PIC book

[]index
[]Development systems

P -
& ‘_‘_.;_v;y', P1C Microcontrollers [[Contact s

on-line FREE!

—

Previous page Table of contents Next Page

PIC microcontrollers for beginnerstoor on-line,
FREE!

Author: Nebojsa Matic

Paperback - 252 pages (May 15, 2000)

Dimensions (in inches): 0.62 x 9.13 x 7.28

PIC microcontrollers; low-cost computers-in-a-chip; allows electronics designers and hobbyists
add intelligence and functions that mimic big computers for almost any electronic product or
project.

iPIC

microcontroller

i W Wara

The purpose of this book is not to make a microcontroller expert out of you, but to make you
equal to those who had someone to go to for their answers.

In this book you can find:

Practical connection samples for

Relays, Optocouplers, LCD's, Keys, Digits, A to D Converters, Serial communication etc.
Introduction to microcontrollers

Learn what they are, how they work, and how they can be helpful in your work.
Assembler language programming

How to write your first program, use of macros, addressing modes....

Instruction Set

Description, sample and purpose for using each instruction........

MPLAB program package

How to install it, how to start the first program, following the program step by step in the simulator....

Contents

http://www.mikroelektronika.co.yu/english/product/books/PICbook/picbook.htm (1 of 4) [5/11/2003 8:46:40 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

PIC book

CHAPTER 1 INTRODUCTION TO
MICROCONTROLLERS

Introduction

History
Microcontrollers versus microprocessors

1.1 Memory unit

1.2 Central processing unit
1.3 Buses

1.4 Input-output unit

1.5 Serial communication
1.6 Timer unit

1.7 Watchdog
1.8 Analog to digital converter

1.9 Program

CHAPTER Il MICROCONTROLLER
PIC16F84

Introduction

CISC, RISC

Applications
Clock/instruction cycle
Pipelining

Pin description

2.1 Clock generator - oscillator
2.2 Reset

2.3 Central processing unit
2.4 Ports

2.5 Memory organization

2.6 Interrupts

2.7 Free timer TMRO

2.8 EEPROM Data memory

CHAPTER 111 INSTRUCTION SET

Introduction

Instruction set in PIC16Cxx microcontroller

family

Data Transfer

Arithmetic and logic

Bit operations

Directing the program flow
Instruction execution period
Word list

CHAPTER 1V ASSEMBLY LANGUAGE
PROGRAMMING

Introduction

CHAPTER V MPLAB

Introduction

5.1 Installing the MPLAB program package
5.2 Introduction to MPLAB

5.3 Choosing the development mode

5.4 Designing a project

5.5 Designing new assembler file

5.6 Writing a program

5.7 MPSIM simulator

5.8 Toolbar

CHAPTER VI THE SAMPLES

Introduction

6.1 The microcontroller power supply
6.2 Macros used in programs

« Macros WAIT, WAITX
« Macro PRINT

6.3 Samples

. Light Emitting Diodes
. Keyboard

. Optocoupler
o Optocouplering the input lines

o Optocouplering the output lines

. Relays
. Generating a sound

. Shift reqgisters
o Input shift reqgister
o Output shift register
. 7-segment Displays (multiplexing)
. LCD display
. 12-bit AD converter
. Serial communication

APPENDIX A INSTRUCTION SET

APPENDIX B NUMERIC SYSTEMS

Introduction

B.1 Decimal numeric system
B.2 Binary numeric system
B.3 Hexadecimal numeric system

APPENDIX C GLOSSARY

http://www.mikroelektronika.co.yu/english/product/books/PICbook/picbook.htm (2 of 4) [5/11/2003 8:46:40 AM]

PIC book

Sample of a written program

Control directives

« 4.1 define

« 4.2 include
. 4.3 constant
« 4.4 variable
« 4.5 set

. 4.6 equ

« 4.7 org
. 4.8 end

Conditional instructions

. 49if

.« 4.10 else
o 4.11 endif
o 4.12 while
. 4.13 endw
o 4.14 ifdef

« 4.15 ifndef

Data directives

. 4.16 cblock
« 4.17 endc
. 4.18 db

. 4.19 de

. 4.20 dt

Configurating a directive

« 4.21 CONFIG
o 4.22 Processor

Assembler arithmetic operators
Files created as a result of program
translation

Macros

Send us a comment about a book

Subject :

Comment on the book "PIC microcontrollers"

Name :

State :

|usa
E-mail :

http://www.mikroelektronika.co.yu/english/product/books/PICbook/picbook.htm (3 of 4) [5/11/2003 8:46:40 AM]

PIC book

Your message:

Submit || Reset I

PIC, PIC, PICmicro, and MPLAB is aregistered and protected
trademark of the Microchip Technology Inc. USA. Microchip logo
and name are the registered tokens of the Microchip Technology.
Copyright 2003, Microchip Technology Inc. All other tokens
mentioned in the book are the property of the companies to
which they belong.

The contents published in this book is subject to copyright and it
must not be reproduced in any form without an explicit written
permission released from the editorial of mikroElektronika.

The contact address for the authorization regarding contents of
this book: office@mikroelektronika.co.yu .

The book was prepared with due care and attention, however the
publisher doesn't accept any responsibility neither for the
exactness of the information published therein, nor for any
consequences of its application.

©Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/picbook.htm (4 of 4) [5/11/2003 8:46:40 AM]

mailto:office@mikroelektronika.co.yu
mailto:office@mikroelektronika.co.yu

Chapter 1 - Introduction to Microprocessors

IndeXx
b 4 - Development systems
\\l PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

CHAPTER 1

Introduction to Microcontrollers

Introduction

History
Microcontrollers versus microprocessors

1.1 Memory unit

1.2 Central processing unit
1.3 Buses

1.4 Input-output unit

1.5 Serial communication
1.6 Timer unit

1.7 Watchdog
1.8 Analog to digital converter

1.9 Program

Circumstances that we find ourselves in today in the field of microcontrollers had their beginnings in the development of
technology of integrated circuits. This development has made it possible to store hundreds of thousands of transistors into
one chip. That was a prerequisite for production of microprocessors , and the first computers were made by adding external
peripherals such as memory, input-output lines, timers and other. Further increasing of the volume of the package resulted
in creation of integrated circuits. These integrated circuits contained both processor and peripherals. That is how the first
chip containing a microcomputer , or what would later be known as a microcontroller came about.

It was year 1969, and a team of Japanese engineers from the BUSICOM company arrived to United States with a request
that a few integrated circuits for calculators be made using their projects. The proposition was set to INTEL, and Marcian
Hoff was responsible for the project. Since he was the one who has had experience in working with a computer (PC) PDP8, it
occured to him to suggest a fundamentally different solution instead of the suggested construction. This solution presumed
that the function of the integrated circuit is determined by a program stored in it. That meant that configuration would be
more simple, but that it would require far more memory than the project that was proposed by Japanese engineers would
require. After a while, though Japanese engineers tried finding an easier solution, Marcian's idea won, and the first
microprocessor was born. In transforming an idea into a ready made product , Frederico Faggin was a major help to INTEL.
He transferred to INTEL, and in only 9 months had succeeded in making a product from its first conception. INTEL obtained
the rights to sell this integral block in 1971. First, they bought the license from the BUSICOM company who had no idea
what treasure they had. During that year, there appeared on the market a microprocessor called 4004. That was the first 4-
bit microprocessor with the speed of 6 000 operations per second. Not long after that, American company CTC requested
from INTEL and Texas Instruments to make an 8-bit microprocessor for use in terminals. Even though CTC gave up this idea
in the end, Intel and Texas Instruments kept working on the microprocessor and in April of 1972, first 8-bit microprocessor
appeard on the market under a name 8008. It was able to address 16Kb of memory, and it had 45 instructions and the

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (1 of 8) [5/11/2003 8:48:12 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 1 - Introduction to Microprocessors

speed of 300 000 operations per second. That microprocessor was the predecessor of all today's microprocessors. Intel kept
their developments up in April of 1974, and they put on the market the 8-bit processor under a name 8080 which was able
to address 64Kb of memory, and which had 75 instructions, and the price began at $360.

In another American company Motorola, they realized quickly what was happening, so they put out on the market an 8-bit
microprocessor 6800. Chief constructor was Chuck Peddle, and along with the processor itself, Motorola was the first
company to make other peripherals such as 6820 and 6850. At that time many companies recognized greater importance of
microprocessors and began their own developments. Chuck Peddle leaved Motorola to join MOS Technology and kept
working intensively on developing microprocessors.

At the WESCON exhibit in United States in 1975, a critical event took place in the history of microprocessors. The MOS
Technology announced it was marketing microprocessors 6501 and 6502 at $25 each, which buyers could purchase
immediately. This was so sensational that many thought it was some kind of a scam, considering that competitors were
selling 8080 and 6800 at $179 each. As an answer to its competitor, both Intel and Motorola lowered their prices on the first
day of the exhibit down to $69.95 per microprocessor. Motorola quickly brought suit against MOS Technology and Chuck
Peddle for copying the protected 6800. MOS Technology stopped making 6501, but kept producing 6502. The 6502 was a 8-
bit microprocessor with 56 instructions and a capability of directly addressing 64Kb of memory. Due to low cost , 6502
becomes very popular, so it was installed into computers such as: KIM-1, Apple I, Apple Il, Atari, Comodore, Acorn, Oric,
Galeb, Orao, Ultra, and many others. Soon appeared several makers of 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh, and
Comodore takes over MOS Technology) which was at the time of its prosperity sold at a rate of 15 million processors a year!

Others were not giving up though. Frederico Faggin leaves Intel, and starts his own Zilog Inc.

In 1976 Zilog announced the Z80. During the making of this microprocessor, Faggin made a pivotal decision. Knowing that a
great deal of programs have been already developed for 8080, Faggin realized that many would stay faithful to that
microprocessor because of great expenditure which redoing of all of the programs would result in. Thus he decided that a
new processor had to be compatible with 8080, or that it had to be capable of performing all of the programs which had
already been written for 8080. Beside these characteristics, many new ones have been added, so that Z80 was a very
powerful microprocessor in its time. It was able to address directly 64 Kb of memory, it had 176 instructions, a large number
of registers, a built in option for refreshing the dynamic RAM memory, single-supply, greater speed of work etc. Z80 was a
great success and everybody converted from 8080 to Z80. It could be said that Z80 was without a doubt commercially most
successful 8-bit microprocessor of that time. Besides Zilog, other new manufacturers like Mostek, NEC, SHARP, and SGS also
appeared. Z80 was the heart of many computers like Spectrum, Partner, TRS703, Z-3 .

In 1976, Intel came up with an improved version of 8-bit microprocessor named 8085. However, Z80 was so much better
that Intel soon lost the battle. Altough a few more processors appeared on the market (6809, 2650, SC/MP etc.), everything
was actually already decided. There weren't any more great improvements to make manufacturers convert to something
new, so 6502 and Z80 along with 6800 remained as main representatives of the 8-bit microprocessors of that time.

Microcontroller differs from a microprocessor in many ways. First and the most important is its functionality. In order for a
microprocessor to be used, other components such as memory, or components for receiving and sending data must be
added to it. In short that means that microprocessor is the very heart of the computer. On the other hand, microcontroller is
designed to be all of that in one. No other external components are needed for its application because all necessary
peripherals are already built into it. Thus, we save the time and space needed to construct devices.

Memory is part of the microcontroller whose function is to store data.

The easiest way to explain it is to describe it as one big closet with lots of drawers. If we suppose that we marked the
drawers in such a way that they can not be confused, any of their contents will then be easily accessible. It is enough to
know the designation of the drawer and so its contents will be known to us for sure.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (2 of 8) [5/11/2003 8:48:12 AM]

Chapter 1 - Introduction to Microprocessors

mem location 0

mem location 1l
Example of simplified model of &

mem location 2 memaory unit. For a specific input we
get a corresponding output. Line RAY
determines wheather we are reading
from or writing to memaory

M .
Addresses . Data

Tk

mem location 14

mem location 15

7 ¥

Memory components are exactly like that. For a certain input we get the contents of a certain addressed memory location
and that's all. Two new concepts are brought to us: addressing and memory location. Memory consists of all memory
locations, and addressing is nothing but selecting one of them. This means that we need to select the desired memory
location on one hand, and on the other hand we need to wait for the contents of that location. Beside reading from a
memory location, memory must also provide for writing onto it. This is done by supplying an additional line called control
line. We will designate this line as R/W (read/write). Control line is used in the following way: if r/w=1, reading is done, and
if opposite is true then writing is done on the memory location. Memory is the first element, and we need a few operation of
our microcontroller .

Let add 3 more memory locations to a specific block that will have a built in capability to multiply, divide, subtract, and move
its contents from one memory location onto another. The part we just added in is called "central processing unit" (CPU). Its
memory locations are called registers.

reqister 1
register 2
J Example of simplified central processing
reqister 3 unit with three registers
Addresses
— Data
Control lines CPU

Registers are therefore memory locations whose role is to help with performing various mathematical operations or any
other operations with data wherever data can be found. Look at the current situation. We have two independent entities
(memory and CPU) which are interconnected, and thus any exchange of data is hindered, as well as its functionality. If, for
example, we wish to add the contents of two memory locations and return the result again back to memory, we would need
a connection between memory and CPU. Simply stated, we must have some "way" through data goes from one block to
another.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (3 of 8) [5/11/2003 8:48:12 AM]

Chapter 1 - Introduction to Microprocessors

That "way" is called "bus". Physically, it represents a group of 8, 16, or more wires

There are two types of buses: address and data bus. The first one consists of as many lines as the amount of memory we
wish to address, and the other one is as wide as data, in our case 8 bits or the connection line. First one serves to transmit
address from CPU memory, and the second to connect all blocks inside the microcontroller.

merm location D Connecting memory and central unit

merm location 1 using busses in order to gain on
: functionality

mem.location 2

reqister 1

MEMORY 4 Data N register 2
' B 1 register 3
]
Addresses
mem location 14 | [N .
Control lines
mem location 15 | T IR CPU

As far as functionality, the situation has improved, but a new problem has also appeared: we have a unit that's capable of
working by itself, but which does not have any contact with the outside world, or with us! In order to remove this deficiency,
let's add a block which contains several memory locations whose one end is connected to the data bus, and the other has
connection with the output lines on the microcontroller which can be seen as pins on the electronic component.

Those locations we've just added are called "ports". There are several types of ports : input, output or bidiectional ports.
When working with ports, first of all it is necessary to choose which port we need to work with, and then to send data to, or
take it from the port.

Input —
P t Diata
register — Example of a simplified
input-output unit that provides

— communication with external

DUt.DUt Data wiorld

reqister —

Data _
IfQ unit

When working with it the port acts like a memory location. Something is simply being written into or read from it, and it
could be noticed on the pins of the microcontroller.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (4 of 8) [5/11/2003 8:48:12 AM]

Chapter 1 - Introduction to Microprocessors

Beside stated above we've added to the already existing unit the possibility of communication with an outside world.
However, this way of communicating has its drawbacks. One of the basic drawbacks is the number of lines which need to be
used in order to transfer data. What if it is being transferred to a distance of several kilometers? The number of lines times
number of kilometers doesn't promise the economy of the project. It leaves us having to reduce the number of lines in such
a way that we don't lessen its functionality. Suppose we are working with three lines only, and that one line is used for
sending data, other for receiving, and the third one is used as a reference line for both the input and the output side. In
order for this to work, we need to set the rules of exchange of data. These rules are called protocol. Protocol is therefore
defined in advance so there wouldn't be any misunderstanding between the sides that are communicating with each other.
For example, if one man is speaking in French, and the other in English, it is highly unlikely that they will quickly and
effectively understand each other. Let's suppose we have the following protocol. The logical unit "1" is set up on the
transmitting line until transfer begins. Once the transfer starts, we lower the transmission line to logical "0" for a period of
time (which we will designate as T), so the receiving side will know that it is receiving data, and so it will activate its
mechanism for reception. Let's go back now to the transmission side and start putting logic zeros and ones onto the
transmitter line in the order from a bit of the lowest value to a bit of the highest value. Let each bit stay on line for a time
period which is equal to T, and in the end, or after the 8th bit, let us bring the logical unit "1" back on the line which wiill
mark the end of the transmission of one data. The protocol we've just described is called in professional literature NRZ (Non-
Return to Zero).

Feceiver -a4—~—— Receiving line
transmitter | 1w Transmitting line
register .
— Reference line
Serial unit used to send
data, but only by three
Data Serial lines
unit

As we have separate lines for receiving and sending, it is possible to receive and send data (info.) at the same time. So
called full-duplex mode block which enables this way of communication is called a serial communication block. Unlike the
parallel transmission, data moves here bit by bit, or in a series of bits what defines the term serial communication comes
from. After the reception of data we need to read it from the receiving location and store it in memory as opposed to sending
where the process is reversed. Data goes from memory through the bus to the sending location, and then to the receiving
unit according to the protocol.

Since we have the serial communication explained, we can receive, send and process data.

Free-run —— Signal
counter

Tirmer unit generates signals in

Timer unit LA
regular time intervals

However, in order to utilize it in industry we need a few additionally blocks. One of those is the timer block which is
significant to us because it can give us information about time, duration, protocol etc. The basic unit of the timer is a free-
run counter which is in fact a register whose numeric value increments by one in even intervals, so that by taking its value
during periods T1 and T2 and on the basis of their difference we can determine how much time has elapsed. This is a very
important part of the microcontroller whose understnding requires most of our time.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (5 of 8) [5/11/2003 8:48:12 AM]

Chapter 1 - Introduction to Microprocessors

One more thing is requiring our attention is a flawless functioning of the microcontroller
during its run-time. Suppose that as a result of some interference (which often does occur in industry) our microcontroller
stops executing the program, or worse, it starts working incorrectly.

Free-run
counter
reset
- Watchdoy

Of course, when this happens with a computer, we simply reset it and it will keep working. However, there is no reset button
we can push on the microcontroller and thus solve our problem. To overcome this obstacle, we need to introduce one more
block called watchdog. This block is in fact another free-run counter where our program needs to write a zero in every time
it executes correctly. In case that program gets "stuck", zero will not be written in, and counter alone will reset the
microcontroller upon achieving its maximum value. This will result in executing the program again, and correctly this time
around. That is an important element of every program to be reliable without man's supervision.

As the peripheral signals usually are substantially different from the ones that microcontroller can understand (zero and
one), they have to be converted into a pattern which can be comprehended by a microcontroller. This task is performed by a
block for analog to digital conversion or by an ADC. This block is responsible for converting an information about some
analog value to a binary number and for follow it through to a CPU block so that CPU block can further process it.

ADC reqgister . Block for converting an
Analog input analogue to a digital form

Data
AD converter

Finnaly, the microcontroller is now completed, and all we need to do now is to assemble it into an electronic component
where it will access inner blocks through the outside pins. The picture below shows what a microcontroller looks like inside.

Physical configuration of the interior of a microcontroller

Thin lines which lead from the center towards the sides of the microcontroller represent wires connecting inner blocks with
the pins on the housing of the microcontroller so called bonding lines. Chart on the following page represents the center
section of a microcontroller.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (6 of 8) [5/11/2003 8:48:12 AM]

Chapter 1 - Introduction to Microprocessors

Input - Recelving register AD input
Output —® | Transmitting ap N[
Reference register converter
|
Input I
Serial N register Data
unit Qutput —
register _Data
merm.location 0 o ™
: [
mem location 1 O 1 11O unit
mem location 2
: redister 1
MEMORIA N register 2
] >\ 1] register 3
Addresses
mem.location 14 \:J‘ W Control
mem.location 15 ’ lines CPU
Free-run * Independent
CDUﬂter CDunter
Tim_er Watchdog
unit timer

Microcontroller outline with its basic elements and internal connections

For a real application, a microcontroller alone is not enough. Beside a microcontroller, we need a program that would be
executed, and a few more elements which make up a interface logic towards the elements of regulation (which will be
discussed in later chapters).

Program writing is a special field of work with microcontrollers and is called "programming”. Try to write a small program in
a language that we will make up ourselves first and then would be understood by anyone.

START

REGISTER1=MEMORY LOCATION_A
REGISTER2=MEMORY LOCATION_B
PORTA=REGISTER1 + REGISTERZ2

END

The program adds the contents of two memory locations, and views their sum on port A. The first line of the program
stands for moving the contents of memory location "A" into one of the registers of central processing unit. As we need the
other data as well, we will also move it into the other register of the central processing unit. The next instruction instructs
the central processing unit to add the contents of those two registers and send a result to port A, so that sum of that
addition would be visible to the outside world. For a more complex problem, program that works on its solution will be

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (7 of 8) [5/11/2003 8:48:12 AM]

Chapter 1 - Introduction to Microprocessors

bigger.

Programming can be done in several languages such as Assembler, C and Basic which are most commonly used languages.
Assembler belongs to lower level languages that are programmed slowly, but take up the least amount of space in memory
and gives the best results where the speed of program execution is concerned. As it is the most commonly used language in
programming microcontrollers it will be discussed in a later chapter. Programs in C language are easier to be written, easier
to be understood, but are slower in executing from assembler programs. Basic is the easiest one to learn, and its
instructions are nearest a man's way of reasoning, but like C programming language it is also slower than assembler. In any
case, before you make up your mind about one of these languages you need to consider carefully the demands for execution
speed, for the size of memory and for the amount of time available for its assembly.

After the program is written, we would install the microcontroller into a device and run it. In order to do this we need to add
a few more external components necessary for its work. First we must give life to a microcontroller by connecting it to a
power supply (power needed for operation of all electronic instruments) and oscillator whose role is similar to the role that
heart plays in a human body. Based on its clocks microcontroller executes instructions of a program. As it receives supply
microcontroller will perform a small check up on itself, look up the beginning of the program and start executing it. How the
device will work depends on many parameters, the most important of which is the skillfulness of the developer of hardware,
and on programmer's expertise in getting the maximum out of the device with his program.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (8 of 8) [5/11/2003 8:48:12 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\\l PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

CHAPTER 2

Microcontroller PIC16F84

Introduction

CISC, RISC

Applications
Clock/instruction cycle

Pipelining
Pin description

2.1 Clock generator - oscillator
2.2 Reset

2.3 Central processing unit
2.4 Ports

2.5 Memory organization

2.6 Interrupts

2.7 Free timer TMRO

2.8 EEPROM Data memory

PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Its general structure is shown on the following
map representing basic blocks.

Program memory (FLASH)- for storing a written program.
Since memory made in FLASH technology can be programmed and cleared more than once, it makes this microcontroller
suitable for device development.

EEPROM - data memory that needs to be saved when there is no supply.

It is usually used for storing important data that must not be lost if power supply suddenly stops. For instance, one such
data is an assigned temperature in temperature regulators. If during a loss of power supply this data was lost, we would
have to make the adjustment once again upon return of supply. Thus our device looses on self-reliance.

RAM - data memory used by a program during its execution.

In RAM are stored all inter-results or temporary data during run-time.

PORTA and PORTB are physical connections between the microcontroller and the outside world. Port A has five, and port B
eight pins.

FREE-RUN TIMER is an 8-bit register inside a microcontroller that works independently of the program. On every fourth
clock of the oscillator it increments its value until it reaches the maximum (255), and then it starts counting over again from
zero. As we know the exact timing between each two increments of the timer contents, timer can be used for measuring
time which is very useful with some devices.

CENTRAL PROCESSING UNIT has a role of connective element between other blocks in the microcontroller. It coordinates
the work of other blocks and executes the user program.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (1 of 5) [5/11/2003 8:48:47 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

Free-run
counter
Data
mEmory
RAM N,
Data Program
MEmOry - CPLI . METIOrY
EEPR:OM FLASH
L 4 L J
FORTA FORTE
FlIC16F 24 microcontroller outline
Harvard von-Neumann
[
. 5 g
[i E“
ﬁg_-cpu —w b CPU » &
m
T 5 14 E 5 E T
& o
& &

Harvard vs. wvon Meuman Elock Architectures

It has already been said that PIC16F84 has a RISC architecture. This term is often found in computer literature, and it needs
to be explained here in more detail. Harvard architecture is a newer concept than von-Neumann's. It rose out of the need to
speed up the work of a microcontroller. In Harvard architecture, data bus and address bus are separate. Thus a greater flow
of data is possible through the central processing unit, and of course, a greater speed of work. Separating a program from
data memory makes it further possible for instructions not to have to be 8-bit words. PIC16F84 uses 14 bits for instructions
which allows for all instructions to be one word instructions. It is also typical for Harvard architecture to have fewer
instructions than von-Neumann's, and to have instructions usually executed in one cycle.

Microcontrollers with Harvard architecture are also called "RISC microcontrollers"”. RISC stands for Reduced Instruction Set
Computer. Microcontrollers with von-Neumann's architecture are called '‘CISC microcontrollers’. Title CISC stands for
Complex Instruction Set Computer.

Since PIC16F84 is a RISC microcontroller, that means that it has a reduced set of instructions, more precisely 35 instructions
. (ex. Intel's and Motorola's microcontrollers have over hundred instructions) All of these instructions are executed in one
cycle except for jump and branch instructions. According to what its maker says, PIC16F84 usually reaches results of 2:1 in
code compression and 4:1 in speed in relation to other 8-bit microcontrollers in its class.

PIC16F84 perfectly fits many uses, from automotive industries and controlling home appliances to industrial instruments,
remote sensors, electrical doorlocks and safety devices. It is also ideal for smart cards as well as for battery supplied devices

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (2 of 5) [5/11/2003 8:48:47 AM]

Chapter 2 - Microcontroller PIC16F84

because of its low consumption.

EEPROM memory makes it easier to apply microcontrollers to devices where permanent storage of various parameters is
needed (codes for transmitters, motor speed, receiver frequencies, etc.). Low cost, low consumption, easy handling and
flexibility make PIC16F84 applicable even in areas where microcontrollers had not previously been considered (example:
timer functions, interface replacement in larger systems, coprocessor applications, etc.).

In System Programmability of this chip (along with using only two pins in data transfer) makes possible the flexibility of a
product, after assembling and testing have been completed. This capability can be used to create assembly-line production,
to store calibration data available only after final testing, or it can be used to improve programs on finished products.

Clock is microcontroller's main starter, and is obtained from an external component called an "oscillator". If we want to
compare a microcontroller with a time clock, our “clock” would then be a ticking sound we hear from the time clock. In that
case, oscillator could be compared to a spring that is wound so time clock can run. Also, force used to wind the time clock
can be compared to an electrical supply.

Clock from the oscillator enters a microcontroller via OSC1 pin where internal circuit of a microcontroller divides the clock
into four even clocks Q1, Q2, Q3, and Q4 which do not overlap. These four clocks make up one instruction cycle (also called
machine cycle) during which one instruction is executed.

Execution of instruction starts by calling an instruction that is next in string. Instruction is called from program memory on
every Q1 and is written in instruction register on Q4. Decoding and execution of instruction are done between the next Q1
and Q4 cycles. On the following diagram we can see the relationship between instruction cycle and clock of the oscillator
(OSC1) as well as that of internal clocks Q1-Q4. Program counter (PC) holds information about the address of the next
instruction.

lad T2 ' Q3 'ad e 1a2 a3 ' ad et a2 a3 'ad |
M ririririririrererirerig

o=
“ | | | :
@E o | — I 1 I | — |
I — | — | — |
o | | | |
I I |
pc & P ¥ PO ;
| | |
| |
Taen T] I
B ST R I
T TS
] I H_+

Clockiinsruction Cycle

Instruction cycle consists of cycles Q1, Q2, Q3 and Q4. Cycles of calling and executing instructions are connected in such a
way that in order to make a call, one instruction cycle is needed, and one more is needed for decoding and execution.
However, due to pipelining, each instruction is effectively executed in one cycle. If instruction causes a change on program
counter, and PC doesn't point to the following but to some other address (which can be the case with jumps or with calling
subprograms), two cycles are needed for executing an instruction. This is so because instruction must be processed again,
but this time from the right address. Cycle of calling begins with Q1 clock, by writing into instruction register (IR). Decoding
and executing begins with Q2, Q3 and Q4 clocks.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (3 of 5) [5/11/2003 8:48:47 AM]

Chapter 2 - Microcontroller PIC16F84

TCYD TCYA TCY2 TCHY3 TCY4 TCYS
1. MOWLW 55h Fetch Executel
2. MOvWF PORTE Fetch2 Execute?
3. Call sUBe_1 Fetch3 Executes
4. BSF PORTA, BITZ [Forced NOF) Fetchd Flush
5. Instruction @@ address SUE_A1 Fetch =UB_1 |ExecuteSUB_1

FetchSUB_1 + 1

Al imstructions are single cycle exept for any program branches. These take two cycles since the fetch
instructions iz "flushed" from the pipeling while the nevy instruction is being fetched and then executed.

Instruction Pipeline Flow

TCYO reads in instruction MOVLW 55h (it doesn't matter to us what instruction was executed, because there is no rectangle
pictured on the bottom).

TCY1 executes instruction MOVLW 55h and reads in MOVWF PORTB.

TCY2 executes MOVWF PORTB and reads in CALL SUB_1.

TCY3 executes a call of a subprogram CALL SUB_1, and reads in instruction BSF PORTA, BIT3. As this instruction is not the
one we need, or is not the first instruction of a subprogram SUB_1 whose execution is next in order, instruction must be
read in again. This is a good example of an instruction needing more than one cycle.

TCY4 instruction cycle is totally used up for reading in the first instruction from a subprogram at address SUB_1.

TCY5 executes the first instruction from a subprogram SUB_1 and reads in the next one.

PIC16F84 has a total of 18 pins. It is most frequently found in a DIP18 type of case but can also be found in SMD case which
is smaller from a DIP. DIP is an abbreviation for Dual In Package. SMD is an abbreviation for Surface Mount Devices
suggesting that holes for pins to go through when mounting, aren't necessary in soldering this type of a component.

1 L) 1a
1 33 rai [
2 17
1 [33] koo [
a 15
[[N gelal asc [
4 13
MR QEC2
Q% pic *
E|:'u'ss 16F84 wud ;!]
[IREQANT ReT [
T 12
[re1 REG []
] 1
[Jrez RES
a 10
[Jre= FE4[]

Pins on PIC16F84 microcontroller have the following meaning:

Pin no.1 RA2 Second pin on port A. Has no additional function

Pin no.2 RA3 Third pin on port A. Has no additional function.

Pin no.3 RA4 Fourth pin on port A. TOCK1 which functions as a timer is also found on this pin
Pin no.4 MCLR Reset input and Vpp programming voltage of a microcontroller
Pin no.5 Vss Ground of power supply.

Pin no.6 RBO Zero pin on port B. Interrupt input is an additional function.

Pin no.7 RB1 First pin on port B. No additional function.

Pin no.8 RB2 Second pin on port B. No additional function.

Pin no.9 RB3 Third pin on port B. No additional function.

Pin no.10 RB4 Fourth pin on port B. No additional function.

Pin no.11 RB5 Fifth pin on port B. No additional function.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (4 of 5) [5/11/2003 8:48:47 AM]

Chapter 2 - Microcontroller PIC16F84

Pin no.12 RB6 Sixth pin on port B. 'Clock’ line in program mode.
Pin no.13 RB7 Seventh pin on port B. '‘Data’ line in program mode.
Pin no.14 Vvdd Positive power supply pole.

Pin no.15 OSC2 Pin assigned for connecting with an oscillator

Pin no.16 OSC1 Pin assigned for connecting with an oscillator

Pin no.17 RA2 Second pin on port A. No additional function

Pin no.18 RAL1L First pin on port A. No additional function.

Previous page Table of contents

Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (5 of 5) [5/11/2003 8:48:47 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\J PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

Oscillator circuit is used for providing a microcontroller with a clock. Clock is needed so that microcontroller could execute a
program or program instructions.

Types of oscillators

PIC16F84 can work with four different configurations of an oscillator. Since configurations with crystal oscillator and resistor-
capacitor (RC) are the ones that are used most frequently, these are the only ones we will mention here. Microcontroller
type with a crystal oscillator has in its designation XT, and a microcontroller with resistor-capacitor pair has a designation
RC. This is important because you need to mention the type of oscillator when buying a microcontroller.

XT Oscillator

Raz Rt [

R rao [

% 0sci c2

RoHTOCE] 05

] =]
13 I !
MCLR Q5C2
pic “f;
v 16F84 wif] =
sz L1 -

Connecting the quanz oscillator to give

Oscillator and capacitors can be packed in clock to a microcontroller
joint case with three pins. Such element is
called ceramic resonator and is represented
in charts like the one below. Center pins of
the element is the ground, while end pins are
connected with OSC1 and OSC2 pins on the
microcontroller. When designing a device,
the rule is to place an oscillator nearer a
microcontroller, so as to avoid any
interference on lines on which microcontroller
is receiving a clock. - —

Crystal oscillator is kept in metal housing
with two pins where you have written down
the frequency at which crystal oscillates. One
ceramic capacitor of 30pF whose other end is
connected to the ground needs to be
connected with each pin.

| o 2 1 L s 5 o I e

Connecting a resonator onto a
microcontroller

RC Oscillator

In applications where great time precision is not necessary, RC oscillator offers additional savings during purchase. Resonant
frequency of RC oscillator depends on supply voltage rate, resistance R, capacity C and working temperature. It should be
mentioned here that resonant frequency is also influenced by normal variations in process parameters, by tolerance of
external R and C components, etc.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (1 of 3) [5/11/2003 8:49:52 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

oo
F
J_ o Clock
CI FIC1EFE4
iEE —
N Osc/CLkauT
Clocksd

Mote: This pin can be configured sz inputioutput pin

Above diagram shows how RC oscillator is connected with PIC16F84. With value of resistor R being below 2.2k, oscillator can
become unstable, or it can even stop the oscillation. With very high value of R (ex.1M) oscillator becomes very sensitive to
noise and humidity. It is recommended that value of resistor R should be between 3 and 100k. Even though oscillator will
work without an external capacitor(C=0pF), capacitor above 20pF should still be used for noise and stability. No matter
which oscillator is being used, in order to get a clock that microcontroller works upon, a clock of the oscillator must be
divided by 4. Oscillator clock divided by 4 can also be obtained on OSC2/CLKOUT pin, and can be used for testing or
synchronizing other logical circuits.

D3 D4 o1 g D3 D4 D1 DS D4
Tose | | | | | | |
i - ch 1 . | . ch z . | . ch 3 . |

Felationship between a clock and a number of instruction cycles

Following a supply, oscillator starts oscillating. Oscillation at first has an unstable period and amplitude, but after some
period of time it becomes stabilized.

I
,

T

“oltage

o

Tirne

Crystal start up time

Signal of an oscillator clock after receiving the supply of a microcontroller

To prevent such inaccurate clock from influencing microcontroller's performance, we need to keep the microcontroller in
reset state during stabilization of oscillator's clock. Above diagram shows a typical shape of a signal which microcontroller
gets from the quartz oscillator following a supply.

Previous page Table of contents Next page

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (2 of 3) [5/11/2003 8:49:52 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (3 of 3) [5/11/2003 8:49:52 AM]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\J PIC Microcontrollers i
on-line FREE!
Previous page Table of contents Next Page

Reset is used for putting the microcontroller into a ‘known' condition. That practically means that microcontroller can behave
rather inaccurately under certain undesirable conditions. In order to continue its proper functioning it has to be reset,
meaning all registers would be placed in a starting position. Reset is not only used when microcontroller doesn't behave the
way we want it to, but can also be used when trying out a device as an interrupt in program execution, or to get a
microcontroller ready when reading in a program.

<
o
=]

| -
T =3 e 2 e 2 0 e 3 e
= m
=l
e
-
o
o
=

In order to prevent from bringing a logical zero to MCLR
pin accidentally (line above it means that reset is
activated by a logical zero), MCLR has to be connected
via resistor to the positive supply pole. Resistor should
be between 5 and 10K. This kind of resistor whose
function is to keep a certain line on a logical one as a
preventive, is called a pull up.

Lsing the internal reset circuit

Microcontroller PIC16F84 knows several sources of resets:

a) Reset during power on, POR (Power-On Reset)

b) Reset during regular work by bringing logical zero to MCLR microcontroller's pin.
c) Reset during SLEEP regime

d) Reset at watchdog timer (WDT) overflow

e) Reset during at WDT overflow during SLEEP work regime.

The most important reset sources are a) and b). The first one occurs each time a power supply is brought to the
microcontroller and serves to bring all registers to a starting position initial state. The second one is a product of purposeful
bringing in of a logical zero to MCLR pin during normal operation of the microcontroller. This second one is often used in
program development.

During a reset, RAM memory locations are not being reset. They are unknown during a power up and are not changed at any
reset. Unlike these, SFR registers are reset to a starting position initial state. One of the most important effects of a reset is
setting a program counter (PC) to zero (0O000h) , which enables the program to start executing from the first written
instruction.

Reset at supply voltage drop below the permissible (Brown-out Reset)

Impulse for resetting during voltage voltage-up is generated by microcontroller itself when it detects an increase in supply
Vdd (in a range from 1.2V to 1.8V). That impulse lasts 72ms which is enough time for an oscillator to get stabilized. These
72ms are provided by an internal PWRT timer which has its own RC oscillator. Microcontroller is in a reset mode as long as
PWRT is active. However, as device is working, problem arises when supply doesn't drop to zero but falls below the limit that
guarantees microcontroller's proper functioning. This is a likely case in practice, especially in industrial environment where
disturbances and instability of supply are an everyday occurrence. To solve this problem we need to make sure that

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_03Poglavlje.htm (1 of 2) [5/11/2003 8:50:55 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

microcontroller is in a reset state each time supply falls below the approved limit.

—

1]
Reszat zignal T2 ms
oo
Reset=signal | <72 ms "ﬁ"l—
oo

Reszat signal 4E

Examples of voltage supply drop below the proper level

If, according to electrical specification, internal reset circuit of a microcontroller can not satisfy the needs, special electronic
components can be used which are capable of generating the desired reset signal. Beside this function, they can also
function in watching over supply voltage. If voltage drops below specified level, a logical zero would appear on MCLR pin
which holds the microcontroller in reset state until voltage is not within limits that guarantee correct functioning.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/2_03Poglavlje.htm (2 of 2) [5/11/2003 8:50:55 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\\l PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

Central processing unit (CPU) is the brain of a microcontroller. That part is responsible for finding and fetching the right
instruction which needs to be executed, for decoding that instruction, and finally for its execution.

Data Bus g

RAI

File Registers ()

Ram Address Bus [

Instruction reg. | A e bl
| | Cirect Adressing TT

Indirect
Adressing

CQutline of the central processing unit-CFLU

Central processing unit connects all parts of the microcontroller into one whole. Surely, its most important function is to
decode program instructions. When programmer writes a program, instructions have a clear form like MOVLW 0x20.
However, in order for a microcontroller to understand that, this 'letter' form of an instruction must be translated into a series
of zeros and ones which is called an 'opcode’. This transition from a letter to binary form is done by translators such as
assembler translator (also known as an assembler). Instruction thus fetched from program memory must be decoded by a
central processing unit. We can then select from the table of all the instructions a set of actions which execute a assigned
task defined by instruction. As instructions may within themselves contain assignments which require different transfers of
data from one memory into another, from memory onto ports, or some other calculations, CPU must be connected with all
parts of the microcontroller. This is made possible through a data bus and an address bus.

Arithmetic Logic Unit (ALU)

Arithmetic logic unit is responsible for performing operations of adding, subtracting, moving (left or right within a register)
and logic operations. Moving data inside a register is also known as 'shifting’. PIC16F84 contains an 8-bit arithmetic logic
unit and 8-bit work registers.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (1 of 5) [5/11/2003 8:51:07 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

| Instruction reg | o
[: s
m
| 5
3 Pl
=l I -
ALU

==

Arithmetic-logic unit and how it works

In instructions with two operands, ordinarily one operand is in work register (W register), and the other is one of the
registers or a constant. By operand we mean the contents on which some operation is being done, and a register is any one
of the GPR or SFR registers. GPR is an abreviation for ‘General Purposes Registers', and SFR for 'Special Function Registers'.
In instructions with one operand, an operand is either W register or one of the registers. As an addition in doing operations
in arithmetic and logic, ALU controls status bits (bits found in STATUS register). Execution of some instructions affects status
bits, which depends on the result itself. Depending on which instruction is being executed, ALU can affect values of Carry

(C), Digit Carry (DC), and Zero (Z) bits in STATUS register.

Data Bus g
* 13 Program Courter

RO
Program S
MmEemory g level stack RAM

(13-hit)
File Registers (1)
14| Program Bus v
RAM Lddress Bus f
Inztruction reg | Adddr Mo
| | Direct Adressing ﬁ r F——
Adrezsing
STATUS reg.
g
| L I
AL
Povwver-up
b Timer ﬂ
i 3

'”gg;‘gtd'z” . Oscillator i

&Cortrol Start-up timer AL

Powver-on |
Reset
Titning . . Wigtchdog >
generator [¥ Timer Fed

o

CEC2ICLKOUT Wd Ves
DECTACLKIM
http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (2 of 5) [5/11/2003 8:51:07 AM]

Chapter 2 - Microcontroller PIC16F84

OSC2CLKOUT WCLF Wi Was
CSC LRI

More detailed block outline of PIC16FE84 microcontroller

STATUS Register

RS-0 RAN-O 32800 RA-1T BRAN-T RAN-x RANW-w RAN-x

IRP RP1 RPD TO PD z o o
bit¥

Legend:
R = Readahle bit W ='"ritable bit
U = Unimplemeanted bit, read a= '00 - n = Yalue at povwer-on reset

bit O C (Carry) Transfer

Bit that is affected by operations of addition, subtraction and shifting.
1= transfer occured from the highest resulting bit

O=transfer did not occur

C bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

bit 1 DC (Digit Carry) DC Transfer

Bit affected by operations of addition, subtraction and shifting. Unlike C bit, this bit represents transfer from the fourth
resulting place. It is set by addition when occurs carry from bit3 to bit4, or by subtraction when occurs borrow from bit4 to
bit3, or by shifting in both direction.

1=transfer occured on the fourth bit according to the order of the result

O=transfer did not occur

DC bit is affected by ADDWF, ADDLW, SUBLW, SUBWEF instructions.

bit 2 Z (Zero bit) Indication of a zero result

This bit is set when the result of an executed arithmetic or logic operation is zero.
1=result equals zero

O=result does not equal zero

bit 3 PD (Power-down bit)

Bit which is set whenever power supply is brought to a microcontroller as it starts running, after each regular reset and
after execution of instruction CLRWDT. Instruction SLEEP resets it when microcontroller falls into low consumption/usage
regime. Its repeated setting is possible via reset or by turning the supply on, or off . Setting can be triggered also by a signal
on RBO/INT pin, change on RB port, completion of writing in internal DATA EEPROM, and by a watchdog, too.

1=after supply has been turned on

0= executing SLEEP instruction

bit 4 TO Time-out ; Watchdog overflow.

Bit is set after turning on the supply and execution of CLRWDT and SLEEP instructions. Bit is reset when watchdog gets to
the end signaling that something is not right.

1=overflow did not occur

O=overflow did occur

bit6:5 RP1:RPO (Register Bank Select bits)

These two bits are upper part of the address for direct addressing. Since instructions which address the memory directly
have only seven bits, they need one more bit in order to address all 256 bytes which is how many bytes PIC16F84 has. RP1
bit is not used, but is left for some future expansions of this microcontroller.

01=first bank

00=zero bank

bit 7 IRP (Register Bank Select bit)

Bit whose role is to be an eighth bit for indirect addressing of internal RAM.
1=bank 2 and 3

O=bank 0 and 1 (from 0Oh to FFh)

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (3 of 5) [5/11/2003 8:51:07 AM]

Chapter 2 - Microcontroller PIC16F84

STATUS register contains arithmetic status ALU (C, DC, Z), RESET status (TO, PD) and bits for selecting of memory bank
(IRP, RP1, RP0O). Considering that selection of memory bank is controlled through this register, it has to be present in each
bank. Memory bank will be discussed in more detail in Memory organization chapter. STATUS register can be a destination
for any instruction, with any other register. If STATUS register is a destination for instructions which affect Z, DC or C bits,
then writing to these three bits is not possible.

OPTION register

RN RAM-T AT BAMST RAM-T RAM-T RAMST RAN
REFU | INTEDG [TOCS |TOSE | PEA | PE2 | PE1 F=0
hit?

Legend:
R =Readahle bit W = Nritable bit
I = Unimplemented bit, read 3= '00 - n = Yalue at power-on reset

bit 0:2 PSO, PS1, PS2 (Prescaler Rate Select bit)
These three bits define prescaler rate select bit. What a prescaler is and how these bits can affect the work of a
microcontroller will be explained in section on TMRO.

Bits TMEO WDOT
2

oao 1: 1:1
ool 1:4 1:2
010 1:8 1:4
0ii 1:16 1:8
100 1:32 1:16
101 164 1:.32
1i0 1:128 164
111 1256 1:128

bit 3 PSA (Prescaler Assignment bit)

Bit which assigns prescaler between TMRO and watchdog.
l1=prescaler is assigned to watchdog

O=prescaler is assigned to a free-run timer TMRO

bit 4 TOSE (TMRO Source Edge Select bit)

If it is allowed to trigger TMRO by impulses from the pin RA4/TOCKI, this bit determines whether this will be to the falling or
rising edge of a signal.

1=falling edge

O=rising edge

bit 5 TOCS (TMRO Clock Source Select bit)

This pin enables free-run timer to increment its state either from internal oscillator on every ¥ of oscillator clock, or through
external impulses on RA4/TOCKI pin.

1=external impulses

0=1/4 internal clock

bit 6 INTEDG (Interrupt Edge Select bit)

If interrupt is enabled possible this bit will determine the edge at which an interrupt will be activated on pin RBO/INT.
1=rising edge

O=falling edge

bit 7 RBPU (PORTB Pull-up Enable bit)

This bit turns on and off internal "pull-up’ resistors on port B.
1= "pull-up" resistors turned off

0= "pull-up" resistors turned on

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (4 of 5) [5/11/2003 8:51:07 AM]

Chapter 2 - Microcontroller PIC16F84

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (5 of 5) [5/11/2003 8:51:07 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\J PIC Microcontrollers i
on-line FREE!
Previous page Table of contents Next Page

Port refers to a group of pins on a microcontroller which can be accessed simultaneously, or on which we can set the desired
combination of zeros and ones, or read from them an existing status. Physically, port is a register inside a microcontroller
which is connected by wires to the pins of a microcontroller. Ports represent physical connection of Central Processing Unit
with an outside world. Microcontroller uses them in order to monitor or control other components or devices. Due to
functionality, some pins have twofold roles like PA4/TOCKI for instance, which is simultaneously the fourth bit of port A and
an external input for free-run counter. Selection of one of these two pin functions is done in one of the configurational
registers. An illustration of this is the fifth bit TOCS in OPTION register. By selecting one of the functions the other one is
disabled.

PORTA

QIOISIOIOISIGIO)

TRISA

CICICICICICICIC)

Felationship between TRISA and PORTA register

All port pins can be defined as input or output, according to the needs of a device that's being developed. In order to define
a pin as input or output pin, the right combination of zeros and ones must be written in TRIS register. If at the appropriate
place in TRIS register a logical "1" is written, then that pin is an input pin, and if the opposite is true, it's an output pin.
Every port has its proper TRIS register. Thus, port A has TRISA at address 85h, and port B has TRISB at address 86h.

PORTB

PORTB has 8 pins joined to it. The appropriate register for direction of data is TRISB at address 86h. Setting a bit in TRISB
register defines the corresponding port pin as an input pin, and resetting a bit in TRISB register defines the corresponding
port pin as the output pin. Each pin on PORTB has a weak internal pull-up resistor (resistor which defines a line to logic one)
which can be activated by resetting the seventh bit RBPU in OPTION register. These 'pull-up’ resistors are automatically
being turned off when port pin is configured as an output. When a microcontroller is started, pull-up's are disabled.

Four pins PORTB, RB7:RB4 can cause an interrupt which occurs when their status changes from logical one into logical zero
and opposite. Only pins configured as input can cause this interrupt to occur (if any RB7:RB4 pin is configured as an output,
an interrupt won't be generated at the change of status.) This interrupt option along with internal pull-up resistors makes it
easier to solve common problems we find in practice like for instance that of matrix keyboard. If rows on the keyboard are
connected to these pins, each push on a key will then cause an interrupt. A microcontroller will determine which key is at
hand while processing an interrupt It is not recommended to refer to port B at the same time that interrupt is being

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_05Poglavlje.htm (1 of 2) [5/11/2003 8:51:15 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

processed.
clrf STLATOS :BankO
clrf FPORTE ;PORTE=0
h=t STATUOS,RFPO :Bankl
wowvlw OxOF : Defintng mput and output pans
movwt TRIZE writing to TEISE register

The above example shows how pins 0, 1, 2, and 3 are declared for input, and pins 4, 5, 6, and 7 for output.

PORTA

PORTA has 5 pins joined to it. The corresponding register for data direction is TRISA at address 85h. Like with port B, setting
a bit in TRISA register defines also the corresponding port pin as an input pin, and clearing a bit in TRISA register defines
the corresponding port pin as an output pin.

The fifth pin of port A has dual function. On that pin is also situated an external input for timer TMRO. One of these two
options is chosen by setting or resetting the TOCS bit (TMRO Clock Source Select bit). This pin enables the timer TMRO to
increase its status either from internal oscillator or via external impulses on RA4/TOCKI pin.

et STATUS, PO ;Eankl

clrf FPORTA PORTA=0

hst 3TATUOZ,RPO :EBankl

movlw Ox1F ; Defining input and output pins pinova
wovwf TRISA s Wiitng to TRISA remster

Example shows how pins O, 1, 2, 3, and 4 are declared to be input, and pins 5, 6, and 7 to be output pins.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_05Poglavlje.htm (2 of 2) [5/11/2003 8:51:15 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\\l PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

PIC16F84 has two separate memory blocks, one for data and the other for program. EEPROM memory and GPR registers in
RAM memory make up a data block, and FLASH memory makes up a program block.

Program memory

Program memory has been realized in FLASH technology which makes it possible to program a microcontroller many times
before it's installed into a device, and even after its installment if eventual changes in program or process parameters should
occur. The size of program memory is 1024 locations with 14 bits width where locations zero and four are reserved for reset
and interrupt vector.

Data memory

Data memory consists of EEPROM and RAM memories. EEPROM memory consists of 64 eight bit locations whose contents is
not lost during loosing of power supply. EEPROM is not directly addressible, but is accessed indirectly through EEADR and
EEDATA registers. As EEPROM memory usually serves for storing important parameters (for example, of a given temperature
in temperature regulators) , there is a strict procedure for writing in EEPROM which must be followed in order to avoid
accidental writing. RAM memory for data occupies space on a memory map from location OxOC to Ox4F which comes to 68
locations. Locations of RAM memory are also called GPR registers which is an abbreviation for General Purpose Registers.
GPR registers can be accessed regardless of which bank is selected at the moment.

SFR registers

Registers which take up first 12 locations in banks 0 and 1 are registers of specialized function assigned with certain blocks
of the microcontroller. These are called Special Function Registers.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (1 of 5) [5/11/2003 8:51:24 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

—| EEDATA |
'“Ei
il Addres EERROM for
Stack level 1 00k data Gdxd
Stack level 2 e jih//-/
' <L : -
L : e
L T T T T 1T |3h
Stacklgvel 3 Pragram —T— —— 2Fh
Aclelress 5 couhter =z
Bus " J I: Data Bus
PC=12:0 ;f”ﬂ
=12 0=
\—P :
Z
J E Address d Eddress
Rzl wddres 000k 0ok INOF HOF] 20k
ok THRA OFTICH hk
02h FCL FCL a7h
03h BTATUS ETATUS a3h
Inarrupl wedar addrass 0004k 04k FER FER dh
03h PORTA TRIEA 55h Accessing
06k FORTE TRISA 86h theae
07h &7h locations
Program memary » OSh EEDATA, EECOHT &8h s the
1024314 — 09h EEADR EECONZ * | 89h carme pesult
(1 FCLATH FCLATH aih
(B NTCON INTCON 5Bk regardiess
COchH R of the bank
! frarm which
i : We ave
i B3 brytes RAM memory g ; making an
: GPR : SCCESS
: registers ;
pArh LFh i
=t Dk Unimplermen
ted
A memory
locations, by
reading
therm
we 2lways
1FFFh TFh FFh et o
Bank0 Bank1
0 0% 4 T
NI
Lo e ffReo - 0 - 0 - 0 - - |

STATUS reqister

Memory organization of microcontroller PIC16F84

Memory Banks

Beside this 'length’ division to SFR and GPR registers, memory map is also divided in 'width' (see preceding map) to two
areas called 'banks'. Selecting one of the banks is done via RPO and RP1 bits in STATUS register.

Example:
bcf STATUS, RPO

Instruction BCF clears bit RPO (RPO=0) in STATUS register and thus sets up bank O.
bsf STATUS, RPO

Instruction BSF sets the bit RPO (RPO=1) in STATUS register and thus sets up bankl.

Usually, groups of instructions that are often in use, are connected into one unit which can easily be recalled in a program,

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (2 of 5) [5/11/2003 8:51:24 AM]

Chapter 2 - Microcontroller PIC16F84

and whose name has a clear meaning, so called Macros. With their use, selection between two banks becomes more clear
and the program itself more legible.

BANKO nacr o
Bcf STATUS, RPO ; Sel ect nenory bank 0
Endm

BANK1 nmcro
Bsf STATUS, RPO ; Sel ect nmenory bank 1
Endm

Locations OCh - 4Fh are general purpose registers (GPR) which are used as RAM memory.
When locations 8Ch - CFh in Bank 1 are accessed, we actually access the exact same
locations in Bank O. In other words , whenever you wish to access one of the GPR
registers, there is no need to worry about which bank we are in!

Program Counter

Program counter (PC) is a 13 bit register that contains the address of the instruction being executed. By its incrementing or
change (ex. in case of jumps) microcontroller executes program instructions step-by-step.

Stack

PIC16F84 has a 13-bit stack with 8 levels, or in other words, a group of 8 memory locations of 13 -bits width with special
function. Its basic role is to keep the value of program counter after a jump from the main program to an address of a
subprogram . In order for a program to know how to go back to the point where it started from, it has to return the value of
a program counter from a stack. When moving from a program to a subprogram, program counter is being pushed onto a
stack (example of this is CALL instruction). When executing instructions such as RETURN, RETLW or RETFIE which were
executed at the end of a subprogram, program counter was taken from a stack so that program could continue where was
stopped before it was interrupted. These operations of placing on and taking off from a program counter stack are called
PUSH and POP, and are named according similar instructions on some bigger microcontrollers.

In System Programming

In order to program a program memory, microcontroller must be set to special working mode by bringing up MCLR pin to
13.5V, and supply voltage Vdd has to be stabilized between 4.5V to 5.5V. Program memory can be programmed serially

using two 'data/clock’ pins which must previously be separated from device lines, so that errors wouldn't come up during
programming.

Addressing modes

RAM memory locations can be accessed directly or indirectly.

Direct Addressing

Direct Addressing is done through a 9-bit address. This address is obtained by connecting 7th bit of direct address of an
instruction with two bits (RP1, RPO) from STATUS register as is shown on the following picture. Any access to SFR registers
can be an example of direct addressing.

Bsf STATUS, RPO ; Bankl

movl w OxFF : W=0xFF

movwf TRI SA ;address of TRISA register is taken from
cinstructi on nmovwf

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (3 of 5) [5/11/2003 8:51:24 AM]

Chapter 2 - Microcontroller PIC16F84

Indirect Addressing

Indirect unlike direct addressing does not take an address from an instruction but makes it with the help of IRP bit of
STATUS and FSR registers. Addressed location is accessed via INDF register which in fact holds the address indicated by a
FSR. In other words, any instruction which uses INDF as its register in reality accesses data indicated by a FSR register. Let's
say, for instance, that one general purpose register (GPR) at address OFh contains a value of 20. By writing a value of OFh in
FSR register we will get a register indicator at address OFh, and by reading from INDF register, we will get a value of 20,
which means that we have read from the first register its value without accessing it directly (but via FSR and INDF). It
appears that this type of addressing does not have any advantages over direct addressing, but certain needs do exist during

ath ahci Gth
Bits of
STATUS
registar Seven bits frorm instructions
FF1 RF2 j
+ [T TT1TT1]
Selectec! o 01
hank
/, |
] 0B
Selected location
nc
4F
TF

Bankl Bank1

Direct addressing

programming which can be solved smoothly only through indirect addressing.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (4 of 5) [5/11/2003 8:51:24 AM]

Chapter 2 - Microcontroller PIC16F84

Seviahth bt of
STATLS
register
IRP 7 .

Selectec!
aa m
hank
oo
/ 0B
Sefected focation o
ac
4F
TF
Banko Bank1

Indirect addressing

An of such example can be sending a set of data via serial communication, working with buffers and indicators (which will be
discussed further in a chapter with examples), or erasing a part of RAM memory (16 locations) as in the following instance.

Mowlw 0Ox0C ;initialization of starting address
Movwf F3R FAR indicatez address 0x0C

LooF olrf INDF PINDF = 0
inct F3R raddress = initial address + 1
htf=s= F3ER,4 ;are all locations erased
goto loop ;no, go through a loop again

CONTINUE
: ; yves, continue with program

Reading data from INDF register when the contents of FSR register is equal to zero returns the value of zero, and writing to
it results in NOP operation (no operation).

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (5 of 5) [5/11/2003 8:51:24 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\J PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

Interrupts are a mechanism of a microcontroller which enables it to respond to some events at the moment when they
occur, regardless of what microcontroller is doing at the time. This is a very important part, because it provides connection
between a microcontroller and environment which surrounds it. Generally, each interrupt changes the program flow,
interrupts it and after executing an interrupt subprogram (interrupt routine) it continues from that same point on.

PIZ16F84
1
[=1, Faint at which
2 an interrugt
[RAZ _ oceured
Program execution
3 flow
[] reaiTock r .
4
+35y >
[MCLR. Subprogram
5 where interrupt is
E |: Wes processed
RBOMNNT B
‘ g RE Continuation of
[- the normal Return from
program sUbRraGra
= 4 execution
[qre: L __

One of the possible sources of an interrupt and how it affects the main program
One of the possible sources of an interrupt and how it affects the main program

Control register of an interrupt is called INTCON and is found at OBh address. Its role is to allow or disallowed interrupts, and
in case they are not allowed, it registers single interrupt requests through its own bits.

INTCON Register

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (1 of 7) [5/11/2003 8:51:35 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

RAY-0 BAV-0 RANVD RAN-O RAN-D RANV-D RAN-O RAN-O

GIE | EEIE | TQIE | INTE | RBIE | TOIF | INTF | REIF

hit ¥

Legend:
R = Readahle bit W = Nritable bit
Il = Unimplemented bit, read a2 '0" - n="%alue at povwer-on reset

bit 0 RBIF (RB Port Change Interrupt Flag bit) Bit which informs about changes on pins 4, 5, 6 and 7 of port B.
1=at least one pin has changed its status
0=no change occured on any of the pins

bit 1 INTF (INT External Interrupt Flag bit) External interrupt occured.

1=interrupt occured

O=interrupt did not occur

If a rising or falling edge was detected on pin RBO/INT, (which is defined with bit INTEDG in OPTION register), bit INTF is
set. Bit must be cleared in interrupt subprogram in order to detect the next interrupt.

bit 2 TOIF (TMRO Overflow Interrupt Flag bit) Overflow of counter TMRO.
1= counter changed its status from FFh to O0Oh

O=overflow did not occur

Bit must be cleared in program in order for an interrupt to be detected.

bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts to occur at the change of status of pins 4, 5, 6, and 7 of
port B.

1= enables interrupts at the change of status

O=interrupts disabled at the change of status

If RBIE and RBIF were simultaneously set, an interrupt would occur.

bit 4 INTE (INT External Interrupt Enable bit) Bit which enables external interrupt from pin RBO/INT.
1=external interrupt enabled

O=external interrupt disabled

If INTE and INTF were set simultaneously, an interrupt would occur.

bit 5 TOIE (TMRO Overflow Interrupt Enable bit) Bit which enables interrupts during counter TMRO overflow.
1=interrupt enabled

O=interrupt disabled

If TOIE and TOIF were set simultaneously, interrupt would occur.

Bit 6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an interrupt at the end of a writing routine to
EEPROM

1=interrupt enabled

O=interrupt disabled

If EEIE and EEIF (which is in EECONL1 register) were set simultaneously , an interrupt would occur.

Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1=all interrupts are enabled
O=all interrupts are disabled

PIC16F84 has four interrupt sources:

1. Termination of writing data to EEPROM

2. TMRO interrupt caused by timer overflow

3. Interrupt during alteration on RB4, RB5, RB6 and RB7 pins of port B.
4. External interrupt from RBO/INT pin of microcontroller

Generally speaking, each interrupt source has two bits joined to it. One enables interrupts, and the other detects when
interrupts occur. There is one common bit called GIE which can be used to disallow or enable all interrupts simultaneously.
This bit is very useful when writing a program because it allows for all interrupts to be disabled for a period of time, so that
execution of some important part of a program would not be interrupted. When instruction which resets GIE bit was
executed (GIE=O0, all interrupts disallowed), any interrupt that remained unsolved should be ignored.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (2 of 7) [5/11/2003 8:51:35 AM]

Chapter 2 - Microcontroller PIC16F84

INTERRUPT

EEIF

EEIE/DG)/D
ROV
GIE »EO/CCD/ cRBlF s

/G INTEO/ Q ,GINTF |

Simplified outlineg of PIC16F84 microcontroller interrupt

Interrupts which remained unsolved and were ignored, are processed when GIE bit (GIE=1, all interrupts allowed) would be
cleared. When interrupt was answered, GIE bit was cleared so that any additional interrupts would be disabled, return
address was pushed onto stack and address 0004h was written in program counter - only after this does replying to an
interrupt begin! After interrupt is processed, bit whose setting caused an interrupt must be cleared, or interrupt routine
would automatically be processed over again during a return to the main program.

Keeping the contents of important registers

Only return value of program counter is stored on a stack during an interrupt (by return value of program counter we mean
the address of the instruction which was to be executed, but wasn't because interrupt occured). Keeping only the value of
program counter is often not enough. Some registers which are already in use in the main program can also be in use in
interrupt routine. If they were not retained, main program would during a return from an interrupt routine get completely
different values in those registers, which would cause an error in the program. One example for such a case is contents of
the work register W. If we suppose that main program was using work register W for some of its operations, and if it had
stored in it some value that's important for the following instruction, then an interrupt which occurs before that instruction
would change the value of work register W which would directly be influenced the main program.

Procedure of recording important registers before going to an interrupt routine is called PUSH, while the procedure which
brings recorded values back, is called POP. PUSH and POP are instructions with some other microcontrollers (Intel), but are
so widely accepted that a whole operation is named after them. PIC16F84 does not have instructions like PUSH and POP,
and they have to be programmed.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (3 of 7) [5/11/2003 8:51:35 AM]

Chapter 2 - Microcontroller PIC16F84

Before the interrupt
occured, warking
register W had the

value! .

interrupt |
R 2 Interrupt
* subprogram
where interrupt

processing has
changed wark

nstuction o N —=

Following
instruction after an
interrupt checks
out the value of

wark register W * register ¥y to "
weun o |
"
Instructionno N+ 11— |5 Wy'=x "7 program

NE{_‘ _}DA

One of the possible cases of errors if saving was not done when going
to a subprogram of an interrupt

One of the possible cases of errors if saving was not done when going to a subprogram of an interrupt

Due to simplicity and frequent usage, these parts of the program can be made as macros. The concept of a Macro is
explained in "Program assembly language”. In the following example, contents of W and STATUS registers are stored in
W_TEMP and STATUS_TEMP variables prior to interrupt routine. At the beginning of PUSH routine we need to check
presently selected bank because W_TEMP and STATUS_TEMP are found in bank 0. For exchange of data between these
registers, SWAPF instruction is used instead of MOVF because it does not affect the status of STATUS register bits.

Example is a program assembler for following steps:

. Testing the current bank

. Storing W register regardless of the current bank

. Storing STATUS register in bank O.

. Executing interrupt routine for interrupt processing (ISR)
. Restores STATUS register

. Restores W register

OUhAhWNEPE

If there are some more variables or registers that need to be stored, then they need to be kept after storing STATUS register
(step 3), and brought back before STATUS register is restored (step 5).

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (4 of 7) [5/11/2003 8:51:35 AM]

Chapter 2 - Microcontroller PIC16F84

Push
BTF5S STATUS, RPO » Banko
GOTO RPOCLEAR ; fes
BCF STATUS, RPO » MO, goto Banko
MOWYE N TEMP ; Save W register
SWWAPF STATLIS, W ;oW - STATLIS
MOVWE STATUS_TEMP ; STATUS_TEMP =<- W
BSF STATUS_TEMP, 1 T RPO(STATUS TEMP)=1
GCTO ISE_Code ; Push completed
FPOCLEAR
MCYE N TEMP » Save W register
SWAPF STATUS, W s - STATUS
MOWE STATUS_TEMP ; STATUS_TEMP =- W
ISR_Code
¢ (Interrupt subprogram)
Pap
SWAPF STATUS_TEMPE W yW - STATUS _TEMP
MOWE STATUS i STATUS <-4
BTF5S STATUS, RPO ; Bank 1?
G OTO Return WREG ; MO,
BCF STATUS, RPO 1 ¥ES, go to Banko
SWAPF W TEMP F ; Return contents of W register
SWWAPF W_TEMP, W :
BSF STATUS, RPO ; Return to Bank 1
RETFIE ; POP complete
Feturn_WEEG

SWAPF \W_TEMP F ;

Return cortents of W register

SWARF \W_TEMP, W :

RETFIE

The same example can be realized by using macros, thus getting a more legible program. Macros that are already defined
can be used for writing new macros. Macros BANK1 and BANKO which are explained in "Memory organization™ chapter are

used with macros 'push' and ‘pop’.

push macro
o e
swapf
Bamk 1
swapf
o e
BAMED
swapf
o wef
endrm

macro
swapf
o e
BAME1
swapf
o
BaAMED
swapf
endrm

pap

1 POP completed

Y Temp
Y Ternp,F

W Temp <- W
1 Swap them
sMacro for switching to Bank 1

CFTIOMN_REG,\W S - OPTION_REG

Opton_Temp yOphon_Temp =- W

ymacro for switching to Bank0
STATLIS WY S - STATLUS
Stat_Temp y5tat_Termp < -

sEnd of push macro
Stat_Temp, '\ S = - Stat_Temp
STATUIS JSTATUS - W

sMacro for switching to Bank 1

Option_Termp, W JW == Option_Temp

OFTION_REG TOFTION_REG «<- W
sMacro for switching to Bank0O
W _Temp,W S - WY Temp

JEnd of a pop macro

External interrupt on RBO/INT pin of microcontroller

External interrupt on RBO/INT pin is triggered by rising signal edge (if bit INTEDG=1 in OPTION<6> register), or falling edge
(if INTEDG=0). When correct signal appears on INT pin, INTF bit is set in INTCON register. INTF bit (INTCON<1>) must be

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (5 of 7) [5/11/2003 8:51:35 AM]

Chapter 2 - Microcontroller PIC16F84

reset in interrupt routine, so that interrupt wouldn't occur again while going back to the main program. This is an important
part of the program which programmer must not forget, or program will constantly go into interrupt routine. Interrupt can
be turned off by resetting INTE control bit (INTCON<4>).

Interrupt during a TMRO counter overflow

Overflow of TMRO counter (from FFh to 00h) will set TOIF (INTCON<2>) bit. This is very important interrupt because many
real problems can be solved using this interrupt. One of the examples is time measurement. If we know how much time
counter needs in order to complete one cycle from 00h to FFh, then a number of interrupts multiplied by that amount of time
will yield the total of elapsed time. In interrupt routine some variable would be incremented in RAM memory, value of that
variable multiplied by the amount of time the counter needs to count through a whole cycle, would yield total elapsed time.
Interrupt can be turned on/off by setting/resetting TOIE (INTCON<5>) bit.

Interrupt during a change on pins 4, 5, 6 and 7 of port B

Change of input signhal on PORTB <7:4> sets RBIF (INTCON<O=>) bit. Four pins RB7, RB6, RB5 and RB4 of port B, can
trigger an interrupt which occurs when status on them changes from logic one to logic zero, or vice versa. For pins to be
sensitive to this change, they must be defined as input. If any one of them is defined as output, interrupt will not be
generated at the change of status. If they are defined as input, their current state is compared to the old value which was
stored at the last reading from port B. Interrupt can be turned on/off by setting/resetting RBIE bit in INTCON register.

Interrupt upon finishing write-subroutine to EEPROM

This interrupt is of practical nature only. Since writing to one EEPROM location takes about 10ms (which is a long time in the
notion of a microcontroller), it doesn't pay off to a microcontroller to wait for writing to end. Thus interrupt mechanism is
added which allows the microcontroller to continue executing the main program, while writing in EEPROM is being done in
the background. When writing is completed, interrupt informs the microcontroller that writing has ended. EEIF bit, through
which this informing is done, is found in EECONL1 register. Occurrence of an interrupt can be disabled by resetting the EEIE
bit in INTCON register.

Interrupt initialization

In order to use an interrupt mechanism of a microcontroller, some preparatory tasks need to be performed. These
procedures are in short called "initialization™. By initialization we define to what interrupts the microcontroller will respond,
and which ones it will ignore. If we do not set the bit that allows a certain interrupt, program will not execute an interrupt
subprogram. Through this we can obtain control over interrupt occurrence, which is very useful.

clrf INTCON ; all interrupts disabled
movlw E'00010000° ; external interrupt only is enabled
hsf INTCON, GIE ; occurrence of interrupts allowed

The above example shows initialization of external interrupt on RBO pin of a microcontroller. Where we see one being set,
that means that interrupt is enabled. Occurrence of other interrupts is not allowed, and all interrupts together are disallowed
until GIE bit is keeping to one.

The following example shows a typical way of handling interrupts. PIC16F84 has only one location where the address of an
interrupt subprogram is stored. This means that first we need to detect which interrupt is at hand (if more than one interrupt
source is available), and then we can execute that part of a program which refers to that interrupt.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (6 of 7) [5/11/2003 8:51:35 AM]

Chapter 2 - Microcontroller PIC16F84

org ISR ADDR :I3R ADDR is interrupt routine address
brfsc INTCCN, GIE ;GIE kbit turned off?

gyoto ISE ADR fno, go back to the beginning

FUSH ;keep the contents of important registers
btfzc INTCOMN, REIF ;change on pins 4, 5, & and 7 of port EB?
goto ISR _PORTE ;jump to that section

btfsc INTCCOMN, INTF ;external interrupt occured?

goto ISE_RED Pjump to that part

btfsc INTCON, TOIF soverflow of timer THMRO?Z?

goto ISE THED ;jump to that section

BANE]L ;Bankl becsuse of EECON1

Btf=sc EECON1, EEIF swriting to EEPROM completed?

goto ISR _EEPRON !jump to that section

EANED ; BankO

ISR PORTE
: ;eection of code which is processed by an
;interrupt ?

goto END ISR ;Jump to the exit of an interrupt
ISE_REO
: ;section of code processing ah interrupt?

goto END_ ISR ;jJump to exit of an interrupt.
ISR THRO
: ;gection of code processing an interrupt

goto END ISR ;Jump to the exit of an interrupt
ISR EEPROHM
: ;eection of code which processes an interrupt

goto END ISR ;ljump to an exit from ah interrupt.,
END ISE :
FOP sbhringing back the contents of important
rregisters
EETFIE ;rreturn and setting of GIE bit

Return from interrupt routine can be accomplished with instructions RETURN, RETLW and RETFIE. It is
recommended that instruction RETFIE be used because that instruction is the only one which automatically sets the
GIE bit which allows new interrupts to occur.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (7 of 7) [5/11/2003 8:51:35 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\J PIC Microcontrollers i
on-line FREE!
Previous page Table of contents Next Page

Timers are usually most complicated parts of a microcontroller, so it is necessary to set aside more time for their explaining.
With their application it is possible to create relations between a real dimension such as "time" and a variable which
represents status of a timer within a microcontroller. Physically, timer is a register whose value is continually increasing to

Data Bus
it 7 TMRO
OO0 @O OO @)D -
INTCON ToF LA23.255.0.1..2.255 0.1,

M | |

Oscillator clock
PS2 PS1 PSD L L
o 0 00— Prescaler 7.2 — | 11 L1 LI 1

o 0 1— Prescalertd4— _[L [1.
o 1 U—s Prescaler 1.8 — _| |

-

— |
QOO0

OPTION Ps2 PS1 PS0

Felation between the timer TMED and prescaler

This incrementing is done in the background of everything a microcontroller does. It is up to programmer to "think up a way"
how he will take advantage of this characteristic for his needs. One of the ways is increasing some variable on each timer
overflow. If we know how much time a timer needs to make one complete round, then multiplying the value of a variable by
that time will yield the total amount of elapsed time.

PIC16F84 has an 8-bit timer. Number of bits determines what value timer counts to before starting to count from zero again.
In the case of an 8-bit timer, that number is 256. A simplified scheme of relation between a timer and a prescaler is
represented on the previous diagram. Prescaler is a name for the part of a microcontroller which divides oscillator clock
before it will reach logic that increases timer status. Number which divides a clock is defined through first three bits in
OPTION register. The highest divisor is 256. This actually means that only at every 256th clock, timer value would increase
by one. This provides us with the ability to measure longer timer periods.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (1 of 5) [5/11/2003 8:51:43 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

At IE2ladlad o 1@21adlad a2l ailad ol la2lailad jellaZlailad
S AV AV Al aWaWaWal aWaWaUal aWATAVAN AW ATATAN
clkouTey i 4 T T o h

Timerd FER }:: 1T IO W T i
TIF bt J,r ‘ ‘ ‘ ‘
GIE bit R

Mote: 1 Interrupt flag bit TOIF iz examined at the new place at each @1 cycle
CLEOUT existz only in RC oscillator mode

Time diagram of interrupt occurence with TMRO timer

After each count up to 255, timer resets its value to zero and starts with a new cycle of counting to 255. During each
transition from 255 to zero, TOIF bit in INTCOM register is set. If interrupts are allowed to occur, this can be taken
advantage of in generating interrupts and in processing interrupt routine. It is up to programmer to reset TOIF bit in
interrupt routine, so that new interrupt, or new overflow could be detected. Beside the internal oscillator clock, timer status
can also be increased by the external clock on RA4/TOCKI pin. Choosing one of these two options is done in OPTION register
through TOCS bit. If this option of external clock was selected, it would be possible to define the edge of a signal (rising or
falling), on which timer would increase its value.

Metal bugles
Inductive sensor
FIC16F84
+ 1250 350
2
H 1:4
RamoCKI S Interrupt
............ prescaler
i) 4 —‘
L g MCLR L 755 ")
] E bss DOOD D@D D
[reoanT TMRO
i
Moator axis of the g RE
warking machine RE2
RE: Data Bus

Determining a number of full axis tums of the motor

In practice, one of the typical example that is solved via external clock and a timer is counting full turns of an axis of some
production machine, like transformer winder for instance. Let's wind four metal screws on the axis of a winder. These four
screws will represent metal convexity. Let's place now the inductive sensor at a distance of 5mm from the head of a screw.
Inductive sensor will generate the falling signal every time the head of the screw is parallel with sensor head. Each signal will
represent one fourth of a full turn, and the sum of all full turns will be found in TMRO timer. Program can easily read this
data from the timer through a data bus.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (2 of 5) [5/11/2003 8:51:43 AM]

Chapter 2 - Microcontroller PIC16F84

The following example illustrates how to initialize timer to signal falling edges from external clock source with a prescaler
1:4. Timer works in "polig" mode.

clrf TMEQD s TMRO=0
clrf INTCON sInterrupts and TOIF=0 disallowed
b=sf 3TATUS,EPO ;Bankl becsuse of OPTION REG

mowlw B'O00110001' ;prescaler 1:4, falling edge selected external
solock source and pull up ;selected resistors
son port B activated

wmovwE OPTION REG ;OPTICH REG <- W

TO_OWFL
btfss INTCON, TOIF ;testing overflow bit
goto TO OVFL ;interrupt has not occured yet, wait

; (Part of the program which processes data regarding a nuwber of turns)

goto TO OVFL ;waiting for new overflow

The same example can be realized through an interrupt in the following way:

push macro

movwf W Temp DWW Temp - W

swapf W _Termnp,F 1 Swap them

BaAnK1 sMacro for switching to Bank 1
swapf OPTION _REG W W - OFTION _REG

movwf COpton_Temp yOphon_Temp <- W

BAMED smacro for switching to BankO
swapf STATLIS, W W - STATLUIS

movwf Stat Temp 15tat Termp < -\

endm JEnd of push macro

pop M acro

swapf Stat Ternp,W W= - Stat Temp

mowwf STATUS JSTATLS - Wy

BAME1 sMacro for switching to Bank 1
swapf Option_Temp,\W sWyY < - Option_Temp

movwf COPTICON_REG JOPFTION_REG - W

BANKED sMacro for switching to BankO
swapf W Temp, W DW= W Temp

endm JEnd of a pop macro

Prescaler can be assigned either timer TMRO or a watchdog. Watchdog is a mechanism which microcontroller uses to defend
itself against programs getting stuck. As with any other electrical circuit, so with a microcontroller too can occur failure, or
some work impairment. Unfortunately, microcontroller also has program where problems can occur as well. When this
happens, microcontroller will stop working and will remain in that state until someone resets it. Because of this, watchdog
mechanism has been introduced. After a certain period of time, watchdog resets the microcontroller (microcontroller in fact
resets itself). Watchdog works on a simple principle: if timer overflow occurs, microcontroller is reset, and it starts executing
a program all over again. In this way, reset will occur in case of both correct and incorrect functioning. Next step is
preventing reset in case of correct functioning, which is done by writing zero in WDT register (instruction CLRWDT) every
time it nears its overflow. Thus program will prevent a reset as long as it's executing correctly. Once it gets stuck, zero will
not be written, overflow of WDT timer and a reset will occur which will bring the microcontroller back to correct functioning
again.

Prescaler is accorded to timer TMRO, or to watchdog timer trough PSA bit in OPTION register. By clearing PSA bit, prescaler
will be accorded to timer TMRO. When prescaler is accorded to timer TMRO, all instructions of writing to TMRO register (CLRF
TMRO, MOVWF TMRO, BSF TMRO,...) will clear prescaler. When prescaler is assigned to a watchdog timer, only CLRWDT
instruction will clear a prescaler and watchdog timer at the same time . Prescaler change is completely under programmer's
control, and can be changed while program is running.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (3 of 5) [5/11/2003 8:51:43 AM]

Chapter 2 - Microcontroller PIC16F84

A There is only one prescaler and one timer. Depending on the needs, they are assigned
either to timer TMRO or to a watchdog.

OPTION Control Register

Foi-1 R R -1 RN RN P R
|Fer0 | mwTEDG | TOCS TOSE PSA Ps2 = PS0
hit 7 hit 0
Legend:

R = Readable bit W = writable bit
U= Unimplemented bit, read as '0° -n=\alue at POR reset

Bit 0:2 PSO, PS1, PS2 (Prescaler Rate Select bit)
The subject of a prescaler, and how these bits affect the work of a microcontroller will be covered in section on TMRO.

Bits TMED WDOT
2

oao 1: 1:1
ool 1:4 1:2
010 1:8 1:4
0ii 1:16 1:8
100 1:32 1:16
01 1: 69 1:32
1i0 1:128 164
111 1256 1:128

bit 3 PSA (Prescaler Assignment bit)

Bit which assigns prescaler between TMRO and watchdog timer.
l1=prescaler is assigned to watchdog timer.

O=prescaler is assigned to free timer TMRO

bit 4 TOSE (TMRO Source Edge Select bit)

If trigger TMRO was enabled with impulses from a RA4/TOCKI pin, this bit would determine whether it would be on the rising
or falling edge of a signal.

1=falling edge

O=rising edge

bit 5 TOCS (TMRO Clock Source Select bit)

This pin enables a free-run timer to increment its value either from an internal oscillator, i.e. every 1/4 of oscillator clock, or
via external impulses on RA4/TOCKI pin.

1=external impulses

0=1/4 internal clock

bit 6 INTEDG (Interrupt Edge Select bit)

If occurrence of interrupts was enabled, this bit would determine at what edge interrupt on RBO/INT pin would occur.
1= rising edge

0= falling edge

bit 7 RBPU (PORTB Pull-up Enable bit)

This bit turns internal pull-up resistors on port B on or off.
1="pull-up’ resistors turned on

O="pull-up’ resistors turned off

Previous page Table of contents Next page

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (4 of 5) [5/11/2003 8:51:43 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (5 of 5) [5/11/2003 8:51:43 AM]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

IndeXx
b 4 - Development systems
\J PIC Microcontrollers i
on-line FREE!
Previous page Table of contents Next Page

PIC16F84 has 64 bytes of EEPROM memory locations on addresses from 00h to 63h those can be written to or read from.
The most important characteristic of this memory is that it does not loose its contents during power supply turned off. That
practically means that what was written to it will be remaining even if microcontroller is turned off. Data can be retained in
EEPROM without power supply for up to 40 years (as manufacturer of PIC16F84 microcontroller states), and up to 10000
cycles of writing can be executed.

In practice, EEPROM memory is used for storing important data or some process parameters.

One such parameter is a given temperature, assigned when setting up a temperature regulator to some process. If that
data wasn't retained, it would be necessary to adjust a given temperature after each loss of supply. Since this is very
impractical (and even dangerous), manufacturers of microcontrollers have began installing one smaller type of EEPROM
memory.

EEPROM memory is placed in a special memory space and can be accessed through special registers. These registers are:

e« EEDATA at address 08h, which holds read data or that to be written.

e EEADR at address 09h, which contains an address of EEPROM location being accessed.

e EECON1 at address 88h, which contains control bits.

< EECONZ2 at address 89h. This register does not exist physically and serves to protect EEPROM from accidental writing.

EECONL1 register at address 88h is a control register with five implemented bits.
Bits 5, 6 and 7 are not used, and by reading always are zero. Interpretation of EECON1 register bits follows.

EECON1 Register

-0 u-o IJ-0 R R RS- Rr=-0 RS-
| — | — | — | EeF "' wrErr | wrEN [wR RO |
hit ¥ hit O
Legend:
R = Readable bit W = writable bit
U= Unimplemented bit, read as '0° -n=V%alug at POR reset

bit 0 RD (Read Control bit)

Setting this bit initializes transfer of data from address defined in EEADR to EEDATA register. Since time is not as essential in
reading data as in writing, data from EEDATA can already be used further in the next instruction.

1=initializes reading

0=does not initialize reading

bit 1 WR (Write Control bit)

Setting of this bit initializes writing data from EEDATA register to the address specified trough EEADR register.
1=initializes writing

0=does not initialize writing

bit 2 WREN (EEPROM Write Enable bit) Enables writing to EEPROM

If this bit was not set, microcontroller would not allow writing to EEPROM.
1=writing allowed

O=writing disallowed

bit 3 WRERR (Write EEPROM Error Flag) Error during writing to EEPROM

This bit was set only in cases when writing to EEPROM had been interrupted by a reset signal or by running out of time in
watchdog timer (if it's activated).

1=error occured

O=error did not occur

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (1 of 3) [5/11/2003 8:52:44 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 2 - Microcontroller PIC16F84

bit 4 EEIF (EEPROM Write Operation Interrupt Flag bit) Bit used to inform that writing data to EEPROM has ended.

When writing has terminated, this bit would be set automatically. Programmer must clear EEIF bit in his program in order to
detect new termination of writing.

1=writing terminated

O=writing not terminated yet, or has not started

Reading from EEPROM Memory

Setting the RD bit initializes transfer of data from address found in EEADR register to EEDATA register. As in reading data we
don't need so much time as in writing, data taken over from EEDATA register can already be used further in the next
instruction.

Sample of the part of a program which reads data in EEPROM, could look something like the following:

bef ITATUOZ, EPRO ;hank0, bhecause EEADE i=s at 0Sh
mwowvlw Ox00 ;addreszzs of location being read
mwowwE EEALDR ;address transferred to EEADR
b=t STATOS, EPO ;hankl because EECON1 i=s at S8h
b=t EECOMN1, ERD ;reading from EEPROH

| alohn STATUS, EPO ;Bank0 because EEDATAL is at 0O8h
mowvEt EEDATLA, T ;W <—— EEDATA

After the last program instruction, contents from an EEPROM address zero can be found in working register w.

Writing to EEPROM Memory

In order to write data to EEPROM location, programmer must first write address to EEADR register and data to EEDATA
register. Only then is it useful to set WR bit which sets the whole action in motion. WR bit will be reset, and EEIF bit set
following a writing what may be used in processing interrupts. Values 55h and AAh are the first and the second key whose
disallow for accidental writing to EEPROM to occur. These two values are written to EECON2 which serves only that purpose,
to receive these two values and thus prevent any accidental writing to EEPROM memory. Program lines marked as 1, 2, 3,
and 4 must be executed in that order in even time intervals. Therefore, it is very important to turn off interrupts which could
change the timing needed for executing instructions. After writing, interrupts can be enabled again .

Example of the part of a program which writes data OxEE to first location in EEPROM memory could look something like the
following:

bef STATUS, EPO rhank0, because EEADE is at 08h
mow Ly O=x00 ;addreszs of location bheing
JWritten to
movwE EEALDR raddress bheing transferred to
;EELDE
movly OxEE swrite the wvalues O0=EE
movwE EEDATR ;data goes to EEDATR register
bhsf 3ITATUS, RPO ;Bankl becsuse EEADR i=s at 0S%h
bof INTCON, GIE ;all interruptz are disasbled
hsf EECON1, WREN ;writing enabled
mowvlw S55h
1) movyf EECCONZ ;first key 55h —--> EECONZ
21 mowlw Lih
3 movwE EECONZ ;second key Alh —-> EECONZ
4] bhsf EECCON1, TR ;initializes writing
bhaf INTCOMN, GIE ;interrupts are ensbled

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (2 of 3) [5/11/2003 8:52:44 AM]

Chapter 2 - Microcontroller PIC16F84
It is recommended that WREN be turned off the whole time except when writing data to EEPROM, so that possibility

of accidental writing would be minimal.

All writing to EEPROM will automatically clear a location prior to writing a new!

Next page

Previous page Table of contents

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (3 of 3) [5/11/2003 8:52:44 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 3 - Instruction Set

IndeXx
b 4 - Development systems
\\l PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

CHAPTER 3

Instruction Set

Introduction

Instruction set in PIC16Cxx microcontroller family
Data Transfer

Arithmetic and logic

Bit operations

Directing the program flow

Instruction execution period

Word list

We have already mentioned that microcontroller is not like any other integrated circuit. When they come out of production
most integrated circuits are ready to be built into devices which is not the case with microcontrollers. In order to "make"
microcontroller perform a task, we have to tell it exactly what to do, or in other words we must write the program
microcontroller will execute. We will describe in this chapter instructions which make up the assembler, or lower-level
program language for PIC microcontrollers.

Complete set which includes 35 instructions is given in the following table. A reason for such a small number of instructions
lies primarily in the fact that we are talking about a RISC microcontroller whose instructions are well optimized considering
the speed of work, architectural simplicity and code compactness. The only drawback is that programmer is expected to
master "uncomfortable"” technique of using a reducedt set of 35 instructions.

Transfer of data in a microcontroller is done between work (W) register and an 'f' register that represents any location in
internal RAM (regardless whether those are special or general purpose registers).

First three instructions (look at the following table) provide for a constant being written in W register (MOVLW is short for
MOVe Literal to W), and for data to be copied from W register onto RAM and data from RAM to be copied onto W register (or
on the same RAM location, at which point only the status of Z flag changes). Instruction CLRF writes constant O in 'f '
register, and CLRW writes constant O in register W. SWAPF instruction exchanges places of the 4-bit nibbles field inside a
register.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (1 of 4) [5/11/2003 8:53:19 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 3 - Instruction Set

Of all arithmetic operations, PIC like most microcontrollers supports only subtraction and addition. Flags C, DC and Z are set
depending on a result of addition or subtraction, but with one exception: since subtraction is performed like addition of a
negative value, C flag is inverse following a subtraction. In other words, it is set if operation is possible, and reset if larger
number was subtracted from a smaller one.

Logic unit of PIC has capability of performing operations AND, OR, EX-OR, complementing (COMF) and rotation (RLF and
RRF).

Instructions which rotate the register contents move bits inside a register through flag C by one space to the left (toward bit
7), or to the right (toward bit 0). Bit which "comes out" of a register is written in flag C, and value of C flag is written in a bit
on the "opposite side" of the register.

Instructions BCF and BSF do setting or cleaning of one bit anywhere in the memory. Even though this seems like a simple
operation, it is executed so that CPU first reads the whole byte, changes one bit in it and then writes in the entire byte at the
same place.

Instructions GOTO, CALL and RETURN are executed the same way as on all other microcontrollers, only stack is independent
of internal RAM and limited to eight levels.

'RETLW k' instruction is identical with RETURN instruction, except that before coming back from a subprogram a constant
defined by instruction operand is written in W register. This instruction enables us to design easily the Look-up tables (lists).
Mostly we use them by determining data position on our table adding it to the address at which the table begins, and then
we read data from that location (which is usually found in program memory).

Table can be formed as a subprogram which consists of a series of 'RETLW k' instructions, where 'k’ constants are members
of the table.

Main rmolov 2
call Lookup
Lookup addwf PCL,
retlw k
retlw k1
retlw k2

retlw kn

We write the position of a member of our table in W register, and using CALL instruction we call a subprogram which creates
the table. First subprogram line ADDWF PCL, f adds the position of a W register member to the starting address of our table,
found in PCL register, and so we get the real data address in program memory. When returning from a subprogram we will
have in W register the contents of an addressed table member. In a previous example, constant 'k2' will be in W register
following a return from a subprogram.

RETFIE (RETurn From Interrupt - Interrupt Enable) is a return from interrupt routine and differs from a RETURN only in that
it automatically sets GIE (Global Interrupt Enable) bit. Upon an interrupt, this bit is automatically cleared. As interrupt
begins, only the value of program counter is put at the top of a stack. No automatic storing of register values and status is
provided.

Conditional jumps are synthesized into two instructions: BTFSC and BTFSS. Depending on a bit status in 'f' register that is
being tested, instructions skip or don't skip over the next program instruction.

All instructions are executed in one cycle except for conditional branch instructions if condition was true, or if the contents of
program counter was changed by some instruction. In that case, execution requires two instruction cycles, and the second
cycle is executed as NOP (No Operation). Four oscillator clocks make up one instruction cycle. If we are using an oscillator
with 4MHz frequency, the normal time for executing an instruction is 1 ps, and in case of conditional branching, execution

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (2 of 4) [5/11/2003 8:53:19 AM]

Chapter 3 - Instruction Set

period is 2 ps.

f any memory location in a microcontroller
W work register

b bit position in 'f' register

d destination bit

label group of eight characters which marks the beginning of a part of the program

TOS top of stack
N option
<> Dbit position inside register

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (3 of 4) [5/11/2003 8:53:19 AM]

kire maonic Dezcrption Cperation Flg | Cyck | Motes

Data transfer

MO K Mowve constant oWy k=W 1

MOSAEf Mg Wy to f W= r 1

MO F fod | Movef f—=+d z 1 1,2

LRy - Clear Wy 0n=vw T q

CLRF f Clear f 0-=f L 1 2

SWAPF f,d Swwap nibhles in f 70, (500 = f75:00,07:4) 1 1.2
Arritmetic and logic

ADDLY k Add constant and WY W+l W CDCZE 1

ADCAF f, d Added Wy and f W+ d CDiC 7 1 12

SBL k Subtract W from constant Wk W chC.L 1

SUBEWF f, d Subtract W from f W d L0 0 1 1.2

ARDLWYY k AMD constant with W WAND k=W I 1

AMCAAF f, d AMOA wyith f WAND =4 z 1 1.2

IORLWY k OFR constant with W WORk =W T 1

IQRAF f d DR with f WORLS—>4d Z 1 1,2

WORLWY k Excluzive OR constant with W WEORk= W 7 1 132

HORWE fod |Exclusive ORW with f WEOR.f~+4d z 1

IMCF f.d | ncrement 1 £+l =+ f Z 1 1.2

DECF f,d Decremert f fl—=f z 1 1.2

RLF f,d |Rotate Left ftrough carry o FA (A EACA T FR A L C 1 1,2

RRF f,d | Fotate Fight T trough carry e EEEEE TR C 1 12

COMF f, o Complement f T—d z 1 1.2
Bit operations

BCF f. b Bit Clear 0 - fk) 1 1,2

B=F f, b Bit Set f 1 = i) 1 1.2
Directing a program flow

BTFSC f, b Bit Test f, Skip if Clear jurng it fib)=0 1021] 3

BTFSS f, b Bit Test f, Skip if Set jurng it fib)=1 1021] 3

DECFEZ f,d Decremert f, Skip if 0 f-1 = d, jpmyp if £=1 1(2) 1273

INCFSZ f,d Increment £, Skip if 0 f+1 = d, penp ifE=0 1(2] 1273

GOTO k Go to address WAND k=W 3

AL k Call zubroutine WAND f—+4 2

RETURM - Return from Subroutine WO k=W 2

RETLWY k Return with constant in W WORf+d 2

RETFIE - Feturn from interrupt WEOR k=W 2
Other instructions

MR - Mo Cperation 1

CLRWDT - Clear Watchdog Timer 0 -+ WDT,I»T0,1=PD TO PO | 1

SLEEP - o into standhy mode 0—=WDT,BTo,0-= PD TOFO | 1

Chapter 3 - Instruction Set
CLREWDT

Clear Watchdog Timer

0 -+ WDT,TO,1+ PD

7O PD

SLEEP

o into standby mode

0 -+ WDT,BTO,0-~ PD

7O PD

*1 If 1/0 port is source operand, status on microcontroller pins is read
*2 If this instruction is executed on TMR register and if d=1, prescaler assigned to that timer will automatically be cleared
*3 If PC was modified, or test result =1, instruction was executed in two cycles.

Previous page

Table of contents

Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (4 of 4) [5/11/2003 8:53:19 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 4 - Assembly Language Programming

Index
- Development systems
PI1C Microcontrollers
Contact US
on-line FrREE!
Previous page Table of contents Next Page

CHAPTER 4

Assembly Language Programming

Introduction

An example writting program

Control directives

« 4.1 define

« 4.2 include
. 4.3 constant
« 4.4 variable
« 4.5 set

« 4.6 equ

« 4.7 org
. 4.8 end

Conditional instructions

. 4.9if

.« 4.10 else
« 4.11 endif
o 4.12 while
« 4.13 endw
o 4.14 ifdef

« 4.15 ifndef

Data directives

. 4.16 cblock
« 4.17 endc
. 4.18 db

.« 4.19 de

. 4.20 dt

Configurating a directive

« 4.21 CONFIG
o 4.22 Processor

Assembler arithmetic operators

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (1 of 15) [5/11/2003 8:53:48 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 4 - Assembly Language Programming

Files created as a result of program translation
Macros

The ability to communicate is of great importance in any field. However, it is only possible if both communication partners
know the same language, i.e follow the same rules during communication. Using these principles as a starting point, we can
also define communication that occurs between microcontrollers and man . Language that microcontroller and man use to
communicate is called "assembly language". The title itself has no deeper meaning, and is analogue to names of other
languages , ex. English or French. More precisely, "assembly language" is just a passing solution. Programs written in
assembly language must be translated into a "language of zeros and ones" in order for a microcontroller to understand it.
"Assembly language" and "assembler" are two different notions. The first represents a set of rules used in writing a program
for a microcontroller, and the other is a program on the personal computer which translates assembly language into a
language of zeros and ones. A program that is translated into "zeros" and "ones" is also called "machine language".

1 St 12
Riz Rl
1T
oz (]
15
FLohT k] o5 :|
15
MCLR Q52
Program.asm | |Translatory |Program.hes|| Programmer PIC :1|4
wss 1aFB4 wdd]
11
- REOAMT RETL]
12
RE1 FEG]]
11
REZ RES[]
10
FE2 RE4

Man

The process of communication between a man and a microcontoller

Physically, "Program" represents a file on the computer disc (or in the memory if it is read in a microcontroller), and is
written according to the rules of assembler or some other language for microcontroller programming. Man can understand
assembler language as it consists of alphabet signs and words. When writing a program, certain rules must be followed in
order to reach a desired effect. A Translator interprets each instruction written in assembly language as a series of zeros
and ones which have a meaning for the internal logic of the microcontroller.

Lets take for instance the instruction "RETURN" that a microcontroller uses to return from a sub-program.

When the assembler translates it, we get a 14-bit series of zeros and ones which the microcontroller knows how to
interpret.

Example: RETURN 00 0000 0000 1000

Similar to the above instance, each assembler instruction is interpreted as corresponding to a series of zeros and ones.
The place where this translation of assembly language is found, is called an "execution" file. We will often meet the name
"HEX" file. This name comes from a hexadecimal representation of that file, as well as from the suffix "hex" in the title, ex.
"test.hex". Once it is generated, the execution file is read in a microcontroller through a programmer.

An Assembly Language program is written in a program for text processing (editor) and is capable of producing an ASCII
file on the computer disc or in specialized surroundings such as MPLAB - to be explained in the next chapter.

Assembly language

Basic elements of assembly language are:
. Labels

. Instructions
. Operands

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (2 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

. Directives
. Comments

Labels

A Label is a textual designation (generally an easy-to-read word) for a line in a program, or section of a program where the
micro can jump to - or even the beginning of set of lines of a program. It can also be used to execute program branching
(such as Goto) and the program can even have a condition that must be met for the Goto instruction to be executed. It
is important for a label to start with a letter of the alphabet or with an underline "_". The length of the label can be up to 32
characters. It is also important that a label starts in the first clumn.

first column J *

Correctly written labels

Start
_end
P123
I=_it_higger?

Incorrectly written labels

Start - does not beain in first column
2 _end - heging with & numker!

Instructions

Instructions are already defined by the use of a specific microcontroller, so it only remains for us to follow the instructions
for their use in assembly language. The way we write an instruction is also called instruction "syntax". In the following
example, we can recognize a mistake in writing because instructions movlp and gotto do not exist for the PIC16F84

microcontroller.

Correctly written instructions

o | H'O1FF'
goto Start

Incorrectly written instructions

movlp H'O1FF
gotto Start

Operands

Operands are the instruction elements for the instruction is being executed. They are usually registers or variables or
constants.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (3 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

Typical operands

movdw H'FF "
mowvwt LEVEL

Operand as a

vatiable LEVEL in Operand as &
the memory of a hexadecimal
microcaontraller number

Comments

Comment is a series of words that a programmer writes to make the program more clear and legible. It is placed after an
instruction, and must start with a semicolon ";".

Directives

A directive is similar to an instruction, but unlike an instruction it is independent on the microcontroller model, and
represents a characteristic of the assembly language itself. Directives are usually given purposeful meanings via variables or
registers. For example, LEVEL can be a designation for a variable in RAM memory at address ODh. In this way, the variable
at that address can be accessed via LEVEL designation. This is far easier for a programmer to understand than for him to try
to remember address ODh contains information about LEVEL.

Some frequently used directives:

PROCESSOR 16F84
#include "p16f84d.inc"

__CONFIG _CP_OFF & 'WDT_OFF & PWRTE_ON & _XT_0OSC

The following example illustrates a simple program written in assembly language respecting the basic rules.

When writing a program, beside mandatory rules, there are also some rules that are not written down but need to be
followed. One of them is to write the name of the program at the beginning, what the program does, its version, date when
it was written, type of microcontroller it was written for, and the programmer's name.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (4 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

Basic

information 3 Program for initialization of port B and setting pins to status of logic one
on the W VYersion 1.0 Date: 10.10.1999, MCU:PIC16F84 ‘Written by: John Smith
program
; Declaration and configuration of a processar
PROCESSOR 16F84
#include "p16f84.inc™ ; Processor title
Cirective m» — CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & _XT_0OSC
; Start of program
org =00 ; Reset vector
goto Main ; 50 to the beginning of Main
i Interrupt vector
Inclusion of _ org 0x04 i Imterrupt vector
a macra goto Main ; Imterrupt routine doesn't exist
#include “bank.inc"
Comment e ; Beginning of the main program
Main
J BANK1 ; Select memory bank 1
Label #&——— moviw 0x00 _
Instruction e movwi TRISB i Port B pins are output
BANKO i Select memory bank 0
Operand e |
moviw 0=FF
movwf PORTE ; Set all ones to port B
Loop (joto Loop ; Program remains in the loop
end ; Mecessary marking the end of a program

Since this data isn't important for the assembly translator, it is written as comments. It should be noted that a comment
always begins with a semicolon and it can be placed in a new row or it can follow an instruction.
After the opening comment has been written, the directive must be included. This is shown in the example above.

In order to function properly, we must define several microcontroller parameters such as: - type of oscillator,
- whether watchdog timer is turned on, and

- whether internal reset circuit is enabled.

All this is defined by the following directive:

_CONFI G _CP_OFF& WDT_OFF&PWRTE_ON&XT_OSC

When all the needed elements have been defined, we can start writing a program.

First, it is necessary to determine an address from which the microcontroller starts, following a power supply start-up. This is
(org 0x00).

The address from which the program starts if an interrupt occurs is (org 0x04).

Since this is a simple program, it will be enough to direct the microcontroller to the beginning of a program with a "goto
Main" instruction.

The instructions found in the Main select memory bankl (BANK1) in order to access TRISB register, so that port B can be
declared as an output (movlw 0x00, movwf TRISB).

The next step is to select memory bank O and place status of logic one on port B (moviw OxFF, movwf PORTB), and thus the
main program is finished.

We need to make another loop where the micro will be held so it doesn't "wander" if an error occurs. For that purpose, one
infinite loop is made where the micro is retained while power is connected. The necessary "end" at the end of each program
informs the assembly translator that no more instructions are in the program.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (5 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

4.1 #DEFINE Exchanges one part of text for another

Syntax:
#define<text> [<another text>]

Description:
Each time <text> appears in the program , it will be exchanged for <another text >.

Example:

#define turned _on 1
#define turned_off 0

Similar directives: #UNDEFINE, IFDEF,IFNDEF

4.2 INCLUDE Include an additional file in a program

Syntax:
#include <file_name>
#include "file_name"

Description:

An application of this directive has the effect as though the entire file was copied to a place where the "include" directive was
found. If the file name is in the square brackets, we are dealing with a system file, and if it is inside quotation marks, we are
dealing with a user file. The directive "include"” contributes to a better layout of the main program.

Example:

#i ncl ude <regs. h>
#i ncl ude "subprog. asnt

4.3 CONSTANT Gives a constant numeric value to the textual designation

Syntax:
Constant <name>=<value>

Description:
Each time that <name=> appears in program, it will be replaced with <value>.

Example:

Const ant MAXI MUM=100
Const ant Lengt h=30

Similar directives: SET, VARIABLE

4.4 VARIABLE Gives a variable numeric value to textual designation

Syntax:
Variable<name>=<value>

Description:
By using this directive, textual designation changes with particular value.
It differs from CONSTANT directive in that after applying the directive, the value of textual designation can be changed.

Example:
vari abl e | evel =20
variable tinme=13

Similar directives: SET, CONSTANT

4.5 SET Defining assembler variable

Syntax:
<name_variable>set<value>

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (6 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

Description:
To the variable <name_variable> is added expression <value>. SET directive is similar to EQU, but with SET directive name
of the variable can be redefined following a definition.

Example:
| evel set O

| ength set 12
| evel set 45

Similar directives: EQU, VARIABLE

4.6 EQU Defining assembler constant

Syntax:
<name_constant> equ <value>

Description:
To the name of a constant <name_constant> is added value <value>

Example:
five equ 5

six equ 6
seven equ 7

Similar instructions: SET

4.7 ORG Defines an address from which the program is stored in
microcontroller memory

Syntax:
<label=org<value>

Description:
This is the most frequently used directive. With the help of this directive we define where some part of a program will be
start in the program memory.

Example:
Start org 0x00

nmovl w OxFF
movwf PORTB

The first two instructions following the first ‘org" directive are stored from address 00, and the other two from address 10.

4.8 END End of program

Syntax:
end

Description:
At the end of each program it is necessary to place ‘end’ directive so that assembly translator would know that there are no
more instructions in the program.

Example:

movl w OxFF
movwf PORTB
end

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (7 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

4.9 IF Conditional program branching

Syntax:
if<conditional_term=>

Description:
If condition in <conditional_term> was met, part of the program which follows IF directive would be executed. And if it
wasn't, then the part following ELSE or ENDIF directive would be executed.

Example:
if level =100

goto FILL

el se

got o DI SCHARGE
endi f

Similar directives: #ELSE, ENDIF

4.10 ELSE The alternative to 'IF' program block with conditional terms

Syntax:
Else

Description:
Used with IF directive as an alternative if conditional term is incorrect.

Example:
If time< 50

got o SPEED UP
el se goto SLOW DOMN
endi f

Similar instructions: ENDIF, IF

4.11 ENDIF End of conditional program section

Syntax:
endif

Description:
Directive is written at the end of a conditional block to inform the assembly translator that it is the end of the conditional
block

Example:
If level =100

got o LOADS
el se

got o UNLOADS
endi f

Similar directives: ELSE, IF

4.12 WHILE Execution of program section as long as condition is met

Syntax:
while<condition>

endw

Description:

Program lines between WHILE and ENDW would be executed as long as condition was met. If a condition stopped being
valid, program would continue executing instructions following ENDW line. Number of instructions between WHILE and
ENDW can be 100 at the most, and number of executions 256.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (8 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming
Example:
Wil e i<10
i=i+1
endw

4.13 ENDW End of conditional part of the program

Syntax:
endw

Description:
Instruction is written at the end of the conditional WHILE block, so that assembly translator would know that it is the end of
the conditional block

Example:
whil e i<10
i=i+1

endw

Similar directives: WHILE

4.14 IFDEF Execution of a part of the program if symbol was defined

Syntax:
ifdef<designation>

Description:
If designation <designation> was previously defined (most commonly by #DEFINE instruction), instructions which follow
would be executed until ELSE or ENDIF directives are not would be reached.

Example:
#defi ne test

ifdef test ;how the test was defined
...... : instructions fromthese |ines would execute

Similar directives: #DEFINE, ELSE, ENDIF, IFNDEF, #UNDEFINE

4.15 IFNDEF Execution of a part of the program if symbol was defined

Syntax:
ifndef<designation>

Description:
If designation <designation> was not previously defined, or if its definition was erased with directive #UNDEFINE,
instructions which follow would be executed until ELSE or ENDIF directives would be reached.

Example:
#defi ne test

i fndef test ;how the test was undefined
..... .; instructions fromthese |ines would execute

Similar directives: #DEFINE, ELSE, ENDIF, IFDEF, #UNDEFINE

4.16 CBLOCK Defining a block for the named constants

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (9 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

Syntax:
Cblock [<term=>]

<label>[:<increment>], <label>[:<increment>]......
endc

Description:

Directive is used to give values to named constants. Each following term receives a value greater by one than its precursor.
If <increment> parameter is also given, then value given in <increment> parameter is added to the following constant.
Value of <term> parameter is the starting value. If it is not given, it is considered to be zero.

Example:

Cbl ock 0x02

First, second, third ;first=0x02, second=0x03, third=0x04

endc

cbl ock 0x02

first : 4, second : 2, third ;first=0x06, second=0x08, third=0x09
endc

Similar directives: ENDC

4.17 ENDC End of constant block definition

Syntax:
endc

Description:
Directive was used at the end of a definition of a block of constants so assembly translator could know that there are no
more constants.

Similar directives: CBLOCK

4.18 DB Defining one byte data
Syntax:
[<label=]db <term=> [, <term=>,..... ,<term=>]

Description:
Directive reserves a byte in program memory. When there are more terms which need to be assigned a byte each, they will
be assigned one after another.

Example:
db "t*, OxOf, 'e', 's', 0x12

Similar instructions: DE, DT

4.19 DE Defining the EEPROM memory byte
Syntax:
[<term>] de <term> [, <term>,..... , <term=>]

Description:
Directive is used for defining EEPROM memory byte. Even though it was first intended only for EEPROM memory, it could be
used for any other location in any memory.

Example:
org H 2100

de "Version 1.0" , O

Similar instructions: DB, DT

4.20 DT Defining the data table

Syntax:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (10 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming
[<label>=] dt <term> [, <term>,......... , <term>]

Description:
Directive generates RETLW series of instructions, one instruction per each term.

Example:

dt "Message", O
dt first, second, third

Similar directives: DB, DE

4.21 CONFIG Setting the configurational bits

Syntax:
__config<term> or_ _config<address>,<term>

Description:
Oscillator, watchdog timer application and internal reset circuit are defined. Before using this directive, the processor must
be defined using PROCESSOR directive.

Example:
_CONFI G _CP_OFF& WDT_OFF& PWRTE_ON& XT_OSC

Similar directives: _IDLOCS, PROCESSOR

4.22 PROCESSOR Defining microcontroller model

Syntax:
Processor <microcontroller_type>

Description:
Instruction sets the type of microcontroller where programming is done.

Example:
processor 16F84

Operator Description Example

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (11 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

Operator

— e e LR

Description

Current status of program counter

Left bracket

Right bracket

ME (logic complement)
Camplement

Megation (second complement)
Feturns higher byte
Returns lower byte
MU tip Iyin g
Subdividing
Subdividing by module
Addition

subtraction

Mawing to the left
Mowing to the right
Higher than, ar equal
Higher than

Lesser than

Lesser than, or equal
Equal

Mat equal

Ciperation ANMD an hits

Exclusive OF on bits
Lagic OR on bits
Logic AMD

Lagic OR

Equal

Add and assign

Subtract and assign

Multiply and assign

Divide and assign

Divide at module and assign
bave ta the left and assign
Mowe to the right and assign
Logic AMD and assign
Logic OR on bits and assign
Exclusive OF on bits and assig
Increment by one

Decrease by one

Example
goto § +3
1+(d*4)
{ Length + 13 * 256
ift{a-b)
flags = -flags
-1 * Length

movlw high CTR_Table
oyl low CTRE_Tahle
a=h*c

a=h¢{c

entry_len = fof_len % 16
tot_len = entry_len * 8 + 1
entry_len = {tat-1) /8
wal = flags << 1

val = flags == 1

if entry_idx == num_entries

if entry_idx > num_entries

if entry_idx < num_entries
if entry_idx <= num_entries
if entry_idx == num_entries
if entry_id= !'= num_entries
flags = flags & ERROR_BIT
flags = flags ™~ ERROR_BIT
flags = flags | ERROR_BIT
if {len == 512) && (b ==)
if {len == 512% || {b ==)

entry_index = 0
entry_index += 1
entry_index -= 1
entry_index *= entry_length
entry_total /= entry_length
entry_index %= 8

flags ===73

flags ===73

tlags &= ERECE_FLAG
Hlags = EREOE_FLAG
flage"=EREOE_FLAG

1+

1 —

As a result of the process of translating a program written in assembler language we get files like:

. Executing file (Program_Name.HEX)

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (12 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

. Program errors file (Program_Name.ERR)
. List file (Program_Name.LST)

The first file contains translated program which was read in microcontroller by programming. Its contents can not give any
information to programmer, so it will not be considered any further.

The second file contains possible errors that were made in the process of writing, and which were noticed by assembly
translator during translation process. Errors can be discovered in a "list” file as well. This file is more suitable though when
program is big and viewing the 'list’ file takes longer.

The third file is the most useful to programmer. Much information is contained in it, like information about positioning
instructions and variables in memory, or error signalization.

Example of 'list' file for the program in this chapter follows. At the top of each page is stated information about the file
name, date when it was translated, and page number. First column contains an address in program memory where a
instruction from that row is placed. Second column contains a value of any variable defined by one of the directives : SET,
EQU, VARIABLE, CONSTANT or CBLOCK. Third column is reserved for the form of a translated instruction which PIC is
executing. The fourth column contains assembler instructions and programmer's comments. Possible errors will appear
between rows following a line in which the error occured.

L!I Makro: FProba.lst [
MPASH 0Z_40Releaszed PROEL . 25M d-Fg-z000 7:18:17 PAGE 1
LOoc OBJECT CODE LINE SO00RCE TEXT

WALITE
ooool sProgram for initialization of port B and setting its pins
aoaoz ;to the state of logic one
oooo: ;UWersion: 1.0 Dake: 10.05.F000. MCU: PIC1EFS84 Tlritten
[njuinup:t ;by: Petar Petrowic
aoook
ooooe ;heclaration and configaration of the processor
oooo? FPROCESS0R 15Fa4
o0oos finclude "pl&f24 inc" ;Processor title
ooool LIST
aoaoz ;P1EFE4 INC Standard Header File, Wersion Z2.00 Microchip
;Technoloogy, Inc.
00l13& LIAT
ooooz
Z007 3FF1 ooolo CONFIG _CP_OFF & WDT _OFF & PWRTE ON & _XT 0O2C
oooll
aoac 00olz CONSTANT BASE = 0OxOc
ooolz
oool4 ;8tart of a program
aooo ooolk org Ox00 ;Peset wector
aooo ze0kL 00ole goto Main ;G0 to the begivming of the main program
oooLw
gools ;Interrpt wector
oaoo4 o0ols org Ozx04 ;Interrapt wector
ooogd a0k ooz goto Main sIntermngpt routine does not exist
ooozl
0002E ;Begivning of the main program
o0nEs finclude "Eank.inc" ; File with macros
|:||:||:||:|l ;_**
ooooz ; Malros BANED and BANEL
|:||:||:||:|3 ;_***
oooo4
aooano oolo ooooLk W_Temp 1= EBAZE+4
aoano 0o0ll ooo0s Stac Temp Set EBAZE+E
aooo oole o000 Option Temp set BASE+E
aooos
ooooz
0o0lo BANED hi1*=Tud]
00oll bef STATUOS BFO ; Select memory bank 0
000l erdm
ooolz
00ol4 BANE1 WaCEo
oools bsi STATIOE BP0 ; Select memory bank 1
00o0le erndwm
oooLw?

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (13 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming
000L6 erudm

oooLly
oooks 000z4 Main

000zL BANEL ; Select memory bank 1
ooos le83 M bef STATUOE RFO ; ZSelect memory bank 1

ooos 2000 00026 mowlw Ox00
Message [302] - Register in operand not in bank 0. Ensuare that hank hits are

Correct.
aoo? ooses aooz? oy £ TRISE ;Port B pins are output
o0ozs
ooozm BANEO ;Belect memory bank 0O
ooos lzgz s ! bet STATUS, BPO ;EBelect memory bank 0O
aoos Z0FF 00030 mowlw OxFF
o0 ooses aoozl oy £ PFOERTE ;Bet all ones to port E
ulnfu e
nlnjuiz] Z80EB aoo033 Loop qoto Loop ; Program stays in the loop
ulnjujch?
0035 EML ;Necessary marking the end of a program
MEMODY TI2AGE MAP ('XH' = Used, '=' = Tnused)

0000 @ H-- 30000000 -——= —mmmmmmmmmmmmmmm —mmmmmmm e o
2000 : ------- e e

A11 other memory blocks wmused.

Program Memory Words Used: 2

Program Memory Words Free: 101%&

Exrrors: u}

WMarnings: 0 reported, 0 swppressed
Mes=sages: 1l reported, 0 swppressed

At the end of the "list" file there is a table of symbols used in a program. Useful element of 'list’ file is a graph of memory
utilization. At the very end, there is an error statistic as well as the amount of remaining program memory.

Macros are a very useful element in assembly language. They could briefly be described as "user defined group of
instructions which will enter assembler program where macro was called”. It is possible to write a program even without
using macros. But with their use written program is much more readable, especially if more programmers are working on the
same program together. Macros have the same purpose as functions of higher program languages.

How to write them:

<label> macro [<argumentl>,<argument2>,...... <argumentN=>]

From the way they were written, we could be seen that macros can accept arguments, too which is also very useful in
programming. Whenever argument appears in the body of a macro, it will be replaced with the <argumentN> value.

Example:
Ma_ PORTR macro ARG1
BAMED ;Select memory bank O
mowvlw ARG1 Sdalue from ARGL argument
jis stored in working register
moyvwf PORTE ;walue from ARG1
; argument placed on port B
endm smacro ended

The above example shows a macro whose purpose is to place on port B the ARG1 argument that was defined while macro

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (14 of 15) [5/11/2003 8:53:48 AM]

Chapter 4 - Assembly Language Programming

was called. Its use in the program would be limited to writing one line: ON_PORTB OxFF , and thus we would place value
OxFF on PORTB. In order to use a macro in the program, it is necessary to include macro file in the main program with
instruction include "macro_name.inc". Contents of a macro is automatically copied onto a place where this instruction was
written. This can be best seen in a previous list file where file with macros "bank.inc" was copied below the line
#include"bank.inc"

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (15 of 15) [5/11/2003 8:53:48 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

Index
- Development systems
PI1C Microcontrollers
Contact US
on-line FrREE!
Previous page Table of contents Next Page

CHAPTER 5
MPLAB

Introduction

5.1 Installing the MPLAB program package
5.2 Introduction to MPLAB

5.3 Choosing the development mode

5.4 Designing a project

5.5 Designing new assembler file

5.6 Writing a program

5.7 MPSIM simulator

5.8 Toolbar

MPLAB is a Windows program package that makes writing and developing a program easier. It could best be described as
developing environment for some standard program language that is intended for programming a PC computer. Some
operations which were done from the instruction line with a large number of parameters until the discovery of IDE
"Integrated Development Environment" are now made easier by using the MPLAB. Still, our tastes differ, so even today
some programmers prefer the standard editors and compilers from instruction line. In any case, the written program is
legible, and well documented help is also available.

MPLAB consists of several parts:

- Grouping the projects files into one project (Project Manager)
- Generating and processing a program (Text Editor)

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (1 of 8) [5/11/2003 8:54:42 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 5- MPLAB
- Simulator of the written program used for simulating program function on the microcontroller.

Besides these, there are support systems for Microchip products such as PICStart Plus and ICD (In Circuit Debugger). As this
book does not cover these , they will be mentioned only as options.

Minimal computer requirements for staring the MPLAB are:

- PC compatible computer 486 or higher

- Microsoft Windows 3.1x or Windows 95 and new versions of the Windows operating system
- VGA graphic card

- 8MB memory (32MB recommended)

- 20MB space on hard disc

- Mouse

In order to start the MPLAB we need to install it first. Installing is a process of copying MPLAB files from the CD onto a hard
disc of your computer. There is an option on each new window which helps you return to a previous one, so errors should
not present a problem or become a stressful experience. Installment itself works much the same as installment of most
Windows programs. First you get the Welcome screen, then you can choose the options followed by installment itself, and, at
the end, you get the message which says your installed program is ready to start.

Steps for installing MPLAB:

. Start-up the Microsoft Windows

. Put the Microchip CD disc into CD ROM

. Click on START in the bottom left corner of the screen and choose the RUN option
. Click on BROWSE and select CD ROM drive of your computer.

. Find directory called MPLAB on your CD ROM

. Click on SETUP.EXE and then on OK .

. Click again on OK in your RUN window

NO O WNPRE

Installing begins after these seven steps. The following pictures explain the meaning of certain installment steps.

=E MPLAT »5. 00 00 [natalstion

WPLAR w500, 00 Insi sllation

Welcome!

This iragteetsir proge om wll vl e HFLAR »SuD0U00,

Preas T Mesd budion to shart B inclalabor o canpiers
ey Canel Bl v yina iy rth et 10 el the MPLAS
WO o Hhix bive

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (2 of 8) [5/11/2003 8:54:42 AM]

Chapter 5- MPLAB
Welcome screen at the beginning of MPLAB installment
At the very beginning, it is necessary to select those MPLAB components we will be working with. Since we don't have any

original Microchip hardware components such as programmers or emulators, we will only install MPLAB environment,
Assembler, Simulator and the instructions.

MPLAB v5.00.00 Installation E
Select Components
Chooze which components to inztall by checking the boxes
by,
W MPLAE IDE Files 2032 k
W MP&SMMPLINEAMPLIE Files 7321 k
W MPLAE-5IM Simulator Suppart Files 4886 k
[~ MPLAB-ICE Emulatar Support Files I628 k
[PICMASTER Emulator Support Files 11598 k
[~ PRO MATE Suppart Files A0S k
[~ PICSTART Plus Support Files 157 k
[~ #PLAE-ICD Debugger Support Files 245 k
W Help File:s 5134 k
Digk. Space Required: 19573 k
Dizk. Space Remaining: 2074447 |
£ Back Mest » LCancel

Selecting components of MPLAB developing environment

As it is assumed you will work in Windows 95 (or a newer operating system), everything in connection with DOS operating
system has been taken out during selection of assembler language. However, if you still wish to work in DOS, you need to
deselect all options connected with Windows, and choose the components appropriate for DOS.

MPLAB ¥5.00.00 Installation Ed

Select Language Components

Chooze which components bo install by checking the boxes
below.

IV MPASH for Windows 334 k

[~ MPASH for DOS 573k
¥ MP&5SM Header Files, Samples, and Templates 1999 k

¥ MPLINEAMPLIE for \indaws35 1586 k
[MPLINEAMPLIE for \indows 3.1/005 2150k
¥ Processor Linker Scripts 173k

Dizk. Space Required: 17144 |

Dizk. Space Remaining: 2077170 b

< Back LCancel

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (3 of 8) [5/11/2003 8:54:42 AM]

Chapter 5- MPLAB
Selecting the assembler and the operating system

Like any other program, MPLAB should be installed into some directory. This option could be moved into any directory on
any hard disc of your computer. If you didn't have a more pressing need, it should be left at selected place.

MPLAB »5.00.00 Installation E3

Select Destination Directory

Fleaze zelect the directon where the MPLAB +5.00.00 filez are
to be inztalled.

C:\Program Filez\MFPLAR Browsze |

¢ Back

Cancel |

Choosing the directory where MPLAB will be installed

Users who have already had MPLAB (older version than this one) need the following option.
The purpose of this option is to save copies of all files which will be modified during a changeover to a new MPLAB version.
In our case we should leave selected NO because of presumption that this is your first installment of MPLAB on your

computer.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (4 of 8) [5/11/2003 8:54:42 AM]

Chapter 5- MPLAB

MPLAB ¥5.00.00 Installation

Backup Replaced Files?

T hiz inztallation program can create backup copies of all files
replaced during the installation. Do yau want ta create
backupz of the replaced files?

£ Back Mest » LCancel

Option for users who are installing a new version over an already installed MPLAB

Start menu is a group of program pointers, and is selected by clicking on START option in the lower left corner of the screen.
Since MPLAB will be started from here, we need to leave this option as it is.

MPLAB ¥5.00.00 Installation E3

Add to Start Menu?

Do yow want to create shortcuts bo access the installed files?

* ez
Mo

< Back

LCancel |

Adding the MPLAB to the start menu

Location that will be mentioned from here on, has to do with a part of MPLAB whose explanation we don't need to get into.
By selecting a special directory , MPLAB will keep all files in connection with the linker in a separate directory.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (5 of 8) [5/11/2003 8:54:42 AM]

Chapter 5- MPLAB

Linker Scnipts

Linker script Location

Due to the expanded number of linker zcripts you may
now install them in their own sub directony. Uszers with
previous projects may prefer to keep them in the MPLAR
directory for compatibility with exizting projectz [default),
[f you are a new uzer you may wizh to keep these in the
SLER sub directom.

& Inztall files to MPLAE install directony

& nztall files to MPLABALEr sub directang

£ Back Mest » LCancel

Determining a directory for linker files

Every Windows program has system files usually stored in a directory containing Windows program. After a number of
different installments, the Windows directory becomes overcrowded and too big. Thus, some programs allow for their system

files to be kept in same directories with programs. MPLAB is an example of such program, and the bottom option should be
selected.

Select System Files E2

Select System Files

Wwiould youl like toinstall spstem DLL files to paur
WaindowzhSys directory’? If pou are running MPLAR
inztalled on a common netwaork, pou may not be
allowed to write files to thiz directony. IF you do not
ingtall them in the Ywfindows S pe directary, they wil
be put in the zame directony az MPLAR.

™ |nstall files to YWwindows\Sys

% |rstall fles to MPLAB install direchany

Mest » LCancel

Selecting a directory for system files

After all of the above steps, installment begins by clicking on 'Next'.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (6 of 8) [5/11/2003 8:54:42 AM]

Chapter 5 - MPLAB

MPLAB ¥5.00.00 Installation

Ready to Install!

“'ou are now ready toinstall the MPLAE 5 00.00.

Prezs the Next button to beqin the inztallation or the B ack
button to reenter the inztallation information.

£ Back

LCancel |

Screen prior to installment

Installment doesn't take long, and the process of copying the files can be viewed on a small window in the right corner of the
screen.

Debugging Options have been Consolidaled!

Dovelopment Mods Coeicpir the deteig
: e OnErt friem A

Configurstion. | Povnr Piree | iaak Dptiene | §
Mt

g i

& Huonas fE«iar nly] Pigestear |1u|;qu;,a“ PLEMTERAD % : Solectad pr s hghir

. ¥ ool
HIPLAR-SIKE Sinulalos ‘:Fu Tristems i feall ﬁ THeTy O N
M J 1 (Lanno! Irace of hresi on dala
= FEADICE Edurtln :!Ilil:k ‘Totails” for additional | T ———
> PICMASTER Emelastor | e aimatse on FPICTECGAA, " bions ot ihe

> ICERIC
> HPLAB-ED Debuges:

Tnigpid & |

[[oe] caca |

Cogping fle:
G\ Propam FlasMPLAEPIRCTA ING

Installment flow

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (7 of 8) [5/11/2003 8:54:42 AM]

Chapter 5- MPLAB

After installment have been completed, there are two dialog screens, one for the last minute information regarding program
versions and corrections, and the other is a welcome screen. If text files (Readme.txt) have opened, they would need to be

closed.

MPLAB ¥5.00.00 Installation

View README Files?

E ach inztalled component of MPLAE hasz an azzociated
README file that containg impaortant information, such az
device zupport and known izzues.

Would you like o view theze files now?

s ez
" Mo

Please review these files before contacting
Customer Support.

LCancel |

Last minute information regarding program versions and corrections.

By clicking on Finish, installment of MPLAB is finished.

Table of contents Next page

Previous page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (8 of 8) [5/11/2003 8:54:42 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

| Index
; Development systems
|- Contact US

o

PI1C Microcontrollers

on-line FREE!

Previous page Table of contents Next Page

5.2 MPLAB

Following the installment procedure, you will get a screen of the program itself. As you can see, MPLAB looks like most of the
Windows programs. Near working area there is a "menu” (upper blue colored area with options File, Edit..etc.), "toolbar" (an
area with illustrations the size of small squares), and status line on the bottom of the window. There is a rule in Windows of
taking some of the most frequently used program options and placing them below the menu, too. Thus we can access them
easier and speed up the work. In other words, what you have in the toolbar you also have in the menu.

[="MPLAD
P Prowol £dt Debwg Ophiors Took Windew Help

(@] []a [«] [1% @]] [T8]l Rl Y]

1 1 [IFCIeRE lpcle) [wiledD[--zdec Bk On[EQ [AME: |User

The screen after starting the MPLAB

The purpose of this chapter is for you to become familiar with MPLAB developing environment and with basic elements of
MPLAB such as:

Choosing a developing mode

Designing a project

Designing a file for the original program

Writing an elementary program in assembler program language

Translating a program into executive code

Starting the program

Opening a new window for a simulator

Opening a new window for variables whose values we watch (Watch Window)
Saving a window with variables whose values we are watching

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_02Poglavlje.htm (1 of 2) [5/11/2003 8:55:53 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 5- MPLAB

Setting the break points in a simulator (Break point)

Preparing a program to be read in a microcontroller can boil down to several basic steps:

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_02Poglavlje.htm (2 of 2) [5/11/2003 8:55:53 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

IndeXx
Development systems

P -
& ‘_‘_.;_v;y', P1C Microcontrollers N =

on-line FREE!

—

Previous page Table of contents Next Page

Setting a developing mode is necessary so that MPLAB can know what tools will be used to execute the written program. In
our case, we need to set up the simulator as a tool that's being used. By clicking on OPTIONS---> DEVELOPMENT MODE, a
new window will appear as in the picture below:

Development Mode E

Configuration] Power] Pins 1 Break Options 3
i Tools ‘I Ports] Clock] Memory 3
** None [Editor Only) | Processor:| PIC16F84 =

~+ MPLAB-SIM Simulator ;I

MR AR CE Dondater

o HIEERD =

o MPEARCD Debunaer Inquire | Details.._ |

(1] .4 Cancel | Apply | Help |

Setting a developing mode

We should select the 'MPLAB-SIM Simulator’ option because that is where the program will be tried out. Beside this option,
the 'Editor Only' option is also available. This option is used only if we want to write a program and by programmer write'
hex file' in a microcontroller. Selection of the microcontroller model is done on the right hand side. Since this book is based
on the PIC16F84, this model should be selected.

Usually when we start working with microcontrollers, we use a simulator. As the level of knowledge will have increased,
program will be written in a microcontroller right after translation. Our advice is that you always use the simulator. Though
program will seem to develop slower, it will pay off in the end.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_03Poglavlje.htm [5/11/2003 8:55:59 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

IndeXx
Development systems

P -
& ‘_‘_.;_v;y', P1C Microcontrollers N =

on-line FREE!

—

Previous page Table of contents Next Page

In order to start writing a program you need to create a project first. By clicking on PROJECT --=> NEW PROJECT you are able
to name your project and store it in a directory of your choice. In the picture below, a project named 'test.pjt’ is being

created and stored in c:\PIC\PROJEKTS\ directory.
This directory is chosen because authors had such directory set up of on their computer. Generally speaking, directory with

files is usually placed in a larger directory whose name is unmistakably associated with its contents.

Mew Project |
File Hame: Directories: 1] 4
|test.pit | | c:\pichprojects
Cancel
Al lEg et -
: {3 pic Help

& projects

Lizt Files of Type: Drives:
Project Files [*.pjt] j I =) ¢ j

Opening a new project

After naming the project, click on OK. New window comes up as in the next picture.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (1 of 4) [5/11/2003 8:56:08 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 5 - MPLAB

Edit Project]|

— Project
Target Filename 1k
|test.heu |
Include Path Cancel

Library Path

Linker Script Path

Development Mode: ||'-'|F"LAB SIM PIC16F84 | Change...

Language T ool Suite: |Hi::mt:hip j|

— Project Files

A Add Node..

Eopy Node: .

[¥elete Node

Bunld Node

Mode Properties....

Adjusting project elements

Using a mouse click on "test [.hex]" which activates 'Node properties' option in the bottom right corner of a window. By
clicking on it you get the following window.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (2 of 4) [5/11/2003 8:56:08 AM]

Chapter 5 - MPLAB

Node: | TEST.HEX

-]

Language Tool: | MPASH

— Options
Description | | I I Da
Define =
Hex Format | P L1 INH®85 1 INHX3?
Error File Iz o1 Off
List File Iz o1 Off
Cross-reference File = * Off
Warning level o all 1 warnterr Z1 err
Case sensitivity ¥ 0On o1 Off
Macro expansion L On o1 Off
Default radix L1 HEX ~1 DEC 2 0CcT
Tab size ¥ 0n 1
Command Line
|faIHHXBH fe+ /v Fu- fer /Y1 fplGFB4
Additional Command Line Options
(1].4 Cancel Help

Defining parameters of MPASM assembler

From the picture we see that there are many different parameters. Each kind corresponds to one parameter in "Command
line" . As memorizing these parameters is very uncomfortable, even forbidding for beginners, graphic adjustment has been
introduced. From the picture we see which options need to be turned on. By clicking on OK we go back to previous window
where "Add node" is an active option. By clicking on it we get the following window where we name our assembler program.
Let's name it "Test.asm" since this is our first program in MPLAB.

Add Node 7]
File name: Folders: 1] 4
|test_asm | c:\pic\projects

Cancel
- e -~
{3 pic
5] projects Help
Metwork.__.
List files of type: Drives:
Source files [*.c;*_asm] j I (= N j

Opening a new project

By clicking on OK we go back to the starting window where we see added an assembler file.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (3 of 4) [5/11/2003 8:56:08 AM]

Chapter 5- MPLAB

Edit Project]|
— Project
Target Filename 0K
|test.heu |
Include Path ﬂ
Library Path D
Linker Scnpt Path
Development Mode: ||'-'|F"LAB SIM PIC16F84 | Change...
Language T ool Suite: |Hi::mt:hip j|
— Project Files
test [hex] Add Node. ..
tezt [.azm]
Eopy Node. .
[¥elete Hode
Bmld HNode
Hiode Properties...

Assembler file added

By clicking on OK we return to MPLAB environment.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (4 of 4) [5/11/2003 8:56:08 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

| Index

PI1C Microcontrollers R

|- Contact US

on-line FREE!

Previous page Table of contents Next Page

5.5 Designing a new assembler file (writing a new program)

When "project” part of the work is finished, we need to start writing a program. In other words, new file must be opened,
and will be named "test.asm". In our case, file has to be named "test.asm" because in projects which have only one file
(such as ours), name of the project and name of the source file have to be the same.

New file is opened by clicking on FILE>=NEW. Thus we get a text window inside MPLAB work space.

MPLAR - C:APICAPROJEETIVPIDEA PIT

e oot i s PPl Do Lok Mo Mo ___________
o] Es)| el Bk | Pl e D). (3

New assembler file opened

New window represents a file where program will be written. Since our assembler file has to be named "test.asm", we will

name it so. Naming is done (as with all Windows programs) by clicking on FILE>SAVE AS. Then we get a window like the
following picture.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_05Poglavlje.htm (1 of 2) [5/11/2003 8:56:16 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 5- MPLAB

Save File As Ed |

File Hame: Directories: 0K
|test.asm | c:\pic\projects
Cancel
test asm - L Lo -
ic
3 pic Help
25 projects

[T UMIX format
~| ¥ Keep backup

List Files of Type: Drives: Network... |

Source files [*.c;* azm] j I = j

Naming and saving a new assembler file

When we get this window, we need to write ‘test.asm’ below ‘File name:’, and click on OK. After that, we will see 'test.asm’
file name at the top of our window.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/5_05Poglavlje.htm (2 of 2) [5/11/2003 8:56:16 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

IndeXx
b 4 - Development systems
\J PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

Only after all of the preceding operations have been completed we are able to start writing a program. Since a simple
program has already been written in "Assembly Language Programming" section of the book, so we will use that same
program here, too.

_ Program: Froba.asm|—

;Program for initiaslization of port B and setting its pins to
;state of logic one

;Version: 1.0 Date: 25.04.2000 MCU: PIC1EFE4 Written by: FPetar
;Petrovic

;Declaration and configuration of processor

FROCESZIOR 16F84

#include "plefdd.inc™ ; Processor title
__CONFIG CP OFF & WDT OFF & PWRTE ON & XT OSC
org O=00 ; Reset wector

goto Main ; Go to the beginning of the main

: program

org Ox04 ; Interrupt wector
goto Main ; Interrupt roukbine does not exist

finclude "hank.inc™ ; Macros BANED and BANE]

;Beginning of the main program

Main
BEANE] ; Select memory bank 1
mowvlw Ox00
moviaf TRISE ;i Port B pins are output
BANED ; Select memory bank 0O
movlw OxFF
moviaft PORTE ; 3et all ones to port E
Petlja goto Petlia ; Program stays in the loop
end ; Necessary mwarking the end of a

; program

Program has to be written to a window that's opened, or copied from a disc, or taken from MikroElektronika Internet
presentation using options copy and paste. When the program is copied to "test.asm" window, we can use PROJECT ->
BUILD ALL command (if there were no errors), and a new window would appear as in the next picture.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_06Poglavlje.htm (1 of 2) [5/11/2003 8:56:23 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 5- MPLAB

Build Results

Building TEST.HEX...

Compiling TEST.ASH:

Command line: "C:\PROGRA™\MPLAB\MPASHWIN.EXE /aINHX8H

Mescage[382] C:APICAPROJECTSAWAIT.INC 59 :
Message[382] C:APICAPROJECTSATEST.ASH 33 :
Message[382] C:APICAPROJECTSATEST.ASH 3% :

[Build completed successfully.

B

Register in
Register in
Register in

fe+r fl+
operand
operand
operand

Fx-
not
not
not

fc+
in
in
in

Window with messages following a translation of assembler program

We can see from the picture that we get "test.hex" file as a result of translation process, that MPASMWIN program is used
for translation, and that there is one message. In all that information, the last sentence in the window is the most important
one because it shows whether translation was successful or not. 'Build completed successfully' is a message stating that

translation was successful and that there were no errors.

In case an error shows up, we need to double click on error message in '‘Build Results’ window. This would automatically

transfer you to assembler program and to the line where the error was.

Previous page Table of contents

Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_06Poglavlje.htm (2 of 2) [5/11/2003 8:56:23 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

IndeXx
Development systems

P -
& ‘_‘_.;_v;y', P1C Microcontrollers N =

on-line FREE!

—

Previous page Table of contents Next Page

Simulator is part of MPLAB environment which provides a better insight into the workings of a microcontroller. Trough a
simulator, we can monitor current variable values, register values and status of port pins. Truthfully, simulator does not
have the same value in all programs. If a program is simple (like the one given here as an example), simulation is not of
great importance because setting port B pins to logic one is not a difficult task. However, simulator can be of great help with
more complicated programs which include timers, different conditions where something happens and other similar
requirements (especially with mathematical operations). Simulation, as the name indicates "simulates the work of a
microcontroller”. As microcontroller executes instructions one by one, simulator is conceived - programmer moves through a
program step-by-step (line-by-line) and follows what goes on with data within a microcontroller. When writing is completed,
it is a good trait to, programmer's first check his program in a simulator, and then runs it out in a real situation.
Unfortunately, as with many other good habits, man overflows this one too, more or less. Reasons for this are partly
personality, and partly lack of good simulators.

First thing we need to do, as in a real situation, is to reset a microcontroller with DEBUG > RUN > RESET command. This
command results in bold line positioned at the beginning of a program, and program counter is positioned at zero which can
be seen in status line (pc: 0x00).

—MPLAB IDE - C:\PICAPROJECTSATEST.PIT

Eile Project Editlgebug Options Tools Window Help

] [=] 2] M

Execute

Simulator Stimulus F F5
: HiElt Trace ShiftHEE
Center Debug Location Apimate ChiES
Break Settings... Fz Step F7
Trace Settings... Step Ower Fa
Triggen [l Sethings. . Update &l Begisters
Triggen Hutput Paimts.. Change Program Counter...

Clear All Pointz. ..

DT_OFF & _PURTE_OH & _XT_OSC
[Eomplex T nagenr Sethings. .,

[Eade Coverage %3363 36

Clear Program Memary... Chi+Shift+F2 ROM-a

System Feset Cil+Shift+F3 |da Function "WAITX™
Power-On-Reszet. . Clrl+5Shift+F5
endac

Beginning of program simulation, resetting a microcontroller

One of the main characteristics of a simulator is the ability to view register status within a microcontroller. These registers
are also called special function registers, or SFR registers.
We can get a window with SFR registers by clicking on WINDOW-=>SPECIAL FUNCTION REGISTERS, or on SFR icon.

Beside SFR registers, it is useful to have an insight into file registers. Window with file registers can be opened by clicking on
WINDOW->FILE REGISTERS.

If there are variables in the program, it is good to watch them, too. To each variable is assigned one window (Watch
Windows) by clicking on WINDOW->WATCH WINDOWS.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_07Poglavlje.htm (1 of 2) [5/11/2003 8:56:37 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 5- MPLAB

SFE Reqgisters Window

Mame of the

. CUWIOFSLECTIVSNIAS PIT
CuFFent pr-:-JIject = — T ooy Tty i
Menu ling e—

Toolbar line
CETSOR 185k

ECLEEs “PIASEN . JwL oz
gl o2]

_€OMFEG _COF &FF & _WoT_§i§ B _rnn:_-ch =atiza_reg FF 2G5 | 41984990
mtatm: " & EnnLeOnE
bl jemmsm Blrekbora pragraasckes nensel|e ssssa Fzr o 4 s0eaone
Assembler progranm ——— parts] A goraODE .
preg & ®aN2 : Berpd sector triss oW RopENr
catn Hilin parth o 4 gOrdgnng
Lrish L3 ZhE IR .
(4 ®aha ¢ imtorage wector | osdald i LD DL
plo HEla i Brmd ERlorapl o | Ecgesd (] LI 110 21T S
T L) a ankoed
FEeaLlede “@ank.fnc= L P dabotess | #ocesd g a appdop

prlith i 4 soeoDd

Haln v Fecobad pragrasa Entess ™ PR ST

1] 1] 4 soeoDd

EErEE Lipre 1] 4 oeoDd

moewluy B0} b Dedejalizatijs perta &
ezt IL8ZH LIRSS {- pER
(551

mawla @cFF
Lt PERIA i FERTE <- Ocid

Windaw for watching :
Efdress Dpehol Ustes
FaT]

variable status
% B W On
Status line
File Register Window —L

| ald
—| 1 DH | WA Mo NG PO ol (D)oo i Dn|Sn MR Db

Simulator with open windows for SFR registers, file registers and variables.

The next command in a simulator is DEBUG=RUN>=STEP which starts our steping through the program. The same command
could have been assigned from a keyboard with <F7> key (generally speaking, all significant commands have keys assigned
on the keyboard).

By using the F7 key, program is executed step-by-step. When we get to a macro, file containing a macro is opened
(Bank.inc), and we proceed to go through a macro. In a SFR registers window we can observe how W register receives value
OxFF and delivers it to port B. By clicking on F7 key again, we don't achieve anything because program has arrived to an
"infinite loop". Infinite loop is a term we will meet often. It represents a loop from which a microcontroller can not get out
until interrupt occurs (if it is used in a program), or until a microcontroller would be reset.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_07Poglavlje.htm (2 of 2) [5/11/2003 8:56:37 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

Index
7 I Devel
PIC Microcontrollers Ceveopmentsvstems
\J Contact us
on-line FrREE!

Table of contents

Previous page Next Page

Since MPLAB has more than one component, each of the components has its own toolbar. However, there is a toolbar which
is some compilation of all toolbars, and can serve as a commonly used toolbar. This toolbar is enough for our needs, and it
will be explained in more detail. In the picture below, we can see a toolbar we need with a brief explanation of each icon.
Because of the limited format of this book, this toolbar is shown as a hanging toolbar. Generally, it is placed horizontally
below the menu, over the entire length of the screen.

!

Changing a toolbar e %I — O pening the project
. . H I Searching for a
Sawving a project : . part of the text
Cutting a part ya I Copying a part
of the text out ; . of the text
Pasting a part ‘I Saving the
of the text - - assembler file
Start program Stop program
execution execution
Step by step program 1) . o
axecution . Skip conditions
- RAM memor
icrocontroller rese ml Window
RAM memory Window Hﬂﬂl SFR registers
| | wWindow
. . = Repeat translation of
Yariables Window @ v the entire project

Universal toolbar with brief explanations of the icons

Toolbar icon description

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_08Poglavlje.htm (1 of 2) [5/11/2003 8:56:47 AM]

the screen as when the project was closed.

If the current toolbar for some reason does not respond to a click on this icon, the next

= one appears. Changeover is repeated so that on the fourth click we will get the same
toolbar again.
= Icon for opening a project. Project opened in this way contains all screen adjustments
and adjustment of all elements which are crucial to the current project.
Icon for saving a project. Saved project will keep all window adjustments and all
= parameter adjustments. When we read in a program again, everything will return to

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 5- MPLAB

(&

|

&

2 @ = =

OEEEEH

Searching for a part of the program, or words is operation we need when searching
through bigger assembler or other programs. By using it, we can find quickly a part of
the program, label, macro, etc.

Cutting a part of the text out. This one and the following three icons are standard in all
programs that deal with processing textual files. Since each program is actually a
common text file, those operations are useful.

Copying a part of the text. There is a difference between this one and the previous
icon. With cut operation, when you cut a part of the text out, it disappears from the
screen (and from a program) and is copied afterwards. But with copy operation, text is
copied but not cut out, and it remains on the screen.

When a part of the text is copied, it is moved into a part of the memory which serves
for transferring data in Windows operational system. Later, by clicking on this icon it
can be 'pasted' in the text where the cursor is.

Saving a program (assembler file).

Start program execution in full speed. It is recognized by appearance of a yellow status
line. With this kind of program execution, simulator executes a program in full speed
until it is interrupted by clicking on the red traffic light icon.

Stop program execution in full speed. After clicking on this icon, status line becomes
gray again, and program execution can continue step by step.

Step by step program execution. By clicking on this icon, we begin executing an
instruction from the next program line in relation to the current one.

Skip requirements. Since simulator is still a software simulation of real work, it is
possible to simply skip over some program requirements. This is especially handy with
instructions which are waiting for some requirement following which program can
proceed further. That part of the program which follows a requirement is the part that's
interesting to a programmer.

Resetting a microcontroller. By clicking on this icon, program counter is positioned at
the beginning of a program and simulation can start.

By clicking on this icon we get a window with a program, but this time as program
memory where we can see which instruction is found at which address.

With the help of this icon we get a window with the contents of RAM memory of a
microcontroller.

By clicking on this icon, window with SFR register appears. Since SFR registers are
used in every program, it is recommended that in simulator this window is always
active.

If a program contains variables whose values we need to keep track of (ex. counter), a
window needs to be added for each of them, which is done by using this icon.

When certain errors in a program are noticed during simulation process, program has
to be corrected. Since simulator uses HEX file as its input, so we need to translate a
program again so that all changes would be transferred to a simulator. By clicking on
this icon, entire project is translated again, and we get the newest version of HEX file
for the simulator.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_08Poglavlje.htm (2 of 2) [5/11/2003 8:56:47 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Index
- Development systems
PI1C Microcontrollers
Contact US
on-line FrREE!
Previous page Table of contents Next Page

CHAPTER 6

The Samples

Introduction

6.1 Supplying the microcontroller
6.2 Macros used in programs

« Macros WAIT, WAITX
« Macro PRINT

6.3 Samples

. Light-emitting diodes - LEDs

. Keyboard

. Optocoupler
o Optocouplering the input lines
o Optocouplering the output lines

. Relays
. Generating a sound

. Shift reqgisters
o Input shift reqgister
o Output shift register
. 7-segment Displays (multiplexing)
. LCD display
. 12-bit AD converter
. Serial communication

Examples given in this chapter will show you how to connect the PIC microcontroller with other peripheral components or
devices when developing your own microcontroller system. Each example contains detailed description of the hardware part
with electrical outline and comments about the program. All programs can be taken directly from the from 'MikroElektronika
internet presentation.

Generally speaking, the correct voltage supply is of utmost importance for the proper functioning of the microcontroller
system. It can easily be compared to a man breathing in the air. It is more likely that a man who is breathing in fresh air will
live longer than a man who's living in a polluted environment.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_01Poglavlje.htm (1 of 2) [5/11/2003 8:57:05 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

For a proper function of any microcontroller, it is necessary to provide a stable source of supply, a sure reset when you turn
it on and an oscillator. According to technical specifications by the manufacturer of PIC microcontroller, supply voltage
should move between 2.0V to 6.0V in all versions. The simplest solution to the source of supply is using the voltage
stabilizer LM7805 which gives stable +5V on its output. One such source is shown in the picture below.

o7
I

LMTE05 ,
4) I:E‘l H
— E
-

=
G
To-210

Transfarmer

r—

L

220N -

01 =22pF, £2 = 100uF,
0% = 10pF, B = 1K

In order to function properly, or in order to have stable 5V at the output (pin 3), input voltage on pin 1 of LM7805 should be
between 7V through 24V. Depending on current consumption of device we will use the appropriate type of voltage stabilizer
LM7805. There are several versions of LM7805. For current consumption of up to 1A we should use the version in TO-220

case with the capability of additional cooling. If the total consumption is 50mA, we can use 78L05 (stabilizer version in small

TO - 92 packaging for current of up to 100mA).

Next page

Previous page Table of contents

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_01Poglavlje.htm (2 of 2) [5/11/2003 8:57:05 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\\l PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

Examples given in the following sections of this chapter often use macros WAIT, WAITX and PRINT, so they will be explained
in more detail.

Macros WAIT, WAITX

File Wait.inc contains two macros WAIT and WAITX. Through these macros it is possible to assign time delays in different
intervals. Both macros use the overflow of counter TMRO as a basic interval. By changing the prescaler we can change the
length of the overflow interval of the counter TMRO.

— WAT.inc |—

7 Declaring constants =™

COMSTANT PRESCstd = bO0O00001" ; Standard prescaler value for TRRQ
P Macros TR
WWAIT macro timecaonst 1

mavlw timeconst 1

call WAITstd

endm

WWAITK macra timeconst 2, PRESCext

mavlw timeconst 2

movnd WYTYCLE . =et the delay time period
movhew PRESCext ; WWrite specific prescaler walue
call WWAIT x

endrm

7 Subpragrams T

WA Tstd
maovat WCYCLE ; =et the delay time period
maovhe PRESCstd WYrite specific prescaler value
WYAIT
cif TWRD
BAMI
mowvwf OFTION REG . Assing the prescaler to TMED timer
BAMKD
WAITa
bicf IMTCOM TOIF . Erase TMRED Cwverflow Flag
WWAITH
btfss INTCOMN TOIF . Check whether it is erased, skip if it isn't
goto WWAITh ;WY ait loap
decfsz WCYCLE . Repeat the loop if delay period has not run out

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_02Poglavlje.htm (1 of 4) [5/11/2003 8:57:19 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

foto WATD ; WYart loop

decfsz WCYCLE 1 . Repeat the loop if delay period has not run out
gato WWAITa

FETURN

If we use the oscillator (resonator) of 4MHz, for prescaler values 0O, 1, and 7 that divide the basic clock of the oscillator, the
interval followed by an overflow of timer TMRO will be 0.512, 1.02 and 65.3 mS. Practically, that means that the biggest
delay would be 256x65.3mS which is equal to 16.72 seconds.

Prescaler | Divisor | Overflow
! QOC00000 1.2 Q512 e
W 0000007 1:4 1.00 e
BOO000111 | 1258 5.3 e

In order to use macros in the main program it is necessary do declare variables wcycle and prescWAIT as will be done in
examples which follow in this chapter.

Macro WAIT has one argument. The standard value assigned to prescaler of this macro is 1 (1.02mS), and it can not be
changed.

WAIT timeconst_1

timeconst_1 is number from O to 255. By multiplying that number with the overflow time period we get the total amount of
the delay: TIME=timeconst_1 x 1.02mS.

Example: WAIT .100
Example shows how to make a delay of 100x1.02mS, or total of 102mS.

Unlike macro WAIT, macro WAITX has one more argument that can assign prescaler value. Macro WAITX has two
arguments:

Timeconst_2 is number from 0 to 255. By multiplying that number with the overflow time period we get the total amount
of the delay:

TIME=timeconst_1 x 1.02mS x PRESCext

PRESCext is number from O to 7 which sets up the relationship between a clock and timer TMRO.

Example: WAITX .100,7

Example shows how to make a delay of 100x65.3 mS, or total of 653mS.

Macro PRINT

Macro PRINT is found in Print.inc file. It makes it easy to show a string of data on one of the output devices such as : LCD,
RS232, matrix printer...etc. The easiest way to form a series is by using a dt (define table) directive. This instruction stores
a series of data into program memory as a group of retlw instructions whose operand is data from the string.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_02Poglavlje.htm (2 of 4) [5/11/2003 8:57:19 AM]

Chapter 6 - Samples

I H PRINT.INC |

PRIMT rmacro Addr, Start, End, %ar, Out

Local Mext ; Local label
Local Exit

moavle Start ;) Address of the first member in the string

rricwed har
Meuxt
mavf “arw Pointer-= W reg.
call Addr o String (W reg.) -= WY req.
 Data is in WY req.
Clut ; Display data on the output device
tnowf NWar w
ol End-1
btfsc STATUS Z ; Is it the end of the string ?
goto Exit it is, get out of the loap
incf “ar f clfisn't, set the Pointer to next member
; of the string
goto Mext . Fepeat loap
Exit
endm

How one such sequence is formed by using dt instruction is shown in the following example:

org 0x00
goto Main

String movwf PCL
Stringl dt "this is "ASCI|' string"
String2 dt "Second string"

End

Mai n
movliw .5
call String

First instruction after label Main writes the position of a member of the string in w register. We jump with instruction call
onto label string where position of a member of the string is added to the value of the program counter: PCL=PCL+W. Next
we will have in the program counter an address of retlw instruction with the desired member of the string. When this
instruction is executed, member of the string will be in w register, and address of the instruction that executed after the call
instruction will be in the program counter. End label is an elegant way to mark the address at which the string ends.

Macro PRINT has five arguments:
PRINT macro Addr, Start, End, Var, Out

Addr is an address where one or more strings (which follow one by one) begin.

Start is an address of the first member of the string

End is an address where the string ends

Var is the variable which has a role of showing (pointing) the members of the string

Out is an argument we use to send the address of existing subprograms assigned to output devices such as : LCD, RS-232,
etc.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_02Poglavlje.htm (3 of 4) [5/11/2003 8:57:19 AM]

Chapter 6 - Samples

Example: org 0x00

goto Main

Geries movwi PCL
Mezssage dt "mikroElektronika™
End

Hain

FPRINT Series, Message, End, Pointer, LCDw

Macro PRINT writes out a string of ASCII caracters for ‘MikroElektronika' on LCD display.
The string takes up one part of program memory beginning at address 0x03.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_02Poglavlje.htm (4 of 4) [5/11/2003 8:57:19 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\J PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

Light-Emitting Diodes - LEDs

LEDs are surely one of the most commonly used elements in electronics. LED is an abbreviation for ‘Light Emitting Diode'.
When choosing a LED, several parameters should be looked at: diameter, which is usually 3 or 5 mm (millimeters), working
current which is usually about 10mA (It can be as low as 2mA for LEDs with high efficiency - high light output), and color of
course, which can be red or green though there are also orange, blue, yellow....

LEDs must be connected around the correct way, in order to emit light and the current-limiting resistor must be the correct
value so that the LED is not damaged or burn out (overheated). The positive of the supply is taken to the anode, and the
cathode goes to the negative or ground of the project (circuit). In order to identify each lead, the cathode is the shorter lead
and the LED "bulb" usually has a cut or "flat" on the cathode side. Diodes will emit light only if current is flowing from anode
to cathode. Otherwise, its PN junction is reverse biased and current won't flow. In order to connect a LED correctly, a
resistor must be added in series that to limit the amount of current through the diode, so that it does not burn out. The
value of the resistor is determined by the amount of current you want to flow through the LED. Maximum current flow
trough LED was defined by manufacturer. High-efficiency LEDs can produce a very good output with a current as low as
2mA.

+av
To determine the value of the dropper-resistor, we needto
know the value of the supply voltage. From this we subtract ¢i
the characteristic voltage drop of a LED. This value will range Ur R

from 1.2v to 1.6v depending on the color of the LED. The
answer is the value of Ur. Using this value and the current we 1

want to flow through the LED (0.002A to 0.01A) we can work Ud :I'
out the value of the resistor from the formula R=Ur/1. -

LEDs are connected to a microcontroller in two ways. One is to turn them on with logic zero, and other to turn them on with
logic one. The first is called NEGATIVE logic and the other is called POSITIVE logic. The above diagram shows how they are
connected for POSITIVE logic. Since POSITIVE logic provides a voltage of +5V to the diode and dropper resistor, it will emit
light each time a pin of port B is provided with a logic 1 (1 = HIGH output). NEGATIVE logic requires the LED to be turned
around the other way and the anodes connected together to the positive supply. When a LOW output from the
microcontroller is delivered to the cathode and resistor, the LED will illuminate.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_03Poglavlje.htm (1 of 3) [5/11/2003 8:57:32 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

+av
Qe ralf
Rl Ritd
a) g !
!|; R R :1|E AMHz
[|reaTock o5C1] 'j_—| I
TI L1 1= = H
1.“ 45[WCLR ppc @sc2 :L — | +ay
n—! wss 1BF8d wdd 1|—-|}
3300
—{|REOANT RET ’
T 1z 3300
—|RE1 REG [}—T—

RE2 RE:S

i b £
B |B|B (B

b £+

RES RE4 | }—r—

—1.L
|
-
B

Jele}

I8
J

Connecting LED diodes to PORTB microcontroller

The following example initializes port B as output and sets logic one to each pin of port B to turn on all LEDs.

— TEST.asm |—

7 Declaring and configuring & microcontroller =

PROCESSOR 16154
#nclude "p16fB4.inc"

__CONFIG _CP_OFF & WDT OFF & PWRTE_ON & XT OSC

77 Declaning variableg =

Chlock Ox0C . Beginning of RAM

WY CLE . Belongs to WWAITX macro
PRES Cweait

endc

;7 Structure of program memary 7

OFEG Ox00 - Reset vector
goto Main
ORG Ox04 . Interrupt wectar
goto Main . Mo interrupt routine
#nclude "bank.inc” CAssistant files
hlain . Beginning of the program

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_03Poglavlje.htm (2 of 3) [5/11/2003 8:57:32 AM]

Chapter 6 - Samples

hlain . Beginning of the program
BAMK1
rrowlee Oxff Port A initialization
movnd TRISA c TRISA <- Oxff all input
ok D00 PORTE initialization
movef TRISE - TRISE «- Duxff
ok Ox00 PORTE initialization
BAMKD
rovlhae Off
movwf PORTH Turn on all leds

Loop
goto Loop . Repeat loop

End . End of program
Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/6_03Poglavlje.htm (3 of 3) [5/11/2003 8:57:32 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\J PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

Keyboards are mechanical devices used to execute a break or make connection between two points. They come in different
sizes and with different purposes. Keys that are used here are also called "dip-keys". They are soldered directly onto a
printed board and are often found in electronics. They have four pins (two for each contact) which give them mechanical
stability.

+ov
'Pull-up' resistar
[-- - H'/
ol P o
=t =t
1 L 12
[rz rad O
z iT
{|Fas Reo 4MHz
n T 1 I —
‘U ‘ﬂ' +Ey - [reamock 03C] [———4
n n -9 i< = 1
L':'__l WCIR pjc ©sc2 :|—T—|14] |
wss CTRFB4 wad
L 1 £ 330R e
[
reset ‘
o REA REG

REZ FE:S

=y
11 A

REDANT RET | F—— al l
1z
] —
11 -
]
hL
]

REZ RE4

i el ol e T e

Example of connecting keys to microcontroller pins.

Key function is simple. When we press a key, two contacts are joined together and connection is made. Still, it isn't all that
simple. The problem lies in the nature of voltage as an electrical dimension, and in the imperfection of mechanical contacts.
That is to say, before contact is made or cut off, there is a short time period when vibration (oscillation) can occur as a result
of unevenness of mechanical contacts, or as a result of the different speed in pressing a key (this depends on person who
presses the key). The term given to this phenomena is called SWITCH (CONTACT) DEBOUNCE. If this is overlooked when
program is written, an error can occur, or the program can produce more than one output pulse for a single key press. In
order to avoid this, we can introduce a small delay when we detect the closing of a contact. This will ensure that the press of
a key is interpreted as a single pulse. The debounce delay is produced in software and the length of the delay depends on
the key, and the purpose of the key. The problem can be partially solved by adding a capacitor across the key, but a well-
designed program is a much-better answer. The program can be adjusted until false detection is completely eliminated.

In some case a simple delay will be adequate but if you want the program to be attending to a number of things at the same
time, a simple delay will mean the processor is "doing-nothing" for a long period of time and may miss other inputs or be
taken away from outputting to a display.

The solution is to have a program that looks for the press of a key and also the release of a key. The macro below can be
used for keypress debounce.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_04Poglavlje.htm (1 of 4) [5/11/2003 8:57:50 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

I H BUTTON.inc |—

Button macro Hilo, Fort, Bit, Delay, Adrress

Local Exit : Local labels
Lacal Loap

if HiLo == . 1= the key pressed 7

btfsc Port Bit ; Is input line LOWY ?

else

bifss Port Bit ;|5 input line HIGH ¥

endif

goto Exit . fkey hasn't been pressed, exit the macro

WWAIT Delay . Delay for key debounce

Loap
if HiLo ==
btfes Port Bit ; Is the key released ?
else
btfsc Port Bit
endif
goto Loop
WAIT Delay ; Delay for key debounce
call Adrress ; Call the semice subpragram
Exit ;. Exit the macro
endrm : End of macro

The above macro has several arguments that need to be explained:
BUTTON macro HiLo, Port, Bit, Delay, Address

HiLo can be '0' or '1' which represents rising or falling edge where service subprogram will be executed when you press a
key.

Port is a microcontroller's port to which a key is connected. In the case of a PIC16F84 microcontroller, it can be PORTA or
PORTB.

Bit is port's pin to which the key is connected.

Delay is a number from 0 to 255, used to assign the time needed for key debounce detection - contact oscillation - to stop.
It is calculated as TIME = Delay x 1ms.

Address is the address where the micro goes after a key is detected. The sub-routine at the address carries out the
required instruction for the keypress.

Example 1: BUTTON O, PORTA, 3, .100, Testerl_above

Key-1 is connected to RAO (the first output of port A) with a delay of 100 microseconds and a reaction to logic zero.
Subprogram that processes key is found at address of label Testerl above.

Example2: BUTTON 0O, PORTA, 2, .200, Tester2_below

Key-2 is connected to RAL (the second output of port A) with 200 mS delay and a reaction to logic one. Subprogram that
processes key is found at address of label Tester2_below.

The next example shows the use of macros in a program. BUTTON.ASM turns LED on and off. The LED is connected to the
seventh output of port B. Key-1 is used to turn LED on. Key-2 turns LED off.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_04Poglavlje.htm (2 of 4) [5/11/2003 8:57:50 AM]

Chapter 6 - Samples

.‘
77 Declaring and configuring & micracaontraoller =

FPROCESSOR 1634
#include "p1Bfad.inc”

77 Declaring variables =

T

7 Structure of program memory

ORG Ox00 - Reset vectar

gato Main

OFEZ Ox04 . Interrupt vector
gato Main . Mo interrupt routine
#include "bank.inc” cAssistant files

#include "button.inc”
#nclude “wait.inc"

Button 0, PORTA, 2, 100, On ; Button 1
Button 0, PORTA, 3, 100, Off ; Button 2

goto Loop

Qn
bsf PORTE 7 : Turn on LED
return

OHff
bicf PORTE 7 : Turn off LED
return

End . End of program

BUTTOHN.asm

Chlock Ox0C . Beginning of RAM

WO CLE . Belongs to WAITX macra
PRESCwait

endc

befain . Beginning of the program
BAMK
ok Oxff PORTA initialization
movad TRISA, CTRISA, =- Dxff
rriowhee 000 : PORTE initialization
moved TRIZEB C TRISE =- 0=00
BAMLD
clef PORTE - PORTE =- 0x00

Loop

__CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & XT OSC

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_04Poglavlje.htm (3 of 4) [5/11/2003 8:57:50 AM]

Chapter 6 - Samples

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_04Poglavlje.htm (4 of 4) [5/11/2003 8:57:50 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\J PIC Microcontrollers i
on-line FREE!
Previous page Table of contents Next Page

Optocoupler combine a LED and photo-transistor in the same case. The purpose of an optocoupler is to separate two parts of
a circuit.

This is done for a number of reasons:

. Interference. One part of a circuit may be in a location where it picks up a lot of interference (such as from electric
motors, welding equipment, petrol motors etc.) If the output of this circuit goes through an optocoupler to another
circuit, only the intended signals will pass through the optocoupler. The interference signals will not have enough
"strength" to activate the LED in the optocoupler and thus they are eliminated. To protect a section of the device.
Typical examples are industrial units with lots of interferences which affect signals in the wires. If these interferences
affect the function of control section, errors will occur and the unit will stop working.

. Simultaneous separation and intensification of a signal. A signal as low as 3v is able to activate an optocoupler
and the output of the optocoupler can be connected to an input line of a microcontroller. The microcontroller requires
an input swing of 5v and in this case the 3v signal is amplified to 5v. It can also be used to amplify the current of a
signal. See below for use on the output line of a microcontroller for current amplification.

. High Voltage Separation. Optocouplers have inherent high voltage separation qualities. Since the LED is completely
separate from the photo-transistor, optocouplers can exhibit voltage isolation of 3kv or higher.

Optocouplers can be used as input or output device. They can have additional functions such as Schmitt triggering (the
output of a Schmitt trigger is either 0 or 1 - it changes slow rising and falling waveforms into definite low or high values).
Optocouplers are packaged as a single unit or in groups of two or more in one housing. They are also called PHOTO
INTERRUPTERS where a spoked wheel is inserted in a slot between the LED and phototransistor and each time the light is
interrupted, the transistor produces a pulse.

Each optocoupler needs two supplies in order to function. They can be used with one supply, but the voltage isolation feature
is lost.

The way it works is simple: when a signal arrives, the LED within the optocoupler is turned on, and it shines on the base of a
photo-transistor within the same case. When the transistor is activated, the voltage between collector and emitter falls to
0.5V or less and the microcontroller sees this as a logic zero on its RA4 pin.

The example below is a counter, used for counting products on production line, determining motor speed, counting the
number of revolutions of an axis etc.

Let the sensor be a micro-switch. Each time the switch is closed, the LED is illuminated. The LED 'transfers' the signal to the
phototransistor and the operation of the photo-transistor delivers a LOW to input RA4 of a microcontroller. A program in the
microcontroller will be needed to prevent false counting and an indicator connected to any of the outputs of the
microcontroller will shows the current state of the counter.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_05Poglavlje.htm (1 of 3) [5/11/2003 8:57:59 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

I 1 s 12
| [Jrez R[]
| Z iT
| [e Raol] 4MHz
1 16 I_
' v (rosrock osct [J———
12 I 15y 10k 1 = | = }
[WCLR 0EC2
| L PIC **2[— =1
| —|_—|: vss 16FB4 ved[—T
I = = g i3
- ! = E = [|reoanT reT|]
= L 5
o REA REG
I I L]
EZ\J" _ RE2 RES
—1 I B
1 [Jre= RE4]]
CMY17

Input line optocoupler example

- OPTO_IN.asm

;7 Declaring and configuring & microcontraller =

FROCESSOR 16f34
#nclude "pl16ME4.inc"

__CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & ¥T_0SC

JoE Structure of program memary T

OFRG 0x00 - Reset vector
gata Main
ORG 0Ox04 . Interrupt vector
gato Main . Mo interrupt routine
#include "bank.inc” CAssistant files

hlain . Beginning of the program
BAMNKI
rrioeley OAf - PORTA initialization
movief TRISA c TRISA <- Dxff {input)
rrowle 000 - PORTE initialization
movef TRISE TRISE <- 0x00 {output)
oyl b00O710000° CRAd -= TMED,
movef CFTION REG ;) Increment TMED on failing edge
BAMKD

clrf FORTE ; PORTE <-0
clrf TMED ; TMRO <- 0

Loop
movf TRRD we Copy TMRO in WY reg.
moawf PORTE o send value of W reg. on PORTE
goto Loop . Repeat the loop
End . End of proaram

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_05Poglavlje.htm (2 of 3) [5/11/2003 8:57:59 AM]

Chapter 6 - Samples

End . End of program

An Optocoupler can be used to separate the output signal of a microcontroller from an output device. This may be needed
for high voltage separation or current amplification. The output of some microcontrollers is limited to 25mA. The optocoupler
will take the low-current signal from the microcontroller and it's output transistor will drive a LED or relay, as shown below:

+1 2w +1 2

Ty
=Y I\” relay

13
Rz Rai[]

RA3 el 4MHz
RoHT okl i1 |

SE0R:
I 1

+5v
10K

I

MCLR PIC OS2
wis 16FB4 wdd

.

szl 1=

=

I_l""l"' B e B

.;1 = [|REONT RET[]
: 1|: RE1 REG :I| & 1
"l
T:HEIE RES :I|I EZ& E— — =
— 1] 10
[|re= RE4]] = [7]
CHY17 GMD

Output line optocoupler example

The program for this example is simple. By delivering a logic '1' to the fourth pin of port A, the LED will be turned on and
the transistor will be activated in the optocoupler. Any device connected to the output of the optocoupler will be activated.
The transistor current-limit is about 250mA.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_05Poglavlje.htm (3 of 3) [5/11/2003 8:57:59 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Index
7 I Devel
PIC Microcontrollers Ceveopmentsvstems
\J Contact us
on-line FrREE!

Previous page Table of contents

Next Page

The relay is an electromechanical device, which transforms an electrical signal into mechanical movement. It consists of a
coil of insulated wire on a metal core, and a metal armature with one or more contacts.

When a supply voltage was delivered to the coil, current would flow and a magnetic field would be produced that moves the
armature to close one set of contacts and/or open another set. When power is removed from the relay, the magnetic flux in
the coil collapses and produces a fairly high voltage in the opposite direction. This voltage can damage the driver transistor
and thus a reverse-biased diode is connected across the coil to "short-out” the spike when it occurs.

1 L= 13
[Rez rat 1
H ir
[Jres Rl ez
C -~ 20V
T E:;';ﬂcm o5 :,lﬁ:—_':}l " eoits
L pIc 56 :Hﬁv |
f[wss 16F84 wae [T

€ 11

ol s R

= [Irei RER
2 11
[|rez res]

=] i
- [|rez RE4[] LoAD
Protective Rectifier
diode + T 1 o -
' L
|
T o1t o
10K F Y 1 g — J
) *| Relay .
g .

Connecting a relay to the microcontroller via a transistor

Many microcontrollers cannot drive a relay directly and so a driver transistor is required. A HIGH on the base of the
transistor turns the transistor ON and this activates the relay. The relay can be connected to any electrical device via the
contacts.

The 10k resistor on the base of the transistor limits the current from the microcontroller to that required by the transistor.
The 10k between base and the negative rail prevents noise on the base from activating the relay. Thus only a clear signal
from the microcontroller will activate the relay.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_06Poglavlje.htm (1 of 3) [5/11/2003 8:58:07 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

1 L= 12
Rz i
E :1|? - | e
[fres RA0]] AMHz -
1 ie I_l _ A
RAaTOCK] a5 [——7a—
G5CE
5 PIC 5 1
|—[wss C16FB4 wed [T
-3 iz
= [JRECANT RET o
1 L, ~ 220V
= RE REG
i Iy 50Hz
[Jrez Res] O
= 9[REZ FE4 :1|'j LOAD
) Rectifier
Frotective -
dinde * T 126 9 -
. ™

Optocoupler
supply

~ l 330R gﬁ
r{“%t
o
N
~]
]

H11B1

coil

Connecting the optocoupler and relay to a microcontroller

A relay can also be activated via an optocoupler which at the same time amplifies the current related to the output of the
microcontroller and provides a high degree of isolation. High current optocouplers usually contain a 'darlington’ output
transistor to provide high output current.

Connecting via an optocoupler is recommended especially for microcontroller applications, where motors are activated as the
commutator noise from the motor can get back to the microcontroller via the supply lines. The optocoupler drives a relay
and the relay activates the motor.

The figure below shows the program needed to activate the relay, and includes some of the already discussed macros.

— RELAY.asm |—

7 Declaring and configuring & microcontraller =

PROCESSOR 16154
#nclude "p16fB4. inc"

__CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & XT_OSC

T

;7 Declaring variables

Chlock 0xQC . Beginning of RAM

WYY CLE . Belongs to WWAITX macro
FREZCwait

endc

7 Declaring the hardware =

#define RELAY PORTA 3
http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_06Poglavlje.htm (2 of 3) [5/11/2003 8:58:07 AM]

Chapter 6 - Samples

#define RELAY PORTA 3

;7 Structure of program memary T

M ain

Loop

CIn

Off

End

OFEG Ox00 - Reset vector

goto Main

ORG Ox04 . Interrupt wectar
goto Main ; Mo interrupt routine
#nclude "bank.inc” s Agsistant files

#nclude "button.inc”
#nclude “wait.inc"

; Beginning of the program

BAMI

ok Ox17 PORTA initialization
moved TRISA, CTRISA, <- 0x17
ol Ox00 - PORTE initialization
movef TRISHE - TRISE «- 0x00
BAMKD

clef FORTE - PORTE =- 0x00

Button 0, PORTA, 0, 100, On . Button 0
Button 0, PORTA, 1, .100, Off ; Button 1

goto Loop . Repeat the loop
bsf RELAY . Turn an relay
return

betf RELAY » Turn off relay
return

. End aof program

Previous page

Table of contents

Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_06Poglavlje.htm (3 of 3) [5/11/2003 8:58:07 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\J PIC Microcontrollers i
on-line FREE!
Previous page Table of contents Next Page

A Piezo diaphragm can be added to an output line of a microcontroller to deliver a "speaker" tones, beeps and signals.

It is important to know there are two main types of piezo sound-emitting devices. One has active components inside the
case and only requires a DC supply for the "speaker"” to emit a tone or beep. Generally the tones or beeps emitted by these
"speaker" or "beepers" cannot be changed - they are fixed by the internal circuitry. This is not the type we are discussing in
this article.

The other type consists of a piezo diaphragm and requires a signal to be delivered to it for it to function. Depending on the
frequency of the waveform, the output can be a tone, tune, alarm or even voice messages.

In order for them to work we must deliver a cycle consisting of a HIGH and LOW. It is the change from HIGH to LOW or LOW
to HIGH that causes the diaphragm to "dish” (move) to produce the characteristic "tinny" sound. The waveform can be a
smooth change from one value to the other (called a sinewave) or a fast change (called a SQUARE WAVE). A computer is
ideal for producing a square wave. The square wave delivery produces a slightly harsher output.

Connecting a piezo diaphragm is very simple. One pin is connected to the negative rail and the other to an output of a
microcontroller, as shown in the diagram below. This will deliver a 5v waveform to the piezo diaphragm. To produce a higher
output, the waveform must be increased and this requires a driver transistor and inductor.

-y +3v 1 L 12
[re= RAd
Z T
% % 2 —|1: b3 R0 1|—6 AMHz
- Orearoc osci |—_f_—||' I
4 I8 =
—|5: WIR ppc o8ce WI:]I]; .r
wss 16F84 waa[}3 U
T2u T1& Eiu__!_—!;ss 11 :
1 ‘ it [|rE0ANT RET[]
a = T 1z o
[re1 REE[] }
2 11
1 [rez rEs [
- = = @ h(H
[rez RE4]]

Connecting a piezo diaphragm to a microcontroller

As with a key, you can employ a macro that will deliver a BEEP ROUTINE into a program when needed.
BEEP macro freq , duration:

freq: frequency of the sound. The higher number produces higher frequency
duration: sound duration. The higher the number, the longer the sound.

Example 1: BEEP OxFF, 0x02

The output of the piezo diaphragm has the highest frequency and duration at 2 cycles per 65.3mS which gives 130.6 mS

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_07Poglavlje.htm (1 of 4) [5/11/2003 8:58:16 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples
Example2: BEEP 0x90, 0x05

The output of the piezo diaphragm has a frequency of 0x90 and duration of 5 cycles per 65.3mS. It is best to determine
these macro arguments through experimentation and select the sound that best suits the application.

The following is the BEEP Macro listing:

— BEEP.inc |—

7 Declaring caonstants =7

CONSTAMT PRESCheep = bTO000711" . B5.3 ms per cycle
S bacros T
BEEF macro freq,duration

movhy freg

mowwf Beep TEMP1
fnowlee duration

call BEEFsub
endrm

EEEPinit macro

bef BEEFpor
BAMK

bicf BEEPtris
BAMKD

endrm

P Subroutines T

BEEPsub
movef Beep TEMPZ . =et the value of sound duration
clrf TRRO lnitialize the counter
bct BEEPpon
BAMNKI
bef BEEPport
movlw PRESCheep . Set the prescaler for TMRED
movwf OPTION_REG D OPTION <- W
BANKD
BEEPa
bef INTCOMTOIF - ; Erase TMEOD Owerflow Fleg
BEEPb
bsf BEEPpor
call B Wait . Duration of logic "1"
bef BEEFport
call B Wait . Duration of lagic "0"
bttsz INTCON TOIF ; Check the TMRED Overflow Fleg,
goto BEEFD ; Skip of it is set
decfsz Beep TEMP21 ;|5 the Beep TEMPZ =07
goto BEEPa . If not, jump to BEEP again
RETURN
B_WWait

movfiy Beep TEMP1
mowvwf Beep TEMP3S
B WWaita

Arrbr= Ommen TERAMOD A

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_07Poglavlje.htm (2 of 4) [5/11/2003 8:58:16 AM]

Chapter 6 - Samples

B WWaita
decfsz Beep TEMPFI 1
goto B _Waita
RETURMN

The following example shows the use of a macro in a program. The program produces two melodies which are obtained by
pressing T1 or T2. Some of the previously discussed macros are included in the program.

— BEEP.asm —

;7 Declaring and configuring & microcontraller =

PROCESSOR 1684
#nclude "pl1BfB4. inc"

_ CONFIG _CP_OFF & WDT OFF & PWRTE_OM & XT 0SC
;7 Declaring variables =

Chlock Ox0C . Beginning of RAM-a
WOV CLE . Belongs to WWAITX macro
PRESCwait

Beep TEMP1 . Belongs to 'BEEF' macra
Beep TEMPZ

Beep TEMP3

endc

;7 Declaring the hardware =

#define BEEPport PORTA S ; Port and pin for mini speaker
#define BEEPtris TRISA S

;7 Btructure of program memary T

ORG 0x00 - Reset vector

goto Main

ORG 0x04 » Interrupt vector
goto Main . Mo interrupt routine
#nclude "bank.inc" C Assistant files

#nclude "button.inc”
#nclude "weait.inc"
#include "beep.inc”

hlain . Beginning of the program
BAMNKI
fiowle 017 s Port Ainitialization
maownf TRIZA C TRISA «<- 0x00
oyl 0x00
movwf TRISE
BAMKD
BEEPFinit . Mini speaker initialization

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_07Poglavlje.htm (3 of 4) [5/11/2003 8:58:16 AM]

Chapter 6 - Samples

clrf FORTE

Laop
Button 0, PORTA, O, 100, Play1 : Button 1
Button O, PORTA, 1, 100, Play2 : Button 2

goto Loop

Flay1
BEEF 0xFF, Ox02
BEEPF 0x90, Dx05
BEEPF 0OxC0O, 0x03
BEEP 0OxFF, 0x03 ; First melody
return

Play2
BEEP Oxbb, Ox02
BEEP 0«87, 0x05
BEEP DxaZ, O0x03
BEEEP 0x93, 0x03 ; Second melody
return

End . End of program

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/6_07Poglavlje.htm (4 of 4) [5/11/2003 8:58:16 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\\l PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

There are two types of shift registers: input and output. Input shift registers receive data in parallel, through 8 lines and
then send it serially through two lines to a microcontroller. Output shift registers work in the opposite direction; they
receive serial data and on a "latch" line signal, they turn it into parallel data. Shift registers are generally used to expand the
number of input-output lines of a microcontroller. They are not so much in use any more though, because most modern

microcontrollers have a large number of input/output lines. However, their use with microcontrollers such as PIC16F84 is
very important.

Input shift registers transform parallel data into serial data and transfer it to a microcontroller. Their working is quite simple.
There are four lines for the transfer of data: clock, latch, load and data. Data is first read from the input pins by an
internal register through a ‘latch’ signal. Then, with a ‘load" signal, data is transferred from the input latch register to the
shift register, and from there it is serially transferred to a microcontroller via 'data’' and ‘clock’ lines.

_AE
B —
| T4
2 3
c 0 —
= Input .
| E4 lateh reS}i-ISIiter
% F_5| register d
[w
55
| H_ | 9 Serial
st A2 output
atch —
Clack—
Load 12

An outline of the connection of the shift register 74HC597 to a micro, is shown below.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (1 of 8) [5/11/2003 8:58:30 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

Connector
\ +$ 1 L™ 12 |
h I
o Rz Rod
el = 7] T
m
O 1—[Rini vcc]J !I_‘ Ri3 Rl e e
vy E-S— [Fin - Eﬂmacm 05C1 :1I__}4|_r_—' |
K . =
.5!'—[Al Serskl ula —| MCLRE PIC O5C2]4|I_I)
4 Serlskl | 2 14
) —[Aing r“|:»:;crlarlf‘|1r: _L_[wss 1GFB4 ved
.] L — & 11 3O z]
o Rins 1 o
- 1 | —[|rE0MNT RE7
a —[RIpE rakr]—_ _ T 1z 3300 AR M
. i = 1 —[|RE1 RE&
2] [|rwr ressd |—T & T 11 3500 |
sz Herlskl l21 f—— 9[RB2 RES 7 A, an
LED
= 74HCHEI? = RE3 FE4
il ’ﬁi
1300 i)' LED
me
— ﬁi

How to connect an input shift register to a microcontroller

In order to simplify the main program, a macro can be used for the input shift register. Macro HC597 has two arguments:
HC597 macro Var, Varl

Var variable where data from shift register input pins is transferred
Varl loop counter

Example: HC597 data, counter
Data from the input pins of the shift register is stored in data variable. Timer/counter variable is used as a loop counter.

Macro listing:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (2 of 8) [5/11/2003 8:58:30 AM]

Chapter 6 - Samples

— HCS97.inc |

HCE9Y macro WarWarl

Local Loop : Local [abel

ol 5 ; transfer eight bits

rmoanf ar : Counter initialization

bsf Latch ; Read pins at input latch

nop

bt Latch ; Transfer content from input latch
bef Load . to shift register

nap

hsf Load

Loop f “ar f ; Rotate “ar' one space ta left

bifsz Data s Data line="1"%

bt “ar |f not, erase bit 0 at Var variable
btfscz Data g Data line=10'7

bsf “ar o f not, set hit O

bsf Clock Make one clock

hap

bef Clock

decfzz “arl f » Are B bits received ¥

goto Loop . If not, repeat

endrm

Example of how to use the HC597 macro is given in the following program. Program receives data from a parallel input of
the shift register and moves it serially into the RX variable of the microcontroller. LEDs connected to port B will indicate the
result of the data input.

— HCH97 .asm —

77 Declaring and configuring & micracaontraoller =

FPROCESSOR 1634
#include "p1Bfad.inc”

__COMFIG _CP_OFF & WDT OFF & PWRTE ON & XT 0OSC
;7 Declaring variables =

Chlock 0x0C . Beginning of RAM

R

CountSPI
endc

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (3 of 8) [5/11/2003 8:58:30 AM]

Chapter 6 - Samples

gL
7 Declaring the hardware =

f#define Data PORTAD
#define Clock PORTAN
#define Latch PORTAZ
f#define Load PORTAZ

S Brogram mermary structure T

ORG Ox00 - Reset vectaor

goto Main

ORG 0x04 . Interrupt vector
gato Main . Mo interrupt routine
#nclude "bank.inc” CAssistant files

#nclude "hos97 inc"

bain ; Beginning of the program
BAMKT
movke BOO010001° s Port & initialization
movef TRISA CTRISA <- 0x11
clef TRISE
BAMNKD
clef PORTA CPORTA <- Ox00
bsf Load . Enable SHIFT register
Loop

HCEYY R, Count3PI

. Status of input pins of SHIFT register

monf R WY are found in wariable RX

movwf FPORTE ; 3et the contents of BX variable to port B
goto Loop . Repeat the loop

End ; End of program

Output shift registers transform serial data into parallel data. On every rising edge of the clock, the shift register reads the
value from data line, stores it in temporary register, and then repeats this cycle 8 times. On a signal from ‘latch’ line, data is
copied from the shift register to input register, thus data is transformed from serial into parallel data.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (4 of 8) [5/11/2003 8:58:30 AM]

Chapter 6 - Samples

Serial 14 15
input — Ga
_1 LB
| 2 Qe a
3 =
. L= Cp
Shift Letch |, -
register register — CGE =
L% QF Eﬂ
| & Gl
11 - Qn
Clock — |—>
Letch 12

An outline of the 74HC595 shift register connections is shown on the diagram below:

33!].‘:2. Er LT g

L 13
Rz R

RAz R0

RAAToCK oscd [J——H
WCLR pIC “sc2 []———

L LED 1 T
:[L4] W

BEETOR
miiﬁﬂ ﬁmz.—[ale Bl
. ml LED 3 _I_[BIc Serlskl ula
3305
EEELTS)
TI00

T

< 1d 3 D —
LM Ble "L wss 16F84 wa[—T
Ty LD o [_ T:HBIIIHNT RET jl
| P 11 oo ol
:giﬁﬂ ﬁ o7 ’_[S 1 L: REZ RES :1|G
= * 74HC595 - s Re4[]

Connecting an output shift register to a microcontroller

Macro used in this example is found in hc595.inc file, and is called HC595.
Macro HC595 has two arguments:
HC595 macro Var, Varl

Var variable whose contents is transferred to outputs of shift register.
Varl loop counter

Example: HC595 Data, counter

The data we want to transfer is stored in data variable, and counter variable is used as a loop counter.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (5 of 8) [5/11/2003 8:58:30 AM]

—

Chapter 6 - Samples

— HCS95.inc |

HCS95 rmacro War Warl

Local Loop - Local label
rowlee 5 . transfer eight bits
rrowef W ar] : Counter initialization
Loop df war f . Rotate “ar' one space to left
btfss STATUS,C Dl cary ="
bcf Data cf not, set Data line to 0
btfsc STATUS,C Clecary =17
bsf Data f not, set Data line to '
bsf Clock s Make one clock
nap
bef Clock
decfsz “arlf ; Are eight bits sent ?
goto Loop ; [fnot, repeat
bsf Latch If all 8 bits have beem sent, move the
nap . contents form SHIFT register to output latch
bof Latch
endm

An example of how to use the HC595 macro is given in the following program. Data from variable TX is serially transferred to
shift register. LEDs connected to the parallel output of the shift register will indicate the state of the lines. In this example
value OxCB (1100 1011) is sent so that the eighth, seventh, fourth, second and first LEDs are illuminated.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (6 of 8) [5/11/2003 8:58:30 AM]

Chapter 6 - Samples

I HC595.asm

77 Declaring and configuring & micracantraoller =

PROCEZS0R 16124
#include "p1BfEd.inc"

__CONFIG _CP_OFF & WDT OFF & PWRTE_ON & XT _0SC

7 Declaring variables =

Chlock 0x0C ; Beginning of RAM

= . Belongs to 'HCE95 macro
CountsPI

endc

= Declaring the hardware =
##define Data PORTAD
#define Clock PORTA
#define Latch PORTAZ

P Structure of program memory T

OFG Ox00 - Reset vector

goto Main

OFG Ox04 . Interrupt vectar
goto Main . Mo interrupt routine
#include "bank.inc” cAssistant files

#include "hoB95 . inc"

Main ; Beginning of the program
BaM
rrowhee 018 s Port & initialization
moved TRISA CTRISA <- 0x18
BaMKO
clef PORTA, CPORTA <- 0x00
movke OxCEB : Fill the T buffer
ot T C T - 11001011

HCE95 T, CountSPI
Loop goto Loop ; Infinite loop

End ; End of program

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (7 of 8) [5/11/2003 8:58:30 AM]

Chapter 6 - Samples

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (8 of 8) [5/11/2003 8:58:30 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\J PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

The segments in a 7-segment display are arranged to form a single digit from O to F as shown in the animation:

We can display a multi-digit number by connecting additional displays. Even though LCD displays are more comfortable to
work with, 7-segment displays are still standard in the industry. This is due to their temperature robustness, visibility and
wide viewing angle. Segments are marked with non-capital letters: a, b, c, d, e, f, g and dp, where dp is the decimal point.
The 8 LEDs inside each display can be arranged with a common cathode or common anode. With a common cathode display,
the common cathode must be connected to the OV rail and the LEDs are turned on with a logic one. Common anode displays
must have the common anode connected to the +5V rail. The segments are turned on with a logic zero.

The size of a display is measured in millimeters, the height of the digit itself (not the housing, but the digit!). Displays are
available with a digit height of 7,10, 13.5, 20, or 25 millimeters. They come in different colors, including: red, orange, and
green.

The simplest way to drive a display is via a display driver. These are available for up to 4 displays.

Alternatively displays can be driven by a microcontroller and if more than one display is required, the method of driving
them is called "multiplexing.”

The main difference between the two methods is the number of "drive lines." A special driver may need only a single "clock"
line and the driver chip will access all the segments and increment the display.

If a single display is to be driven from a microcontroller, 7 lines will be needed plus one for the decimal point. For each
additional display, only one extra line is needed.

To produce a 4, 5 or 6 digit display, all the 7-segment displays are connected in parallel.

The common line (the common-cathode line) is taken out separately and this line is taken low for a short period of time to
turn on the display.

Each display is turned on at a rate above 100 times per second, and it will appear that all the displays are turned on at the
same time.

As each display is turned on, the appropriate information must be delivered to it so that it will give the correct reading.

Up to 6 displays can be accessed like this without the brightness of each display being affected. Each display is turned on
very hard for one-sixth the time and the POV (persistence of vision) of our eye thinks the display is turned on the whole
time.

All the timing signals for the display are produced by the program, the advantage of a microcontroller driving the display is
flexibility.

The display can be configured as an up-counter, down-counter, and can produce a humber of messages using letters of the
alphabet that can be readily displayed.

The example below shows how to dive two displays.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (1 of 6) [5/11/2003 8:58:48 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

T1 T2
WED WFD
Fl K| & hl a| Fl K| & h]-
= - o 1 — —
1 37 Fid 5 ~
i i 0 sOf (el
RE3 R0
4hiHz
4[] : - ol =— | ==
[redmock 0501]—_r_—'l | 73] 7l
; = 20, U, <0
—4%F pc o2 = ——o| | ——=o
O oy 1t 16FB4 tidd IECELEEREEEL
1 b = & 11 mon
0 ——[|reomT RET
hl 1z 3300
—|FEi RES
2 11 3300
—{|re2 RES
= e L. 1y
REZ REd | —T—1
3300
3300
3300
3300

Connecting a microcontroller to 7-segment displays in multiplex mode

File Led.inc contains two macros: LED_Init and LED_Disp2. The first macro is used for display initialization. That is where
display refreshment period is defined as well as microcontroller pins used for connecting the displays. The second macro is
used for displaying numbers from O to 99 on two displays.

Macro LED_Disp2 has one argument:

LED_Disp2 first macro

first is the number from 0 to 99 to be displayed on Msd and Lsd digit.
Example: LED_Disp12 0x34

Number 34 will be shown on the display

Realization of a macro is given in the following listing.

— LED.inc |—

S hacrog YT

LED Init macro
call InitPorts
call InitTimers
endrm

LED DispZ macro num
o num
movwf LO
call UpdateDisplay
endm

7 Subprograms T
http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (2 of 6) [5/11/2003 8:58:48 AM]

Chapter 6 - Samples

7 Subprograms T

InitForts

BAMKT

clf LEDtrisA,
clf LEDtrisB
BAMKD

clf LEDportA,
clt LEDportB
bsf LEDportA 3

RETURMN

InitTirners
BAMKT
rovhey B10000100°
mowwf DOFTION_REG
BAMKD
rovhey BUO0100000°
rrowwe IMTCOMN
rnovlw 96
o THRARD

RETFIE

;. Pins RAD-4 are output
 Port B is output

; =et all outputs to T
; ¢
; Turn an MSD display

; Move the prescaler to TMED
o ps =32

; Enable TMRED interrupt

 Start the timer

SR - Interrup semice routing T

=R
bef INTCOM GIE
btfsc INTCON, GIE
goto ISR

movhe 98

mowvwf THED

bef INTCOM TOIF
call UpdateDisplay

RETFIE

UpdateDisplay
maovf LEDportA WY
clf LEDportA,
andh Ox0f
mavwf TempC
bsf TempC 4
tf TempC F

btfss STATUSC ;c=17

bef TempC 3

btfsc TempC O

goto UpdateMsd
Updatelsd

call ChkMsdZero

btfss STATUS Z

rnowf DO WY

andh Ox0f

goto DisplayOut
Updatehisd

swapf LO WY

arndbee Tl

; Disable all interrupts
. Check whether they are diashled

:nitialize the TRMED

. Erase the TOIF flag
. "Hefresh” dispaly

. Display status -= w register
 Turn off all 7-seq. displays

. Separate the lower halfbyte

; Save display status in TempC

. Beginning status of LSD display
. Sat the status of the next display

. If nat, turn off the L3S0 display
it s, check the status of MZD display
it is turned on, display the MSD digit

cmsd=07¢
CIfitis, skip

; Third LSD digit -= W

; /

; Show it on the display

Msd digit -= W
- f

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (3 of 6) [5/11/2003 8:58:48 AM]

Chapter 6 - Samples

swapf LO WY Msd digit -= W
andly Ox0f ; /
btfsc STATUS Z cmsd =07
fnovlw 003 CIfitis, skip
DisplayOut
call LedTahle . Take the mask for a digit

mowwf LEDportB
movf TemplC W
mowvwf LEDportA

Set the mask on port B
Turn on displays

RETURM
LedTahble
addwf PCL, F
rethy BOOT11111° magk for digit 0
retlw BOOOOO110° . mask for digit 1

rethy BO101107117° mask far digit 2
rethy BTIO007117 mask for digit 3
retlw BO1100110° ; mask for digit 4
rethe BO1101101° mask for digit 5
rethy BT1111107° mask far digit B
retlw BOOOOO1T11 ; mask for digit ¥
rethe BO1111111° mask for digit 3
rethy BOT101111° mask far digit 9

retlw BOOOO0OOC! o nodigit..
ChkMsdiera . Checking the leading zero
fowf LOWY Msd digit -= W
btfss STATUSZ y =07 skip
RETURN it s, skip
rethy 10 I not, go back from 10 to W reg.

The following example shows the use of macros in a program. Program displays number '21' in two 7-segment digits.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (4 of 6) [5/11/2003 8:58:48 AM]

Chapter 6 - Samples

— LED.asm L

 Declaring and configuring & microcontraller =

PROCESSOR 16154
#nclude "p16fB4. inc"

__CONFIG _CP_OFF & WDT_OFF & PWRTE_OM & XT OSC

77 Declaring variables =

Chlock 0x0C . Beginning of RAM

TemptC . Belongs to "LED Disp2" macro
LD

endc

7 Declaring the hardware ™

LEDtrisA equ TRISA
LEDportA equ PORTA,

LEDtrisB equ TRIZE
LEDportE equ FORTE

;7 Structure of program memoary T

ORG Ox00 - Reset vector

goto Main

ORG Ox04 . Interrupt vectar

goto I2R . Interapt rutina is found

;in7-seg.inc file

#nclude "bank.inc” CAssistant files
#nclude "7-seg.inc”

hdain . Beginning of the program
LED _Init
LED Displ Ox21 Dizsplay on twa 7-seq. displays
; broj "21"
loop goto loop ; otay here
End ;. End of program
Previous page Table of contents Next page

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (5 of 6) [5/11/2003 8:58:48 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (6 of 6) [5/11/2003 8:58:48 AM]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
Development systems
Contact US

-

\J P1C Microcontrollers

on-line FREE!

Previous page Table of contents Next Page

More microcontroller devices are using 'smart LCD' displays
to output visual information. The following discussion covers
the connection of a Hitachi LCD display to a PIC
microcontroller. LCD displays designed around Hitachi's LCD
HD44780 module, are inexpensive, easy to use, and it is
even possible to produce a readout using the 8 x 80 pixels of
the display. Hitachi LCD displays have a standard ASCII set
of characters plus Japanese, Greek and mathematical
symbols. A 16x2 line Hitachi HD44780 display

Each of the 640 pixels of the display must be accessed individually and this is done with a number of surface-mount
driver/controller chips mounted on the back of the display. This saves an enormous amount of wiring and controlling so that
only a few lines are required to access the display to the outside world. We can communicate to the display via an 8-bit data
bus or 4-bit data bus.

For a 8-bit data bus, the display requires a +5V supply plus 11 1/0 lines. For a 4-bit data bus it only requires the supply lines
plus seven extra lines. When the LCD display is not enabled, data lines are tri-state which means they are in a state of high
impedance (as though they are disconnected) and this means they do not interfere with the operation of the microcontroller
when the display is not being addressed.

The LCD also requires 3 "control" lines from the microcontroller.

The Enable (E) line allows access to the display through R/W and RS lines. When this line is low, the LCD is disabled and
ignores signals from R/W and RS. When (E) line is high, the LCD checks the state of the two control lines and responds
accordingly.

The Read.Write (R/W) line determines the direction of data between the LCD and microcontroller. When it is low, data is
written to the LCD. When it is high, data is read from the LCD.

With the help of the Register select (RS) line, the LCD interprets the type of data on data lines. When it is low, an
instruction is being written to the LCD. When it is high, a character is being written to the LCD.

Logic status on control lines:

E 0 Access to LCD disabled
1 Access to LCD enabled

R/W 0 Writing data to LCD
1 Reading data from LCD

RS O Instruction
1 Character

Writing data to the LCD is done in several steps:

Set R/W bit to low

Set RS bit to logic O or 1 (instruction or character)
Set data to data lines (if it is writing)

Set E line to high

Set E line to low

Read data from data lines (if it is reading)

Reading data from the LCD is done in the same way, but control line R/W has to be high. When we send a high to the LCD, it
will reset and wait for instructions. Typical instructions sent to LCD display after a reset are: turning on a display, turning on
a cursor and writing characters from left to right.

When the LCD is initialized, it is ready to continue receiving data or instructions. If it receives a character, it will write it on

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (1 of 11) [5/11/2003 8:59:00 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

the display and move the cursor one space to the right. The Cursor marks the next location where a character will be
written. When we want to write a string of characters, first we need to set up the starting address, and then send one
character at a time. Characters that can be shown on the display are stored in data display (DD) RAM. The size of DDRAM is
80 bytes.

CG RaM :
The LCD display also possesses 64 bytes of Character- address Bit map Data
Generator (CG) RAM. This memory is used for characters
defined by the user. Data in CG RAM is represented as an 8- 0000 CIMCIMC] 01010
bit character bit-map. oot OJOmMO[CO0 o010
Each character takes up 8 bytes of CG RAM, so the total omom ONBERL Mo
number of characters, which the user can define is eight. In 0011 EMOOOm 10001

order to read in the character bit-map to the LCD display, we 0100 10000
must first set the CG RAM address to starting point (usually 0101 WO 10001
0), and then write data to the display. The definition of a WO

'special' character is given in the picture . 010 COMEEC 0110

0111 OO0 0oooo

Before we access DD RAM after defining a special character, the program must set the DD RAM address. Writing and reading
data from any LCD memory is done from the last address which was set up using set-address instruction. Once the address
of DD RAM is set, a new written character will be displayed at the appropriate place on the screen.

Until now we discussed the operation of writing and reading to an LCD as if it were an ordinary memory. But this is not so.
The LCD controller needs 40 to 120 microseconds (uS) for writing and reading. Other operations can take up to 5 mS.
During that time, the microcontroller can not access the LCD, so a program needs to know when the LCD is busy. We can
solve this in two ways.

Set DD RAM address
RS RAY| DEF|DBE | DBS|DBEA|DE3|DBZ2| DB | DEOD
1] 1] 1 Al oA | A | A A | A | A

Set CG RAM address
RS |RAY| DBEY|DBR| DES| DB4|{DEI| DEZ| DB1| DBO
]]] 1 A, Al oA A A | A

Write in data to RAM
RS | Rrw| DB7| DB6 | DBS| DE4| DB3| DB2| DE1| DEO
t|oJo]DojDo|D[D]D|D|D

Read data from RAM
RS RAY DBEY|DBE | DBS|DBA|DE3|DB2| DB | DEOD
1 1] O] O] O] O

A=address D=data

One way is to check the BUSY bit found on data line D7. This is not the best method because LCD's can get stuck, and
program will then stay forever in a loop checking the BUSY bit. The other way is to introduce a delay in the program. The
delay has to be long enough for the LCD to finish the operation in process. Instructions for writing to and reading from an
LCD memory are shown in the previous table.

At the beginning we mentioned that we needed 11 1/0 lines to communicate with an LCD. However, we can communicate
with an LCD through a 4-bit data bus. Thus we can reduce the total number of communication lines to seven. The wiring for
connection via a 4-bit data bus is shown in the diagram below. In this example we use an LCD display with 2x16 characters,
labelled LM16X212 by Japanese maker SHARP. The message 'character’ is written in the first row: and two special characters
'~'and '} are displayed. In the second row we have produced the word 'mikroElektronika’.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (2 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples

Ri2 rM [
:iimcm oz:: j—|:ﬁ|£ I:) ﬁ%\% N E:
IR pyc 0%z]4.15 - ﬂ—l \\‘Q\\\\\\\\\\\\\\\\\\\\\‘\\ J
v 16F84 a1 T blelelalelelel=l WL N]
REOBT e [——— j\ 1 A P Y 3 ~
= o) e AN
"’ 14— oy —
3 RM]—‘ \ O spncoooeessens - - O
o e
oS '] T
e | |Contrast
Zontrol lines

Connecting an LCD display to a microcontroller

File LCD.inc contains a group of macros for use when working w

ith LCD displays.

LCD.inc

mt

S Declaring the hardware ™

S LCD commands T

CONSTANT LCDEMS = b0110000°
CONSTANT LCDDZ = b10000000°
COMNSTANT LCDEM4 = b00100000°

CONSTANT LCDZL = bOOT01000°

CONSTANT LCDSH = bOO101000°

S Standard LCD commands T

s macro, ex. "LCDemd LCDCLE"

COMNSTANT LCDCLR = bO0O0OOOOOT!
CONSTANT LCDCH = bU0O000010"
CONSTANT LCDCR = bOO0OO710°
COMSTANT LCDCL = bO0O0007100°
COMNSTANT LCDSL = bDO011000°

; Register Select

RS equ 1
v egqu 2 . Readfrite
EM equ 3

. Enable Cutput £ "CLE"

P Standard commands for LCD initializatoion =

CONSTANT LCODCONT = b0001100°

s ln order to send one of these commands to LCD, we need to use LCDomd

-8 Bit Mode, 2 Lines
SWdrite O o DDRAM
-4 Bit Mode, 2 Lines

: Function; 4 bit 2 lines

. Display contral: Display ORN,

c Cursar OFF, blink OFF

. Display mode: Autolnc cursor
; MoDisplayAutoShift

. clears display, resets cursar
s cursor home

; cursar mave direction right

s cursor move direction left

. shifts display content left

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (3 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples

COMSTANT LCDSL = bOO011000° shifts display content left
COMSTAMT LCDSE = bOo011100° . shifts display content right

selects line 1
selects line 2

CONSTANT LCDL1 = b40000000°
COMSTAMT LCDLZ = b11000000°

P Macrog TR

LEDinit macro
call LCD init
endm

LCD initialization

LCDchar macro LCDary
movhy LCDary
call LCDdata
endrm

cwrite out the character on LCD

LCOwy macro
call LCDdata
endm

LCDemd macro LCDcommand send the command to LCD
roview LSO command
call LCDcomd

endm

LCDline macro line_num

IF {line_num == 1)
LCDemd LCOLA : Start macro with "First Line" instruction
ELSE
IF {line_num == 2}
LCDemd LCDOLE ; Start macro with "Second Line” instruction
ELSE
EMDIF
EMDIF
endm

LCOD DDAdr macro DDRamAddress
Laocal walue = DDRamAddress | bY0000000" ; Beginning of DDRAM
IF (DDHamAddress = Ox67)
ERROR "Wrong DDRAKM address in LCD_DDAr"

ELSE
rovhe walue
call LCDcomd
ErDIF
endrn

LCD CGADr macro CGRamAddress
Local walue = CGRamAddress | bD1000000° . Beginning of CGRAM
IF (CGRamAddress = bO0T11111°
ERROR "Wrong CGRAM address in LCD_CGAD"

ELSE
rovhee walue
call LCDcomd
EMDIF
endrn

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (4 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples

;7 Subpragrams TTTT

LCDcomd clf LCDbuf

gato LCDwer

LCDdata clf LCDbuf

LC Dy

bsf LCDbufRZ

maovaf LCOtermp
andhy b'11110000°
iorwf LCDbuf0
towad LCDOport
call LCDelk

cif LCDport
swapf LCDtermp 0

andly b'11110000°
iorwf LCDbuf0
movad LCDport
call LCDelk
clf LCDpon
RETURN

LCDclk WAIT: 0x02, 0x00

LCD

bsf LCDport,EM
bef LCDport, ER
WAIT Ox02
RETURM

init

cit LCDpor
BAMNE

clf OFTION _REG
rovly bOO000000!
triowwf LCDtris
BAMNED

WWAIT Ox02

triovlwe LCDERMS
movad LCDport
call LCDelk
clf LCDpon
WWAIT Ox02

movlew LCODZE
moved LCDport
call LCDelk
clt LCDport

movlw LCDERS
mowaf LCDpaort
call LCDclk
cif LCDport

LCDemd LCD2L
LCDemd LCDCOMT

. Clear Data flag

; 26t Data flag

. Cammand/Data in Temp

. set aside the upper haltbyte

. set aside Data flag

. send the upper halfbyte to LCD part

. exchange the upper and lower halfbyte
. Aagain

; set aside the lower halfbyte

. set aside the Data fleg

. send the low half byte to LCD port

- Enable access to LCD for data and
s commands to be writen in

. Prepare LCDOport

- Start initialization

“with "B-bit mode”

Cyyrite O in DDA

;goto 4 bit mode

: Function: 2 lines, 4-bit mode
s Display OM, no cursor

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (5 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples

LCDemd LCDZ2L : Function: 2 lines, 4-hit mode
LCDomd LCOCOMT ; Display ON, no cursor
LCDcmd LCDSH . Mode displaying Autolnc, MoAutoShift
LCDOemd LCDCLR . Clear display, address counter to zerao
call LCDspecialChars . read in characters defined by the user
cto CGRAM

RETURM

LCDspecialChars s Maximum number of characters

 that user can define is B

; 7 first special Character is "C" at the position Ox00 =
;7 g called form "LCDchar Ox00" =

LCD_CGAdr 0x00 c Send CGRAM address
LCDehar bOOOOT010° CWrite data to CGRAM address
LCD CoEAdr Ox01

LCDchar bO0O0O100°

LCO CGAdr 0x02

LCDchar bOOO07110°

LCD_CGAdr 0x03

LCDchar bO0O10001°

LCD CGAdr 0x04

LCDchar Q0010000

LCD CGAdr0x05

LCDchar hOOOT00017°

LCD CoAdr Ox0B

LCDchar bO0O07110°

LCD CGAdr Ox07

LCDchar bO0000O00!

;7 first special Character is "C" at the position Ox01 =
;7 g called form "LCDchar Ox01"

LCD_CGAdr Ox03
LCDchar bDO000O1T0"
LCD_CGAdr Ox09
LCDchar bDO000100°
LCD_CGAdr Dx0A,
LCDchar bDOOO1110°
LCD_CGAdr 0x0B
LCDchar bDO010001"
LCD_CGAdr Ox0C
LCDchar bDO010000°
LCD_CGAdr 0x0D
LCDchar bDO010001"
LCD_CGAdr Ox0E
LCDchar bDO001110°
LCD_CGAdr Ox0F
LCDchar bOO00000O0"

LCD_DDAdr Ox00 . Feset DDRAM

RETURHN

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (6 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples

LCDinit macro used to initialize port connected to LCD. LCD is configured to work in four-bit mode.
Example: LCDinit

LCDchar LCDarg Write ASCII character. Argument is ASCII caracter.
Example: LCDChar 'd’

LCDw Write character found in W register.
Example: moviw 'p’
LCDw

LCDcmd LCDcommand Sending command instructions
Example: LCDcmd LCDCH

LCD_DDAdr DDRamAddress Set DD RAM address.
Example: LCD_DDAdr .3

LCDline line_num Set cursor to the beginning of 1st or 2nd row
Example: LCDline 2

When working with a microcontroller the numbers are presented in a binary form.

As such, they cannot be displayed on a display. That's why it is necessary to change the numbers from a binary system into
a decimal system so they can be easily understood. Listings of two macros LCDval_08 and LCDval_16 are given below.
Macro LCDval_08 converts an eight-bit binary number into a decimal number from O to 255 and displays it on the LCD
display. It is necessary to declare the following variables in the main program: TEMP1, TEMP2, LO, LO_TEMP, Bcheck. An
eight-bit binary number is found in variable LO. When a macro was executed, the decimal equivalent of its number would be
displayed on the LCD display. The leading zeros before the number will not be displayed.

— LCDw8.inc —

T hacros TR

LCDwval_08 macro
call LCDOval0s
endrm

7 Subpragrams T

LCDwalds
movfee L0 LO-=L0 TEMP
mowef LD TEMP Initialize zera leading indicator
clrf Bcheck

movhy d"100° Corverts 100-th part of number
movwf TEMPZ
call WALcny

oyl d0° (Corverts 10-th part of number
tnowwf TEMPZ
call WAL

ol d'1! [Converts 1-st part of number
tnowwf TEMPZ
bsf Bcheck O :Clear indicator if there aren't leading zeroes

call WALy
RETLIEM

WAL ohy
clrf TEMP1 ‘Counter initialization
movie TEMPZ

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (7 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples

i IEWVIF | ;L OUNTET INITIANZATIoN
moviw TEMPZ

WaLeO1
subwf LD TEMP D Test if LO=Y9, set carry (negative result)
skpc
gaoto LCDwal2 Exit if cis not set (negative result)
incf TEMP1 1 Jncrement counter
moviw TEMPZ

subwf LO TEMP 1 (Stare TEMP1=TEMP1-100
bsf Bcheck O
goto wALcOl

LCDwal2 mowhw T Mriting a digit on LCD
addwf TEMP10 Add to counter

btfss Bcheck O

rovhe ;Clera leading zero

LG Dy Mrite digit an LCD
RETLIEM

Macro LCDval_16 converts 16-bit binary number into decimal number from 0 to 65535 and displays it on LCD display. The
following variables need to be declared in the main program: TEMP1, TEMP2, TEMP3, LO, HI, LO_TEMP, HI_TEMP, Bcheck. A
16-bit binary number is found in variables LO and HI. When a macro was executed, a decimal equivalent of this number
would be displayed on LCD display. The leading zeros before the number would not be displayed.

— LCDwi6.inc | —

U Wacros YT
LCDwal 16 macro
call LCDvallb
endm
T Subpragrams T
LCDwallb
moviw LO LO-=L0 TEMP
movwf LO_TEMP ;SUB-LO
movie HI ;=UE-HI
movwf HI_TEMP Hl-=Hl_TEMF
clrf Beheck Initialization leading zero indicatar
rovhe b 0O0T0000° :Corvert 10000-th part of number
movwf TEMPZ =SUBE-LO
movlw 00100111
movwf TEMP3 ;SUB-HI
call “ALcrow
moahe 511101000 ;Convert 1000-th part of number
movwf TEMPZ ;SUB-LO
movly bOO000011°
movwf TEMP3 ;aUB-HI
call SWALCHY
movlw b01100100° :Convert 100-th nart of number

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (8 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples

fnovlky b7 100100° ;Convert 100-th part of number
rnowwf TEMPZ (SUB-LO
clrf TEMP3 (SUB-HIif zero
call WALCHy
movhe bDO0OT010" ;Corvert 10-th part of number
rmowed TEMPZ (SLB-LO
cltf TEMP3
call WALy
moayly B00000001" ;Convert 1st part of number
rnowwf TEMPZ (SUB-LO
clf TEMP3
hsf Bcheck O ;Clear indicator if there aren't leading zeroes
call wWaALcnw
RETLIREM
ALy :Counter initialization
clf TEMP1
Yol
movfe TEMP3
subwf H_TEMP D
skpe Skip if HIi==0
goto LCDreal2 (Exit if not
bhz Yo
movfer TEMPZ
subwf LO_TEMP O
skpe Skip if LO==0
goto LCDwall Exit if not
Yo
rnovfee TEMP3
subwi HI_TEMP 1 ‘HI=HI-TEMP3
rnovfee TEMPZ
subwf LO_TEMP 1 LO=LO-TEMPZ
skpc sSkip if LO==0
decf HL_TEMF 1 :Decrement HI
incf TEMP1 1 Jncrement counter
bsf Bcheck D
goto ool
LCCwal? maoyvhe T Mritting a number at LCD
addwf TEMP1 0 Add offset to counter
btfss Brecheck D
Fricl
LT O
RETLIREM

The main program is a demonstration of using the LCD display and generate new characters. At the beginning of a program,
we need to declare variables LCDbuf and LCDtemp used by subprograms for the LCD as well as the microcontroller port
connected to the LCD.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (9 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples

The program writes the message 'characters:' on the first row and shows two special characters '~' and '}'. In the second
row, 'mikroElektronika’ is displayed.

— LCD.asm L

 Declaring and configuring & microcontraller =

PROCESSOR 16154
#nclude "p16fB4. inc"

__CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & XT OSC

7 Declaring variableg =

Chlock 0xQC . Beginning of RAM

LCObuf . Belongs to 'LCDxxx' macros
LCDtemp

WCYCLE . Belongs to WAITR macro
PRESCwait

Fuaointer . Pointer on characters in message
endc

7 Declaring the hardware =

LCDtri=s egu TRISE
LCOport equ PORTE

77 Structure of program memary T

OFG 0x00 ; Reset vector

goto Main
ORG Ox04 Interrupt vector
goto Main ; Mo interrupt routine
Messages . Beginning of the messages
mowvwf PCL

. Display messages

Messagel dt "mikRoElekirOnlkA”
MessageZ dt "bla, bla"
Messaged dt "example”

END _messages ; End of messages
#nclude "bank.inc” CAssistant files
#nclude "“wait.inc"
#nclude "led.inc”
#nclude "print.inc"

befain . Beginning of the program

bcf PORTE 2

| C:Minit I CIY initializatinn
http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (10 of 11) [5/11/2003 8:59:00 AM]

Chapter 6 - Samples
LCDinit C LCO initialization

LCDchar . Display character on LCD
LCDchar 'a'
LCDchar 't
LCDchar 'a'
LCDchar &'
LCDchar t'
LCDchar &'
LCDchar 't
LCDchar 's'
LCDchar '
LCDchar

LCDchar 0x00 ; Display special characters
LCDchar 01

LCDline 2 ; Second line
: Display messagel on LCD

FRINT Messages, Messagel, MessageZ, Faointer, LCDw
Loop goto Loop ; Infinite loop

End . End aof program

Previous page Table of contents

Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (11 of 11) [5/11/2003 8:59:00 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\J PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

Since everything in the microcontroller world is represented with "0's" and "1's", how do we cater for a signal that is 0.5 or
0.777?

Most of the world outside a computer consists of analogue signals. Apart from speech and music, there are many quantities
that need to be fed into a computer. Humidity, temperature, air pressure, colour, turbidity, and methane levels, are just a
few.

The answer is to take a number of digital lines and combine them so they can "read" an analogue value. An analogue value
is any value between 0 and 1. You can also call it a "fractional value." All the above quantities must now be converted to a
value between 0 and 1 so they can be fed into a computer.

This is the broad concept. It becomes a little more complex in application.

If we take 8 lines and arrange than so they accept binary values, the total count will be 256 (this is obtained by a count to
255 plus the value 0).

If we connect these 8 lines into a "black box," they will be called output lines and so we must provide a single input line.
With this arrangement we can detect up to 255 increments between "0" and "1." This black box is called a CONVERTER and
since we are converting from Analogue to Digital, the converter is called an A-to-D converter or ADC.

AD converters can be classified according to different parameters. The most important parameters are precision and mode
of data transfer. As to precision, the range is: 8-bit, 10-bit, 12-bit, 14-bit, 16-bit. Since 12-bit conversion is an industrial
standard, the example we have provided below was done with a 12-bit ADC. The other important parameter is the way data
is transferred to a microcontroller. It can be parallel or serial. Parallel transmission is faster. However, these converters are
usually more expensive. Serial transmission is slower, but in terms of cost and fewer input lines to a microcontroller, it is the
favourite for many applications.

Analogue signals can sometimes go above the allowed input limit of an ADC. This may damage the converter. To protect the
input, two diodes are connected as shown in the diagram. This will protect from voltages above 5V and below 0V.

In our example we used a LTC1286 12-bit ADC (Linear Technology). The converter is connected to the microcontroller via
three lines: data, clock and CS (Chip Select). The CS line is used to select an input device as it is possible to connect other
input devices (eg: input shift register, output shift register, serial ADC) to the same lines of the microcontroller.

The circuit below shows how to connect an ADC, reference and LCD display to a micro. The LCD display has been added to
show the result of the AD conversion.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (1 of 6) [5/11/2003 8:59:08 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

Protection
diodes =

w

i

Rz rod [—
Rz R ———amHz
RAATOCK 98CH
IR oy 9502
s TBEB4 wdd
REMNT RET

REd REB[—

RE# RE:

RE FE4 F—w

T N C 5V
IR R RN

LI el e vz el LTI N il
el ol I lele ol L] leleklE) K] w

I—_OrOSeE

-
=y
w

210k

LN
1
= =
)
£
L1 L1 L] Ltl
+
[]
=
4k7
4k7
W

+av
Analogue npul & %

-
b -
= F il
+

[hi:. s

153
|

5
_IL
a
3
Y]
o
3
=
N =
15
[mr]
ﬁ [wy)
Reaat
ﬂﬁmlu\-
|

|
g
LE?
'i‘:;
|—>
|
*Tz

A

—
D
J

ald T xﬁ — : A
#ﬁl?llﬂiﬂﬂl#ﬂ * o
‘ +ov
= | Contrast

Connecting an AD converter with voltage reference to a microcontroller

The Macro used in this example is LTC86 and is found in LTC1286.inc file.

— LTC1286.inc —

LTCBE macro vWar LO, War HI, YWar
Local Loop - Local label
Local Loopt
clrf War L0 . Erase data buffer
clrf War Hl
mavlw 4
rrovet Sar ; Counter initialization

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (2 of 6) [5/11/2003 8:59:08 AM]

Chapter 6 - Samples

rrovet Sar ; Counter initialization
bicf (8 . Enable AD coverter
call CLk - Enable Dout line
call CLk ; £
call CLK s MULL hit
Loop rlf War_HIf . RRotate %ar_HI' ane space to left
btfsz Data cig Dout line="1""*¢
bicf War_HI0 ;fnot, clear bit 0" in %ar_HI variable
btfsc Data Sig Dout line=1"7¢
bsf War HIO . if nat, set bit 0" in “ar_Hl variable
call CLk
decfsz “ar f cAre 4 bits received ?
goto Loop ; [f not, repeat
ok 3
ot Yar - Counter initialization

Loop? rlf War L0 f . Rotate “ar L0 one space to left

btfss Data cig Dout line=""%¢
bicf War LO0 . if nat, clear hit 0" in War LD wariable
btfsc Data cig Dout line=1"¢
bsf War_LO0O ;if not, set bit 0" in var_LO variable
call CLK
decfsz “ar f » Are 3 bits received ?
goto Loopt . If not, repeat
bsf CS s Disable &0 converter
endm
CLk
bsf Clock - Make one clock
nop
nap
nop
bof Clock
return

The LTC86 Macro has three arguments:
LTC86 macro Var_LO, Var_HI, Var

Var_LO variable is where the result of lower byte conversion is stored
Var_HI variable is where the result of higher byte conversion is stored
Var loop counter

Example: LTC86 LO, HI, Count

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (3 of 6) [5/11/2003 8:59:08 AM]

Chapter 6 - Samples

The four bits of the highest value are in variable HI, and first eight bits of conversion result are in variable LO. Count is an
assistant variable to count the passes through loops.

The following example shows how macros are used in the program. The program reads the value from an ADC and displays
it on the LCD display. The result is given in quantums. Eg: for OV the result is O, and for 5V it is 4095.

I LTC1286.asm | —

7 Declaring and configuring @ microcontroller =

FROCESSOR 16184
#nclude "p1bfE4.inc"

__CONFIG _CP_OFF & WDT OFF & PWRTE_ON & XT DSC

77 Declaring variablas =

Chlock Ox0C . Beginning of RAM

LEDbuf . Belongs to 'LCDxxx' macros

LCDOtermp

WCYCLE . Belongs to WAITX macro

FREESCwait

TEMP1 . Belongs to "LCDOwal 16" macrao

TEMPZ

TEMP3

Lo . LO Data bufter

HI . HI_Data buffer

LD TEMP

HI_ TEMP

Boheck

Count . Belongs to "LTCBE" macra

Puointer . Pointer on characters in message
endc

T

7 Daclaring the hardware
#lefine Data PORTAD
#define Clock PORTA,1
#define CS PORTAZ2

LCDOtris equ TRISE
LCDport equ PORTE

S Structure of program mermary T

ORG Ox00 - Reset vector
goto Main
ORG Ox04 ; Interrupt vector
goto Mdain . Mo interrupt routine
hessages ; Beginning of the messages
movwf PCL

; Display messages
http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (4 of 6) [5/11/2003 8:59:08 AM]

Chapter 6 - Samples
; Display messages

Messagel dt " LTC1286
bessagel dt "ASD rezul. "

EMD_messages ; End of messages

#nclude "bank.inc" CAssistant files
#nclude "tc1286.inc"

#nclude “wait.inc"

#nclude "lcd.inc"

#Anclude "lcdvlB.inc”

#nclude "print.inc”

Main ; Beginning of the program
BAMNIK1
rriowle Of1 : Port A initialization
o TRISS C TRISA, <- 0xfl
BAMNKD
LCDinit - LCD initialization
clef PORTA, - FORTA <- Ox00
LCD_DDAdr .3

PRIMT Messages, Messagel, Messagel, Pointer, LCDwe
; Read value an AD coverter input

Loop
LTCEE LO, HI, Count
. Display AD result
call Dot con LD display
goto Loop . Hepeat loap
Clut
LCDline 2 ; Second line
FRINT Messages, Messagel, END_messages, Pointer, LCDw
LCDwval 16
return
End . End of program
Previous page Table of contents

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (5 of 6) [5/11/2003 8:59:08 AM]

Next page

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (6 of 6) [5/11/2003 8:59:08 AM]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

IndeXx
b 4 - Development systems
\\l PIC Microcontrollers »
on-line FREE!
Previous page Table of contents Next Page

SClI is an abbreviation for Serial Communication Interface and, as a special subsystem, it exists on most microcontrollers.
When it is not available, as is the case with PIC16F84, it can be created in software.

Free line Free line
1 ——
1
ﬂ:Fp.
zare e
o Lit H

data

As with hardware communication, we use standard NRZ (Non Return to Zero) format also known as 8 (9)-N-1, or 8 or 9 data
bits, without parity bit and with one stop bit. Free line is defined as the status of logic one. Start of transmission - Start
Bit, has the status of logic zero. The data bits follow the start bit (the first bit is the low significant bit), and after the bits
we place the Stop Bit of logic one. The duration of the stop bit 'T' depends on the speed of transmission and is adjusted
according to the needs of the transmission. For the transmission speed of 9600 baud, T is 104 usS.

. CD (Carrier Detect)

. RXD (Receive Data)

. TXD (Transmit Data)

. DTR (Data terminal Ready)
. GND (Ground)

. DSR (Data Set Ready)

. RTS (Request To Send)

. CTS (Clear To Send)

. Rl (Ring Indicator)

© o~NOUh,WDNPE

Pin designations on RS232 connector

In order to connect a microcontroller to a serial port on a PC computer, we need to adjust the level of the signals so
communicating can take place. The signal level on a PC is -10V for logic zero, and +10V for logic one. Since the signal level
on the microcontroller is +5V for logic one, and 0V for logic zero, we need an intermediary stage that will convert the levels.
One chip specially designed for this task is MAX232. This chip receives signals from -10 to +10V and converts them into O
and 5V.

The circuit for this interface is shown in the diagram below:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (1 of 6) [5/11/2003 8:59:37 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Chapter 6 - Samples

Y
T
‘[i ™ RA js
SUB-D 9-pin —]=- woo Fezet 7|2 K
connector on W |+ - " [g'u' H’g] 4hiHz
rmicrocontroller = Lﬁ — = z 18
system Ci- Taur]] L[L: %WKI el-1e | :Lﬂ:
Coa- Rl B nsc2
I q pic sep
1 ricur] | 1w 1aF34 d
" - = E RE 12
Loy :|| (- o[l REOANT 7]
= [} rzoue T [— 1? ?I: RE RE jz
I Rztn rzcur] | =] . L e
= H J_ e FE 1
hl 232 = 4.2 I T
I: RE RE :l
2 d

Serial cable
(1on1)

Receives data (Fx)

=
Sends data (Tx) {33

SUB-D 9-pin connector on PiC

Connecting a microcontroller to a PC via a MAX232 line interface chip.

File RS232.inc contains a group of macros used for serial communication.

RS5232.inc

—&

77 Declaring the hardware =

#define R¥part PORTE D
#define F¥iris TRISB D

7 Daclaring constants =

d10'
d13'
d9’
=)

COMSTANT LF =
COMSTANT CR =
COMNSTANT TAB =
COMSTANT BS =

FEEE hdacrog T

RS232init macro
call
endrm

RS._init

SEMD macro 5 string

s Msend'y

. Line Feed

. Carriage Return
: Tabulator

. Backspace

, sending &SCI caracters

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (2 of 6) [5/11/2003 8:59:37 AM]

Chapter 6 - Samples

SEMD macro
O
call

endm

SEMDwe macro
call
endrm

RECEMNE
call
endrm

=_string
= _string
SEMDsub

SEMDsub

Facro
RECsuhb

T Subprograms T

RS init bef Trpor
BANK
clrf OPTION_REG
bef Txtris
bst RXiris
BAMNKD
bsf TAport
movhw b"10010000°
movwf [NTCON
RETURN
SEMDsub movwt TaD
bef Trport
movhw 008
movwf RS_TEMP1
call = Wiait
SEMNDa btfsc TAD O
goto SEMDb
bef TAport
gato SEMDc
SEMNDb bsf T¥poart
SEMNDc rf TAD
call = Wi ait
decfsz RS _TEMP1,1
goto SEMDa
goto SERDA
SENDd bsf T¥port
call = _Wiait
call 5 Wiait
RETURN
5 Wait movle 0x1E
movwf RS_TEMPZ
goto X Wvait
s W/ait mavhe Ox0C
movwf RZ_TEMPZ
goto X _WWait
R Wait movle Ox10
movwf RZ_TEMPZ
goto X WWait
A _WVait decfsz RZ_TEMPZ1

[

LT | N Y

c"send®" ", sending ASCI caracters

Tx pin
R input wath pull-up

;The beginning state onTX line :logic "1"
:Enable HEQ -interrupt

T data register

‘Start hit

‘The number of bit to send 9&00-8-M-1

‘Send LSB first

;Stop hit

‘Re-sinchronization

‘Pause between two hits
9600 baud == 10403 in sending

Pause 5205 for start bit
Jin receiving

Pause between two bits in receiving

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (3 of 6) [5/11/2003 8:59:37 AM]

Chapter 6 - Samples
WWait decfsz RS TEMP21

goto X Wait
RETURNM
RECsub call Rs_Wait
btfsc Fiport
goto REEMTRY Mot start bit
movly 005
mowaf RS TEMP The nimber receiving bits 9500-3-1-1
goto RECa Pause

RECa call R Wait
btfsz F¥port

goto RECh
bsf RxD 0x07
goto RECE
FECb bcf R0 0=07
RECc decfsz RE_TEMP10 akip if R5_TEMP=1
rrf FeD 1 Repeat this seven times
decfsz RS _TEMP1 1
goto RECa
call R Wait
btfsz Fiport Check if stop bit
clrf RxD
RETURN
REEMTRY clrf FD Urvalid data
goto |5Rend

Using the macro:

RS232init Macro for initializing RBO pin and line for transmitting data (TX-pin).
Example: RS232init

SEND S_string Sending ASCII character. Argument is ASCII sign.
Example: SEND 'g’

SENDw Sending data found in W register.
Example: moviw 't'
SENDw

RECEIVE macro in interrupt routine receives data for RS232 and stores it in RXD register
Example:

QORG Q=04
goto ISR

IaER botf INTCON, GIE
btfsc INTCOMN, GIE
gota I3ER
RECEIVE

I3Fend bof INTCOMN, INTF
RETFIE

At the beginning of the main program, we need to declare variables RS_TEMP1, RE_TEMP2, TXD, RXD and TX pin on

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (4 of 6) [5/11/2003 8:59:37 AM]

Chapter 6 - Samples

microcontroller. After resetting a microcontroller the program sends a greeting message to PC computer: $ PIV16F84 on
line $, and is ready to receive data from RX line.

We can send and receive data from PC computer from some communication program. When microcontroller receives data, it
will send a message: Character received from PIC16F84: x, thus confirming that reception was successful.

Main program:

I RS23Z.asm |—

77 Declaring and configuring & micracontroller =

FPROCESSOR 1634
#include "p16fad.inc”

__CONFIG _CP_OFF & 'WDT_OFF & PWRTE ON & XT 0SC

7 Declaning variables ™

Chlock Ox0C ; Beginning of RAM

RS TEMP1 : Belongs to 'R5232" functions
RS TEMPZ2

T«D

F=D

Fointer . Pointer to message's caracters
endc

7 Deklaracia hardvera ™

#define T¥port PORTA 3
#define THtris TRISA S

LCDtri= equ TRISE
LCDport equ PORTE

77 Structure of program memary T

OFG Ox00 . Reset vector
gota Main
OFG Ox04 . Interrupt vectar
gota I5R . Jump on interrupt routine
Messages
1 cvaf FCL ; Messages to be shown at LCD

; sent by R5Z3Y

hlessaged dt "Received character from PICT1GFS4: "
Messagel dt "5 PIC1BFE4 an line §"

EMD messages . End of messages

#include "bank.inc” cAssistant files
#nclude "rs232.inc"
#nclude "print.inc”

T

SR mtarmint ratine

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (5 of 6) [5/11/2003 8:59:37 AM]

Chapter 6 - Samples

=R

[SRend

i ain

Loop

T Interrupt radtine T

bicf INTCOM GIE ; Disable all interrupts

btfsc INTCON,GIE : Check if digabled

goto I2R

RECEINE ; Store received data in BX variable
SEND TAR

. Send massage O trough R5232 line
PRINT Messages, Messagel, Messagel, Faointer, SEMNDw

movfee FxD : Return back received data as confirrmation
SEMDrwy ; of successful receiving

SEND CR ; Carriage Return
SEMD LF . Line Feed
SENMD LF

bef INTCON IMTF ; Clear interrupt fleg RBO/AIMT
RETFIE ; Enable all interrupts

; Start of the program
RS232init ; R5232 initialization
; 3end message 1

FRINT Messages, Messagel, EMD_messages, Paointer, SEMNDwy

=END CRH . Carriage Return
SEMD LF : Line Feed
SEND LF

goto Loop ; Infinite loap
End ; End of program

Previous page

Table of contents

Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (6 of 6) [5/11/2003 8:59:37 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Appendix A - Instruction Set

Index
- Development systems
PI1C Microcontrollers
Contact US
on-line FrREE!
Previous page Table of contents Next Page

Appendix A

Instruction Set

Appendix contains all instructions presented separately with examples for their use. Syntax, description and its effects on
status bits are given for each instruction.

. A.1 MOVLW
. A.2 MOVWEF
. A.3 MOVF

. A4 CLRW

. A5 CLRF

. A.6 SWAPF

. A.7 ADDLW
. A.8 ADDWEF
. A.9 SUBLW

. A.10 SUBWF
. A.11 ANDLW
. A.12 ANDWF
. A.13 IORLW
. A.14 IORWF
. A.15 XORLW
. A.16 XORWEF
. A.17 INCF

. A.18 DECF

. A.19 RLF

. A.20 RRF

. A.21 COMF

. A.22 BCF

. A.23 BSF

. A.24 BTFSC
. A.25 BTFSS
. A.26 INCFSZ
. A.27 DECFSZ
. A.28 GOTO

. A.29 CALL

. A.30 RETURN
. A.31 RETLW
. A.32 RETFIE
. A.33 NOP

. A.34 CLRWDT
. A.35 SLEEP

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (1 of 18) [5/11/2003 8:59:53 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Appendix A - Instruction Set

A.1 MOVLW Write constant in W register

Syntax: [abal] MOYLW K

Description: B-hit constant k is written in W register.
Operation: k= (W

Operand: 0< k=255

Flag: -

NMumber of words: 1
Mumber of cycles: 1

Example 1 MOWLW 0xG5A
after instruction: W=D 54
Example 2 MOYLW REGISTAR

Before instruction: W=0x10 and REGISTAR=0x40
after instruction: Vi =[x 40

A.2 MOVWF Copy W to f

Syntax: [zbei] MOVWE F

Description: Contents of W reqgister is copied to f register.
Operation: W= ()

Operand: 0§ 127

Flag: -

Number of words: 1
NMumber of cycles: 1

Example 1 MOWVWF OPTION_REG

Before instruction: OPTIOW _REG=0xZ20
Wit =0 40

After instruction: OPTIOM _REG=0x40
Wi=0=40

Example 2 MOWVWF INDF

Before instruction: W=0x17

FSR=0=xCZ2

address contents 0xC2=0x00
after instruction: W=0x17

FSR=0xCZ

address contents OxC2=0x17

A.3 MOVF Copy ftod

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (2 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: ['zbei] MOVFE £, d

Description: Contents of f register is stored in location determined by d operand.
If d=0, destination is W reqgister.
If d=1, destination is f register itself.
Option d=1 is used for testing the contents of f register because
execution of this instruction affects 2 flag in STATUS register.

Operation: f={d}
Operand: 0=f= 127

d e [0,1]
Flag: z

NMumber of words: 1
NMumber of cycles: 1

Example 1 MOWF FSR, 0

Before instruction: FSR=0xCZ2
Wi=0=00

After instruction: W =0=C2
Z=0

Example 2 MOVF INDF, O

Before instruction: W=0x17
FSR=0xCZ
address contents 0xC2=0x00
after instruction: W=0x17
FSR=0xCZ
address contents 0xC2=0x00
=1

A.4 CLRW Write O in W

Syntax: Uzbel] CLREW

Description: Contents of W register evens out to zero, and 2 flag in STATUS
register is set to ane.

Operation: 0= {W)

Operand:

Flag:

z
NMumber of words: 1
NMumber of cycles: 1

Example CLREW
Before instruction: W=0xE55

After instruction: Wi=0x00
Z=1

A5 WriteOin f

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (3 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: ['ztei] CRLF f
Description: Contents of 'f' register evens out to zero, and 2 flag in status
register is set to ane.

Operation: O=f
Operand: 0<f< 127
Flag: z

NMumber of words: 1
Number of cycles: 1

Example 1 CRELF STATUS

Before instruction: STATUS=0xC2
After instruction: STATUS=0x00
=1

Example 2 CLRF INDF

Before instruction: FSR=0xCZ2
address contents 0XC2=0x33
After instruction: FSR=0=C2
address contents 0xC2=0x00
=1

A.6 SWAPF Copy the nibbles from f to d crosswise

Syntax: ['zbei] SWAPF f, d

Description: Upper and lower half of f register exchange places.
If d=0, result is stored in W register.
If d=1, result is stored in f register,

Operation: f<0:3= = d=4: 7=, f<4: 7> = d=<0:3=;
Operand: 0¥ 127

d <= [0,1]
Flag: -

Mumber of words: 1
Number of cycles: 1

Example 1 SWaAP REG, 0
Before instruction: REG=0xF3
After instruction: FEG=0xF3
Wi=0=3F
Example 2 SWaP REG, 1

Before instruction: REG=0xF3
After instruction: REG=0%=3F

A.7 ADDLW Add W to a constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (4 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: ['zbei] ADDLW k

Description: Contents of W register is added to 8-bit constant k and result is
stored in W reqgister.

Operation: (W + k=W

Operand: 0< k=255

Flag: c,Dc, 2

Number of words: 1
NMumber of cycles: 1

Example 1 ADDLW 0x15

Before instruction: ‘W=0x10
After instruction: W=0x2E5

Example 2 ADDLW REG

Before instruction: W=0x10
register contents REG=0x37
After instruction: W= 47

A.8 ADDWF Add W to f

Syntax: [fzbe=f] ADDWF 1, d

Description: Add contents of register W toregister f.
If d=0, result is stored in W register.
If d=1, result is stored in f register.

Operation: W) +(f)=d
d = [0,1]

Operand: 0<f< 127

Flag: c,Dc, 2

Number of words: 1
NMumber of cycles: 1

Example 1 ADDWF FSRE, O

Before instruction: W=0x17
FSR=0=xCZ2

after instruction: W=0xDa
FSR=0xC2

Example 2 ADDLW IMNDF, 1

Before instruction: W=0x17

FSR=0xCO

address contents OxC2=0x20
after instruction: W=D 17

FSR=0xCZ

address contents OxC2=0x37

A.9 SUBLW Subtract W from a constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (5 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: ['zhai] SUBLW Kk

Description: Contents of W reqgister is subtracted from k constant, and result is
stored in W register.

Operation: k-{W)i=W

Operand: 0=ks= 255

Flag: c,DC, 2

NMumber of words: 1
NMumber of cycles: 1

Example 1 SUBLW 0x03

Before instruction: W=0x01, C=x, Z=x
After instruction: W=0=x02, C=1, Z=0 Fesult = 0

Before instruction: W=0=x03, C=x, Z=x
1 1

after instruction: W=0x00, C=1, £= Result =0
Before instruction: W=0x04, C=x, Z=x
after instruction: W=0xFF, C=0, Z=0 Fesult <0
Example 2 SUBLW REG
Before instruction: W=0=10

contents REG=0x37
after instruction: W=0x27

c=1 Fesult = 0
A.10 SUBWF Subtract W from f
Syntax: ['=bei] SUBWF f, d
Description: Contents of W reqgister is subtracted from the contents of f register.

If d=0, result is stored in W register.
If d=1, result is stored in f register.

Operation: Fr-wW)=d
Operand: 0=f= 127

d = [0,1]
Flag: c, Dz, 2

Number of words: 1
NMumber of cycles: 1

Example 1 SUBWF EEG, 1

Before instruction: REG=3, W=2, C=x, Z=x
After instruction: REG=1, W=2, =1, Z=0 Result =0
Before instruction: REG=2, W=2, C=x, Z=*
after instruction: REG=0, W=2, C=1, Z=1 Fesult =0
Before instruction: REG=1, W=2, C=x, Z=x
after instuction: FEG=0xFF, W=2, C=0, Z=0 Result < 0

A.11 ANDLW Logic AND W with constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (6 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: [zbei] AMDLW k

Description: Performs operation logic AMD over the contents of W register and
constant k.
Result is stored in W reqgister.

Operation: (WY AND. k=W

Operand: 0< k<255

Flag: z

NMumber of words: 1
Number of cycles: 1
Example 1 AMNDLW 0OxG5F

Before instruction: W=0xA3 ; 0101 1111 {0OxEF)
after instruction: W=0x03 ; 10100011 (0xA3)

; 0000 0011 (0=03)

Example 2 ANDLW RE(

Before instruction: W=0xA3 ;1010 0011 {0xA3
REG=0x37 ;0011 0111 {0%37)
After instruction: W=0x23

; 0010 0011 (0%23)

A.12 ANDWF Logic AND W with f

Syntax: [f'zbei] aMDWF f, d
Description: Performs operation of logic AMD over the contents of W and f
registers.

If d=0, result is stored in W register.
If d=1, result is stored in f register.

Operation: (W AND, f=d
Operand: 0=f= 127

d e [0,1]
Flag: z

NMumber of words: 1
NMumber of cycles: 1

Example 1 ANDWF FSE, 1

Before instruction: W=0x17, FSR=0xCZ2 ; 0001 0111 (Ox17)
after instruction: W=0x17, FSR=02 ;L1000 o010 {OxC2)y

; 0000 0010 (Ox02)
Example 2 AMNDWF FSE, O

Before instruction: W=0x17, FSE=0xC2 ; 0001 0111 (Ox17)
after instruction: W=0x02, FSR=0xC2 ;L1000 o010 {OxcC2)y

; 0000 0010 {0x02)

A.13 IORLW Logic OR W with constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (7 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: [fzbei] IORLW k

Description: Operation logic OR is performed over the contents of W register and
over 8-hit constant k, and result is stored in W register.

Operation: (W OR, (k) =W

Operand: 0=k= 255

Flaqg: z

Mumber of words: 1
Number of cycles: 1

Example 1 [ORLW 0x35
Before instruction: W=0=x94
after instruction: W' =0 BF
Z=0
Example 2 IORLW REG
Before instruction: W=0x94
contenst REG=0x37

after instruction: W=0x9F
Z=0

A.14 IORWF Logic OR W with f

Syntax: Uzbef] IORWF f, d
Description: Operation logic OR is performed owver the contents of W and f
registers,

If d=0, result is stored in W register,
If d=1, result is stared in f register.

Operation: (W OR (Fhi=d
Operand: 0=f= 127

d= [0,1]
Flaqg: z

Mumber of words: 1
Mumber of cycles: 1

Example 1 [CRWF REG, 0

Before instruction: REG=0x13, W=0x91

After instruction: FEG=0x13, W=0x93
Z=0

Example 2 [0ORWF REG, 1

Before instruction; REG=0x13, W=0x01

After instruction: FEG=0x93, W=0x91
Z=0

A.15 XORLW Logic exclusive OR W with constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (8 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: [l'abe!] =OFELW k

Description: Cperation exclusive OR {X0OR) is done over the contents of W
register and constant k, and result is stored in W register.

Operation: (W RKOR, k= W

Operand: 0< k=255

Flaqg: z

Mumber of words: 1
Mumber of cycles: 1
Example 1 =ORLW 0xAF

Before instruction: W=0xBE ;1010 1111 (OxAF)
after instruction: W= 1A ; 1011 0101 (OxBE)

;0001 1010 (D% 14}

Example 2 <0ORLW REG

Before instruction: W=0xAF ;1010 1111 {Ox A3
REG=0x37 ;0011 0111 (0x37)
After instruction: W=0x18
Z=0 ; 0001 1000 (O0%18)

A.16 XORWF Logic exclusive OR W with f

Syntax: [fzbel] =ORWF f, d
Description: Cperation exclusive OR is performed over the contents of W and
registers.

If d=0, result is stored in W register.
If d=1, result is stored in f register.

Operation: (W) HOR, (Fh=d
Operand: 0=f= 127

d e [0,1]
Flag: z

NMumber of words: 1
NMumber of cycles: 1

Example 1 =<ORWF REG, 1

Before instruction: REG=0xAF, W=0xB5 i 1010 1111 {O=AF)
after instruction: REG=0x1A, W=0xBE ; 1011 0101 (0xBEY

; 0001 1010 (0% 14)
Example 2 =<ORWF REG, O

Before instruction: REG=0xAF, W=0xBE ;1010 1111 {O=AF)
after instruction: REG=0xAF, W=0x1A ; 1011 0101 (0xBE)

; 0001 1010 (0x14)

A.17 INCF Increment f

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (9 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: ['abe!] IMCF f, d

Description: Increments fregister by one.
If d=0, result is stored in W register.
If d=1, result is stored in f register.

Operation: ifi+1=4d
Operand: 0=f= 127

d = [0,1]
Flag: z

Number of words: 1
nNumber of cycles: 1

Example 1 [NCF REG, 1

Before instruction: REG=0xFF
Z=0

After instruction: FEG=0=x00
=1

Example 2 [NCF REG, O

Before instruction: REG=0x10
) W =
Z=0
After instruction: FEG=0x10
Wi=0x11
Z=0

A.18 DECF Decrement f

Syntax: ['zbe!] DECF f, d

Description: Decrements fregister by one.
If d=0, result is stored in W register,
If d=1, result is stared in f register.

Operation: fi-1=d
Operand: 0=f= 127

d <= [0,1]
Flaqg: Z

Number of words: 1
nNumber of cycles: 1

Example 1 DECF REG, 1

Before instruction: REG=0x01
Z=0

After instruction: FEG=0=x00
=1

Example 2 DECF EEG, O

Before instruction: REG=0x13
) Wi =
Z=0
After instruction: FEG=0x13
Wi=0x12
Z=0

A.19 RLF Rotate f to the left through CARRY

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (10 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: ['zbe!] RLF f, d

Description: Contents of f register is rotated by one space to the |eft through C
(Carryy flag.
If d=0, result is stored in W register,
If d=1, result is stared in f register.

Operation: (fcnz=) = dasn+l=, f<7> = C, C = d<0>;
Operand: 0=f= 127

d= [0,1]
F|Ell3: C ek registar f o

Number of words:
NMumber of cycles:

1
1

Example 1 RLF REG, O

Before instruction: REG=1110 0110
C=0

After instruction: REG=1110 0110
W=1100 1100
=1

Example 2 RLF REG, 1

Before instruction: REG=1110 0110
C=0

After instruction: REG=1100 1100
=1

A.20 RRF Rotate f to the right through CARRY

Syntax: ['zbei] BRRF f, d

Description: Caontents of f register is rotated by one space to the right through C
{Carry) flag.
If d=0, result is stored in W register.
If d=1, result is stored in f register,

Operation: f<nz) = d<n-1z, f<0> = C, C = d<7>;
Operand: 0<f< 127
d = [0,1]
Flﬂg: C Z - registar f e

Number of words:
NMumber of cycles:

1
1

Example 1 RREF REG, O

Before instruction: REG=1110 0110
W=
=0

After instruction: REG=1110 0110
Yi'=0111 0011
=0

Example 2 REF REG, 1
Before instruction: REG=1110 0110
Z=0

After instruction: FEG=0111 0011
=0

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (11 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

A.21 COMF Complement f

Syntax: ['zbei] COMF f, d

Description: Contents of f register is complemented.
If d=0, result is stored in W register.
If d=1, result is stored in f register.

Operation: fr=d
Operand: 0=f= 127

d = [0,1]
Flag: z

NMumber of words:
NMumber of cycles:

o

Example 1 COMF REG, O

Before instruction: REG=0x13 ; 0001 0011 {0x13)
after instruction: REG=0x13 ; complement
W =0xEC

; 1110 1100 (OXEC)
Example 2 COMF INDF, 1
Before instruction: FSR=0xC2
address contents {FSR)=0x 44

After instruction: FSR=0xC2
address contents {FSR)=0x5E

A.22 BCF Reset bitb in f

Syntax: [labe!] BCF f, b
Description: Reset bit b in f register.
Operation: (0 = f<bx>
Operand: 0=f= 127

(I
Flaqg:

Mumber of words: 1
Mumber of cycles: 1

Example 1 BCF REG, 7

Before instruction: REG=0xC7 ;1100 0111 (OxCT)
After instruction: REG=0x47 ;0100 0111 {0x47)

Example 2 BCF INDF, 3

Before instruction: W=0x17

FSE=0=CZ2

address contents (FSR)=0x2F
After instruction: W=0x17

FSE=0xCZ2

address contents (FSR)=0x27

A.23 BSF Setbhitbinf

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (12 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax:
Description:
Operation:
Operand:

Flaqg:
Mumber of words:
Mumber of cycles:

[\zbel] BSF f, b

Set hit b in f register.
1 =f

0=f= 127

D<bh=7

1
1

Example 1 BSF REG, 7

Before instruction:
After instruction:

REG=0x07 ; 0000 0111 (0x07)
REG=0x%17 ;1000 0111 (0% 17)

Example 2 BCF IMDF, 3

Before instruction:

After instruction:

A.24 BTFSC

Syntax:
Description:

Operation:
Operand:

Flag:
NMumber of words:
Number of cycles:

W=0x17

FSE=0xCZ2

address contents (FSR)=0xZ20
W =017

FSE=0xCZ2

address contents (FSR)=0x28

Testbitb in f, skipifit=10

[lzbel] BTFSC f, b

If bit b in f register equals zero, then we skip the next instruction.
If bit b equals zera, during execution of the current instruction,
execution of the next one is disabled, and NOP instruction executes
instead thus making the current one a two-cycle instruction,

Skip next instruction if (f<b=3=0

0O=f= 127

0zb=7

1

1 or 2 depending on a b bit

Example

Lap_01 BTFSC REG,1 ; Test bit no.1 in REG
LAB_ 02 i Skip this line if =0
LAB_03 i Skip here if =1

Before instruction, program counter was at address LAB_01,

after instruction, if the first bit in REG register was zero, program counter points to

address LAB_03.

If the first bit in REG register was one, program counter points to address LAB_0Z.

A.25 BTFSS

Test bit b in f, skip if =1

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (13 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: ['absi] BTFSS £, b

Description: If bit b in f register equals one, then skip owver the next instructian.
If bit b equals one, during execution of the current instruction, the
next one is disabled, and MCOP instruction is executed instead, thus
making the current one a two-cycle instruction.

Operation: Skip next instruction if (f<b=3i=1
Operand: 0=f= 127

0zh=7
Flag: -

NMumber of words: 1
Number of cycles: 1 or 2 depending on a b bit]

Example

LAB_0O1 BTFSS REG,1 ;Test bit no.1 in REG
LaB 02 e 1 Skip this line if =1
LaB_ 03 e 1 Skip here if =0

Before instruction, program counter was at address LAB_01

after instruction, if the first bit in REG register was one, program counter points to
address LAB_ 03,

If the first hit in REG register was zero, program counter points to address LAB_0Z.

A.26 INCFSZ Increment f, skip if=0

Syntax: ['zbei] IMCFSZ f, d
Description: Contents of f register is incremented by one.
If d=0, result is stored in W register.
If d=1, result is stored in f register,
If result =0, the next instruction is executed as NOP making the
current one a two-cycle instruction.

Operation: fr+1=d
Operand: 0=f= 127

d = [0,1]
Flag: -

NMumber of words: 1
Mumber of cycles: 1 or 2 depending on a result

Example

LA&B_0O1 INCFSZ REG, 1 i Increase the contents REG by one.
LAB_0Z2 e ; Skip this line if =0

LaB_ 03 e ; Skip here if =0

The contents of program counter befare instruction, PC=address LAB_D1

The contents of REG register after executing an instruction REG=REG+1, if REG=0,
program counter points to label address LARB_03. Otherwise, program counter paoints to
address of the next instruction or to LAB_0OZ,

A.27 DECFSZ Decrement f, skip if = 0

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (14 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax: [lzbei] DECFSZ f, d
Description: Contents of f register is decremented by one.
If d=0, result is stored in W register.
If d=1, result is stored in f register.
If result = 0, next instruction is executed as NOP, thus making the
current one, a two-cycle instruction.

Operation: fi-1=d
Operand: o=f= 127

d = [0,1]
Flag: -

NMumber of words: 1
Mumber of cycles: 1 or 2 depending on a result

Example

L&k 01 DECFSZ CMT, 1 ; Decrement the contents REG by one.
LaB_02 e i Skip this line if =0

LaB 03 e ; Skip here if = 1

The contents of program counter before instruction, PC=address LAB_D1
The contents of CNT register after executing an instruction CHNT=CMNT-1, if CNT=0,

program counter points to address of label LAB_03. Otherwise, program counter points to
address of the following instruction, or to LAB_DOZ,

A.28 GOTO Jump to address

Syntax: [zbsi] GOTO k

Description: Unconditional jurmp to address k.

Operation: k = PC<10:0%, (PCLATH<4:3) = PC<12:11>
Operand: 0= k= 2048

Flag: -

NMumber of words: 1
Mumber of cycles: =

Example

LAB_OO GOTO LAB_O1 ; Jump to LAB_0O1

LAB_O1

Before instruction: PC=address LAR_0O0
After instruction: PC=address LAR_0O1

A.29 CALL Call a program

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (15 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax:
Description:

Operation:

Operand:
Flag:

Number of words:
NMumber of cycles:

Example

LaB 01

LAR 02
Before instruction:

After instruction:

CAaLL LAB_OZ

[label] CaLL k

Instruction calls a subprogram. First, return address (PC+1) is
stored on stack, then 11-bit direct operand k, which contains the
subprogram address, is stored in program counter.

(PCy + 1 = Top Of Stack (TOS)

k= PCz1li0>, {PCLATH=<4:3=>) = PC=12:11>

0= k= z2048
1
2

; Call subrutine LAB_02

PC=address LAB_ 01
TO5=x

PC=address LARB_ 02
TOS=LAB_01

A.30 RETURN Return from a subprogram
Syntax: [zbei] RETURN
Description: Contents from the top of a stack is stored in program counter.
Operation: TOS = program counter PC
Operand: -
Flag: -
Number of words: 1
NMumber of cycles: =
Example RETURM
Before instruction: PC=x
TOS=x
After instruction: PC=TOS
TOS5=TO5-1

A.31 RETLW Return from a subprogram with constant in W

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (16 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax:
Description:

Operation:
Operand:

Flag:

NMumber of words:
Number of cycles:

Example RETLW

Before instruction:

After instruction:

A.32 RETFIE

Syntax:
Description:

Operation:
Operand:

Flag:

Number of words:
NMumber of cycles:

Example RETFIE

Before instruction:

After instruction:

A.33 NOP

Syntax:
Description:
Operation:
Operand:

Flaqg:

Mumber of words:
Mumber of cycles:
Example MoP
Before instruction:
After instruction:

A.34 CLRWDT

[\zbal] RETLW k

8-bit constant k is stored in W register. Yalue off the top of a stack
is stared in program counter.

(k)= W,; TOS = P

0=k= 255

1

2

Ox43

W=

PC=x
TOS5=x

W' =[x 43
FC=TOS
TOS=TCO5-1

Return from interrupt routine

[{zbel] RETFIE

Return from a subprogram. Yalue from TOS is stared in program
counter PC. Interrupts are enabled by setting a GIE {Global
interrupt Enable) bit.

TOS = PC, 1 = GIE

1
2

PC=x
GIE=0
PC=TOS

No operation

[lzbe!] NOP
Does not execute any operation or affect any flag.

PC=x
PC=x+1

Initialize watchdog timer

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (17 of 18) [5/11/2003 8:59:53 AM]

Appendix A - Instruction Set

Syntax:
Description:

Operation:

Operand:

Flag:

NMumber of words:
Mumber of cycles:

[fzbaf] CLEWDT

Watchdog timer is reset. Prescaler of the Watchdog timer is also
reset, and status bits TO and PD are set also.

0= WDT

0 = WDT prescaler

1=TO

1 = PD

TO, P
1
1

Example CLRWDT

Before instruction:

After instruction:

A.35 SLEEP

Syntax:
Description:

Operation:

Operand:

Flag:

NMumber of words:
Number of cycles:
Example SLEEP

Before instruction:

After instruction:

Previous page Table of contents Next page

WOT counter=:x

WDT prescaler=1: 128
YWOT counter=0x00

WDT prescaler counter=0
TO=1

PDO=1

WDT prescaler=1; 128

Stand by mode

[!zbe!] SLEEFP

Processor goes into low consumption mode, Oscillator is stopped.
PD {Power Down) status bit is reset, TO (Timer Out) bit is set, WDT
(Watchdog) timer and its prescaler are reset.

0= WDT

0 = WDT prescaler

1=T0O

0= FD

o, P

WDT counter==x
WDT prescaler=x
YWDOT counter=0x00
WDOT prescaler=0
TO=1

PD=0D

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (18 of 18) [5/11/2003 8:59:53 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Appendix B - Numeric Systems

IndeXx
Development systems

P -
& ‘_‘_.;_v;y', P1C Microcontrollers N =

on-line FREE!

—

Previous page Table of contents Next Page

Appendix B

Numerical Systems

Introduction

B.1 Decimal numerical system
B.2 Binary numerical system
B.3 Hexadecimal numerical system

Conclusion

It was always difficult for people to accept the fact that some things differ from them or their way of thinking. That is
probably one of the reasons why numerical systems which differ from a decimal are still hard to understand. Still, whether
we want it or not, reality is different. Decimal numerical system that people use in everyday life is so far behind the binary
system used by millions of computers around the world.

Each numerical system are based on some basis. With a decimal numerical system, that basis is 10, with binary 2, and with
a hexadecimal system 16. The value of each decimal is determined by its position in relation to the whole number
represented in the given numerical system. The sum of values of each decimal gives the value of the whole number. Binary
and hexadecimal numerical systems are especially interesting for the subject of this book. Beside these, we will also discuss
a decimal system, in order to compare it with the other two. Even though a decimal numerical system is a subject we are
well acquainted with, we will discuss it here because of its relatedness to other numerical systems.

Decimal numerical system is defined by its basis 10 and decimal space that is counted from right to left, and consists of
numbers 0,1, 2, 3, 4, 5, 6, 7, 8, 9. That means that the end right digit of the total sum is multiplied by 1, next one by 10,
next by 100, etc.

Example:

4631
\— 1*10°%= 1
3*10'= 30
6 10%= GO0
4* 107 = 4000
Fesult = 4631

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (1 of 5) [5/11/2003 9:00:11 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Appendix B - Numeric Systems

Operations of addition, subtraction, division, and multiplication in a decimal numerical system are used in a way that is
already known to us, so we won't discuss it further.

Binary numerical system differs in many aspects from the decimal system we are used to in our everyday lives. Its
numerical basis is 2, and each number can have only two values, '1' or '0'. Binary numerical system is used in computers
and microcontrollers because it is far more suitable for processing than a decimal system. Usually, binary number consists of
binary digits 8, 16 or 32, and it is not important in view of the contents of our book to discuss why. It will be enough for now
to adopt this information.

Example:
10011011 binary number with 8 digits

In order to understand the logic of binary numbers, we will consider an example. Let's say that we have a small chest with
four drawers, and that we need to tell someone to bring something from one of the drawers to us. Nothing is more simple,
we will say left side, bottom (drawer), and the desired drawer is clearly defined. However, if we had to do this without the
use of instructions like left, right, beneath, above, etc., then we would have a problem. There are many solution to this
problem, but we should look for one that is most beneficent and practical! Lets designate rows with A, and types with B. If
A=1, it refers to the upper row of drawers, and for A=0, bottom row. Similarly with columns, B=1 represents the left
column, and B=0, the right (next picture). Now it is already easier to explain from which drawer we need something. We
simply need to state one of the four combinations: 00, 01, 10 or 11. This characteristic naming of each drawer individually is
nothing but binary numerical representation, or conversion of common numbers from a decimal into binary form. In other
words, references like "first, second, third and fourth" are exchanged with "00,01, 10 and 11".

B=0 B=1

DRAWERS 1 DRAVWERS 2
A=0 00 01

p=q | |PRAWERS 3| |DRAWERS 4
- 10 11

What remains is for us to get acquainted with logic that is used with binary numerical system, or how to get a numerical
value from a series of zeros and ones in a way we can understand, of course. This procedure is called conversion from a
binary to a decimal number.

Example:

10011011
\— 1*20=1
1*21=2
o*22=0
1*23%=8
1*24= 1k
or2%=10
o*28=0
1*27=128
Result =155

As you can see, converting a binary number into a decimal number is done by calculating the expression on the left side.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (2 of 5) [5/11/2003 9:00:11 AM]

Appendix B - Numeric Systems

Depending on the position in a binary number, digits carry different values which are multiplied by themselves, and by
adding them we get a decimal number we can understand. Let's further suppose that there are few marbles in each of the
drawers: 2 in the first one, 4 in the second drawer, 7 in the third and 3 in the fourth drawer. Let's also say to the one who's
opening the drawers to use binary representation in answer. Under these conditions, question would be as follows: "How
many marbles are there in 01?", and the answer would be: "There are 100 marbles in 01." It should be noted that both
question and the answer are very clear even though we did not use the standard terms. It should further be noted that for
decimal numbers from O to 3 it is enough to have two binary digits, and that for all values above that we must add new
binary digits. So, for numbers from O to 7 it is enough to have three digits, for numbers from 0 to 15, four, etc. Simply said,
the biggest number that can be represented by a binary digit is the one obtained when basis 2 is graded onto a number of
binary digits in a binary number and thus obtained number is decremented by one.

Example:
2t 1=16-1=15

This means that it is possible to represent decimal numbers from O to 15 with 4 binary digits, including numbers '0' and '15',
or 16 different values.

Operations which exist in decimal numerical system also exist in a binary system. For reasons of clarity and legibility, we will
review addition and subtraction only in this chapter.

Basic rules that apply to binary addition are:

+ + + +

1 0 0 1
0 1 0 1
T T T

Addition is done so that digits in the same numerical positions are added, similar to the decimal numerical system. If both
digits being added are zero, their sum remains zero, and if they are '0' and '1', result is '1'. The sum of two ones gives two,
in binary representation it will be a zero, but with transferring '1' to a higher position that is added to digits from that
position.

Example:

1010 First number
- 1001 Second number

10011 Result

We can check whether result is correct by transferring these number to decimal numerical system and by performing
addition in it. With a transfer we get a value 10 as the first number, value 9 as the second, and value 19 as the sum. Thus
we have proven that operation was done correctly. Trouble comes when sum is greater than what can be represented by a
binary number with a given number of binary digits. Different solutions can be applied then, one of which is expanding the
number of binary digits in the sum as in the previous example.

Subtraction, like addition is done on the same principle. The result of subtraction between two zeros, or two ones remains a
zero. When subtracting one from zero, we have to borrow one from binary digit which has a higher value in the binary
number.

Example:

1010 First number
- 1001 Second number

0001 Result
By checking the result as we did with addition, when we translate these binary numbers we get decimal numbers 10 and 9.

Their difference corresponds to number 1 which is what we get in subtraction.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (3 of 5) [5/11/2003 9:00:11 AM]

Appendix B - Numeric Systems

Hexadecimal numerical system has a number 16 as its basis. Since the basis of a numerical system is 16, there are 16
different digits that can be found in a hexadecimal number. Those digits are "0, 1, 2, 3,4, 5,6, 7,8,9,A,B,C, D, E, F".
Letters A, B, C, D, E and F are nothing but values 10, 11, 12, 13, 14 and 15. They are introduced as a replacement to make
writing easier. As with a binary system, here too, we can determine with same formula what is the biggest decimal number
we can represent with a specific number of hexadecimal digits.

Example: With two hexadecimal digits
16° —1=256-1=255

Usually, hexadecimal number is written with a prefix "$" or "0x" ,or suffix"h" , to emphasize the numerical system. Thus,
number A37E would be written more correctly as $A37E, OXA37E, or A37Eh. In order to translate a hexadecimal number into
a binary numerical system it is not necessary to perform any calculation but simple exchange of hexadecimal digits with
binary digits. Since the maximum value of a hexadecimal number is 15, that means that it is enough to use 4 binary digits
for one hexadecimal digit.

Example:

$E4 = 1110 0100
T
E 4

By checking, that is transferring both numbers into decimal numerical system, we get a number 228 which proves the
accuracy of our action.

In order to get a decimal equivalent of a hexadecimal number, we need to multiply each digit of a number with number 16
which is gradated by the position of that digit in hexadecimal number.

Example:

A3TE
\—14*1E”= 14
71et= 112
3T16%= 768

10* 16 2 = 40980
RPesult = 41854

Addition is, like in two preceding examples, performed in a similar manner.

Example:

53428 First number
+ $45921 Second number

FESEC Result

We need to add corresponding number digits. If their sum is equal 16, write O and transfer one to the next higher place. If
their sum is greater than 16, write value above and transfer 1 to the next higher digit.Eg. if sum is 19 (19=16+3) write 3
and transfer 1 to the next higher place. By checking, we get 14891 as the first number, and second is 43457. Their sum is
58348, which is a number $E3EC when it is transferred into a decimal numerical system. Subtraction is an identical process
to those in previous two numerical systems. If the number we are subtracting is smaller, we borrow from the next place of
higher value.

Example:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (4 of 5) [5/11/2003 9:00:11 AM]

Appendix B - Numeric Systems

§2045 First number
+ 51752 Second number

$15F4 Result

By checking this result, we get values 11590 for the first number and 5970 for the second, where their difference is 5620,
which corresponds to a number $15F4 after a transfer into a decimal numerical system.

Binary numerical system is still the one that is most in use, decimal the one that's easiest to understand, and a hexadecimal
is somewhere between those two systems. It's easy conversion to a binary numerical system and easy memorization make
it, along with binary and decimal systems, one of the most important numerical systems.

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (5 of 5) [5/11/2003 9:00:11 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

Appendix C - Glossary

Index
- Development systems
PI1C Microcontrollers
Contact US
on-line FrREE!
Previous page Table of contents Next Page

Appendix C

Glossary

Introduction

. Microcontroller
. 1/0 pin

. Software

. Hardware

. Simulator

. ICE

. EPROM Emulator
. Assembler

. HEX file

. List file

. Source File

. Debugging

. ROM, EPROM, EEPROM, FLASH, RAM

. Addressing
. ASCII

. Carry

ode

. Byte, Kilobyte, Megabyte

- Flag

. Interrupt vector or interrupts

. Programmer
« Product

(@)

Since all the fields of man's activity are regularly based on adequate and already adopted terms (through which other
notions and definitions become), so in the field of microcontrollers we can single out some frequently used terms. Ideas are
often connected so that correct understanding of one notion is needed in order to get acquainted with one or more of the
other ideas.

Microcontroller

Microprocessor with peripherals in one electronic component.

1/0 pin

http://www.mikroelektronika.co.yu/english/product/books/PICbook/C_Dodatak.htm (1 of 4) [5/11/2003 9:00:31 AM]

http://www.mikroelektronika.co.yu/english/index.htm
http://www.mikroelektronika.co.yu/english/product/tools/etools.htm
http://www.mikroelektronika.co.yu/english/microweb/contactus/econtactus.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm

Appendix C - Glossary

External microcontroller's connector pin which can be configured as input or output. In most cases 1/0 pin enables a
microcontroller to communicate, control or read information.

Software

Information that microcontroller needs in order to be able to function. Software can not have any errors if we want the
program and a device to function properly. Software can be written in different languages such as: Basic, C, pascal or
assembler. Physically, that is a file on computer disc.

Hardware

Microcontroller, memory, supply, signal circuits and all components connected with microcontroller.
The other way of viewing this (especially if it's not working) is, that, hardware is something you can kick.

Simulator

Software package for PC which simulates the internal function of microcontroller. It is ideal for checking software routines
and all the parts of the code which do not have over demanding connections with an outside world. Options are installed to
watch the code, movement around the program back and forth step by step, and debugging.

ICE

ICE (In Circuit Emulator), internal emulator, very useful part of the equipment which connects a PC instead of
microcontroller on a device that is being developed. It enables software to function on the PC computer, but to appear as if a
real microcontroller exists in the device. ICE enables you to move through program in real time, to see what is going on in
the microcontroller and how it communicates with an outside world.

EPROM Emulator

EPROM Emulator is a device which does not emulate the entire microcontroller like ICE emulator, but it only emulates its
memory. It is mostly used in microcontrollers that have external memory. By using it we avoid constant erasing and writing
of EPROM memory.

Assembler

Software package which translates source code into a code which microcontroller can understand. It contains a section for
discovering errors. This part is used when we debug a program from errors made when program was written.

HEX file

This is a file made by assembler translator when translating a source file, and has a form "understood" by microcontrollers. A
continuation of the file is usually File_name.HEX where the name HEX file comes from.

List file
This is a file made by assembler translator and it contains all instructions from source file with addresses and comments

programmer has written. This is a very useful file for keeping track of errors in the program. File extension is LST which is
where its name comes from.

Source File

File written in the language understood by man and assembler translator. By translating the source file, we get HEX and
LIST files.

Debugging

Error made in writing a program, which error we are not aware of. Errors can be quite simple such as typing errors, and
quite complex such as incorrect use of program language. Assembler will find most of these errors and report them to '.LST'
file. Other errors will need to be searched for by trying it out and watching how device functions.

ROM, EPROM, EEPROM, FLASH, RAM

Types of memories we meet with microcontroller use. First one can not be erased, what you write in it once, stays forever,

http://www.mikroelektronika.co.yu/english/product/books/PICbook/C_Dodatak.htm (2 of 4) [5/11/2003 9:00:31 AM]

Appendix C - Glossary
and can not be erased. The second is erasable with UV lamp. Third one can be erased electrically, using voltage which
microcontroller operates on. Fourth one is electrically erasable, but unlike EEPROM memory it does not have such a great
number of cycles of writing and erasing at memory locations. Fifth one is fast, but it does not hold back the contents as the

previous when there is supply shortage. Thus, program is not stored in it, but it serves for different variables and inter-
results.

Addressing

Determines and designates certain memory locations.

ASCII

Short for "American Standard Code for Information Interchange". It is widely accepted type of coding where each number
and letter have their eight-bit code.

Carry

Transfer bit connected with arithmetic operations

Code

File, or section of a file which contains program instructions.
Byte, Kilobyte, Megabyte

Terms designating amounts of information. The basic unit is a byte, and it has 8 bits. Kilobyte has 1024 bytes, and mega
byte has 1024 kilobytes.

Flag

Bits from a status register. By their activation, programmer is informed about certain actions. Program activates its response
if necessary.

Interrupt vector or interrupts

Location in microcontroller memory. Microcontroller takes from this location information about a section of the program that
is to be executed as an answer to some event of interest to programmer and device.

Programmer

Device which makes it possible to write software in microcontroller memory, thus enabling the microcontroller to work
independently. It consists of the hardware section usually connected with one of the ports and software section used on the
computer as a program.

Product

Product development is a combination of luck and experience. Short terms, or time-limits for production should be avoided
because even with most simple assignments, much time is needed to develop and improve. When creating a project, we
need time, quiet, logical mind and most importantly, a thorough understanding of consumer's needs. Typical course in
creating a product would have the following algorithm.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/C_Dodatak.htm (3 of 4) [5/11/2003 9:00:31 AM]

Appendix C - Glossary

too vague
(Feguest d

e

too much

Expenditures

too short

(Tirme limit)
)

Skill

.

Determining
a fee

o
)
)
J
Outline F
)

beyvond

Leave the
project

L
Making the
hardware part

L

Making the
software part

Ll

Making the software
part of the project

L

Buyer examines
a device

C Fayment)

project modifications

il

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://iwww.mikroelektronika.co.yu/english/product/books/PICbook/C_Dodatak.htm (4 of 4) [5/11/2003 9:00:31 AM]

http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm
mailto:office@mikroelektronika.co.yu

	www.mikroelektronika.co.yu
	PIC book
	Chapter 1 - Introduction to Microprocessors
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 3 - Instruction Set
	Chapter 4 - Assembly Language Programming
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Appendix A - Instruction Set
	Appendix B - Numeric Systems
	Appendix C - Glossary

	JEFLDKBKJAJNMGKJOONHNFHDPIFANIOL:
	form1:
	x:
	f1: http://www.mikroelektronika.co.yu/english/microweb/orderform/ok.htm
	f2: [Comment on the book "PIC microcontrollers"]
	f3:
	f4: [USA]
	f5:
	f6:

	f7: Submit
	f8:
	f9:

