C)
Silicon dioxide SiH4+CO2+H2

SiCl2H2+N2O
SiH4+N2O
SiH4+NO 
Si(OC2H5)4

SiH4+O2

850-950 
850-900 
750-850 
650-750 
650-750 
400-450 

Silicon nitride SiH4+NH3

SiCl2H2+NH3

700-900 
650-750 

Polysilicon SiH4 600-650 

An alternate method to effect material deposition on a wafer while 
avoiding the high temperatures required in a CVD reactor is to utilize a hot-
wall plasma deposition reactor, Fig. 1-10. In this approach, the wafers are 
oriented vertically in contact with long alternating slabs of graphite or 
aluminum electrodes inside a quartz tube heated by a furnace.  
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Figure 1-10. Sketch of hot-wall plasma deposition reactor.  (After [24].)

Then, connection of the alternate slabs to a power supply, induces a glow 
discharge of the gas flowing in the space between electrodes, which runs 
parallel to the wafers. By taking the energy for the reaction from the glow 
discharge, the deposition may be achieved at a wafer temperature in the 
range of 100 to 350 °C, e.g.,  Table 1-4. 

                         Table 1-4. Common plasma-assisted CVD reactions for depositing  
                                            pertinent materials [24].

Product Reactants Deposition temperature (°C)
Plasma silicon dioxide SiH4+N2O 200-350

200-350
Plasma silicon nitride SiH4+NH3

SiH4+N2

200-350
200-350
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1.2.1.5 Sputtering 

While deposition via CVD requires high temperatures to facilitate gas 
dissociation, and migration once the atoms/molecules reach the wafer 
surface, sputtering involves a totally different mechanism. In sputtering, a 
plasma is created by ionizing an inert gas, typically Argon, at low pressures, 
e.g., ~10mTorr. The material one wants to deposit on the wafer originates in 
the bombardment with high energy (typically Argon, Ar+ ) ions, present in 
the plasma above the target substrate containing the material to be deposited 
on the wafer. Target (cathode) bombardment causes the ejection, via 
momentum transfer, of its surface atoms, Fig. 1-11. The ejected atoms, in 
turn, fly off from the target and come to rest on other surfaces within the 
chamber, in particular, the wafers of interest. The material transfer process is 
atomic in nature, therefore, its transfers to the wafer in the same ratio it 
present in the target. 

Figure 1-11. Sketch of sputtering deposition system. 

Magnetron sputtering is one of the most versatile sputtering techniques 
because it can be employed to deposit both insulating and non-insulating 
materials, e.g., Ti, Pt, Au, Mo, W, Ni, Co, Al2O3, SiO2, Fe, Cr, Cu, FeNi, 
TiNi, AlN, SiN, etc. The technique is based on creating a plasma by 
inducing the breakdown of an inert gas, e.g., Ar, in the presence of a strong 
magnetic field. The resulting Ar+ ions are accelerated by the potential 
gradient between cathode and anode, impinge on the target and, thus, create 
the flux of material towards the substrate to be coated. Typical maximum 
thickness of deposited materials is ~ mµ5 .
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1.2.1.6 Evaporation 

In this deposition technique, the evaporant, the material one wants to 
deposit on the wafer, is heated off a crucible. Heating may be effected by 
resistive means or by direct electron-beam bombardment, Fig. 1-12. In the 
resistive heating approach, the wafers to be coated and the crucible 
containing the evaporant, are placed inside a vacuum chamber and the latter 
heated until its vapor pressure is greater than that originally existing in the 
chamber. Evaporation results in coating everything inside the chamber, in 
particular, the wafers of interest. In the electron-beam bombardment 
approach, line-of-sight coating is obtained.  

Substrate

- +

Evaporant

B
e BEAMVacuum

Substrate

- +

Evaporant

B
e BEAMVacuum

Figure 1-12. Sketch of electron-beam-based evaporation system. 

Typical materials deposited by this technique include Al, Cr, Au, Ni, Fe, Ti, 
Cu, Pt,  FeNi, TiNi, SiW, MgO, SiO2, Al2O3, AlN, SiN. The deposition rate 
is a function of the distance between the evaporant and the substrate, and its 
typical maximum thickness is usually ~ mµ5 .

1.2.2 MEMS Fabrication Methods 

The creation of moveable structures necessitates extending the 2-D IC  
fabrication process to include shaping of the third dimension, perpendicular to the 
substrate; this is exemplified, in silicon, by four fundamental techniques, namely, 
Surface Micromachining, Bulk Micromachining, Deep Reactive Ion Etching 
(DRIE), and single crystal silicon reactive etch and metal (SCREAM), which are 
presented next. 



1. NANOELECTROMECHANICAL SYSTEMS 17

1.2.2.1 Surface Micromachining 

In surface micromachining, 3-D mechanical structures are constructed in 
a layered fashion. Two types of layers, based on their material 
composition/etching properties, are employed, namely, sacrificial and 
structural layers. The former are ultimately dissolved via a process step 
named release, and the latter remain, becoming part of the free-standing 
movable structure proper. The simplest element illustrating the surface 
micromachining technique is, perhaps, the cantilever beam. Figure 1.13 
sketches its formation. Typical combinations of sacrificial and structural 
materials, and corresponding etchant are shown in Table 1.5 [27]. 

B e a m   

S a c r if ic ia l  la y e r

W a fe r

S tr u c tu r a l la y e r
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P r o c e ss  se q u e n c e
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P r o c e ss  se q u e n c e

Figure 1-13. Sketch of the formation of a cantilever beam by surface micromachining. From 
top to bottom of the figure, the sacrificial material is deposited and patterned (top), then the 
structural material is deposited and patterned (middle), the sacrificial layer is released 
(bottom). 

Table 1-5. Structural/Sacrificial/Etchant Material Systems [27]. 
Structural Material Sacrificial Material Etchant 
Aluminum Single-crystal silicon EDP, TMAH, XeF2
Aluminum Photoresist Oxygen plasma 
Copper or Nickel Chrome HF
Polyimide Aluminum Al etch (Phosphoric, Acetic, 

Nitric Acid) 
Polysilicon Silicon dioxide HF 
Photoresist Aluminum Al etch (Phosphoric, Acetic, 

Nitric Acid) 
Silicon dioxide Polysilicon XeF2
Silicon nitride pr Boron-
doped polysilicon 

Undoped polysilicon KOH or TMAH 
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1.2.2.2 Bulk Micromachining 

As the name implies, bulk micromachining sculpts the substrate itself to 
form the 3-D mechanical structure. The simplest example of this technique is 
illustrated by the creation of a cavity, shown in Figure 1.14. As suggested, 
the aspect ratio of the cavity or pit is determined by the etching properties of 
the atomic planes which, in turn, are function of the crystallographic 
properties and orientation of the wafer, in particular, the greater the number 
of atoms on a given plane, the slower its etching rate. To understand this 
statement we explain the concept of Miller indices [28].  
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Figure 1-14. Sketch of bulk micromachined cavity. (a) From top to bottom of the figure, a 
mask is deposited (top), then patterned to expose the wafer (middle), and then the wafer is 
exposed to an etchant (bottom).  (b) Cavity walls are delimited by the crystallographic planes 
of the wafer. 
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The arrangement and orientation of atoms in a crystalline solid is 
specified with reference to certain  directions, see Figure 1-15.  Thus, with 
respect to the origin of a Cartesian set of coordinates, the position of an atom 
may be described as being  
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Figure 1-15 Nomenclature of crystal directions. 

[abc], that is, a unit  along the direction [001], b units along the direction 
[010], and c units along the direction [001]. Since a plane may be described 
by a vector perpendicular to it (its normal), the direction [abc] also describes 
a plane, which is denoted the plane (abc), shown in Figure 1-16(a).  

Figure 1-16. (a) Description of crystallographic plane by its normal (abc). (b) Description of 
crystallographic planes of cubic (atoms occupy the corners and faces of a cube) crystal by 
Miller indices. 

Notice that, since a plane is described by three points common to it, the 
points of intersection between a plane and the three coordinate axes may also 
be used to denote it. In particular, see Figure 1-16(b), the points h, l, and k,
along the coordinate axes [100], [010], and [001], respectively, might be 
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used for this purpose. However, to accommodate the possibility that the 
plane might be parallel to one of the coordinate axes, in which case the 
intersection would occur at infinity, the reciprocals of these points of 
intersection, (1/h, 1/l, 1/k), are used instead. Figure 1-16(b) shows examples 
crystallographic planes and their corresponding of Miller indices [28] for a 
cubic crystal such as silicon.  

The fact that the aspect ratio of bulk micromachined structures is limited 
by the natural inclination of the crystallographic planes making up the walls, 
motivated the development of techniques to increase it. The sections below 

1.2.2.3 Deep Reactive Ion Etching 

 The idea behind DRIE is to achieve high-aspect ratio trenches by 
selectively enhancing the etch rate at the bottom of the trench, while 
inhibiting the lateral etch rate. This is accomplished by combining a 
sequence of plasma etching and polymerization steps [31], [32], see Figure 
1-17(a). 

Etch
Oxidize Etch

Etch
Oxidize Etch

(a)

(b) 

Figure 1-17. Deep reactive ion etching (a) Etching/polymerization sequence. (b) Wall 
scalloping. 

 During the plasma etching steps, as indicated previously, positive ions 
resulting from the breakdown discharge of a gas above the silicon wafer, 
bombard the silicon surface as they fall vertically towards the negatively 
charged wafer. To achieve vertical selectivity, the sidewalls are protected by 
a polymer (PR). Thus, this results in etching being primarily effected at the 
bottom of the trench. Each etching step, which may result in a lateral etch of 

address two f these. o
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tenths of microns, is stopped after the maximum tolerated lateral etch is 
produced. By repeating the passivation/etch sequence, trenches with overall 
depths of up to several hundred  of microns have been demonstrated. The 
process proceeds at room temperature, can produce selectivities of 200:1 in 
standard PR masks, 300:1 in hard masks such as SiO2 and Si3N4, and 

exhibits etching rates of sec/m6µ  [30]. As a result of this process, the 

walls of the etched trenches exhibit a scalloping structure, see Figure 1-
17(b). The application of DRIE requires acquiring the DRIE equipment. An 
alternative to DRIE for better than conventional bulk micromachining, but 
not as expensive as DRIE, is presented next. 

1.2.2.4 Single Crystal Silicon Reactive Etch and Metal (SCREAM) 

 Similar to DRIE, the single crystal silicon reactive etch and metal 
(SCREAM I) process effects bulk micromachining using plasma and 
reactive ion etching (RIE) [33], see Fig. 1.18. The process, however, 
employs standard tools, is self-aligned, employs one mask to define 
structural elements and metal contacts, and employs a temperature below 
300 °C. This low temperature capability makes it amenable for integration of 
MEMS devices with very large scale integration (VLSI) technology [33].

Figure 1-18. SCREAM I process flow. (a) Deposition and patterning of PECVD masking 
oxide. (b) RIE of silicon with BCl3/Cl2. Typically 4-20µ m deep. (c) Deposition of oxide 
sidewall via PECVD, typically 0.3µ m thick. (d) Vertical etch of bottom oxide with CF4/O2
RIE. (e) Etch of silicon 3-5µ m beyond end of sidewall with Cl2 RIE. (f) Isotropic RIE 
release of structures with SF6 RIE. (g) Sputtering deposition of aluminum metal. The device 
shown is a beam, free to move left-right, and its corresponding parallel-plate capacitor. (After
[33].) 
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1.2.3  Nanoetechnology Fabrication Elements 

The elements of nanotechnology fabrication range from techniques to 
produce two-dimensional patterns with deep-submicron/nanometer-scale 
widths, to techniques to produce atomic-thick layers/multi-layers of various 
material compositions, to techniques to precisely manipulate atomic-size 
particles. These techniques, together with those presented previously, 
constitute the arsenal at the core of NanoMEMS.    

1.2.3.1 Electron Beam Lithography 

 Electron beam lithography utilizes electrons, instead of the projection of a 
mask image illuminated by photons, to create directly the desired pattern on 
the PR, Figure 1-19.  
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Figure 1-19. Sketch of electron bean lithography system. (After [23].) 

Since the wavelength of electron accelerated through a potential difference 
V is VÅ) 150( =λ , an electron beam may be focused to a diameter of 

mµ5.001.0 − , and resolutions of 1nm are obtained. The electron beam is 
focused and scanned either in a raster (sequential) fashion, or in a vector 
fashion where the image field consists of independently 
addressable/exposable pixels, Fig. 1-20.  
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Figure 1-20. Electron-beam patterns. (a) Raster scan. (b) Vector scan. 

The ultimate resolution of electron-beam lithography is not posed by beam 
spot size, but by the so-called electron scattering and proximity effects, 
Figures 1-21, 1-22. 
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Figure 1-21. Sketch of electron scattering effects on PR-coated wafer substrate. (After [23].) 

The former captures the fact that, in the course of penetrating the PR and 
underlying substrate, the electron beam scatters and experiences a directional 
change manifested as a spreading out of the beam, i.e., increase in its spot 
size. The latter, in turn, captures the fact that some of the scattered electrons 
are absorbed, not under the profile of the beam spot, but in areas adjacent to 
it. Two more effects resulting from beam scattering produce width- and 
proximity-dependent patterns, Figure 1-22. 
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Figure 1-22. Intra- and inter-proximity effects due to electron scattering.  (After [23].) 

The intra-proximity effect reflects the fact that the PR area near the 
center of the beam spot receives more energy, from adjacent points, than the 
PR nearest to the circumference. Thus corners, like point A, tend to be 
underexposed. The inter-proximity effect, on the other hand, reflects the fact 
that electrons intended to define one pattern scatter unto adjacent patterns, 
thus extending the effective width of the adjacent pattern. Reflecting all 
these factors, the highest resolution of electron beam lithography as 
employed for nanoscale device fabrication is about 10nm, however, the slow 
nature of writing the patterns one at a time, makes this technique expensive 
and not amenable for mass production. Its main applications are in the 
creation of masks and in nanotechnology research.  

1.2.3.2 Soft Lithography 

The conventional IC fabrication processes, and the approaches to MEMS 
fabrication derived from them, have as their core step the photolithographic 
definition of patterns on a planar substrate/wafer. Thus, as indicated 
previously, their application to creating nanoscale devices becomes 
prohibitively expensive, as the development of the concomitant light sources 
and tools to create devices at these length scales is very expensive. This is of 
chief import, not just for research purposes but, more importantly, for the 
large scale production germane to commercial applications.
 Soft lithography, the production of nanoscale devices by creating elastic 
(soft) polymer masters that can then be used to print, mold, and emboss 
nanoscale structures, is a technique which has been the subject of much 
recent research for the inexpensive creation of nanoscale devices. The 
technique  relies on  first making an elastic stamp, shown in Figure 1-23, and  
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(b)                                                                                  (c)

Figure 1-23. Soft lithography—Making an elastic stamp. (a) A liquid precursor to 
polydimethylsiloxane (PDMS) is poured over a bas-relief master produced by 
photolithography or electron-beam lithography. (b) The liquid is cured into a rubbery solid 
that matches the original pattern. (c) The PDMS stamp is peeled off the master.  (After (( [34].)

appears to have been advanced by Whitesides [34], who applied it as an
extension of his work on the creation of channels and chambers for 
microfluidic systems.

Printing is effected by inking the elastic stamp with a solution of organic 
molecules called thiols, and pressing it against a thin film of gold that has
been deposited on a silicon wafer, Figure 1-24(a). Due to the nature of the
chemical interaction between the thiol molecules and the gold, the surface is
wetted with the thiols displaying a preferred orientation and creating a self-
assembled monolayer, Figure 1-24(b), which delineates the stamp’s pattern. 
The feature size or minimum width of the pattern is of the order of 50nm 
[34]. 
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Figure 1-24. Microcontact printing. (a) The elastic stamp (PDMS) is inked in thiols and then 
pressed against the gold film previously deposited in the wafer. (b) The stamp is retracted, 
transferring a pattern of self-assembled thiols.  (After [34].)

Molding is effected by pressing the elastic stamp against a liquid polymer 
on the wafer, shown in Figure 1-25, which causes the polymer to flow into  

Figure 1-25. Molding. (a) The elastic stamp is pressed against the deposited liquid polymer, 
which flows into the recesses/channels of the mold. (b) Upon curing, the polymer solidifies 
into the mold pattern. (After [34].)
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the stamp’s recesses. Then, upon curing the polymer, this solidifies 
according to the stamp’s pattern. The feature size for patterns thus created 
may be as small as 10 nm [34]. 

1.2.3.3 Molecular Beam Epitaxy 

The engineering of modern semiconductor device structures relies on the 
appropriate introduction and distribution of impurities via doping, together 
with band-gap engineering to effect electron confinement along the direction 
of transport [34-37]. This latter gives rise to devices in which tunneling 
phenomena becomes manifest. The key to these types of structures is the 
technique for depositing down to mono-atomic-thick layers called molecular 
beam epitaxy (MBE). MBE underwent extensive progress during the 1990s 
and is now a well established production technology [38]. 

The essentials of MBE for growing a given structure are depicted in 
Figure 1-26.  
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Figure 1-26. (a) Sketch of MBE system. The atomic sources may be either in the solid or the 
gaseous states. (b) Sketch of layered atomic deposition.  (After [38].)
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The system consists of a steel chamber which is equipped with pumps, to 
create a very low pressure environment, typically about 1110−  Torr, and a 
growth chamber containing several vacuum furnaces, called effusion cells or 
K-cells, from where a variety of atomic or molecular materials evaporate. 
The target wafer, on which growth is to occur, is placed inside the chamber 
where it is held at a high, controlled temperature and under high vacuum, 
and rotated to achieve uniformity over the wafer. 

Growth occurs when heating of the K-cells causes the various materials 
in them to evaporate, thus forming atomic beams that land on the wafer 
surface. The properties of the growing layers are controlled by a number of 
parameters, particularly, K-cell temperature, which controls beam intensity 
or atomic/molecular flux, and substrate temperature, which controls the 
dynamics of the atoms once these reach the wafer surface, see Figure 1-
26(b). In particular, the arriving atoms evolve according to the following 
competing mechanisms: 1) Immediate absorption to the surface, i.e., they 
“stick” wherever they land; 2) Migration across the surface, i.e., move 
around before coming to a resting place which may not preserve the 
crystalline structure; 3) Incorporation into the crystal lattice; and 4) Thermal 

 achieve  good 
crystal quality, such a set of flux and substrate temperature parameters must 
be discovered that the arriving atoms have sufficient energy to move to the 
appropriate position on the surface, without re-evaporating, and be 
incorporated on the crystal.  

The MBE technique is very versatile in that it allows the composition of 
the layers to be fine tuned. This is accomplished by equipping the K-cells 
with shutters which, th ough computer control, can turn on or off each beam 
according to precise timing sequence. The fact that growth is controlled by 
computer, endows MBE with the ability to deliver even atom-thick layers, of 
abrupt composition, in a reproducible and reliable fashion. This, in turn, 
enables bandgap engineering, the use of the material band gap as a degree of 
freedom to engineer device properties. In the InP HBT, an emitter with a 
band gap greater than that of the base, permits high base doping, without 
compromising current gain, by virtue of the reduction of hole current 
injection into the emitter effected by the latter’s energy barrier. In the RTD, 
a lower band gap region, a potential well, sandwiched between two large 
band gap regions, barriers, allows preferential current conduction only when 
the energy of conduction electrons coincides with the discrete energy state in 
the potential well, thus giving rise to the creation of a current-voltage 
characteristic exhibiting negative differential resistance. The fact that the 
path length of electron transport through the device is very short, leads to 
these devices exhibiting very high speeds of operation, e.g., hundreds of 
GHz in the case of the HBT, and close to a THz in the case of the RTD. 

desorption, i.e., they reevaporate from the surface. To 

r
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Figures 1-27(a) and (b) show the layer structures of MBE-grown 
heterostructure bipolar transistor (HBT) and resonant tunneling diodes 
(RTD), respectively.  
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Figure 1-27. Layer description of MBE-grown devices. (a) InP double heterostructure bipolar 
transistor (DHBT) [39]. (b) Resonant tunneling diode (RTD) [40]. 

1.2.3.4 Scanning Probe Microscopy 

Progress in Nanotechnology has been intimately related to the invention 
of a number of techniques for imaging and manipulating atoms/nanoparticles 
at nanoscales. All of these techniques are based on a very fine tip (with 
atomic resolution), and the nature of what is imaged or manipulated is a 
function of the tip itself, i.e., whether it is conductive, insulating, magnetic, 
non-magnetic, etc. Excellent review articles summarizing advances in 
scanning probe microscopy has been published recently by Giessibl [41] and 
Baski [42]. In this section we focus on two of the main such techniques, 
namely: 1) The scanning tunneling microscope (STM); 2) The atomic force 
microscope (AFM).   
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1.2.3.4.1 Scanning Tunneling Microscope 

In STM, a sharp metal tip is brought in very close proximity to a 
conductive sample, typically to a distance within a few Angstroms, see 
Figure 1-28 [16].  

Figure 1-28. (a) Sketch of STM system. (b) Probe tip detail. The sample is held in ultra high 
vacuum.  (After [16].) 

Then, when a bias voltage is applied between the tip and the conductive 
sample, electrons tunnel quantum mechanically across the air gap to elicit a 
tunneling current of a magnitude not exceeding several nA. Due to the 
nature of the tunneling current tI , which obeys the equation 
( ) z

t
zeIzI κ2

0
−= , where Φ= mz 2κ  embodies the properties of the 

tunneling electron (its mass m), and the work function of the tip material Φ ,
with  being Planck’s constant, the tunneling current is a very sensitive 
function of the tip-sample distance, z. Imaging, therefore, may be produced 
in two modes: 1) Scanning the tip in the x-y plane while forcing it to remain 
at a fix z-position. This, so called constant height mode, extracts sample 
morphology/relief image from modulation of the tunneling current 
magnitude as the variations in the sample relief change the tip-sample 
distance. Thus, an image of ( )constantzyxI t ≈,,  is obtained; 2) Scanning 
the tip in the x-y plane while adjusting the tip position z to keep the 
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tunneling current constant. This is the called topography mode, and produces 
an image of ( )constantIyxz t ≈,, .

STM tips are fabricated via chemical etching or mechanical grinding of 
W, Pt-Ir, or pure Ir [41]. By using a magnetic probe tip the STM can be 
made sensitive to the spin of the tunneling electrons. Besides the tip 
sharpness and material properties, moving the tip with atomic scale 
precision, to obtain atomic resolution image, necessitates the utilization of a 
piezoelectric ceramic, whose extremely fine deformation is induced by an 
applied voltage. 

1.2.3.4.2 Atomic Force Microscopy 

In AFM, Figure 1-29, a sharp tip is also brought very close to the sample 
surface.  

Figure 1-29. (a) Sketch of AFM system. (b) Probe detail. The sample may be held at ambient 
conditions.  (After [41].) 
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However, unlike STM, no voltage is applied between the tip and the 
sample. Instead of a tunneling current, the AFM detects the force elicited 
between the tip and the sample. The tip is part of a force-sensing cantilever 
beam so that, when the latter is raster-scanned over the sample, much like a 
phonograph, surface height variations are detected by monitoring the 
interference pattern produced by a laser beam reflecting off the cantilever 
beam when the latter deflects/deforms. 

The image of the sample is then extracted by relating the cantilever beam 

deflection to the force required to produce it, TSF . TSF  in turn, is related to 

the tip-sample (TS) potential TSV  via its negative gradient, 

zVF TSTS ∂∂−=  and is characterized by an effective spring constant 

zFk TSTS ∂∂−= . TSF  may be attractive or repulsive, as it embodies a 

variety of forces, each one varying differently with TS distance z, thus 
making it a nonlinear force, see Figure 1-30. 

FTS
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Figure 1-30. Sketch of AFM tip-sample force versus their separation z. 

 For instance, at distances under 1nm, short-range chemical forces are 
operative which, for anisotropic chemical bonds, are best characterized by a 

Stillinger-Weber potential, nnnSW VVV +=  where both nearest neighbor 

potential nV , given in Eq. (1), and next nearest  

( ) ( ) 0,
1
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′

= −′
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qp

bondn σ
σσ

σ         (1) 

potential nnV  given in Eq. (2), and (3) are considered. 

( ) ( ) ( ) ( )[ ]ikjkjkiijkjkjiijkikijbondkjinn rrhrrhrrhErrrV θθθ ,,,,,,,, ++= ,   (2) 

with  
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The optimal parameters, in terms of experimental agreement for a silicon tip 
on a silicon sample, was found by Stillinger and Weber to be as follows: A = 
7.049556277, p = 4,   = 1.20, B = 0.6022245584, q = 0,  = 21.0, Ebo nd  = 

3.4723 aJ, a = 1.8,  = 2.0951 Å, and σσ ′= 612 .

 Similarly, at distances under 100nm, long-range forces, namely, van der 
Waals, electrostatic, and magnetic forces are operative. The van der Waals 
forces,  are characterized by a potential given by Eq. (4)  

6

2
1

z

d
VvdW

α
−= .                                                                                        (4) 

For the tip-sample situation found in AFM, namely, a spherical tip with 
radius R separated a distance z from a flat surface (where z is the effective 
distance between the plane connecting the centers of the surface atoms and 
the center of the closest tip atom) the van der Waals potential is given by 
[42] Eq. (5) 

z

HR
VvdW

6
−= ,                                                                                         (5) 

where H is the Hamaker constant embodying the atomic polarizability and 
density of the tip and sample material pair and, for the majority of solids and 
interactions across vacuum, has a value of eVH 1= . For tip-sample 

tip of radius R~100nm separated from flat sample by ~0.5nm, the respective 
van der Waals potential and force are approximately -30eV and -10nN, 
respectively. 
 When both the tip and the sample are conductive and at separations of 
~100nm, they may also experience electrostatic forces, characterized by the 
potential, Eq. (6) [42-45]: 

( )
z

RV
zF ticelectrosta

2
0πε

−= ,                                                                    (6) 

where V is the electrostatic potential difference. Accordingly, a potential  
difference V~1Volt, between a spherical tip of radius R~100nm a distance  

u

materials characterized  this value of Hamaker constant, and with a spherical by 
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z~0.5nm from a flat surface, will experience a force ~-5.5nN. 

 Based on the method employed to extract TSF , and hence the surface 

image, AFM operation is classified following three modes:  

 1) Contact Mode-Static AFM: In this mode the tip is in repulsion regime 
and exerts a large normal and lateral force on the sample. The force applied 
to the cantilever is kept constant during the scan by applying feedback, while 
the z-displacement is measured yielding the surface topography. The main 
drawback of this technique is that it can only be applied in certain cases, 
namely, at low temperatures, due to the need to circumvent its low-
frequency noise and thermal expansion effects on resonance frequency [42].   

 2) Non-Contact Mode-Dynamic AFM: In this mode the cantilever is 
mounted on an actuator which vibrates and, thus, excites it with amplitude 

driveA  and frequency drivef  to oscillate above the sample. The tip-sample 

distance is such  that operation is in the attractive regime. This may avoid 
the force and noise problems of contact mode, but is subject to jump-to-
contact if the spring constant corresponding to the tip-sample potential 

overcomes that of the cantilever, i.e., if TSkk max<  . The imaging signal is 

derived from the change in cantilever amplitude and phase that result when 
the tip approaches the sample. Since the excitation signal may consist of, 
either fixed amplitude and fixed frequency, or fixed amplitude and varying 
frequency, these two modes of operation are distinguished. The former is 
called AM-AFM and, while this method does provide atomic resolution, the 
fact that the time required to capture the tip-surface interaction 

02 fQAM ≈τ  is proportional to the quality factor (Q) of the cantilever, 

which may be tens of thousand, makes it relatively slow. 
 The latter mode, in which the amplitude is fixed, but the frequency is 
varied, is called FM-AFM mode of operation. This mode also provides 
atomic resolution, but it is much faster than AM-AFM because the tip-

surface interaction time is only 01 fFM ≈τ .

 3) Intermittent Contact Mode-Dynamic AFM : In this mode the tip is 
excited to oscillate above sample, also in the attractive regime, but it is made 
to contact (“tap”) the sample for a short time during every cycle. 

 One of the key aspects of AFM is the design of the cantilever, 
particularly, its spring constant and resonance frequency. These are given by 
Eqs. (7) and (8), respectively, for a beam of thickness t, width w, length L, 
Young’s modulus E, and mass density ρ .
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Accordingly, various aspects, which depend on the application, must be 
considered in designing the cantilever. For example, in the static AFM 
mode, the spring constant must be chosen so that the beam easily deflects in 

response to the tip-sample force. Thus, for TSk  between 10N/m and 

100N/m, the rule is to choose k between 0.01N/m and ~5N/m, with typical 
resonance frequencies of 2kHz.  
 On the other hand, for the dynamic AFM techniques it has been found 
that, to avoid jump-to-contact, the product of the cantilever spring constant 
and the vibration amplitude must exceed the maximum tip-sample attractive 

force, i.e., max
TSresponse FkA > . This means that there is a trade-off between 

cantilever stiffness and excitation drive amplitude. In other words, the spring 
force pulling the cantilever away from its point of closest proximity to the 
sample, must overcome the maximum attraction force. A refined criterion to 
avoid jump-to-contact and which assumes the possibility of a hysteretic 

( )zFTS  relationship is given by [45]: 

π22

1 2 Q
EkA TS∆>                                                                                   (9) 

where TSE∆  is the hysteresis energy supplied to the cantilever beam in each 

vibration cycle. A typical set of Ak,  values for FM-AFM are  

nmAmNk 34,/17 == .

Typically, the AFM cantilevers are fabricated via Si or Quartz 
micromachining, and the usual tip materials include Si integrated with beam, 
W, Diamond, Fe, Co, Sm, CoSm permanent magnets, and Ir. 
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1.2.3.5 Carbon Nanotubes 

Carbon nanotubes are, perhaps, the quintessential element of 
nanotechnology. Their discovery is the fruit of research, originally 
conducted by Kroto and Smalley in 1985, with the aim of studying the laser 
vaporization of graphite. Such studies elicited the discovery by them of 
clusters containing 60 carbon atoms (C60: Buckminsterfullerene), arranged in 
a spherical structure, see Figure 1-31, [1]. 

Figure 1-31. Sketch of the chemical structure of C60: Buckminsterfullerene.  (After [46].) 

Continued research to increase the yield of these C60 clusters led Iijima to 
discover carbon nanotubes (CNT), see Figure 1-33 [46].  

Figure 1-32. (a) Sketch of the chemical structure of a single-wall carbon nanotube (SWNT). 
(After [1].) (b) SEM of SWNT and MWNT. In a multi-walled nanotube, an inner SWNT 
forms the core of multiple concentric nanotubes which grow around it. (Courtesy of Prof. 
László Forró, Swiss Federal Institute of Technology (EPFL), Lausanne Switzerland). 

CNTs are molecular carbon fibers that consist of graphite cylinders 
closed at each end by caps containing six pentagonal rings, i.e., each cap is 
exactly one-half of a C60 molecular cluster [46]. They tend to be produced in 
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three main modalities, namely, single-walled nanotubes  SWNTs), which 
range in diameter from approximately 0.4nm to more than 3nm, multi-
walled nanotubes (MWNTs), which range in diameter from approximately 
1.4nm to more than 100nm, and ropes, which are parallel stripes of SWNTs 
stuck to each other. Their physical properties are astounding. With aspect 
ratios of the order of 10-1000, they are several mµ  (ropes up to cm) long, 
possess a Young’s modulus, tensile strength, and density of ~1TPa (Steel: 
0.2TPa), 45GPa (Steel: 2 GPa), and 1.33 ~ 1.4 3/ cmg  (Al: 2.7 3/ cmg ). In 
addition, their conductivity may be metallic or semiconducting, and they 
have a current carrying capability of ~1 3/ cmTA  (Cu: 1 3/ cmGA ). A 
number of techniques are employed to produce CNTs, for instance, the arc 
discharge, laser ablation and chemical vapor deposition methods. These 
methods usually yield a random mixture of SWNTs, MWNTs, and ropes and 
research is under way to determine techniques for the controlled growth of a 
specific type of CNT. For instance, Li et al. [47] have reported the 
development of a catalyst-based method that predominantly yields SWNT. 
In this method, a silicon wafer is pre-patterned with alumina nanoparticles, 
which serve as catalysts for their CVD growth, producing SWNTs with 
diameter under 1.5nm.  

The narrow diameter of CNTs makes them ideal candidates for 
applications as SPM tips, as well as a number of devices, such as channels 
for field effect transistors. Figure 1-33 shows the formation of CNT tips. 
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Figure 1-33. Formation of AFM tips via CNT growth.  (After [48].) 

1.2.3.6 Nanomanipulation 

The ultimate degree of control in nanofabrication, is embodied in the 
ability to manipulate individual atoms/nanoparticles with precision. This is 

(
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accomplished by two techniques, namely, exploiting AFM to push particles, 
and DIP-Pen lithography. 

1.2.3.6.1 AFM-based Nanomanipulation  

 In this technique, an oscillating AFM tip is brought close to a particle 
until, as a result of jump-to-contact, the oscillation amplitude goes to zero. 
The AFM approaches the nanoparticle via a fast X-Y scanning oscillation, in 
a plane perpendicular to the desired pushing direction, z, see Figure 1-34. 
Once contact of the AFM with the nanoparticle is established, motion 
proceeds in the z-direction at a slow scan rate.  
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Figure 1-34. Pushing a nanoparticle with AFM.  (After [49].) 

1.2.3.6.2 DIP-Pen Lithography 

 In this technique, developed by Mirkin’s group [50], see Fig. 1-35, and 

Figure 1-35. Close-up of inked AFM tip as molecules flow down the tip via water meniscus. 
(After [50].) 
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 reminiscent of a goose-feather pen, a molecular “ink” is deposited over a 
gold surface according to a desired pattern. In one demonstration of the 
technique, an AFM tip was coated with a thin film of thiol molecules (the 
“ink”) and moved two-dimensionally so as to inscribe the underlying gold 
surface.  

Since the thiol molecules can only attach to the gold surface in one 
particular orientation, a self-assembled monolayer of them, embodying the 
desired “writing,” results. A variety of “inks” may be employed and, in 
terms of line width capability, lines a few-nanometers wide have been 
demonstrated.  

1. 3 Summary 

In this chapter we have introduced the broad field of 
nanoelectromechanical systems. In particular, we have traced its origins, 
motivation, and presented a unified survey of its distinctive characteristic, 
namely, the convergence of fabrication techniques, from conventional IC 
fabrication, to microelectromechanical systems fabrication, to nanoscale 
fabrication. In the next chapter, we address the fundamental physics on 
which devices, circuits and systems exploiting the NanoMEMS fabrication 
methods may be predicated. 



Chapter  2 

NANOMEMS PHYSICS: QUANTUM WAVE-
PARTICLE PHENOMENA 

2.1 Introduction 

As discussed in Chapter 1, NanoMEMS aims at exploiting the convergence 
between nanotechnology and microelectromechanical systems (MEMS) brought 
about by advances in the ability to fabricate nanometer-scale electronic and 
mechanical device structures. This novel paradigm, in turn, poses an interesting 
challenge from the device physics point of view. In particular, the invention and/or 
discovery of a plethora of new materials, concepts and techniques such as carbon 
nanotubes (CNTs) [17], photonic band-gap crystals (PBCs) [51], and MEMS [52-
55], respectively, has opened up new possibilities to implement novel devices upon 
which a new “electronics” technology, with attributes that are far superior to 
everything known to date, may be predicated. With the simultaneous convergence 
and exploitability, at such small length scales (e.g., down to a few nanometers), of 
various types of physical properties and effects, for instance, electronic, mechanical, 
optical, and magnetic and quantum effects, the nature of the concomitant new 
universe of devices and circuits that will fuel this new electronics will clearly be 
vast, yet, it is at present mostly unknown. In this context, many domains of physics, 
not usually invoked in describing the behavior of prior-art devices, become 
simultaneously pertinent. Such elements include [56], the manifestation of charge 
discreteness, the quantum electrodynamical (QED) Casimir effect, quantized heat 
flow, manifestation of the wave nature of electrons, quantum information theory, 
computing and communications, wave behavior in periodic and non-periodic media, 
and quantum squeezing. In this chapter, and the following, we expose fundamental 
knowledge required to analyze devices exploiting these phenomena.  
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2.2 Manifestation of Charge Discreteness 

2.2.1  Effects of Charge Discreteness in Transmission Lines 

The most fundamental element in circuits and systems is the interconnect 
or transmission line (TL). TLs play an essential role in configuring circuits 
and systems at all length scales [56]. Ideally, TLs are the medium through 
which signals propagate, from one point to another, with no effect on the 
signals, except a frequency-independent delay. Figure 2-1 shows a sketch of 
a microstrip TL, a commonly used TL in integrated circuits. It consists of a 

metallic stripe of width w and thickness st , patterned on a dielectric 

substrate of thickness h and dielectric constant rε , with the substrate resting 

on a metallic ground plane.  
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Figure 2-1 Sketch of microstrip transmission line. 

From an electromagnetics perspective, the TL’s qualitative operation is 
simple [57]. The signal of interest is impressed at its input, by way of its 

equivalent electric field SignalE  between the metallic stripe and the ground 

plane, and it elicits a propagating quasi-TEM electromagnetic wave which is 
guided in the dielectric substrate region between the stripe and the ground 
plane. A current I, flowing in one direction in the stripe, and in the opposite 
direction in the ground plane, embodies the boundary conditions necessary 
to sustain the propagating wave in the substrate, as per Maxwell’s equations 
[57], and the magnitudes of the magnetic and electric fields stored along the 
line give rise to an inductance per unit length, L, and a capacitance per unit 
length, C, whose ratio is captured in the so-called characteristic impedance 

of the line, given by CLZ =0 . TLs are usually designed to have 

Ω= 500Z , which results if, for example, mh µ635= , mw µ635= ,
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mt s µ2= , and 8.9=rε . Under these conditions of a metal stripe of 

relatively large dimensions with respect to a Bohr radius, 
a0=0.592 =0.0592nm, the current I may be construed as consisting of an 
ensemble of freely-propagating electrons, each characterized by a plane 

wave-like wave function ikze~ψ , with continuous energy *222 mkE = ,

where  is Planck’s constant, λπ2=k  is the wave vector, λ  the electron 

wavelength, and m* the effective mass [58]. 
Assuming a lossless TL, its circuit behavior may be represented as a 

tandem connection of a number of finite-length cells, each cell consisting of 
a length z∆  of its inductance, L, and capacitance, C, per unit length, see 
Figure 2-2(a) [56]. 
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Figure 2-2. (a) Model of ideal transmission line. (b) Model of monatomic linear chain. 

Thus, the propagation of a signal from a source towards a load, down a TL, 
can be visualized as an advancing tide of charge fluid charging the 
successive cells until the load is reached.  
 Enter nanotechnology. In concert with exploiting the ability to pattern 
nanoscale circuits, it is expected that TLs with stripes of nanoscale and sub-
nanoscale widths and thicknesses will be prominent. In this context, electron 
currents will be transported down very narrow and thin metallic wires, so 
narrow and thin, in fact, that their dimensions may stop at only tens of Bohr 
radii. This means that the electrons involved will not only experience 
quantum mechanical confinement, i.e., that their energy will become 
quantized and given by [58], [59]: 
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but also, that their discrete nature will be manifest. This latter feature 
becomes operative when the system size along a transport dimension 
becomes of the order of the carrier inelastic coherence length, and it implies 
that, in addition to the quantum mechanical energy of confinement of Eq. 
(1), the Coulomb charging energy required for adding or removing an 

electron, ic LqE 2=  where iL  is a characteristic length in direction i,

must be taken into account [58-62]. One must then turn to quantum 
mechanics to properly describe the TL behavior. 
 The observation [61]-[63], that the charge q in successive cells, and the 
total energy, obey equations (2) and (3), 

( )iii
i qqq

Cdt

qd
L 2

1
112

2

−+= −+                                                              (2) 

( )−+= +
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ii
i qq
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dq
L
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H
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2

2

1

2

1
                                          (3) 

whose forms are identical to the equations describing the longitudinal 
vibration modes in a monatomic linear chain (MLC) [64] (see Appendix A), 
Figure 2(b), motivated the application of the quantum mechanical 
description of the latter to the TL. In particular, in (3), the first and second 
terms account for the magnetic and electric energies in the TL inductors and 

capacitors, respectively, and 
dt

dq
Lp =  and q play the roles of “momentum” 

and “coordinate,” respectively. Notice, however, that since q is charge, p
represents electric current.  
 The above TL quantization assumed the electric charge q to be a 
continuous variable. As has been observed [59], however, under appropriate 
circumstances, e.g., system size close to the inelastic coherence length, the 
particle (or discrete) nature of electrons becomes evident. Li [61] considered 
the consequences of this possibility and, accordingly, advanced a theory for 
TL quantization assuming q to be discrete. 
 The possibility of having the charge adopt exclusively discrete values, 
was introduced [61] by imposing the condition that the eigenvalues of the 
charge operator  q̂  be discrete, i.e., 
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>>= qnqqq eˆ                                                                                         (4) 

In other words, the result of measuring the charge in the TL must be n times 
the fundamental electron charge, qe, where n is a positive integer. Since, 
from a comparison with the MLC description, charge adopts the role of a 
“coordinate” operator in the quantized Hamiltonian, the form of the 
corresponding “momentum” operator p̂ , and in particular, 

2

2
2

2

2ˆ
qqi

p
∂
∂−=

∂
∂=                                                                      (5) 

must reflect this new situation. This is accomplished by replacing the partial 
derivative by its finite-difference approximation in charge coordinate space 
[65], i.e., 

22

2 )1()(2)1(
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nnn
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                                                    (6) 

where qe is the fundamental unit discretizing the charge “axis” and ψ  is the 

electron wavefunction in the charge representation. Assuming the line is 
driven by a voltage source V, Schrödinger’s for the TL is given by Eq.(7) 
[61, 62]: 
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or, using Eq. (4): 
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22
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Imposing charge discreteness, thus, turns Schrödinger’s equation for a TL 
into a discrete, instead of a partial, differential equation. 
 The implications of charge discreteness are gauged from the nature of the 
corresponding eigenvalues and eigenvectors for this equation. Obtaining 
these becomes more transparent upon developing the quantum theory of 
mesoscopic TLs [61, 62], which outline below following Li [61]. we
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 With q̂  as the charge operator, instead of the conventional spatial 

coordinate, the corresponding conjugate variable is taken as p̂ , which then 

represents the current operator, instead of the usual momentum operator. The 
quantum mechanics of the TL then evolves from ( ) and the commutation 
relation: 

[ ] ipq =ˆ,ˆ .                                                                                               (9) 

The fact that the eigenstates of q̂  must be specified by an integer, n, allows 

two consecutive states to be related to one another by the application of a 

shift operator, in particular, /ˆ~ piqeeQ ≡ . By expanding the exponential, and 

using ( ) and ( ), this shift operator may be shown to obey the 
commutation relations: 

[ ] QqQq e

~~
,ˆ −=                                                                                         (10)                 

[ ] ++ = QqQq e

~~
,ˆ                                                                                       (11) 

1
~~~~ == ++ QQQQ .                                                                                  (12) 

The shift operator, when applied to the number eigenstates defined by, 

>>= nnqnq eˆ , produces the following new states: 

>+>= ++ 1
~

1 nenQ niα                                                                            (13) 

>−>= 1
~

nenQ niα                                                                                (14) 

where snα  are undetermined phases. Therefore, (1 4) and (1 ) lead to the 

interpretation of the shifter operators +Q
~

 and Q
~

 as ladder operators that 

increase and decrease the charge of the charge operator in its diagonal 
representation.  
 The quantization apparatus is completed when the completeness and 
orthogonality relations, and the inner product are stipulated, in this case as 
given by (15)-(17), respectively, 

1=><
n

nn ,                                                                                    (15) 
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nmmn δ>=< ,                                                                                        (16) 
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>=><<>=<

ZnZn
nnnn )()(* ψφψφψφ ,                           (17) 

where n belongs to the set of non-negative integers Z.  
 These relationships permit obtaining the fundamental quantum 
mechanical properties of the TL, namely, the eigenfunctions of the 
“momentum” operator p̂ , i.e., the nature of the current, and the energy 

spectrum. 

 Assuming the usual relations [53], >>= pppp̂  and  

>>= ppfppf )()ˆ( , Li [62] expands the momentum states in terms of the 

number states, 
∈

>>=
Zn n npcp )(  together with the shifting operation 

>>= pepQ piqe /ˆ~
, to obtain the relationship 

( )11 exp ++ += nenn ipiqcc α . This, in turn, yields the momentum 

expansion in terms of the number states as, 
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−

n

j
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n e 1

α

κ  for n>0. Making the substitution 

( )eqpp π2+→  in the exponential of (18) yields the same state >p ,

from where it is determined that the momentum operator p̂  is periodic. 

Further progress towards obtaining the eigenstates and dispersion is attained 
by noticing that, if one defines new discrete derivative operators by: 
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 then Schrödinger’s equation (8), may be expressed as:   
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from where a momentum operator P̂ , given by: 

( ) ( )+−=∇+∇= QQ
iqi

P
e

qq ee

~~

22
ˆ ,                                                  (22) 

may be defined. This new momentum operator is related to p̂  in that 

Pp
eq

ˆlimˆ
0→

= .

2.2.1.1 Inductive Transmission Line Behavior 

 Inductive behavior is displayed by the so-called pure L-design, in which 
the TL is considered to have very narrow width (high impedance). Its 
mathematical description is given by: 
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ˆ ,                                                                   (23) 

where the terms involving the line capacitance is neglected and the driving 
voltage is set to zero. With this definition, and taking into account the 

relationship >>= pepQ piqe /ˆ~
, the following relationships are obtained: 

>>= p
pq

q
pP e

e
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and 
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e
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2
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These are the desired momentum eigenstates and the energy spectrum. What 
is clear from (24) is that the current in a mesoscopic inductive line, given by 

LPI ˆ= , is periodic, becomes zero whenever 0;2 ≠= ee qqp π , and 

that it is bounded by ( )LqLq ee ,− . Similarly, from (25) it is determined 

that the lowest energy state is degenerate at eqnp = .   
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Another peculiarity of mesoscopic TLs is the nature of their energy 
spectrum when formed into a ring in the presence of a magnetic flux φ . In 

this case, Schrödinger’s becomes, 

{ } εψψ =−−
ee qq

e

DD
Lq 2

2

2
,                                                                (26) 

where 
eqD  and 

eqD  are discrete derivatives that remain covariant in the 

presence of the magnetic flux  φ  and are defined by Li [61] as, 
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Applying the Hamiltonian in (26) to the eigenstate >p , the energy 

eigenvalues are obtained as, 

( ) ( )−= φφε p
q

q
p e

e 2
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2
, 2

2
,                                                          (28) 

where φ  is the magnetic flux threading the TL. Thus, (28) implies that when 

the discrete nature of charge is at play, the TL energy becomes a periodic 

function of p or φ , with maximum amplitude 
2

2

eq
 and nulls occurring 

whenever eqnp +=φ . Furthermore, it has also been shown that the TL 

current is given by, 

( ) = φφ e

e

q

Lq
I sin ,                                                                         (29) 

which implies that it becomes an oscillatory function of the magnetic flux. 
Since no applied forcing function was assumed, (29) leads to the important 
observation [62] that a TL in the discrete charge regime will, in the presence 
of a magnetic flux, exhibit persistent currents [59]. These are currents 
without dissipation, such as the atomic orbital currents that elicit orbital 
magnetism. 
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2.2.1.2  Capacitive Transmission Line Behavior 

In this design the TL is capacitive (low-impedance) and the first 
bracketed term in (21) is neglected and the Schrödinger equation is given by, 

εψψ =+− qV
C
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2

2

2

2

,                                                            (30) 

In this case, the Hamiltonian operator commutes with the charge operator 
q̂ , and consequently [60], they have simultaneous eigenstates. In particular, 

the energy of the state >n  is given by [67], 
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where n is the number of elemental charges describing the TL state. Thus, 
(31) implies that when the discrete nature of charge is at play in a low-
impedance line, the TL energy is a quadratic function of the state n of 
charges.  
 An interesting phenomena is predicted for the current flow. In particular, 
as the applied voltage increases, the TL charge can only increase in discrete 

steps which are a multiple of eq . Since the voltage required to cause this 

charge to be injected into the TL is  Cqe , it can be said that the voltage 

axis is quantized  in units of  Cqe . Thus, the total charge of a line in the 

ground state is given by [67], 
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where u(z) is the unit step function. Consequently, by taking the time 
derivative of (32), one obtains the corresponding current as, 
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Eqn. (33) indicates that the current exhibits a series of delta-function

impulses with periodicity Cqe , consistent with every time a single electron 
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charge is added, and amplitude proportional to the slope of the voltage 
source. This leads to the important observation [67] that a low-impedance 
ideal TL in the discrete charge regime will exhibit current flow dominated 
by Coulomb blockade.
 Clearly, as limiting cases, typifying the behavior of ideal high- and low-
impedance TLs in the discrete charge regime, the phenomena of persistent 
currents and Coulomb blockade-type current flow, respectively, raise serious 
questions in the context of achieving low-noise analog and reliable digital 
circuits and systems at nanometric-length scales. As a result, complete 
awareness of the possibility that these features might be inadvertently 
included in the design space must be incorporated in TL/interconnect models 
utilized in the design and analysis of future NanoMEMS.   

2.2.2  Effects of Charge Discreteness in Electrostatic Actuation 

 One of the distinguishing features of NanoMEMS is the inclusion of 
functions based on mechanical structures that can be actuated. For a variety 
of reasons, in particular, its compatibility with IC processes, electrostatic 
actuation is the actuation mechanism of choice for these devices [48], and is 
the one on which we focus our attention next. 

2.2.2.1  Fundamental Electrostatic Actuation 

 Perhaps the most fundamental electrostatically-actuated elements/building 
blocks are  the singly-(cantilever) and doubly-anchored beams [52], Figure 3.  

Figure 2-3. (a) Cantilever beam. (b) Doubly-anchored beam. 
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The devices are essentially parallel-plate capacitors, of nominal plate 

separation 0g , in which the top plate (beam) is free to move in response to 

an electrostatic force developed between it and the rigid bottom plate, as a 
result of a voltage applied between the two. 

2.2.2.1.1  Large-signal Actuation—Switch 

 For typical dimensions employed in MEMS [48], e.g., beam gaps, lengths, 
widths, and thicknesses of about mµ2 , mµ250100− , ms µ of '10 , and 

mµ101− , respectively, the displacement behavior of the beams, which 

manifests itself as continuous gap reduction versus applied voltage, is 

dictated by the equilibrium 0=+ SpringCoulomb FF  established between the 

quadratic electrostatic force , 
( )20

2
0

2

1

zg

AV
FCoulomb +

=
ε

,  and the linear spring 

force, zkF BeamSpring −= ,  (Hooke’s law) which attempts to bring the beam 

back to its undeflected position. This dynamic equilibrium, and its 
accompanying smooth displacement, is maintained up to about one-third of 
the beam-to-substrate distance, at which point it is lost and the beam 
collapses onto the bottom plate, abruptly reducing the gap to zero. The 
voltage demarcating these two regimes is called pull-in voltage and is given 
by [49], 

0
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gk
V Beam

inPull =− ,                                                                  (34) 

where Beamk   is the spring constant of the beam, and A is the electrode area. 

2.2.2.1.2  Small-signal Actuation—Resonator 

 For application as resonators [54], an AC voltage, together with a so-
called DC polarization voltage, introduced to enhance the current elicited by 
the variable beam capacitance, are applied. Since the resonators are intended 
for application as stable frequency standards, with frequency given by [18], 
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ρ
κ= ,                                                                     (35) 
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where κ  is a scaling factor that models the effects of surface topography, 
including for instance, the anchor step-up and its corresponding finite 
elasticity, E is the Young’s modulus of the beam material, ρ    its density, h

its thickness and rL  its length, the combined amplitude of AC and DC 

voltages is chosen to be lower than pull-in, thus keeping the beam from 
collapsing. 

2.2.2.2  Coulomb Blockade 

 The phenomenon of Coulomb blockade [68, 69] refers to the fact that 
under certain conditions, namely, when junctions are defined whose 

capacitance is of the order of FC 1510~ −  or less, the energy required to 
increase the charge by one electron is not negligible with respect to 
temperature. For example [68], Figure 2.3 shows that, while a neutral 
metallic island, such as the plates of a capacitor, emits no electric field and, 
thus, allows the unimpeded approach of an electron, once this electron 
becomes part of the island it emits an electric field that may prevent the 
addition of more electrons.

Figure 2-4. (a) Charging Coulomb island. (a) Charging energy of small capacitor. 

At this point, the island blocks such an addition of extra charge. For a 

junction capacitance of FC 1510~ − , the minimum voltage required to add a 

charge q is Cq , thus the charging energy is 

JCqEC
232 10283.12 −×== , which is close to the thermal energy at 1K. 

If the capacitance were smaller, e.g., FC 18102.6~ −× , such as might be 
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typical for nanoparticles, then the charging energy would be close to the 
thermal energy at 300K. The implication of this is that it may be impossible 
to continuously inject charges into the capacitor when the charging energy 
exceeds the ambient temperature. Rather, for an increasing applied voltage, a 
charging event only occurs every time its magnitude exceeds the charging 
energy of an electron; one enters the Coulomb blockade regime and the 
current into the capacitor becomes pulse-like. The situation is illustrated in 
Figure 2-4 with respect to the so-called single-electron box [69]. 
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Figure 2-5. Voltage-controlled electron injection into metallic island. (a) VG=0. (b) VG>VC.
(c) Circuit model   (After [68], [ 69].) 
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A voltage source VG is connected through a small capacitor C0, to a small 
metallic island that rests over a tunnel barrier which, in turn, is in contact 
with an electron reservoir. The capacitance of the tunnel barrier is denoted 
CJ, and the distance between the gate electrode and the small island, defining  
C0, is such that tunneling is suppressed [69]. With VG=0, the system is 
neutral; the small island containing n positive charges q, which are 
neutralized by an equal amount of negative charges -nq, Figure 2-24(a). 
When the gate voltage increases, the number of electrons in the small island 

may change by amounts Ge VCq 0= , Figure 2-4(b). In particular, the field 

induced by the gate causes an uncompensated charge nq to appear on the 
island. The capacitance “seen” by the island is C0+CJ. Therefore, the 

charging energy accompanying the injection of a charge Ge VCq 0=  is, 
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2
,                                                                                (36) 

It is noticed that, while the external charge eq  is continuous, the island 

charge may only increase in discrete steps of value q. Therefore, the island 
charge is a step-like function of the gate voltage. As a function of 
temperature, the average number of electrons in the island is given by [68] 
(37), Figure 2-5. 
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2.2.3  Single-Electron Tunneling 

Upon the island being populated by the injected charge, the charge 
tunnels through CJ and diffuses to the leads in a characteristic time τ  given 
by the uncertainty principle (38) [69]. 

τ
≥CE ,                                                                                                 (38) 

If the bias VG causes the injection of a charge q every τ  seconds, then a 
current of magnitude τ/qI =  is set up, Figure 2- .  
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Figure 2-7. Single-electron tunneling schematic. 

However, if this time is too short, then the current would appear to be 
continuous, as opposed to pulse-like. In this case, no discrete, single-electron 
tunneling event is observed. To observe single-electron tunneling, the 
characteristic time must exceed the product of the capacitance times the lead 
resistance, RC>τ , a condition which leads to a minimum value for lead 
resistance, Eq. (38).   

2

2

q
R >                                                                                                   (38)  

Notice that transport is occurring through a tunneling junction.  

2.2.3.1  Quantum Dots 

 Quantum Dots (QDs) are structures in which electrons are confined in all 
three dimensions [59]. These structures include both gated layered structures  

7
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grown by MBE, and metal and semiconductor nanoparticles up to several 
nanometers, e.g., ~1-6 nm, in size. Because of their small size, which is 

comparable to that of the Bohr exciton, 2
ex

2
ex ema ⋅ε= , electron 

energy levels in QDs are quantized. Electron transport through a QD is 
mediated by tunnel barriers, see Fig. 2-8, and is effected via a series of 
individual tunneling events across the barriers.   
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Figure 2-8. (a) Sketch of quantum dot energy level diagram. The continuous line denotes 
equilibrium, while the dashed line denotes reflects an applied voltage, V. The dashed arrow 
denotes suppressed current due to Coulomb blockade by QD electrons.  (b) Equivalent circuit 
of QD. 

The tunneling rate across the barriers is characterized by the change in free 

energy, ∆ , resulting from the tunneling event, and the tunnel resistance, tR

( 2
t ehR >> ), and is given by [70], [71] Eq. (39). 

∆−−

∆=Γ

Tk
exp1Re

B

t
2

.                                                                (39) 
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In general, the tunneling rate will depend on the number of available (empty) 

states within the QD. If fΓ  is the tunneling rate into level f in the QD, fg  is 

the degeneracy factor, fm  is the number of electrons already occupying the 

level, and ( ) ( )( )Tkexp11F Bε+=ε  is the Fermi function, then the total 

tunneling rate is given by, 

( ) ( )∆−ε−⋅Γ=Γ
f

QD
ffff

FS
QD Fmg ,                                                  (40) 

where the initial and final electron energies are related by, ∆−ε=ε QD
f

FS
i ,

FS
iε  being the initial electron energy [232], [233]. Notice that, at small bias 

voltages, the occupancy of QD states precludes tunneling due to Coulomb 
blockade.  

2.2.4  Quantized Electrostatic Actuation 

In contrast to conventional electrostatically-actuated MEM devices, 
which exhibit continuous displacement versus bias behavior prior to pull-in, 
the advent of precision nanoelectromechanical fabrication technology [72] 
and carbon nanotube synthesis [17] has enabled access to beams with 
dimensional features (gaps, lengths, widths, and thicknesses) of the order of 
several hundred nanometers in which conditions for the manifestation of 
charge discreteness become also evident. In fact, recent [73] theoretical 
studies of suspended (doubly anchored/clamped) carbon nanotubes (CNTs) 
in which Coulomb blockade dominates current transport have predicted that 
charge quantization in the CNTs will result in quantization of their 
displacement. 

Specifically, Sapmaz, et al. [73] considered a single-wall nanotube  
(SWNT) modeled as a rod of radius r, and length L, and separated by a gap 

0g  over a bottom electrode, Fig. 2-9.  
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Figure 2-9. Schematic of suspended CNT as doubly anchored beam. 
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They described its behavior as follows. As the actuation voltage, GV ,

applied between the CNT and the bottom electrode increases, the beam 
bends downwards causing the applied electrostatic energy to be converted 
into elastic deformation energy, given by,

( )[ ] ′+′′=
L

Elastic z
T

z
EI

dxxzU
0

22

2

ˆ

2
,                                              (41) 

where E and 44rI π=  are the CNT Young’s modulus and moment of 

inertia, respectively, and TTT += 0
ˆ  is total stress, comprised of the 

residual stress, 0T , and the stress induced by GV , which is given by, 

2

0

2 ,
2

rSdxz
L

ES
T

L
π=′= .                                                               (42) 

Since, ignoring residual stress, the beam elastic energy must correspond 
to the electrostatic energy that induced it, the total energy the state of 
deformed the beam arrives at is that at which the sum of elastic and 
electrostatic energies is a minimum. In the Coulomb blockade regime, 
however, as the bias voltage V is raised, a discrete number of charges, nq,
populates the suspended CNT. Thus, the electrostatic energy must include 

this contribution, in addition to the actuation voltage ( GV )-induced 

deformation. Taking both electrostatic energy sources, into account, Sapmaz, 
et al. [73] approximated the total electrostatic energy by, 

( )( ) ( )
( )

( ) ( ) ( )−≈−=
L

G

G

ticElectrosta dxxz
RL

nq

L
L

R
nq

nqV
zC

nq
xzU

02

2
2

2
2

ln

2
 (43) 

then, minimizing the total energy with respect to z, the following equation 
for the CNT bending was obtained, 

( )
RL

nq
FzTzIE

2

2

0 ==′′−′′′ .                                                                    (44) 

where 0F  is the electrostatic for per unit length. The bending of the doubly-

anchored CNT, with the boundary conditions 
0)()0()()0( =′=′== LzzLzz  was given as, 
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Finally, the effects of charge discreteness are manifest upon examining 
the maximum displacement as a function of actuation voltage, and given by 
(45) and (46). 
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/2ln2 0

.                                                      (47) 

For a given applied voltage, (47) gives the value of n that minimizes the total 
energy, where nδ  is a small correction. Clearly, (45)-(47) reveal that the 
beam displacement is quantized, i.e., its position changes in discrete steps 
every time an electron tunnels into it. 

2.3 Manifestation of Quantum Electrodynamical Forces

 When the proximity between material objects becomes of the order of 
several nanometers, a regime is entered in which forces that are quantum 
mechanical in nature [74-76], namely, van der Waals and Casimir forces,
become operative. These forces supplement, for instance, the electrostatic 
force in countering Hooke’s law to determine the beam actuation behavior. 
They also may be responsible for stiction [77], i.e., causing close by 
elements to adhere together and, thus, may profoundly change actuation 
dynamics.  

2.3.1   van der Waals Force 

 van der Waals forces, of electromagnetic and quantum mechanical origin, 
are responsible for intermolecular attraction and repulsion. When adjacent 
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materials [78] are separated by distances R>>r, where r is the atomic radius, 
the wave functions decay exponentially and no bonding forces are operative. 
At these distances, each molecule (atom) may be characterized as a dipole 
antenna emitting a fluctuating field with a frequency distribution 
characterized by an average frequency ϖ . For distances, R, smaller than the 

average emitted wavelength, i.e., λ<R  or 1<<
c

Rϖ
, the emitted fields are 

reactive in nature, i.e., they vary with distance as 31 RE ∝ . Therefore, 

with reference to two emitting molecules (atoms), separated a distance R and 

endowed with dipole operators ωω αEd >=< ˆ , the van der Waals interaction 

energy between them derives from the self-consistent field induction at each 
others’ site. In particular, atom 1 induces a field at the site of atom 2 given 

by, ( ) 3
11

ˆ2ˆ RdE ind ≈ , which, in turn, induces a dipole at the site of atom 2 

given by, ( ) 3
122

ˆˆ Rdd ind ⋅= ωα , where ( )ωα 2  is the polarizability at the 

site of atom 2. Similarly, the induced dipole at atom 2 induces a field at the 

site of atom 1 given by, ( ) ( )
6

1
23

2
2

ˆˆ
1ˆ

R

d

R

d
E ind ⋅≈≈ ωα . Thus, the average 

ground state dipole energy of atom 1 is given by [78], 

( ) >⋅<>=⋅=< *
116

2
1

*
1

ˆˆˆˆ dd
R

EdRU ind α
ω  and is a function of its average 

dipole fluctuation. The signature of van der Waals forces is the 
71 RdRdUF vdWvdW ∝=  distance dependence.

For calculations, Desquesnes, Rotkin, and Aluru [79] have modeled the 
van der Waals energy by the expression,

( ) ( ) 21

21
6

621

1 2 ,
dVdV

VVR

Cnn
RU

V VvdW = ,                                                   (48) 

where 1V  and  2V  embody two domains of integration of the adjacent 

materials,  1n  and  2n    are the densities of atoms pertaining to the domains  

1V  and 2V , ( )21 ,VVR   is the distance between any point in 1V  and  2V ,

and 6C , with units [ ]6ÅeV , is a constant characterizing the interaction 

between atoms in materials 1 and 2. While a good first step for modeling 
purposes, the exclusively pair wise nature of the contributions embodied by 
(46) may not be accurate enough for tube geometry since it is known [80] 
that, in exact calculations, one needs to consider three-particle, four-particle, 
etc interactions, or equivalently multi-pole interactions. These multiple 
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interactions must be included to improve modeling results. Nevertheless, 
applied to a SWNT beam of diameter r and suspended by a gap R, they 
obtained the van der Waals energy per unit length of the CNT as, 

( ) ( )( )
( )( ) 2/722

2222
6

2

23

rrR

rRrRrrC

L

U vdW

−+

+++
=

πσ
,                                     (49)  

where 238 −≅ nmσ  is the atomic surface density, L is the CNT length. The 
corresponding van der Waals force is given by, 

( )( ) ( )
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=
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 As mentioned previously, the van der Waals force is one contributor to 
the phenomenon of stiction. Thus, its prominence must be accounted for in 
the design of advanced structures, e.g., nanoelectromechanical frequency
tuning systems [54] based on quantum gears [81], as estimates of its 
magnitude are useful in designing against it [18, 82]. 

2.3.2   Casimir Force 

The Casimir force arises from the polarization of adjacent material 
bodies, separated by distances of less than a few microns, as a result of 
quantum-mechanical fluctuations in the electromagnetic field permeating the 
free space between them [74-77]. It may also arise if vacuum fluctuations are 
a classical real electromagnetic field [83]. The force may be computed as 
retarded van der Waals forces or as due to changes in the boundary 
conditions of vacuum fluctuations; these are equivalent viewpoints as far as 
it is known [80]. 

When the material bodies are parallel conducting plates, separated by 
free space, the Casimir force is attractive [74], however, in general whether 

field as 
well
the intervening space. For example, repulsive forces are predicted by 

 boundarythe force is attractive or repulsive [82], [84] depends on bot h the
  conditions, including specific geometrical features, imposed on the

 as the relationship among material properties of the plates and 
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Lifshitz formula [75] if the material between two plates has properties that 
are intermediate between those of the plates. 

The startling aspect of the Casimir force is that it is a manifestation of the 
purely quantum-mechanical prediction of zero-point vacuum fluctuations 
[74-77] (see Appendix A), i.e., of the fact that, even in circumstances in 
which the average electromagnetic field is zero, its average energy shows 
fluctuations with small but non-zero value, i.e., there is virtually infinite 
energy in vacuum. Research efforts aimed at the practical exploitation of this 
extremely large energy source, residing in free space, are under way [85-87]. 

Calculating the Casimir force entails circumventing the fact that the zero-

point vacuum energy, =
n

nFieldE ω
2

1
 diverges, and many techniques to 

accomplish this have been developed [74-77], [88], [89], but including these 
in our presentation is well beyond the scope of this article. The essence of 
many of these calculations, however, is to compute the physical energy as a 
difference in energy corresponding to two different geometries, e.g., the 
parallel plates at a distance “a” apart, and these at a distance “b,” where the 
limit as b tends to infinity is taken. For flat surfaces, the infinite part of the 
energy cancels when the energy difference of the two configurations is 
taken. The calculated zero-temperature Casimir energy for the space 
between two uncharged perfectly conducting parallel plates, Figure 2-10,  

z
A

z
A

Figure 2-10. Casimir effect geometry. 

is given by, 

( )
3

2 1

720 z

c
zU Casimir

π−= ,                                                                      (51) 

and, the corresponding Casimir force per unit area is given by, 
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4

20 1

240 z

c

A

FCas π−= .                                                                               (52) 

For planar parallel metallic plates with an area 21cmA =  and separated a 

distance mz µ5.0= , the Casimir force is N6102 −× .

Many experiments measuring the Casimir force under various conditions, 
such as effecting normal displacement between a sphere and a smooth planar 
metal and between parallel metallic surfaces, as well as, effecting lateral 
displacement between a sphere and a sinusoidally corrugated surface, have 
been performed [89-95]. A good recent review of experiments and theory for 
Casimir forces has been published by Bordag, Mohideen, and Mostepanenko 
[89]. 

Since the Casimir energy/force is a sensitive function of the boundary 
conditions, corrections to the ideal expression (52) have been introduced to 
account for certain deviations. For example, for the sphere-plate geometry, 
the zero-temperature Casimir force is given by, 

( )
3

3
0

360_ z

c
RzF

PlateSphereCas

π−=
− ,                                                    (53) 

where R is the radius of curvature of the spherical surface. 
 To include the finite conductivity of the metallic boundaries, two 
approaches have been advanced. In one, the force is modified as [96, 97], 
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where pω  is the metal plasma frequency [64]. In the other, obtained by 

Lifshitz [98], the correction is ingrained in the derivation of the Casimir 
force, and is given by, 
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where 21 ps +−= ε , ( ) ( )∞

+
′′

+=
0 22

2
1 ω

ξω
ξεω

π
ξε d

i
i  is the dielectric 

constant of the metal, ε ′′  is the imaginary component of ε , and ξ  is the 

imaginary frequency given by ξω i= .

 Corrections due to nonzero temperature yield [77], 

( ) ( ) ( )+= ζ
π

fzFzF Cas
T

Cas 2

0 720
1 ,                                                        (56) 

where cTzk B=ζ , Bk  is Boltzmann constant, T is the absolute 

temperature, and  

( )
( ) ( ) ( )
( ) ( ) ( ) >−

≤−
≈

21,72038

21,4532
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ζπϑπζ

ζπζϑπζ
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f ,                       (57) 

with ( ) ...202.13 =ϑ .

 Roy and Mohideen [90] included originally the effects of surface 
roughness, which changes the surface separation, by replacing the flat plate 
with a spatial sinusoidal modulation of period λ , and the energy averaged 
over the size of the plates, L, to obtain, 

−>=+<
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mCasimir
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AzU
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720

2
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π
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π

,             (58) 

where A is the corrugation amplitude. The corresponding Casimir force is 
then given by the so-called, Force Proximity Theorem [99] relating the 
parallel plate geometry and the sphere-plate geometry, namely, 

><= RouchnessCasRoughnessCas URF __ 2π                                                   (59) 

For L<<λ  and Azz >+ 0 , where 0z  is the average surface separation 

after contact due to stochastic roughness of the metal coating, they 

recommend the following coefficients in (58): 10 =C , 32 =C , 8454 =C ,

4356 =C .  A more accurate and general model for stochastic surface 

roughness, advanced by Harris, Chen, and Mohideen [88], includes the 
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effects of surface roughness, by replacing the flat plate with the mean 
stochastic roughness amplitude A, to obtain, 

( ) ( ) +=
2

0 61
z

A
zFzF Cas

r
Cas ,                                                     (60)

where A is derived from direct measurements via an Atomic Force 
Microscope (AFM). 

2.4  Quantum Information Theory, Computing and Communications 

 The advent of nanoscale fabrication techniques has brought within our 
reach the possibility of producing systems whose predominant behavior is 
described by quantum mechanics (QM). While the engineering of systems 
based on exploting this new physics/technological paradigm is still in its 
infancy, this new paradigm is ultimately expected to manifest itself in the 
ushering of a ‘new electronics’ technology era. Obviously, this ‘new 
electronics’ is expected to change the way in which systems are implemented 
to effect the functions of information processing, computing and 
communications [100-111]. These functions, in turn, will exploit the 
properties of quantum mechanical wave functions. In this section we 
introduce key aspects of the fundamental physics on which these functions 
are predicated, in particular, we focus on the concepts underpinning quantum 
information processing, namely, quantum bits (qubits), quantum 
entanglement, the Einstein-Podolsky-Rosen (EPR) State, quantum gates, and 
quantum teleportation. 
  Quantum information is represented by quantum bits or qubits [103]. 
Qubits are fundamental physical entities, such as a two-level atom, which 
may adopt two possible quantum (stationary) states (see Appendix A), say 

the mutually orthogonal states 0  and 1 . Due to its quantum nature, 

however, the most general state is expressed as, 

10 ba +=ψ ,                                                                                  (61) 

i.e., as a superposition of both states. Thus, a measurement of the qubit will 

cause its wavefunction to collapse into the state 0  with probability 
2

a , or 

into the state 1  with probability 
2

b . This means that during its time 

evolution a qubit may be partly in both the 0  and 1  state at the same 
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time, i.e., to the degree that a and b may adopt an infinity of values, the qubit 
has the potential to be in any of these. A quantum system possessing n qubits 

is said to have n2   accessible mutually orthogonal quantum states. For 
example, a system containing two noninteracting qubits will have the four 

states: 00 , 01 , 10 , 11 . States such as these, which represent the 

juxtaposition of independent or noninteracting systems (qubits), are called 
tensor product states.   

2.4.1  Quantum Entanglement 

 In general, a tensor product provides the mathematical description of the 
state of a system that is constituted by bringing together noninteracting 
quantum systems, assuming that they remain without interacting [60]. 
Comprehending this concept is useful to get a clear understanding of the 
definition of an entangled state [107-111].  
 In particular, if associated with two quantum systems there are vector 

spaces 1V  of dimension 1N , in which resides a vector φ ,  and 2V  of 

dimension 2N , in which resides a vector χ , and where 1N  and 2N  may 

be finite or infinite, then the tensor product of 1V  and 2V  is denoted by the 

vector space V  [60], 

21 VVV ⊗= ,                                                                                              (62) 

of dimension 21NN , where the vector, 

χφχφ =⊗ ,                                                                               (63) 

associated with the overall space V , is called the tensor product of φ  and 

χ .

 If the vectors φ  and χ  can be expressed in terms of the respective 

bases { }iu  and { }iv , so that,  

=
i

ii uaφ ,                                                                                     (64) 

and 



68 Chapter 2

=
j

jj vbχ ,                                                                                    (65) 

then, the tensor product may be written as, 

⊗=⊗
ji

jiji vuba
,

χφ ,                                                            (66) 

from where it is seen that the components of a tensor product vector are the 
products of the components of the two vectors of the product. An example 

will help appreciate the meaning of a tensor product immediately. Let xV

and yV  be two vector spaces in which the bases { }x  and { }y , reside. 

Then the tensor product of the spaces is given by, 

yxxy VVV ⊗= ,                                                                                       (67) 

and the tensor product of the bases is given by, 

yxxy = .                                                                                        (68) 

Consequently, if X and Y are operators in xyV , then we have, 

( ) ( ) xyxyxxyxxyxXxyX ==== ,                             (69) 

( ) ( ) xyyyxyyyxyYxxyY ==== .                              (70) 

Essentially, then, the operators acting over a tensor product of spaces operate 
only on the vector space to which they belong.  
 Now, assume that the global state of the system is embodied by the 

wavefunction 21 VVV ⊗=∈ψ . Then, according to the above, 

21 ψψψ ⊗= , where 11 V∈ψ   and 22 V∈ψ . A quantum system is 

said to be entangled if it is impossible to express its global state as the tensor 

product, i.e., 21 ψψψ ⊗≠ . Thus, in an entangled system, it is not 

possible to act on one of its vector states independently without perturbing 
the others. It is said then, that the states in an entangled system are 
correlated.
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2.4.1.1  Einstein-Podolsky-Rosen (EPR) State 

 In a system with two noninteracting qubits, the global state may be 
expressed as [108], 

11100100 4321 cccc +++=ψ ,                                             (71) 

where 1
2 =

i
ic  and each term is the tensor product of the components of 

the corresponding qubits. When 041 == cc , and 2132 == cc , the 

resulting state, 

( )
2

1001 +
=EPRψ ,                                                                         (72) 

is called an EPR state [108]. The EPR state is not a tensor product of the 
vector states, therefore, it represents an entangled state; it does not belong to 
any of the individual vector spaces, but is a combination of them. Associated 
with an EPR state is the so-called Bell-state basis [108], which embodies the 
possible states that can result upon measuring two-state quantum systems. In 

particular, if 
1

0 ,
1

1  represent the two states of particle 1, and 
2

0 ,
2

1

represent two states of particle 2, then the measurement of their EPR pair 
state may result in one of four state vectors, namely, 

( )
2

1100
2121

±
=Ψ± ,                                                                 (73) 

and 

( )
2

0110
2121

±
=Φ± .                                                                  (74) 

                               
 One of the most transparent demonstrations of entanglement and its 
implications was the experiment by Kwiat et al. [107], see Figure 2-11 
below.  This experiment exploited the principle of type-II parametric down 
conversion to produce directed beams of polarization entangled photons. In 
type-II parametric down conversion [107] an incident laser beam pump 
passes through a crystal, such  as beta barium borate, and can spontaneously  
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Figure 2-11. Entangled photons via type-II parametric down conversion.  (After [107].) 

decay into two photons of lower energy, one polarized vertically and one 
polarized horizontally, for instance. In particular, each photon can be emitted 
along a cone in such a way that two photons of a pair are found opposite to 
each other on the respective cones. If it occurs that the photons travel along 
the cone intersections, however, then neither photon is in a definite 
polarization state, but their relative polarizations are complementary, i.e., 
they are entangled. Taking the state of the photons along the intersecting 
cones as entangled, i.e., 

( )
2

2121
HVVH −

=Φ− ,                                                           (75) 

we see that, because the polarization relationship of complementarity  must 
be maintained, whenever photon 1 is measured and found to have vertical 
polarization, the polarization of photon 2 will be horizontal, and vice versa. 
This means that no matter the state in which photon 1 is found, the state of 
photon 2 can be predicted to be in the orthogonal state when measured. 
Entanglement, therefore, enables a strong correlation among the photons. 
This is a general property among entangled particles. By appropriately 
controlling the evolution of aggregates of particles, it is possible to induced 
them into entangled states. The agents that control the evolution of states are 
called quantum gates.

2.4.1.2  Quantum Gates 

 Given a qubit prepared in the initial state ( )0tψ , its state at a 

subsequent time t is given by ( ) ( ) ( )00, tttUt ψψ = , where U is the 

qubit’s transition matrix[60] Unitary reversible matrices U prescribing the 
evolution of qubits are called quantum logic gates [102], [111]. Thus, a 
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quantum gate transforming a qubit state such that 00 →  and  

( )1exp1 tiω→ , would have the form [102], 

= θθ
ie

U
0

01
)( ,                                                                                 (76) 

where tωθ = . Since U is a unitary reversible transformation, the quantum 
gate must be reversible. This means that, given the output, one must be able 
to uniquely determine the value of the input. There are a number of 
important quantum gates of which quantum information processing systems 
are made of, namely, the identity gate [100-111], 

00 → ,                                                                                              (77) 

11 → ,                                                                                                (78) 

the NOT gate, 

10 → ,                                                                                              (79) 

01 → ,                                                                                              (80) 

the Z gate, 

00 → ,                                                                                              (81) 

11 −→ ,                                                                                             (82) 

and the Hadamard gate, 

100 +→ ,                                                                                      (83) 

101 −→ .                                                                                      (84) 

                                                                                                                                                     
 Quantum gates are represented graphically, as in Figure 2-12 [111]. In this 
figure the operation of the gate is read from left to right using the following 
convention. Each line represents the propagation or evolution of the input 
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state and could, accordingly, represent propagation via a wire, in time, in 
space, or in any other fashion evolution may be intended to take place. The 

gate has control qubits and target qubits. A control qubit, such as x , has its 

line of propagation (wire) tapped at a dot. A target qubit, such as y , has its 

line of propagation (wire) XOR’ed with a control bit. The gate’s purpose is 
to effect a transformation on the target qubit based on the values of the 
control qubit, in particular, if the control qubit is set to one, then the target 
qubit is inverted. The realization of classical logic gates, which are 
inherently irreversible, by totally reversible quantum gates may be effected 
with the use of the Toffoli gate, see Figure 2-12(b). The Toffoli gate is an 
irreversible gate that takes three inputs, namely, two control qubits and one 
target qubit. By applying the Toffoli gate twice to its three input qubits, they 
are repoduced, thus the irreversible gate is made reversible [111]. 
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Figure 2-12. Truth tables and graphical representations of some quantum gates. (a) Control-
NOT gate. (b) Control-control-NOT (Toffoli) gate. (c) Bit swapping.                            
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 The control-NOT (CNOT) gate, as can be seen from Figure 2-12(a), 

implements the exclusive-OR (XOR) operation. Thus, the gate inverts y ,

if 1=x , and leaves it as is if  0=x . This operation is expressed as, 

( ) 2mod12 yxxyxC += .                                                            (85) 

Applied to a pair of single product states of two qubits, the CNOT gate 
produces a set of entangled qubits, i.e., 

( ) ( )
212121112 1100010 +=+C .                                             (86) 

Similarly, since the CNOT gate is reversible, when applied to an entangled 
state, it produces a set of disentangled states, i.e., 

( ) ( )
211212112 0101100 ±=±C ,                                             (87) 

and 

( ) ( )
211212112 1100110 ±=±C .                                              (88) 

These operations are essential for quantum teleportation. 
 One may recall that a classical NOT gate is called universal in the sense 
that any other logic gate may be created by combining several NOT gates. 
Similarly, a universal quantum gate should generate all unitary 
transformations of n qubits. It can be shown that such a gate is realized by 
combining a pair of gates, namely, one that produces a general rotation on a 

single bit,  ( )φθ ,UniversalU , where, 

( ) ( ) ( )
( ) ( )−

−
=

−

2cos2sin

2sin2cos
,

θθ
θθφθ φ

φ

i

i

Universal
ie

ie
U ,                        (89) 

and a CNOT gate [100]. 

2.4.2  Quantum Teleportation 

 According to Bennett et al. [106], quantum teleportation is “a process that 
disembodies the exact quantum state of a particle into classical data and EPR 
correlations, and then uses these ingredients to reincarnate the state in 
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another particle which has never been anywhere near the first particle.”  The 
process does not involve sending any qubits, rather, the sender and the 
receiver must have access to two other resources, namely, the ability to send 
classical information, and an entangled EPR pairs of particles previously 
shared between them.  
 As per the sketch of Figure 2-13, teleportation proceeds as follows.  

Figure 2-13. Quantum teleportation of state ψ . (After [108].)

There are three particles involved, namely, particle 1, whose unknown state 

11
10 ba +=ψ  (a and b are the unknowns) is to be teleported by a  

sender to a receiver, and particles 2 and 3, which are prepared by an EPR 
source into an entangled EPR state, for instance, 

( )
2

1100
3232

23

+
=Φ+ .                                                                (90) 

Of these two entangled particles, one, namely, particle 3, is sent by the EPR 
source to the receiver and the other, particle 2, is supplied to the sender. 
Notice that locally both the sender and the receiver possess total knowledge 
of the states of particles 2 and 3, respectively. However, globally, the three 
states are described by tensor product state, 

( )( )
2

110010
323211

123

++
=

ba
ψ ,                                        (91)                          

consisting of the entangled pair, particles 2 and 3, and the unknown state. 
Now, the specific actions that effect the teleportation are as follows. The 
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sender performs a joint (XOR) measurement between particles 1 and 2. As 
we saw previously, the outcome of measuring a pair of single product states 
of two qubits, such as that of particles 1 and 2, has four possible outcomes 

( )
2

1100
2121

12

±
=Ψ± ,                                                             (92) 

and 

( )
2

0110
2121

12

±
=Φ± .                                                             (93)                          

Taking this into account, the direct product state 123ψ  may be expanded in 

terms of these four outcomes and rewritten as, 

( )

( )

( ) ( )

( )
3312

331233

123312

123123123123
123

10
2

1

10
2

1
10

2

1
10

2

1

2

111100011000

ab

abba

ba

bbaa

+−Ψ+

+Ψ++−⋅

Φ++Φ=

+++
=

−

+

−+

ψ

.                   (94) 

The result of performing the XOR between particles 1 and 2 will be the 

collapse or projection of the global tensor product state  123ψ  along one of 

the four vector states 
12

±Ψ  and 
12

±Φ  with equal probability, namely, ¼.  

Notice that this will leave a new global state consisting of the tensor product 

of one of the vectors 
12

±Ψ  and 
12

±Φ , at the sender, and a modified 

qubit 3, at the receiver. One possible result might be, 

( )
3312

10 ab +Ψ+ .                                                                          (95) 

If these were the case then, to complete the teleportation process the sender 
has to communicate to the receiver, using classical message, that the global 
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wave function collapsed along 
12

+Ψ , and that for its qubit to embody the 

unknown state and, hence, complete the teleportation, it has to effect the 

unitary transformations: 
33

10 →  and 
33

01 →  on its qubit 3.  

2.4.3  Decoherence 

 A quantum system is said to decohere when, in the course of its time 
evolution, it loses energy to the environment. Under these circumstances its 
transition matrix, U, no longer conserves the norm of the states it acts upon. 
Since the states change in a random manner, the property of superposition of 
states is no longer maintained. From thermodynamics we know that systems 
that experience energy loss are irreversible, therefore, decoherence precludes 
the realization of quantum gates, e.g., the Toffoli gate, which must be 
reversible. The ability of a quantum system to maintain its coherence and, 
thus, be capable of manifesting superposition and entanglement, is captured 
by the decoherence time. Obviously, the system is useful for quantum 
information processing only during this period of time. A system made up of 

decoherence time. i.e., as it becomes irreversible. The decoherence of a 
qubit, in particular, is quantitatively captured by the quality factor of 
quantum coherence [112], 

ϕϕ πν= TQ 01 ,                                                                                        (96) 

where 01ν  is its transition frequency and ϕT  is the coherence time of a 

superposition of states. While error-correcting codes techniques have been 
proposed to combat errors stemming from decoherence, the need for an 
intrinsically  coherent  system to begin with,  remains. Therefore, the 
conception of approaches exhibiting long decoherence times, with respect to 
the intended computational function to be implemented, is crucial, if 
quantum information processing is to become practical. Vion et al. [112] 
point out that, given a quantum computation with elementary operations 

taking time opt , active compensation of deciherence requires s'Qϕ  greater 

than op01
4 t10 ν . A number of approaches to the physical implementation of 

qubits, and their respective decoherencetimes, are discussed in Chapter 4.  

many qubits will exhibit a comp unded amount of errors as it approaches its o
,
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2.5  Summary 

 This chapter has dealt with physical phenomena exploiting wave-particle 
duality. We began by addressing conditions that manifest charge 
discreteness, and its consequences on the performance of transmission lines, 
namely, persistent currents and current exhibiting Coulomb blockade 
(pulsating) behavior. Then, after intr ducing the concepts of single-electron 
tunneling, the effect of charge discreteness in electrostatic actuation was 
presented. In this context, we saw that charging dominated by Coulomb 
blockade may lead to quantized electrostatic actuation. Following this, we 
addressed the manifestation of quantum electrodynamical forces, in 
particular, van der Waals and Casimir forces and their substantial influence 
in moving nano- and micro-meter-scale devices. The chapter concluded with 
an exposition of the salient points of quantum information theory, computing 
and communications. In particular, we focused on the concepts  of quantum 
bits, quantum entanglement, the Einstein-Podolsky-Rosen (EPR) state, 
quantum gates, and quantum teleportation. Lastly, the crucial issue of 
decoherence  discussed.

o

was



Chapter  3 

NANOMEMS PHYSICS: QUANTUM WAVE 
PHENOMENA 

3.1 Manifestation of Wave Nature of Electrons

The principles of nanoscale devices are based on the physics dominating 
this dimensional regime. In particular, as the device size is reduced below 
about 100nm, the electron behavior stops obeying classical physics, in which 
its momentum and energy are continuous, and starts obeying quantum 
mechanics, in which it behaves as waves with quantized energy, Figure 3-1. 

Figure 3-1. Size-dependent behavior of electrons. 
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Then, depending on the particular device structure, behavior such as 
interference, diffraction, etc., characteristic of waves, or Coulomb 
interaction, characteristic of particles, may be prominent. The various types 
of behavior are presented next. 

3.1.1  Quantization of Electrical Conductance 

The concept of electrical conductance quantization emerges from 
considering electron transport in short, narrow (quantum) wires, Figure 3-2. 

EF1

+ -

V

e

d

EF2EF1

+ -

V

e

d

EF2

Figure 3-2. Electron transport down short, narrow wire between electron reservoirs with 
Fermi levels 1FE  and 2FE , under the influence of applied voltage V. 

Here we have a short, narrow wire connected between two electron 
reservoirs characterized by Fermi seas (contacts) filled up to energy levels 

1FE  and 2FE , Under the influence of an applied voltage V, which misaligns 

the Fermi levels, electrons travel from reservoir 1FE  towards reservoir 2FE ,

in an effort to equalize the Fermi levels and, as a result, establish a current. 
Since the wire is very short, transport evolves without scattering, i.e., 
ballistically. However, since the wire is very narrow, the uncertainty 
principle forces its transverse momentum (and consequently, its energy) to 

be quantized, i.e., dnp ~⊥ , where n is an integer representing the band 

in which transport is occurring.  

3.1.1.1  Landauer Formula 

 The question before us is: What is the conductance of this system? The 
answer was determined by Landauer [113], and may be arrived at as follows 
[76]. The current is the balance between the number of electrons being 
launched from the left-hand reservoir into the wire, and the number of 
electrons being launched from the right-hand reservoir into the wire. In 
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particular, since in the momentum interval dp, this number equals π2dp ,

the corresponding current is π2evdpdJ =+ . Therefore, the total left-right 

current, assuming a single band, and taking into account two spins, is given 
by: 

πππ
1

0

1

2
2 F

E
eE

dE
e

vdp
e

J
F

==⋅=
∞−

∞

+
.                                                (1) 

A similar result is obtained for the right-left current,  

πππ

µ
2

0

2

2
2 FeE

dE
e

vdp
e

J ==⋅=
∞−

∞

−
 ,                                               (2) 

so, the net current from left to right is: 

( )21 FF EE
e

JJJ −=−= +− π
.                                                            (3) 

Then, width the substitution eVEE FF =− 21 , we obtain, 

V
e

J
π

2

= .                                                                                                (4) 

The proportionality factor between current and voltage is the quantized 
conductance for a single band: 

π

2

0

e
g = .                                                                                                  (5) 

Assuming transport is occurring in N bands (channels) under the Fermi 
level, the total conductance is, 

0gNg ⋅= .                                                                                              (6)  

This expression clearly reveals that the conductance is quantized in unit  of 

0g . In reality, there is a finite probability that in going from the reservoir 

into the wire, and vice versa, some electrons may be backscattered, in which 
case the number of bands through which transport is operative is less than N. 
In that case the effective value for N is conductance is given by: 

s
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( )=
N

i
FnEffective ETN

1

,                                                                            (7) 

where nT  is the transmission coefficient of band n. Clearly, casting the 

conductance in terms of the transmission coefficient uncovers its dependence 
on the wave nature of the electron.  

3.1.1.2  Quantum Point Contacts 

In deriving the quantized electrical conductance of a quantum wire above 
it was pointed out that it is proportional to N, the number of bands through 
which transport is operative. The quantum point contact (QPC), Fig. 3-3, 

represents a virtually zero-length quantum wire, in which the details of nT

dominate transport and are made patently manifest in the conductance. 
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Figure 3-3. Quantum point contact. (a) Top view. (b) Cross-section. (c) Conductance versus 
gate voltage. (After [114].) 

In the QPC a constriction is formed by modulating via, e.g., depletion 
regions, the width of the channel between two two-dimensional electron gas 
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(2DEG) regions, Figure 3-3 (a), (b). A rendition of the first experimental 
demonstration of the effect is shown in Figure 3-3(c). It is observed that the 
conductance decreases approximately linearly as the gate voltage is 
increased negatively, i.e., as the constriction or channel width narrows. In 
particular, at VG=-2.2V, the channel is pinched-off and the conductance is 

zero. Notice also, that the conductance decreases in discrete steps of he22 .

 An explanation of the observed quantized conductance was attributed to 
the resistance of the constriction upon comparison with the semi-classical 
formula for the conductance of a constriction in a 2DEG, denoted GS, after 
Sharvin who derived it [68]. GS is given by, 

Wv
dE

dNe
G F

D

S

22

π
= ,                                                                               (8)  

where π*2 mdEdN D =  is the quantum mechanical density of states, 

including a factor of two for spin, *mkv FF =  is the Fermi velocity, with 

SFF nk πλπ 22 ==  being the Fermi vector and nS the 2DEG electron 

density, and W is the width of the constriction. Rewriting (65) so that the 
quantized conductance becomes explicit, one obtains, 

F

F
S

W

h

eWk

h

e
G

λπ
222 22

== .                                                                   (9) 

The fact that this equation includes the ratio FW λ  suggested that, 

experimentally, there should be deviations due to the manifestation of the 

wave nature of electrons whenever WF ~λ . In particular, it was determined 

that the plateau values of conductance are obtained whenever W is an 

integral multiple of 2/Fλ . Therefore, the quantized conductance is a 

manifestation of the wave nature of electrons in that as the voltage is 
increased from pinch-off, a new mode (band) for transport becomes 

available every time the constriction widens by 2/Fλ . The transmission 

coefficient of the constriction captures this [115]. The deviations from 
flatness of the conductance plateaus were attributed to scattering or to the 
abruptness of the constriction. Finally, as the temperature increases, the 
conductance steps smear out until at high temperature they disappear. This is 
due to the non-monoenergetic, wider, distribution of electrons launched by 
the reservoirs into the constriction [68] and exposes one of the practical 
limitations of QPCs, namely, that their utilization requires extremely low 
temperatures. 
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3.1.2  Quantum Resonant Tunneling 

One of the fundamental devices exploiting the wave nature of electrons, 
and which finds practical application at room temperature, is the resonant 
tunneling diode (RTD) [116], [117], see Figure 3-4. 
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Figure 3.4. Resonant tunneling diode. (a) Energy band diagram and operation. (b) Current-
voltage characteristic. 

The RTD consists of a double barrier sandwiching a potential well, and in 
turn clad by two electron reservoirs (contacts). The potential well 
dimensions are of the order of tens of Angstrom, such that electrons in it are 
confined and, thus, can only exist in quantized energy levels. The barrier 
lengths are of the order of a few Angstroms, so that electrons can tunnel 
through them.  
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Resonant tunneling devices are implemented in a variety well/barrier 
materials systems [116], including, Type-I heterostructures (transport occurs 
exclusively in the conduction band) such as GaAs/AlxGa1-xAs, InAs/AlSb, 
In0.53Ga0.47As/AlAs, and Type-II heterostructures (transport involves 
conduction and valence bands) such as GaSb/AlSb [118] 
 The ideal RTD current-voltage characteristic is shown in Fig. 3-4(b) and, 
with respect to Fig. 3-4(a), an accepted plausible explanation of it is as 
follows [116[, [117]. With no voltage applied, the system is in equilibrium as 
no forces are experienced by the electrons in the contacts and no current 
flows: (1) As the voltage is increased electrons tunnel the left-hand barrier, 
propagate through the well and tunnel through the right-hand barrier, and an 
increasingly large current flow; (2) When the voltage is such that the energy 
of the incoming electron distribution overlaps the first quantized energy of 

the well, 0E , maximum current transmission is achieved, this is the resonant 

tunneling condition; (3) When the overlap decreases, at higher applied 
voltages, the transmission, and thus current, rapidly decreases, thus the 
negative resistance region is produced. This explanation assumes the 
electron momentum transverse to the well is conserved. 
 Since the intrinsic time it takes an electron to traverse the structure is 

related to Heisenberg’s uncertainty principle, Γ=τ , where Γ  is the 

energy width of the quantized level, the process is very fast, i.e., ~1ps, so the 
devices are ideal for THz applications [118, 119]. 
 The simulation and modeling of RTDs is a relatively mature subject [116-
123] and includes a variety of approaches ranging from those neglecting 
scattering and charge effects to those including them to a variety of degrees. 
These models typically reproduce features of the I-V curve related to energy 
levels in the device, such as the voltages at which peak and valley currents 
occur, but not the magnitudes of these currents. A typical approach is the 
two-band tight-binding model, exposed by Schulman [124] for modeling a 
GaAs-GaAlAs RTD. In particular, by neglecting scattering and charge 
effects it focuses on calculating the transmission coefficient of the structure 
by employing an atom-to-atom transfer matrix technique that builds up the 
electron wave function as it propagates through the device layers. The model 
divides the structure as shown in Figure 3-5, assumes that the wave function 
is a combination of s-like orbitals on each cation (Ga, Al) and a p-like orbital 
on each anion (As), of the form, 

ppCssC φφ +=Ψ ,                                                                         (10)  

and sets up a tight-binding Hamiltonian of the form, 
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−−

−−
=

pEikaeU

ikaeUsE
IH

)2/1(

)2/1(
,                             (11) 

III EH Ψ=Ψ ,                                                                                   (12) 

III II I

TRANSMITTED

INCOMING

REFLECTED

AsAl . . .      AlAsGaAs . . GaAsAlAs . . AlAsGaAsGaAs . . .. . . GaAsGa

B                  W               B

Ec z( )

∆E c z( )

0        1     2 . . .       n-1   n    n+1 . . .

Right CladdingLeft Cladding

III II I

AsAl . . .      AlAsGaAs . . GaAsAlAs . . AlAsGaAsGaAs . . .. . . GaAsGa

B                  W               B

Ec z( )

∆E c z( )

0        1     2 . . .       n-1   n    n+1 . . .

III II I

TRANSMITTED

INCOMING

REFLECTED

AsAl . . .      AlAsGaAs . . GaAsAlAs . . AlAsGaAsGaAs . . .. . . GaAsGa

B                  W               B

Ec z( )

∆E c z( )

0        1     2 . . .       n-1   n    n+1 . . .

Right CladdingLeft Cladding

III II I

AsAl . . .      AlAsGaAs . . GaAsAlAs . . AlAsGaAsGaAs . . .. . . GaAsGa

B                  W               B

Ec z( )

∆E c z( )

0        1     2 . . .       n-1   n    n+1 . . .

Figure 3-5. RTD structure for two-band tight-binding modeling. 

where SE  and PE  are orbital energies prior to coupling to next neighbors, 

and a is the lattice constant. Next, solutions are formulated for the three 
regions as follows. For region I, we have (13) and (14). 
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For region II we have the transfer matrix (15). 
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For coupling regions II and III we have (16) and (17).  
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The dispersion relation, velocity, and overlap integral defining the tight-
binding are given by (18), (19), and (20). 
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Finally, the current is given by (21), where kTEx = .
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This formulation, though not fully predictive, is a useful tool for the analysis 
and design of RTDs and related devices. A typical I-V curve produced using 
this formalism is shown in Figure 3-6. 
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Figure 3-6. Current-voltage curve calculated via two-band tight-binding formalism. 
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3.1.3  Quantum Interference 

 While the RTD I-V characteristics are the result of constructive and 
destructive interference between the barriers, as a one-dimensional device 
these are really function of the degree of resonance with the energy levels in 
the well. When transport occurs in two dimensions, we may have 
constructive and destructive interference as a result of waves traveling 
thorough different paths that converge at one point. 

3.1.3.1  Aharonov-Bohm Effect 

 The quintessential example of this type of interference, which also 
exposes the wave nature of electrons, is the Aharonov-Bohm (AB) effect 
[125], Figure 3-7. The essence of the AB effect, see Fig. 3-7, is that an 

electron beam, with wavefunction inψ , split at point A into two waves, 1ψ
and 2ψ , which subsequently follow paths ABF and ACF, around a solenoid 

establishing a magnetic flux 0φ  strictly in its interior, will gain respective 

phases 1S  and 2S  so that at F the wavefunction is, 

21

21

iSiS

F ee
−− += ψψψ ,                                                                     (25) 

or, in other words, there is a phase difference ( )21 SS −  between them. In 

particular, the phase shift is given by, 
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Figure 3-7. (a) Aharonov-Bohm-effect electron wave interference setup. (After [125].) (b) 
Sketch of metallic ring implementation. 
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ϕϕ ,   (26) 

where ϕ  is the scalar potential and A  is the vector potential, which is 

related to the magnetic field inside the solenoid by (27). 

⋅=⋅= sdHldA0φ ,                                                                        (27) 

The remarkable aspect of this effect is that, because of (27), it predicts, and 
has been confirmed, that a vector potential exists even where no magnetic 
field is existent, namely, outside the solenoid in this case, and this vector 
potential endows the wave functions with a phase shift difference which 
establishes that the electrons may exhibit interference. In particular, the 
phase shift may be expressed as, 

0φχ
c

e=∆ ,                                                                                           (28) 

so that when nπχ 2=∆  there is constructive interference, and when     

( )212 +=∆ nπχ  there is destructive interference.    

                           
      
3.1.4  Quantum Transport Theory 

The wave nature of electrons is responsible for a number of phenomena, 
such as quantized electrical conductance, resonant tunneling, and quantum 
interference, which find their genesis in the quantum nature of electrons. 
Since, in fact, at dimensions approaching 100nm feature sizes, these effects 
are already beginning to dominate the characteristics of practical devices, the 
question of how to simulate the behavior of these quantum devices has 
received much attention. In this section, we focus on the principles of typical 
theoretical approaches to the quantum transport of heat and electrons. 

3.1.4.1  Quantized Heat Flow 

 In bulk devices, the rate of heat conduction per unit area is proportional to 

the temperature gradient, i.e., Fourier’s law, TAQ ∇−= κ , where κ   is the 

bulk coefficient of thermal conductivity. This expression assumes 

pCvlγκ =  [126], where γ  is a numerical factor, C is the specific heat per 
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unit volume, v is the velocity of sound, and pl  is the phonon mean free path, 

i.e., the typical device dimension plL >> . At nanoscale dimensions, 

however, plL <  and the phonons propagate ballistically. In this case, theory 

developed by Rego and Kirczenow [127], and experiments performed by 
Schwab, Henriksen, Worlock, and Roukes [128], have shown that the 
thermal conductance between isolated right and left temperature reservoirs, 
which are only interconnected through the device, is given by Landauer’s 
theory as, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ∆

−
+

∆
−

=
∞

′

∞

′

′

′

α α

αα α
ω αα ωζωωωωωζωωωω

π
κ

N N
LRLR

T

nn
d

T

nn
d

0 02

1
,    (29) 

where ( )kαω  and ( )kαζ  are the frequency and phonon transmission 

probability of normal mode α , respectively, and ( ) ( ) 1
1
−

−= iBTk
i en ωω

represents the thermal distribution of phonons in reservoir with temperature 

iT . While, it has been demonstrated in the works of Angelescu, Cross, and 

Roukes [129], and of  Rego and Kirczenow [127], that the transmission 
probability is sensitive to the geometrical features of the nanoscopic systems, 
in particular, to phonon scattering due to surface roughness and transitions 
(non-adiabatic mode coupling), the main conclusion from ( ) was that at 
low temperatures heat transport is mediated by a universal constant, namely, 

the quantum of thermal conductance due to phonons, hk B 322π  [128]. This 

has serious implications pertaining to the maximum rate at which power can 
be dissipated in NanoMEMS, and indeed nanoscale thermal transport is a 
very active area of current research [130]. 

3.1.4.2  Fermi Liquids and Lüttinger Liquids 

 As suggested at the beginning of this chapter, transmission lines (TLs) are 
ubiquitous in circuits and systems at all length scales. Since TLs should  
simply transfer or guide signals from one location to another, without 
decreasing their amplitude or power, it is imperative that they exhibit the 
lowest possible loss. This is the reason why metals, due to their lowest 
resistivity, are preferably utilized to implement interconnects (TLs).    
 The resistivity of conventional (large-dimension) TLs reflects the 
dimensionality of electron motion. For instance, in TLs of rectangular cross-
sectional area A, as dimensions shrink electron motion may become 
quantized in certain directions, thus giving rise the to the creation of energy 

29
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sub-bands or “channels” in which transport can only occur once the electrons 
acquire the corresponding necessary energy, in other words, electrons behave 
as waves with discrete (quantized) wave vectors. The quantized electrical 
conductance is a manifestation of this. In contrast, electrons in TLs of 
relatively large dimensions  may exist at  virtually all energies and, if there 
were no interaction among electrons, they would behave as free particles. 
The theory of electron behavior in a metal, when electron-electron 
interactions are taken into account, is due to Landau [131] and is denoted 
Fermi liquid theory. A Fermi liquid is considered to be made up of “quasi-
particles,” which are fictitious entities that, while being physically different 
from electrons, behave similarly to electrons, but with a different mass and 
dispersion relationship. 
 When electron transport is confined along one dimension, a behavior 
different to that of free electrons and that of a Fermi liquid is observed. The 
new aggregate of entities is said to consist of another fictitious quasi-
particle, namely, the plasmon, and is referred to as a Lüttinger liquid (LL).
 The distinction between Fermi liquid and Lüttinger liquid behaviors is 
important to the realization of nanoscale circuits and systems, not only from 
the point of view of TL properties, but also because their different behavior 
elicits new issues when connecting a Fermi liquid TL to a Lüttinger liquid 
TL. The fundamental aspects of Fermi and Lüttinger liquids are addressed 
next. 

3.1.4.2.1  Fermi Gas 

 The Fermi liquid theory explains the success of the free-electron 
approximation in the calculation of transport problems, even in the context 
of electron-electron interactions. The usual point of departure for describing 
the Fermi liquid is the Fermi gas. This is the conceptual situation in which 
the metal is modeled as a solid of volume V and length L on a side 

( )3LV = , which contains moving non-interacting electrons in much the 

same way as atoms and molecules move inside a gas container. Since the 
electrons are assumed to be independent, i.e., do not interact, they each obey 
a Schrödinger equation of the form [132], 

( ) ψψψ ErU
m

p
H =+=

2

2

0 ,                                                            (30) 

where the potential energy is taken to be ( ) 0=rU . The solution of this 

equation is then obtained by assuming that all space is filled by cubes of side 
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L, and that the wavefunction fulfills periodic boundary conditions at each of 
its faces, namely, 

( ) ( ) ( ) ( )rzLryLrxLr ψψψψ =+=+=+ ˆˆˆ ,                                     (31) 

These assumptions yield solutions of the form 

( ) σσ χφ
V

e
r

rki

k

⋅

= ,                                                                                  (32) 

where 21±=σ  represents the two values of electron spin and σχ
represents the two spin functions, 

=
0

1
21χ  , =− 1

0
21χ .                                                                      (33)                           

Because of the periodic boundary condition, the wave vector is defined by, 

xx n
L

k
π2= , yy n

L
k

π2= , zz n
L

k
π2= ,                                                (36) 

where ,...2,1,0,, ±±=zyx nnn , 2222

zyx kkkk ++= . The energy 

eigenvalues of (32) are given by, 

m

k
EE kk

2

22

==σ
.                                                                                 (37) 

 The salient properties of the electron gas as a whole are captured by its 
wave function, its total energy, and various quantities such as its specific 
heat, and its magnetic susceptibility.  The wave function is given by the 
Slater determinant [132], 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )N

N
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NNN
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ννν

ννν

ννν

φφφ

φφφ
φφφ

νψ

...21

............

...21

...21

!

1
,...3,2,1... 222

111

321
= ,            (38) 

which ensures that the Pauli exclusion principle is obeyed, i.e., if two of the 

one-particle states iν  are the same, then 0...
21

≡
Nνννψ . With ( ) 0=rU , the 
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lowest energy eigenvalue (ground state energy) is given by the sum of the 

one-electron energies up to a maximum energy level denoted by FE  and 

called Fermi energy. This is obtained when N electron states with energy less 

than FE  are occupied, and all states with energy greater than FE  are 

unoccupied. To obtain an expression for FE , one pictures the states in (38) 

as a grid of point in zyx kkk  space where they form a fine three-dimensional 

grid of spacing Lπ2 , such that a sphere centered at 0=k  would contain 

2

3

2

3

3

3

3
2

62

1

3

4

πππ
π VkVk

L

k =⋅=⋅  points of the grid when its radius is k ,

including spin. Since each point in the grid represents one electron, the 

number of grid points contained in a sphere with the largest radius, Fk ,

corresponding to FE  must equal N,

N
VkF =

2

3

3π
.                                                                                              (39) 

Thus, the largest electron momentum is, 

( ) 3/123/1

2

3
3

n
V

N
k F ππ == ,                                                                 (40) 

where n is the electron density in the metal, and the Fermi energy is, 

( ) 3/12
23/222

3
2

3

2
n

mV

N

m
E F ππ == .                                                (41) 

At absolute zero, all levels are filled up to FE . For an arbitrary energy E,

less than FE , the total number of electrons with energy less than E is given 

by, 

2/3

22

2

3
= mV

N
π

,                                                                               (42) 

from where the density of states is given by, 
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( ) E
mV

dE

dN
ED

2/3

22

2

2
=≡

π
.                                                       (43) 

Excitation of the ground state of a Fermi gas requires, due to Pauli exclusion 
principle constraints, the addition of particles with momentum greater 

Fkk > , or the destruction of a particles (creation of holes) with Fkk < .

However, if these particles came from outside the system, then the total 
number of particles N would change and we would have a different system. 
When one insists on inducing excitations that conserve the number of 

particles, then creating a particle with kkk F => , is accompanied by 

creating a hole with kkk F
′=< , i.e., particle-hole excitations which can 

be identified by two quantum numbers kk ′,  are created. 

 These excitations may be caused by a number of influences, in particular, 

a rise in temperature or the application of a magnetic field Fk . Since, under 

no interaction, all states are occupied up to Fk , electrons closest to FE  will 

require the minimum energy to excite. Thus, the energy necessary to excite 

an electron of momentum 1k , for instance, is  
( )

m

kk
E F

Excitation
2

2

1
2 −= .

Temperature-induced excitations of the Fermi gas are captured by the 
specific heat, given by [28], 

( ) TTkED
T

E
C BFel γπ ==

∂
∂= 2

2

3
,                                                         (44) 

where Bk  is Boltzmann’s constant, and magnetic field-induced excitations 

are captured by the magnetic susceptibility given by, 

( ) 22 BFED
B

M µχ == ,                                                                           (45) 

where Bµ  is the Bohr magneton. Clearly, these quantities involve the 

density of states evaluated at one point, namely, the Fermi energy. This fact, 
coupled to the circumstance that, as long as one is dealing with a non-

interacting free electron gas )( FED  will have the same value, suggests that 

solving both (44) and (45) for )( FED  and taking the ratio of the resulting 

quantity must be equal to one. This ratio, called the Wilson ratio, is given by 
[133], 
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γµ
χπ

2

22

3 B

B
W

k
R = ,                                                                                        (46) 

and captures the degree to which there are electron interaction effects. In 

W

on the Fermi liquid concept, which embodies phenomena due to electron-
electron interation, usually make use of this index as a characterization 
parameter.  

3.1.4.2.2  Fermi Liquids 

 Fermi liquid theory assumes that as the electron-electron interaction is 
turned on, from its zero value in the Fermi gas, the states in the now 
interacting system evolve directly from those of the noninteracting system, 
in such a way that the excited particles may also be labeled by momentum 

pairs kk ′, , just as in the noninteracting electron case [134]. This 

circumstance is exemplified by the evolution of states in a noninteracting 
electron gas situated in an infinite-wall potential well as the interaction 
between them is turned on very slowly (adiabatically), see Figure 3-8 [134]. 
Having identical quantum labels for noninteracting electrons and quasi-
particles implies that quantities that depend on these labels, such as the 
configurational entropy and the energy distribution, remain unchanged after 
the interaction is turned on [134]. Such is not case with the total energy 
because the energy of interaction modifies its value from the simple sum of 
that of the free particles. 
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Figure 3-8. Adiabatic continuity explains how the labels of the energy states in a 

noninteracting electron gas may continue to be used as the interaction λ  is turned on. Notice 
that, as the energy levels and their corresponding eigenfunctions evolve, the quantum labels 
(N) of the original noninteracting problem remain. After [134].

particular, deviations  Rfrom  signal the presence of interaction. Discussions 
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On the other hand, the excited particles, while finding themselves at the 

same kk ′,  as the free elecrons, exhibit a different mass and a different E vs. 

k  relationship than these, in particular, see Figure 3-9, interactions among 

the particles with states below FE , and between these and the excited 

electrons with energy above FE , are responsible for this. Thus, the 

dynamical properties of quasi-particles differ from those of free electrons. 
Under these circumstances, the theory assumes that for low-energy 
excitations, the quasi-particle distribution evolves in such a way that, if 
[133],  

( )

F

F

kkif

kkifkn
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0

10

                                                                        (47) 

(a)
-

+

--

+

(b) 

+

-

-
--

-

+

--

--
----

--

(c)
Figure 3-9. Fermi liquid representation. (a) Ground state. (b) Excited state. (c) The quasi-
particle exhibits a new effective mass, m*, which derives from its interaction with ground 
state electrons as it moves through them. This effective mass is in addition to the mass 
derived from its interaction with the crystal lattice (captured by the energy band curvature), 
i.e., the dispersion relation E vs. k.

then the distribution of the noninteracting gas is ( )kn0 , and, upon excitation 

( ) ( ) ( )knknkn δ+→ 00 , where ( ) 1+=knδ  when a quasi-particle is 

excited, and  ( ) 1−=knδ  when a quasi-hole is excited. Here, ( )σ,kk = ,
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and ( )↓↑= ,σ  represents spin. Similarly, the corresponding energy change 

is assumed to be given by, 

( ) ( ) ( ) ( )knknkkfknEE
kkk

k
′′

Ω
+=

′
δδδδ ,

2

10 ,                                  (48) 

where the first term represents the energy of an individual quasi-particle, 
defined as, 

( )
*2

2

m

kkk
E

FF

k

−
= ,                                                                             (49) 

with *m  representing its effective mass, and the second term, in particular, 

( )kkf ′,  capturing the interaction energy between quasi-particles. Further, in 

analogy with the the case of noninteracting states, the probability of a quasi-
particle occuping a state k obeys Fermi statistics, 

( )
kEe

kn β+
=

1

1 ,                                                                                     (50) 

where TkB/1=β  and kE  is given by (49). In the case of the Fermi liquid, 

it has been found that calculations may be simplified by expressing the 
interaction function as the sum of symmetric and anti-symmettric terms, 
namely, 

( ) ( ) ( )kkfkkfkkf aS ′+′=↑′↑ ,,, ,                                                  (51a) 

and 

( ) ( ) ( )kkfkkfkkf aS ′−′=↓′↑ ,,, .                                                  (51b)                          

Then, assuming that these interaction functions exhibit rotational symmetry, 

and vary slowly with k , the approximation Fkkk =′=  is made, which 

permits a Legendre expansion of the form [132], 
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2
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,, cos,cos,
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L
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kk
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′⋅==′
∞

=

θθ ,                      (52) 

where LP  are the Legendre polynomials. Inversion of the expansion gives 

the coefficients, 
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( ) ( )′Ω+= kkfPd
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which in normalized form are rewritten as, 
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L f
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π
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Following the considerations in the discussion of the noninteracting electron 
gas, excitations of the Fermi liquid are also captured by the specific heat and 
the magnetic susceptibility. These calculations assume that, for low energies, 

0
kk EE →  and *mm → , and yield [133], 

3

* 2
BF kkm

=γ ,                                                                                      (55) 

and 

2

2

0

*

1

1

π
µχ mk
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a
⋅

+
=                                                                          (56) 

from where the Wilson ratio is given by (57) in terms of the Landau 

parameter aF0 .

aW
F

R
01

1

+
= .                                                                                        (57) 

For the quintessential example of a Fermi liquid, namely, liquid helium 3 

( He3 ), a coefficient of 7.00 −≈aF  [133] was obtained experimentally, 

resulting in a Wilson ratio 33.3≈WR , which denotes strong interaction. 

 Landau’s Fermi liquid theory succeeds in capturing the phenomenology of 
near equilibrium properties, as shown above, however, in situations when it 
is not possible to write a simple expansion for f, as is the case in highly 
anisotropic metals, the application of the theory to obtain quantitative results 
becomes impossible [133], [134]. 
  A more fundamental limitation of the theory derives from the 
circumstances under which the concept of quasi-particles is valid, namely, 
when their lifetime is longer than the time it takes to turn on the interaction 
[133], [134]. In particular, if the Hamiltonian for the interacting system as a 
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function of the interaction parameter V and turn-on time Vτ  is given by 

[135], 

VtVeHH τ/
0 += ,                                                                                  (58) 

ε ετ , must be 

much greater than the interaction turn-on time, Vτ , and also much greater 

than the time it takes the quasiparticle of to absorb the excitation energy, 

given by Heisenberg’s uncertainty principle ε form, 

ε
ττ ε >>>> V

.                                                                                    (59)    

Obviously, at large excitation energies  ε=∆E , the associated time during 

which this energy is absorbed ε  may become much smaller than the 

lifetime ετ , which means that no quasiparticle has a chance to form and, 

thus, the quasiparticle concept breaks down. An estimate of this lifetime is 
given in [134] by calculating the decay rate of a quasi-particle with energy 

ε  above the Fermi energy FE , at absolute zero. Using Fermi's golden rule, 

which describes the transition between initial states i and final states f

elicited by a scattering potential ifV ,

( )−=
f

fifV εεδπ
τ ε

221 ,                                                                (60) 

assuming ifV  is constant and enforcing conservation of energy and Pauli 

exclusion principles, see Figure 3-10, one obtains, 
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Figure 3-10. Energy relationship of quasi-particle scattering process. The energyω  lost in a 
scattering event by the quasi-particle must be lower than its initial energy ε , and there must 

be an electron state at an energy ε ′  capable of absorbing at this energy ω .

then the  it takes a quasiparticle of excitation energy time to decay, 
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This results suggests that, the smaller the quasi-particle (excitation) energy 
ε , the longer will its lifetime be, in particular, as 0→ε , the lifetime tends 
to infinity. An interesting result that relates the validity of the quasiparticle 
concept to the dimensionality d  of the system was derived by Schofield 
[134], by making a change of variables to express (61) in terms of the 
momentum and energy transferred. His result was the expression, 
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The integral (62) is interpreted as follows [136]: 1) The integral over ω
accounts for the number of possible hole excitations that can be created; 2) 
The lower limit of the momentum integral, over q, signifies that a minimum 
momentum must be transferred to give a change in energy of ω ; 3) The 

denominator ( )2qvF  in the integrand embodies the fact of already having 

performed integration over the direction of the momentum and it reflects that 
there is an increased time available for small deflections; 4) The numerator, 

( )ω,qD is the matrix element for the scattering process. Examination of the 

impact of setting the dimension to 1=d  reveals that, if one assumes 

( )ω,qD  to be constant, then due to the singularity of the q integral, the 

projected quasiparticle lifetime ετ , is not much greater than, but in fact is it 

close to, ε . Therefore, (62) is violated as the quasiparticle, in principle, 

can never have enough time to form. The importance of this result is that 
Fermi liquid theory breaks down when applied to one-dimensional metallic 
systems, such as are typical at nanoscales. The new situation is described by 
the concept of the Lüttinger liquid. 

3.1.4.2.3  Lüttinger Liquids 

 The term Lüttinger liquid is used to denote the behavior of interacting 
electrons confined to one-dimensional transport [137]. Such behavior is 
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unraveled by solving the interacting electron problem. The Hamiltonian in 
question, given by (see Appendix B), 

( )+−−+

++π=
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=

+
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2
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2

2

R,Lv q

2
v0

,  (63) 

must be diagonalized to determine the pertinent types of solutions holding in 
one dimension. This Hamiltonian diagonalization is facilitated by the 
procedure of bosonization [137]-[139] discussed in detail in Appendix B. In 
essence, one-dimensional bosonization transforms a nondiagonal fermionic 
Hamiltonian into a diagonal bosonic one, with the assumption that the one-
dimensional dispersion relatonship is linear, and given by 

( ) FF kkvkE −=  [134]. The nature of this dispersion relation gives rise 

to the transport characterization in terms of spinless left- and right-moving 

electrons with respective electron densities LN  and RN , the parameter g,

which captures the electron-electron interaction strength in the problem, and 

the Fermi velocity Fv . Kane and Fisher [140] have captured this 

phenomenology with he following set of expressions. The Hamiltonian (63) 
is rewritten as [140], [141], 

[ ]LR NNNNvH λ++π= 22
L

2
R00 ,                                                      (64) 

with 

( )+=
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gg
,           

( )
2

2

1

1

g

g

+
−=λ ,                                             (65) 

with λ  as the interaction strength parameter between the left- and right-
moving electron species, and g, called the Lüttinger parameter. For 1=g
the interaction is zero, and the Hamiltonian then captures the behavior of a 
noninteracting electron gas with velocity equal to the Fermi velocity 

Fvv0 = . From (65) it is seen that repulsive interactions, which per (64) 

imply 0>λ , lead to 0<g , and the opposite is true for attractive 

interactions. In terms of the two-particle interaction potentials, 2V  and 4V ,

between fermions moving in opposite directions, namely, left and right, and 
either both left- or both right-moving, respectively, v and g are given by, 
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Kane and Fisher [140] interpret v in the case 024 >=VV , as the plasmon 

velocity, which increases above Fv  when the repulsive interactions reduce 

the compressibility of the electron gas. 

 When the electron spin is included in the Hamiltonian, the interaction 
becomes, 

( ) ( ) ( ) ( ) ( ) ( )'~~''~~' '' xxxxVxxxxV σσσσ ρρρρ −− .                                (68) 

In this case, the kinetic energy part of the Hamiltonian may be written as 
follows [133]. 

( ) ( )( )

( ) ( )qq
L

cckkcckkH

s
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s
F

sk
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−−+−=
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−
+
−+

+
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,
,,0

,

,
,,,,,,,,

v2

v

α
α

α ρρπ ,     (69) 

where the substitution, 

( ) +
+
+± =

k
sksks ccq ,,,,,ρ ,                                                             (70) 

representing density operators for spin projections ↓=↑,s  has been made. 

The potential energy, in turn, contains two types of interaction, namely, 
backward scattering and ward  scattering. The backward scattering 
Hamiltonian is given by, 

sqkktqkptksk
tsqpk

FF
ccccg

L
H ,2,,2,,,,,

,,,,
11int_

1
−−−++++

+
+= ,   (71) 

 for
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which captures scattering events in which ( ) ( )tksktksk FFFF ,;,,;, −→−
for ts ≠ . The forward scattering Hamiltonian is given by, 

( ) ( ) ( ) ( ) ( ) ( )( )−+−= − qqqgqqqg
L

H tsts ,,4,,22int_

1
αααα ρρρρ .    (72) 

The full bosonized Hamiltonian has been shown by Schulz [133] to take the 
form, 

( )
( )++=

++=

σσρ φ
π

8cos
2

2
2

1

2int_1int_

dx
a

g
HH

HHHH kin

,                            (73) 

where a is a short-distance cutoff, and for σρν ,= ,

( )∂+Π= 22

22
ν

ν

ν
ν

νν
ν φ

π
π

x
K

uKu
dxH ,                      (74) 

with, 

22

,4

2
v −+=

ππ
νν

ν
gg

u F ,
νν

νν
ν π

π
gg

gg
K

F

F

−+
++

=
,4

,4

2v2

2v2
,         (75) 

and  21 2ggg −=ρ , 1gg =σ , 0,4 =σg .

 Schulz [133] has exposed a number of situations by examining (75). For 

instance, he points out that a noninteracting system, for which Fu v=ν  and, 

thus exhibits equal charge and spin velocities, is obtained by setting 1=νK .

That if 01 =g , then there is no backscattering and (75) describes uncoupled 

charge and spin density oscillations with a dispersion relation ( ) kuk ννω =
and the system is conducting.  
 The Hamiltonian (75) offers, as one of its consequences, the possibility of 
complete separation in the dynamics of spin and charge. In particular, if 

σρ uu ≠ , then spin and charge waves propagate with different velocities. 

The electron, in this case, is said to dissolve into two particles, namely, a 
spin particle, called a spinon, and a charge particle, called a holon [134]. A 
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simple picture for visualizing spin-charge separation is shown in Figure 3-
11. 

h o l o n s p i n o nh o l o n s p i n o n

Figure 3-11. Illustration of spin charge separation. If a photon impinges on an 
antiferromagnetic Mott insulator an removes an electron, the disruption left behind changes 
both the spin and charge order. Electron motion into the vacant site results in spin and charge 
separation, giving rise to two distinct particles, namely, a holon and a spinon. (After [134].)

  Qualitatively, the pertinent physics of the Lüttinger liquid follow from the 
dispersion relation and may be surmised from Fig. 3-11 [134]. An 
examination of this figure indicates that, due to the linear dispersion relation, 
changes in momentum determine energy changes. In particular, a momentun 
excitation q  imposed on the 1D electron system, will cause a compression 

and rarefaction of the electron density with a wavelength q2π . The 

degrees of compression and rarefaction embody a density wave, and has two 
consequences. First, because q  determines the kinetic energy E in a unique 

way, the density wave has a well-defined kinetic energy. Second, the 
concomitant density will depend on both the spin interaction and the 
Coulomb interaction amongst electrons which, being functions of distance, 
embody the potential energy of the system. Therefore, the total energy of the 
system may be specified by the properties of a density wave. This density 
wave, in turn, contains a spin density and a charge density. This spin-charge 
separation and coexistence is the hallmark of the Lüttinger liquid.  

k

E n e r g y

0 δ E

δ q

k F k

E n e r g y

0 δ E

δ q

k F

Figure 3-12. Excitation of electron-hole pairs in one-dimensional structure. After [134]. 
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 The behavior of the Lüttinger liquid at low energy excitations is captured 
by the specific heat and the magnetic susceptibility. The specific heat is 
given by, 

+=
σρ

γγ
uu

FF vv

2

1
0

,                                                                         (76) 

where 0γ  is the specific heat coefficient for noninteracting electrons at 

Fermi velocity Fv , and the spin susceptibility is given by, 

σ

χχ
u

Fv
0 = . The Wilson ratio is given by [133], 

σρ

ρ

χ
γ

γ
χ

uu

u
RW +

==
2

0

0 .                                                                       (77)  

 The presentation in this section has exposed the fact that in one-
dimensional transport, the quasi-particles of a Fermi liquid morph into two 
new entities, namely, spinons and holons, which, individually, transport spin 
and charge, respectively, and characterize the Lüttinger liquid. It will be seen 
in the next section, that the manifestation of spin-charge separation is 
responsible for a quantitative change in the behavior of 1D TLs.  

3.2 Wave Behavior in Periodic and Aperiodic Media

 The ability to create patterns of very high precision, made available by 
NanoMEMS fabrication technology, will endow engineers with the ability to 
effect signal processing on a variety of wave phenomena, e.g., electronic, 
electromagnetic, acoustic, etc. Much of this functionality will exploit the 
phenomenon of band gaps; typically, domains of energies or frequencies in 
which wave propagation is forbidden. In what follows, the topics of 
electronic [28] and photonic bandgaps [51, 142], are addressed. 

3.2.1  Electronic Band-Gap Crystals 

3.2.1.1  Carbon Nanotubes 

Carbon nanotubes (CNTs) were already introduced in Chapter 1. They are 
a relatively new type of material and are considered by many to be the 



106  Chapter 3

a 2D perodic graphite sheet, see Figs. 3-13. 

Figure 3-13. Sketch of a graphene lattice, a single sheet of carbon atoms arranged in the 
honeycomb structure, showing vectors utilized in describing the lattice. In this case, the vector 
C is defined by the pair n=4, m=4, i.e., (4, 4).  

The graphene lattice is defined by a vector C of the form 21 mn aaC += ,

where 1a  and 2a   are the unit cell base vectors of the graphene sheet, Fig. 3-

13, with nm246.0aa 21 == . The pair of integers (n, m), where mn ≥ ,

is used to represent a possible CNT structure [46]. Three types of CNT 
structures are typically identified according to how the conceptual graphene 
rolling into a cylinder is effected, namely, the armchair, the zigzag, and the 
chiral CNT structures, see Fig. 3-14 [143]. The chiral angle, θ , of the 
wrapping vectors describing these CNTs are related to the indices n and m
by the equation [46], 

22

1

mnmn2

m3
sin

++
=θ −                                                                      (78) 

with 0=θ  for the Zigzag CNT, 30=θ  for the Armchair CNT, and 

300 <θ<  for the Chiral CNT. The corresponding CNT diameter is given 
by, 

( ) 22783.0Å mnmndCNT ++= .                                                           (79) 
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qui tessential nanotechnology  device. Their properties are related to those of n
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Figure 3-14. Carbon nanotube structures according to how the grapheme sheet is “wrapped.” 
(a) Armchair. (b) Zig-zag. (c) Chiral. After [143]. 

 As with conventional crystals,  (electron) wave propagation is a function 
of the atomic (direct lattice) periodicity and its reciprocal lattice, and is 
captured by the dispersion relation, E vs. k. In the case of graphene, the 
direct lattice is of the honeycomb type, Fig. 3-15(a) and applying the tight-
binding or linear combination of atomic orbitals (LCAO) method [64], the 
graphene band structure is obtained as, 

( ) ++±=
2

a
cos4

2

a
cos

2

a3
cos431

xxy kkk
kE γ ,                  (80) 

where a is the lattice constant, i.e., 0a3a = . A plot of this function is 

shown in Figure 3-15(b). It may be noticed from this figure that at the K-
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points (the corners of the first Brilloin zone) there is zero gap between 
conduction and valence bands in graphene. 

Figure 3-15  (a) Reciprocal lattice of graphene with the 1st Brilloin zone (shaded). 1b  and 

2b  are the primitive lattice vectors. The K point lies at the edge of the BZ. 2D grapheme 

sheets “rolled” around the y axis, will give rise to armchair CNTs. (b) LCAO bandstructure of 
grapheme. The Fermi level lies at E=0. Courtesy of Prof. Christian Schönenberger, University 
of Basel, Switzerland]. 

 The effect of rolling the graphene sheet to form the CNT manifests itself 
in the band structure as follows. On the one hand, the momentum of 
electrons along the circumference of the cylinder becomes quantized. On the 
other, propagation is now only possible along the cylinder axis, i.e., in one 
dimension, thus the concomitant CNT band structure corresponds to slices of 
the 2D graphene structure. When the slice passes through a K-point, the 
CNT is metallic since, at these points, the gap is zero; when it doesn’t, it is 
semiconducting. In particular, CNT structure type and its electronic 
properties are related as follows [46]. For armchair CNTs, the 
circumferential momentum vector is quantized according to, 

y

x
2b

r
1b
r

2ar 1ar

K
r
Reciprocal lattice points

1st Brillouin zone point
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a
x
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2

N
k

x

πν=ν ,                                                                                     (81) 

for xN,...,1=ν , where xN  is the number of unit cells spanning the 

circumference. Thus, it can be shown that an armchair CNT rolled such that 

its circumference lies along xk  and the transport longitudinal axis is along 

yk , would have longitudinal 1D band structures at each of the discrete 

values of xk  given by (81), see Figure 3-18. Similarly, a zigzag CNT has its 

circumferential momentum vector quantized according to, 

a
y

πν=ν 2

N
k

y

,                                                                                        (82) 

for yN,...,1=ν . In this case, the resulting CNT may be either metallic or 

semiconducting. Metallic, when its index n is divisible by three, in which 
case a slice passes through a K-point and the tube behaves as a 1D metal 

with Fermi velocity s/m108v 5
F ×=  [144], and otherwise, 

semiconducting. In the context o  ballistic CNTs, their conductance is given 

by Landauer’s formula, ( )ThNeG 2= , where N, the number of one-

dimensional channels is four, due to electron spin degeneracy and the two 
bands at K- and K’-points, see Fig. 3-17(a). This works out to 

( ) Ω== k5.6/1he4G 2 , assuming T=1. The energy gap of semiconducting 

CNTs is related to their diameter by [144], [145], 

[ ]nmdd CNTCNT

eV9.0

3

v4
E F

GAP ≈= .                                                                (83) 

In the general case of a chiral CNT, Dresselhaus et al. [146], [147] have 
shown that a metallic CNT is obtained whenever, 

3qmn =− ,                                                                                            (84) 

where q is an integer. In summary, the current knowledge of electronic-
structural properties of SWNTs is as follows [46]: all armchair tubes are 
expected to be metallic, one-third of zigzag and chiral tubes are expected to 
be metallic, and the rest are expected to be semiconducting [46].  

f
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Figure 3-16 (a) A 1D band structure lies at each of the discrete values of xk  for a (5, 5) 

armchair CNT, dictated by the circumferential quantization in this direction. The armchair 

CNT is metallic. (b) A 1D band structure lies at each of the discrete values of yk  for a (9, 0) 

zigzag CNT, dictated by the circumferential quantization in this direction. The zigzag CNT is 
semiconducting. (After [46].) 

It may be surmised from the slice passing through the K’, K points, see Fig. 
3.17, that each channel is four-fold degenerate, on account of spin 
degeneracy and the sublattice degeneracy of electrons in graphene [144]. 

E F
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E ( k )
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Figure 3-17. Energy band diagram of metallic CNT for slice through Fermi points K’, K. 
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This fact has been utilized by Burke [148] to propose an AC circuit model 
for CNTs, including electron-electron interaction, see Fig. 3.18. 
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Figure 3-18. AC circuit model for interacting electrons in CNT. The four-fold degeneracy is 
captured by four channels. (After [148].) 

The circuit model is interpreted by Burke [148] as follows. The circuit 
captures the existence of four modes, namely, three spin modes, which 
corresponds to a differential excitation, and one charge mode, which 
corresponds to common mode excitation. In the latter case (charge mode), all 
four transmission lines appear in “parallel”, and they are characterized by an 
effective line possessing a charge-mode propagation velocity and 
characteristic impedance given by [148], 
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and, 
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K
CM,c
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h
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L

C

L4
Z =+= ,                                                         (86) 

where, F
2

K ve2hL =  (h is Planck’s constant) is the kinetic inductance per 

unit length, F
2

Q hve2C =  is the quantum capacitance,and 

( )dh2cosh2C 1
ES

−πε=  (h here is the CNT-to-ground distance) is the 

electrostatic capacitance (the CNT-to-ground capacitance). Typical values 

for these parameters are: m/nH16L K µ= , m/aF50C ES µ= , and 

m/aF100CQ µ= . The characteristic impedance for the three spin modes is 

given by, 
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2
Q

K
DM,c

e2

h

C

L
Z == ,                                                                          (87) 

which Burke interprets as defining the ratio of excitation voltage to elicited 
current when the spin wave is excited.  
 With diameters of the order of approximately 1nm, CNTs are ideal 
systems where the characteristics of Lüttinger liquids, namely, strong 
electron-electron interaction and spin-charge separation, should be manifest. 
Accordingly, efforts have been expended to develop ways of characterizing 
and ascertaining such behavior. Noticeable among these, is experimental 
work by Bockrath et al. [149] who deduced, from the measured 3D-1D 

tunneling conductance α∝VdVdI , CNT Lüttinger parameters g with 

values between 0.2 and 0.3. These were extracted from comparison of 

measurement to the theoretical relations ( ) 4/1g 1 −=α −
End  or 

( ) 8/2gg 1 −+=α −
Bulk , for 3D-1D contacts located at the end or at the 

bulk, respectively, of the CNT [151], see Fig. 3-19.  

Luttinger Liquid

Bulk Contact

End Contact
e-

e-

L>>LE
Luttinger Liquid

Bulk Contact

End Contact
e-

e-

L>>LE

Figure 3-19. 3D-1D contact to carbon nanotube. (After [151].) 

 Similarly, efforts have been expended, and are being vigorously pursued, 
to uncover the predicted spin-charge separation. These include proposals to 
directly excite Lüttinger liquid behavior in CNTs by impressing microwave 
voltage waves in CNTs acting as transmission lines [149]. 

3.2.1.2 Superconductors 

 The phenomenon of superconductivity manifests itself as the drop in the 
electrical resistance of metals and alloys at sufficiently low temperatures, 
accompanied by the inhibition of magnetic fields from penetrating inside of 
them [28]. Conversely, a material in the superconducting state loses this 

property when its temperature is raised past a critical temperature, cT , or it 
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is exposed to a high critical magnetic field cH  [28]. We discuss the 

principles of superconductivity here, mainly because of the importance of 
superconductors (materials exhibiting superconductivity) as an alternative 
means of implementing quantum bits (qubits). Our point of departure in 
discussing superconductivity is the concept of superfluidity, from which it 
may be understood in an intuitive fashion. 

3.2.1.2.1  Superfluidity 

 Superfluidity refers to the property exhibited by a superfluid, i.e., a liquid 
that flows without friction. A successful explanation of superfluidity was put 
forth by Landau [153], [154]. Landau’s reasoning was as follows [131]. If 
one assumes that the Bose quantum fluid of mass M is in its ground state at 
absolute zero, and flowing within a capillary tube with velocity v, and 

energy 2Mv
2

1
, then, in a coordinate system anchored in the fluid, the fluid 

would be at rest and the capillary would appear to be moving at a velocity –
v. If friction emerges between the capillary and the fluid, then the part of the 
latter in contact with the tube would no longer be at rest, but would begin to 
be carried along by the capillary wall. However, since this part of the fluid 
would no longer be at rest, the act of it being carried along by the tube wall 
must induce excitations from its ground state. These excitations, in turn, 
would manifest as changes in its energy and momentum, E and p, so that the 

fluid’s total energy would now be 2Mv
2

1
vpE +⋅+ . Upon excitation, the 

fluid itself would lose energy. Therefore, energy change must be negative, 
i.e., 

0vpE <⋅+ .                                                                                          (88)  

Since the fluid is a quantum system of Bose particles, its energy is quantized 
and must change discretely. The smallest energy excitation, therefore, is that 
for which vpE ⋅+  is a minimum, which occurs when p  and v  are 

opposite. This means that one must have, 

0pvE <−                    or                   
p

E
v > .                                       (89) 

This equation sets the minimum velocity at which excitations would begin, 
as the critical velocity,
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>
p

E
v c min .                                                                                      (90) 

In particular, if 0vc ≠ , then it is possible for the fluid to flow free of 

excitations, i.e., without friction/dissipation, as long as cvv < . This is the 

so-called Landau’s criterion for superfluidity. This condition is maintained 
as long as v is less than the speed of sound. This insight, led Landau to 
propose that the low energy excitations of the superfluid ground state should 
consist of two types of particles, namely, phonons and “rotons.” Phonons 
being quantized sound waves, with an energy dispersion, 

SpE = ,                                                                                                  (91) 

where S is the speed of sound and p the momentum, and rotons being 
quantized rotational motion (vortices), with an energy dispersion,  

( )
eff

2

0 2mppE −+∆= .                                                                   (92) 

  At temperatures above absolute zero, the fluid will be excited by thermal 
energy. Therefore, it will be possible for some of the thermally excited fluid 

particles to achieve velocities greater than cv  and will, consequently, 

experience friction. Under these circumstances, the fluid will be composed 
of these normal particles and superfluid particles, resulting in a mass current 
given by, 

ssnn vvj ρ+ρ= ,                                                                                  (93) 

where nρ  and nv  are the mass density and velocity of the normal fluid, and 

sρ  and sv  those of the superfluid. If one assumes that the whole fluid flows 

with velocity vvv sn == , then the total mass current may be written as, 

( ) vvj sn ρ=ρ+ρ= .                                                                             (94) 

 One of the fundamental properties of a superfluid derives from the fact 
that, since it possesses no excited particles, its momentum doesn’t change 
and, consequently, it can’t exert a force on a body immersed in it. Flow with 
this property, denoted “potential flow,” is mathematically characterized by 
the equation, 
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0vs =×∇ .                                                                                            (95) 

Eq.(95) signifies that a superfluid is irrotational, i.e., it exhibits no vorticity. 
The quintessential example of a superfluid is embodied by a Bose liquid, 
which consists of atoms of integral-value spins, in particular, liquid helium 
(He4), which does not solidify at absolute zero and flows through capillaries 
without dissipation. 
  Landau’s arguments, presented above, while successfully explaining 
liquid helium behavior, were of an intuitive and phenomenological nature. 
Elements for a first-principles theory to explain superfluid behavior began 
taking shape with observations by Fritz London [155], to the effect that the 
constitution of He atoms, which are composed of an even number of 
elementary particles (2 protons, 2 neutrons, and 2 electrons) suggested that 
they should be described by a symmetric wavefunction and, consequently, 
should obey Bose statistics, together with the earlier observation by Einstein 
that, at appropriately low temperatures and mass and density conditions, a 
gas of non-interacting Bose particles condenses with the remarkable property 
that a nonzero fraction of the condensed atoms occupies a single one-particle 
state. Such a state, in particular, is a coherent state and has come to be 
known as a Bose-Einstein condensate (BEC) [155]. A fundamental theory 
capturing this behavior is the Gross-Pitaevskii (GP) model. The GP equation 
models the general Bose gas by the equation [78], 

ψ+ψ∇−=
∂
ψ∂

mfU
m

2
2

2t
i ,                                                (96) 

where m is particle mass, 

( )
′−

′ψ
=

xx

xdx
eU mf

2

2
,                                                             (97) 

is the mean field for Coulomb interaction between atoms, and may be 
expressed as, 

( ) ( ) ( ) ( ) ( ) 222
V xgxdxxxgxdxxxU mf

′ψ=′′ψ′−δ=′′ψ′−= .    (98) 

Substituting (98) into (96) one obtains a nonlinear Schrödinger equation,

( ) ( ) 2*2
2

22
2

2
x

2t
ψψ+ψ∇−=ψψ+ψ∇−=

∂
ψ∂

g
m

xg
m

i .           (99) 
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Condensation is captured when in (99) one imposes the conditions for 

obtaining the lowest possible state, 0ψ , namely, that the wave function be 

homogeneous, i.e.,  

00
2 →ψ∇ .                                                                                         (100)  

This leads to the relation, 

V

N
n ==ψ 2

0 ,                                                                                   (101)   

where N is the number of atoms and V is the volume. In turn, substitution of 
(100) and (101) into ( )  leads to a simplified equation of motion, namely, 

0
0

t
ψ=

∂
ψ∂

gni ,                                                                                  (102) 

with a solution of the form, 

gnt

Ce
−

=ψ 0 .                                                                                       (103) 

         
 The dispersion relation for low-level excitations are obtained by 

linearizing (99), in particular, writing χ+ψ=ψ 0 , where  0ψ<<χ , and 

substituting into (99), one obtains, 

*2
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2
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2

2
2

χψ+χψ+χ∇−=
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gg
mt

i .                            (104)   

Since this equation contains the two unknowns χ  and *χ , we generate a 

second equation by taking its complex conjugate, 

χψ+χψ+χ∇−=
∂
χ∂ 2

0
*2

0
*2

2*

2
2

gg
mt

i- .                       (105) 

Then, postulating solutions of the form, 

ipxiEt+−ξχ e~ ,                                                                                 (106) 

99
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and  

ipxiEt+−ηχ e~*
,                                                                               (107) 

substituting them into (104) and (105), together with (101), and solving the 
resulting system of equations for E, one obtains the result, 

( )
2

4
22

4m

p
pSpE += .                                                                     (108) 

This is the dispersion relation of a superfluid. Expressing the fluid velocity 
in terms of it, we obtain, 

2

2
2

4
v

m

p
S

p

E +== .                                                                        (109)                          

This equation has a positive minimum, occurring at 0→p , and given by 

the constant velocity S. Since this velocity is independent of momentum, 
E(p) must contain an energy gap. An energy gap in its spectrum, thus, is 
another manifestation of superfluidic behavior.  
 The zero-vorticity property of a superfluid is derived from first principles 
as follows. From (103) it may be seen that the wave function for the Bose 
condensate in its lowest energy state is a one-particle complex wave. 
Generalizing this expression to, 

( ) ( )xie χψ=ψ x ,                                                                           (110)  

one can express the mass density as 
2ψ=ρ m , where ( )xψ  and the current 

are related, as usual, by, 

( )**

2

i
j ψ∇ψ−ψ∇ψ−= .                                                           (111) 

It then follows that, inserting (110) into (101) one obtains, 

χ∇ρ=χ∇ψ=
m

2
j ,                                                                (112) 

which, upon comparison with (94) yields, 
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χ∇=
m

v ,                                                                                           (113) 

that is, the velocity is related to the phase, χ , of the wave function, so one 

can rewrite (113) as, 

φ∇=v ,                                                                                                (114) 

which clearly expresses that the flow is a potential flow, since the curl of any 
gradient is zero,  and the potential is given by, 

χ=φ
m

.                                                                                              (115) 

 A further phenomenon accomplanying superfluidity, and elucidated by 
first-principles considerations, pertains to the dynamics of superfluids when 
placed in a rotating container. In particular, it is experimentally found, Fig. 
3-19, in a vessel containing a mixture of normal and superfluid components, 

and rotating at an angular velocity Ω , that the dynamic behavior of the two 
components is quite different. On the one hand, as is expected from classical 
hydrodynamics, the normal component rotates with the vessel (i.e., it is 
carried along with the vessel due to friction), so that it acquires an eddy 

current rv n ×Ω= , and this velocity, in turn, gives rise to an accompanying 

vortex, since Ω=×∇ 2v n , see Fig. 3-19. The superfluid component, on the 

other hand, becomes populated by a distribution of vortices. This appearance 
of vortices in the superfluid component would appear to contradict the 
fundamental condition for superfluidity of zero vorticity, see Eq.(95). The 
clue to this behavior was to be found in the recognition that potential flow, 
characterized by (95), may also be obtained whenever the equivalent form, 
based on Stokes’ theorem, 

0rdvs = ,                                                                                          (116) 

is satisfied. In particular, if the potential of the rotating fluid is proportional 
to the angle, see Fig. 3-20, so that one has, 

α
π
Γ=φ

2
,                                                                                                (117) 
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Figure 3-20. (a) Normal fluid in rotating vessel acquires meniscus with shape depending only 

on angular velocity Ω . Top view of fluid-containing vessel rotating with angular velocity 

Ω . The normal fluid acquires an eddy current with velocity αv .

then the fluid velocity may be calculated as, 

( )
rr

r
π
Γ=φ

α∂
∂=α

2

1
v ,                                                                      (118)    

and, since the velocity decays with distance, this is the profile of a vortex. 
Now, calculation of the circulation of this vortex gives, 

Γ=φ∆=⋅α dlv .                                                                              (119) 

Examination of Eq. (119) reveals that if the circulation (potential change) is 
zero, one still has the conflict between the mathematical violation of 
vorticity and the experimental observation of vortices. However, if the angle 
α  is not uniquely defined, except up to modulus π2 , then it would be 
possible to reconcile the two if the potential φ   were not single-valued. This, 

in turn, would be the case if the phase of the wavefunction was not unique, 
but also defined modulo π2 , so that N2π=χ∆ . In this case, the circulation 

(119) would be expressed as, 
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N
m

π=φ∆=Γ 2 ,                                                                               (120) 

that is, it would be quantized. Thus, a change in potential of mπ2  would 

bring it to the point of departure, due to its non-single-valuedness, yet would 
allow a non-zero vorticity due to its finiteness. The quantum nature of a 
superfluid contained in a rotating vessel manifests, therefore, in that its 
circulation becomes quantized. One remarkable aspect of a rotating vessel 
containing a superfluid pertains to the shape of its meniscus. In particular, 
from the fact that a normal fluid in a vessel of area A rotating at an angular 
velocity Ω  has a circulation A2Ω , and that a superfluid on the same vessel 
would have a circulation AνΓ , where ν  is the density of vortices per unit 

area, one finds, equating circulations, that the 2νΓ=Ω . This signifies, that 

although the superfluid would not necessarily be rotating, due to the 
appearance of vortices, the shape of its meniscus will be the same as that of a 
normal fluid rotating at an angular velocity Ω . In other words, one can 
simulate the effect of rotation on a normal fluid by a population of vortices. 
 The fact that the circulation of a superfluid contained in a rotating vessel 
is quantized means that the vessel must reach a certain minimum angular 

velocity, the critical angular velocity, cΩ , and rotational energy before the 

vortices begin to be created. From the ratio of vortex energy to vortex 
angular momentum it can be shown that, 

2c
mR

=Ω ,                                                                                        (121) 

where R is the vessel radius. Figure 3-21 shows a picture of vortices in a 
superfluid. 

Figure 3-21. Observation of vortex lattices. The examples shown contains approximately  
80, vortices. The vortices have “crystallized” in a triangular pattern. Reprinted with 
permission from [156]. Copyright 2001 AAAS. 
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3.2.1.2.2  Superconductivity 

Our understanding of superfluidity, gained in the previous section, 
facilitates that of superconductivity. Superconductivity, the absence of 
electrical resistance to electron transport, may be conceptually visualized as 
the “superfluidity of electrons”. A qualitative analogy between these two 
phenomena may be summarized as follows. Whereas a superfluid embodies 
a boson condensate of, e.g., helium atoms, a superconductor, on the other 
hand, embodies boson condensates of, e.g., bound electron pairs. Electrons, 
as is known, due to the Coulomb force of repulsion between them, do not, 
strictly speaking, condense. However, under certain circumstances, an 
effective binding force may be present that overcomes the force of repulsion 
between electron pairs and turns these pairs, effectively, into bosons. These 
electron pairs, which behave as bosons, are called Cooper pairs and have 
zero spin (just as the helium atoms). Thus, while a boson condensate of 
helium atoms may behave as a superfluid, under appropriate circumstances, 
and when it does so it exhibits transport without friction, so too a condensate 
of an aggregate of Cooper pairs, behaves as a superconductor. Continuing 
with the analogy, while superfluid transport exists for velocities less than a 

critical velocity, ( )pEmin~vc , so too superconductive transport exists 

below a critical velocity ( )0p∆~vc , where ∆2  in this case is the binding 

energy of a Cooper pair. Finally, while dissipation and fluid vortices (rotons) 

appear above cv  in the superfluid, so too ohmic dissipation and so-called 

vortex states, i.e., circulation of superconducting currents in vortices 

throughout the system, appear beyond cv  in the superconductor. With these 

qualitative preliminaries, we next address the salient aspects of 
superconductivity, namely, the criterion for superconductivity in light of its 
conceptual relationship to superfluidity, the binding energy of Cooper pairs, 
the inhibition of a magnetic field inside superconducting materials, the 
conditions for the extinction of superconductivity.

In analogy with (105), the equation for a single electron moving in a 
superconductor may be written as, 

( )
σσσσ

σ ψψψ+ψ∇−=
∂

ψ∂ *2
2

2
g

mt

tx,
i ,                            (122) 

where g represents charge, ↓=↑σ or  represents the spin state, and 

σσψψ*  is a 2-index summation that embodies the density from all spins. In 

this context, the wave function of a pair of electrons is a product given by, 
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( ) ( ) ( )2121 , xxxx σσσσ ψψ=Ψ .                                                            123) 

Being the wave function of a boson, ( )21 , xxσσΨ  must satisfy Pauli’s 

exclusion principle, wheraby it must be anti-symmetric. Furthermore, since 
spins and spatial coordinates operate in different (tensor) spaces, the wave 
function must be a product of a spin-dependent factor, and a coordinate-
dependent factor, i.e., 

( ) ( )
g

ExxfExx
∆⋅==Ψ σσσσσσ 2121 ,, ,                                            (124) 

where σσE  is the anti-symmetric spin-dependent factor. With this definition, 

one can rewrite (124) as, 

( ) *2
2

2
σσσσ

σ ψ∆+ψ∇−=
∂

ψ∂
E

mt

tx,
i .                                                (125) 

Following the same procedure as in the previous section, the dispersion 
relation is obtained from the set of equations, 

( ) *2
2

2
σσσσσ

σ ψ∆+ψ−ψ∇−=
∂

ψ∂
EE

mt

tx,
i F ,                    (126a) 

and 

( )
σσσσσ

σ ψ∆+ψ−ψ∇−=
∂

ψ∂
EE

mt

tx,
i- F

***2
2*

2
,             (126b) 

where the energy is now referred to the Fermi energy. Then, postulating 
solutions of the form, 

ipx/iEt/ +−
σσ ηψ e~ ,                                                                    (127a) 

and  

ipx/iEt/ +−
σσ ζψ e~*

,                                                                  (127b) 

it can be shown, upon substitution on (126), that the set of equations, 
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σσσσσ ζ∆+η−=η EE
m

p
E F

2

2
,                                          (128a) 

and 

σσσσσ η∆+ζ−=ζ EE
m

p
E- *

F

2

2
,                                     (128b) 

is obtained. Solving (128) for E one obtains ( )22
F

2
v FppE −+∆±= .                              

This is the dispersion relation for superconducting electrons. It represents a 

parabola with a minimum at Fpp = , corresponding energy ∆ , and energy 

gap ∆2 . Therefore, application of the Landau criterion for superfluidity, to 
the present case of superconductivity, yields the critical velocity, 

( )Fp∆=cv , below which electron transport experiences no electrical 

resistance, i.e., is superconductive. Next, we address the formation of Cooper 
pairs.  
 In exploiting the superfluid physics analogy to describe 
superconductivity, one must confront the issue of explaining how electrons, 
which would ordinarily be precluded from binding, due to Coulomb’s 
repulsion force, would bond/condense to form bosons. The clue to this 
possibility was advanced by the discovery that [157], [158] in 
superconducting elements, the product of the square root of their isotopic 

mass and the critical temperature, cTM 2/1 , is a constant. This experimental 

fact, in turn, was interpreted by Fröhlich [154] to mean that the properties of 
the zero-point or thermal lattice phonons, were involved in 
superconductivity and, in particular, that electrons residing within the crystal 
lattice were capable, via interactions mediated by these phonons, of 
attracting one another. This phenomenon is demonstrated next.  
 To determine the nature of the phonon-mediated electron-electron 
interaction, we assume the coexistence of phonons and electrons is described 
by a Hamiltonian consisting of three terms, namely, the energy of the 
electrons, the energy of the phonons, and the energy of interaction between 
electrons and phonons, respectively. The first two terms are captured by the 
“unperturbed” Hamiltonian: 

+

σ
σ

+
σσ ω+=

q
qqq

,k
,k,k,k0 aaccEH .                                          (129) 



124 Chapter 3

The third term is the familiar electron-phonon interaction [159], in which an 
acoustic phonon distorts the lattice and, as a consequence, produces a grating 
in the band edges which, in turn, causes electrons to scatter off of it. This 
interaction is captured by the interaction potential for acoustic phonons 
given by, 

( ) ( )t,ruDt,rUAP ∇= ,                                                                        (130) 

where D is the deformation potential and, 

( ) ( )
( )[ ] ( )[ ]( )tqrqi*

q
tqrqi

q eaea
qV2

t,ru ω−⋅−ω−⋅ +
ωρ

= ,                 (131)  

the lattice displacement. The pertinent energy of interaction is, 

( ) ( ) ( )rrUrrdH APep ΨΨ= +
,                                             (132)                          

where,  

( ) ( )φ=Ψ ⋅

k
k

rki

k
recr ,                                                               (133)  

is the unperturbed one-electron Block state. With these definitions, the first-
order electron-phonon interaction may be written as, 

( )
σ

σ
+

σ+ −=
q,k

*
qq,k,qk

' aacciDH .                                       (134)                           

The Hamiltonian describing the electron-phonon system, then, is given by, 

( )−+ω+= +
+

+

σ
σ

+
σσ

qk

*
qqkqk

i aaccDaaccEH
q

qqq

,k
,k,k,k .     (135) 

Now, to determine the nature of the electron-electron interaction, we have to 
transform (135) into a Hamiltonian that does not contain the O(D) term, i.e., 
in which the phonon coordinates are eliminated and only electron-electron 
interaction terms are present. This is accomplished by transforming (135) 

into a new Hamiltonian given by SSHeeH
~ −= , and so choosing S that H

~
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contains no off-diagonal terms of O(D). In particular, if we take 
'

0 HHH += , where 0H  gives rise to the solutions n  when 0H' = , so 

that nEnH n0 = , then H
~

 may be expanded as, [131], 

( ) ( )

[ ] [ ][ ]

[ ] [ ][ ] [ ] ...S,H
2

1
S,S,HH

2

1
S,HHH

...S,S,H
2

1
S,HH

...
2

S
S1HH...

2

S
S1eHHeH

~

'
0

'
0

'
0

2
'

0

2
S'

0
S

++++++=

+++=

++++++−=+= −

.    (136)                          

                                                                                                                    

If we select [ ] 0S,HH 0
' =+ , then the second and third terms in (136) 

vanish and we have a prescription for S, namely, 

( )
nn

''

''
nn

''

EE

nHn
nSn0nSnEEnHn

'

'

−
==−+ ,          (137)                        

which yields the desired Hamiltonian as, 

[ ] ( )2'
0 SOS,H

2

1
HH

~ ++= .                                                                 (138) 

Now, in this diagonal formulation, effective electron-electron interaction is 

elucidated by considering the case in which the perturbation 'H  causes the 
following transitions: Either the electron in state k emits a phonon –q and 
this is absorbed by the electron in state k’, or the electron in state k’ emits a 
phonon q and this is absorbed by the electron in state k. These transitions 

may be mathematically represented as occurring from an initial state i  to a 

final state f  via a virtual state m , in terms of which the expectation 

value of the commutator in (138) may be expressed as, 

[ ] ( )−=
m

''' iSmmHfiHmmSfiH,Sf .                  (139) 

Following [154], consideration of the phonon system at absolute zero, so that 
one of the phonon states refers to the vacuum, the matrix element calculation 
(134) over the phonon operators yields, without loss of generality, 
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ω−−
=

−

+
−

k qqkk

kqk
q EE

Dcic
0S1 ,                                               (140a) 

and 

−

+
+

−ω+
=

'k q'kq'k

'kq'k
q EE

Dcic
1S0 .                                         (140b) 

Substituting (140) into (139) one obtains, 

[ ]
−ω+

−
ω−−

=
−−

+
+

+
+

'kkq q'kq'kqqkk

'kq'k'kq'k

2'

EE

1

EE

1
ccccD

2

1
iH,Sf .   (141) 

Realizing that, due to energy conservation, 
kqkq'k'k

EEEE −=− +− , (142) 

may be simplified to yield, 

( ) ω−−

ω
=

−

+
−

+
+

q 'kk
2
q

2

qkk

'kqk'kq'kq2''

EE

cccc
DH .                                   (143) 

Equation (140) reveals that in circumstances when ( ) 2
q

2

qkk
EE ω<− − , this 

term is negative, thus embodying an electron-electron interaction that is 
attractive, and that gives rise to the bosonic behavior mentioned previously.  
 Having shown that it is physically possible for a pair of electrons to attract 
one another in the presence of a phonon, the next question before us is to 
determine the binding energy of the pair. As usual, this is obtained from the 
energy eigenvalues of Schrödinger equation, ψ=ψ EH . Towards this end, 

we begin by expressing the Hamiltonian, 

( )21

2
2

2
1 rrV

2

p

2

p
H −++=

mm
,                                                              (144) 

where the potential ( )21 rrV − models the interaction (143), in the center-

of-mass and relative-motion coordinates, i.e., 

( )rV
2

p

4

P
H

22

++=
mm

,                                                                             (145)



3. NANOMEMS PHYSICS: Quantum Wave Phenomena 127

with ( ) 2rrR 21 += , 21 rrr −= , 21 ppP += , and 2/)pp(p 21 −= .

Then, expressing the solution as, 

⋅⋅=ψ
k

rki
k

RKi ee h ,                                                                             (146) 

and taking into consideration the symmetry properties of the problem, in 

particular, upon interchange of 1r  and 2r , RR → , rr −→ , and 
kk

hh =− ,

and in the frame of reference in which the system is at rest 0K = ,
substitution of (146) into the Schrödinger equation, ψ=ψ EH , yields, 

( )

( )
( )

=
Ω

=−

=+

Ω

⋅⋅−

⋅⋅⋅

'

''

'

'

'

'

'

'

k
kkk

k
k

rkirki

k

22

k

rki

k
k

k

rki

k

rki
22

k

VerVe
1

2

k
E

eEerVe
2

k

hhrdh
m

hh
m

h
.       (147) 

Since the electron-electron interaction is mediated by phonons, and the 

phonon energies lie between 0 and Dω , where Dω  is the Debye energy, the 

electrons will be under the influence of the binding potential as long as the 
their excitation energy of the pair is lower than the Debye energy, i.e., 

Dkk ' ω<ε−ε , m2k22
k =ε . In this context, we have, 

VV 'kk
−=                                                                                             (148) 

and we can write (147) as, 

−=− '

k kk

22

' 'V
2

k
E hh

m
,                                                               (149) 

which, may be expressed as, 

−
= '

k 22

'

k k

'

k k '' '

2

k
E

V

m

hh ,                                                     (150)

which may be factored as,            
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( ) 0

2

k
E

V
1

'

k 22

'

k k ' =
−

+

m

h ,                                            (151) 

from where we get, 

1

2

k
E

V'

k 22' −=
−

m

.                                                                  (152) 

Replacing summation by integration we obtain, 

( ) ( ) 1
E

d
0V

E

1
dV

DF

F

DF

F

E

E

E

E

=
−ε
ε=

−ε
εε

ω+ω+

NN ,                               (153) 

where N(0) is the density of electronic states for a single spin population in 
the normal metal [64]. Upon carrying out the integration we get,  

1
EE

EE
ln)0(VN

F

DF =
−
−ω+

,                                                             (154) 

which may be solved by the energy of the pair, 

1e

EE
)0(VN

1
D

F

−

ω=− .                                                                           (155)

Clearly, (155) denotes a system energy that is below the Fermi energy, 
therefore, we have a bound state. Observing that the reduced mass m  and 

the electron mass 0m  are related by 2mm 0= , effecting the corresponding 

substitution k0
2222 2k2k ε=→ mm , and repeating the operations of 

(153)-(154) one obtains the result, 

1e

2
E2E

)0(VN

2
D

F

−

ω−= .                                                                        (156) 
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The zero-temperature binding energy (gap) is given by, 

b

)0(VN

2
D E

1e

2
2 =

−

ω=∆ .                                                                        (157) 

The binding energy (157) determines how far apart the electrons forming a 
Cooper pair may separate while still acting as bound. In this context, the 
radius R of a Cooper pair has been estimated as [160], 

bm
R

E

k
~ F

2

,                                                                                           (158) 

which, numerically, is of the order of mµ1 .  The implication of the binding 

energy is as follows. At absolute zero, an energy greater than the binding 
energy is required to separate Cooper pairs and, thus, create excited electrons 

which are generated in pairs. At energies close to this threshold, bE , the 

current will consist of both Cooper pairs and single (normal) electrons 
resulting from the breaking of the pairs, giving rise to a two-fluid model 

transport. Abrikosov has shown that as the temperature increases bE

decreases until it reaches zero a the critical temperature, cT . This is 

temperature dependence is given by, 

( )TTT06.3E ccb −= .                                                                      (159) 

 Next, we consider the phenomenon of magnetic field exclusion from a 
superconductor. We examine the supercurrent in a superconductor containing 

a density of sn  electrons moving with velocity sv  and, thus, given by 

sss venJ = , in the presence of a vector potential field 'A . In general, the 

particle velocity in a vector potential is given by, 

−= 'A
c

q
p

M

1
v .                                                                            (160) 

In the case of the superconductor, e2mM = , and 2eq = . If we let Ψ  be 

the wavefunction of the electron pair (boson), then we can express (160) as, 
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Ψ−Ψ∇Ψ−=

Ψ−Ψ∇Ψ−=Ψ

'

e

'

A
2e

2m

A
c

q

2*

2*2

c
i

1

i
M

1
v

.                                            (161) 

Now, writing the complex wave function as χΨ=Ψ ie , where χ  is a 

space-dependent phase, and substituting into (161) we obtain, 

'

ee

s A
cm

e

2m
v −χ∇= .                                                                      (162) 

This equation reveals that, even if 0=χ∇ , current flow may be excited by 

the vector potential. In fact, since AB ×∇= , we may redefine 'A  to 

include the phase, without changing B , i.e., 

χ∇+=
e2

c
AA ' ,                                                                                (163) 

from where we get, 

'

e

s A
cm

e
v −= .                                                                                     (164) 

The supercurent, then, is given by, 

'

e

s
2

s A
cm

ne
J −= .                                                                                   (165) 

The effects of a superconductor on a magnetic field inside its bulk follow 
from from substituting (164) into the equation (165), 

sJ
c

4
B

π=×∇ ,                                                                                    (166)    

and taking its curl, i.e., 

B
cm

ne4

c

4
B

2
e

s
2π

−=×∇π=×∇×∇ sJ .                                             (167) 
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Since 0B ≡⋅∇ , (167) becomes, 

0B
cm

ne4
B

2
e

s
2

2 =
π

−∇ ,                                                                        (168) 

which may be rewritten as, 

0B
1

B
2
L

2 =
δ

−∇ ,                                                                                (169) 

with the London penetration depth given by, 

p
2L

c

e4 ω
=

π
=δ

s

2
e

n

cm ,                                                                        (170) 

where pω  is the plasma frequency in the material. Taken along one 

direction, say z, (170) becomes, 

0B
1

dz

Bd
z2

L
2

x
2

=
δ

− ,                                                                            (171) 

where ( )0Bx  is the magnetic field at the surface of the superconductor.                          

The solution stipulates that the magnetic field decays inside the 

superconductor with a characteristic length Lδ . Assuming a plasma 

frequency of s/1015 , the approximate value of the London penetration 
depth is 300Å. This means that at distances greater than ~300Å from the 
surface, the magnetic field and, per (165), the current, vanish inside a 
superconductor, see Fig. 3-22.  

z

x

Bx

Vacuum Superconductor

δL

( ) ( ) L/z
xx e0BzB δ−=

z

x

Bx

Vacuum Superconductor

δL

( ) ( ) L/z
xx e0BzB δ−=

Figure 3-22. Decaying magnetic field in superconductor. 
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 The vanishing of the magnetic field inside a superconductor is called the 
Meissner effect, and has certain practical consequences. For instance, if a 
superconducting wire is turned into a ring, then the fact that its bulk 
magnetic field and current are zero implies that, 

dlA
c

2e
A

c

2e '' ⋅=χ−χ=⋅χ∇=χ∇
C

12

C

dl .                         (172)   

Therefore, the Cooper pair wave function may be written as, 

φ⋅χ Ψ=Ψ=Ψ=Ψ c

e2
i

0

dlA
c

e2
i

0
i

0A eee ,                                                (173) 

where φ  is the magnetic flux inside the hollow part of the ring. Since the 

phase must equal an integer multiple of  π2 , however, we have, 

nπ=φ 2
c

e2
,                                                                                         (174) 

or, 

n
ce2

hn

ec

n
0

2

12

2

1 φ=
π
π=π=φ .                                                         (175) 

Thus, the magnetic flux confined by the superconducting ring is quantized in 

units of flux 2eh=φ0 , called a fluxoid.

 The phase of the Cooper pair wave function and the fluxoid are at the 
heart of two effects of fundamental import for applications, namely, the 
Josephson effect and the nonlinear Josephson inductance. 
  The Josephson effect refers to the fact that, whenever two 
superconductors at the same temperature are brought in proximity to one 
another, separated by a thin insulating layer (so thin that tunneling of Cooper 

pairs may occur), Fig. 3-23, a supercurrent JI  flows, which depends on the 

11,χψ
22 ,χψ

V

IJ

S SI

11,χψ
22 ,χψ

V

IJ

S SI

Figure 3-23. Schematic of Josephson junction. 
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phase difference 21 χ−χ=δ  of the respective wave functions in the 

superconductors. Since the velocity of a Cooper pair is proportional to the 
phase gradient of its wave function, i.e., χ∇~v , and since the phase has a 

period of π2 , it is not difficult to accept that the supercurrent be periodic. 
Indeed, it can be shown [28] that the Josephson junction current is given by, 

δ= sinII 0J ,                                                                                        (176) 

where, 

dt

d

2
V 0 δ

π
φ= ,                                                                                         (177) 

is the voltage across the junction.   
 The Josephson inductance, in turn, derives from substituting (176) and 
(177) in the definition of inductance voltage, namely, 

dt

dI
LV J

J= .                                                                                         (178) 

Thus,

V
2

cosI
dt

d
cosI

dt

dI

0

00
J

φ
πδ=δ⋅δ= ,                                                   (179) 

and, from (178) we obtain, 

δπ
φ=

cosI2
L

0

0
J

.                                                                                 (179) 

Clearly, the denominator, δcos  makes the inductance nonlinear, becoming 

large as 2π→δ , and negative in the range 232 π<δ<π . The 

nonlinearity of the Josephson inductance gives rise to the formation of the 
Josephson qubit, which is a nonlinear LC resonator consisting of the 

Josephson junction’s inductance, JL ,  and capacitance. 

 To conclude our exposition on superconductivity, we point out that there 
are two types of superconductors according to how the Meissner effect 
manifests in them [28]. In particular, type I superconductors are 
characterized by a magnetization versus applied magnetic field curve that 

increases up to a critical field, cH , where it drops to zero and, concurrently, 
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the superconducting state disappears (it becomes normal). Type II 
superconductors, on the other hand, are characterized by two critical fields, 

namely, a lower critical field  1cH , below which the superconducting state 

exists exclusively, and above which the superconductor is threaded by flux 

lines that give rise to a lattice of vortices, and an upper critical field 2cH ,

beyond which superconductivity disappears. The vortices are circulating 
superconducting currents around normal regions, and are such that the onset 
of a vortex occurs when the corresponding flux is that of a single fluxoid. 
Quantitatively,  

2
L

0
1cH

πδ
φ≈ ,                                                                                         (180) 

and 

2
0

2cH
πξ
φ≈ ,                                                                                         (181) 

where Lδ  is the magnetic field penetration depth, and ∆=ξ 2vF  [28] is 

the coherence length, which captures the lattice constant of vortex lattice.  

3.2.2  Photonic Band-Gap Crystals 

 Continuing with the topic of wave phenomena in periodic structures, we 
now briefly take on the subject of electromagnetic wave propagation and 
manipulation in periodic dielectric structures or photonic band-gap crystals 
(PBCs) [51]. PBCs are 1-, 2-, or 3-dimensionally periodically patterned 
materials whose dispersion relation, i.e., propagation constant versus 
frequency response, exhibits ranges in which wave propagation is forbidden 
(band gaps) and ranges in which it is allowed.  

3.2.2.1  One-dimensional PBC Physics 

 The fundamental physics of a PBC are easily grasped from considerations 
of a 1-D PBC, which is of finite extent and consists of alternating regions of 

dielectric constant, 1ε  and 2ε , respectively, see Fig. 3.24.  
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Figure 3-24 Sketch of one-dimensional PBC. 

Focusing on a unit cell, see Fig. 3-25, we notice that if a wave impinges 
from the left on this unit cell, it will in general, undergo multiple reflections 

and trasmissions at two places, namely, t, r at the first 1ε / 2ε , discontinuity, 

and r’, t’ at the 2ε / 1ε  discontinuity.  
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Figure 3-25 (a) PBC  unit cell. (b) Transmission/reflection analysis.  iik µεω=  is the 

wave vector in region i.

Then, the amplitude of the transmitted wave will be given by the sum of the 
following terms [58]: 

(1) The fraction that is transmitted through the 1ε / 2ε  interface, is 

phase-shifted while traversing (left-to-right) the region 2ε  of length 

d, and then is transmitted through the 2ε / 1ε  discontinuity, namely, 
'd2ik tte . This is the amplitude for direct transmission through two 

discontinuities. 
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(2) The fraction that is reflected from 2ε / 1ε , is phase-shifted while 

traversing (right-to-left) 2ε  of length d, and then is reflected again 

at 1ε / 2ε , phase-shifted left-to-right the region 2ε  of length d, and 

so on. This is the amplitude for transmission after two reflections, 
and so on. 

The frequency selectivity originates as follows [58]. At frequencies where 

k2d is an even multiple of 2π , we have, 

( )...'r'r1'tt
2

numberevendkt 42
2Total +++=π⋅= ,                      (182) 

that is, every term inside the parenthesis is exactly in phase and there is 
constructive interference; this results in maximum transmission. 

On the other hand, if k2d is an odd multiple of 2π , we have, 

( )...'r'r1'tt
2

numberodddkt 42
2Total ++−=π⋅= ,                        (183) 

that is, every term inside the parenthesis alternates in sign and there is 
destructive interference, which results in minimum transmission. With 

Zi
i

i

=
µ
ε  representing the characteristic impedance of region εi , we obtain 

the complex reflection and transmission coefficients as follows, 

21

21

12

12

ZZ

ZZ
'r

ε+ε
ε−ε

=
+
−

= ,                                                       (184) 

t
Z

Z Z
'=

+
=

+
2 22

2 1

1

1 2

ε
ε ε .                                                                (185) 

The real reflection and transmission coefficients are given by, 

R r= '
2

,                                                                                                 (186) 

and 
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T t
Z

Z
= '

2 1

2 .                                                                                            (187) 

The overall transmission coefficient for the ε1 /ε2 /ε1  of Fig. 3-25(b)  is given 
by, 

T t
T

R R k d
Total Total= =

+ −
2

2

2
21 2 2cos .                                                    (188) 

This expression can be used to compute the transmission coefficient of the 

unit cell, which includes finite ε1  regions of length d
1
/2, by replacing 

k d k d k d2 1 1 2 2→ +( ) . Figure 3-26 shows a plot of the transmission coefficient 
of such a unit cell, Eq.(188). 

Figure 3-26. Transmission coefficient versus phase shift for unit cell for PBC in Fig. 3-25. 

Parameters: d
1
=1.06in, d

2
=0.42in, ε1=1, ε2 =8.9. At odd multiples of π / 2 one finds valleys, 

whereas at even multiples of π / 2 one finds peaks of the transmission coefficient. The 
destructive interference, of a single unit cell in this example, is responsible for a valley 
transmission amplitude of only ~0.36. As the number of consecutive unit cells, N, making up 
the crystal increases, the cumulative effect of the unit cell’s attenuation drives the overall 
crystal attenuation from ~0.36, for a single unit cell, to arbitrarily low values, depending on 
N. [161]. 

When multiple layers of unit cells are cascaded, the total transmission is 
drastically reduced and a photonic bandgap is formed at the frequency in 
question. 
 The 1-D PBC, being most often found in its embodiment as a multilayer 
film in dielectric mirrors and in optical filters, is already an extensively 
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studied structure. From these applications it is known that PBCs can act as 
perfect mirrors for light whose frequency lies within a well-defined range, 
namely, when kd  (where d is the lattice constant) is an odd multiple of π / 2,

and that they may localize modes when endowed with defects [162]. The 
application of PBCs in the context of routing and controlling the propagation 
of light waves, for example, requires their realization in, at least, 2-D. Next, 
we deal with multi-dimensional PBCs.  

3.2.2.2  Multi-dimensional PBC Physics 

The properties of 2- and 3-D PBCs may be formulated in terms of the 
coherent scattering properties of 2- and 3-D lattices [64]. Fig. 3-27(a) 
typifies a 2-D triangular-lattice PBC consisting of cylinders of dielectric 
constant 2ε  embedded in a host of dielectric constant 1ε .

Figure 3-27. (a) Sketch of 2-D PBC with lattice constants 
1a  and 

2a  consisting of cylinders 

of dielectric constant 
2ε  embedded in a host of dielectric constant 

1ε . (b) Detail of an 

incoming wave with wave vector k  impinging on two objects separated a distance a , and 

scattered along wave vector 'k .
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Specifically, the properties of these structures are given by arguments 
advanced by Bragg [64], whose essence (for a 2-D periodic lattice) is that 
the path difference (phase shift) between incoming and scattered rays, ( )kk ′−⋅=∆ a , see Fig. 3-27(b), determines whether the transmission of the 
structure exhibits a maximum or a minimum; a maximum when ∆  is an 
integer multiple of π2 , and a minimum when it is an odd multiple of π . For 
a 3-D PBC, on the other hand, ( )kk ′−⋅=∆ R  must be valid simultaneously 
for all vectors R  that are Bravais lattice vectors [64]. 
 A large number of computational techniques to obtain the properties of 
general PBCs have been developed, most of which derive from the solid 
state physics literature on computing band structures [162]-[166]. Obviously, 
it would be impossible to engage in detailing these techniques here, thus we 
instead provide a number of analytical results derived by Joannopoulos et al.
[162] that capture some general properties of PBCs and facilitate one’s 
intuition when thinking about them.  

3.2.2.2.1  General Properties of PBCs 

 Initially, techniques for computing the properties of dielectric PBCs 
exploited previously introduced methods for computing the band structures 
of semiconductors. Indeed, a comparison between the equations of quantum 
mechanics (QM), used to describe semiconductors, and electromagnetics 
(EM), used to describe dielectric PBCs, shows many similarities, Table 3-1. 

     Table 3-1. Comparison between quantum mechanics and electromagnetics        
                       formulations.  [159]. 

Field ( ) ( ) tiert,r ωΨ=Ψ ( ) ( ) tierHt,rH ω=
Eigenvalue problem Ψ=Ψ EH ( ) HcH 2ω=Ξ
Hermitian operator ( ) ( )rV

m2
H

22

+∇−= ( ) ×∇
ε

×∇=Ξ
r

1

 A key difference, however, which restricts the general applicability of the 
QM formulation to solve PBC problems is the scalar nature of the QM 
problem compared to the vector nature of the EM problem. Fortunately, 
however, unlike the QM semiconductor band structure problem, in which the 
Bohr radius introduces a fundamental length scale and, as a result, similar 
lattices with differing dimensions give rise to different behaviors, the EM 
problem possesses no fundamental length scale constant. This means that the 
properties of PBCs which differ only via a length expansion or contraction 
of all distances, are related by simple expressions. In particular, given an EM 
eigenmode obeying the equation, 
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( ) ( ) ( )rH
c

rH
r

1
2ω=×∇

ε
×∇ ,                                                           (189)  

if the dielectric profile defining a PBC is scaled as follows, 

( ) ( ) ( ) srr'r ε=ε→ε , where s is the scaling factor, then it can be shown 

that the scaled PBC will obey the equation, 

( ) ( ) ( )s/'rH
cs

s/'rH'
'r'

1
2ω=×∇

ε
×∇ ,                                                (190) 

from where one derives that the properties corresponding to the scaled PBC 

are derived from those of the unscaled one as follows: ( ) ( )s'rH'r'H =  and 

s/' ω=ω . Thus, once the PBC solutions are known at one length scale, they 
are automatically known at all others. As a practical application, microwave-
length-scale PBCs may be exploited as vehicles to study to optical-scale 
PBC concepts.  
 Similarly, there is no fundamental value of dielectric constant, therefore, 
it may be shown that whenever the dielectric constant is uniformly scaled 

throughout a PBC as follows: ( ) ( ) ( ) 2srr'r ε=ε→ε , where s is the scaling 

factor, then the scaled PBC will obey the equation, 

( ) ( ) ( )rH
c

s
rH

r'

1
2ω=×∇

ε
×∇ .                                                         (191) 

This means that, upon scaling the dielectric constant, the mode geometry 
remains unchanged, but the frequency scales as: ω=ω→ω s' . Thus, 
multiplying the dielectric constant by a factor of 1/9 will result in 
multiplying the frequency of their modes by three.  
 Lastly, the properties of PBCs depend on parameters such as filling 
fraction, the contrast between host and lattice dielectric constants, and the 
number of layers employed. Fig. 3-28 shows the computed transmission 

coefficient for an eleven-layer PBC as the index of refraction 2n ε=  is 

increased from 1.2 to 2.98. 
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Figure 3-28. Eleven-layer 2-D PBC transmission coefficient with index of refraction as a 
parameter. The band gap attenuation increases from a few dB for n=1.2 to close to 80dB at 
n=2.8.

3.2.2.3  Advanced PBC Structures 

 The initial investigations in the field of PBCs focused on dielectric 
materials-based PBCs, whose structure consisted of either periodic arrays of 
suitably shaped holes in a dielectric slab, thus forming a continuous 
dielectric host matrix, or a periodic array of suitably shaped and isolated 
dielectric objects. The former PBC is exemplified by a slab patterned with an 
array of cylindrical air holes, whereas the latter PBC is exemplified by an 
array of isolated cylinders embedded in air. These PBCs permitted the 
creation of band gaps at finite frequencies, but did not produce them at DC. 
Further investigations on metal-based PBCs, such as a wire mesh, soon 
followed, which demonstrated the existence of band gaps down to DC [167], 
[168]. 
 While enabling the manipulation of electromagnetic waves, in particular, 
achieving diffractionless guidance of light around sharp bends [162], the 
overall propagation behavior in dielectrics and metallic meshes followed the 
usual “right-hand” (RH) rule, in which the directions of the electric and 

magnetic fields, E  and H , and the propagation vector k  form a right-

handed system with coincidence of the direction of energy flow and k .
Further work, aimed at manipulating the properties of the PBC medium, led 
Pendry to propose two schemes, namely, a composite medium made up of an 
array of metal posts which created a frequency region with negative 
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permittivity, 0eff <ε , and an array of interspersed split-ring resonators 

which created a frequency region with negative permeability, 0eff <µ .

These materials have become known as metamaterials and, when 
implemented so that both the permittivity and the permeability are 
simultaneously negative, they exhibit a negative refractive index 

( ) ( ) ( )ωµωε=ω effeffn , which is real and gives rise to the existence of 

propagating modes with the remarkable property that they follow a “left-

hand” (LH) rule. In this case the vectors E , H , k  form a left-handed 
system, i.e., the direction of propagation is reversed with respect to the 
direction of energy flow [169]. Left-handed materials have been the subject 
of much attention because they exhibit unusual propagation properties. For 
instance, they exactly reverse the propagation paths of rays within them, 
which may be exploited to implement low reflectance surfaces by exactly 
canceling the scattering properties of other materials. Another application, 
exploits their potential to produce perfect lenses. 

3.2.2.3.1  Negative Refraction and Perfect Lenses 

 The concept of a perfect lens was introduced by Pendry [170], upon 
further examining the earlier analysis of Veselago [169] on the consequences 
of negative refractive index materials. Veselago [169], in particular, had 
indicated that reflection and refraction between vacuum and a negative 
refraction material, would follow the situation depicted in Fig. 3-29. 

1 2

3 4

φ φ

ψ ψ

V acuum

R efractive Index n

1 2

3 4

φ φ

ψ ψ

V acuum

R efractive Index n

Figure 3-29. Consequences of negative refractive index on refraction properties. 1—Incident 
beam. 2—Reflected beam. 3—Refracted beam for n<0. 4—Refracted beam for n>0. (After
[169].) 

Fig. 3-29 shows, that contrary to the usual case of a positive index, when the 
refraction index is negative the angle of refraction is also negative with 
respect to the surface normal. As a result, when such a medium is used as a 
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lens, Fig. 3.30, it causes light originally diverging from a point source S to 
be reversed and to converge back to a point S1 in the medium. 

S S1
S2

n=-1n=1 n=1

S S1
S2

n=-1n=1 n=1

Figure 3-30. Parallel-sided medium with negative refractive index refocuses light. (After
[170].) 

The special feature contributed by a negative refraction lens was elucidated 
by Pendry [170]. It consists in that, by being capable of amplifying 
evanescent waves, all wave components emanating from the source are 
present at the converging focus; this enables the perfect reconstruction of the 
source image. This property was proven by Pendry [170] by assuming an 
incident wave with electric field given by, 

( )tixikzikexpŷE xzS0 ω−+=+ ,                                                       (192) 

where, since 222
y

2
x ckk ω>+ , the wave vector, 

2

2
2
y

2
xz

c
kkik

ω−++= ,                                                                     (193) 

implies an exponentially decaying (evanescent) wave, a reflected wave given 
by, 

( )tixikzikexpŷrE xzS0 ω−+−=− ,                                                  (194) 

and transmitted wave given by, 

( )tixikz'ikexpŷtE xzS1 ω−+=+ ,                                                     (195) 

where, 
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kk,
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kki'k

εµω>+εµω−++= .                                 (196) 

Then, using the formula for the transmission coefficient of a slab of width d, 
i.e., 

( )
( )d'ik2exp'r1

d'ikexp'tt
T

z
2

z
S −
= ,                                                                    (197) 

where, 

t and t’ are the vacuum/medium and medium/vacuum transmission 
coefficients and r and r’ the corresponding reflection coefficients, given by, 
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If  both the permeability and permittivity approach negative unity, then the 
transmission coefficient becomes, 

( )
( ) ( ) ( )dikexpd'ikexp

d'ik2exp'r1

d'ikexp'tt
T zz

z
2

z

1

1
S

1

1
limlim −=−=

−
=

−→ε
−→µ

−→ε
−→µ

.    (200) 

Since zk  is imaginary, see (196), (200) is a growing exponential and the 

wave is amplified.              
 By contrast, in a normal lens the large transverse wave vector of 
propagating waves are evanescent and decay prior to reaching the focus, thus 
the incomplete spectral contents makes it impossible to identically 
reconstruct the image.  
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3.2.3  Cavity Quantum Electrodynamics 

 The field of Cavity Quantum Electrodynamics or, cavity QED, deals with 
the effect of the surrounding environment on the spontaneous emission rate 
of atoms [171]. The concept was introduced by Purcell in 1946 [171] in the 
context of nuclear magnetic moment transitions. He observed that at 
conditions of temperature, radio frequency, and nuclear magneton given by 

300°K, 17 sec10 −=ν , and 1=µ , respectively, the corresponding rate of 

spontaneous emission, given by,

1

2

23

2

2

sec
3

8

c

8
A −

ν
µπνπν=

h
h ,                                                      (201) 

adopts a value of 122 sec102 −−× . So small is, indeed, this value, that it 
implies the virtual impossibility of the spin system being able to achieve 
thermal equilibrium with its surroundings. This expression, Eq. ( ), for the 

spontaneous emission rate A between initial and final states i  and f ,

assumes the atom is in free space and derives from Fermi’s golden rule 
[172], namely, 

( )νρ=
2

2
iHf

A ,                                                                            (202) 

where the initial state i , represents an atom in the absence of any photons, 

and the final state f , represents the atom with a single photon. The 

Hamiltonian  H represents the atom-field interaction, and ( )νρ  represents 

the density of photon states or number of radiation oscillators per unit 
volume, in a unit frequency range which, for free space, adopts the value of , 

( )32
S c8πν=ρ .                                                                                   (203) 

In other  words, Sρ  embodies the number of electromagnetic modes into 

which photons may be emittted at the location of the emitter [173]. 
 When the atom is enclosed by a microwave cavity of quality factor Q, 
however, the number of radiation oscillators per unit volume is limited to 

those occupying the frequency range Qν , which is, in fact, exactly one. If 

one assumes the cavity volume and the wavelength to be related by 

201
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( ) ( )33 2c2V ν=λ≅ , then the density of photon states per unit frequency, 

per unit volume, ( )V/)1( ν∆mode , may be expressed in terms of the cavity 

Q as follows,  

( )( ) c3

2

3 c

Q8

2

c

Q

emod1

V

emod1 ρ=ν=

ν
ν

=
ν∆

.                                             (204)     

Comparing (203) and (204) it is seen that they are related by, 

sc Q
2 ρ⋅
π

≅ρ .                                                                                   (205) 

Thus, a cavity enclosure of quality factor Q increases the effective density of 

photon states in free space by the factor  of ( )πQ2 . In turn, since the 

spontaneous emission rate is proportional to this density of photon states, 
this rate is increased, in particular, to [172], 

QAAc ≅ .                                                                                            (206) 

 The larger issue elicited by Purcell’s observation was that the spontaneous 
emission rate of an atom may be modified according to the properties of the 
surroundings. In particular, as Kleppner [172] pointed out, the spontaneous 
emission of an atom in a cavity may be inhibited if the cavity has dimensions 
smaller than the radiaton wavelength, but it may be enhanced (increased), as 
in (20 ), if the cavity resonates at this wavelength. 
 This realization that the spontaneous emission rate of an atom may be 
suppressed or enhanced by modifying the properties of the radiation field in 
the surroundings, has many practical applications. For instance, in solid-state 
electronics it is well known that spontaneous emission is fundamentally 
responsible for non-radiative recombination processes, which limit the 
performance of semiconductor lasers, heterojunction bipolar transistors, and 
solar cells [51]. How would one apply the cavity QED concept to inhibit the 
spontaneous emission in these situations, where one is dealing not with 
single atoms, but with entire devices, is not at all obvious. The answer to this 
question was advanced by Yablonovitch in 1987 [51] with his photonic 
band-gap crystal (PBC) idea. Indeed, by surrounding the devices in question 
with a PBC exhibiting a band gap which overlaps the electronic band edge 
(across which the non-radiative transitions would occur) the spontaneous 

6



3. NANOMEMS PHYSICS: Quantum Wave Phenomena 147

emission can be forbidden, thus potentially eliminating non-radiative 
transitions. This is so because, in the band gap of a PBC, the density of 

photons states, 0PBC =ρ . The first experimental demonstration of the use of 

three dimensional PBCs to control the dynamics of spontaneous emission 
from quantum dots has been recently published [173]. In this case, Fig. 3-31, 

Figure 3-31. (a) Scanning electron microscope image of the (111) face of a titania inverse 
opal with lattice parameter a=460 nm. Reprinted with permission from[170] Copyright 2004 
Nature. (b) Luminescence decay curves of quantum dots inside three different photonic 
crystals. The data are recorded at frequencies 15,670 cm-1 (a= 370 nm) and 15,100 cm-1 (a 
=420 nm, and a=500 nm). The curves have been overlapped after 5 ns. The first part of the 
decay curve is influenced by emission of titania (recorded at 15,400 cm-1). After 5 ns this 
contribution is negligible. [173]. 

the spectral distribution and time-dependent decay of light emitted from 
excitons confined in the CdSe quantum dots are shown to be controlled by 
the host PBC. In particular, the fact that lifetimes of ns1.06.9 ±  and 

ns2.03.19 ±  for quantum dots embedded in PBCs of lattice constants 
a=420 nm and a=500 nm, respectively, are obtained, demonstrate a factor of 

-
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2 variation produced by the PBCs. This corroborates the strong role the PBC 
plays in controlling the radiative lifetime of the emitters.

3.3  Summary 

 This chapter has dealt with the physics of waves that is of relevance to 
quantum phenomena occurring in NanoMEMS. It began with typical 
phenomena that manifest and exploit the wave nature of electrons, in 
particular, the quantization of electrical conductance, its calculation with 
Landauer’s formula, and its manifestation in quantum wires, quantum point 
contacts, resonant tunneling and quantum interference (Aharonov-Bohm 
effect). Then, the topic of quantum transport theory was taken up, with 
particular emphasis on dealing with phenomena dominating in one-
dimensional transport, such as the Lüttinger liquid. Finally, wave behavior in 
both periodic and non-periodic media was addressed, in particular, carbon 
nanotubes, superconductors, photonic bandgap crystals, and cavity quantum 
electrodynamics. In next chapter focuses on the application of the material 
presented thus far to engineer a variety of circuits and systems that typify 
elements to be found in NanoMEMS.  



Chapter 4 

NANOMEMS APPLICATIONS: CIRCUITS AND 
SYSTEMS

4.1 Introduction 

The new “electronics,” enabled by NanoMEMS, will exploit the 
coexistence of mesoscopic and mechanical devices operating in the quantum 
mechanical regime. Thus, a plethora of phenomena, such as tunneling, 
charge quantization, the Casimir effect, motion quantization, entanglement, 
etc., are at our disposal to be exploited in creating powerful computing and 
communications hardware. This chapter exposes a variety of emerging 
devices that embody potential nanoelectromechanical quantum circuits and 
systems (NEMX) device-circuit paradigms [22]. 

4.2 NanoMEMS Systems on Chip 

NanoMEMS Systems-on-Chip (SoC) may be predicated upon a multitude 
of physical phenomena, e.g., electrical, optical, mechanical, magnetic, 
fluidic, quantum effects and mixed domain. Therefore, their universe of 
possible implementations and applications is vast and only limited by our 
imagination. Possible areas of endeavor, already under research, include: 
Nanoelectronics, Nanocomputation, Nanomechanics, Nanoengineering, 
Nanobiotechnology, Nanomedicine, Nanochemistry, and RF MEMS. In 
principle, then, there is the potential for conceiving new devices that might 
spark a revolution as important and wide-ranging as that engendered by the 
invention of the transistor and ICs. Ultimately, however, the success of the 
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technology may well lie on its ability to deliver improved performance at 
low cost on technology-blind applications, Figure 4-1, as well as in enabling 
new applications (some of which are right now only limited by our 
imagination). For the purposes of this book, we focus on NanoMEMS SoCs 
in terms of implementation and applications.  
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Figure 4-1. Conceptual rendition of a NanoMEMS System-on-Chip. 

4.2.1  NanoMEMS SoC Architectures 

Regardless of the technology of implementation utilized, a system must 
perform a definite function and is characterized by how close it comes to 
meeting certain technology-blind specifications (specs). Typically, the 
design process begins with a block diagram of the system in question, which 
displays an architecture or high-level topological diagram showing how the 
constituent building blocks are interconnected to transform or process one or 
more input signals into one or more output signals, see Figure 3-1. 
Following this, overall systems analysis assigns or “flows down” the overall 
system specs to the individual building blocks, which are then designed. In 
the case of NanoMEMS SoCs this is difficult to do because the field is so 
premature that, using a circuit analogy, the equivalents of passive 
components (resistors, inductors, capacitors, diodes) and active components 
(transistors) is not yet available to the degree of completeness that would 
allow a complete consistent system implementation. Our course of action, 
therefore, is to expose a variety of potential NanoMEMS SoC building 
blocks.  
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4.2.2 NanoMEMS SoC Building Blocks 

4.2.2.1  Interfaces 

The idea behind NanoMEMS is that of creating a system that, in order to 
accomplish a given function, avails itself of devices and techniques spanning 
the range from the micro- down to the nano-scale and beyond. In the most 
general case, the input signal to a NanoMEMS SoC will be analog, i.e., will 
exhibit continuous amplitude and will exist at all times, see Figure 3-1. 
Processing this signal, therefore, will entail deciding whether it is feasible to 
act on it as received/detected, or to transform it to a more convenient state. 
The nature of the interface sensor, in particular, its sensitivity, bandwidth, 
and dynamic range, will come into play here and will dictate the need for 
transduction, amplification, digitization, filtering, etc., thus determining the 
rest of the architecture. In this context, the doubly-anchored Si beam has 
been considered as a potential mechanical sensing element in future 
NanoMEMS SoCs, and impressive estimates for its intrinsic force sensitivity 
(SF), dynamic range (DR), mass sensitivity (M), and  bandwidth (BW) have 
been obtained by Roukes [174]. For instance, a beam of length, width, and 
thickness 0.1 x 0.01 x 0.01 microns and active mass 10ag would exhibit 

HzNSF /103)( 17
0

2/1 −×=ω , dBDR 35= , gM 21107.1 −×= , and 

GHzBW 7.7= , assuming a temperature of 300K and a Q of 10,000. 
Unfortunately, it is unclear whether the full extent of these parameters will 
be accessible due to various practical difficulties such as mass variation due 
to unpredictable adsorbates, and the impossibility of realizing a noiseless 
read-out. This latter theme is also common to electrostatic- and optically-
based sensing interfaces as well. In the former case, which according to 

Roukes [174] may attain a minimum capacitance of F1810− , the parasitic 
capacitance would preclude resolving it. In the latter case, the fact that the 
spot size of the light delivered by the optical fiber used in AFM 
displacement-sensing is much greater than nanoscale dimensions, precludes 
its resolution and, hence, proper detection. 

In systems with an electronic input signal sensing scheme, however, the 
sensor may take the form of a quantum superlattice-based analog-to-digital 
converter, Fig. 4-2 [175]. Here, the pulsating nature of the superlattice’s 
current-voltage characteristic directly samples/quantizes the voltage axis. 
The resulting current is used to generate pulses that drive a counter whose 
output is a digital representation of the input voltage. For highest resolution, 
the superlattice may be realized with molecular devices. 
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Figure 4-2. Superlattice-based analog-to-digital converter architecture. (a) Superlattice band 
diagram. (b) SL A/D conversion principle. (c) ADC architecture [175]. 

4.2.2.2  Emerging Signal Processing Building Blocks 

While the specific structure of a NanoMEMS SoC is still the subject of 
much research, a number of potential building blocks for NanoMEMS-based 
signal processing have been proposed. In what follows, we present a number 
of these [22], namely, a charge detector, a which-path electron 
interferometer,  a parametric amplifier using a torsional MEM resonator, a 
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Casimir effect-based oscillator, a magnetomechanically actuated beam, and 
array-based functions. We conclude with an example of exploiting quantum 
squeezing to reduce noise in mechanical structures. 

4.2.2.2.1  Charge Detector 

This device was experimentally demonstrated by Krömmer et al. 176]. In
this device a low-power RF signal propagates through a suspended 
resonator, Figure 4-3, and sets it into vibration. 
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Figure 4-3. Schematic of charge detection resonator system [22]. 

With an in-plane magnetic field applied perpendicular to beam, a Lorentz 
force perpendicular to the substrate surface is developed. Application of a 
voltage, V, between the gate and the beam, induces a charge, Q, on the beam 
via the relation, CVQ = , and essentially, modifies its stiffness (spring 

constant). This results in a mechanical resonance frequency shift of 

′′
−=

C

zC

C

Q
f

2
1

2

22

δ , where C is the gate-beam coupling capacitance, and 

C ′′  represents the second derivative of the capacitance with respect to beam 
elongation amplitude, z(t), evaluated at z=0.  Optimum charge detection 
(maximum frequency shift) is obtained when RF power drives the beam to 
the verge of nonlinear amplitude vibration. For a gate bias of VV 4±= , a 
magnetic field of 12T, and an RF power of -52.8dBm at 37.29MHz, a charge 
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detection resolution of about Hzq /70 . This device has the potential to 

exploit charge discreteness effect. 

4.2.2.2.2  Which-Path Electron Interferometer 

Armour and Blencowe [177], [178] presented a theoretical analysis for 
this concept. A cantilever resonator operating at radio frequencies is 
disposed over one of the arms of an Aharonov-Bohm (AB) [125] ring 
containing a quantum dot (QD), Figure 3-4. Electrostatic coupling of the 
vibrating beam with 

+

-

V D C  +  V A C

B eam  

R esonator

B ottom

E lectrode
A haronov-B oh m R ing

Q uantu m

D ot

S ID E  V IE W

S ubstrate

E

Q uantu m

D ot

Φ

Φ

+

-

V D C  +  V A C

B eam  

R esonator

B ottom

E lectrode
A haronov-B oh m R ing

Q uantu m

D ot

S ID E  V IE W

S ubstrate

E

Q uantu m

D ot

Φ

Φ

Figure 4-4. Schematic of mechanical which-path electron interferometer [22]. 

electrons hopping in/out of the QD modulates the interference fringes, 

according to vibration frequency ( )0ω -electron dwell time, incd E∆=τ ,

product, where incE∆  is the electron energy spread. For 10 <<dτω , short 

dwell time, interference fringes are destroyed if incth ExqE ∆>∆ ., where thx

is the thermal position uncertainty of the cantilever and E the electric field. 

This signals electron dephasing and detection in QD arm. For 1~0 dτω , the 

beam-QD behaves as a coherent quantum system, beam vibration and QD 
exchange virtual energy quanta in resonance, and interference fringes are 
modulated at beam vibrating frequency. For the largest dwell times, the 
environment induces lost of coherence. This device has the potential to 
exploit charge discreteness effect. 
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4.2.2.2.3  Parametric Amplification in Torsional MEM Resonator 

This device was experimentally demonstrated by Carr, Evoy, Sekaric, 
Craighead and Parpia [179]. A torsional resonator of quality factor Q, Figure 
3-5, is excited at a fundamental driving frequency, ω , which applies 
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Figure 4-5. Schematic of torsional parametric amplifier [22]. 

a torque ( )tωτ . If the device is driven at resonance, with an applied torque 

given by ( ) ( )θωττ += tt sin0 , where θ  is the phase angle between 

excitations at ω  and ω2 , then the torsional spring constant exhibits a 

modulation, ( ) ( )tt 00 2cos ωκκ ′=′ . Under these circumstances, the angular 

amplitude response, 0ϕ , adopts the form 

( ) ( )

2/1

2

0

2

2

0

2
0

0
21

sin

21

cos

′−
+

′+
=

κκ
θ

κκ
θ

κ
τϕ

QQ

Q
.                              (1) 

Accordingly, with zero signal amplitude at ω2 , ( ) 0=′ tκ , and the 

angular response is κτ Q0 . Otherwise, the square-root factor acts as a 

phase-dependent gain and, becoming infinity when 2πθ = , and 

Qκκ 20 =′ . For 20 πθ << , the angular response may be approximated 

by, 
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where V ′ is a structure-dependent parameter, showing that the gain increases 
with the pump signal amplitude. The device has the potential to exploit the 
Casimir effect. 

4.2.2.2.4  Casimir Effect Oscillator 

This device, which was proposed and analyzed by Serry, Walliser, and 
Maclay [180] in 1995, Figure 4-6, and experimentally realized by Chan, 
Aksyuk, Kleiman, Bishop and Capasso [181] in 2001, represents the first 
clear demonstration of the impact of the Casimir force in the performance of 
NEMX.
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Figure 4-6. Summary of nonlinear Casimir effect MEM resonator physics [22]. 

The experiment entailed changing the proximity of a vibrating rotational 
resonator to a metallic sphere, Figure 4-7(a), to measure its behavior in the 
absence/presence of the Casimir force. After determining the drive for linear 
response, the proximity of the oscillator to a metallic sphere was varied and 
the resonance frequency measured exhibited a behavior as depicted in Figure 
4-7(b). For sphere-oscillator distances greater than mµ3.3 , the oscillator 

resonance frequency was equal to the drive frequency, 2748Hz, and the 
angular amplitude frequency response was symmetric and centered around 

the drive frequency, Ik=0ω , where k is the spring constant and I the 

moment of inertia, consistent with mass-spring force oscillator behavior.  
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Figure 4-7. Schematic of torsional MEMS oscillator and sketch of Casimir effect on 
resonance response [22]. 

However, as the sphere-oscillator distance was decreased, in particular, at 
141nm, 116.5nm, and 98nm, the resonance frequency shifted, according to, 

( )[ ]2
0

2
01 21 ωωω IzFb ′−= , where ( )zF ′  is the first derivative of the 

external force evaluated at z, and the angular amplitude frequency response 
asymmetric and hysteretic. This behavior was shown to be consistent with 
the dynamics of a mass-spring-Casimir force system.  The ramifications of 
this beautiful experiment are enormous, in particular, it may be concluded 
that the Casimir force will be one of the factors limiting the integration level 
or density of NEMX. 

4.2.2.2.5  Magnetomechanically Actuated Beams 

This idea was proposed and theoretically analyzed by Blom [182]. In 
addition to their function as mechanical elements (actuators), narrow metal-
coated nanoscale beams also embody mesoscopic wires. If such a beam is 
elongated due to, say, electrostatic actuation, this results in a reduction in its 
cross-sectional area, and in particular, that of the current-carrying 
metallization/wire, and as a consequence, the conductance of the latter 
changes as transverse quantized modes are pushed above the Fermi level. 
The change in thermodynamic potential as the wire elongates, in turn 
produces a force along the length of the wire, which is given by, 
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where FE  is the Fermi energy, m the electron mass, and c
nE is the energy of 

the transverse modes. This force manifests as force and beam deflection 
fluctuations. On the other hand, if the beam is not electrostatically actuated, 
but a magnetic field is applied along its length, it will also cause 
conductance changes as the Landau levels [60] push the energy above the 
Fermi level. Thus, the beam is magnetomechanically actuated. This devices 
has the potential to exploit charge discreteness effect. 

4.2.2.2.6  Systems—Functional Arrays 

The dynamic properties of the collective modes in a MEMS resonator 
array were studied experimentally by Buks and Roukes [183], and 
theoretically by Lifshitz and Cross [184]. In this concept, the lateral 
electrostatic coupling of an array of doubly-anchored beams leads to 
collective modes that resemble phonons. Adjustment of the coupling serves 
to tune the diffraction properties of the mechanical lattice the array 
embodies. In a related concept, De Los Santos [185] unveiled the idea of 
populating a rigid photonic band-gap crystal lattice with a sub-array of 
MEMS switches. Then, by exploiting the noninvasive properties of these, 
i.e., their ideal ON/OFF states, localized states modes could be formed that 
enabled the ON/OFF switching of pass bands within the photonic band-gap, 
thus making the system programmable. 

4.2.2.2.7  Noise—Quantum Squeezing

Ultimately, the purity of resonator vibration is determined by its zero-
point fluctuations. In this context, quantum squeezing techniques [186] may 
be applied to reduce the fluctuations in flexural motion. Application of 
quantum squeezing to mechanical resonators has been studied theoretically 
by Blencowe and Wybourne [187]. Accordingly, by exciting the resonator 

with a pumping voltage of the form, ( ) ( )φω += tVtV pp cos0 , its spring 

constant becomes, kmk ∆+= 2
00 ω , where 2

0
2

00 2gVCk =∆ , and 

( ) ( )φω 22cos +∆= tktk pp . When the effective resonator spring constant, 

( )tkkk p+= 0 , increases, the curvature of the effective potential narrows 

[187] and this squeezes the wavefunction. In particular, for a phase 

4πφ −= , the quantum uncertainty in the flexural displacement becomes, 
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−= Tk
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Ben ω . Then, with 02 ωm  defining the zero-point 

uncertainty, the squeezing factor 01 2 ωmZR ∆=  becomes, 
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which, for 1<R ,  denotes the occurrence of quantum squeezing. Blencowe 
and Wybourne [174] found that using typical resonator values, e.g., density, 

33 /1099.3 mkg×=ρ , Young’s modulus, 211 /107.3 mNE ×=  , beam to 

substrate distance, nmg 500 = , beam thickness,  nmt 100= , and length, 

nmL 2700= , the squeezing factor is 25.0≈R , which signals the 
realization of quantum squeezing, i.e., noise reduction below that of zero-
point fluctuations in the flexural displacement mode.  

4.2.2.2.8  Nanomechanical Laser 

 This device concept was proposed by Bargatin and Roukes [188]. The 
fundamental idea is to engineer a laser-like device in which the resonator is 
realized by a nanomechanical beam, whose tip has been functionalized with 
a ferromagnetic material, and whose vibration interacts with an adjacent 
“active” medium containing nuclear spins biased by an external magnetic 

field, 0B . With the appropriate geometrical configuration, see Fig. 4-8,  
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Figure 4-8. Sketch of mechanical laser. (After [188].) 
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vibration of the nanomechanical beam causes superposition of the field 
produced by its ferromagnetic tip with the external magnetic field.  
This results in a modulation of the magnetic field perceived by the nuclear 
spins and, as a consequence, can stimulate transitions in the Larmor 
frequency of nuclear spins (Zeeman effect). In turn, a dipolar interaction 
couples the rotating transverse component of the nuclear magnetization of 
the nuclear spins with the ferromagnetic tip, resulting in a force that drives 
the beam oscillations. This process, under resonance between Larmor 
frequency and beam vibration, leads to self-sustained ocillations, i.e., to laser 
behavior. The proposed device was called “cantilaser.” Typical parameters are 
as follows: Fundamental frequency of beam, 20 MHz, effective spring constant, 0.1 

N/m, quality factor, 
510 , transverse magnetic field gradient due to ferromagnetic 

tip, m/T106
, transverse relaxation time of nuclear spins, s50µ , nuclear 

gyromagnetic ratio, T/MHz102 ×π , external magnetic field, 2 Tesla.

4.2.2.2.9  Quantum Entanglement Generation 

 As discussed in Chapter 3, quantum entanglement is a fundamental 
ingredient for effecting quantum information processing. Most schemes for 
quantum entanglement, however, were demonstrated in the context of optical 
experiments, where the object of entanglement was photon polarization. 
While the realm of implementation of NanoMEMS SoCs includes variants 
that exploit optical signal processing, i.e., the processing and manipulation 
of photons, electrons and, thus, electronic signal processing in solid-state 
systems remain an important paradigm. It is not surprising, therefore, that a 
number of efforts have been aimed at finding ways to achieve the electron 
pair entanglement and transport over long distances. The superconductor-
carbon nanotube junction, proposed by Bena, Vishveshwara, Balents, and 
Fisher [189] is a clever idea along these lines, see Fig. 4-9.  
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Figure 4-9. Quantum entanglement junction. A setup of two nanotubes A and B contacting a 
superconductor. Voltage drops VA and VB may be preferentially applied across tubes A and B 
respectively, and currents through each of them may be measured. [189]. 
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The concept consists in exploiting the inherent entanglement of 
superconducting Cooper pair together with electron-electron interactions in 
one dimension to enable the sequential injection of entangled pairs from a 
superconductor into two nanotubes located next to each other at a distance 
well below the Cooper pair coherence length.  The key to the Cooper pair 
injection and separation into entangled electrons relies on the Lüttinger 
liquid behavior exhibited by CNTs characterized by an interaction factor g

and subband spacing 0ε . In particular [189], the tunneling rate, 

( )( ) 1
g

1

AA ~ −Γ 0kTheV , at which Cooper pairs tunnel from the 

superconductor into the end of a CNT, being proportional to e2eVρ , turns 

out to be much smaller than the tunneling rate ( )( ) −Γ 1
g

1

2

1

AB ~ 0kTheV ,

at which split entangled pairs are injected into both CNTs. This difference, is 
rooted in the fact that Lüttinger liquid behavior, manifested as the coherent 
arrangement of all electrons in the CNT bulk, causes the single-electron 

tunneling density of states, ( ) ( ) −− εερ 1
g

1

4

1

0
1

0e E~E  to dominate the Cooper 

pair tunneling density of states, ( ) ( )g
1

0
1

0e2 E~E εερ − . With ABAA Γ<<Γ ,

virtually all the charge tunneling that occurs involves split entangled pairs. 
 Once split, the entangled electrons may propagate for long distances due 
to the ballistic property that characterizes transport in CNTs of Fermi 

velocity Fv  and length L at low temperatures LkvTT BF=< φ  at which 

loss of coherence due to thermal effects are nonexistent. 

4.3.1  Quantum Computing Paradigms 

 As indicated in Chapter 2, the fundamental building block on which 
quantum information processing systems are based is the qubit, a two-state 
quantum system. Qubits may take on many physical forms, however, to be 
useful in realizing real, practical, systems, they must be endowed with three 
key properties [190]: 1) They must be decoupled from the environment to 
avoid disturbances which may deviate their time evolution from unitarity; 2) 
They must be able to respond, in a controlled fashion, to purposeful 
manipulation, in order to enable the formation of quantum logic gates and 
entangled states, which rely on such interactions; 3) They must withstand the 
momentary, but strong, coupling to the environment introduced by a 
measuring device. In this section, we present the principles of various qubit 
implementations, in particular, ion-trap-, nuclear-magnetic resonance-, solid-
state-, and superconducting-based qubits. 
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4.3.1.1  The Ion-Trap Qubit 

 The ion-trap qubit was proposed by Cirac and Zoller [191]. It is embodied by 
atomic ions confined by an electrode structure designed in such a way that a 3-
dimensional harmonic potential well (trap) is produced [190]. Cooling the ions 
lowers their energy and, were it not because of Coulomb’s force of repulsion, which 
maintains them apart, they would descend to, and meet at, the bottom of the well. 
Instead, the collective state of the ions is the result of a balance between the 
potential well energy profile and the forces of repulsion between ions, which 
manifests in their assuming a linear array, see Figure 4-10. 

Figure 4-10. Sketch  of ion trap qubit. The electrodes create a 3-D harmonic potential well 
that confines the ions. 

The ion trap simultaneously implements two types of qubit, Fig. 4-11. In one 

Figure 4- . Qubit realizations with ion trap. 

instance, the two states of the qubit are embodied by the direction of the 
ion’s magnetic moment, which is parallel or antiparallel to an externally 
applied magnetic field. In the second instance, the collective motion of an 
array of ions forms the qubit. In particular, when expressed in terms of 
normal modes, the two states of the motional qubit are the one in which the 
ions move simultaneously in the same direction, common mode (CM) and 
the one in which adjacent ions move in opposite directions, stretched mode. 
 In the motional case, the qubit is not associated with any individual ion, 

11



4. NANOMEMS APPLICATIONS: CIRCUITS AND SYSTEMS 163

but rather, with the array as a whole. Since the ion trap produces two qubits, 
a controlled interaction between them allows the realization of quantum 
gates. 
 In the case of the spin-orientation qubit, the internal spin state of the ion 

may be set into the “down” ( ↓ ) or “up” ( ↑ ) states, by application of a 

uniform magnetic field. Alternatively, it may be prepared into superposition 

states ↑+↓  by varying the time duration of applied RF fields. 

 Further functionality is obtained out of the ion-trap system by coupling its 
spin-orientation qubit to its motional qubit. In particular, superposition of a 
spatially non-uniform magnetic field along the motional qubit, for instance, 
of magnitude B∆+  at the ion’s left most position and B∆−  at its right-
most position,  causes the ion to experience a field of amplitude B∆  and 
frequency equal to the motional oscillation frequency. Under these 
circumstances, an exchange of energy between the spin and the motional 

states, 10 ↓→↑ , ensues if the magnetic field frequency coincides 

with the energy difference between the two spin states. More generally, if 

the spin qubit is in a superposition state, e.g., ↑+↓  then, consistent 

with conservation of energy, the energy exchange produces the transition 

( ) ( )100 +↓→↑+↓ . As depicted in Fig. 4-1 ,  
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Figure 4-1 . (a) Cirac-Zoller ion-trap qubit. (b) Qubit states g  and 0e , are separated by 

an energy 0ω .
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the interaction may be particularized, to the state of one of the ions in the 
motional qubit, by causing the magnetic field gradient to exist on it. This is 
accomplished by focusing a laser beam on the ion in question, see Figure 4-
1 . 
 Analytically, the inner workings of the ion-trap qubit were described in 
detail by Cirac and Zoller [191] as follows. The two states of a particular 

ion, namely, its ground and excited states, are denoted by 
nn

0g ≡  and 

nn
1e ≡ , respectively. The 3-dimensional motion confinement of the 

ions is described by an anisotropic harmonic potential characterized by 

frequencies zyx ,<< . The typical energy level scheme contemplated for 

the ion trap is shown in Fig. 4-12(b). When the extent of the ion’s motion is 
much less than the inverse wavevector of the laser field, the so-called Lamb-
Dicke limit (LDL), the oscillations of the ground state become normal 
modes. Under these circumstances, a laser beam with frequency 

x0L ν−ω=ω , or detuning equal to minus the CM mode frequency, 

xn −= , will excite the common mode exclusively. This is the situation in 

which transitions ↑→↓  lead to motional mode (phonon number) 

transitions 1nn −→ . On the other hand, if  x0L ν+ω=ω , then the 

transition ↑→↓  leads to 1nn +→  transitions. Finally, when 

0L ω=ω  the induced transitions ↑→↓  leave n  unchanged. Thus, 

the relationship between laser detuning,  and motional frequency, and the 
fact that the frequencies of the different normal modes are well separated in 
the excitation spectrum, allows the control of interaction between ions via 
the CM motion and, in fact constitutes the coupling of two qubits which is 
necessary to produce quantum gates. 
  After the quantum qubits are manipulated to effect a quantum 
computation, the result must be read. In the case of the ion trap this is 
accomplished by measuring the spin-dependent scattered light when a laser 
beam impinges upon an ion. Exploiting the fact that scattering is 

substantially greater for the  ↓  spin than for the ↑  spin, the state of the 

spin is inferred. 
 The manipulation of the state of an N-ion-trap qubit by a laser beam is 
driven by the interaction between an ion and the electric field of the laser. 

Starting with the Hamiltonian for the n-th ion, 0H , in the ground state and 

in the absence of any laser field, and choosing the laser frequency as above, 

i.e., xn −= , and the ion position to coincide with a node of the laser 

standing wave, the system is described by, 

2
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[ ]i
qn

i

nqqn, eaegaege
2N

H +− += ,                                (6) 

where a  and +a  are the creation an annihilation operators of CM phonons, 
respectively, Ω  is the Rabi frequency, φ  is the phase of the laser field at the 

mean position of the ion, 1,0q =  levels involved in the energy transition 

excited by the laser, and 1<<= x
2 2Mk  is the LDL parameter, with 

kcosk = , k the laser wavevector, θ  the angle between the direction of 

propagation of the laser and the x-axis of motion of the qubit, and M the ion 

mass. The Rabi frequency, 2ˆdE L0 ↓ε⋅↑−=Ω , characterizes the 

transition frequency between the ground and metastable states produced by a 

laser with electric field amplitude 0E  and polarization vector Lˆ  in an ion 

of electric dipole operator d .
 The evolution of the system upon being impinged by a laser beam pulse 

of time duration ( )Nkt =  on the n-th ion is described by the 

unitary operator, 

( ) ( )+−= +− i
qn

i
q

qk,
n eaegaege

2
ikU exp .                      (7) 

Application of this unitary operator on the various states of the n-th qubit 

yields the results of Table 4-1. 0  and 1  represent the population of the 

CM mode with zero and one phonon, respectively.                   

Table 4-1. Effect of Ion-Trap Unitary Operator on State Evolution 

Operator Initial State Final State 
qk,

nU 0g
n

0g
n

qk,
nU 1g

n
( ) ( ) 0e2ksinie1g2kcos

nq
i

n −
qk,

nU 0e
n

( ) ( ) 1g2ksinie0e2kcos
n

i

nq
−−

 The above interaction is amenable to the implementation of a two-bit gate. 
In particular, Cirac and Zoller [191] have shown that this is accomplished by 
following three steps: 1) Apply a π  laser pulse with polarization 0q =  and 

phase 0=φ  to the m-th ion to create the evolution ( )0ÛÛ 0,1
m

0,1
m ≡ ; 2) Turn 

on the laser directed to the n-th ion for a time duration π2  and polarization 
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and phase 1q =  and phase 0=φ , respectively. This creates the evolution 

operator 1,2
nÛ , which exclusively changes the sign of the sate 1g

n
 via a 

rotation through the state 0e
n1 ; 3) Apply again a π  laser pulse with 

polarization 0q =  and phase 0=φ  to the m-th ion to create the evolution 

( )0ÛÛ 0,1
m

0,1
m ≡ . Since these operators act on non-interacting ions, the 

overall effect is given by the product 0,1
m

1,2
n

0,1
mn,m ÛÛÛÛ ≡  in Eq. (8) below. 

Comparison of the first and last columns reveals that the effect of the 
composite operation is to change the sign of the state only when both ions 
are initially excited, thus, Eq. (8) embodies a C-NOT gate. 

                      0,1
mÛ                     1,2

nÛ                       0,1
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 Many successful implementations of ion-trap qubits have been 
experimentally demonstrated [192]. Key to these experimental 
demonstrations are techniques to address a variety of issues, most notably: 1) 
Mitigating the decoherence of the ion trap, which is due to the spontaneous 
decay of the internal atomic states and the motion damping; 2) Suppressing 
spontaneous emission; 3) Obtaining highly efficient read-out schemes. A 
thorough discussion of problems and solutions regarding ion-trap qubits is 
given by Wineland et al [192].  

4.3.1.2  The Nuclear Magnetic Resonance (NMR) Qubit 

 As is well known, some atoms exhibit an intrinsic nuclear magnetic 
moment µ  and an angular momentum I , and these are related through the 
gyromagnetic ratio γ  by [28], 

Iγ=µ .                                                                                                   (9) 
Since the angular momentum is quantized [60], with values 

I1,...,II,mI −−= , a nucleus with an intrinsic angular momentum of half a 

unit, i.e., 21=I , will have the allowed values of 21m I ±= . Thus, in the 

presence of a magnetic field zBB 0 ˆ= , the energy of interaction between the 

magnetic moment and the field,  
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z0I IBBµH −=⋅−= ,                                                                      (10) 

will split into two energy levels, see Fig. 4-13 at the top of next page. 
These two energy levels in a non-zero field embody a two-state quantum 

system that can be used as a qubit. The controlled manipulation of these 
qubits to effect quantum computations is the goal of NMR-based quantum 
computing (QC). The origins, development, progress and status of NMR-
based QC has been addressed recently in extensive review articles by 
Laflamme, Knill, Cory et al. [193], and by Vandersypen and Chuang [194]. 
Our presentation, therefore, will follow these closely. 
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Figure 4-13. Energy level splitting when a nucleus of intrinsic angular momentum 21I =
is exposed to a constant magnetic field 0B .

 In practice, limits germane to currently available techniques preclude 
detecting the energy absorbed by a single nucleus. Therefore, a substance 
containing a multitude of nuclei, whose contributions add, must be employed 
[193]. The system of choice for NMR-based QC consists of the very large 
number of nuclei belonging to atoms forming a molecule in a liquid, so-
called liquid-state NMR. Fig. 4-14 depicts a typical molecule used to form 

H

Cl

Cl

Cl

13C 13C

H

Cl

Cl

Cl

13C 13C

Figure 4-14. Trichloroethylene molecule for liquid-state NMR-based QC. The proton (H), 
and the two carbons (13C) are employed to realize qubits. The 13C nucleus has spin ½.   [193]. 

qubits is the trichloroethylene (TCE) molecule, which contains a hydrogen 
nucleus possessing a strong magnetic moment.  As a result, when the 
molecule is exposed to a constant strong magnetic field, B, each hydrogen’s 
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spin orients itself in the direction of the field. If, in addition, an RF field is 
applied in a pulsed fashion, the spins are made to tip off-axis, while 
precessing about the direction of the constant field. The precession 
frequency is the so-called Larmor frequency and is given by µB= . For 
the hydrogen atom (proton), the magnetic moment is 42.7MHz/T and, at a 
typical field of B=11.7T, its precession frequency is 500MHz. Sample 
examination is accomplished placing a coil around it, tuned to the precession 
frequency, which picks up the oscillating currents induced as a consequence 
of the magnetic field produced by the precessing protons. The device that 
applies the static magnetic field and the RF control pulses, and then detects 
the magnetic induction is called an NMR spectrometer, see Fig. 4-15.  
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Figure 4-15. Sketch of experimental NMR spectrometer. (After [195].)

 NMR phenomena, which were first observed in 1946 [196], [197], 
became the basis for a multitude of analytical studies of materials, in 
particular, the determination of molecular structures [198], and magnetic 
resonance imaging [199]. In these contexts, the technology of NMR 
spectroscopy is rather mature.  
 The application of NMR to QC was advanced Cory, Fahmy and Havel 
[200], and Gershenfeld and Chuang [201] in 1997. To overcome the 
difficulty in detecting the spin of individual, adoption was made of qubits 
implemented in the liquid state, where additive effects could be exploited to 
yield a reasonably large signal amplitude. Also adopted were methods to 
discern the fraction of nuclear spins pointing in the external field direction, 
despite the effects of temperature-induced random spin orientation. The two-
state quantum system was realized by choosing molecules possessing spin-
1/2 nuclei, which in the presence of the external magnetic field adopts two 
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states, namely, a low energy state denoted by 0 , and a higher energy state 

denoted by 1 .

 Analytically, an NMR-based QC system is described in terms of two 
Hamiltonians, namely, the system Hamiltonian, which captures the energy of 
single and coupled spins in the presence of a magnetic field, and the control 
Hamiltonian, which captures the effects of applied RF pulses controlling the 
operations with qubits.  
  The system Hamiltonian for single spins is given by, 

−
=−=−=

/20

0/2
IIBH

0

0
z0z00 ,                         (11) 

where zI  is the z-component of the angular momentum 

zyx IzIyIxI ˆˆˆ ++= . In general, the three components of the angular 

momentum are related to the Pauli spin matrices as follows [60], 

xI2=x , yI2=y ; zI2=z ,                                                           (12) 

where, 

≡
01

10
x ,

−
≡

0i

i0
y ; ≡

1-0

01
z .                                   (13) 

0H  embodies the time evolution given by the t/iH0e −=U , which represents 

the precession of the overall state vector (the so-called Bloch vector) with 

respect to the axis B , defined by the static magnetic field, see Fig. 4-1  
[194].  
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Figure 4-16. Precession of a spin-1/2 about the axis of a static magnetic field.  (After [194].)

Vandersypen and Chuang [194] indicate that in the most general case, the 
system Hamiltonian for a molecule possessing N isolated nuclei is given by, 

( )
==

−=−−=
N

1i

i
z

i
0

N

1i

i
z0ii0 IIB1H ,                                          (14) 
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where i  labels the nuclei, and i  denotes the so-called chemical shifts, 

which characterize the fact that distinctly different precession frequencies 
are exhibited by identical atomic species within a given molecule, when the 
shielding environment produced by their surrounding electrons results in a 

different magnetic field, 0B . They also point out [194] that typical chemical 

shifts range in the order of a few kilohertz, compared to the precession 
frequencies, which range in the MHz. 
 In addition to isolated spin nuclei, liquid-state NMR includes the presence 
of coupled spins. These are characterized by either a direct or an indirect 
coupling mechanism. The direct coupling is of the magnetic dipole-dipole 
nature, similar to the interaction between two adjacent bar magnets and, for 

nuclei i  and j , separated by a distance ijr , is given by [194], 

( )( )
<

⋅⋅−⋅=
ji

ij
j

ij
i

2

ij

ji

3

ij

ji0

D rIrI
r

3
II

r4

µ
H ,                          (15)  

where 0µ  is the free space magnetic permeability, and iI  is the magnetic 

moment vector of spin i . Under certain conditions, Eq. (15) may be 
simplified. For instance, for large precessing frequencies it reduces to [194], 

( ) ( )[ ]
<

⋅−⋅−=
ji

iji
ij3

ij

ji0

D IIII3
r8

µ
H j

2cos31 ,                        (16) 

where ij  is the angle between 0B  and ijr , whereas if j
0

i
0 ω−ω  is much 

greater than the coupling strength it reduces to [191], 

( )
<

−=
ji

ij3

ij

ji0

D

r4

µ
H j

z
i
z

2 IIcos31 .                                                (17) 

 The indirect coupling is characterized by a strength J, which captures the 
overlap of electronic wavefunctions between two atomic nuclei, and has 
values ranging from several Hz, for three- to four-bond couplings, to several 
KHz for one-bond coupling. The indirect coupling Hamiltonian takes the 
form [194], 

( )
<<

++==
ji

j
z

i
z

j
y

i
y

j
x

i
xij

ji

ji
ijJ IIIIIIJII2H ,                     (18) 

where ijJ  characterizes the coupling between spins i and j. Simplification of 

this expression  is also possible in certain circumstances, in particular, when  
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ijji J2π>>ω−ω , which may be obtained when dealing with 

heteronuclear spins or with small homonuclear molecules, it reduces to 
[194], 

<

π=
N

ijJ J2H
ji

j
z

i
z II .                                                                           (19) 

Eq. (19) captures the circumstance that, in addition to a constant externally 

applied magnetic field, B , the actual field at a given spin location includes a 
static field along ẑ± , which is elicited by spins in its neighborhood. The 
consequence of this additional field is to shift the spin’s energy levels and 
manifests as a change in the Larmor frequency. For instance, a neighboring 

spin j in state 0  will shift the frequency of spin i by 2J ij− , whereas if 

spin j is in state 1 , it will shift the frequency of spin i  by ijJ 2J ij+ . In 

general, it turns out that, when in the presence of neighboring spins, the 
spectrum of a given spin would show, instead of a single line at its Larmor 
frequency, two lines for every neighboring spin, the lines being separated by 

the coupling strength ijJ  and located equidistantly above and below the 

Larmor frequency.   
 In the majority of NMR-based QC experiments, the system Hamiltonian 
realized is described by the simplified Hamiltonians [194], i.e., 

<

+−=
ji

j
z

i
zij

i

i
z

i
0sys II2IH J ,                                                  (20)  

where the first term arises from the energy of isolated spins, and the second 
from the energy of interacting (coupled) spins.                                
 To effect the manipulation of qubits in NMR-based QC [194], it is 
necessary to apply a magnetic field that will rotate the state of the spin-1/2 
nuclei, see Fig. 4-1 . This is accomplished by adding to the static ẑ -directed 

magnetic field, 0B ,  a time-varying (RF) electromagnetic field oriented in 

the ŷx̂ −  plane, of a frequency RFω  close to the spin precession frequency 

0ω . This RF field gives rise to the control Hamiltonian which, for a single 

spin, is given by [194], 

( ) ( )[ ]yRFxRF1RF ItsinItcosBH φ+++−= ,                          (21) 

where 1B  is the applied RF field amplitude and φ  its phase. For liquid-state 

NMR, 11 KHz50B ω≡≈γ . In the presence of N spins, the total control 

Hamiltonian is the sum of the terms such as Eq. (21) of each spin. The 
implementation of quantum gates in NMR-based QC exploits the ability to 

6
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induce a certain time evolution of a spin state by the fine perturbation that 
varying the amplitude, frequency, and phase of the control Hamiltonian 
affords. 
 The analysis of spin rotations is facilitated by describing the motion with 
respect to the so-called rotating frame [193], [194]. This is a coordinate 

system that rotat  with respect to the ẑ  axis at a frequency RFω . A given 

state rotating frame 
rotψ  and the corresponding state ψ  in the laboratory 

(non-rotating) frame are related by [191], 

( ) ψω−=ψ zRF

rot
tIiexp .                                                                 (22) 

It can be shown by substitution of (22) into Schödinger’s equation, that in 
the rotating frame and in the presence of many, e.g., r, applied RF fields, the 
system and control Hamiltonians adopt the forms [194], 

<

π=
ji

j
z

i
z IIijsys J2H ,                                                                         (23) 

and 

( )( ) ( )( )[ ]φ+ω−ω+φ+ω−ωω−=
r,i

i
y

ri
0

r
RF

i
x

ri
0

r
RF

r
1control ItsinItcosH . (24) 

The effect of the control Hamiltonian is most easily visualized with 
reference to the Bloch sphere, see Fig. 4-17, whose surface contains the  
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Trajectories

Qubit Tip

Trajectories

Figure 4-17. Bloch sphere surface: Dashed lines delineate the trajectories of the tip of a qubit 

as a function of the RF pulse strength and duration. When the RF frequency equals the 

Larmor frequency, i.e., at resonance, the pulse produces a °90  rotation. As 0RF ω−ω
increases, the rotation decreases, in particular, at large offsets the trajectory remains close to 

0 . [194]. 
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locus of the tip of a qubit vector as a function of 0RF ω−ω , for a given RF 

pulse duration and the parameter 1ω .

 NMR-based quantum gates are generated by “tuning” the parameters in 
the control Hamiltonian to achieve a desired qubit rotation. Since any 
quantum gate may be constructed from single-qubit rotations and the C-NOT  
gate, the problem of NMR-based quantum computing reduces to determining 
the control Hamiltonian that will implement these. In this context, we note 
that the most general qubit rotation is defined by [194], 

⋅−=
2

ni
expRn

ˆ
ˆ ,                                                                             (25) 

where n̂  denotes the 3-dimensional axis of rotation, θ  is the angle of 

rotation, and zyx zyx ˆˆˆ ++=  is a vector of Pauli matrices. 

Furthermore, it can be shown that any qubit transformation may be 
implemented as a sequence of rotations about only two axes. In particular, 
Bloch’s theorem stipulates such a transformation as [194], 

( ) ( ) ( )δγβ= α
xyx

i RRReU .                                                                 (26)  

Therefore, in terms of the control Hamiltonian parameters, implementing a 
single-qubit gate may be accomplished in the rotating frame using RF 

pulses. Specifically, if an RF field of amplitude 1ω  and frequency is 

0RF ω=ω  is applied to a single spin, this will evolve according to [194], 

( )[ ]pulseyx1 tIsinIcosiexpU φ+φω= ,                                                 (27) 

where the RF pulse duration is given by pulset . In the context of the Bloch 

sphere, this transformation would rotate the qubit by an angle pulse1t~ ωθ ,

with respect to an axis in the ŷx̂ −  plane given by the phase φ . For 

instance, the parameters: π=φ  and 2t pulse1 π=ω  effect the ( )90R x

rotation about x̂ , whereas doubling the pulse duration implements 

( )180R x , and changing the phase to 2π−=φ  effects the rotation about 

ŷ . In general, the phase of the RF pulse determines the nutation axis in the 

rotating frame, so that to perform x̂  and ŷ  rotations it is not necessary to 

orient the RF field along these axes; changing the phase suffices. A rotation 
about the ẑ  axis in terms of rotations about x̂  and ŷ  is given by [194], 

( ) ( ) ( )YYRXXRRU xyz θ−=θ=θ= ,                                             (28)  
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where the bar over X and Y denotes a rotation of -90 degrees with respect to 
X or Y. 
 The NMR-based implementation of the C-NOT quantum gate involves a 

series of two-qubit rotations, namely [201]: 0000 → , 0101 → ,

1110 → , and 1011 → . Addressing a particular qubit, without 

affecting the neighboring one, is accomplished by exploiting the fact that 

different atoms possess different resonance frequencies, 0ω , or that the 

same type of atoms with a different chemical shift also possess different  

0ω . Taking two coupled spin-1/2 atoms with resonance frequencies 1ω  and 

2ω , and coupling 12J , the C-NOT gate is implemented if applying a 

narrowband 180-degree pulse at a frequency 2/J122 +ω , causes spin 2 to 

be inverted only if spin 1 is in state 1 . In this case, spin 1 is the control 

qubit and spin 2 the target qubit. Pictorially, the C-NOT gate may be 
visualized following the construction of Steffen, Vandersypen and Chuang 
[201], see Fig. 4-18. The sequence of rotations is produced as follows: 1) An 

RF pulse at a frequency 2ω , of a bandwidth such covering the frequency 

range 122 J±ω , but that does not overlap with 1ω , rotates spin 2 from +Z to 

–Y; 2) The spin system is allowed to evolve freely for a duration of  12J2/1
seconds; 3) During the free evolution period, the precession frequency of 

spin 2 will be shifted by 2/J12±  according to whether spin 1 is in the 1

or  0  state. This will result in the rotation of spin 2 to either +X or –X by 

the end of this period, depending on the state of spin 1; 4) A 90-d gree pulse 
applied to spin 2 about the –Y axis rotates spin 2 to +Z if spin 1 is in state 

0 , or to –Z if spin 1 is in state 1 .

Delay(1/2Jab)90X 90-YZ

X

Y

Delay(1/2Jab)90X 90-YZ

X

Y

Figure 4-18. Left-to-right: Sequence of qubit rotations for implementing the C-NOT quantum 

gate in NMR-based QC. The coordinate system rotates around the ẑ  axis at a frequency 2ω
when spin 1 is 0  (solid line), and  1  (dashed line).  (After [201].) 

e
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 While the maturity of NMR spectroscopy has enabled the successful 
proof-of-concept implementation of various QC algorithms, the fact that the 
technique must rely on measuring ensembles of spins to obtain a detectable 
read-out signal is a limiting aspect of it, since this implies that one must 
begin with the highly-mixed initial ensemble state; this is the result of there 
being a very small energy difference between up and down spins at room 
temperature, manifesting itself as a nearly random equilibrium distribution 
[193]. 
 A highly-mixed state possesses equally likely spin-up and spin-down 
states, for example [193], 

( ) 0021 ε+ε− I/ ,                                                                              (29) 

510~ −ε , which is an almost random state with a small excess of the 0

state [193].  This expression for the equilibrium state follows from the 

density matrix thermal  which, being proportional to H/kTe−  (where the 

nuclear spins in a molecule posses the internal Hamiltonian H, T is 
temperature and k is the Boltzmann constant), admits an expansion [190], 

( ) ( )
...eee /kT/kTH/kT 2

z2
1

z1 −−− ≈ ,                                                                 (30) 

which with, 

( ) ( )
/kT...-Ie

1

z1

/kT1
z1 σε≈−

,                                                                 (31) 

may be written as, 

( ) ( )
/kT...-/kTIe

2

z2

1

z1

H/kT −≈− ,                                                 (32) 

where I is the identity matrix and, for spin i, the parameter i  represents the 

energy difference between up and down states. While the desired initial state 

is a pure one, in which all spins are in the same state, e.g., 0 , the actual 

randomness of the initial ensemble state may be overcome by a technique to 
transform it into an almost pure state.  
 An almost pure state is one that produces a signal that is proportional to 
that of a pure-state signal. It is generated by exploiting three facts [193], 
namely: 1) That the magnetization is determined by the traceless part of the 

density matrix; 2) That the completely mixed state n2I/  is preserved under 
both unitary and non-unitary transformations; and 3) That all scales are 
relative, in particular, that only the ratio of two magnetizations determines 
the final answer of a quantum computation, i.e., the deciding factor in a 
measurement is, not the absolute magnetization, but its relative value 
compared to the noise [193].  
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 Constructing a pseudo-pure state makes use of the concept of deviation 
density matrix. This is the arbitrary matrix δ  for which Iλ=ρ−δ  for some 

constant λ . From this definition, and inspection of Eq. (29), it is clear that 

the matrix 00ε  is in fact a deviation matrix from the equilibrium state of 

one nuclear spin. An interesting property of the deviation matrix is that, if 
m̂  is a traceless operator, then [193], 

( ) ( )( )
( ) ( )

( )mtr

mtrmtr

mItrmtr

ˆ

ˆˆ

ˆˆ

ρ=

+ρ=
λ+ρ=δ

.                                                                       (33) 

Thus, the expectation value (the measurement) of a traceless observable may 
be obtained either from the density matrix or from the deviation matrix, as 
prescribed in Eq. (33). A pseudo-pure state, in fact, is defined as one whose  

equilibrium state has the deviation 00ε=δ . Its significance is as 

follows. If we are interested in the probability of 1p  of measuring state 1 ,

given that the initial state was 0 , then this is given by [193], 

( )
( )( )

( ) ( )( )
( )( ) 2U00Utr1

2U00UtrU00Utr

2IU00Utr

11U00Utr

1U00U1p

z

z

z

1

/

/

/

σ−=

σ−=

σ−=

=

=

+

++

+

+

+

,                                     (34) 

Where U is the total unitary operator associated with a computation. 
Therefore, Eq. (34) indicates that by measuring the initial and final 

expectation values of z , ( )tra z == , and 

( ) ( )zU0 σ=′=′ +0Utrtra z , respectively, one can determine  1p . In 

fact, ( )( ) 21p1 aa ′−= , independent of the scale .

 Most importantly, the technique may be extended to the case in which one 

desires to determine the probability 1p  of measuring the state 
1

1 , in the 

case in which this state refers to the first qubic resulting from applying a 
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quantum gate to an initial state 000...000  [193]. The result is the same, 

namely, ( )( ) 21p1 aa ′−= , except that now the deviation in question takes 

the form 000...000000...000ε=δ .

 In general, if a state has a deviation proportional to a pure state ψψ ,

in particular, ψψε=δ , it is called a pseudo-pure state. Physically, Cory 

et al. [200] stated that the justification for constructing a pseudo-pure state 
derives from the fact that the spins in the different molecules of a liquid are 
virtually independent of one another and that, as a result, they may be 
construed as a large number of copies of a single type of molecule, thus 
permitting the liquid to be approximated by a Gibbs ensemble. Because of 

this, instead of dealing with a density matrix of size N2 , which is the total 

number of molecules, one can deal with a reduced density matrix of size n2 ,
where n is the number of spins in a single molecule. Analytically, instead of 
the density matrix [200], 

( )
{ }ψ

ψψψψ=Ψ dp ,                                                                         (3 ) 

where ( )ψp  is the probability density of the pure state described by the 

spinor ψ  and  { }ψ  denotes the set of all unit norm spinors, one uses the 

approximation [200], 

( )
( ) ( )11

221

21
n

≤α≤−
α+α−
ψψα+α−

=Ψ
I

,                                            (3 ) 

where ψ  is a unit spinor. Thus, since the ensemble average of an 

observable O is obtained by taking the trace of its product by the density 

matrix, ( )ΨOtr , a simplification is obtained from using the pseudo-state, 

since the ensemble average is now given by,   

( ) ( ) ( ) ψψα+α−∝Ψ O2Otr1Otr , where ( )Otr  is known. While the 

pseudo-pure state continues to be made up of a statistical mixture of 
molecules, since by Eq. (3 ), each spinor determines a unique psudo-pure 
density matrix, and each pseudo-pure density matrix determines a spinor that 
is unique to within an overall phase factor (assuming the polarization is α
known), each addition of the magnetizations of all the molecules reveals the 
predominance of one particular state present, in effect capturing each 
molecule’s state for the final spectrum without the necessity of wavefunction 
collapse [200].  The price paid as a result of using pseudo-pure states is the 
loss of a factor of the order of one million in the effective number of 

6

5

6
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molecules per state because the net polarization of spins is only about one 
part in one million. Herein lies one of the main limitations of NMR-based 
QC [193], [200]: The fact that the pseudo-pure state signal decreases 
exponentially with the number of qubits prepared, while the noise level 
remains constant, precludes the methods for extracting pseudo-pure states 
from working for more than about 10 nuclear spins.  
 Thus, the use of pseudo-pure states enables one to obtain a result despite 
the highly random nature of the initial state. The question then becomes, 
how does one transform an initial random state into a pseudo-pure state with 

deviation 000...000000...000 ? A technique, among various, that is 

employed applies magnetic field gradient to the sample in order to make the 
frequency of the precessing spins position-dependent and, thus, make it 
possible to distinguish different parts of the sample. In particular, the 
gradient field induces a position-dependent phase change along the sample. 
This is the basis of NMR imaging [193].  
 Another issue that derives from the ensemble nature of the sample, is that 
care must be taken to reduce unintended coupling between qubits [193]. The 
established technique to accomplish this is called “refocusing” [193], [194]. 
The fundamental idea is to apply a pulse at the midpoint of the evolution 
period to a given spin, of such a phase (typically °180 ) as to undue the 
evolution it has experienced over the time period due to the influence of the 
undesired coupling [193]. 
 One common issue with QC is the effect of decoherence. In the case of 
NMR-based QC decoherence is characterized in terms of two parameters, 
namely, the energy relaxation rate, T1, and the phase randomization rate, T2

[194]. T1 captures the energy lost by precessing spins to various mechanisms 
such as couplings to other spins, and to phonons and paramagnetic ions, and 
chemical reactions such as ions exchanges with the solvent. This source of 
decoherence may, by properly choosing the molecules and liquid samples, 
be extended to tens of seconds. T2 captures energy losses due to short- and 
long-range spin-spin couplings, the effects of fluctuating magnetic fields due 
to the spatial anisotropy of the chemical shifts, local paramagnetic ions, or 
unstable laboratory fields. These factors, by properly choosing the quality of 
the samples and laboratory equipment allow a decoherence time of one 
second or more for molecules in solution [194]. 

4.3.1.3  The Semiconductor Solid-State Qubit 

Given the predominance of solid state silicon electronics technology, 
there is a strong motivation to discover and develop paradigms for quantum 
computing that exploit qubits embedded in silicon wafers. An early example 
of this is the scheme for a silicon-based nuclear spin quantum computer 
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introduced by Kane [202], see Fig. 4-19. In this section this example is 
reexamined. 

Figure 4-19. Sketch of nuclear spin QC concept. Illustrated are two cells in a one-dimensional 

array containing 
+P31

donors and electrons in a Si host wafer, separated by a barrier from 

metal gates on the surface. 
310~ −

acB  Tesla, and 2~B  Tesla. (After [202].) 

In this scheme the qubits are embodied in the nuclear spins of donor atoms 
located underneath biasing metallic gates in doped silicon structures, and the 
coupling between qubits is enabled by the hyperfine interaction, which 
couples electron and nuclear spins. In particular, with the wave function of 
the donor electron being concentrated at the nucleus, a large hyperfine 
energy, and thus coupling, between electron and nuclear spins is guaranteed 
which, in turn, may be communicated to adjacent qubits by the 
extension/overlap of the electron wave functions of the corresponding donor 
electrons. Modulation of the coupling between electronic wave functions, 
and thus between qubits, is facilitated by the charge nature of electrons, 
which enables their manipulation via applied electric fields. Quantum 
computation, therefore, may be effected by applying voltages through 
biasing gates located on the wafer surface, in particular, “A gates”, which 
control the resonance frequency of the nuclear spin qubits, and “J gates”, 
which control the electron-mediated coupling between neighboring nuclear 
spins. In addition, two other biasing magnetic fields are necessary, namely, a 

global field acB , to enable flipping of the nuclear spin at resonance, and a 

local magnetic field, B, to break the two-fold spin degeneracy of germane to 
electrons occupying the lowest energy-bound state at the donor, which 
manifests itself at low temperatures.      
 The detailed physics of the silicon-based nuclear spin quantum computer 
is captured by the parameters governing the magnitude of the spin 
interactions, which determines the time required for manipulating qubits and 

B A C

B a r r ie r

S i l ic o n

J - G a te s

A - G a te s

3 1 P + Q u b its

e - e -

B

B A C

B a r r ie r

S i l ic o n

J - G a te s

A - G a te s

3 1 P + Q u b its

e - e -

B

B a r r ie r

S i l ic o n

J - G a te s

A - G a te s

3 1 P + Q u b its

e - e -

B



180 Chapter 4

the separation required between adjacent donors. In the presence of a 

magnetic field zB , and assuming a donor nucleus with 2/1I =  embedded 

in a silicon host, the interaction in question, namely, the nuclear-spin 
interaction, is given by the Hamiltonian [202], 

NeN
zNN

e
zBNe ABµgBµH ⋅+−=− ,                                          (3 ) 

where Nµ  is the nuclear magneton, σ  are the Pauli spin matrices, Ng  is the 

nuclear g-factor, and ( ) 2

NNB 0µgµ
3

8
A =  is the contact hyperfine 

interaction energy when the probability density of the electron wavefunction, 

( ) 2
0  is evaluated at the nucleus. Clearly, examination of Eq. (3 ) 

indicates that the interaction energy is a directly proportional to the magnetic 
field and is a strong function of the wave function probability density at the 
nucleus. A trade-off exists, however, because for electrons in their ground 
state the frequency separation between nuclear levels is [202], 

Bµ

2A
2ABµ2gh

B

2

NNA ++= ,                                                              (3 ) 

which, for fields 3.5TB <  is dominated by the second term. Thus, in this 
regime the magnitudes of the nuclear magneton and the wavefunction 
probability density at the nucleus take on a dominant character. 
 To perform arbitrary rotations on the nuclear spin, Kane indicates that it is 
necessary to alter its precession frequency in comparison with that resulting 

from the applied magnetic field acB  [202]. This is accomplished by 

exploiting the fact that the proximity of the donor-nuclear spin system to the 
A gate allows the hyperfine interaction to be reduced by shifting the 
envelope of the electron-donor wavefunction away from the nucleus, i.e., by 

reducing ( ) 2
0 . In essence, such a shifting alters the frequency, Eq. (35), 

and causes the nuclear spin-donor system to behave as a voltage-controlled 
oscillator producing, for a donor placed 200 Å under the gate, a tuning 
parameter of the order of 30 MHz/V [202]. 
 In addition to the single-qubit rotation, the two-qubit C-NOT operation 
must be implemented in order to enable general quantum computations. In 
the context of the nuclear spin-donor system, accomplishing this requires 
developing the ability to induce nuclear-spin exchanges between two 
nucleus-electron spin systems. The interaction between two such systems is 
captured by the Hamiltonian [202], 

( ) 2e1e2e2N
2

2e1N
1 JAABHH ⋅+⋅+⋅+= ,                         (3 )  

7
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where ( )BH  represents the magnetic field interaction terms between spins, 

the respective hyperfine interaction energies of the nucleus-electron systems 

is given by 1A  and 2A , respectively, and 4J  is the exchange energy, which 

is a function of the electronic wavefunction overlap and, for donors in a host 

semiconductor of dielectric constant , and Bohr radius Ba , and separated 

by a distance r of about 100-200 Å, is given by [203], 

( ) −≅
B

2

5

BB

2

a

2r
exp

a

r

a

e
1.6r4J .                                                    ( ) 

The wavefunction overlap, to which J is proportional, is captured by this 
exchange energy. Thus, varying the voltage applied via the J-gate one can 
modulate coupling between separated qubits. 
 Once qubits have been manipulated to effect a quantum computation, the 
result of the computation must be read off. In the silicon-based nuclear spin 
QC, this is accomplished by measuring the current that results from the 
conversion of nuclear spins into electron polarization, in response to a bias 
voltage, see Fig. 4-20 below. In particular, this conversion of the nuclear 
spin into an electron polarization is prompted by the coupling of the states 

↓↓  and ↓↑−↑↓ , which is produced by the hyperfine interaction 

between the nuclei and the electronic states as the exchange energy J is 

increased adiabatically from B/2µJ B<  to B/2µJ B> , see Fig. 4-20(a) 

[199]. 
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Figure 4-20. (a) Energy levels for electrons (solid lines) and lowest energy-coupled electron-

nuclear (dashed lines) systems as a function of exchange energy, J. When B/2µJ B< , it is 

possible to perform two-qubit computations by exercising control over the level splitting 

01100110 +−−  with the J-gate. Above B/2µJ B= , the states of the coupled 

system evolve into states with differing electron spin polarization. When 0J =  the state of 

the nucleus with the larger energy splitting, which is controllable by the A-gate, determines 

the final electron spin state after an adiabatic increase in J. (b) Only electrons in state 

↓↑−↑↓  can make transitions into states in which electrons are bound to the same donor 

(D- states).  These transitions elicit an electron current that is measurable by capacitive means, 

thus enabling the underlying spin states of the electrons and nuclei to be determined. [202]. 

This implies a change in wavefunction symmetry, i.e., from that of ↓↓  to 

that of ↓↑−↑↓ .

 Two electrons with the latter symmetry, however, are capable of 

occupying the same donor. In the Si:P the donor takes the form of a −D
state, which is always a singlet state with a second electron binding energy 
of 1.7meV. Under these circumstances, it will be possible, with the 
appropriate bias between the A-gates, to induce electrons from one donor to 

move the adjacent, already occupied one in order to establish the −D  state in 
it. This charge motion, in turn, is detectable utilizing single-electron 
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capacitance techniques and produces a signal that remains observable until 
the spin relaxes; for Si:P this time may be of the order of hours [202].  
 Kane points out that a number of practical considerations must be 
addressed to make this scheme workable [202]. For instance, before 
beginning a computation, initialization will require the individual 
determination of gate biases to account for fluctuations due to the variation 
with position of both donors and gate sizes. These voltages, in turn, will 
have to be stored to effect the calibration as needed. Also, gate voltage 
fluctuations in essence couple the environment to the qubits, thus 
contributing to spin decoherence. This decoherence is elicited by the 
induction of difference spin precession frequencies in pertinent qubits, and 
manifests in that two spins in phase at a given time, will be °180  out of 

phase a time φt  later. It can be shown that [202], 

( ) ( )stV
22 SV

1
t

ναπ
=φ ,                                                                        ( ) 

where dVd∆=α  is the tuning parameter of the A-gates, with ∆  the 

fluctuating differential precession frequency of the spins, VS  is the spectral 

density of the frequency fluctuations, and stν  is the frequency difference 

between the 0110−  and 0110+  states. Estimates, assuming the use of 

low-temperature elctronics to bias the gates, suggest sec10t 6≈φ , which 

implies the ability of the nuclear spin QC to perform between 105 1010 −
logical operations during  φt . Finally, measures have to be taken to render a 

predominance of certain polarization of electrons spins, e.g., 

( )610nn −
↓↑ < , so that they can effectively mediate nuclear spin 

interactions. This, in turn, requires the electrons to occupy the lowest energy 

levels, which occurs when  kTB2µB >> . With T2B ≈ , this sets the 

operating temperature at 100mK.   

4.3.1.4  Superconducting-Based Qubits 

 In the search for two-level quantum systems upon which qubits might be 
based, Josephson junction-based superconducting qubits are currently the 
most advanced. In contrast to the previously discussed qubits, which are 
based on microscopic quantum effects of individual particles, such as ions, 
electrons, or nuclei, superconducting-based qubits are based on macroscopic 
quantum coherence effects [204], [205]. These are effects in which the qubit 
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state is embodied, not in the wavefunction of elemental particles, but on the 
coherent collective behavior of many particles, e.g., a superfluid. Thus, the 
qubit states are defined by macroscopically observed quantities, such as the 
charge or the current of particle condensates.  
 The key to superconducting qubits is the nonlinear nature of the resonant 
LC circuit embodied in the Josephson junction [206]. The quantum 
mechanical behavior of a linear LC circuit is captured by the flux Φ
through the inductor, which plays the role of position coordinate, and the 
charge Q  on the capacitor, which plays the role of conjugate momentum, 

thus enabling the commutation relation [ ] iQ, = . With the Hamiltonian 

given by, C2QL2H 22 +Φ= , the usual eigenenergy states are given by 

( )21nE 0 += , where LC10 =ω  is the resonance frequency. 

Reflecting the quadratic nature of the potential, the energy states are equally 
spaced. Thus, it is difficult to define the two lowest states as the qubit states, 
since transitions between higher-lying states are as equally likely [206].  
 The LC resonator may be made useful as a qubit if its energy spectrum is 
caused to exhibit two lowest-lying states separated from the higher-lying 
states. This is accomplished if a nonlinear inductance is introduced [206]. In 

particular, the nonlinear Josephson inductance, δπΦ= cosI2/L 00J ,

where RL φ−φ=δ , R,Lφ  is the phase of the wavefunction on either side of 

the junction, and 0I  is the critical current, introduces a nonlinear potential in 

which the two lowest-lying states are well separated from the higher-lying 
states. These variables afford characterization of the Josephson junction in 

terms of its energy, ( ) δ=πδΦ=Φ cosE2/cosIE J00extJ . In this context, 

the conjugate variables of the quantum mechanical description of the LC 

resonator become the flux, now given by θϕ=Φ 0 , where πΦ=ϕ 200 ,

and πδ=θ 2mod  represents a point in the unit circle (an angle module 
π2 ), and the charge, now given by eN2Q = , which represents the charge 

that has tunneled through the junction, and N  an operator with integer 
eigenvalues capturing the number of Cooper pairs that have tunneled. The 

commutation relation now is given by [ ] iN, =θ  [206]. The Hamiltonian is 

given by, 

( ) θ−−= cosEe2/QNEH J

2

rCJ ,                                                     ( ) 

where ( ) J

2

CJ C2e2E =  embodies the Coulomb energy for adding one 

Cooper pair worth of charge to the junction capacitance JC , and rQ

embodies a residual random charge capturing an initial charge existing on 
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the capacitor before it was connected to the inductor [206]. rQ  originates 

from the inevitable work function difference and/or the presence of excess 
charged impurities on the capacitor electrodes of the junction. 

 In the course of developing approaches to minimize the effect of rQ ,

while retaining the nonlinearity of the resonator, three fundamental types of 
Josephson-based superconducting qubits have been developed, namely, the 
charge qubit, the flux qubit, and the phase qubit, see Fig. 4-21.  
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Figure 4- 1 . Fundamental types of superconducting qubits. (a) Charge qubit. (b) Flux qubit. 
(c) Phase qubit.  (d), (e), (f) Potential (dotted line), showing qualitatively different shapes for 
these three respective qubit types. In (e) the nonlinearity of the first levels comes about from 
the cancellation between the superconducting loop inductance and the junction inductance 

near 2/0ext Φ=Φ . No closed-form expressions exist for the eigenvalues and 

eigenfunctions of the potential, but its features are captured by two aspect ratios, namely, 

CJJ E/E  and 1L/L J −=λ . Ground-state wavefunction is also indicated (dashed-

double-dot line). The “x” represents a Josephson junction. (After [206] and [207].) 

 The nature of the Josephson-based qubit is a function of the relationship  

between the relative magnitudes of the Josephson energy, JE , which reflects 

the strength of the coupling across the junction, and the Coulomb charging 

energy, CJE , which reflects the energy needed to increase the charge on the 

junction by a Cooper pair, e2  [208]. 
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4.3.1.4.1  The Charge Qubit 

 The charge qubit, see Fig. 4-22, also known as the Cooper pair box, aims 

at compensating the residual offset charge rQ  by biasing the Josephson 

junction with a voltage source gV  in series with a “gate” capacitor gC . In 

this case it can be shown that the Hamiltonian, with potential shown in Fig. 
4-21(d), is given by, 

( ) θ−−= cosENNEH J

2

gC  ,                                                            (4 ) 

where ( ) ( )( )gJ

2

C CC2e2E +=  represents the energy required for 

charging the island of the box and e2/VCQN ggrg += . To function as a  

charge qubit, JCJ EE > , in which case the circuit favors fixing the numbers 

of Cooper pairs. In the absence of tunneling, this state of affairs yields an 
energy versus gate voltage as given by the dashed lines in Fig. 4-22(b), that 

is, as the gate voltage increases, the energy of the zero state 0  increases 

and that of the one state 1  decreases.  
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Figure 4- 2. Charge qubit. (a) A qubit is created by the superposition of the two classical 
states embodied by the presence of zero and one extra Cooper pair in the box. (b) Energy 
levels as a function of controlling gate voltage.  

However, in the presence of tunneling, coupling causes the energy levels to 
split and avoid crossing, thus reflecting the creation of two new quantum 
states (solid lines), namely, one materialized as the symmetric superposition 

of the classical zero and one states ( )10 + , and the other as their 

antisymmetric superposition ( )10 − , both separated by an energy gap of 

magnitude JE2  [208].  

 The dynamic behavior of the charge qubit is controlled by applying time-
varying signals to the voltage gate. Initial demonstration of the coherent 

3
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control of macroscopic quantum states in a single-Cooper-pair box was 
reported by Nakamura, et al. [209]. In these experiments, the superposition 
of two charge states (i.e. states with different number of Cooper pairs N) was 
detected by a tunneling current through a probe junction. In particular, a 
normal electron escaped through the probe junction every time the system 
adopted the one state. Control of the state of the qubit was effected by 
varying the length of the voltage pulse, with the probability of the system 
returning to the zero or one state oscillating in proportion to it. The major 
source of decoherence was found to be the probe junction itself, which 
limited the coherence time to 2 ns [206]. 
 Nakamura et al.’s [206] approach was improved by the quantronium
device demonstrated by Vion et al.’s [112] see Fig. 4-23. In this device, the 
Josephson junction of the Cooper pair is split into two small parallel 

Josephson junctions which are characterized by their energy ( )2/cosE J δ ,

where δ  is the superconducting phase difference across the series 
combination of the two junctions. These junctions, in turn, are shunted by a 

larger Josephson junction, characterized by an energy J0J E20E ≈  and by a 

phase γ , thus forming a loop. A current φI  applied to an adjacent coil 

produces a flux Φ  that passes through the loop, with the consequence that it 
induces a phase φ  that now links the loop phases as follows, φ+γ=δ ,

where /e2 Φ=φ . This action entangles the state of the box, N, via δ ,

with the phase γ , see Fig. 4-23(a). The quantum state of the qubit is 

manipulated by applying a microwave pulse of frequency 

GHz5.16~01ν≅ν , the transition frequency between charge levels in the 

box corresponding to the zero and one states. Depending on the pulse 

duration, any state 10 β+α=Ψ  can be prepared.  Reading the state 

exploits the fact that a current pulse ( )tI b , see Fig. 4-23(b), of peak 

amplitude slightly below the critical current of the large junction, 

/eE2I 0J0 = , causes a supercurrent to develop in the loop that is 

proportional to N. In particular, when there is no extra charge in the box, this 
supercurrent elicits a clockwise current in the loop formed by the two 
junctions, whereas when there is an extra charge in the box, the current is 
counterclockwise. In the former case, the current adds to the bias current in 
the large junction with the result that, for precisely adjusted amplitude and 

duration of the ( )tI b  pulse, it switches to a finite voltage for a state one and  
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Figure 4- 3. Quantronium circuit. (a) The circuit consists of a Cooper pair box island (node 

N), to which two small Josephson junction branches are connected. These, together with a 

larger Josephson junction, that is shunted by a capacitance C (to reduce phase fluctuations), 

form a loop. The state of the circuit is embodied by the number of Cooper pairs, N, and the 

phases δ  and γ . To tune the quantum energy levels, a DC voltage V  is applied to the gate 

capacitance, gC , and a DC current φI  is forced through the coil to produce a flux φ  in the 

circuit loop. (b) To prepare arbitrary quantum states, microwave pulses ( )tU  are applied to 

the gate. To read out the state a current pulse ( )tI b  is applied to the large junction and the 

resulting voltage ( )tV  across it is measured. A typical write/read timing sequence is shown. 

(After [112].) 

it does not switch for a state zero.  In essence, the quantronium uses a phase 
circuit to measure current, instead of the charge, thus avoiding the probe-
induced decoherence problem of Nakamura et al’s. A decoherence time of 

s5.0 µ  was measured [112]. 

4.3.1.4.2  The Flux Qubit 

The flux qubit, see Fig. 4-21(b) above, is considered as the dual of the 
charge qubit [206]. It consists of a junction that is coupled to a current 
source via a transformer, instead of a gate capacitor, with the junction itself 
being  connected in series with an inductance L , and the system being 

2
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biased by an external flux extΦ  through an auxiliary coil. In the flux qubit 

the approach to compensating the detrimental effect of rQ  relies on shunting 

the junction with the superconducting wire of the loop and choosing the 

condition JCJ EE < . This results in making the quantum fluctuations of q

much larger than those of rQ∆ . The Hamiltonian, with potential shown in 

Fig. 4-21(e), is given by, 

( )φ−φ−φ+= extJ

2

J

2 e2
cosE

L2C2

q
H ,                                             (4 ) 

where φ  is the integral of the voltage across the inductor L , which gives the 

flux through the superconducting loop, and q  is its conjugate variable, 

which represents the charge on the junction capacitance JC . Both obey the 

commutation relation [ ] iq, =φ . The prototypical flux qubit consists of 

three Josephson junctions forming a loop and being controlled by an applied 
magnetic field perpendicular to the loop to control the phase, see Fig. 4-24. 
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E
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                                             (a)                                                     (b) 

Figure 4-24. Flux qubit. (a) A qubit is created by the superposition of the two classical states 

embodied by the loop phase of zero and π2 . While one or two junctions would be sufficient, 

three junctions allow greater control over the behavior of the system. (b) Energy levels as a 

function of controlling magnetic flux. The energy gap, ( )( )2/1NL2/E 2
0 −Φζ= ΦΦ ,

plays the same role as JE . ζ  is a numerically determined parameter and 

0ext /N ΦΦ=Φ . [207], [208]. 

 In this case the two qubit states 0  and 1  are embodied in transitions in 

phase from loop phases of 0 to π2 , which are associated with currents 
circulating around the loop in clockwise and anti-clockwise directions. In 
particular, states of zero and π2  phase difference around the loop, are 
“coupled” when the flux through the loop equals half the quantum magnetic 

flux in the superconductor, i.e., when 2/0Φ=Φ . Under this state of 

4
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affairs, two new states, ( )10 +  and ( )10 − ,  that are quantum 

superpositions, are formed, with the energy between them now given by the 
tunneling strength. Control of the qubit, such as to change its state, is 
effected by coupling to the flux φ , which is accomplished by sending 

current pulses on the transformer primary. Measurements of the states, made 
with a superconducting quantum interference device (SQUID), a device 
which consists of two Josephson junction in parallel, to detect the magnetic 
flux, reveals that the currents are carried by a billion Cooper pairs, with 
tunneling being the mechanism by which the directions of all of these 
particles is reversed simultaneously [208]. The decoherence times, which are 
limited by defects in the junction are in the range of 500 ns to s4µ .

4.3.1.4.3  The Phase Qubit 

 The phase qubit, see Fig. 4-21(c), utilizes only one Josephson junction, 
and the two quantum states are embodied in the quantum oscillations of the 
phase difference between junction electrodes [207]. In this case the approach 

to compensating the detrimental effect of rQ  relies on using large ratios of 

CJJ E/E . A large nonlinearity in the Josephson inductance is achieved by 

biasing the junction at a current 0I~I . The Hamiltonian, with potential 

shown in Fig. 4-21(f), is given by, 

δϕ−δϕ−= cosIIpEH 000
2

CJ .                                                          (4 ) 

The conjugate variables, given by the phase difference operator δ , which is 

proportional to the flux across JC , and the charge on the capacitance ep2 ,

obey the commutation relation [ ] ip, =δ  [207]. The potential is 

approximated by the cubic form, 

( ) ( )( ) ( )300
00 2/

6

I
2/IIV π−δ

ϕ
−π−δ−ϕ=δ ,                                  (4 ) 

from where it can be shown that the classical frequency of oscillation at the 
bottom of the well is given by, 

( )[ ] 4/12

0

J0J

p II1
CL

1 −=ω ,                                                             (4 ) 

and the first two levels that can be used for the qubit states have the 

transition frequency p01 95.0 ω≅ω  [207]. 

5

6

7
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 Read out of the qubit state is accomplished by exploiting tunneling 
through the barrier separating the potential well from the continuum, and 
subsequent self-amplification due to the negative slope potential, see Fig. 4-
21(f). In particular, since the barrier becomes thinner at higher energies, and 
those higher energy states have an increasing probability of escape, the one 
state is measured by sending a probe signal to induce a particle in the one 
state to tunnel out of the well. Upon tunneling out of the well, the downward 
acceleration of the potential leads to the appearance of a voltage e/2∆
across the junction. This voltage is associated with reading a one state for the 
qubit; zero voltage is associated with reading a zero state.  
 In terms of operating temperature, it is clear that superconducting qubits 

must be operated at temperatures such that ∆<<ω<< 01kT , where 01ω  is 

the transition frequency between the energy levels representing states 0

and 1 , and ∆  is the energy gap of the superconducting material. This 

necessitates cooling to temperatures of the order of 20mK.     

4.4 Summary 

 This chapter has dealt with a number of aspects surrounding the actual 
implementation of NanoMEMS circuits and systems. We began discussing 
architectural issues, as this is the first step in defining a NanoMEMS system 
on chip (SoC). Then, emerging candidate building blocks, intended for 
applications ranging from interfaces to signal processing functions, were 
described. These included a charge detector, which-path electron 
interferometer, torsional MEM resonator for parametric amplification, 
Casimir effect oscillator, magnetomechanically actuated beam, functional 
arrays, and a quantum entanglement generator. These building blocks 
represented nanoelectromechanical quantum circuits and systems (NEMX), 
as they exploited the coexistence of electronic and mechanical structures. 
The chapter concluded with a presentation of physical implementations of 
quantum bits (qubits), such as the ion-trap, the nuclear magnetic resonance, 
the semiconductor solid-state, and superconducting qubits, upon which 
quantum computing paradigms might be predicated. 



Chapter 5 

NANOMEMS APPLICATIONS: PHOTONICS 

5.1 Introduction 

The ability to fabricate nanometer-scale structures has given new impetus 
to the field of miniaturization of optical devices, whose ultimate goal might 
be articulated as that of integrating optics and electronics in the context of a 
monolithic technology. While there are no fundamental limits to the 
miniaturization of electronic functions down to nano- and sub-nanometer 
scales, the minimum size of devices manipulating optical signals is limited 
by diffraction to about half the wavelength ( n2λ ) [210], which in practical 
terms encompasses dimensions in the several hundreds of nanometer [211]. 
Two approaches have been devised to overcome these limitations, namely, 
the design of optical elements based on very high refractive index materials 
[212], which is accompanied by high losses in the sub-30 nm size regime 
[213], and the conversion of photons into electromagnetic modes whose size 
is determined by the size of the waveguide rather than by the wavelength of 
the optical field [214]. The latter approach is based on surface plasmons 
(SPs), collective oscillations of free electrons resulting from the interaction 
of electromagnetic waves with free electrons at a dielectric-metal interface 
[215]. In particular, Dickson and Lyon [212] point out that, by employing 
SPs to transport light, the minimum waveguide size becomes only limited by 
a combination of the Thomas-Fermi screening length, which is ~0.1 nm in 
Au, and size effects affecting the dielectric constant, which have an onset at 
dimensions less than 5 nm in Au. While we will focus on SP-based 
approaches, a third approach to sub-wavelength photonic circuit elements, 
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proposed by Barrelet, Greytak, and Lieber [216], employs semiconducting 
nanowires and will be touched upon briefly. 

In this chapter, we deal with the fundamental principles of 
nanophotonics, the processing of light by nanometer-scale devices. In 
particular, we address the topics of generation, propagation, and detection of 
surface plasmons, and emerging devices based on them. 

5.2 Surface Plasmons 

 The concept of plasmons emerges from considering the motion of a 

concentration ( )t,rn  of free electrons, in a positive background 0n , as a 

result of an applied electric field E . In particular, assuming the electrons to 

behave as a fluid of velocity ( )t,rv , their motion is prescribed by the 

consistent solution of Newton’s and the continuity equations [132], 

( ) Eevvm
dt

vd
m −=∇⋅+ ,                                                                       (1) 

and 

( ) 0vn
t

n =⋅∇+
∂
∂

.                                                                                    (2) 

As a first step towards the solution, after neglecting the second term in (1) 
due to its quadratic nature in v , one postulates that the effect of the electric 
field is to cause the local electron density to deviate from the constant 

background density by 0nnn −=δ . In this context, the extent of this 

deviation is related to the electric field by Poisson’s equation,  

( ) ne4nne4E 0 δπ−=−π−=⋅∇ ,                                                           (3) 

and, because of electron inertia and the restoring force supplied by Coulomb 
attraction  to regain equilibrium, i.e., 0n =δ , oscillations ensue. These 
collective bulk electron oscillations are denoted as volume plasmons, and 
their frequency of oscillation is obtained by substitution of nδ  into (2), 
resulting in, 

0vn
t

n
0 =⋅∇+

∂
δ∂

,                                                                                  (4) 

which, upon differentiating with respect to time, becomes, 
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and which, in turn, upon substituting (3) into (5) becomes, 

0
m

nne4

t

n 0
2

2

2

=
δπ

+
∂
δ∂

.                                                                         (6) 

Eq. (6), being analogous to that of a harmonic oscillator, prescribes the 
frequency of plasmon oscillation as, 

m

en4 2
0

p

π
=ω .                                                                                    (7) 

 Of particular interest in this chapter, is the concept of surface plasmons,
(SPs), Fig. 5-1, thoroughly reviewed by Raether [215]. These are elicited by 
the interaction of external electromagnetic fields with surface electrons, and 
are characterized by a dispersion relation, a spatial extension, and a 
propagation length or lifetime.  

5.2.1 Surface Plasmon Characteristics 

 The dispersion relation for SPs at the interface between a dielectric 

characterized by 2ε , deposited on the plane surface of a semi-infinite metal 

characterized by ''
1

'
11 iε+ε=ε , is given by [215],  

Dielectric, ε2 Evanescent W ave

M etal, ε1

z

x

Dielectric, ε2 Evanescent W ave

M etal, ε1

z

x

Figure 5-1. Sketch of surface plasmon. The field accompanying a surface plasmon peaks at 
the dielectric-metal interface and diminishes exponentially away from the interface. 
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izi =−ωε= ,                                                           (8) 



196 Chapter 5

where the wave vector xk , is given by, 

21

21
x

c
k

ε+ε
εεω= .                                                                                  (9) 

Substituting the complex dielectric constant expression into (9), the wave 

vector becomes ''
x

'
xx ikkk += , with components, 

2
'
1

2
'
1'

x
c

k
ε+ε
εεω= ,                                                                                (10) 

and 

( )2'
1

''
1

2/3

2
'
1

2
'
1''

x

2c
k

ε

ε
ε+ε
εεω= .                                                             (11) 

Since xkc <ω , see (9), and 0'
1 <ε , (characteristic of the metal), both 

1zk  and 2zk  are imaginary. As a result, the SP field becomes evanescent. 

The corresponding spatial decay of the field, away from the interface, is thus 

proportional to ( )zkexp zi−  [215], and is characterized by the distance at 

which it has decreased into either medium by 1/e [215]. Thus is given by, 

2
2

2
'
1

2
2

z
ε
ε+ε

π
λ= ,                                                                              (12) 

into the medium with 2ε , and, 

2
1

2
'
1

1
'2

z
ε
ε+ε

π
λ= ,                                                                               (13) 

into the medium with 1ε .

The propagation length iL  for SPs propagating along a smooth surface is 

defined as the distance, away from the interface, at which their intensity, 

which is proportional to ( )xk2exp ''
x− , has decreased by 1/e, namely, 

''
x

i
k2

1
L = .                                                                                             (14) 
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Raether [215] has pointed out that at visible wavelengths in silver, iL  may 

be as high as m22µ  at Å5145=λ , and m500µ  at Å600,10=λ . In 

addition to characterizing the SP decay by a distance, it may also be 
characterized by its lifetime. This is related to the SP group velocity by, 

gii vLT =  and, is a complex frequency ''' iω−ω=ω  and real '
xk  are 

assumed, may be expressed as ''
i 2T ωπ= , where from (9), one obtains, 

( ) 2
'
1

2
'
1

2'
1

''
1'

x
''

2
ck

ε+ε
εε

ε

ε
=ω .                                                                    (15) 

Since SPs are associated with both a field and electron motion, their lifetime 
is influenced by mechanisms giving rise to attenuation. These include, 
radiation damping (conversion of the SP into light due to scattering), 
electron scattering processes giving rise to ohmic losses, and chemical 
interface damping due to high interface state densities [217]. Two steps are 
essential, therefore, in the miniaturization of optics by exploiting SPs, 
namely, the processes of exciting the SPs by light, and of transporting SPs 
with minimum loss. These subjects are taken up by nanophotonics. 

5.3 Nanophotonics 

Nanophotonics deals with the realization of nanometer-scale optical 
components and signal processing functions. While the goal is to produce 
miniaturized optical components, it is conceivable that components in the SP 
domain, while performing equivalent optical functions, might take different 
forms not derivable from a direct downscaling of their optical counterparts. 
Nevertheless, functions such as light-to-SP conversion, SP wave guiding, 
and SP-to-light conversion are expected to be fundamental to these pursuits. 

5.3.1 Light-Surface Plasmon Transformation 

 Schemes for converting light into SPs, and vice versa, derive from 
circumventing the incompatibility of their dispersion relations, which do not 
intersect, see Fig. 5-2 below, and the necessity to conserve momentum. 
Accordingly, there are two fundamental elements to supply the additional 
momentum, namely, the grating coupler, and the ATR prism. 



198 Chapter 5

ω

kx

Light SP

A B

LightSP

C D

k’x

∆kAB
∆kCD

ω

kx

Light SP

A B

LightSP

C D

k’x

∆kAB
∆kCD

Figure 5-2. Sketch of dispersion relations for light, ck x ω= , and SPs, 

2121x ck ε+εεεω= . An incoming light wave with wave vector 
'
xk ,

necessitates and added momentum ABk∆  to convert to an SP. Conversely, an SP 

Necessitates losing a momentum CDk∆  to transform to a light wave. (After [215].) 

 In the grating coupler technique, the wave vector of light impinging upon 
the grating-metal interface at an angle θ  is resolved into one component 
perpendicular to the grating-metal interface, and one component along the 
interface, see Fig. 5-3. In particular, for a grating of period a, the wave 

vectors along the interface are given by ngsinc ±θω , where n is an 

integer and a2g π=   is the reciprocal lattice vector of the grating. 

Coupling between the light and the SPs is achieved when the condition,

SPx0x k
1c

ksin
c

k =
+ε
εω=∆±θω= ,                                                (16) 
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 Fig. 5-3 Concept of grating coupler to transform light into SPs. (After [215].) 
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that is, when an incidence angle 0θ exists at which the sum or difference of 

the component of the light wave vector and a multiple of the grating 
reciprocal lattice vector equal an SP wave vector. Reduction of an SP vector 

by xk∆  transforms it into light, whereas addition of xk∆  to the light’s 

wave vector transforms it into an SP. 
 In the ATR method, , see Fig. 5-4, the wave vector of light impinging 

upon a hemispherical prism of dielectric constant 0ε  and the metal interface 

at an angle 0θ  resolves its wave vector into components that are 

perpendicular and parallel to the prism-metal interface. In this case, coupling 
between light and SPs occurs when the component of the light’s wave vector 

along the interface, csink 00x θωε= , equals the SP wave vector, 

2121SP ck ε+εεεω= . If the metal thickness is finite, e.g., of extent d,

there exists the possibility that for a certain value of d, the evanescent field at 

the 10 / εε  interface may couple to the lower 21 / εε  interface, where it 

could also excite SPs [215], see Fig. 5-14. 
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Figure 5-4. Concept of ATR coupler. A metal layer of thickness d and dielectric constant 1ε
is sandwiched between a prism of dielectric constant 0ε  and a dielectric 2ε .  (After [215].) 

5.3.2 One-Dimensional Surface Plasmon Propagation 

Once light has been converted into SPs, the next question is how to 
provide efficient energy guidance. To elucidate the issues involved, a 
number of studies on surface plasmon propagation, utilizing various forms of 
waveguide, have been undertaken. 
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5.3.2.1 SP Propagation in Narrow Metal Stripes 

Lamprecht et al. [214] conducted studies of SP propagation in microscale 
Au and Ag metal stripes of widths in the micrometer range, and determined 
the effect of film width on SP propagation length, see Fig. 5-5.  
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Figure 5-5. Sketch of setup for spatially confined SP excitation and measurement. (After
[214].) 

In particular, they fabricated 70 nm-thick gold and silver stripes with 
widths in the m154 µ−  range. Their experimental scheme, see Fig. 5-5, 
involved localized light-SP coupling by a prism arrangement utilizing an 
opaque aluminum screen to achieve well demarcated excitation and 
propagation regions.  The propagation lengths were observed by detecting 
SP stray light with a CDD camera upon excitation with three different 
wavelengths, namely, 514, 633, and 785 nm. The experiment concluded that 
the SP propagation length decreased with decreasing lateral stripe width, the 
rate of decrease being very dramatic below m20µ , and increased with 
wavelength. At a wavelength of 633 nm, the propagation length in a silver 
stripe was about m58µ  and a few microns, for stripe widths of m54µ  and 

m1µ , respectively. 

5.3.2.2 SP Propagation in Nanowires 

Dickson and Lyon [212], conducted studies of SP propagation in high-
aspect-ratio metal nanostructures and 20 nm diameter, m151 µ− -long Au 
and Ag rods, observing propagation over distances greater than m10µ  for 
light wavelengths of 532 nm and 820 nm. In particular, they reported that 
once the SP propagation is initiated, the SPs are guided down the length of 
the wire and reemerge from the end as photons via plasmon scattering. In 
addition, for specific incident excitation wavelength and waveguide 
composition, they were able to demonstrate unidirectional SP propagation. 
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5.3.2.3 SP Resonances in Single Metallic Nanoparticles 

Further efforts were made to study the confinement of SPs to metallic 
nanoparticles. Among these, Klar et al. [217] reported the measurement of 
SP resonances in single metallic nanoparticles, and of the homogeneous line 
shape of their resonance, via photon scanning tunneling microscopy (PSTM) 
(PSTM detects a signal at the exit of an optical fiber tip that is proportional 
to the near field.) These SP resonances are known to be determined by the 
dielectric properties of the medium in which the particles are embedded, and 
by the size and shape of the particles, and are accompanied by a large 
resonant enhancement of the local field both inside and near the particle, see 
Fig. 5-6 [218]. 
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Figure 5-6. Sketch illustrating the excitation of the dipole surface plasmon oscillation. The 
electric field of an incoming light wave induces a polarization of the free electrons with 
respect to the much heavier ionic core of a spherical metallic nanoparticle. The net charge 
difference is only felt at the nanoparticle surface which, in turn, acts as a restoring force. In 
this way a dipolar oscillation of the electrons is created with period T. (After [218].) 

The setup utilized by Klar et al. [217], see Fig. 5-7, consisted of a tunable 
continuous wave (CW) laser illuminating the sample via a tapered Al-coated 
fiber tip. The nanoparticles were gold spheres with a typical diameter of 40 
nm, and occupying a volume fill fraction of 3 %, embedded in a 200 nm-
thick dielectric sol-gel TiO2 matrix with a refractive index 2.19. The 
experiment proceeded to position the fiber tip 7 nm from the sample and to 
shine laser light of various photon energies, in particular, 2,11 eV, 2 eV, 1.94 
eV, and 1.91 eV. Detection was effected by a silicon photodetector and plots 
of the transmitted light intensity, scanned across a surface area of 750 x 750 
nm2 were made. Three key results were obtained in the experiment, namely, 
an enhanced transmission by a maximum factor of 12, with respect to the 
background intensity, for a nanoparticle located near the center of the scan 
area, a typical resonance width of ~160meV, corresponding to a dephasing 
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time of 7fs, and a double-peak resonance structure. The field enhancement 
was explained as caused by the excitation of the SP resonance by the 
evanescent field of the fiber aperture and subsequent radiation, by the 
particle, of propagating modes into the far field, much like an antenna. The  
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Figure 5-7. Sketch of setup for measuring surface plasmon resonances in single metallic 
nanoparticles. The fiber tip has an aperture diameter of about 80 nm and positioned 7 nm 
away from the 200 nm thickTiO2 film, which is supported by a 1 mm-thick glass substrate. 
(After [217].) 

double-peak feature was explained as denoting the electromagnetic coupling 
of two close-lying particles. 

5.3.2.4 SP Coupling of Metallic Nanoparticles 

 The properties of SP coupling between close-lying metallic nanoparticles 
were studied by Krenn et al. [219] and Kottmann and Martin [220]. Krenn et
al. [219] utilized PSTM to elucidate the evolution of the optical near-field 
pattern when a large number of identical particles are arranged in a linear 
chain. Comparison with theoretical calculations lead them to confirm the 
unexpected squeezing of the optical near field due to SP coupling above a 
chain of half oblate Au spheroids nanoparticles with sizes averaging 100 x 
100 nm2 in section, by 40 nm height.  
 Kottmann and Martin [220] conducted a theoretical investigation of the 
plasmon resonances of interacting silver cylindrical nanoparticles with 50 
nm diameter at various separations, e.g., see Fig. 5-8. This figure shows that 
at a separation of 5 nm and incidence along the major axis (i.e., along the 
horizontal arrow) a single cylinder exhibits a resonance (dotted line) at 

nm344=λ . This resonance has the same magnitude, although shifted down 
to nm340=λ , for two cylinders (dashed line). In addition, an extra 
resonance at about 372 nm is observed (dashed line) for this latter case, 
showing the coupling of the two cylinders. In this case, an enhancement in 
gap field amplitude, with respect to the incident field amplitude, by a factor 
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of 8 is observed. When the wave is incident normal to the major axis (as 
indicated by the dashed arrow), a broad resonance is observed at  

nm380=λ , with a gap field enhancement of 40 with respect to the incident 
illumination.  
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Figure 5-8. Scattering cross section (SCS) calculation of 50 nm diameter cylinders with 5 nm 
separation. Illumination is in two different directions, as indicated by the arrows in the inset. 
The incident field polarization is in-plane, perpendicular to the arrows. The dotted curve 
corresponds to a single cylinder.  [220]. 

5.3.2.5 Plasmonic Waveguides 

 The concept of exploiting the coupling of resonant SP fields between 
adjacent metal nanoparticles to realize plasmon waveguides was studied by 
Maier et al. [211] via finite-difference time-domain (FDTD) simulations and 
experimentally. The FDTD simulations involved exciting a linear array of 50 
nm Au spheres with a center-to-center spacing nm75d = , and driven by a 
source dipole placed before the first particle. The driving pulse was centered 
at 2.4 eV, the resonance energy of an individual particle and corresponding 

to d2k π= , the highest group velocity waveguide mode. The pulse had a 

width of 30 fs, equivalent to 95% of the bandwidth of the dispersion relation 
for each polarization, and 24% of the total simulation time. For a linear chain 
of nine nanoparticles, the FDTD simulations predicted group velocities of 

s/m107.1 7×  and s/m107.5 6×  for field excitations of transverse and 
longitudinal polarization, respectively.  Similarly, energy decay lengths, 
estimated by monitoring the maximum field amplitudes at the center of each 
particle and at  the longitudinally  polarized  source, of  6dB/280nm  and  
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6dB/86nm were determined. The FDTD study concluded that by optimizing 
particle geometry it should be possible to achieve energy trabsport at a 
velocity of 0.1c (c is the speed of light).  
 The direct experimental evidence of energy transport a waveguide 
consisting of linear arrays of 90 nm x 30 nm x 30 nm rod-shaped  Ag 
nanoparticles with an inter-particle spacing of 50 nm and having the long 
axis of the rods oriented perpendicular to the propagation direction to 
increase the near-field coupling was fabricated. To probe energy transport, 
the fluorescence of Molecular Probes Fluorspheres F-8801, polystyrene 
nanospheres with a diameter of nm8110 ± , placed randomly along the 
waveguide, see Fig. 5-9, was detected. 
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Figure 5-9. Sketch of SP propagation detection along waveguide by fluorescent molecules. 
(After [211].) 

The procedure entailed excitation of the first particle in the waveguide by 
coupling laser light at a wavelength of 570 nm, the single particle resonance 
wavelength, via the tip of an optical fiber, and monitoring its propagation 
down the guide by measuring the position-dependent intensity of the light 
emitted by the fluorescent molecules. The presence of plasmon transport was 
signaled by a broader full width at half maximum of the fluorescent nano 
spheres when a scan is done along the waveguide than perpendicular to it. 
The results of the experiment were a decay length of nm28195/dB6 ± ,
corresponding to an energy propagation distance of m5.0 µ .

5.3.3 Nanophotonic SP-Based Devices 

While still in its infancy, a number of SP-based devices have been 
proposed [221], [222]. For instance, Bozhevolnyi et al. [221] advanced SP-
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based waveguiding structures inspired by photonic bandgap crystal (PBC)-
based designs. In particular, the propagation of SPs in the range of 780-820 
nm launched into nanostructured gold film surfaces with areas of 200-nm-
wide scatterers arranged in a 400-nm period triangular lattice containing line 
defects was demonstrated, see Fig. 5-10.  

                                                         
               (b) 

Figure 5-10. Sketch of SP-PBC devices. (a) Line defect waveguide. (b) Line defect junction. 
The white circles represent 45-nm-thick gold posts.    

The periodicity of the metallic scatterers was arranged to inhibit SP 
propagation inside these areas, thus creating a plasmonic band gap at a 
certain range of wavelengths, in particular, at 815 nm. Guidance of SPs 
occurred at 782 nm along the line defects. This was the first observation of 
SP band-gaps and SP guiding along line defects in SP-PBC structures. 
Figure 5-10 shows sketches of the SP-PBCs. 

Krenn et al. [222], on the other hand, demonstrated two-dimensional 
optics based on SPs, in particular, local SP sources, Bragg mirrors, and beam 
interferometer. The goal of the SP source was to launch laterally an SP 
beam, and was based on the grating approach. In particular, it consisted of 
periodic nanoscale protrusions on a metallic film with geometries providing 
the matching between the light and SP wave vectors. SPs were launched by 

(a)
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focusing a 750 nm, 5mW laser beam on a silver nanoparticle of 200 nm 
diameter and 60 nm height. Bragg mirrors, see Fig. 5-11(a), consisted of five 

Figure 5-11. Sketches of SP-based devices. (a) Bragg mirror. (b) Beam interferometer. The 
circle represents the focus of the impinging laser. The dashed arrows represent propagating 
SPs. 

 lines of gold 140 nm diameter, 70 nm height gold inclined at a °30  angle 
with respect to the nanowire used for launching the SPs. Within each line, 
the center-to-center particle distance was 220 nm and, to fulfill the Bragg 
condition at an SPP wavelength of 610 nm, the inter-line distance was 350 
nm. A reflection coefficient of ~90% was estimated. Since the transmitted 
intensity was found to be negligible, this was taken to mean that 10% of the 
SP intensity was converted to light. A beam interferometer was configured 

(b)

SP Launcher

Bragg

M irror

SP Launcher

Bragg

M irror

(a)

SP LauncherSP Launcher
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by combining two Bragg mirrors symmetrically with respect to a nanowire 
used for launching SPs, see Fig. 5-11.    

5.3.4 Semiconducting Nanowire-Based Nanophotonics 

In addition to the SP-based nanophotonics approach, an approach based 
on using active nanowire waveguides has been advanced by Lieber’s group 
[216]. This approach is motivated by an attempt to circumvent the loss 
limitations exhibited by passive waveguides, such as SP-based devices, 
which may hinder their applicability for manipulating light over the extent of 
integrated photonic systems.  

Early examples of semiconducting nanowires include nanoscale lasers 
[223], in which a sub-wavelength diameter nanocavity is created by 
exploiting the high refractive index contrast between a nanowire and its 
surroundings. The active waveguide concept pursued by Lieber’s group 
[216] involves utilizing cavities such as these as waveguides. The feasibility 
of the concept was investigated by quantitatively characterizing the losses 
through straight and sharply bent CdS nanowires, of sub-wavelength (200 
nm) diameter, by scanning optical microscopy. In particular, the experiments 
recorded spatial maps of the intensity of light emitted from one end of the 
nanowire, as a function of the position of a diffraction-limited laser spot with 
energy greater than the CdS band gap. In this context, the laser energy 
absorbed by the CdS nanowire was re-emitted via photoluminescence and 
subsequently guided by it. The experiment indicated that active CdS 
nanowires are capable of efficient guiding over straight and sharp and acute 
angle bends, with typical losses of about 1-2dB in an abrupt bend. In 
addition, by studying the characteristics of junctions between two nanowires 
it was found that light may be coupled efficiently through sub-wavelength 
bends defined by them. Finally, by applying a variable electric field across a 
nanowire, it was demonstrated that it is possible to modulate the intensity of 

the light exiting the nanowire ~25% at a field of ~ cm/V104.2 5× .

5.4 Detection of Surface Plasmons 

The detection of SPs relies on their conversion to light, and the 
subsequent detection of this light. In this context, one can mention two 
detection schemes. In one scheme, detection is effected by monitoring the 
light emitted by fluorescent molecules covering the entire device; such was 
the approach employed in Section 5.3.2.5 to show direct evidence of SP 
propagation in a plasmon waveguide [211]. This approach is more of a 
diagnostic tool and does not seem amenable to utilization in actual signal 
processing systems where one is interested in detecting the output at the exit 
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of, e.g., a nanowire. In a second approach, a near-field scanning optical 
microscope (NSOM), which allows sub-wavelength resolution [224], is 
utilized. In this section we provide the fundamental principles of operation 
of the NSOM. 

5.4.1 NSOM/SNOM 

Near-field scanning optical microscopy (NSOM), also called scanning 
near-field optical microscopy (SNOM), is a super-resolution optical 
microscopy technique that enables the ability to view samples at spatial 
resolutions beyond those attainable with conventional optical techniques 
[224], [225]. Conventional optical techniques are limited by the diffraction 
of light. This is characterized by the size of the spot to which a light beam 
can be focused. The spot is part of a family of concentric rings, known as the 
Airy disk pattern, and its size is defined as the distance d from the point of 
highest intensity, located at the middle of the center spot, to the first node in 
intensity (demarcating the beginning of the first ring), and it is given by, 

θ
λ

=
sinn

61.0d 0 ,                                                                                   (17)  

where 0λ  is the free-space wavelength, n is the index of refraction on the 

medium in which the light propagates, and θ  is the angle describing the 
light convergence for the focusing element [225]. With the value of the 
denominator, denoted as numerical aperture (NA), for the objective, being 

typically as high as 1.3-1.4, (17) is usually simplified to 2d 0λ= . This is 

taken as the distance two objects may be approached to one another other 
while still being distinguishable. To circumvent this limit, Synge [226], 
[227] proposed the scheme shown in Fig. 5-12.  
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Figure 5-12. Sketch of Synge’s concept for overcoming diffraction limit. (After [225].) 
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Here an opaque screen containing an aperture of dimension much smaller 
than the optical wavelength is interposed in the light path, in front the 
sample surface, thus circumscribing the passing light to diffract from this 
small aperture. Fig. 5-13 shows a sketch of a typical SNOM imaging system.  
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Figure 5-13. Sketch of typical SNOM system. The probe-sample distance is controlled via 

normal force feedback. (After [228].)

By placing the sample surface in the immediate vicinity of the aperture, the 
light emerging from it would be made to interact with the sample before 
diffracting out, thus allowing a higher resolution image to be formed. In 
practice, the sample is illuminated via a 50-100 nm-diameter hole in a 
tapered optical fiber probe tip [228]. The system may be operated in at least 
four modes, Fig. 5-14, according to whether the probe tip is used for 
illumination, for light collection, or for both [228]. In the transmission mode, 
Fig. 5-14(a), the probe tip illuminates the sample and the transmitted light is 
collected and processed. In the reflection mode, the probe tip illuminates the 
sample, and the reflected sample is collected and processed. In the collection 
mode, Fig. 5-14(c), an external light source illuminates the sample, and the 
probe tip collects the light reflected from the surface. In the illumination and 
collection mode, Fig. 5-14(d), the probe tip is employed to both illuminate 
the sample and collect the reflected light. 
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Figure 5-14. Modes of operation of SMON system. (a) Transmission mode imaging. (b) 

Reflection mode imaging. (c) Collection mode imaging. (d) Illumination/collection mode 

imaging.  (After [228].) 

The theory of diffraction by small holes was originally treated by Bethe 
[229] and corrected by Bouwkamp [230], [231]. The proper expressions for 
the field components in the near-field region in the immediate vicinity of the 
aperture are given by [231], 
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where a is the aperture radius, k is the wave number, and x, y, and z are 
related to the oblate-spheroidal coordinates u, v, and ϕ  via the equations, 

( )( )[ ] ϕ+−= cosv1u1ax
2/122 ,                                                           (21) 

( )( )[ ] ϕ+−= sinv1u1ay
2/122 ,                                                            (22) 

auvz = .                                                                                                 (23) 

5.5 Summary 

This chapter has dealt with the application of NanoMEMS techniques to 
photonics. After pointing out the limitations of conventional optics to render 
miniaturized devices at sub-wavelength sizes, we went on to consider the 
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paradigm of surface plasmons to enable such miniaturization. In particular, 
the issues of converting light to surface plasmons, as well as a number of 
approaches to SP propagation, i.e., in narrow metal stripes and in nanowires, 
were discussed. Then, the behavior of SPs on nanoparticles was presented, 
followed by the phenomena of coupling between SPs in adjacent 
nanoparticles, and its subsequent application to create plasmonic 
waveguides. An alternate proposal to realize nanophotonics, based on active 
semiconducting nanowires was then presented. The chapter concluded with a 
discussion of the near-field scanning optical microscopy technique to detect 
surface plasmons. 



Appendix A 

QUANTUM MECHANICS PRIMER 

A.1 Introduction 

In this appendix we present some of the salient point of quantum 
mechanics (QM) of relevance to the material in this book. These include the 
basic laws governing quantum systems, the harmonic oscillator and 
quantization, creation and annihilation operators, the second quantization 
formalism,and field operators. 

A.2 Some Basic Laws Governing Quantum Systems 

Phenomena occurring at microscopic scales is governed by quantum 
mechanics (QM) [60]. According to QM, all the information regarding a 
microscopic particle (e.g., momentum and position) is contained in its 
wavefunction, ψ . This wavefunction obeys an operator equation, namely, 

Schrödinger’s equation, and is determined by the total energy of the particle. 
The possible energy states of the particle are given by the solutions to the 
stationary Schrödinger’s equation, 

ψψ EH =ˆ ,                                                                                          (A.1) 

where Ĥ  is the Hamiltonian operator, which embodies the total energy of 
the particle and is composed of the sum of its kinetic and potential energies, 
and E is its eigenvalue. Since the result of measuring energy are real values, 

†HH ˆˆ = , i.e., Ĥ  is hermitian. In general, there can be a multitude of 
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eigenvalues, both discrete and/or continuous, each one being accompanied 
by a respective eigenfunction. Thus, the set of wavefunctions associated with 
an operator are said to span a space, called state space. When a particle is not 
in a stationary state, it is in a dynamic state. A particle is in a dynamic state 
when it is between stationary states, and the dynamic state is embodied by a 
superposition of stationary states. During these circumstances, the particle’s 
state is found as a solution to the time-dependent Schrödinger’s equation, 

t
iH
∂
∂= ψψˆ ,                                                                                      (A.2) 

where  is Planck’s constant and t is time. If there are n stationary states, 
then the solution to (A.2) is expressed as, 

( ) ( ) ( ) nn tctctc ψψψψ +++= ...2211 ,                                               (A.3) 

where the wavefunctions iψ  correspond to respective stationary states with 

energies iE , and for a normalized state 
2

ic  represents the probability that, 

upon measuring the state of the particle, it will be found in state i. A state is 

normalized when its inner product ( ) 1, =ψψ . Thus, for a normalized state 

1
2 =

i
ic . But this is the norm of ψ , therefore, the norm of the state 

vector remains constant, i.e., does not depend on time. Two proportional 

state vectors, say, ψ ′  and ψ , where ψψ θice=′ , represent the same 

physical state, but in general, the superposition of states possessing 
expansion coefficients with relative phases, such as 

2211
21 ψψψ θθ ii ecec +=′′  does not.  

 The state of a particle deprived of interaction with its environment, will 
evolve according to the solution to (A.2), which, expressed in Dirac’s ket 
notation, is given by, 

( ) ( ) ( )00, tttUt ψψ = ,                                                                      (A.4) 

where, when Ĥ  is time-independent, U is the evolution operator  

( ) ( ) /
0

00, ttiH
tHd

i

eettU

t

t −−
′−

== .                                                          (A.5) 

A system whose Hamiltonian is time-independent exhibits energy 
conservation over time, i.e., the total energy is a constant of the motion. 

Clearly, 1== †† UUUU . This means that U conserves the norm of the 
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states it acts upon, i.e., it is a unitary operator. Also, since 

( ) ( )ttUttU ,, 0
1

0
−= , this means the system is reversible. When the system 

is disturbed by (or coupled to) the environment, as a result of which its 
energy is modified, then its evolution is modified, the norm is no longer 
conserved, the system becomes irreversible, and the state is said to 
decohere.

A.3 Harmonic Oscillator and Quantization 

 In the simplest case of a particle of mass m and constant total energy 
(Hamiltonian), H, performing an oscillatory motion in a potential 

2)( 2kqqV = , with kinetic energy mp
dt

dq
mT 2
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1 2
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Schrödinger’s equation is given by, 
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where the first and second terms represent kinetic and potential energy 
operators, respectively, and are expressed in terms of momentum, 

dqdip −=ˆ , and position q̂ , operators, with ω  defined by, mk=ω .

As conjugate operators, p̂  and q̂  obey a commutation relation, namely, 

[ ] iqppqpq =−= ˆˆˆˆˆ,ˆ , which indicates that the order in which they are 

applied is important. is Planck’s constant sec)10626.6( 34 −× − J divided 

by π2 . Furthermore, as conjugate operators, they also obey an uncertainty 
relation, namely, ≥∆∆ pq ˆˆ ,  which gives the uncertainty in their values. A 

state prepared such that, say, ( ) 2/ˆ 2 <∆q , is called a squeezed state. Such 

a state lowers the uncertainty in one operator at the expense of that in the 
other [183]. 

To repeat ourselves, solving Schrödinger’s operator equation, 

>>= ψεψĤ , entails finding the eigenvalues, ε , giving the possible 

energies (frequencies) of the particle, and their corresponding eigenvectors,
ψ , giving the wavefunctions that describe propagation in the system. For 

example, when the particle in question refers to atoms, separated by a 
distance a, undergoing longitudinal vibration modes in a monatomic linear 
chain (MLC), described by the Hamiltonian, 
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then the eigenvalues (frequency dispersion curve) are, 

=
2

sin
4 qa

m

k
qω , and the eigenfunctions (propagating modes), 

( )( )tqnaiqn ωξ −⋅= exp  [64]. Since, comparing (A.6) and (A.7), it is 

obvious that the latter is the sum of the Hamiltonian of n “particles,” the 
MLC may be visualized as consisting of a set of n particles vibrating 
independently. In the context of the MLC, in which the vibrations represent 
acoustic waves, such fictitious particles are, in fact, called phonons, and 
(A.7) implies that the state of the MLC, in particular, its total energy, may be 
specified by giving the number n of “particles” present. 

A.4 Creation and Annihilation Operators 

It turns out that making the association: 
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where na  and +
na  are new operators obeying the commutation relations 

[ ] nnnn aa ′
+
′ = δ, , and [ ] [ ] 0,, == +

′
+

′ nnnn aaaa , the quantized Hamiltonian 

(A.7) may be written as, 
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Then, using the Hamiltonian expressed as in (A.11), and the commutation 
relations for the new operators, it can be shown that following result is 
follows, 

>=>+=+=> + nEnnaanH MLC
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2
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2

1ˆ ωω .     (A.11) 

This means that if the field contains n phonons, the result of measuring its 
energy gives, 
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nMLC nE
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1ω .                                                                  (A.12) 

However, if the field contains no phonons (n=0), the energy is not zero, but 
is given by, 

=
n

nMLCE ω
2

1
.                                                                            (A.13)                          

This, n=0, state is called the vacuum state, and the corresponding energy, is 

called zero-point energy. Notice that, since ∞= 3,2,1,0n , the zero-

point vacuum energy is, in principle, infinite! In practice, however, various 
factors, such as, dielectric constant cutoff, preclude it from becoming 
infinity, although still very large. 

It we imagine the free-space in which a z-directed, x-polarized 
electromagnetic wave propagates as being divided into cubes of volume 

3LV = , then, the solution to its associated electric field wave equation, 
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may be obtained by separation of variables as, 

( ) ( ) ( )=
n
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where, subject to the spatial boundary conditions 

( ) ( ) 0,,0 ==== tLzEtzE xx , one obtains, 
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where, 

∞== 3,2,1,/ nLnkn π ,                                                      (A.17) 

and, 

( ) ( ) ( )φωω −=→=+ ttqtq
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d
nnnn cos02

2

2

,                               (A.18) 

where nn ck=ω . Writing the electric field solution as 
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( ) ( ) ( )=
n

nnnx zktqatzE sin, ,                                                        (A.19) 

the magnetic field is immediately obtained from Maxwell’s equation, 

tBE ∂∂−=×∇ , as, 
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and the total field energy (Hamiltonian), which is given by,  
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0
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becomes, upon substituting (A.19) and (A.20) into (A.21), 
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provided one makes the associations: 2
0

2 2 nnn Vam ωε= , and nnn qmp = .

The fact that each term in (A.22) is identical to the energy of a harmonic 

oscillator of frequency nω , implies that the field may be visualized as 

consisting of (or being populated by) a number n of such oscillators 
(photons), and the analysis given above follows directly. Accordingly, we 
can write 

+=
n

nField nE
2

1ω .                                                                  (A.23) 

Again, ideally for n=0, it is concluded that the electromagnetic vacuum 
possesses infinite energy. Furthermore, it can be shown [183] that the 

averages of the field and its magnitude squared are 0=xE  and  

( )212
22 += nEE xx , where VE nn 0εω=  has dimensions of 

electric field. Thus, even when there is no field present, n=0, the vacuum is 
endowed with a non-zero root-mean-square deviation. These are called zero-
point vacuum fluctuations and are the essence of the Casimir effect [19]. 

A.5 Second Quantization [ 232], [233] 

 Systems like the monatomic linear chain and the electromagnetic field, 
whose behavior can be described in terms of fictitious particles, such as 
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phonons and photons, respectively, permeate many branches of physics, in 
particular, condensed matter physics. In the most general case, when 
described in terms of these discrete particles, the system is said to be 
represented in the second quantization or number representation formalism. 
The term second-quantization derives from the fact that in this theory the 
stuff the systems are made of, via this representation in terms of discrete 
particles, become quantized, i.e., an aggregate of discrete particles. You will 
recall that in the first quantization, it was the motion of the particles that 
became quantized. A second-quantized system may exhibit particle creation 
and annihilation, and multi-body interactions, and the formalism of second 
quantization (or number representation) has been devised to deal with the 
complex dynamics of these systems, in particular, for keeping track of the 
large number, and the statistics, of the particles that may be involved. The 
formalism, thus, prescribes ways to succintly represent pertinent 
wavefunctions and operators. The mathematical space in which second-
quantized operators and vectors reside is called Fock space. 
 The simplest case occurs when the system has only one particle in, say, 

the state α , where this state is completely specified by giving pertinent 
quantum numbers, e.g., particle momentum, spin and spin projection. In this 

case, the one-particle state is represented by the ket α1 , and is taken as 

produced by the operation of the creation operator +
αa   on the vacuum state 

α0 , the state of the system when there are no particles present. 

Mathematically, this is expressed by, 

ααα 01 += a .                                                                                   (A.24) 

 If the system can contain many noninteracting particles, where the state of 

each particle, say, α , β , γ , δ , etc., respectively, is described by its 

respective set of quantum numbers, then the state representation in the 
second quantization formalism would be given by, 

,...0,0,0,1,...0,0,0,01 δγβαδγβααα == +a .                                 (A.25)   

If the system is in the vacuum state, i.e., there are no particles present in state 

α , then its state is represented by the ket α0 , which is taken as produced 

by the operation of the annihilation operator αa  on occupied single-particle 

state α1 . Mathematically, this is expressed as, 

ααα 10 a= .                                                                                   (A.26) 
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In general, creation and annihilation operators are associated with each 
specific particle. Thus, it would be imposible to annihilate a particle in the 

state β  with the annihilation operator for state α , i.e., 

αββα ≠= ,01a .                                                                         (A.27)   

Since, using α  to label a general state, ααα 01 += a , one can express 

(A.27) as, 

βαβββαβα δ 001 == +aaa .                                                       (A.28) 

 When the system contains many particles in multiple states, say, three 

particles in state γ , and one particle in state δ , following the above, the 

state may be represented by, 

013 ++++= δγγγδγ aaaa ,                                                                    (A.29) 

where 0  represents the vacuum state. 

 The particles involved in second quantization may be identical or distinct. 
Due to the specificity/correspondence of the creation and annihilation 
operators with the state on which they operate, for any two single-particle 

states α  and β , describing the system, the states, 

0~11 ++
βαβα aa ; 0~11 ++

αβαβ aa ,                                            (A.30) 

must be identical, except for a freely chosen phase factor.  If the phase factor 
is taken as real, then equating the two expressions gives, 

++++ == αββααββα aaaa1111 .                                                   (A.31) 

From knowldege that two identical boson are described by a symmetric 
wavefunction, it is deduced that this expression gives the commutation 
relation for bosons. On the other hand, from knowledge that two identical 
fermions are described by an antisymmetric wavefunction, it is deduced that 

++++ −=−= αββααββα aaaa1111 ,                                              (A.32) 

gives the anticommutation relation for fermions. The anticommutation 
relations for fermions embody the fact that two fermions cannot occupy the 

same state (they obey Pauli’s exclusion principle), i.e., 0=−= ++++
αααα aaaa .
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 Other commutation relations are obtained as follows. For bosons, taking 
the hermitian conjugate of (A.31) yields, 

αββα aaaa = .                                                                                   (A.33) 

In addition, the facts that 00 =αa  and 00 αββα δ=+aa , mean that we 

can write 000 αβαββα δ=− ++ aaaa , since the second term is zero, so 

that we also have the commutation relation, 

αβαββα δ=− ++ aaaa .                                                                         (A.34) 

 The operator whose eigenvalue measures the number of particles in a 

given state, say, state α , is the number operator, given by, 

ααα aaN += ,                                                                                       (A.35) 

whereas the total number of particles, including all the distinct states, is 
given by, 

=
α

αNNTotal .                                                                                 (A.36) 

To measure (count) the number of particles in a given state, the operator N is 
applied to that state’s eigenvector. The eigenvector of a state populated by n
particles is described by the application of the creation operator n times, i.e., 

( ) 0...0
n

n
aaaa ++++ = ,                                                                  (A.37)   

so, measuring its occupation is effected by, 

( ) 0...0...0
nn

n
aaaaaaaaNaN ++++++++ ⋅== .                       (A.38) 

Now, using the commutation relation (A.34), we can substitute 

aaaa ++ +→1  in (A.38), so it becomes, 

( )

( ) ( ) 00)(

0)(...

...0...)2(

0...)1(0...0

2

1

nn

n

n

nn

n

anaana

Nnaaa

aaaNaa

aaaaaaaaaNaN

+++

+++

−

+++++

−

+++++++++

=+=

+=

=+=

⋅+==

.          (A.39) 
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So, the eigenvalue of N is n. For fermion operators, the pertinent 
anticommutation relations and number operator are, 

{ } 0, ==+ βααββα aaaaaa , { } 0, =++
βα aa , { } 0, =+

βα aa ,           (A.40a)

0=++
αα aa , 0=ααaa , ααα aaN += ,                                              (A.40b) 

( ) αααααααααααα NaaaaaaaaaaN ==−== +++++ 12 .                       (A.41) 

 The second quantization formalism is completed by the necessary 
expressions for operators, which upon acting on the wavefunction will 
measure certain quantities of interest. In this context, the quantities to be 
measured are classified according to the number of fundamental particles 
producing it. For instance, in a noninteracting system, these quantities may 
depend on individual particles, where each particle contributes its share 
independently from the others. An example of such a quantity is the kinetic 
energy of the system. On the other hand, quantities such as the Coulomb 
interaction energy, in an interacting system, depend on two-particle 
potentials, thus two-particle operators must be employed. Next, expressions 
for one- and two-particle operators are presented. 
 A typical one-particle operator is the kinetic energy. For a bosonic 
system, this is obtained by counting the number of particles in a given state, 
multiplying this number by the energy of each particle, and then adding the 

energies of all states. If an arbitrary particle occupies state α , following this 
prescription, then the one-particle operator is given by, 

αα
α

α
α

αααα aaKNKH +==ˆ .                                       (A.42)         

In this expression, αα K  is the state energy, given by, 

( ) ( )∇−== + rdr
m

rKE ααα φφαα 2
2

2
,                                   (A.43)

where m is the particle  mass, and ( )rαφ  is the configuration space 

representation of the wavefunction. Notice, that αα K  may be computed 

in any convenient basis in which the wavefunction are available. Thus, in 
momentum-space basis we would have, 

( ) ( )
( )

== +
3

2

22 π
φφαα ααα

pd
p

m

p
pKE .                                 (A.44) 



A. QUANTUM MECHANICS PRIMER 223

In the most general case, the one-particle energy operator is given by,

βα
βα

βα aaKH +=
,

ˆ .                                                                     (A.45) 

The kinetic energy of a one-particle state, is given by, 

σρδδβα

βα

βσαρ
αβ

σβαρ
αβ

σρσρ

KK

aaaaKaHaH

==

== +++ 000ˆ01ˆ1

.          (A.46) 

where use was made of the identity βσσβ δ=+aa . In the case of the two-

particle potential, 

≠<

==
jiji

jivjivV ),(
2

1
),( ,                                                            (A.46) 

the second-quantization operator, is given by, 

++=
αβγδ

γδβαγδαβ aaaavV
2

1
,                                                      (A.47) 

where the two-particle interaction energy may be evaluated in any basis. One 
typical source of confusion in this equation is the nature of the order of the 
annihilation elements in the number operator, in particular, the fact that 

instead of having δγβα aaaa ++ , we have γδβα aaaa ++ . This is done to make the 

expression valid for both bosons, where γδδγ aaaa = , and fermions, where 

γδδγ aaaa −= . Thus, for fermions the concomitant sign reversal will be 

automatically present. The matrix element, in configuration space, is given 
similarly as for the one-particle case, namely, 

( ) ( ) ( ) ( ) rdrdrrrrvrrv ′′= ++
δγβα φφφφγδαβ ),( .                       (A.48) 

The two-particle interaction energy is given in terms of the wave functions 
as,

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( )[ ] 21212121

2121

,

2

1
1111

dxdxxxxxxxv

xxxxV

pqqp

mnnmqpnm

φφφφ

φφφφ

−×

−= ++++

,        (A.49a)  
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and may be expressed in second-quantization noation as, 

( )( )[ ]

( )[ ]

ντρστνρσ

ντρστνσρντσρτνρσ

δδδδδδδδγδαβ

γδαβ

αβγδ
βρασβσαρβρασβσαρ

αβγδ
ντγδβαρσντσρ

vv

vvvv

v

aaaaaaaavV

±=

+±+=

±±=

= ++++

2

1

2

1

00
2

1
1111

.  (A.49b)                          

A.5.1 Field Operators 

 A common practice in the application of the number representation 
formalism in interacting (many-body) systems is to express the Hamiltonians 

in terms of so-called field operators, ( )xψ  and ( )x+ψ , which are defined 

by, 

( ) ( )=
i

ii cxx φψ ,                                                                            (A.50) 

and 

( ) ( ) ++ =
i

ii cxx *φψ .                                                                       (A.51) 

The field operators obey the commutation relations, 

( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ){ } 0,

,

,

,,

=′=

′+′=′

ji
jiji

ji
ijij

ji
jiji

ccxx

ccxxccxxxx

φφ

φφφφψψ

,              (A.52) 

( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ){ }

( ) ( ) ( )xxxx

ccxx

ccxxccxxxx

i
ii

ji
jiji

ji
ijij

ji
jiji

′−=′=

=′=

′+′=′

+

++

δφφ

φφ

φφφφψψ

*

,

*

,

**

,

*

0,

,

,           (A.53) 
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where the latter simply expresses the completeness relation of the 
wavefunctions. 
 For example, in terms of the field operators, the one-particle Hamiltonian 
operator, 

βα
βα

βα ccKH +=
,

0
ˆ ,                                                                    (A.54) 

where, 

( ) ( ) ( )dxxxKxK βα φφβα = * ,                                                     (A.55) 

is expressed as, 

( ) ( ) ( )dxxxKxH ψψ +=0
ˆ .                                                              (A.56) 

This is proven by substituting (A.53) and (A.54) into (A.59) to recover 
(A.57): 

( ) ( ) ( ) ( ) ( ) ( )

βα
βα

βα
βα

βα
β

ββ
α

αα

βα

φφφφ

ccK

dxxxKxccdxcxxKcx

+

++

=

=

,

*

,

*

. (A.57) 

 An interpretation of the field operators is obtained by operating with them 

on the vacuum state. For inatsnce, operating with ( )x+ψ  on 0 , we obtain, 

( ) ( )

( ) ( ) ( )ααα
α

α

α
αα

δφφ

φψ

xxxx

cxx

−==

=

+

+++ 00

,                                           (A.58)                          

since the operation of the creation operator of the state α  on the vacuum 

creates a particle there. This results indicates that ( )x+ψ  behaves as the 

creator or a particle at position x . Similarly, one obtains that ( )xψ  destroys 

a particle at position x .                                                      
 In the context of this book, the second quantization formalism is key to 
the presentation on the Luttinger liquid. This deals with the description of 
electrons constrained to move in one dimension and described by the 
Hamiltonian, 

IntHHH ˆˆˆ
0 += ,                                                                                 (A.59) 
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where the first term gives the electron kinetic energy, 

↓=↑

+=
,

0
ˆ

σ
σσ

k
kkk ccEH ,                                                                   (A.60) 

and the second term gives the electron-electron Coulomb interaction, 

′′
+

′−′
+
+

′
′′= σσσσ

σσ
σσ kkqkqkqkkInt ccccV

L
H

2

1ˆ .                                         (A.61)        

 Solving for the eigenvalues and eigenfunctions of the problem is 
facilitated by modeling the fermions in terms of bosons, in which case the 
Hamiltonian becomes diagonal and it is easy to solve. The procedure that 
accomplishes this fermion-to-boson transformation is called bosonization,
and is presented Appendix B. 



Appendix B 

BOSONIZATION

B.1 Introduction 

 The method of bosonization consists in modeling a fermionic system by 
an equivalent bosonic system, with the advantage that the diagonalization of 
the bosonized Hamiltonian of the fermionic system becomes easier [138]. 
This fact becomes more transparent upon comparing the 1D specific heats 

for a solid with sound velocity sc , obtained by Debye Debye
Lc , and that for a 

Fermi gas of noninteracting electrons with Fermi velocity Fv , obtained by 

Pauli Pauli
Lc ,

=
s

B
B

Debye
L

c

Tk
kc

3

π
,                                                                       (B.1a) 

=
F

B
B

Pauli
L

v

Tk
kc

3

π
.                                                                        (B.1b) 

Clearly, replacing Fs vc ⇔  one obtains identical results.  

B.2 Bosonization “Rules” 

 While many works attempting to explain bosonization have been 
published, a particularly lucid and very pedagogical treatment was that 
advanced by Delft and Schoeller [139]. They clearly expose, in a systematic 



228 Appendix B

fashion the procedure of bosonization, and we follow their exposition 
closely.  
 In general, bosonizing a theory involving M species of fermions may be 
accomplished when a fix specific set of conditions are met, in particular: 
  1) The theory can be formulated in terms of a set of fermion creation and 

annihilation operators, +
kqc  and +

kqc , which obey the following canonical 

anti-commutation relations 

{ } '', kkkk cc δδηηηη =+ ,                                                                              (B.2) 

where the index M,...1=η  labels M different species, which might be 

present, and the index [ ]∞∞−∈ ,k  is a discrete, unbounded wave number 

of the form, 

[ )2,0andZwith,
2

12 ∈∈−= bkbk nn
L

k δδπ
,                 (B.3) 

with kn  are integers, L is a length associated with the size of the system, and 

bδ  is a parameter that embodies the nature of the boundary conditions of the 

fermion fields, i.e., whether they periodic or fixed. According to Delft and 
Scholler [139], in typical examples  can denote electron spin:  = ( , ), in 
which case M = 2, or it distinguishes left-moving from right-moving spinless 
electrons, as found in a one-dimensional wire, in which case:  = (L,R), and 

M = 2. k refers to the momentum index that labels the energy states, kE , of a 

free noninteracting Fermi gas, defined with respect to the Fermi energy, so 

that FEE =0 . The discrete and unbounded nature of k are needed in order to 

enable the systematic accounting of the states, on the one hand, and the 
proper definition of bosonic operators, oh the other.  

 2) The fermion fields are defined in terms of the creation and annihilation 
operators as follows, 

( )
∞

−∞=

−=
k

k
ikxce

L
x ηη

πψ 2
,                                                                  (B.4) 

with inverse, 

( )
−

=
2/

2/2

1 L

L

ikx
k dxxe

L
c ηη ψ

π
,                                                              (B.5) 
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where [ ]2/,2/ LLx −∈ , but may be allowed to go to infinity (L ),  at 

the conclusion of the procedure, if necessary. The fields ( )xηψ  and the 

variable x are, in general, mathematical constructs which result from the 
development undertaken to formulate the model in terms of the operators 

ηkc . In particular, for discrete k, ( )xηψ  obeys the following properties: 

( ) ( )2/2/ LxeLx bi −=+ η
πδ

η ψψ ,                                                       (B.6) 

where 0=bδ  for the periodicity condition and 1=bδ  for anti-periodicity. 

 3) The fermionic number representation (Fock) space is reorganized so 

that the Fock space of states spanned by the operators ηkc  is rendered as a 

direct sum, 
⊕

=
N

N
HF  over the Hilbert spaces 

N
H  characterized by a 

fixed particle number N , within each of which all excitations are bosonic,
i.e., particle-hole-like. The first step towards accomplishing this is to define 

the vacuum state 0  by, 

00 ≡ηkc  for ( )0,0 >> knk ,                                                        (B.7) 

00 ≡+
ηkc  for ( )0,0 ≤≤ knk .                                                        (B.8) 

(B.7) signifies that states above k=0 are empty, therefore, none may be 
destroyed, and states below k=0 are all occupied, therefore, none may be 
populated. The occupation of all other states in Fock space are defined 
relative to the vacuum, particularly the operation of fermion normal ordering 
with respect to it. A function is said to be in fermion-normal-order form 

when all ηkc  with k>0, and all +
ηkc  with 0≤k  are positioned to the right of 

all other operators +
ηkc  with k>0 and ηkc  with 0≤k . Thus, for operators 

{ }+∈ ηη kk ccCBA ;,...,, , this is represented by, 

0...0...... ABCABCABC −=++
+
+ .                                                   (B.9) 

 4) The number operator ηN̂  possesses eigenvalues 

( ) M
M ZNNNN ∈= ,...,, 21 , whose aggregate makes up the N -particle 

Hilbert space 
N

H . In particular, ηN̂  counts the number of electrons of 

species η , is given by, 
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[ ]∞

−∞=

++
∞

−∞=

+
+

++
+ −=≡

k
kkkk

k
kk ccccccN 00ˆ

ηηηηηηη ,                              (B.10) 

and operates on states of the form N . The ground state, denoted 
0

N ,

represents the state in which there are no particle-hole excitations, and it is 
constructed as follows. 

( ) ( ) ( ) 0...21

21
0

MN

M

NN CCCN ≡ ,                                                    (B.11) 

where, 

( )
( )

( ) ( ) <

=

>

≡
++

+
+

+

++
−

+

.0for...

,0for1

,0for...

021

11

ηηηη

η

ηηηη

η

ηη

ηη

η

Nccc

N

Nccc

C

NN

NN

N
,                        (B.12) 

 5) Given the fixed number of particles in every N -particle Hilbert space, 
their excitations are construed as particle-hole excitations of the ground state  

0
N , and captured by bosonic creation and annihilation operators defined 

by, 

∞

−∞=

+
−

∞

−∞=

+
+

+ −==
k

kqk

q

q
k

kqk

q

q cc
n

i
bcc

n

i
b ηηηηηη , ,                    (B.13) 

where 0
2

>=
L

n
q qπ

, and +∈Zqn  is a positive integer. Then, operating on 

any state N  with +
ηqb  or ηqb  causes an aggregate of particle-hole 

excitations, where each excitation’s momentum differs, from that in the 

ground state, by q units. This permits interpreting +
ηqb  and ηqb   as 

momentum raising and lowering operators, which obey the following 
commutation relations: 

[ ] [ ] [ ] [ ] ',,',allfor,0,,,0,, '''''''' ηηηηηηηηηη qqbNbNbbbb qqqqqqqq ==== +++  (B.14) 
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[ ] '''', qqqq bb δδηηηη =+                                                                                 (B.15) 

 6) The bosonic vacuum states, the ground states given by 
0

N , are 

defined such that, 

ηη ,,0
0

qallforNbq =                                                              (B.16)  

and admit a boson-normal-ordering protocol, in which all ηqb  are moved to 

the right of all +
ηqb , so that, for operators { }+∈ ηη kk bbCBA ,,...,, , this is 

represented by, 

00 ......... NABCNABCABC −=+
+

+
+ .                                         (B.17) 

7) Every state N  in the N -particle Hilbert space, may be generated by 

acting on the ground state 
0

N  by a properly chosen bilinear combination 

of the fermion operators, ( )
0

NccfN kk ηη
+= , or of boson operators, 

( )
0

NbfN += .

 8) There exist raising and lowering (ladder) operators whose action on a 

given state N  of the N -particle Hilbert space changes the total number of 

fermions by one. These operators are called Klein factors, denoted +
ηF  and 

ηF , respectively, and obey the following properties, namely, 

  a) They commute with all bosonic operators, i.e., 

[ ] [ ] [ ] [ ] ',,allfor,0,,,, ''''' ηηηηηηηηηη qFbFbFbFb qqqqq ==== +++             (B.18) 

  b) Their action on a state N  of the N -particle Hilbert space may be 

expressed as the product of a particle-hole excitations ( )+bf  acting on the 

corresponding N -particle ground state 
0

N , in particular, 

( ) ( )
01011 ,...1,...ˆ,...,... MMN NNNTbfNNNcbfNF +≡≡ ++

+
++

ηηηηη      (B.19) 
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( ) ( )
0101 ,...1,...ˆ,...,... MMN NNNTbfNNNcbfNF −≡≡ ++

ηηηηη    (B.20) 

where, ηT̂  is the so-called the phase-counting operator,

( )−≡
−

=

1

1

ˆ
1ˆ

η

η
η

η
N

T                                                                                     (B.21) 

which keeps track of the number of signs picked up when acting with a 

fermion operator ηkc  on a state 
0

N  to produce a different state 
0

'N ,

i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0......ˆ0....... 111

111
MM N

M

N

k

NNN

M

NN

k CCcCCTCCCc ηηη
ηηηηηη

−
−= .    (B.22) 

  c) The Klein factors obey commutation relations, 

{ } ',allfor2, '' ηηδηηηη =+ FF ,                                                    (B.23) 

1' == ++
ηηηη FFFF ,                                                                           (B.24)                           

{ } { } 'for,0,, ηηηηηη ≠==++ FFFF ,                                          (B.25) 

[ ] [ ] ηηηηηηηηηη δδ FFNFFN '''' ,ˆ,,ˆ −== ++ .                                     (B.26) 

B.3 Bosonic Field Operators 

 In analogy with fermion field operators, boson fields operators, ( )xηφ ,

are defined in terms of bosonic operators as follows: 

( )
>

−−−≡
0

2/1

q

aq
q

iqx

q

ebe
n

x ηηϕ , and ( )
>

−++ −≡
0

2/1

q

aq
q

iqx

q

ebe
n

x ηηϕ , (B.27) 

with 

( ) ( ) ( ) ( )
>

−+−+ +−=+≡
0

2/1

q

aq
q

iqx
q

iqx

q

ebebe
n

xxx ηηηηη ϕϕφ ,       (B.28) 
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where ( )xηϕ and ( )xηφ are constructed to exhibit periodicity L in x, and 

0>a  is an artifact to regularize the divergent momentum sums ( )∞→q ,

with its reciprocal a1  interpreted as the maximum momentum difference 

for the kqk cc +± -combinations occurring in the fermionic functions φ . The 

bosonic fields obey the commutation relations, 

( ) ( )[ ] ( ) ( )[ ] 0',', '' == ++ xxxx ηηηη ϕϕϕϕ ,                                               (B.29) 
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,                            (B.30) 

where use was made of the identity ( )
∞

=

−=−
1

/1ln
n

n nyy . In terms of these 

bosonic fields the normal-ordered electron density becomes a function of 

( )xx ηφ∂ , as follows, 
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η
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ηηηηη

π
φ

πψψρ

.              (B.31) 

B.4 Bosonization Identity and Its Application to Hamiltonian  

       with Linear Dispersion 

The ultimate purpose of the preliminaries presented thus far, has been to 
enable familiarization with the mathematical language and techniques 
required to effect the transformation of Hamiltonians expressed in terms of 
fermionic field operators, into Hamiltonians expressed in terms of the 
bosonic field operators. This transformation is enabled by the bosonization 
identity,
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( ) ( ) ( )xiaLxi
xN

L
i

a eaFeeaFx
b

ηη
η φ

η
φδπ

ηηψ
−−∞→−−−

− ⎯⎯ →⎯= /12

1ˆ2

/1 .      (B.32) 
         
The derivation of this identity was undertaken by Delft and Schoeller [138] 
in two steps. First, the demonstration that ( )

0
Nxηψ  is an eigenstate of the 

bosonic operator ηqb  was undertaken, which guarantees that ( )
0

Nxηψ
may be expressed as a coherent state, and then the consequences of acting 

with ηψ  on a general state were determined. 

 The relationship between ηψ  and ηqb  is captured by their commutation 

relation which, in turn, derives from their respective definitions given in 
(B.5) and (B.8). The pertinent commutation relations are, 

( )[ ] ( )xxb qq ηηηηη ψαδψ '' , = ,                                                              (B.33) 

( )[ ] ( )xxb qq ηηηηη ψαδψ *
'' , =+ ,                                                             (B.34) 

where ( ) iqx

q

q e
n

i
x =α . Applying (A.91) on the ground state, we obtain, 

( ) ( ) ( )
0

'
0

'
0

' , NxNbxNxb qqq ηηηηηηη ψαδψψ =− .                 (B.35) 

However, since 0
0
=Nbqη , the second term vanishes and we get the 

result, 

( ) ( )
00

NxNxb qq ηηη ψαψ = ,                                                       (B.36) 

which shows that ( )
0

Nxηψ  is an eigenvector of ηqb , the boson 

annihilation operator, with eigenvalue qα .

 A well known result of quantum mechanics is that if a state is an 
eigenvector of the annihilation operator, then this state is a coherent state
[139]. A coherent state has many useful properties. For instance, its 

uncertainty relation is minimized, i.e., 2=∆∆ px . Such a state may be 

expressed in the form, 

( ) ( ) ( )
0

0
0

ˆexp NxFbxNx
q

qq ηηηη λαψ =
>

+ ,                              (B.37) 
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where ηλ̂ is a phase operator, and ηF  effects the η -particle removal 

normally effected by ( )xηψ . Inserting (C.27) into (B.37), the following 

expression is obtained, 

( ) ( ) ( )
00

ˆ NxFeNx
xi

ηη
ϕ

η λψ η
+−= .                                                  (B.38) 

Use of the operator identity, [ ] BBBB CeeACAAee ,or+=− , and 

identification of 'ηqbA = , ( )xiB +−= ηϕ , and ( )xC qαδηη '= , secures the 

compliance of (B.38) with (B.36). 
 The crux of the bozonization identity lies on (B.38). According to Delft 
and Schoeller [139], this expression embodies the fact that acting with the 

fermionic field ( )xηψ  on 
0

N  may effect the removal of one η -particle 

from the ground state in two ways. First, via the interpretation of ( )xηψ  as 

∞

−∞=

−

k
k

ikxce
L

η
π2

, it creates an infinite linear combination of single-hole 

states caused by each application of the fermion annihilation operator ηkc ,

see Fig. B-1. 

Figure B-1. Effect of acting with ( )xηψ  on the ground state. We have expressed  

( )
∞

=
−

0

~
n

n
ncyxψ , with 

Lxiey /2π= . (After [139].) 

On the other hand, observing the right-hand side of (B.38), this η -particle 

removal may also be effected by removing the highest η -electron from 

0
N , which yields a different ground state, namely, 

0
NcN ηη , and then 

creation of a linear combination of hole states through the action of the 

boson creation operators +
ηqb  present in 

( )xi
e

+− ηϕ . The effect of first operating 

with the Klein factor is shown in Fig. B-2, and that of operating with the 
field operator is shown in Fig. B-3.. 

=
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n
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=
0

0F =F 0
1−=

0
0F =F 0

1−

Figure B-2. Effect of acting on the ground state by the Klein factor. All levels are move down 
by one, thus creating a hole at the top level. 

Figure B-3. Effect of acting with ( )xηψ  on the ground state. We have expressed  

( ) ( )Fex xi +− ϕψ ~ . (After [139].) 

The value of the operator ( )xηλ̂  is determined by Delft and Schoeller [139] 

to be, 

( )
xNi b

e
L

x
−−

=
δ

η
ηπλ 2

1ˆ2ˆ .                                                                 (B.39) 

 It may be shown [138], by example, that Figs. B-1 and B-2 are equivalent, 
i.e., that, 

( )

∈

−−−

∈

−− +

=
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2
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Z
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2

n
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n
n

Lxni

ee
L

Fce
L
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η ϕπδ

η

πδ ππ .    (B.40)  

This involves writing, 

( ) =
+−

0
0Fe xiϕ

+=( )xie
+− ϕ

y

+ +
2

2y
+ -

+
3y …

( ) =
+−

0
0Fe xiϕ

+=( )xie
+− ϕ

y

+ +
2

2y
+ -

+
3y …



B. BOSONIZATION 237
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From (B.41) it is observed that the only nonzero coefficients in it are 

1=nA , whereas all others, namely, 0... === nn CB . This signifies that 

whenever ( )xie
+− ϕ  acts on 

00 0c , all the possible ways in which states of 

the form 
00 0ccc nn −

+  may be excited interfere destructively, so that only 

terms of the form 
0

0n
ncy −  interfere constructively. This can be seen by 

considering (B.41) after inserting the sums nρ . In that case for the nA

coefficient one obtains, 

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

03
3

2
2

1

00102132203230
3

102120
2

10
0

0

0...
6

1

2

1

3

1

2

1

2

1
1

0...
6

1

2

1

3

1

2

1

2

1
10

+++++++=

+−+−+

+−+−=

−−−

−
+

−
+
−−

+
−−

+
−

+
−−

+

−
+

−
+
−−

+
−

+
∞

=
−

cycyyc

cccccccccccccy

ccccccyccycyA
n

n
n

n

, (B.42) 

whereas for the nB  one obtains, 
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Clearly, all the 1=nA and 0=nB . These examples together with Figs. B-1 

and B-2 should provide an intuitive way of assimilating the concept of 
bosonization. What we will do next is to finally present an example of the 
bosonization procedure, namely, their Delft and Scholler’s [139] application 
of the procedure to a Hamiltonian with a linear dispersion. 

 They begin by assuming a linear dispersion of the form, ( ) kvkE F= ,

which measures all energies in units Fv , where the total Hamiltonian is, 

≡
η

η00 HH ,                                                                                    (B.44) 

with, 

( ) ( )++++
+

−

∞

−∞=

+
+

++
+

∂=

≡

xix
dx

cckH

x

L

L

k
kk

ηη

ηηη

ψψ
π

2/

2/

0

2

.                                                     (B.45) 

Then, the fact that the Hamiltonian commutes with the number operator 

[ ] 0ˆ, '0 =ηη NH  for all ',ηη , is exploited as an argument to justify that any 

N -particle ground state is an eigenstate of η0H , in particular, 

0
0

0
0 NENH N

ηη = . The eigenvalue is obtained by adding the energy of 

all levels, 

( ) ( )

( ) ( )b
Nn

b

N

n
bb
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NforNNn

NforNNn

L
NHNE
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δδπ
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2
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.  (B.46) 

This gives the ground state energy of η0H . When the system is excited, its 

eigenstate energy E , may increase in units of q. This follows from the 

commutation relations, 

[ ] '''0 , ηηηηη δ++ = qq qbbH ,                                                                      (B.4 ) 

and its consequence, 

( )bNN
L

δπ
ηη −+= 1

2

12

7
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( ) ++ += ηηη qq bqEEbH 0 ,                                                                  (B.4 ) 

and implies that the +
ηqb  acting on the ground state 

0
N  may generate the 

complete N -particle Hilbert space. The bosonic variables then may be 

employed to represent  η0H , including both the ground and excited states. 

This is accomplished when it takes the bosonized form, 

( )b
q

qq NN
L

bqbH δπ
ηηηηη −++=

>

+ 1ˆˆ
2

12

0
0 .                                  (B. )                           

Since η0H  does not change the particle number, no Klein factors, +
ηF ,

appear. 

B.5 Bosonization Treatment of Spinless Electrons in One-

Dimensional Wire 

 The one-dimensional wire is the prototypical system of a Lüttinger liquid. 
It is described as a one-dimensional conductor of length L with free spinless 
left- and right-moving electrons. The electrons possess momentum 

( )∞∞−∈ ,p , and propagate according to a dispersion relation given by 

( ) ( ) mpppE F 222 −= . Since electrons are confined to move either to the 

left or to the right in a 1D conductor, the usual fermion field, 

( )
∞

−∞=

≡Ψ
p

p
ipx

phys ce
L

x
π2 ,                                                                 (B.

51

) 

is expressed as, 

( ) ( ) ( )( )∞

−=
+

+
−−

+− +=Ψ
F

F

F

F

F

kk
kk

xkki
kk

xkki
phys cece

L
x

π2 ,                   (B. ) 

where the momentum p is written as ( )Fkkp += , with [ )∞−∈ ,Fkk ,

and 0<p  corresponds to the left(L)-moving electrons, and 0>p  to the 

right(R)-moving electrons. In the context of our species definitions, the 

index ( )RLv ,=  plays the analogous role to η .

 We now effect the bosonization procedure described previously. First, one 

must make [ )∞−∈ ,Fkk  unbounded from below and discrete. This is 

accomplished by artificially extending the range of k to be unbounded, 

8

49

05
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introducing L- and R-moving fermion fields RL /
~ψ , and imposing boundary 

conditions (B.Cs) on these to discretize k. Making ( )∞∞−∈ ,k  entails 

defining energies of the form ( ) ( )FFvk kkvEE ++≡ 0,  in the range 

Fkk −< .  These additional “unphysical”states do not alter the low-energy 

physics of the system, however, a strong perturbation, such as might be due 
to an electric field or an impurity, then the procedure would not apply 
because of the larger energies involved [139]. Extending the range of k, the 

fermionic field physΨ  is written in terms of fields representing L- and R-

moving electrons which now possess the unbounded k define above. This 
new fermionic field takes the form, 

( ) ( ) ( )xexex R
xik

L
xik

phys
FF ψψ ~~ +− +=Ψ ,                                             (B.

53

) 

where, 

( )
∞

−∞=

=
k

RLk
ikx

RL ce
L

x /,/

2~ πψ .                                                        (B. )  

Lastly, imposing B.C.s quantizes the fermion fields momentum. If these are 

taken as anti-periodic, we have, ( ) ( )2/~2/~
// LL RLRL −−= ψψ , which 

implies 1=bδ . Having defined the prerequisite conditions for bosonization, 

the consequent number operators, Klein factors, and boson operators, RLN /
ˆ ,

RLF / , and RqLb / are defined in terms of the fermion annihilation operator 

RkLc / . This results in the following, 

( ) [ ] >=+−=
+∈

+− 0
2

n

1~

Z

//
2/

q

/ q

n

RqL
iqx

RqL
iqxaq

RL n
L

qbebeex
q

πφ ,   

(B.55)

 

( ) ( )xi
xN

L
i

RLRL
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bRL

eeFax /
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2

1ˆ2

/
2/1

/
~ φ

δπ

ψ −
−
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    (B.56) ( ) ( ) RLRLxRLRLRL N
L

xx /////
ˆ2~~~~ πφψψρ +±∂=≡ +

+
++

+ ,                      

where the boundary conditions ( ) ( )2/
~

2/
~

// LL RLRL −= φφ  (periodic) on the 

bosons and density fields have been imposed. Notice that, while the density 

RL /
~ρ  is quadratic in the fermion field, it is only linear in the boson field. 

This is key to the simplification brought about by the bosonization 
procedure. 

52

54(B. )
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