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Preface

This is a project book on building small robots. Each robot utilizes the PICmicro
series of microcontrollers from Microchip Technologies Inc. for intelligence, nav-
igation, motor control, and sensory readings. By changing the microcontroller
programming and sensory electronics we can create a zoo of robots that includes
photovores, behavior-based (neural) robots, hexapod and bipedal walkers, and
artificial vision systems that can track and follow objects.

Each robot project has something to teach.

John Iovine

Xi



This page intentionally left blank.



Chapter

Robot Intelligence

The robotic projects outlined in this book make extensive use of the PIC series
of microcontroller from Microchip Technology Inc. In addition to its ability to
run programs, the microcontroller has input and output lines (pins) that are
used to control motor drive systems, read sensors, and communicate. We
demand a lot from our microcontroller(s), so it’s important to have a good idea
of what a microcontroller is right from the start.

What Is a Microcontroller?

A microcontroller is essentially an inexpensive single-chip computer. Single
chip means the entire computer system lies within the confines of a sliver of
silicon encapsulated inside the plastic housing of an integrated circuit. The
microcontroller has features similar to those of a standard personal computer.
The microcontroller contains a CPU (central processing unit), RAM (random
access memory), ROM (read-only memory), I/O (input/output) lines, serial and
parallel ports, timers, and sometimes other built-in peripherals such as ana-
log-to-digital (A/D) and digital-to-analog (D/A) converters. The key feature,
however, is the microcontroller’s capability of uploading, storing, and running
a program.

Why Use a Microcontroller?

Being inexpensive single-chip computers, microcontrollers are easy to embed
into larger electronic circuit designs. Their ability to store and run unique pro-
grams makes them extremely versatile. For instance, one can program a
microcontroller to make decisions and perform functions based on situations
(I/O line logic) and events. The math and logic functions allow the microcon-
troller to mimic sophisticated logic and electronic circuits.

Copyright © 2004 The McGraw-Hill Companies. Click here for terms of use.
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Programs can also make the microcontroller behave as a neural network
and/or a fuzzy logic controller. Microcontrollers are incorporated in consumer
electronics and are responsible for the “intelligence” in these smart electronic
devices.

Designer Computers—So Many Microcontrollers

There are a large variety of microcontrollers on the market. We will use the
versatile microcontroller chips called PIC chips (or PICmicro chips) from
Microchip Technology Inc.

The Compiler

There are a number of compilers on the market that allow users to write pro-
grams (code) in different high-level languages. High-level language frees the
programmer from wrestling with and controlling the microcontroller’s regis-
ters when writing code and accessing the different aspects of the microcon-
troller’s features and memory.

The high-level language I use is a derivative of the Basic language. It is
called PicBasic. (The PicBasic and PicBasic Pro compilers used to write
PicBasic programs are products and trademarks of microEngineering Labs,
Inc.) PicBasic is similar to the PBasic language used in programming the
Basic Stamp series. Programming microcontrollers directly using the
PicBasic (or PicBasic Pro) compiler offer two major advantages over the Basic
Stamp series of microcontrollers which use external serial EEPROM for
memory storage, faster program execution speed (20- to 100-fold increase),
and reduced cost.

PIC Programming Overview

Programming PIC microcontrollers is a simple three-step process: Write the
code, compile the code, and upload the code into a microcontroller. Following
is an overview of the process; step-by-step instructions will be provided in the
following chapters.

Software and Hardware

You will need two items to begin programming and building microcontroller-
based projects and robotics. First is the compiler, either the PicBasic Pro or
PicBasic compiler (see Fig. 1.1). The PicBasic Pro compiler from
microEngineering Labs, Inc. has a suggested retail price of $249.95. The
PicBasic compiler from microEngineering Labs, Inc. has a suggested retail
price of $99.95. In addition to a compiler you need the EPIC programming
board and software; this package sells for $59.95 (see Fig. 1.2). (EPIC is a
product and trademark of microEngineering Labs, Inc.)
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Figure 1.2 EPIC Programmer software and hardware.

PicBasic and PicBasic Pro Compilers

The PicBasic and PicBasic Pro compilers both function in the same way. Saved
program code (text file) is run through a compiler (either the PicBasic or
PicBasic Pro compiler). The compiler reads through the text file and creates
(compiles) an equivalent machine code instruction listing (.hex file) of the
program. The machine code (.hex file) is a list of hexadecimal numbers that
represent the PicBasic program. The list of hexadecimal numbers (.hex file)
is uploaded (programmed) into the microcontroller. When the microcontroller
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is started, its CPU will run through the programmed list of hexadecimal num-
bers, running the PicBasic program. Uploading the machine code (.hex file)
into the microcontroller is the job of the EPIC Programmer board and soft-
ware, which we will look at shortly.

The PicBasic Pro compiler is considerably more expensive than the standard
PicBasic compiler. The Pro version offers an enhanced and richer basic command
syntax than is available in the PicBasic compiler package. A few of the addition-
al commands that can be found in the Pro version allow the use of interrupts,
direct control of LCD modules, DTMF out, and X-10 commands, to name a few.

While the PicBasic Pro is a more sophisticated package, the compiler does
not handle two of my favorite Basic commands, peek and poke. Although the
commands are listed as “functional” in the Pro manual, it is emphasized that
“PEEK and POKE should never be used in a PicBasic Pro program.” There are
work-arounds to using the peek and poke commands in the Pro version that
will be covered when needed later on.

In the balance of this book, at times I will refer to both the PicBasic and
PicBasic Pro compilers simply as the compiler(s). This saves me from continu-
ally writing PicBasic and PicBasic Pro compiler throughout the book. When a
distinction becomes necessary, I will specify the individual compiler.

The compiler program may be run manually in DOS or in an “MS-DOS
Prompt” window. A third option, and one you will probably use, is to run the
compiler within a Windows program called CodeDesigner. CodeDesigner is
discussed later in this chapter and fully in Chap. 4.

The minimum system requirement for the compiler is an XT-class personal
computer (PC) running DOS 3.3 or higher. The compiler can compile programs
for a large variety of PIC microcontrollers.

EPIC Programmer

The second item needed is the EPIC Programmer, also made by
microEngineering Labs, Inc. The EPIC Programmer consists of software
(EPIC) and a programming carrier board (hardware). The EPIC software
package has two executable files, one for DOS and another version of the soft-
ware for Windows.

It is the EPIC hardware and software that takes the compiled . hex file gen-
erated by the compiler and uploads it into the microcontroller, where it may be
run. The EPIC Programmer is compatible with both the PicBasic and PicBasic
Pro compilers.

The programming carrier board (see Fig. 1.3) has a socket for inserting the
PIC chip and connecting it to the computer, via the printer port, for program-
ming. The programming board connects to the computer’s printer port via a
DB25 cable. If the computer only has one printer port with a printer connect-
ed to it, the printer must be temporarily disconnected to program PIC chips.
The EPIC programming carrier board supports a large variety of PIC micro-
controllers.
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Figure 1.3 Close-up of EPIC programming carrier board.

Many writers use the term firmware. This word is used when software is
embedded in a hardware device that can read and execute by the device but
cannot be modified. So when our program (software) is embedded (uploaded)
into the microcontroller, it may be referred to as firmware. Other phrases may
include the term firmware instead of software, such as “upload the firmware”
or “once the firmware has been installed into the device.”

Consumables

Consumables are the electronic components, the PIC microcontroller chip
itself, with a few support components to get the microcontroller up and run-
ning. I recommend beginning with the 16F84 PIC microcontroller. The 16F84
is an 18-pin dip chip with 13 I/O lines and has 1K X 14 of rewritable memory.
The rewritable memory allows you to reprogram the PIC chip up to 1000 times
to test and troubleshoot your programs and circuits. The minimal support
components are a 5-V dc power supply, oscillator (4.0-MHz crystal), and one
pull-up Y/,-W resistor (4.7-kQ)).

16F84 PIC Microcontroller

The PIC 16F84 microcontroller is shown in Fig. 1.4. It is a versatile microcon-
troller with flash memory. Flash memory is the terminology used to describe
“rewriteable” memory. The 1K X 14-bit onboard flash memory can endure a
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Figure 1.4 Pin-out of 16F84 PIC microcontroller integrated cir-
cuit. General features: RISC CPU 35 single-word instructions;
operating speed dc, 10-MHz clock input; 1K program memory;
14-bit-wide instructions; 8-bit-wide data path; direct, indirect,
and relative addressing; 1000 erase/write cycles. Peripheral fea-
tures: 13 I/O pins with individual direction control; high-current
sink/source for direct LED drive (25-mA sink max. per pin, 20-
mA source max. per pin); TMRO—8-bit timer/counter with 8-bit
programmable prescaler.

minimum of 1000 erase/write cycles. So you can reprogram and reuse the PIC
chip at least 1000 times. The program retention time between erase/write
cycles is approximately 40 years. The 18-pin chip devotes 13 pins to I/O. Each
pin may be programmed individually for input or output. The pin status (I/O
direction control) may be changed on the fly via programming. Other features
include power on reset, power-saving sleep mode, power-up timer, and code
protection. Additional features and architectural details of the PIC 16F84 will
be given as we continue.

Step 1: Writing Code (the Basic Program)

Both the PicBasic and PicBasic Pro compilers are packaged with a free version
of CodeDesigner software. CodeDesigner is an integrated development envi-
ronment (IDE) for writing and programming PIC microcontrollers.
CodeDesigner is an advanced text editor that is capable of calling and using
both the PicBasic and PicBasic Pro compilers and the EPIC software.
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If you don’t want to use CodeDesigner, program text files may be written
using any word processor as long as it is able to save its text file as ASCII
or DOS text. If you don’t own a commercial word processor, you can use
Windows Notepad, which is included with Windows 3.X, 95, and 98. If you
work at the DOS level, you can use the Edit program to write text files.

When you save the text file, save it with a .bas suffix. For example, if you
were saving a program named wink, save it as wink.bas.

Step 2: Using the Compiler

Once set up, the CodeDesigner software will call and control the compiler and
programmer software. The compiler may be run manually from a DOS win-
dow. To run the compiler program manually, enter the command pbc followed
by the number of the PIC chip being programmed (that is, 16F84), then fol-
lowed by the name of the source code text file. For the PicBasic Pro compiler
program, the command starts with pbp instead of pbc, followed by the name
of the source code text file. For example, for the PicBasic compiler, if the source
code text file we created is named wink, then at the DOS command prompt
enter

pbc -pl6£f84 wink.bas
For the PicBasic Pro compiler, the command line would be
pbp -pl6£f84 wink.bas

The compiler reads the text file and compiles two additional files, an .asm
(assembly language) and a .hex (hexadecimal) file.

The wink.asm file is the assembly language equivalent to the Basic pro-
gram. The wink . hex file is the machine code of the program written in hexa-
decimal numbers. It is the .hex file that is uploaded into the PIC chip.

If the compiler encounters errors when compiling the PicBasic source code,
it will issue a list of errors it has found and will terminate. The errors listed
need to be corrected in the source code (text file) before it will successfully
compile.

Step 3: Installing the Firmware, or Programming the

PIC Chip

Connect the EPIC programming board to the computer’s printer port via a
DB25 cable. If you are using CodeDesigner, launch the EPIC Programmer
from the menu. The EPIC programming board must be connected to the par-
allel port and switched on before you start the software, or else the software
will issue an error message “EPIC Programmer not found.” Aside from the
EPIC Windows software (epicwin.exe), which may be started manually in
Windows or through the CodeDesigner software, there is also a DOS version
of the program called epic.exe.
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Figure 1.5 Windows version of EPIC software.

Figure 1.5 is a picture of the EPIC Windows program screen. Use the Open
File option and select wink.hex from the files displayed in the dialog box.
The file will load and numbers will be displayed in the code window on the left.
Insert the 16F84 into the socket on the programming board, and select the
Program option from the Run menu. An alternative to using the menu option
is to press the Ctrl and P buttons on the keyboard. The software is then
uploaded into the PIC microcontroller and is ready to be inserted into your cir-
cuit and go to work.

Ready, Steady, Go

Parts List

Subsequent chapters contain step-by-step instructions for installing the soft-
ware onto your hard drive and programming your first PICmicro chip.

PicBasic Pro compiler $249.95
PicBasic compiler 99.95
EPIC Programmer 59.95

Microcontroller (16F84) 7.95
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6-ft cable (DB25) 6.95
4.0-MHz Xtal 2.50
(2) 22-pF capacitors 0.10 each

Available from Images SI Inc. (see Suppliers at end of book).
Additional components are required in Chap. 6:

(1) Solderless breadboard RadioShack PN# 276-175
(1) 0.1-pF capacitor RadioShack PN# 272-1069
(8) Red LEDs RadioShack PN# 276-208
(8) 470-Q) resistors* RadioShack PN# 270-1115
(1) 4.7-k() resistor RadioShack PN# 271-1126
(1) Voltage regulator (7805) RadioShack PN# 276-1770
(2) Four-position PC mounted switches RadioShack PN# 275-1301
(1) 9-V battery clip RadioShack PN# 270-325

Available from RadioShack, Images SI Inc., Jameco Electronics, and JDR
Microdevices (see Suppliers).

*These resistors are also available in 16-pin dip package.
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Chapter

Installing the Compiler

To compile your PicBasic programs (text files) into something that can be
uploaded into the PIC microcontrollers and run, you need to first run the pro-
gram text file through a compiler. So the first step is to load the compiler soft-
ware onto your computer’s hard drive. The following are instructions for
installing the PicBasic compiler. A section on installing the PicBasic Pro com-
piler follows these instructions.

Installing the PicBasic Compiler Software

The first thing you need to do is to create a subdirectory on your computer’s
hard drive for the PicBasic compiler software. I will use Windows Explorer
(Windows 95, 98, ME, 2000, XP) to create this directory. Windows Explorer can
be found in the Programs folder in Windows 95 and 98 (see Fig. 2.1). For
Windows ME, 2000, and XP users, Windows Explorer can be found in the
Accessories folder (see Fig. 2.2).

Create a subdirectory called PBC on the computer’s hard drive; then copy
the files from the diskette into it. For the conventions in this book it is
assumed that the reader’s hard drive is drive letter C.

Start the Windows Explorer program. Highlight your computer’s hard drive
(usually the C drive) in the Folders window. Next highlight the File menu, then
New menu, and click on the Folder option (see Fig. 2.3). Enter the name PBC
in the New Folder icon (see Fig. 2.4).

Place the 3.5-in PicBasic compiler diskette into your computer’s floppy drive,
usually the A drive. Highlight the A drive in Windows Explorer’s Folder win-
dow (see Fig. 2.5). All the files on the 3.5-in diskette will be displayed in the
right-side area. Select all the files, go to Edit menu options, and choose Copy
(see Fig. 2.6). Next select the PBC directory on the left side of the Windows
Explorer window. Then go back to the Edit menu and select the Paste option.
All the files and subdirectories on the 3.5-in diskette will be copied into the
PBC directory on the hard drive.

1
Copyright © 2004 The McGraw-Hill Companies. Click here for terms of use.
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An alternate to pasting the selected files is to select all the files as before,
copy the files, drag the selected files to the PBC directory using the mouse, and
then release the mouse button (see Fig. 2.7).

Installing the PicBasic Pro Compiler

Installing the PicBasic Pro compiler is not the same procedure as outlined for
the PicBasic compiler. To install the PicBasic Pro compiler, you must execute a
self-extracting program that decompresses the necessary programs and files.
It is recommended that you create a subdirectory named PBP on your com-
puter’s hard drive.

Start the Windows Explorer program. Highlight your computer’s hard drive
(usually the C drive) in the Folders window. Next highlight the File menu, then
New menu, and click on the Folder option (see Fig. 2.3). Enter the name PBP
in the New Folder icon (see Fig. 2.4).

Place the 3.5-in PicBasic Pro Compiler diskette into your computer’s floppy
drive, usually the A drive. Now here’s where the installation procedure
changes. For those using Windows 95 or 98, start an MS-DOS Prompt window.
Click on Start, select Programs, then click on MS-DOS Prompt (see Fig. 2.8).
For Windows ME, 2000, and XP users, start a Command Prompt window
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Figure 2.8 Starting MS-DOS Prompt window in Windows 95 and 98.

(equivalent to an MS-DOS Prompt window). Click on All Programs, select
Accessories, and then click on Command Prompt (see Fig. 2.9).

In either the Command Prompt window or MS-DOS window, you will need
to type in and use a few old-fashioned DOS commands. DOS commands are
typed in on the command line, and then the Return key is hit to execute the
command.

The DOS instructions are provided to help the reader and serve as a sup-
plement to the installation directions provided with the software packages.
The instructions are not meant as a DOS tutorial. More information on DOS
commands can be found in any number of DOS manuals. Here is a list of DOS
commands we will be using and what action they perform:

Command Action

cd Change directory

md Make directory

copy Copy files

xcopy Copy files and subdirectories

path Set a search path for executable files

dir Directory
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From this point on, the MS-DOS Prompt window and the Command Prompt
window will be referred to as the DOS window. When the DOS window is
opened, you will be located in a subdirectory on the hard drive. Your prompt
may look like this: C:\WINDOWS>.

The DOS prompt provides vital information. The C: tells us we are on the C
drive. The \WINDOWS tells us we are in the Windows subdirectory.

We want to work from the root directory of the computer’s hard drive (usual-
ly the C drive). We accomplish this by using the cd (change directory) command.

The cd. . command brings one up a single level in the directory hierarchy.
Using the cd\ command brings one up to the root directory regardless of how
deep (levels) one has moved into subdirectories. The root directory is the top of
the directory hierarchy. From the Windows subdirectory type in cd\ and hit
the Enter key to move to the root directory of the hard drive. Type in (enter)
the following command and hit the Enter key.

cd\

We already created our subdirectory PBP by using Windows Explorer for the
PicBasic Pro compiler. We want to move into the PBP subdirectory, enter the
following command, and hit Enter.
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Figure 2.10 Using DOS commands in DOS Prompt window to execute PicBasic Pro installa-
tion program.

c:\> cd pbp

Next place the 3.5-in PicBasic Pro diskette into your A drive, and type the fol-
lowing at the DOS prompt:

c:\pcp> a:\pbpxxx -d

Here xxx is the version number of the compiler on the disk (see Fig. 2.10). This
command copies and installs all the required files into the PBP directory. With
the files safely loaded onto your hard drive, remove the diskette and store it in
a safe place, in case it is needed in the future.

The PicBasic Pro program is now installed. You may close the DOS window
and store the 3.5-in diskette.
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Installing the EPIC Software

Installing the EPIC software from Windows is simple. To install, run the
install.bat file on the 3.5-in EPIC diskette. The install.bat file exe-
cutes the main self-extracting program that automatically creates a subdirec-
tory EPIC on your computer’s hard drive, then decompresses the program and
its support files, and copies them into the EPIC subdirectory.

If a subdirectory called EPIC already exists on your hard drive, when you
run the install.bat file, you will receive an error message.

If you are still in the same DOS session as in last chapter and want to con-
tinue to use DOS to install the EPIC software, skip down to the “Installing the
EPIC Software, DOS Version” section. For those who wish to use Windows to
install this software, continue to read.

Installing the EPIC Software in Windows

From Windows click on the Start button, then Run (see Fig. 3.1). Place the
EPIC programming diskette into the A drive. When the Run menu window
opens, select Browse. From the Browse window select the A drive. This action
will list the files on the A drive. Select the install.bat file and click the
Open button (see Fig. 3.2).

This action brings you back to the Run window. The install.bat file
should be listed in the window. See Fig. 3.3. Click on the OK button. This action
automatically opens a DOS window and starts the executable program on the
EPIC diskette. The executable program creates a new subdirectory on the com-
puter’s hard drive called EPIC. It decompresses and copies all the necessary
files into the EPIC subdirectory, as shown in Fig. 3.4.

If you just installed the EPIC program using Windows, skip over the next
section, “Installing the EPIC Software, DOS Version” and continue reading at
the “Supplemental—Applications Directory” section.

19
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Installing the EPIC Software, DOS Version

If you are still operating in the same DOS session as in Chap. 2, move back
into the root directory, and enter at the prompt

c:\> pbp cd..

If you are entering a new DOS window, the prompt may appear a little dif-
ferent, but the command is the same.

c:\> windows cd/

From the root directory of the C drive we will run the install.bat pro-
gram on the EPIC 3.5-in diskette. The self-extracting file creates itself a sub-
directory called EPIC. Place the 3.5-in EPIC diskette into the floppy drive. At

the DOS prompt enter
c:\> a:

This places the command prompt into the A drive; the command prompt
should look like this:

a: \>
Now run the install .bat file by entering the following command:
a:\> install.bat

This starts the self-extracting file that creates the EPIC subdirectory and
installs all the required files into the subdirectory.

With the program and files installed onto your hard drive, remove the
diskette and store it in a safe place, in case it is needed in the future.

Supplemental—Applications Directory

It would be a good idea at this time if we created another subdirectory where
we can store all our PicBasic application programs. This will keep the PBC (or
PBP) and EPIC directories clean, neat, and uncluttered with programs and
program revisions.

From Windows Explorer create an Applics subdirectory on your computer’s
hard drive.
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CodeDesigner

In this chapter we will set up and work with the CodeDesigner software.
CodeDesigner is a Windows integrated development environment (IDE) inter-
face for the PIC series of microcontrollers. This IDE interface allows one to
write code, compile the code, and then program the code into a PIC microcon-
troller while staying in the same Windows environment.

The compiling of code within CodeDesigner still requires the use of one of
the PicBasic compilers. Programming the compiled code into a PIC microcon-
troller requires the EPIC software and hardware. CodeDesigner integrates
these software and hardware packages so that they can operate within its
Windows environment.

CodeDesigner has many useful features that help you write code and that
make it far superior to using a simple text editor.

CodeDesigner Features

® AutoCodeCompletion. CodeDesigner makes writing code much easier with
smart pop-up list boxes that can automatically fill in statements and param-
eters for you.

® Multidocument support.

® Line error highlighting. Compile your PicBasic project and CodeDesigner
will read error data and highlight error lines.

®m QuickSyntaxHelp. The QuickSyntaxHelp feature displays statement syntax
when you type in a valid PicBasic statement.

m Statement description. Statement descriptions are displayed in the status
bar when you type in a valid PicBasic statement.

m Statement Help. Simply position your cursor over a PicBasic statement and
get statement-specific help.

23
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m Label listbox. The label listbox displays the current label and allows you to
select a label from the list to jump to.

® Colored PicBasic syntax. This sets colors for reserved words, strings, num-
bers, comments, defines, etc. Colored PicBasic syntax makes for easy code
reading.

® Bookmarks. Never lose your place again. CodeDesigner allows you to set
bookmarks.

= Multiple undo/redo actions. If you didn’t want to delete that last line, it’s no
problem. Simply click on the Undo button.

® Multiple views. Multiple views of your source code allow you to easily edit
your code.

® Print source code.

® Drag-and-drop text.

® Row/column-based Insert, Delete, and Copy.
m Search and replace.

= Compile and launch device programmer.

One feature I like is that each typed line of code is color-coded, making it
easier to spot errors and read through your code.

When you purchase either the PicBasic or PicBasic Pro compilers, it is pack-
aged with an additional diskette that contains a free version of CodeDesigner
called CodeDesigner Lite. The Lite version allows you to write programs up to
150 lines and open up three source files at once for easy copy and paste. If you
would like to try CodeDesigner without purchasing a compiler, CodeDesigner
Lite is freely downloadable from the Internet (see Parts List at end of chapter).

The idea is, if you like the free CodeDesigner software, you can then upgrade
to the full-featured CodeDesigner. The standard version of CodeDesigner costs
$75.00 and removes the restrictions imposed in the Lite version. This standard
version allows you to write programs with an unlimited amount of code lines
and to open an unlimited amount of source files. Of course, unlimited means
with respect to the limits of your computer’s capabilities.

If for any reason someone does not wish to use the CodeDesigner software,
the procedures for writing code and compiling and programming a PICmicro
chip manually from a DOS environment are covered in Chap. 5.

CodeDesigner increases productivity and the ease with which you can write,
debug, and load PicBasic programs into the microcontroller. If there is a prob-
lem (more often than not), debugging the code and recompiling are much eas-
ier and faster when you are using CodeDesigner. When the program is
completely debugged, it can be uploaded into the PIC microcontroller via the
EPIC software and programming board. At this point the microcontroller and
circuit are tested. If they function properly, I'm finished; if not, I begin rewrit-
ing the program or redesigning the electronics.
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Software Installation

The CodeDesigner software loads as most standard Windows software does.
Load the software on your computer’s hard drive according to the instructions
given with the software.

When CodeDesigner installs, it creates a subdirectory in the Program Files
directory. It places a CodeDesigner shortcut on the Start, Program menu in
Windows.

Setting CodeDesigner Options

In order for CodeDesigner to compile code and program the resulting code into
PIC microcontrollers, we need to configure the default locations where
CodeDesigner looks for its support programs. We set up the default locations
by entering the software paths where CodeDesigner stores programs, looks for
the PicBasic compiler and where to find the EPIC program.

Start the CodeDesigner software (see Fig. 4.1); the evaluation copy opens with
this version of the window. The next window is the standard opening screen to
the CodeDesigner software (see Fig. 4.2). To begin setting the options, click on
the Compile menu option and then on Compiler Options (see Fig. 4.3).

CodelDesigrer

PicBasic - Evaluation Edition

Version: 1.0 Revision: §

Ordering Infarmation | |
[ & |

Copyright 2000 CSMicro Systems

@smtl“ HNERFE ”|] CBCaclPHOTORPANT E | ]Mﬁw 1253PM

Figure 4.1 CodeDesigner Lite version start-up screen.
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Figure 4.4 Schematic for wink program.

The Compiler Options window opens (see Fig. 4.4). In the top text field, use
the pull-down menu to select which compiler you are using, the PicBasic Pro
or PicBasic. In Fig. 4.4 the PicBasic Pro compiler is chosen.

In the second text field, you select the compiler’s pathname. The compiler
path and name (pbpw. exe) is chosen for the PicBasic Pro compiler, in the sub-
directory of C:\PBP.

In the third text field we choose where the CodeDesigner software looks to
load and save our source code files. Hit the Browse button next to the text
field. This opens a browser window (see Fig. 4.5); select the Applics subdirec-
tory on the hard drive and click on OK.

The “Default Source Code Directory” text field now contains the path
“C:\Applics” subdirectory (see Fig. 4.6). Click the OK button to close the
Compiler Options window .

Now we need to set the Programmer Options. Click on the Programmer,
Programmer Options on the top menu (see Fig. 4.7). This opens the
Programmer Options window (see Fig. 4.8). Click on the Browse button next to
the Programmer Pathname text field. A browser window opens; select the
epicwin.exe program in the EPIC subdirectory on your computer’s hard dri-
ve (see Fig. 4.9). Click Open, and this brings you back to the Programmer
Options window. The new path you select should be in the Programmer
Pathname text field (see Fig. 4.10). Click OK to set this option.
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Flele Edit Compile Programmer Debug Options Window Help -8 x|
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- |EE &

Programmer Options [z]

|EF1CWin |

Prograner Pathnams:
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Command Line Options: q

| —

1 | i
] C:APROGRAM FILES\CODEDESIGMER Unttled pbp
Line: 1 Col: 1

<1/ Corel PHOTO-PAINT 8

Figure 4.8 Programmer options window (CodeDesigner).
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Figure 4.9 Selecting epicwin.exe Programmer in EPIC subdirectory.
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Figure 410 Hitting OK to confirm selection.
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With the CodeDesigner options set, we are ready to write our first program.
First Program

Start CodeDesigner and enter the following code for the PicBasic compiler.

‘First PicBasic program to wink two LEDs connected to port b.

loop: high 0 ‘Turn on LED connected to pin rb0
low 1 ‘Turn off LED connected to pin rbl
pause 500 ‘Delay for .5 second
low O ‘Turn off LED connected to pin rb0
high 1 ‘Turn on LED connected to pin rbl
pause 500 ‘Delay for .5 second
goto loop ‘Go back to loop and blink & wink LEDs forever
end

The next program is identical in function (not code) to the PicBasic program
above. Start CodeDesigner and enter the following code (see Fig. 4.11):

‘Wink program

‘Blinks and winks two LEDs connected to port b

gl CodeDesigner - [C:APBPAwink. pbp] I [=]
EJE“G Edit Compile Progiammer Debug Options Window Help =18l x]
DEE8 el MR =) 2 6% % %4 % % 4| - | & Fios: 1
Locp - ==
" Wink Programn =
" Blink= and winks two LED connected to port B
Loop:
High PORTEB. ' ' Turn on LED connected to RED
Llow PORTE. L ' Turn off LED connected to RBE1
Pause 5010 ' Wait 1/2 =econd
Low PORTB. O ' Turn off LED connected to REOD
High PORTB. ! ' Turn on LED connected to RE1
Pause 5010 ' Wait 1-2 second
GoTo Loop ' Loop back- repeat cycle blink & wink forever
NN — ;lj
C:APBPwink.pbp
|Line: 12 Col:1 s [cars [PRP

Figure 4.11 PicBasic Pro program written in CodeDesigner.
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loop:

high portb.0 ‘Turn on LED connected to rb0

low portb.1l ‘Turn off LED connected to rbl

pause 500 ‘Wait 1/2 second

low portb.0 ‘Turn off LED connected to rb0

high portb.1 ‘Turn on LED connected to rbl

pause 500 ‘Wait 1/2 second

goto loop ‘Loop back--repeat cycle blink & wink forever

CodeDesigner defaults to writing code for the PIC 16F84 microcontroller. This
is the microcontroller I recommend to start with. To change the microcon-
troller, simply pull down the device menu and select the appropriate micro-
controller (see Fig. 4.12).

When CodeDesigner attempts to compile a program from the Windows envi-
ronment, it automatically opens a DOS Prompt window, compiles the program,
and then ends the DOS session.

To compile the program using CodeDesigner, either select compile under the
Compile menu or hit F5. CodeDesigner automatically starts the PicBasic Pro
compiler (or PicBasic compiler) to compile the program. Before you attempt to
compile a program, make sure you have set up Compiler Options under the
Compile menu.

B CodeDesigner Lite - [C:\CDLITE\Untitled1.pbp]

F|Fle Edit Compie Progammer Oplions Window Help &l x|
DSBS L =@ M E =R oo, o e - Fles:2

; Ef
0] m— _'I_v,
Lines 3 Cot 1 | PBC 2

Figure 4.12 Pull-down menu location for selecting microcontroller.
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E'.-.:,-,.... [C: WP B P\wink. pbp] =1o]x]
E|File Edi Compie Programmer Debug Options Window Help =1&] x|
DEEE & Y P ' PICTEFE4 - | Files: 1
Loop i ‘;E ‘;_E
&:' Win — |0 x[| to port E
File Ed#t Yiew Fun Oplionz Help L
el Gl ¢z Foisrsm -
High PORTB ' Turn on
Pause T
GoTo Loop ' Loo =]
|EPIC Progiammer Parallel Port Inteiface |
,! B EPIC Programmer rot fourd.
PR of
C:\PEPAwink.pbp
Line: 12 Col: 1 PEF

Figure 4.13 Error message generated when CodeDesigner cannot find Programmer.

Once the program is compiled, we can go to the next step of loading the pro-
gram into a PIC microcontroller chip.

Connect the EPIC programming board to the printer port. If your computer
has only one printer port, disconnect the printer, if one is connected, and attach
the EPIC programming board, using a 6-ft DB25 cable.

When you connect the EPIC programming board to the computer, there
should not be any microcontroller installed onto the board. If you have an ac
adapter for the EPIC programmer board, plug it into the board. If not, attach
two fresh 9-V batteries. Connect the “battery on” jumper to apply power. The
programming board must be connected to the printer port with power applied
to the programming board before the EPIC programming software is started.
If it is not, the software will not see the programming board connected to the
printer port and will give the error message “EPIC Programmer Not Found”
(see Fig. 4.13).

The EPIC Programming Board Software

To program the 16F84 microcontroller from within CodeDesigner, select the
Launch Programmer menu item from the Programmer menu, or hit F6.
CodeDesigner automatically starts the epicwin.exe Windows software.
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_Ef'.".-.-;;.,,.';'., or - [C:\applics\backupiwink. bas] I-|I‘:|f1|
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! == &E 4 B2 G| ﬂ Ao |y | A % |4 % 4 % | Picieras * | & Files: 2
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¢ Uink Discilater » ] =
i El:rl{" I @l\f“ Code Prolection = =
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Pause 50 N W o —
Tow PORTB ' |1 v ‘Watchdog Timer Enable ;lgli[
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ees
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(i]ik:3
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Figure 4.14 Setting configuration switches in epicwin.exe program.

With the EPIC Windows software started, set the configuration switches one
by one under the Options menu item (see Fig. 4.14).

Device: Sets the device type. Set it for 16F84 (default).
Memory Size (K): Sets memory size. Choose 1.

OSC: Sets oscillator type. Choose XT for crystal.
Watchdog Timer: Choose On.

Code Protect: Choose Off.

Power Up Timer Enable: Choose On.

After the configuration switches are set, insert the PIC 16F84 microcontroller
into the open socket on the EPIC programming board. If you received an error
message “EPIC Programmer Not Found” when CodeDesigner started the
EPIC Windows program (see Fig. 4.13), you have the option of either trou-
bleshooting the problem or using the EPIC DOS program. For instructions on
using the EPIC software, DOS version, see Chap. 5.

The schematic of the circuit needed to test the PICmicro is given in Chap. 6.
If you have successfully written, compiled, and uploaded the code into the
PICmicro chip using CodeDesigner, then you can skip the DOS material in
Chap. 5 and pick up at “Testing the PIC Microcontroller” in Chap. 6.
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Parts List
CodeDesigner Lite Free
Download from Internet at: www.imagesco.com/catalog/pic/codedesigner.html.
CodeDesigner Standard $75.00

Available from Images SI Inc. (see Suppliers at end of book).
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Chapter

Using DOS to Code,
Compile, and Program

In Chap. 4 we compiled and programmed our microcontroller, using the
CodeDesigner program. If for some reason you do not wish to use or cannot use
CodeDesigner Lite, this chapter will instruct you in how to perform all the
functions for writing code, compiling the code, and programming the code in a
PICmicro chip from DOS or a DOS Prompt window.

When you start a new DOS session, use the path command (see Fig. 5.1), so
that you will not have to copy and swap files back and forth across directories.
If you have created the directory names as suggested in this book, you can use
the following command.

For PicBasic users the command is

path \;c:\pbc;c:\epic;c:\windows\command;
For PicBasic Pro users, the command is
path \;c:\pbp;c:\epic;c:\windows\command;

Now we can begin by using a standard word processor or text editor to write
the PicBasic program in DOS. Windows users can use the Notepad program.
DOS-level users can use the Edit program. In DOS we will work from and
store our program(s) in the subdirectory we created earlier, called Applics.

Move into the Applics subdirectory. Use the cd (change directory) command.
Enter this at the DOS prompt (see Fig. 5.1):

c:\> cd applics
Once in this directory, the prompt changes to
c:\applics>

37
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+'5 M5-DOS Prompt
Mae—3 il vle| B )5 Al

Figure 5.1 Entering DOS commands for path, changing directories, and starting the Edit program.

In this example I will be using the free Edit program package with Windows
to write the program. Start Edit by typing Edit at the command prompt (see
Fig. 5.1).

c:\applics> edit

This starts the Edit program (see Fig. 5.2). Enter this program in your word
processor exactly as it is written:

‘1lst PicBasic program
‘Wink two LEDs connected to port b.

loop: high 0 ‘Turn on LED connected to pin rb0
low 1 ‘Turn off LED connected to pin rbl
pause 500 ‘Delay for .5 second
low 0 ‘Turn off LED connected to pin rb0
high 1 ‘Turn on LED connected to pin rbl
pause 500 ‘Delay for .5 second
goto loop ‘Go back to loop and blink & wink LEDs forever
end

See Fig. 5.3. Save the text file in the Applics directory. Use the Save func-
tion under the File menu. Name the file wink.bas (see Fig. 5.4). If by acci-
dent you saved the file as wink. txt, don’t get discouraged. You can do a
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['; MS-D0S Prompt - EDIT

& & )5 A

File Edit Search View Options

Help

UNTITLEDL

Fl=Help

Line:1 (efail Ll

Figure 5.2 Start screen of Edit program.

Save As from the Edit program (under File menu) and rename the file

wink.bas.

For PicBasic Pro users, enter the following text in your word processor and

save the file as wink .bas.

‘1st PicBasic Pro program

‘Winks two LEDs connected to port b

loop:

high portb.0 ‘Turn
low portb.1l ‘Turn
pause 500 ‘Wait
low portb.0 ‘Turn
high portb.1 ‘Turn
pause 500 ‘Wait
goto loop ‘ Loop

Compile

on LED connected to rb0

off LED connected to rbl

1/2 second

off LED connected to rb0

on LED connected to rbl

1/2 second

back--repeat cycle blink & wink forever

The PicBasic compiler (or PicBasic Pro compiler) may be run from DOS or
from a DOS Prompt window within Windows.
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' M§-DOS Prompt - EDIT

e 3 Gl olel B 2F Al

File BEBdit Search View Options Help
UNTITLEDL

Line:11 EEIE

Figure 5.3 Entering wink.bas program.

MS-D0OS Prompt - EDIT

|&| B &5 A

File Rdit Search View o©Options Help
Save As

File 'ame: [wink.bas
C:\applics

Existing riles:

Fl=Help Enter=Execute Esc=Cancel Tab=Next Field

Figure 5.4 Saving wink.bas program.
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< M5-D0S Pronpl =lglx

C:\>md applics

C:\>path \;c:\pictools;c:\epic;c:\windows)\command;
i\>cd applics
Ci\applics>edit

>:\applics>pbc —pl6f84 wink.bas_

Figure 5.5 Entering DOS command to run PicBasic compiler program on the wink.bas program
for the 16F84 microcontroller.

We will run the PicBasic compiler from the Applics directory, type the com-
mand pbc -pl6£84 wink.bas at the DOS prompt, and hit the Enter key
(see Fig. 5.5).

c:\applics> pbc -pl6f84 wink.bas

(For PicBasic Pro the command is c: /applics>pbp -pl6£f84 wink.bas.)
The compiler displays an initialization copyright message and begins process-
ing the Basic source code (see Fig. 5.6). If the Basic source code is without
errors (and why shouldn’t it be?), it will create two additional files. If the com-
piler finds any errors, a list of errors with their line numbers will be displayed.
Use the line numbers in the error message to locate the line number(s) in the
.bas text file where the error(s) occurred. The errors need to be corrected
before the compiler can compile the source code correctly. The most common
errors are with Basic language syntax and usage.

You can look at the files by using the dir directory command. Type dir at
the command prompt

c:\applics> dir

and hit Enter (see Fig. 5.7).
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[we ] @ B FE5 Al

right (C) 1985-1998 microEngineering La

{C) 1985, 1998 microEngineering Labs, Inc.

Figure 5.6 Typical copyright notice and notice provided by the PicBasic compiler when it is run
successfully.

B

SP: HEIE
e 3 pille| B @5 A

Figure 5.7 Executing DOS dir (directory) command to see the two additional files (.asm and
.hex) created by the PicBasic compiler.
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The dir command displays all the files and subdirectories within the sub-
directory where it is issued. In Fig. 5.7 we can see the two additional files that
the compiler created. One file is the wink . asm file and is the assembler source
code file that automatically initiated the macroassembler to compile the
assembly code to machine language hexadecimal code. The hex code file is the
second file created, called wink.hex.

Programming the PIC Chip

To program the PIC chip, we must connect the EPIC programming carrier
board (see Fig. 5.8), to the computer. The EPIC board connects to the printer
port. The printer port is also called the parallel port. Either name may be used,
they are both correct. A computer may contain up to four parallel (printer)
ports. Each port is assigned a number, from 1 through 4. The computer lists
these ports as LPT1 to LPT4.

If your computer has only one printer port, disconnect the printer, if one is
connected, and attach the EPIC programming board using a 6-ft DB25 cable.
In some cases it may be necessary to temporarily remove the printer driver.
Figure 5.9 shows a typical window to disable an HP printer.

When you are connecting the programming board to the computer, make
sure there are no PIC microcontrollers installed onto the board. If you have an
ac adapter for the EPIC Programmer board, plug it into the board. If not,
attach two fresh 9-V batteries. Connect the “battery on” jumper to apply pow-

mrcroCE ey suals She

BRI

Programmes

Figure 5.8 EPIC programming board and software.
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5 MS-DOS Pronp =lalx
a3 il B ]S Al

>dir

Foz3286,0 g =

Figure 5.9 Message box window used to temporarily close printer driver to provide better access
to printer port for EPIC programmer.

er. The programming board must be connected to the printer port with power
applied to the programming board before the software is started. If not, the
software will not see the programming board connected to the printer port and
will give the error message “EPIC Programmer Not Found.”

When power is applied and it is connected to the printer port, the LED on
the EPIC Programmer board may be on or off at this point. Do not insert a PIC
microcontroller into the programming board socket until the EPIC program-
ming software is running.

The EPIC Programming Board Software

There are two versions of the EPIC software: epic.exe for DOS and
epicwin.exe for Windows. The Windows software is 32-bit. It may be
used with Windows 95, 98, NT, and XP, but not 3.X. It has been my experi-
ence that Windows 95 and 98 printer drivers many times like to retain con-
trol of the printer (LPT1) port. If this is the case with your computer, the
Windows EPIC program may not function properly, and you may be forced
to use the DOS-level program. If you receive an error message “EPIC
Programmer Not Found” when you start the EPIC Windows program, you
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have the option of either troubleshooting the problem or using the EPIC
DOS program.

Using EPIC DOS version

If using Windows 95 or higher, you could either open a MS-DOS Prompt win-
dow or restart the computer in the DOS mode. Windows 3.XX users end the
Windows session.

Continuing with the wink .bas program

Assume we are still in the same DOS session and have just run the PBC com-
piler on the wink.bas program. We are still in the Applics directory. At the
DOS prompt, type EPIC and hit Enter to run the DOS version of the EPIC
software (see Fig. 5.10).

If you are operating out of a DOS window, you may get a device conflict mes-
sage box, shown in Fig. 5.11. We want MS-DOS to control the LPT port so the
EPIC programming software will work. Select the MS-DOS Prompt and hit
the OK button.

EPIC’s opening screen is shown in Fig. 5.12. Use the mouse to click on the
Open button, or press ALT-O on your keyboard. Select the wink .hex file (see
Fig. 5.13). When the .hex file loads, you will see a list of numbers in the win-

I ES

Figure 5.10 Entering DOS EPIC command to start program.
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Figure 5.11 Possible “Device Conflict” error message when DOS and Windows both try to use
printer port. Select DOS and hit OK button.

['5M5-D0S Prompt-EPIC [—[E]x

Tuko ole| B w[F A
EPIC PROGRAMMER WER 1.41
M Device

I - RoM Size (K)

- OSC

- Watchdog Timer

- Code Frotect

fi- Power Up Timer Enable

WAITING FOR COMMAND

_: rogranm erify 'bout

ead PIC -‘ tlank? rase E it |- skip blank

Figure 5.12 Opening screen of the EPIC programming software. Hit Open File button.
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Figure 5.13 Select wink.hex in Open File message box and hit the OK button.

dow on the left (see Fig. 5.14). This is the machine code of your program. On
the right-hand side of the screen are configuration switches that we need to
check before we program the PIC chip.

Let’s go through the configuration switches once more.

Device: Sets the device type. Set it for 8X.

Memory Size (K): Sets memory size. Choose 1.

OSC: Sets oscillator type. Choose XT for crystal.

Watchdog Timer: Choose On.

Code Protect: Choose Off.

Power Up Timer Enable: Choose On.
After the configuration switches are set, insert the PIC 16F84 microcontroller
into the socket. Click on Program or press ALT-P on the keyboard to begin pro-
gramming. The EPIC program first looks at the microcontroller chip to see if it
is blank. If the chip is blank, the EPIC program installs your program into the
microcontroller. If the microcontroller is not blank, you are given the options to

cancel the operation or overwrite the existing program with the new program.
If there is an existing program in the PIC chip’s memory, write over it.
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() LB {*) XT () H () RC

Figure 5.14 Hexadecimal numbers showing in EPIC window are the machine language version of
the wink.bas program that is uploaded (programmed) into the 16F84 microcontroller.

I have noticed that when I place a brand new PICmicro 16F84 chip into the
EPIC compiler to program, EPIC always reports existing code on the chip. I
don’t know if Microchip Technology Inc. loads numbers into the chip’s memory
for testing purposes. Don’t let it throw you—the PICmicro chip is new.

The machine language code lines are highlighted as the EPIC software
uploads the program into the PICmicro chip. When it is finished, the micro-
controller is programmed and ready to run. You can verify the program if you
like by hitting (or highlighting) the Verify button. This initiates a comparison
of the program held in memory to the program stored in the PIC microcon-
troller.
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Testing the PIC Microcontroller

The PIC Microcontroller

This is where we will build the testing circuit for the PICmicro chip we pro-
grammed. The components needed for the circuit were listed in Chap. 1; if you
purchased the components, you can quickly set up the test circuit. If not, the
components are listed again at the end of this chapter; you will need the com-
ponents to build the circuit.

The solderless breadboard

For those of us who have not dabbled in electronics very much, I want to
describe the solderless breadboard (see Fig. 6.1) in detail. As the name implies,
you can breadboard (assemble and connect) electronic components onto it
without solder. The breadboard is reusable; you can change, modify, or remove
circuitry components from the breadboard at any time. This makes it easy to
correct any wiring errors. The solderless breadboard is an important item for
constructing and testing circuits outlined in this book.

The style of breadboard on the left is available from any number of sources
including RadioShack. The breadboard on the right is similar but provides a
larger prototyping area.

If you wish to make any circuit permanent, you can transfer the components
onto a standard printed-circuit board and solder it together with the fore-
knowledge that the circuit functions properly.

A partial cutaway of the top surface shows some of the internal structure of
a board (Fig. 6.2). The holes on the board are plugs. When a wire or pin is
inserted into the hole, it makes intimate contact with the metal connector strip
inside. The holes are properly distanced so that integrated circuits and many
other components can be plugged in. You connect components on the board by

49
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Figure 6.1 Top view of solderless breadboards.
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Figure 6.2 Top view of solderless breadboards with a partial cutaway showing underneath conductive contact strips.

using 22-gauge (solid or stranded) wire. I prefer to use stranded wire because
it has greater flexibility; other people prefer solid wire because it’s stiffer and
easier to push into the breadboard hole.

The complete internal wiring structure of the solderless boards is shown in
Fig. 6.3. The solderless breadboard on the left shows the X and Y rows that are
typically used to supply power (Vce) and ground connections to the circuit. The
columns below the X row and above the Y row are used for mounting compo-
nents. The solderless breadboard on the right has double rows located at the
top and bottom. These are used to supply both Vce and ground on each side of
the breadboard.

Three schematics, one circuit

Figures 6.4, 6.5, and 6.6 are identical schematics of our test circuit. The 16F84
PIC microcontroller in the schematic is the microcontroller you programmed
in either Chap. 4 or 5. I drew three schematics to help orient experimenters
who may not be familiar with standard electrical drawings. Figure 6.4 shows
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Figure 6.3 Top view of solderless breadboards detailing conductive strips.
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Figure 6.4 Isometric schematic of test circuit for wink.bas program.

All resistors '/, watt

how the PIC 16F84 microcontroller and components appear. There is a legend
at the bottom that shows the electrical symbol and the typical appearance of
the component. Figure 6.5 is a line drawing showing how the components
appear mounted on one of the solderless breadboards. The writing on Fig. 6.5
points out each electrical component.
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Figure 6.5 Isometric drawing showing test circuit constructed on solderless breadboard.
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Figure 6.6 Schematic of test circuit for wink .bas program.

If you examine the placement of the components mounted on the solderless
breadboard with its internal electrical wiring (Figs. 6.2 and 6.3), you can see
how the components connect to one another and produce a circuit.

Figure 6.6 is the same schematic drawn as a standard electrical drawing
with the pin numbers grouped and oriented to function. For the remainder of
the book, standard electrical drawings will be used.

The schematic shows how minimal are the components needed to get your
microcontroller up and running. Primarily you need a pull-up resistor on pin
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Figure 6.7 Photograph of wink.bas circuit constructed on solderless breadboard.

4 (MCLR), a 4-MHz crystal with two (22-pF) capacitors and a 5-V power sup-
ply. Note: The 4-MHz crystal and two (22-pF) capacitors make up an oscillator
that is required by the microcontroller. These three parts may be substituted
with a 4-MHz ceramic resonator.

The two LEDs and the two resistors connected in series with each LED are
the output. It allows us to see that the microcontroller and program are func-
tioning properly.

Assemble the components as shown in the schematic (Fig. 6.5) onto the sol-
derless breadboard. When you have finished, your work should appear as in
Fig. 6.7.

Although the specifications sheet on the 16F84 states the microcontroller
will operate on voltages from 2 to 6 V, I provided a regulated 5-V power supply
for the circuit. The regulated power supply consists of a 7805 voltage regula-
tor and two filter capacitors.

Apply power to the circuit. The LEDs connected to the chip will alternately
turn on and off. Wink, ..., wink. Now you know how easy it is to program these
microcontrollers and get them up and running.
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Troubleshooting the circuit

There is not too much that can go wrong here. If the LEDs do not light, the
first thing to check is the orientation of the LEDs. If they are put in backward,
they will not light.

Next check your ground wires. See the jumper wires on the right-hand side
of the solderless breadboard. They bring the ground up to the two 22-pF capac-
itors.

Check all your connections. Look back at Figs. 6.2 and 6.3 to see how the
underlying conductive strips relate to the push in terminals on top of the
board.

PIC Experimenter’s Board and LCD Display

There are two optional tools you may want if you plan on experimenting with
the PIC16F84 and microcontrollers in general. They are the PIC
Experimenter’s Board and LCD display. We will look at the LCD display first
because a similar LCD display is incorporated into the PIC Experimenter’s
Board and what we say about the stand-alone LCD display is also true for the
PIC Experimenter’s Board LCD display.

One thing PIC microcontrollers lack is some type of display. With a display,
the chip could show us how a program is running or what it is detecting. In
addition a display would allow the microcontroller to output textual and
numeric messages to the user.

To this end there are serial LCD displays on the market that only require a
single microcontroller’s I/O lines (pin) and a circuit ground. The particular
LCD display we are using receives standard serial data (RS-232) at 300, 1200,
2400, and 9600 baud (Bd) (inverted or true). The LCD module is a two-line, 16-
character visible display. The full display is actually two lines by 40 characters,
but the additional 24 characters per line are off screen. We can use the
PicBasic and PicBasic Pro serout command to communicate and output mes-
sages to the LCD display.

The PicBasic and PicBasic Pro compilers can send and receive serial
information at 300, 1200, 2400, and 9600 Bd. Data are sent as 8 bits, no
parity, and 1 stop bit. The serial mode may be set to be true or inverted.
These data match the serial communication protocols required of the LCD
display.

The LCD module has three wires: +5 V (red), GND (black or brown), and a
serial in line (white). The baud rate may be set to 300, 1200, 2400, or 9600 by
using a set of jumpers (J1, J2, and J3) on the back of the LCD display.

This first program prints the message “Hello World.” The cursor (printing
position) automatically moves from left to right. The schematic is shown in Fig.
6.8, and the LCD display is shown in Fig. 6.9.

‘PicBasic program
‘LCD test
pause 1000 ‘Wait 1 second for LCD to initialize



Testing the PIC Microcontroller 55

+5V

Serial Line

PIC HELLO WORLD

Microcontroller Ground

Figure 6.8 Schematic of LCD display test circuit.

Figure 6.9 Photograph of LCD display “Hello World.”

start:

serout 1, t1200, (254,1) ‘Clear screen
pause 40

serout 1, t1200, (“Hello World”) ‘Print message
pause 400

goto start

end

I kept this program small to show how easy it is to print a message on the LCD
display. Here is the same program written for the PicBasic Pro compiler.

‘PicBasic Pro program

‘LCD test

pause 1000 ‘Wait 1 second for LCD to initialize
start:

serout portb.1l, 1, [254,1] ‘Clear screen

pause 40

serout portb.1l, 1, [“Hello World”] ‘Print message

pause 400

goto start

end
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Notice that, in line 5 of the program(s), serout 1, t1200, (254,1) isa com-
mand. The LCD module has eight common commands. All commands are pre-
fixed with the decimal number 254. The LCD module will interpret any number
following a 254 prefix as an instruction. Instead of decimal numbers, you may
also use hexadecimal numbers, if you wish. So in hexadecimal the command
becomes serout 1, t1200, ($fe, $01). The following is a list of a few
common commands. Remember all commands are prefixed with a 254 ($fe).

Code Instruction
1 Clear screen.
2 Home position (move cursor top left of display).
16 Move cursor one character position left.
20 Move cursor one character position right.
24 Scroll display one character position left.
28 Scroll display one character position right.
192 Move cursor to first position on second line.

PIC Experimenter’s Board

Use

The PIC Experimenter’s Board is a prefabricated developing board for proto-
typing circuits (see Fig. 6.10). The board allows easy access to all the I/O pins,
port A (RA0O-RA4), and port B (RBO-RB7) of the 16F84. The board may also be
used with the 16F8X, 16C55X, 16C62X, 16C7X, and 16C8X family of 18-pin
PIC microcontrollers.

Its 168-point solderless connection area allows for quick and easy access to
all port A (RA0-RA4) and port B (RBO-RB7) I/O lines. There is an open 18-pin
socket for inserting the microcontroller you are developing. The board includes
an integrated 16 X 2 serial LCD display (optional backlight), which can be eas-
ily connected with one wire to any I/O line (or external source).

The board can be powered by either an onboard 9-V battery or an ac/dc trans-
former. The power switch in the upper right turns power to the board on and
off. The board includes a reset button, for resetting the microcontroller. The
LCD has its own power switch, located directly above the LCD. If your LCD
has a backlight, the backlight switch is located above the LCD power switch.

I will describe the prototyping section on the PIC Experimenter’s Board, as
I did with the solderless breadboards, and finish up the description by wiring
a simple microcontroller LED project on the Experimenter’s Board. The proto-
typing is located at the lower left corner of the PIC Experimenter’s Board (see
Fig. 6.11). There is an open 18-pin socket to hold the microcontroller being
developed.
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Figure 6.10 Photograph of PIC Experimenter’s prototype developing board.

The prototyping area is similar in design and function to solderless bread-
boards; see Fig. 6.12. You can breadboard (assemble and connect) electronic
components and electronic circuits into the prototyping area without solder-
ing. The prototyping area is reusable; you can change, modify, or remove cir-
cuit components at any time. This makes it easy to correct any wiring errors.

A cutaway of the prototyping area is shown in Fig. 6.13. The square holes
shown in the area are sockets. When a wire or pin is inserted into a hole, it
makes electrical contact with the underlying metal strip. The holes are spaced
so that integrated circuits and many other components can be plugged right in.

The internal electrical connection structure of the prototyping area is shown
in Fig. 6.14.

Looking at Fig. 6.15, at the top of the prototyping area we see that the
columns of bank 1 are labeled with the pin assignments from the 16F84. These
columns are directly connected to those microcontroller pins. Connecting a
wire or device to any of the three sockets in a particular column is electrically
connecting that wire or device to that I/O pin of the 16F84.

Bank 2 provides 14 individual four-socket columns. The four sockets aligned
in each individual column are electrically connected. The individual columns
are separate electrically from one another.

Bank 3 is the same as bank 2.
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Figure 6.11 Photograph of PIC Experimenter’s Board with breadboarding area and 18-pin socket
highlighted.

AS+

Figure 6.12 Diagram of the
breadboard area.

The last row, labeled GND (ground), is electrically connected across the

entire row. There are an additional three ground sockets at the top of
bank 1.

A +5-V power is available from a four-socket column adjacent to bank 1.
Simple experiment

We shall wire a simple experiment to illustrate the use of the experimenter’s
prototyping area: blinking an LED. Yes, this is very similar to the wink pro-
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gram, with the exception that we are only using one LED this time. The fol-
lowing are a small PicBasic program and PicBasic Pro program to blink an

LED on pin RB1.

PicBasic program PicBasic Pro program
start: high 1 start: high portb.1
pause 250 pause 250
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Figure 6.15 Diagram of breadboard area with banks, ground, and
+5-V power supply highlighted.

low 1 low portb.1
pause 250 pause 250
goto start goto start

The complete schematic for this experiment is shown in Fig. 6.16. Aside from
a programmed 16F84, we only need two other components: a 470-(), /,-W resis-
tor and a subminiature LED. All the other components needed to make the
16F84 work are already hardwired on the PIC Experimenter’s Board.

The LED has two terminals, one longer than the other. The longer terminal
on the LED is positive, shown in the legend of Fig. 6.17. On the schematic the
LED appears as a diode. To wire this circuit, connect one lead of the !/,-W resis-
tor into one of the RB1 sockets. Connect the other lead of the Y/,-W resistor into
a socket in bank 2. Take the positive lead of the LED and plug it into a socket
in the same column as the one containing the resistor lead. Connect the oppo-
site lead of the LED, and plug it into one of the ground sockets at the bottom.

Plug the programmed 16F84 microcontroller into the 18-pin socket on the
PIC Experimenter’s board, and turn on the power. The LED should begin
blinking on for %, s, then off for a '/, s. This on/off cycle (blinking) continually
repeats.

The onboard LCD display combines a serial interface and a 2-line by 16-char-
acter display (see Fig. 6.18). The LCD display can be set to receive serial data
at 300, 1200, or 2400 Bd (true or inverted, switch-selectable).
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Figure 6.17 Diagram of blink circuit assembled in breadboard area of
PIC Experimenter’s Board.

To use the LCD, connect a jumper from the desired output pin on the micro-
controller to the serial input. It is not necessary to connect a secondary ground
line to the serial input ground unless the serial data are coming from a source
off the Experimenter’s Board.

Like the LCD module, the onboard LCD display has two operational modes:
text and instruction. The default is text mode; data received via the serial
input line appears on the screen. Send the string “Images” and “Images” will
appear on the LCD. To input instructions to the LCD display, such as clear
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Figure 6.18 Photograph of PIC Experimenter’s Board with LCD controls highlighted.

screen, go to line 2, etc., you must prefix the instruction with ASCII 254
(0xFE). The byte following the prefix is seen and treated as an instruction
code. After the instruction code, the unit automatically returns to text mode.
Every instruction code must be sent with its own 254 prefix.

If your LCD is backlit, you may adjust the backlight contrast to the optimal
setting via the LCD contrast control. The contrast control is set fully clockwise
(highest contrast) at the factory, but you can adjust the control by hand.

To set the baud rate, there are three sets of jumpers: J1 to J3. Set the
jumpers in accordance with the silkscreen diagram on the Experimenter’s PC
Board. At all baud rates, serial data are received at 8 data bits, 1 stop bit, no
parity. Note that the baud rate setting is only read once at start-up, so chang-
ing the jumpers while the module is active will not have any effect on the baud
rate until the Experimenter’s Board is reset.

Once the LCD module is connected and configured to match the baud rate
of the computer/microcontroller, it will receive those transmitted data and dis-
play the information on the LCD display. For example, if you send “Hello,” then
“Hello” appears on the display. The cursor (printing position) automatically
moves from left to right.

The onboard LCD display will accept the standard LLCD instructions. A par-
ticular byte is identified as an instruction when it is preceded by an instruc-
tion prefix character, ASCII 254 (0xFE hex, 11111110 binary). The onboard
LCD treats the byte immediately after the prefix as an instruction, then auto-
matically returns to data mode. For example, the clear-screen instruction is
ASCII 1. To clear the screen, send <254><1> (where the < > symbols mean
single bytes set to these values, not text as typed from the keyboard). Notice
this instruction code matches the instruction code for the serial LCD display
module.

Instruction Code (decimal)
Clear screen 1
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Figure 6.19 Photograph of LCD display in self-test mode.

Home position (move cursor top left of display) 2

Move cursor one character position left 16

Move cursor one character position right 20

Scroll display one character position left 24

Scroll display one character position right 28

Set cursor position (DDRAM address) 128 + addr
Set point in character generator (CG) RAM 64 + addr

The onboard LCD also has a self-testing mode that will print the current
baud rate as determined by the jumper settings and mode (true/inverted); see
Fig. 6.19. To enter self-test mode, connect the serial in line to ground (for true)
or +5V (for inverted) upon LCD module start-up.

Note: If the serial input line is improperly connected for self-test mode, for
instance connected to +5 V when jumpers are set for true mode, the LCD dis-
play will remain blank. The module stays in self-test mode as long as the ser-
ial input line is held either high (inverted mode) or low (true mode). LCD
module may be exited from self-test mode on the fly by simply connecting the
serial input line to a serial source.

When you print past the end of a line, the next 24 characters do not show
up on the LCD screen. They are not lost; they are in an off-screen memory
area. All alphanumeric LCD modules have 80 bytes of memory, arranged
appropriately for a 2 X 40 screen. On LCDs with smaller screens (such as
this 2 X 16), text printed past the end of a visible line goes into memory, but
can’t be seen on the screen. Use cursor-positioning instructions to print to a
particular location on the display. Or deliberately print in off-screen memo-
ry to temporarily hide text, then send scroll-left instructions to reveal it.

Using the LCD: PicBasic and PicBasic Pro examples
Connect the serial input of the LCD to portb.0 of a PIC microcontroller. The fol-
lowing PicBasic program demonstrates sending data and commands to the LCD.

main: pause 1000 ‘Wait for the LCD to start up
serout 0, t2400, ($fe,$01) ‘Clear the screen
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pause 40

serout 0, t2400, (“Wherever you go”)

serout 0, t2400, ($fe, $c0) ‘Move to line 2
serout 0, t2400, (“there you are”)

pause 1000 ‘Wait 1 second
goto main ‘Do it again

The program clears the LCD and sends the message “Wherever you go there
you are” at 2400 Bd (true mode), waits for 2 s, and then loops indefinitely (see
Fig. 6.20). Note that in the above example, the control codes were written in
hexadecimal (base-16). Hexadecimal is specified by a dollar sign ($) prefix. If
you wish, the lines

serout 0, t2400, ($fe, $01) ‘Clear the screen
serout 0, t2400, ($fe, $c0) ‘Move to line 2

could also be written with decimal (base-10) notation as

serout 0, t2400, (254,1) ‘Clear the screen
serout 0, t2400, (254,192) ‘Move to line 2

Which notation you choose to use is a matter of preference. An equivalent pro-
gram can be written with PicBasic Pro as follows:

CoO00000OOO0D
_aocaeooocaa-&

Figure 6.20 Photograph of message from pin RBO of 16F84 microcontroller sent to onboard LCD
display.
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main: pause 1000 ‘Wait for the LCD to start up
serout portb.0,0, [$fe, $01] ‘Clear the screen
pause 40

serout portb.0,0, [“Wherever you go”]

serout portb.0,0, [$fe, $c0] ‘Move to line 2
serout portb.0,0, [“there you are”]

pause 1000 ‘Pause for a second
goto main ‘Loop

Introduction to Binary and the PIC Microcontroller

The term binary means “based on 2,” as in two numbers 0 and 1. It’s also like
an electric switch that has two values: on (1) and off (0).

The term bit is an acronym that stands for the term binary digit. A bit or
binary digit can have two values, either 0 or 1. A byte is a digital expression
(number) containing 8 bits.

Binary is important to computers and microcontrollers. The bit values of 0
and 1 are the only things a computer can read. Actually the computer or micro-
controller can’t really read, but it can sense voltage values. So a bit that is on
1 is represented by a positive voltage. Consequentially a bit 0 is off 0 and is
represented as no voltage.

A single bit by itself is of little value, but start putting them together to
make bytes (8 bits), words (16 bits, 32 bits, 64 bits, 128 bits), and so on, and we
can make the computers perform mathematics, create word processors and
spreadsheets, create a cyberspace (Internet), etc. All these applications are
based on a bit.

To read or write to a port register requires understanding a little binary.
When we read and write to any port, we use standard decimal numbers.
However it’s the binary equivalent of those decimal numbers that the PIC
microcontroller sees and uses.

The 16F84 uses 8-bit port registers so we only need to concern ourselves
with small 8-bit numbers and their decimal equivalents. Remember that an 8-
bit number is called a byte. An 8-bit number can represent any decimal value
between 0 and 255. When we write a decimal number into a register, the PIC
microcontroller can only see the binary equivalent of that decimal number
(byte) we wrote to the register. For us to understand what’s happening inside
the register, we need to be able to look at the binary equivalents of the decimal
(byte) number also. Once we can do this, our ability to effectively and elegant-
ly program the PIC microcontrollers is greatly enhanced.

Examine the binary number table at the top of the next page. It shows all the
decimal and binary number equivalents for numbers 0 through 32. By using
this information, the binary numbers from 32 to 255 can be extrapolated.

Each decimal number on the left side of the equals sign has its binary equiv-
alent on the right side. So where we see a decimal number, the microcontroller
will see the same number as a series of 8 bits (there are 8 bits to a byte).
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Binary Number Table

0 = 00000000
1 = 00000001
2 = 00000010
3 = 00000011
4 = 00000100
5 = 00000101
6 = 00000110
7 = 00000111
8 = 00001000
9 = 00001001

10 = 00001010
11 = 00001011
12 = 00001100
13 = 00001101
14 = 00001110
15 = 00001111

16 = 00010000
17 = 00010001
18 = 00010010
19 = 00010011
20 = 00010100
21 = 00010101
22 = 00010110
23 = 00010111
24 = 00011000
25 = 00011001
26 = 00011010
27 = 00011011
28 = 00011100
29 = 00011101
30 = 00011110
31 = 00011111

32 = 00100000

64 = 01000000

128 = 10000000

255 = 11111111

Figure 6.21 shows the relationship between a binary number and the two
PIC microcontroller registers that control port b. Notice each register has eight
open positions. This register can hold an 8-bit (1-byte) number. Let’s look at the
second binary number table below. Notice for each progression of the binary 1
to the left, the exponential power of 2 is increased by 1.

Second Binary Number Table

Bit no. Decimal Binary Bit no. Decimal Binary

Bit 0 1 = 00000001 Bit 4 16 = 00010000
Bit 1 2 = 00000010 Bit 5 32 = 00100000
Bit 2 ! = 00000100 Bit 6 64 = 01000000
Bit 3 8 = 00001000 Bit 7 128 = 10000000

These are relevant numbers, because each progression to the left identifies
another bit location and bit weight within the 8-bit byte.

For instance, suppose we wanted to write binary 1s at the RB6 and RB2
locations. To do so, we add their bit weights, in this case 64 (RB6) plus 4 (RB2),
which equals 68. The binary equivalent of decimal number 68 is 01000100. If
you push that number into the port B register, you will see that the binary 1s
are in the RB6 and RB2 positions. Remember this—it is important.

The open TRISB register shown in Fig. 6.21 may be used to examine num-
bers placed in the TRISB. The port B register may be used to examine num-
bers placed at the port B register.

Notice the correlation between the register bit locations, bit weights, and
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port B I/O pins. This correspondence between the bit number, bit weight, and
the I/O line is used to program and control the port.

Using the TRIS and port registers

The TRIS (tri-state enable) register is a 1-byte (8-bit) programmable register
on the PIC 16F84 that controls whether a particular I/O pin is configured as
an input or output pin. There is a TRIS register for each port. TRISA controls
the I/O status for the pins on port A, and TRISB controls the I/O status for the
pins on port B.

If one places a binary 0 at a bit location in TRISB for port B, the correspond-
ing pin location on port B will become an output pin. If one places a binary 1 at
a bit location in the TRISB, the corresponding pin on port B becomes an input
pin. The TRISB data memory address for port B is 134 (or 86h in hex).

After port B has been configured using the TRISB register, the user can read
or write to the port, using a port B address (decimal number 6).

Here is an example. Suppose we want to make all port B lines output lines.
To do so, we need to put a binary 0 in each bit position in the TRISB register.
So the number we would write into the register is decimal 0. Now all our I/O
lines are configured as output lines.

If we connect an LED to each output line, we can see a visual indication of
any number we write to port B. If we want to turn on the LEDs connected to
RB2 and RB6, we need to place a binary 1 at each bit position on port B reg-
ister. To accomplish this, we look at the bit weights associated with each line.
RB2 has a bit weight of 4, and RB6 has a bit weight of 64. We add these num-
bers (4 + 64 = 68) and write that number into the port B register.

When we write the number 68 into the port B register, the LEDs connected
to RB2 and RB6 will light.

To configure port A, we use the TRISA register, decimal address 133 (see Fig.
6.22). On port A, however, only the first 5 bits of the TRISA and the corre-
sponding I/O lines (RAO—-RA4) are available for use. Examine the I/O pin-out
on the 16F84, and you will find there are only five I/O pins (RA0-RA4) corre-
sponding to port A. These pins are configured using the TRISA register and
used with the port A address.

Memory location, Memory location,
Register hexadecimal decimal
Port A 05h 5
Port B 06h 6
TRISA 85h 133
TRISB 86h 134

On power up and reset, all the I/O pins of port B and port A are initial-
ized (configured) as input pins. We can change this configuration with our
program.
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Here’s another example. Let’s configure port B so that bit 0 (RBO0) is an input
pin and all other pins are output lines. To place binary 0Os and 1 in the proper
bit location, we use the bit weights shown in the binary number table. For
instance, to turn bit 0 on (1) and all other bits off (0), we would write the dec-
imal number 1 into TRISB for port B.

Depending upon which PicBasic compiler is used, the commands are a little
different. For the PicBasic compiler, the command to write to a register is the
poke command. The program line to write the decimal value 1 into the TRISB
register will look like this:

poke 134,1

The number after the poke command is the memory address that the com-
mand will write to, in this case 134. The number 134 is the memory address of
the TRISB for port B. The next number, separated by a comma, is the value we
want to write in that memory address. In this case it’s the number 1.

For the PicBasic Pro compiler, the TRISB and TRISA registers are already
predefined. Thus when the compiler sees TRISB, it accesses the proper memo-
ry (134) location. So the equivalent command for the PicBasic Pro is

TRISB = 1
Look at the binary equivalent of the decimal number 1:
00000001

Mentally place each 1 and 0 into the TRISB register locations shown in Fig.
6.21. See how the 1 fits into the bit 0 place, making that corresponding line an
input line, while all other bit locations have a 0 written in them, making them
output lines.

So by poking (writing) this location with a decimal number that represents
a binary number containing the proper sequence of bits (0s and 1s), we can
configure any pin in the port to be either an output or an input in any combi-
nation we might require. In addition, we can change the configuration of the
port “on the fly” as the program is running.

To summarize, writing a binary 1 into the TRIS register turns that corre-
sponding bit/pin on the port to an input pin. Likewise, poking a binary 0 will
turn the bit into an output.

Accessing the ports for output

Once the port lines have been configured (input or output) using the TRIS reg-
ister, we can start using it. To output a binary number at the port, simply write
the number to the port, using the poke (PicBasic) or trisx.x (PicBasic Pro)
command. The binary equivalent of the decimal number will be outputted, as
shown in our first example. To output a high signal on RB3 using the PicBasic
compiler, we could use this command:
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* Capacitors connected to Crystals are 22pF
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Figure 6.23 Schematic of eight LEDs connected to port B for counting program.

poke 6, 8

where 6 is the memory address for port B and 8 is the decimal equivalent of
the binary number (00001000) we want to output.
For the PicBasic Pro compiler, the equivalent command is

output portb.3 =1

Counting program

To illustrate many of these concepts, I have written a simple basic program.
The schematic for the program is shown in Fig. 6.23. It is a binary counting
program that will light eight LEDs connected to port B’s eight output lines.

The counting program will light the LEDs in the sequence shown in the
binary number table. Each binary 1 in a number the table will be represented
with a lit LED. Every 250 milliseconds (ms) (%, s), the count increments. After
reaching the binary number 255 (the maximum value of a byte), the sequence
repeats, starting from zero.

Counting in binary by 1

The following program is written for the PicBasic compiler.

‘Program binary counting

‘Initialize variables

symbol trisb = 134 ‘Assign TRISB of port b to decimal value of 134
symbol portb = 6 ‘Assign port b to decimal value of 6
‘Initialize port(s)

poke trisb,0 ‘Set port b pins to output

loop:
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Input

for b0 = 0 to 255

poke portb, b0 ‘Place count at port b to light LEDs
pause 250 ‘Pause 94 s or it’s too fast to see
next b0 ‘Next counter value

goto loop ‘Start over again

‘End

The following program is written for the PicBasic Pro compiler.

‘Program binary counting
‘Initialize variables

ct var byte ‘Counting variable

‘Initialize port

trisb = 0 ‘Set port b pins to output

loop:

for ct = 0 to 255 ‘Counter

portb = ct ‘Place counter on port b to light LEDs
pause 250 ‘Pause 94 s

next ct ‘Next counter value

goto loop ‘Start over again

‘End

The ability of our microcontroller to read the electrical status of its pin(s)
allows the microcontroller to see the outside world. The line (pin) status may
represent a switch, sensor, or electrical information from another circuit or
computer.

The button command

The PicBasic compiler comes equipped with a simple command to read the
electrical status of a pin, called the button command. The button com-
mand, while useful, has a few limitations. One limitation of this command
is that it may only be used with the eight pins that make up port B. The I/O
pins available on port A cannot be read with the button command. Another
limitation is that you cannot read multiple port pin inputs at once, only one
pin at a time.

We will overcome these button command limitations using the peek com-
mand. But for the time being, let’s use and understand the but ton command.

As the name implies, the button command is made to read the status of
an electrical button switch connected to a port B pin. Figure 6.24 shows two
basic switch schematics, labeled A and B, of a simple switch connected to an
1/O pin.

The but ton command structure is as follows:

button pin, down, delay, rate, var, action, label
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Figure 6.24 Schematic of electric switches suitable for use
with PIC microcontrollers.

Pin Pin number (0-7), port B.

Down State of pin when button is pressed (0 or 1).

Delay Cycle count before auto repeat starts (0-255). If 0, no debounce or auto-
repeat is performed. If 255, debounce, but no auto-repeat is performed.

Rate Auto-repeat rate (0-255).

Var Byte variable used for delay/repeat countdown. Should be initialized to 0

prior to use.
Action State of button to perform goto (0 if not pressed, 1 if pressed).
Label Execution resumes at this label if Action is true.

Let’s take another look at the switch schematic in Fig. 6.24 before we start
using the button switch. Let’s visualize how the switches affect the I/O pin
electrically.

The switch labeled A in Fig. 6.24 connects the I/O pin to a +5-V power sup-
ply through a 10,000-Q resistor. With the switch open, the electrical status of
the I/O pin is kept high (binary 1). When the switch is closed, the I/O pin con-
nects to ground, and the status of the I/O pin is brought low (binary 0).

The switch labeled B in Fig. 6.24 has an electrical function opposite the
switch labeled A. In this case, when the switch is open, the I/O pin is connect-
ed to ground, keeping the I/O pin low (binary 0). When the switch is closed, the
I/0O pin is brought high (binary 1).

In place of a switch, we can substitute an electric signal, high or low, that
can also be read using the but ton command.

Typically the button command is used inside a program loop, where the
program is looking for a change of state (switch closure). When the state of the
I/O pin (line) matches the state defined in the Down parameter, the program
execution jumps out of the loop to the label portion of the program.
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A button example

+5V

RS
10K

If we want to read the status of a switch of I/O pin 7, here is a command we
will use in the next program.

button 7, 0,254,0,bl,1,lo0p

The next program is similar to the previous program 3, inasmuch as it per-
forms a binary counting. However, since we are using PB7 (pin 7) as an input,
and not an output, we lose its bit weight in the number we can output to port
B. The bit weight for pin 7 is 128. So without pin 7 we can only display num-
bers up to decimal number 127 (255 — 128 = 127). This is reflected in the first
loop (pin7/bit 7 = 128).

The program contains two loops. The first loop counts to 127, and the cur-
rent number’s binary equivalent is reflected by the Lite LEDs connected to
port B. The loop continues to count as long as the switch SW1 remains open.

When SW1 is closed, the button command jumps out of loop 1 into loop 2.
Loop 2 is a noncounting loop where the program remains until switch SW1 is
reopened. You can switch back and forth between counting and noncounting
states. Figure 6.25 is a schematic of our button test circuit.

The following program is written for the PicBasic compiler.

‘Program for PicBasic compiler
134

symbol portb = 6

symbol trisb = ‘Set TRISB to 134
‘Set port b to 6

‘Initialize Port(s)

SVJL+O

¢

poke trisb,128 ‘Set port b pins (1-6 output), pin 7 input
* Capacitors connected to crystals are 22pF.
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Figure 6.25 Schematic of seven LEDs and one switch connected to port B for the switch detection and
counting program.
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label 1: bls = 0

loopl:

for b0 = 0 to 127

poke portb, b0

pause 250

button 7,0,254,0,b1,1,label2
next b0

goto loopl
labell2: bl=0
loop2:

poke portb, 0
button 7,1,254,0,b1,1,1labell
goto loop2
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‘Set button variable to 0

‘Counting loop

‘Place b0 value at port to light LEDs
‘Pause counting or it’s too fast to see
‘Check button status; if closed, jump
‘Next b0 value

‘Set button variable to 0

‘Second loop not counting

‘Turn off all LEDs

‘Check button status; if open, jump back

When the program is run, it begins counting. When the switch is closed, all the
LEDs will turn off, and it stops counting. Open the switch, and the counting
resumes, starting from 0.

‘Program for PicBasic Pro compiler

ct var byte
cl var byte
‘Initialize port(s)
trisb = 128
labell: c1=0

loopl:

For ct = 0 to 127
portb = ct

pause 250

button 7,0,254,0,cl,1,label2
next ct

goto loopl

label2: cl1=0

loop2:

portb =0

button 7,1,254,0,cl,1,labell
goto loop2

‘Set port b pins (1-6 output), pin 7 input
‘Set button variable to 0

‘Counting loop

‘Place ct value at port to light LEDs
‘Pause counting or it’s too fast to see
‘Check button status; if closed, jump
‘Next counting value

‘Set button variable to 0

‘Second loop not counting

‘Turn off all LEDs

‘Check button status; if open, jump back

The peek command can only be used with the PicBasic compiler. We can also
use the peek command to check the status of any input line. The advantages
of the peek command are as follows. Using peek, we can read the five I/O
lines of port A (or the eight I/O lines of port B) at once. This increases the ver-
satility of the PIC chip and allows our program to be more concise (less con-
voluted), shorter, and easier to read.

To emphasize these points, let’s rewrite our last programs, using the peek
command. This program uses the same schematic.
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‘PicBasic program that uses the peek command

‘Initialize port(s)
symbol trisb = 134
symbol portb = 6

poke trisb,128

loopl:

for b0 = 0 to 127

poke portb, b0

pause 250

peek portb,b0

if bit7 = 0 then loop2
next b0

goto loopl

loop2:

pke portb, 0

peek portb,b0

if bit7 = 1 then loopl
goto loop2

The variable b0 is performing double duty. First it is holding our current
counting numbers 0 through 127. The numbers 0 to 127 require 7 bits of the
variable b0 (bit 0 through bit 6). This leaves the eighth bit (bit 7) available for
use. We use bit 7 to check the status of the switch. If it’s open, its value will be

‘Set TRISB to 134

‘Set port b to 6

‘Set port b pins (1..6)
‘Counting loop

‘Place b0 value at port
‘Pause counting or it’s
‘Check button status
‘If swl is closed, jump
‘Next b0 value

output, pin 7 input

to light LEDs

too fast to see

to loop2

‘Second loop not counting

‘Turn off all LEDs
‘Check button status;
‘If swl is open,

a binary 1; if it’s closed, it’s equal to binary 0.

The command peek is followed by a memory address, then a comma, then a

storage variable.

As its name implies, the peek command allows one to view (or peek at) the
contents of a specified memory address. Typically the memory address “peeked
at” is one of the PIC microcontroller’s registers. The “peeked” value is stored in

peek address, var

a variable var defined in the command.
In this program we peeked at the one input line on port B:

peek portb,b0

The peek command can read an entire byte (8 bits) at once. Or as in this
case, only the upper bit (bit 7) of the peeked value is relevant. (The rest of the

if open,

jump back

jump to loop 1

bits are holding our counting number that’s outputted to the LEDs).

peek and PicBasic Pro

When you are using the PicBasic Pro compiler, it is recommended not to use
the peek command. Fortunately there is an easy work-around to the peek

command. We simply assign a variable to the port we wish to peek at.

var = portb
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The value placed in the variable var is our peek value.

‘PicBasic Pro program that uses a peek equivalent command
ct var byte

cl var byte

‘Initialize port(s)

trisb = 128 ‘Set port b pins (1..6) output, pin 7 input
loopl: ‘Counting loop

for ct = 0 to 127

portb = ct ‘Place ct value at port to light LEDs
pause 250 ‘Pause counting or it’s too fast to see
cl = portb ‘Check button status

if ¢1.7 = 0 then loop2 ‘If swl is closed, jump to loop2

next ct ‘Next ct value

goto loopl

loop2: ‘Second loop not counting

portb = 0 ‘Turn off all LEDs

cl = portb ‘Check button status; if open, jump back

if ¢1.7 = 1 then loopl ‘If swl is open, jump to loop 1
goto loop2

Basic input and output commands

In our programs we directly wrote to the PIC microcontroller TRIS registers
(A or B) and port registers. By doing so we were able to create input and out-
put pins and then access them in our programs. There are other commands
you can use to accomplish the same thing.

The PicBasic and PicBasic Pro compilers have two basic commands for mak-
ing individual pins either input or output lines. The commands are input and
output. Unfortunately these two basic commands only work on port B pins
(0 to 7) for PicBasic. For PicBasic Pro, any port may be used. The command

input pin

makes the specified pin an input line. Only the pin number itself, that is, 0 to
7, is specified (i.e., not pin 0), for example,

input 2 ‘Makes pin2 (rb2) an input line.
The opposite of the input command is the output command. The command
output pin

makes the specified pin an output line. Only the pin number itself, that is, 0 to
7, is specified (i.e., not pin 0), for example,

output 0 ‘Makes port b, pin 0 (rb0) an output

The above examples are intended for use with either PicBasic or PicBasic Pro.
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The PicBasic Pro has an additional command structure that can be used
with both the input and output commands. This allows one to make input
and output pins on other ports besides port B. This is accomplished by speci-
fying the port and the pin.
For instance, to access port A, pin 2, you use the following format:
porta.2
To use this in a command:
input porta.2 ‘Make port a, pin 2 an input
output porta.3 ‘Make port a, pin 3 an output
Servomotors

Servomotors (see Fig. 6.26) are used in many radio-controlled model airplanes,
cars, boats, and helicopters. Because of this large hobbyist market, servomo-
tors are readily available in a number of stock sizes. Servomotors are used in
a few of our robots.

Primarily, servomotors are geared dc motors with a positional feedback con-
trol that allows the rotor to be positioned accurately. The specifications state
that the shaft can be positioned through a minimum of 90° (£45°). In reality
we can extend this range closer to 180° (£90°) by adjusting the positional con-
trol signal.

There are three wire leads to a servomotor. Two leads are for power +5 V
and GND. The third lead feeds a position control signal to the motor. The posi-
tion control signal is a single variable width pulse. The pulse can be varied
from 1 to 2 ms. The width of the pulse controls the position of the servomotor
shaft.

A 1-ms pulse rotates the shaft to the extreme counterclockwise (CCW) posi-
tion (—45°). A 1.5-ms pulse places the shaft in a neutral midpoint position (0°).
A 2-ms pulse rotates the shaft to the extreme CW position (+45°).

The pulse width is sent to the servomotor approximately 50 times per sec-
ond (50 Hz). Figure 6.27 illustrates the relationship of pulse width to servo-
motor position.

In most of the robots that use servomotors, the servomotor must be posi-
tioned to its center location before being assembled into the robot. To center
the servomotor, we build a simple circuit and PicBasic program. The circuit is
shown in Fig. 6.28. The programs for the PicBasic and PicBasic Pro compilers
follow:

‘PicBasic program to center servomotor

start:
pulsout 0, 150 ‘Send pulse out on rb0
pause 18 ‘Delay needed to send pulse at 55 Hz

goto start ‘Repeat
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Figure 6.26 Photograph of a servomotor.

The following program is for the PicBasic Pro compiler.

‘PicBasic Pro program to center a servomotor

start:

pulsout portb.0, 150 ‘Send pulse out on rb0

pause 18 ‘Delay needed to send pulse at 55 Hz
goto start ‘Repeat

This centering program and circuit will be referred to in later parts of the
book when servomotors are discussed.

Parts List

LCD serial display
Pic Experimenter’s Board

Available from Images SI Inc. (see Suppliers at end of book).

Microcontroller (16F84) $7.95
4.0-MHz Xtal $2.50
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—4 |‘-—Pulse Width 1-2 ms
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Figure 6.27 Diagram of pulse widths sent to control servomotor position.
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Schematic of servomotor circuit used to center servomotors.
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(2) 22-pF capacitors

(1) Solderless breadboard RadioShack PN# 276-175
(1) 0.1-p.F capacitor RadioShack PN# 272-1069
(2) Red LEDs RadioShack PN# 276-208
(2) 470-Q) resistors* RadioShack PN# 270-1115
(1) 4.7-kQ) resistor RadioShack PN# 271-1126
(1) Voltage regulator (7805) RadioShack PN# 276-1770
(1) 9-V battery clip RadioShack PN# 270-325

Available from RadioShack, Images SI Inc., Jameco Electronics, and JDR
Microdevices (see Suppliers).

*These resistors are also available in 16-pin dip package.
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Chapter

Intelligence

Programming intelligence into a robot (or computer) is a difficult task and one
that has not been very successful to date even when supercomputers are used.
This is not to say that robots cannot be programmed to perform very useful,
detailed, and difficult tasks; they are. Some tasks are impossible for humans
to perform quickly and productively. For instance, imagine trying to solder 28
filament wires to a '/,-in square sliver of silicon in 2 s to make an integrated-
circuit chip. It’s not very likely that a human would be able to accomplish this
task without a machine. But machine task performance, as impressive as it is,
isn’t intelligence.

Approaches to Building Intelligence

There are two schools of thought concerning the creation of intelligence in arti-
ficial systems. The first approach programs an expert system (top down); the
second is a neural or behavior-based system (bottom up).

The expert system uses rules to guide the robot in task performance.
Behavior-based programs create an “artificial” behavior in the robot that caus-
es it to reflectively (automatically) perform the task required. Behaviors may
be programmed (software) or may be hardwired into the robot. Behavior-based
intelligence doesn’t require a central processor, although such a system may
have one.

Let’s look at a practical programming problem and see how each approach
differs. Suppose you worked for a company that designed a new robotic vacu-
um cleaner. The purpose of the robot is to vacuum the floor of a customer’s
home or apartment. Your job is to program the navigation system. The robot
needs to move autonomously throughout the house. How would you go about
programming the robot to accomplish navigation around the home so it could
travel in and out of rooms without destroying the place?

83
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Let’s assume you first decide to try an expert navigation system. This
approach uses brute-force programming and a lot of memory. You might begin
by dividing the task of vacuuming the apartment or home into smaller tasks
such as vacuuming individual rooms. You begin by programming into the
robot’s memory an electronic map (floor plan) of the home or area where the
robot needs to vacuum. Then you map out each individual room and its con-
tents. The robot must have the ability to measure its movement as it moves as
well as compass direction to maintain its location integrity. Once this is accom-
plished, the robot must have an exact start location on the floor plan.

The robot’s movement from the start position is measured and plotted on its
internal floor plan map. Problems occur if an object is positioned differently or
is out of place, such as a trash receptacle or chair that has been moved. In this
situation the real world does not match the robot’s internal map. Similar prob-
lems occur if new objects are left on the floor such as a bag, toy, or pet.

Even so, these obstacles would not present too much of a problem for an
expert system. To compensate, a secondary collision detection subprogram
could be written to detect, map, and go around an obstacle not existing on the
internal map. The robot continues to move and vacuum the floor. Keep in mind
that as the robot navigates around new obstacles, it’s continually updating its
internal map as it travels, to maintain its location integrity. These tasks are
gobbling up computer time and memory.

The robot vacuum accomplished its task. Now suppose you want to share
this robot or rent it. Now you have a problem. Each new house and every room
in the new house would require its own electronic map. Although expert pro-
gramming does work, it tends to be inflexible and not adaptive toward new or
innovative situations.

Now let’s try the other approach that uses behavior-based or bottom-up pro-
gramming. Instead of programming internal maps, we program sensor
responses and behavior-based algorithms (feedforward and feedback loops) for
sensing and traveling around obstacles and avoiding getting stuck underneath
furniture or trapped in corners. Without any internal map we allow the robot
to travel and move around the house in a random manner. The idea is that
while traveling in a haphazard manner, it will eventually make its way
throughout the rooms, cleaning the floor as it goes. Because the robot travels
randomly, it will take longer for the robot to vacuum the entire floor, and it
may miss a spot here and there, but it gets the job done. Since this behavior-
based type of robot vacuum isn’t programmed for a particular house or room,
it may be used in any house in any room at any time.

While our example is simple, it does illustrate the main differences between
expert and behavior-based (neural) programming. But let’s look at just one
more example before we move on.

Expert systems typically have all the answers that the designers believe will
be required by the system programmed into the system before it begins. It may
store and categorize new information, but based on previously determined cat-
egories and existing knowledge. An example of this system could be a rock
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identification system. The robot examines unknown rocks based on known
characteristics of rocks, such as color, hardness, scratchability, acid reaction
tests, mass, etc. The expert system fails if it inadvertently picks up a piece of
ice that melts to water during the tests. Well, it fails as long as the designer(s)
never anticipated the robot picking up a piece of ice by mistake and made
allowances for it.

Neural (behavior-based) systems are not programmed and are more adap-
tive, as shown in the previous example. But is a neural system suitable for this
task of rock identification? Probably not! There are instances in which expert
systems are the method of choice. One shouldn’t blindly assume one system is
better than the other in all cases.

To date, behavior-based robots are more successful at task accomplishments
such as traveling over unfamiliar and rough terrain than are programmed
robots. (Other neural-based intelligence includes speech recognition, artificial
vision, speech generation, complex analysis of stock market data, and life
insurance policies.)

Intelligence?

Behavior-based systems at their most basic level are neural reflex actions, so
where’s the intelligence in that? However, true behavior-based systems, when
layered on top of one another, generate what appears to be (meaning to us
homo sapiens) intelligence actions. This is not a consciousness mind, which is
a whole other category of intelligence, but the layer behavior-based circuits
mimic intelligent actions quite convincingly.

Layered Behavioral Responses

Let’s layer a few behavioral responses on top of one another to see how intel-
ligence behavior emerges. This particular robot is a modified “photovore.” It
will use a number of standard photoresistors as sensors.

Layer 1 is a simple on and off system. It uses a single photoresistor to read
ambient light intensity. In darkness the system turns itself off and shuts down
all electric power to the robot. When the ambient light increases to a low
threshold, the system turns itself on and the robot travels forward slowly.

Layer 2 is a two-photoresistor sensor. It determines in which direction the
light intensity is greater. These sensors steer the robot in the direction of the
greatest light intensity.

Layer 3 is a single-photoresistor sensor. Under high-intensity light it shuts
down the robot’s drive system and allows the robot to bathe in strong-intensi-
ty light.

An outsider who didn’t know how this robot was wired would observe the fol-
lowing behavior. At night the robot sleeps. At dawn it begins to travel, looking
for a bright light source (food). When it finds a sufficiently bright light source,
it stops to feed, recharging its batteries through solar panels.



86 Chapter Seven

So our simple photovore robot exhibits three (dare we say intelligent?)
behaviors—sleep, searching or hunting, and feeding. That’s not bad for a hand-
ful of components and some neural glue.

Behavior-Based Robotics

Behavior-based programs and robotics are not new concepts. Seminal work
has been written and experiments carried out since the 1940s. In the 1940s
neural networks and behavior-based robotics were hardwired electrical com-
ponents.

In the 1940s Dr. W. Grey Walter built two turtlelike mobile robots that exhib-
it complex behavior using a few electrical neurons. The behavior generated
was at the time called robotic reflexes. Today this behavior is more accurately
described as layered neural architecture.

In the 1980s Valentino Braitenberg wrote a book entitled Vehicles—
Experiments in Synthetic Psychology in which he described complex behavior
emerging from the use of a few artificial neurons.

Rodney Brooks, head of MIT’s Artificial Intelligence Laboratory, is a leader
in the field of subsumption architecture, which again is behavior-based and
neural.

Mark Tilden, creator of the nervous network technology, which again is
reflex-based, doesn’t program strategies such as walking into his biomorphic
robots. Instead he creates a nervous network whose desired state creates a
walking gait.

What these scientists have discovered is that neural behavior-based archi-
tecture offers unique advantages over standard-based expert programming.

In this book we will build a few behavior-based robots, using the PIC micro-
controller extensively in their construction.
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Walter’s Turtle

Behavior-Based Robotics

Behavior-based robotics were first built in the 1940s. At that time these robots
were described as exhibiting reflexive behavior. This is identical to the neural-
based approach to implementing intelligence in robots, as outlined in Chap. 7.

William Grey Walter—Robotics Pioneer

The first pioneer in the bottom-up approach to robotics is William Grey Walter.
William Grey Walter was born in Kansas City, Missouri, in the year 1910. When
he was 5, his family moved to England. He attended school in the United
Kingdom and graduated from King’s College, Cambridge, in 1931. After gradu-
ation he began doing basic neurophysiological research in hospitals.

Early in his career he found interest in the work of the famous Russian psy-
chologist Ivan Pavlov. Do you remember from your high school science classes
the famous “Pavlov’s dogs” stimulus-response experiment? In case you forgot,
Pavlov rang a bell just before providing food for dogs. After a while the dogs
became conditioned to salivate just by hearing the bell.

Another contemporary of Walter, Hans Berger, invented the EEG machine.
When Walter visited Berger’s laboratory, he saw refinements he could make
to Berger’s EEG machine. In doing so, the sensitivity of the EEG machine was
improved, and new EEG rhythms below 10 Hz could be observed in the
human brain.

Walter’s studies of the human brain led him to study the neural network
structures in the brain. The vast complexities of the biological networks were
too overwhelming to map accurately or replicate. Soon he began working with
individual neurons and the electrical equivalent of a biological neuron. He won-
dered what type of behavior could be gathered with using just a few neurons.

87
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To answer this question, in 1948 Walter built a small three-wheel mobile
robot. The mobile robot measured 12 in high and about 18 in long. What is fas-
cinating about this robot is that by using just two electrical neurons, the robot
exhibited interesting and complex behaviors. The first two robots were affec-
tionately named Elmer and Elsie (electromechanical robot, light sensitive).
Walter later renamed the style of robots Machina Speculatrix after observing
the complex behavior they exhibited.

In the early 1940s transistors had not been invented, so the electronic neu-
rons in this robot were constructed by using vacuum tubes. Vacuum tubes con-
sume considerably greater power than semiconductors do, so the original
turtle robots were fitted with large rechargeable batteries.

The robot’s reflex or nervous system consisted of two sensors connected to
two neurons. One sensor was a light-sensitive resistor, and the other sensor
was a bump switch connected to the robot’s outer housing.

The three wheels of the robot are in a triangle configuration. The front
wheel had a motorized steering assembly that could rotate a full 360° in one
direction. In addition, the front wheel contained a drive motor for propulsion.
Since the steering could continually rotate a full 360°, the drive motor’s elec-
tric power came through slip rings mounted on the wheel’s shaft.

A photosensitive resistor was mounted onto the shaft of the front wheel
steering-drive assembly. This ensured that the photosensitive resistor was
always facing in the direction in which the robot was moving.

Four Modes of Operation

While primarily a photovore (light-seeking) type of robot, the robot exhibited
four modes of operation. It should be mentioned that the robot’s steering motor
and drive motor were usually active during the robot’s operation.

Search. Ambient environment at a low light level or darkness. Robot’s
responses, steering motor on full speed, drive motor on %, speed.

Move. Found light. Robot’s responses, steering motor off, drive motor full speed.

Dazzle. Bright light. Robot’s responses, steering '/, speed, drive motor
reversed.

Touch. Hit obstacle. Robot’s response, steering full speed, reverse drive motor.

Observed Behavior

In the 1950s Walter wrote two Scientific American articles (“An Imitation of
Life,” May 1950; “A Machine That Learns,” August 1951) and a book titled
The Living Brain (Norton, New York, 1963). The interaction between the
neural system and the environment generated unexpected and complex
behaviors.

In one experiment Walter built a hutch, where Elsie could enter and
recharge its battery. The hutch was equipped with a small light that would
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draw the robot to it as its batteries ran down. The robot would enter the hutch,
and its battery would automatically be recharged. Once the battery recharged,
the robot would leave the hutch to search for new light sources.

In another experiment he fixed small lamps on each tortoise shell. The robots
developed an interaction that to an observer appears as a kind of social behav-
ior. The robots danced around each other, at times attracted and then repelled,
reminding him of a robotic mating ritual or territorial marking behavior.

Building a Walter Tortoise

We can imitate most functions in Walter’s famous tortoise. My adaptation of
Walter’s tortoise is shown in Fig. 8.1. To fabricate the chassis, we need to do a
little metalwork. Working metal is made a lot easier with a few tools such as
a center punch, hand shears, nibbler, drill, vise, and hammer (see Fig. 8.2).

Center punch: Used to make a dimple in sheet metal to facilitate drilling.
Without the dimple, the drill is more likely to “walk” off the drill mark. Hold
the tip of the center punch in the center of the hole you need to drill. Hit the
center punch sharply with a hammer to make a small dimple in the material.

Shears: Used to cut sheet metal. I would advise purchasing 8- to 14-in metal
shears. Use as a scissors to cut metal.

Nibbler: Used to remove (nibble) small bits of metal from sheet and nibble
cutouts and square holes in light-gauge sheet metal. Note RadioShack sells
an inexpensive nibbler.

Figure 8.1 Adaptation of Walter’s turtle robot.
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Figure 8.2 A few sheet metal tools.

Vise: Used to hold metal for drilling and bending.
Drill and hammer. Self-explanatory.

A well-stocked hardware store will carry the simple metalworking tools out-
lined. Most will also carry the light-gauge sheet metal and aluminum bar
materials needed to make the chassis.

I built the chassis out of (/- X Y,-in) aluminum rectangle bar and 22- to 24-
gauge stainless steel sheet metal. Stainless steel is harder to work with than
cold rolled steel (CRS). And CRS is harder to work with than sheet aluminum.
If I were to do this project over, I would use aluminum extensively because it
is easier to work with than CRS or stainless steel.

Drive and Steering Motors

The robot uses servomotors for both the drive and steering. The drive servo-
motor is a HiTec HS-425BB 51-0z torque servomotor (see Fig. 8.3). The HS-
425BB servomotor is modified for continuous rotation. For steering the robot I
used a less expensive HiTec HS-322 42-0z torque servomotor (unmodified).
Before we go into the robot fabrication, we must first modify the HS-425BB
servomotor for continuous rotation.
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Figure 8.3 HS-425 servomotor.

Modifying the HS-425BB Servomotor

I chose the HS-425BB servomotor because I found it to be the easiest servo-
motor to modify for continuous rotation. To create a continuous rotation ser-
vomotor, it is necessary to mechanically disconnect the internal potentiometer
from the output gear.

First remove the four back screws that hold the servomotor together (see
Fig. 8-4). Keep the servomotor horn attached to the front of the servomotor.
Once the screws are removed, gently pull off the front cover of the servomotor.
The output gear will stay attached to the front cover, separating from the shaft
of the potentiometer left in the servomotor’s case (see Fig. 8.5). Sometimes the
idler gear will fall out. Don’t panic; it’s easy enough to put back in position
when you reassemble the servomotor.

Next remove the plastic clip from the servomotor shaft (see Fig. 8.6). With the
plastic clip removed, the shaft of the potentiometer will no longer follow the
rotation of the output gear. Align the potentiometer shaft so that the flat sides
of the shaft are parallel to the long sides of the servomotor case (see Fig. 8.7).

Take off the front cover of the servomotor, and remove the center screw hold-
ing the servomotor horn and output gear (see Fig. 8.8). The output gear is
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Figure 8.4 Removing screws from back of servomotor case.

Output Gear Idler Gear

/

Servomotor
Horn

Figure 8.5 Inside view of HS-425 servomotor.
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Figure 8.6 Removing plastic clip.

Figure 8.7 Top view of servomotor gears with plastic clip removed.

shown in Fig. 8.9. Remove the bearing from the output gear (see Fig. 8.10). The
bearing needs to be removed so that you can cut away the stop tab from the
gear. Use a hobby knife or miniature saw to cut away the stop tab. When you
are finished cutting off the tab, check that the cut surfaces are smooth. If not,
use a file to smooth out the surfaces.

Next remount the bearing onto the gear (see Fig. 8.11). Reassemble the idler
and output gears onto the servomotor’s gear train in the case (see Figs. 8.12 and
8.13). Now fit on the servomotor cover, and reattach the cover, using the four
SCrews.
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Figure 8.8 Removing servomotor horn from front of case.

Figure 8.9 Output gear removed from front case.



Figure 8.10 Stop tab on output that must be removed.

Figure 8.11 Stop tab removed and bearing placed back on gear.

Walter’s Turtle
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Figure 8.12 Output gear fitted back onto servomotor.

of
e

Figure 8.13 Ready for reassembly of servomotor.

The output shaft of the servomotor is now free to rotate continuously. A
pulse width of 1 ms sent 50 to 60 times per second (Hz) will cause the servo-
motor to rotate in one direction. A pulse width of 2 ms will cause the servo-
motor to turn in the opposite direction.

There are two ways we can stop the servomotor from rotating. The first
method is to simply stop sending pulses to the servomotor. The second method
is a little trickier. A pulse width of approximately 1.5 ms will stop the servo-
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motor. The exact pulse width for each servomotor must be determined experi-
mentally. The exact pulse width required is based upon the position of the sta-
tic potentiometer shaft inside the servomotor. If you followed the directions
provided, it should be about 1.5 ms. To find the exact pulse width to stop the
servomotor, you have two options. The first is to keep manually adjusting the
pulse width until you find the correct pulse width. As you approach the pulse
width needed to stop the servomotor, you will notice that the rotational speed
of the servomotor will slow down. You can use this as a feature to create a
speed control, if you wish.

The second option is to look at the servomotor circuit described in Chap. 14 (see
Fig. 14.11). This simple circuit allows you to quickly find the correct pulse width.

Sheet Metal Fabrication

There are three pieces of sheet metal one needs to fabricate.

The U bracket, shown in Fig. 8.14, holds the front wheel and drive servomo-
tor. The U bracket may be fabricated from 22-gauge 1.25- X 5-in aluminum
sheet metal. I would recommend purchasing the U bracket (see Parts List)
because the cutting required for this fabrication is extensive and precise.

The U bracket mounts the drive servomotor (see Fig. 8.15). In addition, on
the top of the U bracket are holes for mounting a servomotor horn, which is
used to connect the steering servomotor.

Figure 8.16 is a diagram of the base with a cutout for the 42-0z servomotor.
The base measures 3 in X 5.5 in. The base will hold the power supply and the
electronics. Follow the servomotor diagram in removing metal from the base.

First drill the four (%,-in) holes for mounting the servomotor. Next use the
same drill bit to drill holes along the inside perimeter of the servomotor
cutout. Removing metal in this way is a little easier than trying to saw or nib-
ble it away. When you have drilled as many holes as possible, use the metal
nibbler to cut the material between the holes to finish removing this material.
Then continue to nibble away at the sides of the cutout until you have the rec-
tangle shape needed. Before you mount the servomotor, file the edges of the
hole smooth.

Finish the base by drilling the other holes outlined in the drawing.

The rear axle bracket is shown in Fig. 8.17; it is made from Y- X Y/,- X 10-in
aluminum bar. Drill the four Y;-in holes in the aluminum before bending it into
shape. For the rear axle I used the wire from a metal coat hanger. Mount the
rear axle and wheels to the robot base, using two 6-32 machine screws and nuts.

To continue, we need to mount the front drive wheel to the servomotor. The
drive wheel has a diameter of 2%, in and is Y/, in thick (see Fig. 8.18). The holes
are drilled in the wheel to accept a standard HiTec servomotor horn (see Fig.
8.19). The horn is secured to the wheel using four no. 2 X Y,-in sheet metal
screws (see Fig. 8.20).

Before you attach the servomotor to the U bracket, secure a servomotor horn
to the top of the U bracket, using the predrilled holes (see Fig. 8.21).
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Figure 8.14 Drawing of U bracket for mounting the drive servomotor.
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Figure 8.15 U bracket with drive servomotor attached.

The front of the mounting ears, both top and bottom, on the servomotor has
small tabs (see Fig. 8.22). Cut and file away these tabs so that the servomotor
can be mounted flush against the bracket (see Fig. 8.23). Next mount the ser-
vomotor to the U bracket, using 6-32 machine screws and nuts. Attach the
wheel/horn assembly to the servomotor (see Figs. 8.24 and 8.25). Put this
assembly to the side while we work on other components.

The original tortoises used a transparent plastic shell. The shell was connect-
ed to a bump switch that caused the robot to go into “avoid” mode when acti-
vated. I looked at, tried, and rejected a number of different shells. Finally I was
left with no choice other than to fabricate my own shell.

Rather than fabricate an entire shell, I made a bumper that encompasses
the robot. The bumper is fabricated from '/- X '/,- X 32-in aluminum bar (see
Fig. 8.26). The aluminum bar is marked at the center. Each bend required in
the bumper is also marked in pencil. The material is placed in a vise at each
pencil mark and bent to the angle required. The two ends of the aluminum bar
end up at the center back of the bumper. These two ends are joined together
using a Y- X ',- X 1-in-long piece of aluminum bar. A Y-in hole is drilled on
each end of the aluminum bar. Matching holes are drilled in the ends of the
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1/g - in holes to match rear axle bracket
Figure 8.16 Robot base showing
cutout for 42-o0z servomotor and
O holes for rear axle bracket.

bumper. The bar is secured to the bumper using two 5-40 machine screws and
nuts (see Fig. 8.27).

The upper bracket used to connect the bumper to the robot is identical to the
front end of the bumper (see Fig. 8.28). The upper bracket is made from Y- X
Y,- X 14.5-in aluminum bar. As with the bumper, the center of the bar is
marked, and each bend required is also marked in pencil. The material is bent
in a vise the same way as the bumper.

Finding the Center of Gravity

It is important to find the center of gravity line of the bumper, because this will
mark the optimum location where the upper bracket should be attached. Rest
the bumper on a length of aluminum bar. Move the bumper back and forth
until it balances evenly on the aluminum bar. Mark the centerline positions on
each side of the bumper. Drill a Y/,-in hole on each side. Drill matching holes on
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Figure 8.17 Rear axle bracket detail.

the ends of the upper bracket. Then secure the upper bracket to the bumper
using 5-40 machine screws and nuts.

Attaching Bumper to Robot Base

The bumper is attached to the robot body by the upper bracket. Drill three ,-in
holes in the top of the upper bracket. One Y/-in hole is in the center, and the two
other holes are 1Y/, in away from the center hole (see Fig. 8.29). Three matching
holes are drilled in the robot base behind the servomotor. The holes should be
placed so that the bumper (once secured to the base) has adequate clearance (Y,
to Y/, in) from the back wheels. The matching center hole on the base must be off-
set by moving the drilled hole forward on the base by about Y/, in.
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Figure 8.18 Drawing of drive wheel.

All dimensions in inches

Figure 8.19 Servomotor drive wheel with holes for mounting
servomotor horn.
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Figure 8.20 Drive wheel with servomotor horn attached.

Figure 8.21 U bracket before mounting of drive servomotor.

The bracket is secured to the base using two 1-in-long 6-32 machine screws,
four 6-32 nuts, and two 1-in-long 2-1b compression springs, with a -in center
diameter (see Fig. 8.30). The tension and resiliency of the bumper can be
adjusted by tightening or releasing the upper 6-32 machine screw nuts. Once
assembled, the bumper will tilt back and close the bumper switch when the
robot (bumper) encounters (pushes against) an obstacle.
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Figure 8.22 Tab on servomotor case that needs to be filed off.

Figure 8.23 Tab files off servomotor case.

Bumper Switch

The bumper switch makes use of the center holes. Looking back at Fig. 8.30,
we see the center hole is fitted with a 6-32 machine screw held on by a stan-
dard (zinc-plated) nut, followed by a brass nut. The brass nut has a wire sol-
dered to it. The purpose of this little assembly is just to attach a wire to the
bracket-bumper assembly. Brass nuts are used because it is possible to solder
wires to brass to make electrical connections. This is in contrast to the stan-
dard zinc-plated steel nuts that are very difficult (impossible) to solder.



Figure 8.24 Attaching drive servomotor to U bracket by using plastic
screws and nuts.

Figure 8.25 Another view of drive servomotor and U bracket.

Walter’s Turtle
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Figure 8.26 Top dimensional view of bumper fabricated from 1/8-in X 1/2-in X
32-in aluminum bar.

5-40 nuts
Aluminum bumper /

>4 N X

| i |\
1-in-long aluminum bar

5-40 machine screws

Figure 8.27 Cutaway close-up of aluminum bracket used to secure the open ends of
the bumpers.

The second half of the tile switch is comprised of a 1-in 6-32 plastic machine
screw and three 6-32 machine screw nuts. One nut must be brass with a wire
soldered to it (see Fig. 8.31). Figures 8.32 and 8.33 are close-up photographs of
the finished bumper switch. The assembly is adjusted so that the brass nut on
the top of the 6-32 machine screw lies just underneath the upper aluminum
bracket without touching. When the upper bracket tilts forward, contact is
made between the aluminum bracket and brass nut, which is read as a switch
closure.
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Flgure 8.28 Side dimensional view of upper bracket fabricated from / -in X
/ -in x 14! /y-in aluminum bar.
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Figure 8.29 Side dimensional view for hole placement in top of the upper bracket.
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Figure 8.30 Side view of upper bracket detailing the mounting of the upper
bracket to the robot base using machine screws and compression springs.
Also details bracket half of the bumper switch.

Mounting the Steering Servomotor

If you haven’t done so, mount the steering servomotor to the robot base, using
four 6-32 plastic machine screws and nuts. Before you attach the U bracket to
the steering servomotor, make sure the steering servomotor spindle is in its
center position. This will ensure that the robot will steer forward right and left
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Figure 8.31 Side dimensional detail (robot base side of the bump switch) of plastic screw
with top brass nut.

Figure 8.32 Close-up photograph detailing bump switch and spring mounting of upper bracket.

properly. The following short program will place a servomotor in its center
position:

start:

pulsout portb.1l, 150
pause 18

goto start

The output pulse signal for the servomotor is taken as pin RB1. Once the ser-
vomotor is in its center position, attach the U bracket to the servomotor so that
the drive wheel is pointing forward.
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Figure 8.33 Close-up photograph detailing bump switch.

Photoresistor

The CdS photoresistors (see Fig. 8.34) used in this robot have a dark resistance
of about 100 k() and a light resistance of 10 k(). The CdS photoresistors have
large variances in resistance between cells. It is useful to use a pair of CdS cells
for this robot that matches, as best as one can match them, in resistance.

Since the resistance value of the CdS cells can vary so greatly, it’s a good
idea to buy a few more than you need and measure the resistances, to find a
pair whose resistances are close. There are a few ways you can measure the
resistance. The simplest method to use a volt-ohmmeter, set to ohms. Keep the
light intensity the same as you measure the resistance. Choose two CdS cells
that are closely matched within the group of CdS cells you have.

The second method involves building a simple PIC16F84 circuit connected
to an LCD display. The advantage of this circuit is that you can see the
response of the CdS cells under varying light conditions. In addition, you can
see the difference in resistance between the CdS cells when they are held
under the same illumination. This numeric difference of the CdS cells under
exact lighting is used as a fudge factor in the final turtle program. If you just
test the CdS cells with just an ohmmeter, you will end up using a larger fudge
factor for the robot to operate properly.

The schematic for testing the CdS cells is shown in Fig. 8.35. The circuit,
built on a PIC Experimenter’s Board, is shown in Fig. 8.36. The PicBasic Pro
testing program follows:

‘CdS cell test

‘PicBasic Pro program

‘Serial communication 1200 baud true

‘Serial information sent out on port b line 0
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Figure 8.34 CdS photoresistor cell.
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Figure 8.35 Electrical schematic for testing and calibrating CdS cells.
‘Read CdS cell #1 on port b line 1
‘Read CdS cell #2 on port b line 7
vl var byte ‘Variable v1 holds CdS #1 information

v2 var byte ‘Variable v2 holds CdS #2
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Figure 8.36 Test circuit built on PIC Experimenter’s Board.

information
pause 1000
main:

pot portb.1l,255,v1
pot portb.7,255,v2
‘Display information
0,1, [$fe, $01]

serout portb.

pause 25

serout portb.
serout portb.
serout portb.

pause 5

serout portb.
serout portb.0

pause 100
goto main

0,1,[”“Cds 1 =
0,1, [#v1]
0,1, [$fe, $CO]

0,1,[~cds 2
1, [#v2]

ll]

"

‘Allow time for LCD display

‘Read resistance of CdS #1 photocell
‘Read resistance of CdS #2 photocell

‘Clear the screen

‘Move to line 2

Notice in Fig. 8.36 that CdS cell 1 is reading 37 and CdS cell 2 is reading 46
under identical lighting. Keep in mind that this is a closely matched pair of
CdS cells. We can use a fudge factor of £15 points. This means that as long as
the readings between cells vary from each other by +15 points, the microcon-
troller will consider them numerically equal.
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Trimming the Sensor Array

If you are using the Experimenter’s Board, you can trim and match the CdS
cells to one another. Doing so allows you to reduce the fudge factor and pro-
duces a crisper response from the robot.

Typically one CdS cell resistance will be lower than that of the other CdS cell.
To the lower-resistance CdS cell add a 1-k() (or 4.7-k(}) trimmer potentiometer
in series (see Fig. 8.37). Adjust the potentiometer (trim) resistance until the out-
puts shown on the LCD display equal each other. Trim the CdS cell under the
same lighting conditions in which the robot will function. The reason for this is
that when the light intensity varies from that nominal point to which you’ve
trimmed the CdS cell, the responses of the individual CdS cells to changes in
light intensity also vary from one another and then are not as closely matched.

Once you have a pair of CdS cells to use, they need to be attached to the
robot. I soldered the CdS cells and capacitors to a small piece of perforated
board (see Fig. 8.38). Figure 8.38 shows both the front and back of the sen-
sor array.

The opposite side of the servomotor bracket that holds the continuous rota-
tion servomotor is perfect for mounting the photoresistor. I used a small piece
of transparent plastic, '/, in wide X 6 in long X Y/, in thick (12.5 mm X 152 mm
X 1.5 mm thick) to create an L bracket on which to mount the photoresistors
(see Fig. 8.39).

A /¢in hole is drilled '/, in up from one end (see Fig. 8.37). The plastic is then
gently heated about 2%, in up from the end (see bend point). When the plastic
softens, bend it to a 90° angle and hold it in position until the plastic hardens

again.
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Figure 8.37 Electrical schematic of testing circuit with potentiometer trimmer.
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Figure 8.38 Front and back
mounting of CdS cells and
capacitors to perforated board.
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Figure 8.39 Fabrication drawing for plastic bracket for CdS cells.
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Schematic

Figure 8.40 CdS sensor array attached to plastic bracket.

Next I used hot glue to secure the CdS cells to the back of the plastic L (see
Fig. 8.40). Then I mounted an opaque vane on the front surface of the plastic
in between the photoresistors (see Fig. 8.41). The opaque vane is made from a
small piece of conductive foam I had lying around. I simply hot-glue one edge
to the plastic.

Using the opaque vane and the two CdS photosensors in this configuration
alleviates much of the computation needed to track a light source. The operation
of the sensor array is shown in Fig. 8.42. When both sensors are equally illumi-
nated, their respective resistances are approximately the same. As long as each
sensor is within +10 points of the other, the PIC program will see them as equal
and won’t move the servomotor (steering). When the sensor array is not proper-
ly aimed at the light source, the vane’s shadow falls on one of the CdS cells. This
pushes the resistance beyond the +10-point range. The PIC microcontroller acti-
vates the steering servomotor to bring both sensors back under even illumina-
tion. In doing so, this steers the robot straight to the light source.

If the sensors detect too great a light intensity, the robot will go into avoid mode.

Mounting the photoresistor array on the drive wheel assembly keeps the
sensors pointing in the same direction as the drive wheel (see Fig. 8.43). This
replicates the function of the original tortoise robots. The array is secured to
the U bracket by using a small plastic screw and wing nut.

The schematic for the robot is shown in Fig. 8.44. Intelligence for the robot is
provided by a single PIC 16F84 microcontroller. The forward servomotor is
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Figure 8.41 Drawing showing CdS cells attached to bracket with vane.

connected to RB7, and the steering servomotor control signal is provided by
RB6. Sensor readings of the CdS cell are read off pins RB2 and RB3. The
bumper switch is read off pin RAO.

There is nothing critical about the circuit; it may be hardwired on a pro-
totyping board. I chose a simpler route. Images SI Inc. sells a four-servo-
motor controller board. This board has all the connections needed for the
sensors and servomotors. My connections to the PC board are shown in Fig.
8.45. A picture of the finished circuit is shown in Fig. 8.46. Notice in the pic-
ture I used terminal blocks to connect the sensor array and bumper switch.

Upon power up, the drive motor is off, and the microcontroller begins scanning
for the brightest light source, using the servomotor.

If a light source is too bright, the robot jumps into avoid mode. In avoid mode
the robot backs away from the light source by reversing the drive motor while
steering the drive wheel left or right. If the light isn’t so bright as to activate
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SIDE VIEW

Figure 8.42 Operation of sensor array for targeting light source.

the avoid mode, the robot steers in the direction of the light and activates the
drive wheel forward.

If the bumper switch is activated, the robot assumes it has hit an obstacle
and so goes into avoid mode. The robot uses avoid mode for too bright a light
and collisions. If the tilt switch is not activated (no collision), then the program
jumps to the beginning and the process continues scanning and moving to the
brightest light source.

The program is written for the PicBasic Pro compiler that is programmed
into a PIC 16F84. The program should be able to be compiled and run with
few modifications on the PicBasic version. In-group variances in CdS sensors,
drive motors, robot structure, and the like can be adjusted for or modified in
the program.

‘Turtle program

‘PicBasic Pro program

‘Read CdS cell #1 on port b line 1

‘Read CdS cell #2 on port b line 7

vl var byte ‘Variable vl holds CdS #1 information
v2 var byte ‘Variable v2 holds CdS #2 information
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Figure 8.43 Attaching sensory array to drive servomotor’s U bracket.

v3 var byte ‘Variable for calculation

sl var byte ‘Variable sl holds servomotor #1 pulse width info
s2 var word ‘Variable for random function

rv var byte ‘Variable rv holds the range value

sl = 150 ‘Initialize steering servomotor facing forward

rv = 10 ‘Adjust as needed for smooth operation

ct var byte ‘Counter

‘Drive servomotor ** continuous rotation information
‘Connected to pin portb.7 ** variable pulse width numbers
157 forward * 165 slow forward

‘167 stop

169 slow backward * 177 backward

start:
pot portb.2,255,v1l ‘Read resistance of CdS #1 photocell
pot portb.3,255,v2 ‘Read resistance of CdS #2 photocell

‘Check bumper switch “Did I hit something?”

if porta.0 = 0 then avoid ‘Hit obstacle go into avoid mode
‘Is it sleepy time?

if vl <= 230 then skp ‘Is it dark enough to sleep?
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Figure 8.44 Schematic of robot.

if v2 > 230 then slp

‘Is it too bright to see?
skp:

if vl >= 12 then skip2

if v2 < 12 then avoid

‘Which way do I go?

skip2:

if vl = v2 then straight
if vl > v2 then greater
if vl < v2 then lesser
straight:

pulsout portb.6, sl
pulsout portb.7, 157

goto start

greater:

v3 = vl - v2
if v3 > rv then right
goto straight

lesser:

Bumper switch

‘Yes

‘No sleep--keep moving
‘Is it too bright to 1
‘Yes

‘Not so bright--should
‘Light is equal go str

SVO R1
+ 4.7KQ
14 Ut C1
3 EEEVDD o Jxq W
11]rBs5 MCLR 16 4MHz
gl RB4 oscifF~———
8 IRB2 oscz—lil-l15
71rB1
6_RBO/INT
31ra4ockI
?- RA3
s
17 1ga0 PIC 16F84
VSS
5
ive?
I steer?
aight

‘Check light intensity to turn right

‘Check light intensity to turn left

‘Go forward in the direction you’re facing

‘Don’t move steering
‘Go forward

‘Check numerical difference between CdS cells

‘If more than rv turn
‘If not go straight

right
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Figure 8.45 Using an existing PCB board for building robot’s electronics.

vy = v2 - vl ‘Check numerical difference between CdS cells
if v3 > rv then left ‘If more than rv turn left

goto straight ‘If not go straight

right: ‘Turn right

sl = s1 +1 ‘Increment variable sl to turn right

if sl > 225 then sl = 225 ‘Limit sl to 225

pulsout portb.6, sl ‘Move steering servomotor

pulsout portb.7, 165 ‘Go forward slowly

goto start
left: ‘Turn left



120 Chapter Eight

sl =s1 -1

if s1 < 65 then sl = 65
pulsout portb.6, sl
pulsout portb.7, 165
goto start

slp:

pulsout portb.6, sl
pulsout portb.7, 167
goto start

avoid:

random s2

sl = s2 / 256

if sl < 65 then sl = 65
if sl > 225 then sl = 225
for ct = 1 to 125
pulsout portb.6, sl
pulsout portb.7, 177
pause 18

next ct

sl = 150

Figure 8.46 Close-up of electric circuit board.

‘Decrement variable sl to turn left
‘Limit sl to 65

‘Move steering servomotor

‘Go forward slowly

‘Go asleep
‘Don’t move steering
‘Stop drive servomotor

‘Avoid mode, send

‘Randomize s2

‘Reduce range of sl to 1 to 255
‘Set lower limit

‘Set upper limit

‘Start counter

‘Steer (turn) in a random direction
‘Reverse drive motor (slow)

‘Pause to send instructions at 50 Hz
' Loop

‘Steer back to center
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goto start

Adding Sleep Mode

Power

Behavior

I added a sleep mode for occasions when the ambient light is very low. The
robot moves forward when both CdS sensors receive approximately the same
light intensity. The robot steers right or left when one CdS cell receives more
light than the other. If each CdS cell receives too much light or the bump
switch is activated, the robot goes into avoid mode.

A 9-V battery on the PC board supplies adequate electrical power for the robot
for a short time. Although I used this power supply for testing robot function,
you will need a stronger power supply for extended use. The PCB board has a
dc voltage socket where an external power supply can be connected.

The finished robot is shown in Figs. 8.47 and 8.48.

This robot exhibits the following behavior. In ambient light, no bright light
source, the robot travels in a straight line (or circle depending upon the last
light source target). If the ambient light is too bright, it jerks backward. With
a mediocre light source, it will aim and travel toward the light.

The program can be developed further to explore more interesting and exotic
behaviors. Before we do so, let’s first look at how the standard program functions.

Fudge Factor

The variable RV (range value) is the fudge factor. At the beginning of the pro-
gram the variable RV is assigned a value of 10. In my prototype I actually used
an RV of 2 because I had matched the resistance values of CdS cells, as dis-
cussed earlier.

Tolerance between the two CdS photoresistors may be increased or
decreased by modifying the numerical value of this variable. You may need to
adjust this variable according to how closely the resistance values of your CdS
cells match.

Light Intensity

The program continually checks the light intensity received (resistance) by
each CdS sensor and then makes a decision based on those readings. The max-
imum reading from the sensor is 255 (total darkness). If the room gets dark
enough to generate a value of 230 in each CdS cell, then the robot goes into
sleep mode.

‘Is it sleepy time?
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Figure 8.47 Front view of turtle robot.

Figure 8.48 Side view of turtle robot.
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if vl <= 230 then skp ‘Is it dark enough to sleep?
if v2 > 230 then slp ‘Yes

The opposite of sleep mode is the “too bright to live.” If the light becomes too
intense, this triggers the avoid mode.

‘Is it too bright to see?

skp: ‘No sleep—keep moving
if vl >= 12 then skip2 ‘Is it too bright to live?
if v2 < 12 then avoid ‘Yes

Increasing the numerical value, in this case 12, decreases the light intensity
that puts the robot into avoid mode. Decreasing the numerical value increases
the light intensity needed to throw the robot into avoid mode. In most cases you
will want to decrease this number. However, I would advise you not to go below
a numerical value of 9, because even at full light saturation of the CdS cell, its
resistance never drops to zero. And in my light saturation tests the sensor nev-
er yielded a value less than 5.

In this robot, intense light pushes the robot into avoid mode. If this were a
true photovore robot, high light intensity would put it into a feeding mode.

In addition, one could create handedness in the robot (right- or left-handed) by
modifying either greater or lesser subroutines, not both. This will create a
robot that is more likely to turn in one direction than in the other.

greater:

v3 = vl - v2 ‘Check numerical difference between CdS cells
if v3 > rv then right ‘If more than rv turn right

goto straight ‘If not go straight

For instance, if RV = 10, we can substitute the value 7 like this
if v3 > 7 then right

Then in the lesser subroutine the RV is kept the same. The result of this
manipulation is that we would create a robot that is more likely to turn to the
right.

This robot offers opportunities to the robotists and experimenters for con-
tinued experimentation and development in both hardware and software.

12-in X 12-in sheet metal sheet of 22 or 24 gauge
(1) Aluminum bar Y/, in X %, in X 32 in long
(1) Aluminum bar ¥, in X ¥, in X 14/, in long

(1) Aluminum bar Y/, in X Y/, in X 2 in long
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(1) 42-0z-torque hobby servomotor (HS-322)
(1) Hobby servomotor (HS-425)

(1) 2%,-in-diameter drive wheel

(2) CdS photocells, 100 kQ dark, 10 kQ light
(1) 10-kQ, /,-W resistor

(1) 4.7-kQ, ¥/,-W resistor

(2) 22-pF caps

(1) 4-MHz ceramic resonator or Xtal
(1)(IC1) PIC microcontroller (16F84-04)

(1) U bracket for drive servomotor

Miscellaneous needs include perforated board, v/, ,-in-thick transparent plastic,
5-40 machine screw and nuts, plastic 6-32 X 1-in machine screw, 6-32 brass
nuts, 1-in-long compression springs (2 1b). Aluminum bars, machine screws,
tubing, and compression springs are available in most well-stocked hardware
stores.

Servomotors may be purchased at hobby shops or electronics distributors.

Electronic components may be purchased from RadioShack, Images SI Inc.,
Jameco Electronics, JDR Microdevices (see Suppliers at end of book).

PC board, servomotor drive wheel, and U bracket for drive servomotor may
be purchased from Images SI Inc.
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Braitenberg Vehicles

In 1984 Valentino Braitenberg published a book titled Vehicles—Experiments
in Synthetic Psychology. In his book Valentino describes a number of wondrous
vehicles that exhibit interesting behaviors based on the use of a few electron-
ic neurons.

Similar in concept to Walter’s seminal neural work with his robot tortoises,
Valentino’s vehicle behavior is more straightforward, making it somewhat eas-
ier to follow both theoretically and logically. This also makes it easier to imple-
ment his ideas into real designs for robots.

In this chapter we will build a few Braitenberg-type vehicles.

At the heart of Braitenberg vehicles is his description of a basic vehicle,
which is a sensor connected to a motor. Braitenberg continues to explain the
relationship between the sensor and motor. The relationship is essentially the
connection between the sensor and motor, and this connection ought to be con-
sidered as a neuron. With the connection configured as a neuron, the structure
is shown in Fig. 9.1. Instead of a vehicle we will describe the structure diagram
as a small neural network.

At the front end of the network we find a sensor, followed by the neuron
and finally the output motor. The sensor detects the intensity of light and
outputs a proportional signal to the motor. High-intensity light produces
high rpm’s (revolutions per minute) from the motor. Low-intensity light pro-
duces slow rpm’s.

Consider the sensor portion as modular and interchangeable. Other sensors
can be plugged in and incorporated to detect any number of environmental
variables, for example, heat, pressure, sound, vibration, magnetic fields (com-
pass), electrical fields, radioactivity, and gases (toxic or otherwise).

In addition, the motor, like the sensor, represents a singular example of an
output module. Other output modules could include a second neuron (or neur-
al layer), electric circuit, on/off switch, light source, etc.

125
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N\

Meuron

Sensor

Figure 9.1 Basic neuron setup, sensor input, neuron, and motor output.

The neuron’s input is the output of the sensor, and the neuron’s output
activates a motor in relationship to its input. The input/output “relation-
ship” of the neuron can be made to be one of many different mathematical
functions. The relationship may also be called connection strength or con-
nection function when you are reading the neural network literature. The
relationship is one of the most important variables we can modify when pro-
gramming our robot.

Neural I/0 Relationships

Vehicles

When the neuron is stimulated, it generates an output. As stated, there are a
number of mathematical functions that can exist inside the neuron. These
functions act upon the neuron’s input (sensor output) and pass through the
results to the neuron’s output. Let’s examine a few of them.

Positive proportional. As input from the sensor increases, activation (rpm’s)
of the motor increases in proportion; see Fig. 9.2.

Negative proportional. As input from the sensor increases, activation (rpm’s)
of the motor decreases in proportion (see Fig. 9.3).

Digital. As input from the sensor output exceeds a predetermined
(programmed) threshold (that may be positive or negative), the motor is
activated (see Fig. 9.4).

Gaussian. As input from the sensor increases, output passes through a
gaussian function for motor activation (see Fig. 9.5).

Essentially the neuron may incorporate any mathematical function. It
would perform this function on the sensory input to generate an appropriate
output. I have provided an example of only a few of the more common func-
tions available.

Using the basic neural setup, we can construct a few simple vehicles that
exhibit interesting behaviors. Figure 9.6 illustrates two vehicles labeled A and
B. Both vehicles use the positive proportional neural setup with a light inten-
sity sensor.
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Figure 9.4 Graph of digital transfer function. As sensor output increases, output
remains unchanged until threshold is reached, then output switches full on.

Vehicle A, if both sensors are evenly illuminated by a light source, will speed
up and, if possible, run into the light source. However, if the light source is off
to one side, the sensor on the side of the light source will speed a little faster
than the sensor/motor on other side. This will cause the vehicle to veer away
from the light source (see Fig. 9.7).

Vehicle B, if both sensors are evenly illuminated by a light source, will speed
up and, if possible, run into the light source (same as vehicle A). If the light
source is off to one side, vehicle B will turn toward the light source (see Fig. 9.7).
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Figure 9.5 Graph of gaussian function. As sensor output increases, output
follows a gaussian curve.

ZAERN & NN

A B
Figure 9.6 Wiring of two Braitenberg vehicles labeled A and B.

Negative proportional neural setups would show the opposite behavior.

Building Vehicles

It’s time to put the theory to the test and see if it works. Let’s assemble the
materials needed to build a vehicle. The photovore’s basic operating procedure
is like Walter’s robot. It tracks and follows a light source.

The base of the vehicle is a sheet of aluminum 8 in long by 4 in wide by %,
in thick. We will use two gearbox motors for propulsion and steering and one
multidirectional front wheel.

We will try a new construction method with this robot. Instead of securing the
gearbox motors with machine screws and nuts, we will use 3M’s industrial
brand double-sided tape. This double-sided tape, once cured, is as strong as pop
rivets. I tried to separate a sample provided by 3M. It consisted of two flat pieces
of metal secured with the tape. Even when I used pliers, it was impossible. 3M
states that the tape requires 24 h to reach full strength. You may not achieve the
full-strength capability of the tape unless you follow the 3M procedure.
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Figure 9.7 Function of A and B Braitenberg vehicles.

The gearbox motor is a 918D type (see Fig. 9.8). The gearbox motor at the
top of the picture has an orange cowl that is covering the gears. Notice the flat
mounting bracket that is perfect for securing to the vehicle base. The double-
sided tape is cut lengthwise to fit the base of bracket to the gearbox motor. The
exposed side of the tape is immediately secured to the gearbox motor bracket.
Then the motor is positioned on the bottom of the vehicle base, the protective
covering of the tape is removed, and the gearbox motor is firmly placed onto
the bottom of the vehicle base (see Fig. 9.9).

The second gearbox motor is secured to the other side in a similar manner.

The shaft diameter of the gearbox motor is a little too small to make a good
friction fit to the rubber wheel. To beef up the diameter, cut a small 1- to 1.5-
in length of the 3-mm tubing; see Parts List. Place the tubing over the gearbox
motor shaft, and collapse the tubing onto the shaft, using pliers. There is a
small cutaway on the gearbox motor shaft (see Fig. 9.10). If you can collapse
the tubing into this cutaway, you will create a strong fit between the shaft and
the tubing that will not pull off easily (see Fig. 9.11).

The tubing adds to the diameter of the shaft and will make a good friction
fit with the rubber wheels (see Fig. 9.12). Simply push the center holes of the
wheels onto the tubing/shaft, and you are finished.



130 Chapter Nine

Figure 9.9 3M double-sided tape is used to secure gearbox motor to base
of vehicle.
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Figure 9.1 A 11/2-in length of 3-mm-diameter tubing attached to gearbox
motor shaft.

Steering is accomplished by turning on or off the gearbox motors. For instance,
turning on the right while the left gearbox motor is off will turn the vehicle to the
left, and vice versa. In similar vehicles many times the robotists will forgo front
wheels entirely and use a skid instead. This allows the vehicle to turn without
concern about the front wheels pivoting and turning in the proper direction

The multidirectional wheel accomplishes much the same thing as a skid, but
does so with less resistance. Figure 9.13 shows the multidirectional wheel. It
is constructed using rollers around its circumference that allow the wheel to
rotate forward and move sideways without turning.
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Figure 9.12 Rubber wheel used to friction fit onto gearbox motor shaft.

The multidirectional wheel is attached using a basic U-shaped bracket (see
Fig. 9.14). The bracket is secured to the front of the vehicle base using the 3M
double-sided tape. The multidirectional wheel is secured inside the U bracket
using a small 2.25-in piece of V/,-20 threaded rod and two machine screw nuts
(see Fig. 9.15).

With the motors and the multidirectional wheel mounted, we are ready
for the electronics. Figure 9.16 shows the underside of the Braitenberg
vehicle at this point. I drilled a /,-in hole in the aluminum plate to allows
wires from the gearbox motors underneath the robot to be brought top-
side.

The schematic for the electronic circuit is shown in Fig. 9.17. I built the cir-
cuit on two small solderless breadboards. You can do the same or hardwire the
components to a PC board. The circuit is pretty straightforward. The gearbox
motors require a power supply of 1.5 to 3.0 V. Rather than place another volt-
age regulator into the circuit, I wired three silicon diodes in series off the 5-V
dc power. The voltage drop across each diode is approximately 0.7 V. Across the
three series diodes (0.7 X 3 = 2.1 V) equals approximately 2.1 V. If we subtract
this voltage drop from our regulated 5-V dc power supply, we can supply
approximately 3 V dc to the gearbox motors.
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Figure 9.13 Multidirectional wheel.

| 1.751n |
| |

1.251in
. Threaded rod
Y lsin
- Figure 9.14 Drawing of U bracket
for multidirectional wheel.
f4-in
hole

CdS photoresistor cells

As with Walter’s turtle-type robot, we use two CdS photoresistor cells. The CdS
photoresistors (see Fig. 9.18) used in this robot have a dark resistance of about
100 kQ and a light resistance of 10 k(). The CdS photoresistors typically have
large variances in resistance between cells. It is useful to use a pair of CdS cells
for this robot that matches, as best as one can match them, in resistance.

Since the resistance values of the CdS cells can vary so greatly, it’s a good
idea to buy a few more than you need and measure the resistances to find a
pair whose resistances are close. There are a few ways you can measure the
resistance. The simplest method to use a volt-ohmmeter, set to ohms. Keep the
light intensity the same as you measure the resistance. Choose two CdS cells
that are closely matched within the group of CdS cells you have.



Figure 9.15 Multidirectional wheel and U bracket attached to vehicle
base.

Figure 9.16 Underside of Braitenberg vehicle showing wheels and gearbox
motor drive.
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Figure 9.18 CdS photoresistor
cell.

The second method involves building a simple PIC 16F84 circuit connected
to an LCD display. The advantage of this circuit is that you can see the
response of the CdS cells under varying light conditions. In addition, you can
see the difference in resistance between the CdS cells when they are held
under the same illumination. This numeric difference of the CdS cells under
exact lighting is used as a fudge factor in the final turtle program. If you just
test the CdS cells with just an ohmmeter, you will end up using a larger fudge
factor for the robot to operate properly.

The schematic for testing the CdS cells is shown in Fig. 9.19. The circuit,
built on a PIC Experimenter’s Board, is shown in Fig. 9.20. The PicBasic Pro
testing program follows:

‘CdS cell test

‘PicBasic Pro program

‘Serial communication 1200 baud true

‘Serial information sent out on port b line 0
‘Read CdS cell #1 on port b line 1

‘Read CdS cell #2 on port b line 7

vl var byte ‘Variable vl holds CdS #1 information
v2 var byte ‘Variable v2 holds CdS #2 information
Pause 1000 ‘Allow time for LCD display

main:

pot portb.1,255,v1l ‘Read resistance of CdS #1 photocell
pot portb.7,255,v2 ‘Read resistance of CdS #2 photocell

‘Display information
serout portb.0,1, [$fe,$01] ‘Clear the screen
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Figure 9.19 Schematic of test circuit to match CdS cells for use in Braitenberg vehicle.

pause 25

serout portb.0,1, [”
serout portb.0,1,

serout portb.0,1, [$fe, $c0] ‘Move to line 2

pause 5

serout portb.0,1, [”
serout portb.0,1,

pause 100
goto main
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Notice in Fig. 9.20 that CdS cell 1 is reading 37 and CdS cell 2 is reading 46
under identical lighting. Keep in mind, this is a closely matched pair of CdS
cells. We can use a fudge factor of £15 points, meaning that as long as the read-
ings between cells vary from each other by w15 points, the microcontroller will
consider them numerically equal.

Trimming the sensor array

If you are using the Experimenter’s Board, you can trim and match the CdS
cells to one another. Doing so allows you to reduce the fudge factor and pro-
duces a crisper response from the robot.
Typically one CdS cell resistance will be lower than that of the other CdS
cell. To the lower-resistance CdS cell add a 1-kQ) (or 4.7-k()) trimmer poten-
tiometer in series (see Fig. 9.21). Adjust the potentiometer (trim) resistance
until the outputs shown on the LCD display equal each other. Trim the CdS
cell under the same lighting conditions in which the robot will function. The
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Figure 9.20 Test circuit built on PIC Experimenter’s Board.
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Figure 9.21 Schematic of test circuit with trimmer potentiometer.

O R1
+5V 4.7KQ

14 C1

VDD T ApF
RB6  MCLR X1
RB5 16 4MHz
RB4  OSC1|—>——9
Rbe OSCZM-I
RBO/INT
RA4/TOCKI
RA3
RA2

PIC 16F84

RAO VSS

5




Braitenberg Vehicles 139

reason for this is that when the light intensity varies from that nominal point
to which you've trimmed the CdS cell, the responses of the individual CdS cells
to changes in light intensity also vary from one another and then are not as
closely matched.

PIC 16F84 microcontroller

The 16F84 microcontroller used in this robot simulates two neurons. Each
neuron’s input is connected to a CdS cell. The output of each neuron activates
one gearbox motor.

In the program I put in a fudge factor, or range, over which the two CdS cells
can deviate from one another in resistance readings and still be considered
equal. If the robot doesn’t travel straight ahead when the two CdS cells are
equally illuminated, you can increase the range until it does.

PicBasic Compiler program

‘Braitenberg vehicle 1

start:
pot 1, 255,b0 ‘Read CdS cell # 1
pot 2, 255,bl ‘Read CdS cell # 2

If b0 = bl then straight
if b0 > bl then left
if bl > b0 then right

straight:
high 3: high 4
goto start

left:
b2 = b0 - bl ‘Compare numerical values +/- 15
if b2 > 15 then leftl ‘If greater than 15 turn left
goto straight ‘If not go to straight subroutine
leftl: ‘Turn left
high 3: low 4 ‘Motor control

goto start

right: ‘Compare numerical values +/- 15
b2 = bl - b0 'If greater then 15 points
if b2 > 15 then rightl ‘Turn toward the right
goto straight ‘If not go straight
rightl: ‘Turn right
high 4: 103 ‘Motor control
goto start ‘Do again

Testing

The finished robot is shown in Fig. 9.22. For power I used 4 AA cell batteries.
I pointed one CdS cell to the left and the other to the right (see Fig. 9.23). To
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Figure 9.22 Finished Braitenberg vehicle.

Figure 9.23 Close-up of CdS cells mounted in solderless breadboard.
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test the robot’s function, I used a flashlight. Using the flashlight, I was able to
steer the mobile platform around by shining the flashlight on the CdS cells.

Second Braitenberg Vehicle (Avoidance Behavior)

Given the way the robot is currently wired, it is attracted to and steers toward
a bright light source. By reversing the wiring going to the gearboxes you can
create the opposite behavior.

Parts List

(1) Microcontroller (16F84)

(1) 4.0-MHz crystal

(2) 22-pF caps

(1) 0.1-F cap

(1) 100-.F cap

(1) 10-puF cap

(2) 0.1-p.F caps

(2) 330-Q, /,-W resistors

(1) 4.7-kQ, /,-W resistor

(2) CdS photoresistor cells (see text)

(2) 100:1 gearbox motors (918D)

(2) NPN transistors (2N3904)

(5) Diodes (1N4002)

(2) 2.25-in-diameter wheels

(1) Multidirectional wheel

(1) Voltage regulator (low drop-down voltage +5 V) (LM2940)
Miscellaneous items needed include 6-in length of 3-mm hollow tubing, alu-
minum 8 in X 4 in X Y, in thick, 2 solderless breadboards, 3M double-sided

tape, battery holder for 4 D batteries, 3-in /,-20 threaded rod, and 2 machine
screw nuts.
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Hexapod Walker

Legged walkers are a class of robots that imitate the locomotion of animals
and insects, using legs. Legged robots have the potential to transverse rough
terrains that are impassable by standard wheeled vehicles. It is with this in
mind that robotists are developing walker robots.

Imitation of Life

Legged walkers may imitate the locomotion style of insects, crabs, and some-
times humans. Biped walkers are still a little rare, requiring balance and a
good deal more engineering science than multilegged robots. A bipedal robot
walker is discussed in detail in Chap. 13. In this chapter we will build a six-
legged walker robot.

Six Legs—Tripod Gait

Using a six-legged model, we can demonstrate the famous tripod gait used by
the majority of legged creatures. In the following drawings a dark circle means
the foot is firmly planted on the ground and is supporting the weight of the
creature (or robot). A light circle means the foot is not supporting any weight
and is movable.

Figure 10.1A shows our walker at rest. All six feet are on the ground. From
the resting position our walker decides to move forward. To step forward, it
leaves lifts three of its legs (see Fig. 10.1B, white circles), leaving its entire
weight distributed on the remaining three legs (dark circles). Notice that the
feet supporting the weight (dark circles) are in the shape of a tripod. A tripod
is a very stable weight-supporting position. Our walker is unlikely to fall over.
The three feet that are not supporting any weight may be lifted (white circles)
and moved without disturbing the stability of the walker. These feet move for-
ward.

143
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Figure 10.1 Sample biological tripod gait.

Figure 10.1C illustrates where the three lifted legs move. At this point,
the walker’s weight shifts from the stationary feet to the moved feet (see
Fig. 10.1D). Notice that the creature’s weight is still supported by a tripod
position of feet. Now the other set of legs moves forward and the cycle
repeats.

This is called a tripod gait, because a tripod positioning of legs always sup-
ports the weight of the walker.

Three-Servomotor Walker Robot

Function

The robot we will build is shown in Fig. 10.2. This walker robot is a compro-
mise in design, but allows us to build a six-legged walker using just three
servomotors. The three-servomotor hexapod walker demonstrates a true tri-
pod gait. It is not identical to the biological gait we just looked at, but close
enough.

This legged hexapod uses three inexpensive HS-322 (42-0z torque) servo-
motors for motion and one PIC 16F84 microcontroller for brains. The micro-
controller stores the program for walking, controls the three servomotors,
and reads the two sensor switches in front. The walking program contains
subroutines for walking forward and backward, turning right, and turning
left. The two switch sensors positioned in the front of the walker inform the
microcontroller of any obstacles in the walker’s path. Based on the feedback
from these switch sensors, the walker will turn or reverse to avoid obstacles
placed in its path.

The tripod gait I programmed into this robot isn’t the only workable gait.
There are other perfectly usable gaits you can develop on your own. Consider
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Figure 10.2 Hexapod robot.

this walking program a working start point. To modify the program, it’s impor-
tant to understand both the program and robot leg functions. First let’s look at
the robot.

At the rear of the walker are two servomotors. One is identified as L for the
left side, the other as R for the right side. Each servomotor controls both the
front and back legs on its side. The back leg is attached directly to the horn of
the servomotor. It is capable of swinging the leg forward and backward. The
back leg connects to the front leg through a linkage. The linkage makes the
front leg follow the action of the back leg as it swings forward and back.

The third servomotor controls the two center legs of the walker. This servo-
motor rotates the center legs 20° to 30° clockwise (CW) or counterclockwise
(CCW), tilting the robot to one side or the other (left or right).

With this information we can examine how this legged robot will walk.

Moving Forward

We start in the rest position (see Fig. 10.3). As before, each circle represents a
foot, and the dark circles show the weight-bearing feet. Notice in the rest posi-
tion, the center legs do not support any weight. These center legs are made to
be Y/, in shorter than the front and back legs.

In position A the center legs are rotated CW by about 25° from center posi-
tion. This causes the robot to tilt to the right. The weight distribution is now
on the front and back right legs and the center left leg. This is the standard
tripod position as described earlier. Since there is no weight on the front and
back left legs, they are free to move forward as shown in the B position of
Fig. 10.3.
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Figure 10.3 Forward gait for hexapod robot.

In the C position the center legs are rotated CCW by about 25° from center
position. This causes the robot to tilt to the left. The weight distribution is now
on the front and back left legs and the center right leg. Since there is no weight
on the front and back right legs, they are free to move forward, as shown in the
D position.

In position E the center legs are rotated back to their center position. The
robot is not in a tilted position so its weight is distributed on the front and
back legs. In the F position, the front and back legs are moved backward
simultaneously, causing the robot to move forward. The walking cycle can
then repeat.

Moving Backward

We start in the rest position (see Fig. 10.4), as before. In position A the cen-
ter legs are rotated CW by about 25° from center position. The robot tilts
to the right. The weight distribution is now on the front and back right
legs and the center left leg. Since there is no weight on the front and back
left legs, they are free to move backward, as shown in the B position of Fig.
10.4.
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Figure 10.4 Backward gait for hexapod robot.

In the C position the center legs are rotated CCW by about 25° from center
position. The robot tilts to the left. Since there is no weight on the front and
back right legs, they are free to move backward, as shown in the D position.

In position E the center legs are rotated back to their center position. The
robot is not in a tilted position, so its weight is distributed on the front and back
legs. In the F position, the front and back legs are moved forward simultane-
ously, causing the robot to move backward. The walking cycle can then repeat.

Turning Left

The leg motion sequence to turn left is shown in Fig. 10.5. In position A the
center legs are rotated CW by about 25° from center position. The robot tilts to
the right. The weight distribution is now on the front and back right legs and
the center left leg. Since there is no weight on the front and back left legs, they
are free to move forward, as shown in Fig. 10.4.

In the B position, the center legs are rotated CCW by about 25° from center
position. The robot tilts to the left. Since there is no weight on the front and
back right legs, they are free to move backward, as shown in the C position.
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Figure 10.5 Turning-left gait for hexapod robot.

In position D, the center legs are rotated back to their center position. The
robot is not in a tilted position, so its weight is distributed on the front and
back legs. In position, the left legs moved backward while the right legs moved
forward, simultaneously causing the robot to turn left. It typically takes three
turning cycles to turn the robot 90°.

Turning Right

Turning right follows the same sequence as turning left, with the leg positions
reversed.

Construction

For the main body I used a sheet of aluminum 3 in wide X 9 in long X
0.032 in thick. The servomotors are mounted to the front of the body
(see Fig. 10.6).

The four '/,,-in-diameter holes a little past halfway down the main body are
for mounting the center servomotor. These four holes are offset to the right
side. This is necessary to align the servomotor’s horn in the center of the body.
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Figure 10.6 Diagram of robot base.

A A

The bottom two holes are for mounting the pivots for the two back legs.

Use a punch to dimple the metal in the center of each hole you plan to
drill. This will prevent the drill bit from walking when you drill the hole. If
you don’t have a punch available, use the pointed tip of a nail for a quick
substitute.
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The legs for the robot are made from '/,-in-wide X '/g-in-thick aluminum bar
stock (see Fig. 10.7). There are four drilled holes needed in the two back legs.
The three holes that are clustered together toward one end of the leg are for
mounting the leg to a servomotor horn. The two /,,-in holes allow a 0-80 screw
to pass through. The centered /,-in hole allows you to remove or attach the ser-
vomotor screw that holds the servomotor horn (and leg assembly) to the ser-
vomotor. Make sure these three holes line up with the holes on the servomotor
horn you intend to use.

The front legs only need two holes—one for the pivot and the other for the
linkage. Also notice that the front legs are 0.25 in shorter than the back legs.
This compensates for the height of the servomotor mounting horn on the back
servomotors where the back legs are attached. Shortening the front legs
makes the robot platform approximately level.



Hexapod Walker 151

,)900 TWIST

)/90"

53/4

MATERIAL /g X 1/2 X 91/4
ALUMINUM BAR

ALL DIMENSIONS IN INCHES

Figure 10.8 Diagram of center tilt legs, which are constructed of a single piece
of aluminum and are 1/8 in shorter than the front and back legs.

After the holes are drilled, we need to bend the aluminum bar into shape.
Secure the aluminum bar in a vise 2%/, in from the end with the drilled holes.
Pressure is applied to bend the aluminum bar at a 90° angle. It’s best to apply
pressure at the base of the aluminum bar close to the vise. This will bend the
leg at a 90° angle, while keeping the lower portion of the leg straight without
any bowing of the lower portion.

The center legs are made from one piece of aluminum (see Fig. 10.8). The
center legs are about Y/, in shorter than the front and back legs when mount-
ed to the robot. So when centered, the legs do not support any weight. These
legs are for tilting the robot to the left or right. The legs tilt the robot by rotat-
ing the center servomotor approximately +20°.

To produce the center legs, first drill the servomotor horn’s mounting holes
in the center of the Y/-in X Y,-in X 9Y,-in aluminum bar. This should be simi-
lar to the three clustered holes you drilled in the back legs. Next secure the
aluminum bar in a vise. The top of the vise should hold the aluminum bar %,
in from the center of the aluminum bar. Grab the aluminum bar with pliers
about Y/, in above the vise. Keeping a secure grip with the pliers, slowly twist
the aluminum bar 90°. Don’t go fast, or you could easily snap the aluminum
bar. Repeat the twist on the other side.

After the two 90° twists have been made, make the other 90° bend for the
legs, as we have done before for the front and back legs.

Mounting the servomotors

The back servomotors are attached to the aluminum body using plastic 6-32
machine screws and nuts. The reason I used plastic screws is that the plas-
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tic is a little flexible, allowing the drilled holes to be slightly off-center from
the mounting holes on the servomotor without creating a problem.

The legs are attached to the servomotor’s plastic horn. For this I used 0-80
machine screws and nuts. When you mount the servomotor horn on the servo-
motor, make sure that each leg can swing forward and backward an equal
amount from a perpendicular position.

Leg positioning

The legs must be positioned accurately, or the walking program will not cause
the hexapod robot to walk properly. To aid in this positioning look at Fig. 10.9.
The numbers next to the leg positions represent the pulse width output signal
for the servomotors.

The circuit we will use to control and power the hexapod walker may also be
used to adjust the leg positions. A simplified schematic is shown in Fig. 10.10
that is useful for adjusting the legs. This schematic is almost identical to the
schematic that will control the robot; the only difference is that the two sensor
switches are removed. The leg adjustment program is small; see below for both
PicBasic Pro and PicBasic versions.

If you decide to buy the PCB board for this robot (Fig. 10.22), you can use the
PCB board for this test circuit and program.

To align the legs, first disconnect the servomotor horn from the servomo-
tor by unscrewing the center mounting screw from the horn. Once the
screw is removed, pull the horn off. Keep the leg attached to the horn. Apply
power to the servomotor and connect the control line of the servomotor to
RB4. This will center the servomotor’s rotational position. Now reattach the
servomotor horn to the servomotor, positioning the leg to be in the center
position, as shown in Fig. 10.9. Lock the servomotor horn in place, using the
center screw. The leg is now in proper position. By connecting the servomo-

120 180
N Y

—~ 150

150 : H\\/

180/ N 120

Figure 10.9 Diagram of leg posi-
tions relating to pulse widths.

Forward
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Figure 10.10 Schematic of test circuit.

tor control line to pins RB5 and RB6, you can verify the leg’s front and back
swing. Adjust the program if necessary to ensure a proper swing.

When switching a servomotor from pin to pin, you must power down the cir-
cuit first. If you just switch pins without powering down, the microcontroller
could latch up and you will get inaccurate positioning.

‘Leg adjustment program (PicBasic Pro) --for 16f£84 microcontroller

start:

pulsout portb.4, 150 ‘Pin rb4
pulsout portb.5, 120 ‘Pin rb5
pulsout portb.6, 180 ‘Pin rb6
pause 18

goto start
end

‘Leg adjustment program (PicBasic)--for 16£84 microcontroller

start:

pulsout 4, 150 ‘Pin rb4
pulsout 5, 120 ‘Pin rbb5
pulsout 6, 180 ‘Pin rbé6
pause 18

goto start
end
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Figure 10.11 Diagram of robot base with front and back leg linkage. View A shows detail of pivot
for front legs.

The linkage between the front and back legs is made from standard Radio
Control (RC) clevis linkage (see Fig. 10.11). In the prototype robot the linkage is
6%/, in center to center. The linkage fits inside the holes in the front and back legs.

The back legs must be attached to the body of the robot before you make the
linkage. The pivot for the front legs is made from a %-in binding post and
screw. The leg is attached as shown in the close-up in Fig. 10.11. The plastic
washers underneath the body are necessary. They fill up the space between the
aluminum body and the bottom of the screw. This keeps the leg close to the alu-
minum body without sagging. I choose plastic washers for less friction. Do not
use so many washers that force is created, binding the leg to the body. The joint
should pivot freely.

Center (tilt) servomotor

To attach the center servomotor to the body requires two L-shaped brackets
(see Fig. 10.12). Drill the holes and bend at a 90° angle.
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Figure 10.12 Close-up of clevis linkage.

Attach the two L brackets to the center servomotor, using the plastic screws
and nuts (see Fig. 10.13). Next mount the center servomotor assembly under
the robot body. Align the four holes in the body with the top holes in the L
brackets. Secure with plastic screws and nuts.

You must align the center legs on the center servomotor properly, or else the
robot will not tilt properly. First remove the horn from the center servomotor.
Then attach the center leg to the removed horn, using the 0-80 screws ands
nuts. Apply the center control signal (RB4 from Fig. 10.10) to the center servo-
motor. With the servomotor centered, reattach the horn/center leg assembly to
the servomotor, making sure that the legs are in the center position when
securing it in position. Once the center leg is attached, you can remove power
from the servomotor. Figures 10.14 and 10.15 show the underside and top side
of the hexapod robot.

This hexapod has two front switch sensors for detecting obstacles (see Fig.
10.16). The switch is a miniature snap-action flat lever arm, model number
TFCGV3VT185BC manufactured by C&K Components. The levers on the
switches are retrofitted with feelers that extend the range of the levers for-
ward and to the side. The feelers are made with miniature metal tubing or stiff
wire (aluminum, steel, or copper).
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Figure 10.14 Tilt servomotor with

i i -
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\“L/L robot base.
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To attach the feelers to the lever, I used a %,-in-long piece of small rubber
tubing. I slid two sections of tubing onto the lever, then slid the stiff wire
underneath the tubing (see Fig. 10.17).

Attaching the switches to the front of the hexapod required a small fixture
to prevent the mounting screws for the switches from getting in the way of the
moving front legs. The fixture is made from two pieces of wood. One piece of
wood measures Y/, in wide X '/, in thick X 1 in long. The second piece of wood
measures %/, in wide X '/, in thick X 3 in long.
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Figure 10.16 Snap-action lever switch used for front obstacle sensors.

Figure 10.17 Bottom view of switch assembly showing feelers.
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Electronics
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Figure 10.18 Switch assembly cutaway drawing.

Figure 10.18 illustrates the construction of the switch assembly. The two
switches are mounted diagonally on the 3-in-long piece of wood using plastic
machine screws and nuts. The 1-in-long piece of wood is mounted on top of the
3-in-long piece of wood. Two holes are drilled through the robotic base and two
pieces of wood. The assembly is mounted to the robotic base using two plastic
machine screws and nuts.

Figures 10.19 and 10.20 show the front and bottom views of the switch
assembly.

Figure 10.21 shows the schematic for the servomotors and PIC microcon-
troller. Notice the 6-V battery pack is powering the microcontroller as well as
the servomotors. The battery pack is a 16-V unit using four AA batteries.

The microcontroller circuit may also be built on a small printed-circuit board
that is available from Images SI Inc. (see Fig. 10.22). The robot will function
for a short time using a fresh 9-V battery, it will deplete quickly. A secondary
battery pack may be laid on top of the aluminum body and connected to the PC
board using a power plug.
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Figure 10.19 Front view of switch assembly attached to robot base.

Figure 10.20 Bottom view close-up of switch assembly.

Figure 10.23 shows the completed walker ready to run.

Microcontroller program

The 16F84 microcontroller controls the three servomotors, using just three I/O
lines. This leaves 10 available I/O lines and plenty of programming space left
over to improve and add to this basic walker. The program follows:

‘Hexapod walker

‘Notes

‘Servomotor configuration

‘Left leg(s) servomotor connected to rb4
‘Right leg(s) servomotor connected to rb5
‘Center tilt servomotor connected to rbé6

‘Pulse width out signals for following servomotors:
‘Left leg (150 center) (180 forward) (120 back)
‘Right leg (150 center) (120 forward) (180 back)
‘Tilt (left 170) (right 130) (center 150)
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Figure 10.23 Finished robot.

‘Declare variables

1ls var byte ‘Left servomotor pulse width
rs var byte ‘Right servomotor pulse width
cs var byte ‘Center servomotor pulse width
ct var byte ‘Count

b0 var byte ‘Count

bl var byte ‘Count

‘Define variables
1ls = 150
rs = 150
cs = 150

pause 250

start:

‘Read forward sensors

‘Front collision?
if (porta.l = 0 && porta.2 = 0) then
‘Both left and right sensors are hit, move backward
for b0= 1 to 3
gosub backstep
next
for b0= 1 to 4
gosub rturn
next

endif

‘Collision on right?
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if (porta.l = 1 && porta.2 = 0) then
‘Right sensor hit, collision on right
for bO0= 1 to 2
gosub backstep
next
for bO0= 1 to 4
gosub lturn
next
endif

‘Collision on left?
if (porta.l = 0 && porta.2 = 1) then
‘Left sensor hit, collision on left
for b0= 1 to 2
gosub backstep
next
for b0 = 1 to 4
gosub rturn
next
endif

‘No collision keep moving forward

if (porta.l = 1 && porta.2 = 1) then
‘Sensors clear
gosub frward

endif

goto start

backstep: ‘Backward step
gosub rtilt

gosub rlf

gosub 1ltilt

gosub 11f

gosub center

ls = 150: rs = 150

gosub do_it

return

frward: ‘Forward step
gosub rtilt

gosub rlb

gosub 1ltilt

gosub 11b

gosub center

ls = 150: rs = 150
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gosub do_it
return

lturn: ‘Left turn
gosub rtilt

gosub rlb

gosub 1ltilt

gosub 11f

gosub center

ls = 150: rs = 150

gosub do_it

return

rturn: ‘Right turn
gosub rtilt

gosub rlf

gosub 1ltilt

gosub 11b

gosub center

ls = 150: rs = 150

gosub do_it

return

do_it: ‘Move robot-forward, backward, left or right
for bl = 1 to ct

pulsout portb.6, cs

pulsout portb.5, rs

pulsout portb.4, 1s

pause 18

next bl

return

center: ‘Center tilt servomotor
ct = 15

cs = 150

gosub do_it

return

rlf: ‘Right leg forward
ct = 20

rs = 120

gosub do_it

return

rlb: ‘Right leg back
ct = 20
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rs = 180
gosub do_it
return

11f: ‘Left leg forward
ct = 20

ls = 180

gosub do_it

return

11lb: ‘Left leg back
ct = 20

ls = 120

gosub do_it

return

rtilt: ‘Right side tilt
ct = 15

cs = 130

gosub do_it

return

ltilt: ‘Left side tilt
ct = 15

cs = 170

gosub do_it

return

This PicBasic program provides for forward, backward, turn left, and turn
right motions. Two sensors switches on the front of the robot inform the micro-
controller when it has encountered an obstacle. When an obstacle is encoun-
tered, the robot steps back and turns to the left or right, depending on which
side the obstacle was encountered.

The robot is provided with a right-handedness. If a front collision is detect-
ed, the robot steps back, then turns to the right and proceeds forward.

Parts List

Servomotors

Microcontrollers (16F84)

PCB

Aluminum bars

Aluminum sheets

Threaded rods and nuts (4-40)

Plastic machine screws, nuts, and washers

Available from Images SI Inc. (see Suppliers at end of book).
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Speech Recognition

In the near future, speech will be the method for controlling appliances, toys,
tools, computers, and robotics. There is a huge commercial market waiting for
this technology to mature.

Our speech recognition circuit is a stand-alone trainable speech recognition
circuit that may be interfaced to control just about anything electrical (see Fig.
11.1). The interface circuit we will build in the second part of this chapter will
allow this speech recognition circuit to control a variety of electrical devices
such as appliances, test instruments, VCRs, TVs, and of course robots. The cir-
cuit is trained (programmed) to recognize words you want it to recognize. The
unit can be trained in any language and even nonlanguages such as grunts,
birdcalls, and whistles.

To be able to control and operate an appliance (computer, VCR, TV security
system, etc.) or robot by speaking to it makes it easier to work with that device,
while increasing the efficiency and effectiveness. At the most basic level,
speech commands allow the user to perform parallel tasks (i.e., hands and eyes
are busy elsewhere) while continuing to work with the computer, appliance,
instrument, or robot.

The heart of the circuit is the HM2007 speech recognition integrated circuit
(see Fig. 11.2). The chip provides the options of recognizing either 40 words
each with a length of 0.96 s or 20 words each with a length of 1.92 s. This
speech recognition circuit has a jumper setting (jumper WD on main board)
that allows the user to choose either the 0.96-s word length (40-word vocabu-
lary) or the 1.92-s word length (20-word vocabulary).

For memory the circuit uses an 8K X 8 static RAM. There is a backup mem-
ory battery for the SRAM on the main board. This battery keeps the trained
words safely stored in the SRAM when the main power is turned off. The but-
ton battery lasts approximately 2 years. Without the battery backup you would
have to retrain the circuit every time the circuit was switched off.

165
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Figure 11.1 Speech recognition circuit assembled.

HMZ00 T

96228 ABSWZ

Figure 11.2 HM2007 integrated circuit.

The chip has two operational modes: manual mode and CPU mode. The CPU
mode is implemented when it is necessary for the chip to work as a speech recog-
nition coprocessor under a host computer. This is an attractive approach to speech
recognition for computers because the job of listening to sound and recognition of
command words doesn’t occupy any of the main computer’s CPU time. In one type
of programming scenario, when the HM2007 recognizes a command, it can signal
an interrupt to the host CPU and then relay the command it recognized. The
HM2007 chip can be cascaded to provide a larger word recognition library.

The SR-06 circuit we are building operates in the stand-alone manual mode.
As a stand-alone circuit, the speech recognition circuit doesn’t require a host
computer and may be integrated into other devices to add speech control.
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Applications of command and control of appliances and equipment include
these:

Telephone assistance systems

Data entry

Speech-controlled toys

Speech and voice recognition security systems

Robotics

Software Approach

Currently most speech recognition systems available today are software pro-
grams that run on personal computers. The software requires a compatible
sound card be installed in the computer. Once activated, this software runs
continuously in the background of the computer’s operating system (Windows,
0S/2, etc.) and any other application program.

While this speech software is impressive, it is not economically viable for
manufacturers to add personal computer systems to control a washing
machine or VCR. The speech recognition software steals processing power
from the operating system and adds to the computer’s processing tasks.
Typically there is a noticeable slowdown in the operation and function of the
computer when voice recognition is enabled.

Learning to Listen

We take our ability to listen for granted. For instance, we are capable of lis-
tening to one person speak among several at a party. We subconsciously filter
out the extraneous conversations and sound. This filtering ability is beyond
the capabilities of today’s speech recognition systems.

Speech recognition is not speech understanding. Understanding the meaning
of words is a higher intellectual function. The fact that a computer can respond
to a vocal command does not mean it understands the command spoken. Voice
recognition systems will one day have the ability to distinguish linguistic
nuances and the meaning of words, to “Do what I mean, not what I say!”

Speaker-Dependent and Speaker-Independent

Recognition

Speech recognition is classified into two categories, speaker-dependent and
speaker-independent.

Speaker-dependent systems are trained by the individual who will be using
the system. These systems are capable of achieving a high command count and
better than 95 percent accuracy for word recognition. The drawback to this
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approach is that the system only responds accurately to the individual who
trained the system. This is the most common approach employed in software
for personal computers.

Speaker-independent systems are trained to respond to a word regardless of
who speaks. Therefore the system must respond to a large variety of speech
patterns, inflections, and enunciations of the target word. The command word
count is usually lower than that of the speaker-dependent system; however,
high accuracy can still be maintained within processing limits. Industrial
requirements more often require speaker-independent voice systems, such as
the AT&T system used in the telephone systems.

Recognition Style

Speech recognition systems have another constraint concerning the style of
speech they can recognize. They are three styles of speech: isolated, connected,
and continuous.

Isolated speech recognition systems can just handle words that are spoken
separately. This is the most common speech recognition system available
today. The user must pause between each word or command spoken. The
speech recognition circuit is set up to identify isolated words of 0.96-s length.

Connected speech recognition system is a halfway point between isolated
word and continuous speech recognition. It allows users to speak multiple
words. The HM2007 can be set up to identify words or phrases 1.92 s in length.
This reduces the word recognition vocabulary number to 20.

Continuous speech is the natural conversational speech we are used to in
everyday life. It is extremely difficult for a recognizer to sift through the text
as the words tend to merge together. For instance, “Hi, how are you doing?”
sounds like “Hi, howyadoin.” Continuous speech recognition systems are on
the market and are under continual development.

Speech Recognition Circuit

The speech recognition circuit is available as a kit from Images SI Inc. You can
purchase the main components, HM2007, SRAM, and printed-circuit boards
separately if you like and build from scratch. The kit takes a modular approach
and uses three separate printed-circuit (PC) boards. The three PC boards are
the main circuit board containing the speech recognition circuit, digital display
board, and keypad (see Fig. 11.3). The keypad and digital display are removable
from the main circuit board. They are needed to communicate with and pro-
gram the main speech recognition circuit. After the programming is accom-
plished, the digital display and keyboard can be removed, and the main circuit
embedded into another circuit to add speech control.

Circuit construction

The schematic is shown in Fig. 11.4. You can hardwire this circuit to a bread-
board if you like. I would recommend purchasing the three PCB boards that
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Main Circuit Board

Figure 11.3 Three modular circuit boards.

are available for this project; see Parts List. When you use the PC board, the
components are mounted on the top silkscreen side of the board. Begin con-
struction by soldering the IC sockets onto the PC boards. Next mount and sol-
der all the resistors. Now mount and solder the 3.57-MHz crystal and red LED.
The long lead of the LED is positive. Next solder the capacitors and 7805 volt-
age regulator. Solder the seven position headers on the keypad to the main cir-
cuit board. Next solder the 10 position headers on the display board and main
circuit board.

The keypad is made up of 12 normally open (N.O.) pushbutton switches (see
Fig. 11.5).

1 2 3
4 5 6
7 8 9
* 0 #
Clear Train

To train the circuit, first attach the keypad and digital display to the main cir-
cuit board (see Fig. 11.6). Next select your word length. Place a jumper on the
two pin WD header on the main circuit board to select a 20-word vocabulary,
each with a 2-s word length. Leave the jumper off to select a 40-word vocab-
ulary, each with a 1-s word length. Plug in the headset microphone. When
power is applied, the HM2007 checks the static RAM, outputs “00” on the dig-
ital display, and lights the red LED (READY). The circuit is in the ready
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Figure 1.6 Modular components
put together for training.

mode. In the ready mode the circuit is listening for a verbal command or wait-
ing to be trained.

To train the circuit, begin by pressing the word number you want to train on
the keypad. In this exercise I am assuming you choose the 20-word vocabulary.
In this mode the circuit can be trained to recognize up to 20 words. Use any
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numbers between 1 and 20. For example, press the number 1 to train word
number 1. When you press the number(s) on the keypad, the red LED will turn
off. The number pressed on the keypad is shown on the digital display. Next
press the # key for train. When the # key is pressed, it signals the chip to lis-
ten for a training word, and the red LED turns back on. Now speak the word
you want the circuit to recognize into the headphone microphone clearly. The
LED should blink off momentarily; this is a signal that the word has been
accepted.

Continue training new words in the circuit, using the procedure outlined
above. Press the 2 key, then the # key to train the second word, and so on. The
circuit will accept up to either 20 or 40 words, depending on the lengths of the
words. You do not have to enter 20 words into memory to use the circuit. If you
want, you can use as few word spaces as you require.

The procedure for training 40 words is identical, except that you can choose
word numbers between 1 and 40.

Testing Recognition

Error codes

The circuit is continually listening. Repeat a trained word into the micro-
phone. The number of the word should be displayed on the digital display. For
instance, if the word directory was trained as word number 5, then saying the
word directory into the microphone will cause the number 5 to be displayed.

The chip provides the following error codes.

55 = word too long
66 = word too short

77 = word no match

Clearing the trained word memory

To erase all the words in the SRAM memory (training), press 99 on the keypad
and then press the * key. The display will scroll through the numbers 1
through 20 (or 1 through 40 if in 1-s word length mode) quickly, clearing out
the memory.

To erase a single word space, press the number of the word you want to clear
and then press the * key.

Independent Recognition System

In addition to speech commands, this circuit allows you to experiment with oth-
er facets of speech recognition technology. For instance, you can experiment



Speech Recognition 173

with speaker-independent systems. This system is inherently speaker-depen-
dent, meaning that the voice that trained the circuit also uses it. To experiment
with speaker-independent recognition (multiuser), try the following technique.
Set the WD jumper on the main circuit board to the 40-word vocabulary with a
0.96-s word length. Now we will use four word spaces for each command word.
We will arrange the words so that the command words will be recognized by
just decoding the least significant digit (number) on the digital display.

This is accomplished by allocating the word spaces 01, 11, 21, and 31 to the
first target or command word. When the circuit is in recognition mode, we only
decode the least significant digit number, in this case X1 (where X is any num-
ber from 0 to 3) to recognize the target word.

We do this for the remaining word spaces. For instance, the second target
word will use word spaces 02, 12, 22, and 32. We continue in this manner until
all the words are programmed.

If possible, use a different person to speak the word. This will enable the sys-
tem to recognize different voices, inflections, and enunciations of the target
word. The more system resources that are allocated for independent recogni-
tion, the more robust the circuit will become.

There are certain caveats to be aware of. First you are trading off word
vocabulary number for speaker independence. The effective vocabulary drops
from 40 words to 10 words.

The speech interface control circuit shown later may be used in this speaker-
independent experimental capacity.

Voice Security System

This HM2007 wasn’t designed for use in a voice security system. But this
doesn’t prevent you from experimenting with it for that purpose. You may
want to use three or four keywords that must be spoken and recognized in
sequence in order to activate a circuit that opens a lock or allows entry.

Speech Interface Control Circuit

Okay, you have a functioning speech recognition circuit, so now what? You
need a method of allowing those voice commands to activate other electrical
devices or functions. To do this, we need to build a universal speech interface
circuit.

When designing this interface, I weighed options that I thought would make
this interface useful to as many different users as possible. The first parame-
ter I considered was how many outputs the interface should have. I decided
upon 10 outputs. The second consideration was the type of output that the
interface board should provide. Here was a tough choice. I had the option to
make the output an active high signal that the user could use to activate or be
detected. This output could be used on a TTL logic line or CMOS logic line, or
to turn on a transistor switch or power relay in their circuitry.
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The other option I thought of was to put 10 miniature SPDT relays on the
interface board. This way the interface board could switch electric power on
and off directly from the board.

The advantage of the active high output signal is cost. This board would cost
much less than the interface board containing 10 relays. The advantage of the
relay board is that the miniature power relays have enough current capacity
to directly control small dc motors and other electric circuits.

I couldn’t decide between the two approaches, so I have included both
designs. You can choose which interface circuit suits you. The front ends of
both circuits are identical and function in the same manner. The outputs are
different and are explained separately.

Since we are controlling 10 outputs, we only need 11 commands—10 com-
mands for active on/off switches and 1 command to turn everything off. In gen-
eral, it is better if the main speech recognition board jumper (WD) is set to the
20 two-second word length option. The 20 two-second word mode has a better
word recognition accuracy than the 40 one-second setting. However, the inter-
face board will work with both modes. This makes it possible to experiment
with the speaker-independent system described earlier.

The speech interface circuit needs to perform a couple of jobs. First it needs
to determine when the speech recognition circuit has detected a spoken word.
After a word has been detected, it must distinguish whether the word detected
is a recognized command word or an unrecognized word. If the word is a recog-
nized command word, it passes the binary information to the output. If the
detected word is not a command word, it must block any change to the output.

How the circuit works

Before we can get into the nuts and bolts of how the interface circuit functions,
we must look at the binary information output by the speech recognition cir-
cuit. The output of the speech recognition circuit consists of two 4-bit binary-
coded decimal (BCD) numbers. This binary (BCD) information is shown on the
speech circuit’s two-digit digital display. Whenever a word is detected, the cir-
cuit uses the digital display to output the word number it has recognized, or
else it outputs its unrecognized/error code. If the word detected is not recog-
nized, the circuit will display one of the following error codes:

55 = word too long

66 = word too short

77 = word no match

Our interface design incorporates a PIC microcontroller (see Fig. 11.7 or
11.8). A preprogrammed microcontroller’s (16F84) first job is to determine if a

word has been spoken. To do this, we use an LM339 comparator. A reference
voltage for the comparator is generated using a voltage divider made up of
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Figure 11.7 Speech recognition interface (active high outputs) SRI-03.

resistors R4 and R5. The reference voltage is placed on pin 5 of the comparator.
Pin 4 of the comparator is connected to the LED lead on the speech recognition
circuit. Whenever a word is detected, the LED blinks off momentarily. The out-
put of the comparator (pin 2) is connected to pin 10 (RB4) of the 16F84 micro-
controller. The output of the comparator (pin 2) is usually high (+5 V). When a
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word is detected, the output (pin 2) drops to ground momentarily. The micro-
controller monitors this line to determine when a word has been detected.

Once a word has been detected, it is necessary for the interface to read the
BCD output from the speech recognition circuit. By using the high- and low-
digit BCD nibbles, it’s possible to distinguish trained target words. To do so,
the interface must distinguish the error codes 55, 66, and 77 from trained
words numbered 5, 6, and 7. To accomplish this, the interface circuit uses four
NAND gates off the 4011 integrated circuit. The NAND gates are connected to
the high-digit nibble. If the high-digit BCD nibble has the equivalent word
numbers of 5, 6, or 7, the output from the four NAND gates is low. The output
from the four NAND gates is connected to pin 11 (RB5) of the 16F84. The
16F84 reads this pin to determine if the high-digit nibble is a 5, 6, or 7 (0 V or
ground). If these numbers are not displayed, the output of the NAND gates is
high (+5 V).

So far our circuit can tell when a word has been detected and if the result-
ing word is an error code. If the output of the speech recognition circuit is an
error code, nothing else happens; the microcontroller loops back to the begin-
ning of the program, waiting for another word detection. On the other hand, if
a word is detected and it is not an error code, the microcontroller passes the
low-digit number through to the 74HC154 (4- to 16-line decoder) IC. The
74HCT154 decoder reads the binary number passed to it and brings the cor-
responding pin equivalent to that number low.

PIC 16F84 microcontroller program

The PIC 16F84 used in both interface circuits contains the following PicBasic
program:

‘Speech recognition interface program

symbol porta = 5

symbol trisa = 133

symbol portb = 6

symbol trisb = 134

poke trisa, 255

poke trisb, 240

start:

peek portb, b0

if bitd = 0 then trigger ‘Trigger enabled, read speech recognition

circuit
goto start ‘Repeat
trigger:
pause 500 ‘Wait .5 second
peek portb, b0 ‘Read bcd number
if bit5 = 1 then send ‘Output number
goto start ‘Repeat
send:
peek porta, b0 ‘Read port a
if bitd = 1 then eleven ‘Is the number 11

poke portb, b0 ‘Output number



Speech Recognition 177

goto start ‘Repeat
eleven:

if bit0 = 0 then ten

poke portb, 11

goto start ‘Repeat
ten:

poke portb, 10

goto start ‘Repeat
end

Active high output

The outputs from the 74HCT154 each pass through a 4049 inverting buffer to
supply a 15-Vdc active high output signal.

SPDT relay output

In Fig. 11.8, the front end of the circuit is identical to Fig. 11.7. The changes
are seen in the back end of the circuit. The active low output signals from the
74HCT154 each connect to one of the 10 PNP transistors, each of which con-
trols a corresponding relay. Each relay has a normally open (N.O.) switch and
normally closed (N.C.) switch. The relay switches are rated at 124 V ac at 0.5
A or 24 V dc at 1 A. The relay itself consumes approximately 30 mA of current
when it is turned on.

Circuit Construction

There is nothing critical about the circuit construction. The circuit may be
wired point to point on a breadboard, if you like. Printed-circuit boards make
the construction easier and are available as kits from Images SI Inc.

The only component that needs special notice is the 10-pin female header. If
you are not using the PC boards from the kit, you must follow the schematic
and wire the 10-pin female header exactly; or else the interface will not be
receiving the signals it expects, and the unit will fail.

Programming the Speech Recognition Circuit:
Training, Testing, and Retraining

Program the speech recognition circuit per the directions given previously. Choose
the words you want to use to control the 10 electrical relays or outputs. To turn off
all electrical outputs on the interface, train word number 11 as stop, end, or quit.

Before you connect the interface to any circuit, repeat all the trained
words into the microphone. The corresponding word number will be dis-
played on the digital display. You should achieve recognition accuracy of bet-
ter than 95 percent. If the circuit continually confuses two training words,
try retraining one of the words. To retrain a word, press the word number,
using the keypad; the word number will be displayed on the digital display.
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Figure 11.8 Speech recognition interface (relay switch outputs) SRI-02.
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Press the T (training) key, and say the word into the microphone. If the cir-
cuit still confuses the two words, you may have to change one of the sug-
gested words.

Once you are satisfied with the accuracy, remove the digital display board
and the keypad. Next connect the speech interface board to the 10-pin header

used for the digital display, and you’re ready to go.
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Figure 11.10 Finished speech recognition board SRI
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SRI-02 and SRI-03 Interfaces

The SRI-02 and SRI-03 built from kits available from Images SI Inc. are
shown in Figs. 11.9 and 11.10, respectively. Once the speech recognition
circuit is programmed, the speech recognition interfaces may be plugged
into the display board output on the main speech recognition board and
used. Figure 11.11 shows the SRI-02 connected to the speech recognition
board, and Fig. 11.12 shows the SRI-03 connected to the speech recognition
board.

Robot Control

The speech recognition circuit uses a headphone microphone. For mobile oper-
ation one needs to add a wireless microphone. There are a number of methods
of implementing wireless control.

The simplest method is to add a suitable microphone to the main circuit
board and acoustically couple it to the output of a radio receiver or walkie-
talkie. You would use the matching walkie-talkie to give voice commands.
When using this method, you should train the circuit by using your walkie-
talkies and acoustic coupling.

Figure 11.11 SRI-02 connected to speech recognition circuit.



Speech Recognition 181

Figure 11.12 SRI-03 connected to speech recognition circuit.

Parts List
Speech recognition kit (SR-06)

(1) Speech recognition IC (HM2007)
(1) 8K static RAM (6264)

(1) Octal latch (74LS373)

(1) Display chip (741.548)

(1) 3.57-MHz crystal

(12) PC-mounted N.O. switches

(2) Seven-segmented displays (MAN74)
(1) Headset microphone

(1) 9-V battery clip

(1) Coin battery holder (2032)

(1) PC-mounted microphone jack
(1) 22-kQ, '/,-W resistor

(1) 6.8-kQ, %/,-W resistor
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(1) 330-Q, /,-W resistor

(8) 220-Q, /,-W resistor

(1) 100-kQ, /,-W resistor
(1) 0.1-pf capacitor

(1) 100-pf capacitor

(1) 0.0047-pf capacitor

(2) 10- to 22-pF capacitor
(1) Voltage regulator (7805)
(1) LED

(2) 1IN914 diode

Miscellaneous items needed include PC boards, IC sockets, headers (male and
female), two- and three-pin connectors, jumpers.

Speech interface kit (SRI-02)

(1) 5.6-kQ, '/,-W resistor

(1) 15-kQ, Y/,-W resistor

(1) 10-kQ, /,-W resistor

(10) 100-k€, '/,-W resistor

(10) Diodes (1N4002)

(1) Comparator (LM339)

(1) 4011 CMOS NAND

(1) 74154 IC

(1) PIC 16F84 microcontroller*
(10) Omron G5V-1 relays

Miscellaneous items needed include PC board, 10-pin female header, 9-V bat-
tery clips, and a 7805 regulator.

Speech interface kit (SRI-03)

(1) 5.6-kQ, /,-W resistor
(1) 15-kQ, Y/,-W resistor
(1) 10-kQ, Y/,-W resistor
(10) 100-kQ, Y/,-W resistor

*Preprogrammed 16F84 available separately for $10.00 from Images SI Inc.
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(10) Diodes (1N4002)

(1) Comparator (LM339)

(1) 4011 CMOS NAND

(1) 74154 1C

(1) PIC 16F84 microcontroller*

(2) Inverting buffers (4049)
Miscellaneous items needed include PC board, 10-pin female header, 9-V bat-
tery clips, and a 7805 regulator.

Speech recognition and interface kits (all components including prepro-

grammed 16F84 and PCB) available from Images SI Inc. (see Suppliers at end
of book):

Speech recognition kit (SR-06) $79.95
Speech interface kit (SRI-03) $89.95
Speech interface kit (relay) (SRI-02) $159.95

*Preprogrammed 16F84 available separately for $10.00 from Images SI Inc.
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Robotic Arm

Servomotor Building Blocks for Robotics

The servomotor brackets discussed in this chapter will allow you to create
various servomotor robots and projects.

Servomotors are ideal for powering robots. They are readily available in
many sizes, are inexpensive, provide powerful torque for their size and
weight, and are positional. The output shafts on most hobby servomotors are
guaranteed positional between 0° and 90°. Most servomotors’ output shaft
range extends past 90°, coming close to 180°.

The servomotor bracket components are shown in Fig. 12.1. Each of the alu-
minum U brackets that make up the assembly has multiple holes for con-
necting a standard HiTec servomotor horn as well as bottom and top holes for
connecting U brackets and assemblies to one another.

The servomotor horns used on these servomotor brackets are included with
all the compatible HiTec servomotors, such as HS-322, HS-425, HS-475, and
HS-35645. These brackets may also be used with similar-size Futaba servo-
motors, but you may have to purchase the horns separately.

Each servomotor bracket assembly consists of the following components: two
aluminum U brackets, labeled A and B, one binding head post screw, four 6-32
plastic machine screws with nuts, and four sheet metal screws for mounting a
servomotor horn. When assembled with a compatible servomotor (see Fig.
12.2), the bracket becomes a modular component that may be attached to oth-
er brackets and components. The bracket allows the top and bottom compo-
nents to swivel along the axis of the servomotor’s shaft (see Fig. 12.3).

By connecting multiple servomotors using the brackets, you can create a
variety of robotic designs. In this chapter we will use the brackets to create a

185
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Figure 12.1 Servomotor bracket kit.

R e TR |

Front View Side View

Figure 12.2 Front and side views of servomotor bracket.

five-servomotor robotic arm. In Chap. 13 we use these same brackets to cre-
ate a bipedal walker robot.

The bottom and top have multiple holes for attaching other brackets or ser-
vomotor horns (see Fig. 12.4).

Basic Servomotor Bracket Assembly

To assemble a servomotor bracket, begin by placing the binding post through
the back hole on part a (see Fig. 12.5). Next place servomotor into the A brack-
et, as shown in Fig. 12.6. Attach the servomotor using 6-32 X % in-long
machine screws and nuts (see Fig. 12.7). Notice the servomotor’s horn has been
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Tilt Left Center Tilt Right

Figure 12.3 Servomotor bracket travel.

o o° o o° o o°
ogo oo oo
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Bracket Holes Horn-Mounting Holes Bracket-to-Bracket Holes

Figure 12.4 Diagram of top and bottom mounting holes in the A and B brackets.

Figure 12,5 A bracket with
binding screw.
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Figure 12.6 Side view of placing
servomotor in A bracket.

Figure 12.7 A bracket with ser-
vomotor attached with plastic
screws and nuts.

removed from the servomotor. To secure the screws at the bottom two positions
of the servomotor, place the screw through the hole from the inside of the
bracket. It helps if you have a small screwdriver to hold the screw in place.
Then the plastic nuts are chased down on the screws from the outside of the
bracket (see Fig. 12.7).

The servomotor horn (see Fig. 12.8), is attached to the side holes on the B
bracket (see Fig. 12.9).
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Figure 12.8 HiTec servomotor horn.

Figure 12.9 B bracket with servomotor horn attached.

To place the servomotor secure in bracket A into its mating part bracket B,
slip the end of the binding-held post through the hole in the mating part (see
Fig. 12.10). Next slip the servomotor’s spindle into the horn (see Fig. 12.11).
Finished assembly is shown in Fig. 12.12.

Assembling Multiple-Servomotor Assemblies

When you are using multiple-servomotor assemblies, it is essential to preplan
how the servomotors will be connected. When two or more servomotors
assemblies are connected, the connecting brackets of the joints should be pre-
assembled (see Fig. 12.13). The brackets may be orientated to one another in
a number of ways, depending upon your design.

The top and bottom brackets of each assembly are connected to one
another by four 6-32 X ¥/ -in-long plastic machine screws and eight plastic
hex nuts. The screws are inserted though the top bracket holes. Hex nuts
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Figure 12.10 Bringing top bracket onto lower bracket to
assemble.

Figure 12.11 Side view showing horn assembly connected
to servomotor.
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Figure 12.12 Stand-alone servomotor bracket assembly.

Figure 12.13 Two different bracket assemblies.
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d

Figure 12.14 Close-up top view of two assembled brackets.

i

Figure 12.15 Close-up side view of two assembled brackets.

are chased down, securing the machine screws to the top bracket. The sec-
ond bracket is then attached to the screws, and hex nuts are chased down,
securing the bottom bracket. Figures 12.14 and 12.15 are close-up pictures
of the top and side views of the plastic screws connecting two brackets.

Building a Five-Servomotor Robotic Arm

Aside from the servomotor brackets we have already outlined, we need one
other specialized component—a robotic arm gripper (see Fig. 12.16). This
gripper requires two servomotors, one for wrist movement and the other to
open and close the gripper fingers. The gripper fingers can accommodate
objects up to about 1.0 in (25 mm).
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Figure 12.16 Robotic arm gripper.

The robotic arm uses five servomotors: four HiTec HS-322 HD servomo-
tors and one HS-475 HB servomotor. The HS-475 servomotor has 50 per-
cent more torque than the HS-322 and is used in the second position up
from the bottom (or base) servomotor on the robotic arm. This particular
servomotor requires the greatest torque in order to lift the arm and any
object the arm is holding.

Figure 12.17 shows how the servomotors are attached to the gripper.
Assemble one part A and B bracket, as shown in Fig. 12.18. Attach a ser-
vomotor to the A portion of the bracket; this will be the wrist servomotor.
The wrist servomotor motor is attached to the gripper first. Remove the
servomotor horn from the servomotor, if you haven’t done so already, and
put the horn screw to the side; we will need it. Center the wrist servomo-
tor, using the centering servomotor circuit described later in this chapter or
at the end of Chap. 6. With power applied to the servomotor from the cen-
tering circuit, place the servomotor into the wrist position. Replace the
horn screw removed earlier, and tighten the servomotor horn screw.
Remove power from the servomotor.

Next position the gripper fingers in midposition. Center the finger servo-
motor, using the centering circuit as before. Position the finger servomotor in
the finger position. Tighten the horn servomotor screw, then back off the
screw to unbind the fingers. When you are finished, the subassembly should
look like Fig. 12.19.

To finish up the arm, assemble an A and B component, as shown in Fig.
12.20. Next we require two more A bracket components. One A bracket com-
ponent has a servomotor horn attached to its bottom holes, and the other A
bracket component has a servomotor attached and is laid on its back as a base
(see Fig. 12.21). The two brackets are assembled as shown in Fig. 12.22. When
you assemble the base, center the bottom servomotor before attaching the
upper A bracket. This forms the base of the robotic arm. To secure the base to
a platform, four holes are drilled in the bottom bracket (see Fig. 12.23). Only
two drill locations are shown on the bottom. Drill two similar holes at the top.
To prevent the A bracket from bending with the weight of the robotic arm
when it is assembled, place a spacer made of wood, plastic, or metal as shown
in Fig. 12.23. The base assembly is secured to a square piece of wood or met-
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Wrist Servo

Figure 12.17 Diagram showing
how servomotor assembles to

gripper.

Finger Servo

Figure 12.18 Assembled brack-
ets for gripper.
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Figure 12.19 Robotic arm gripper assembly.

Figure 12.20 Assembled middle
bracket for robotic arm.
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Figure 12.21 Bottom brackets for robotic arm.

Figure 12.22 Assembled bottom
brackets for robotic arm.
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Figure 12.23 Close-up base bracket.

al to provide a good base that doesn’t topple when the robotic arm moves and
lifts objects.

The two middle servomotors are assembled onto the base, and the servogrip-
per is attached to the top, completing the robotic arm (see Figs. 12.24 and 12.25).

Servomotors

Servomotors are relatively easy to control using PIC microcontrollers. If you
remember, servomotors were introduced in Chap. 6. In Chap. 6 we just
described the basic function of a servomotor; now we will review in a little
greater detail.

Servomotors are geared dc motors with a positional feedback control that
allows the shaft (rotor) to be rotated and positioned accurately. When a con-
trol signal is being fed to the servomotor, the servomotor’s shaft rotates to the
position specified by the control signal. The positioning control is a dynamic
feedback loop, meaning that if you forcibly rotate the servomotor’s shaft away
from its control signal command position, the servomotor circuitry will read
this as a position error and will increase its torque in an attempt to rotate the
shaft back to its command position.

Hobby servomotor specifications usually state that the shaft can be posi-
tioned through a minimum range of 90° (£45°). In reality this range can be
extended closer to 180° (+90°) by adjusting the position control signal
described in a moment.

There are three wire leads to a hobby servomotor. Two leads are for power
15V (red wire) and ground (black wire). The third lead (yellow or white wire)
feeds a position control signal to the motor.
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Figure 12.24 Five-servomotor
robotic arm (left view).

Figure 12.25 Five-servomotor
robotic arm (right view).
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Pulse Width 1-2 ms (Approx. Frequency 55 Hz)

[ 1

‘

Period 18 ms

1-ms Pulse Train
Servomotor Position
Left

1.5-ms Pulse Train
Servomotor Position
Midrange

2-ms Pulse Train
Servomotor Position
Right

LOOTP

Figure 12.26 Servomotor control signal diagram.

The position control signal is a single variable-width pulse. The pulse width
typically varies between 1 and 2 ms. The width of the pulse controls the posi-
tion of the servomotor shaft. Figure 12.26 illustrates the relationship of pulse
width to servomotor position. A 1-ms pulse rotates the shaft to the extreme
counterclockwise (CCW) position (—45°). A 1.5-ms pulse places the shaft in a
neutral midpoint position (0°). A 2-ms pulse rotates the shaft to the extreme
CW position (+45°).

The pulse width signal is sent to the servomotor approximately 55 times
per second (55 Hz).

By extending our pulse width past the typical parameters, a 1- to 2-ms
pulse width, we can extend the rotational position of the servomotor’s shaft.
In many cases close to 180° positioning control is possible. However, care must
be exercised not to provide a control signal to the servomotor that will
attempt to rotate the shaft too far, where the shaft will push against its inter-
nal stop. As mentioned previously, the position feedback control is dynamic,
and the servomotor will increase its torque (and increase its current con-
sumption) to rotate the shaft into position, placing as much force as possible
against its internal stop. This will create unnecessary strain on the internal
gears and motor, decreasing its working life considerably.

Servomotor controllers

Our servomotor controllers use the PicBasic and PicBasic Pro pulsout com-
mand. The command format is as follows:
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pulsout pin, period

The pulsout command generates a pulse on the pin specified for the period
of time specified. The time is in 10-ws (microsecond) increments. So to send a 1.5-
ms pulse out on port B pin 0, you could use one of the following command(s).
For the PicBasic compiler:

pulsout 0, 150
For the PicBasic Pro compiler:
pulsout portb.0, 150

This pulsout command will put the servomotor shaft into its center position.
The only things missing are a delay and loop-back lines to send the pulsout
signal to the servomotor 55 times per second. So a complete center servomotor
program is as follows:

PicBasic program PicBasic Pro program
start: start:

pulsout 0, 150 pulsout portb.0, 150
pause 18 pause 18

goto start goto start

The schematic for a basic servomotor circuit is shown in Fig. 12.27. If you
prototype servomotor circuits on a solderless breadboard, a servomotor con-
nector (see Fig. 12.28) makes connecting a servomotor to the breadboard
easy.

Although this centering servomotor circuit may appear to be useless, it is
not. In most cases when building a servomotor device or robot, you want to
center the servomotor to a known (center) position before attaching any hard-
ware. This centering technique is used before attaching the wheel assembly
to the steering servomotor when you are constructing Walter’s turtle (see
Chaps. 8 and 10 among others).

Simple servomotor controller

This second servomotor circuit (see Fig. 12.29), allows us to control the servo-
motor by using a single-pole double-throw (SPDT) switch. This particular
SPDT switch has a center-off position that is critical to proper operation of
this circuit. Pushing the switch up will rotate the servomotor in a clockwise
rotation. In the center position the servomotor stops and holds its position.
Pushing the switch in the down position will rotate the servomotor in the
counterclockwise direction.

The following two programs for the simple servomotor controller are the
basis for the programming for the four- and five-servomotor controllers. In
general, when you are programming the PIC microcontrollers, make sure the
watchdog timer is disabled.
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Figure 12.27 Centering the servomotor controller circuit.
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Figure 12.28 Servomotor connector useful for prototyping on solderless breadboards.
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Figure 12.29 Primary servomotor controller circuit.

‘PicBasic Pro program
‘Manual control of servomotor using SPDT switch
‘Use bl to hold pulse width variable for servo 1

‘Declare variables
bl var byte

‘Initialize variables

bl = 150 ‘Start servo 1 at center position

start:

‘Output servomotor position

pulsout portb.0, bl ‘Send current servo 1 position out

‘Check for switch closures

if porta.0 = 0 then leftl ‘Is swl left active?

if porta.l = 0 then rightl ‘Is swl right active?

‘Routine to adjust pause value (nom 18) to generate approx 50 Hz update

pause 18
goto start



‘Routines for servomotor 1
leftl:
bl = bl + 1
if bl > 254 then maxl
goto start
rightl:
bl =bl -1
if bl < 75 then minl
goto start

maxl:
bl = 254
goto start
minl:
bl = 75

goto start

‘PicBasic program
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‘Increase the pulse width
‘Maximum 2.54 milliseconds

‘Decrease the pulse width
‘Minimum .75 millisecond

‘Cap max bl at 2.54 milliseconds

‘Cap min bl at .75 millisecond

‘Manual control of servomotor using SPDT switch

‘Use bl to hold pulse width variable for servo 1

‘Declare variables

‘Initialize variables

symbol porta = 6

bl = 150

start:

‘Output servomotor position

pulsout 0, bl

‘Check for switch closures

peek porta, b0
if bit0 = 0 then leftl

if bitl = 0 then rightl

‘Routine to adjust pause value

pause 18
goto start

‘Routines for servomotor 1
leftl:
bl =bl + 1
if bl > 254 then maxl
goto start
rightl:

‘Start servo 1 at center position

‘Send current servo 1 position out

‘Is swl left active?
‘Is swl right active?

(nom 18) to generate approx 55 Hz update

‘Increase the pulse width
‘Maximum 2.54 milliseconds
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bl =bl -1 ‘Decrease the pulse width
if bl < 75 then minl ‘Minimum .75 millisecond

goto start

maxl:
bl = 254 ‘Cap max bl at 2.54 milliseconds
goto start

minl:
bl = 75 ‘Cap min bl at .75 millisecond

goto start

Four- and Five-Servomotor Controllers

The previous schematic is the basic building block used in the four- and five-
servomotor controller. Figure 12.30 shows the four-servomotor controller. This
may be purchased as a kit from Images SI Inc., or you can hardwire the cir-
cuit and program the chip yourself.

‘PicBasic Pro program
‘Manual control of four servomotors using 4 SPDT switches

‘Microcontroller PIC 16£84

‘Declare variables

b0 var word ‘Variable for pause routine.
bl var byte ‘Use bl to hold pulse width variable for servo 1
b2 var byte ‘Use B2 to hold pulse width variable for servo 2

+5V +5V +5V +5V 3
3 16
RS <R8 R7¢ 2R6 R4 5 R2S <R3 RB4  OSCT +
10k 310ke||  10kaS S1oke 10kQS S10ke||  10ka3S S10ka 81882 oscoHE &y
RB1
61RBO/NT
O O O O 3{raanTocki
2JRA3
RA2
— — = RAT
O 1|07 O1 | ArC |01 ivd AV PIC 16F84
L L L L vss
Cs)w4 C%Na Cs)wz 8V1 5

Figure 12.30 Schematic of four-servomotor controller.



b3 var byte
b4 var byte
b5 var byte

Robotic Arm

‘Use b3 to hold pulse width variable for servo 3

‘Use b4 to hold pulse width variable for servo 4

‘Variable for pause routine

‘Initialize servomotor variables

bl = 150
b2 = 150
b3 = 150
b4 = 150
start:

‘Start
‘Start
‘Start
‘Start

up position
up position
up position
up position

‘Output servomotor position

pulsout portb.7,
pulsout portb.6,
pulsout portb.5,
pulsout portb.4,

bl
b2
b3
b4

servo
servo
Servo
sServo

W N

‘Send current servo 1 position out

‘Send current servo 2 position out

‘Send current servo 3 position out

‘Send current servo 4 position out

‘Check for switch closures

if
if
if
if
if
if
if
if

porta.
porta.
porta.
porta.
portb.
portb.
portb.
portb.

‘Routine to adjust pause value

b0 =

b5 = b0/100
b0 = 15 - b5
pause b0

w N PO W NP o

goto start

O O O O ©O © O O

then
then
then
then
then
then
then
then

bl + b2 + b3 + b4

leftl ‘Is swl
rightl ‘Is swl
left2 ‘Is sw2
right2 ‘Is sw2
left3 ‘Is sw3
right3 ‘Is sw3
left4 ‘Is swé
right4 ‘Is swd
(nom 18)

‘Routines for servomotor 1

leftl:
bl =

bl + 1
if bl > 254 then maxl

goto start

rightl:

bl = bl -

if bl < 75 then minl

goto start

maxl:

‘Increase the pulse width

‘Decrease the pulse width

‘Minimum

left active?
right active?
left active?
right active?
left active?
right active?
left active?
right active?

.75 millisecond

‘Maximum 2.54 milliseconds

205

to generate approx 50 Hz update
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bl = 254

goto start
minl:

bl = 75

goto start

‘Routines for servomotor 2
left2:
b2 = b2 + 1
if b2 > 254 then max2
goto start
right2:
b2 = b2 -1
if b2 < 75 then min2
goto start

max2:
b2 = 254
goto start
min2:
b2 = 75

goto start

‘Routines for servomotor 3
left3:
b3 =b3 + 1
if b3 > 254 then max3
goto start
right3:
b3 =b3 -1
if b3 < 75 then min3
goto start

max3:
b3 = 254
goto start
min3:
b3 = 75

goto start

‘Routines for servomotor 4
leftd:
b4 =bd + 1
if b4 > 254 then max4
goto start
rightd:
bd =bd -1
if b4 < 75 then min4d
goto start
max4 :
b4 = 254
goto start
mind:

‘Cap max bl at 2.54 milliseconds

‘Cap min bl at .75 millisecond

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width
‘Minimum .75 millisecond

‘Cap max b2 at 2.54 milliseconds

‘Cap min b2 at .75 millisecond

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width
‘Minimum .75 millisecond

‘Cap max b3 at 2.54 milliseconds

‘Cap min b3 at .75 millisecond

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width
‘Minimum .75 millisecond

‘Cap max b4 at 2.54 milliseconds
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b4 = 75 ‘Cap min b4 at .75 millisecond
goto start
end

Figure 12.31 is a photograph of the completed four-servomotor kit. The cir-
cuit board for this kit was used as the main circuit board for the turtle robot
in Chap. 8. Figure 12.32 is a schematic for the five-servomotor controller. This
circuit is suitable for controlling our five-servomotor robotic arm.

When you program the 16F873 with the five-servomotor controller pro-
gram, make sure the watchdog timer is disabled and the brownout reset is

R10
10KQ|

R9 R8 R7 R6 R4 5 R2 3
10KQ 10KQ 10KQ 10KQ|| 10KQ 10KQ|| 10KQ 10KQ|

Figure 12.32 Schematic of five-servomotor controller.
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also disabled. If the brownout reset is not disabled, the circuit may automat-
ically reset whenever a servomotor draws enough current to make the supply
voltage dip momentarily. This is not what you want to happen in the middle
of a robotic arm operation, so make sure that configuration bit is disabled.
These configuration bits are easy to set when you use the EPIC Programmer.
Simply go to the Configuration pull-down menu and disable these options.

‘PicBasic Pro program for five-servomotor controller
‘Manual control of five servomotors using 5 SPDT switches
‘Microcontroller PIC 16£873

adconl = 7 ‘Set port a to digital I/0
‘Declare variables

b0 var byte ‘Use b0 as hold pulse width variable for servo 1

bl var byte ‘Use bl to hold pulse width variable for servo 2

b2 var byte ‘Use b2 to hold pulse width variable for servo 3

b3 var byte ‘Use b3 to hold pulse width variable for servo 4

b4 var byte ‘Use b4 to hold pulse width variable for servo 5

b6 var byte ‘Variable for pause routine

b7 var word ‘Variable for pause routine

‘Initialize servomotor variables

b0 = 150 ‘Start up position servo 1

bl = 150 ‘Start up position servo 2

b2 = 150 ‘Start up position servo 3

b3 = 150 ‘Start up position servo 4

bd = 150 ‘Start up position servo 5

start:

‘Output servomotor position

portb = 0 ‘Prevents potential signal inversion on reset
pulsout portb.7, b0 ‘Send current servo 1 position out
pulsout portb.6, bl ‘Send current servo 2 position out
pulsout portb.5, b2 ‘Send current servo 3 position out
pulsout portb.4, b3 ‘Send current servo 4 position out
pulsout portb.3, b4 ‘Send current servo 5 position out

‘Routine to adjust pause value (nom 18) to generate approx 50 Hz update

b7 = b0 + bl + b2 + b3 + b4

b6 = b7/100
b7 = 15 - b6
pause b7

‘Check for switch closures
if portc.3 = 0 then leftl ‘Is swl left active?
if portc.2 = 0 then rightl ‘Is swl right active?
if portc.l = 0 then left2 ‘Is sw2 left active?



if portc.
if porta.
if porta.
if porta.
if porta.
if porta.
if porta.

goto

O B N W i U1 O

start

then
then
then
then
then
then
then

I
O O O 0o o o o

right2
left3
right3
left4
right4
lefth
right5

‘Routines for servomotor 1

if b0 > 254 then max0

then min0

servomoto

r 2

if bl > 254 then maxl

leftl:

b0 = b0 + 1

goto start
rightl:

b0 = b0 -

if b0 < 75

goto start
max0:

b0 = 254

goto start
minO:

b0 = 75

goto start
‘Routines for
left2:

bl = bl + 1

goto start
right2:

bl = bl -

if bl < 75

goto start
maxl:

bl = 254

goto start
minl:

bl = 75

goto start

‘Routines for

then minl

servomotor 3

if b2 > 254 then max2

left3:
b2 = b2 +1
goto start
right3:
b2 = b2 -

if b2 < 75 then min2

Robotic Arm

‘Is sw2 right active?
‘Is sw3 left active?
‘Is sw3 right active?
‘Is swd left active?
‘Is sw4 right active?
‘Is sw5 left active?
‘Is swb right active?

‘Increase the pulse width
‘Maximum 2.54 milliseconds

‘Decrease the pulse width
‘Minimum .75 millisecond

‘Cap max bl at 2.54 milliseconds

‘Cap min bl at .75 millisecond

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width
‘Minimum .75 millisecond

‘Cap max bl at 2.54 milliseconds

‘Cap min bl at .75 millisecond

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width
‘Minimum .75 millisecond

209
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goto start

max2:
b2 = 254 ‘Cap max b2 at 2.54 milliseconds
goto start

min2:
b2 = 75 ‘Cap min b2 at .75 millisecond

goto start

‘Routines for servomotor 4

leftd:
b3 = b3 + 1 ‘Increase the pulse width
if b3 > 254 then max3 ‘Maximum 2.54 milliseconds

goto start

rightd:
b3 = b3 -1 ‘Decrease the pulse width
if b3 < 75 then min3 ‘Minimum .75 millisecond

goto start

max3:
b3 = 254 ‘Cap max b3 at 2.54 milliseconds
goto start

min3:
b3 = 75 ‘Cap min b3 at .75 millisecond

goto start

‘Routines for servomotor 5

left5:
bd = bd + 1 ‘Increase the pulse width
if b4 > 254 then max4 ‘Maximum 2.54 milliseconds

goto start

right5:
b4 = bd -1 ‘Decrease the pulse width
if b4 < 75 then min4d ‘Minimum .75 millisecond

goto start

max4:
bd = 254 ‘Cap max b4 at 2.54 milliseconds
goto start

mind:
b4 = 75 ‘Cap min b4 at .75 millisecond
goto start

end

Figure 12.33 is a photograph of the five-servomotor controller.

The robotic arm servomotors can plug right onto the three position headers
on the main board. However, to separate the control board from the robotic
arm, I used five 24-in servomotor extensions. Once wired, each SPDT switch
controls one robotic arm servomotor (see Fig. 12.34).

When using the robotic arm, I noticed the arm move too quickly for me to
perform fine movements. So to slow it down, I added a delay routine. This fol-
lowing program is identical to the above program, with the exception of the
delay routine(s).
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Figure 12.33 Assembled five-servomotor controller kit.

Figure 12.34 Finished robotic arm and five-servomotor controller.
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‘Slow-speed
‘Manual control of five servomotors using 5 SPDT switches
‘Microcontroller PIC 16F873

adconl = 7 ‘Set port a to digital I/O

‘Declare variables

b0 var byte ‘Use b0 as hold pulse width variable for servo
bl var byte ‘Use bl to hold pulse width variable for servo
b2 var byte ‘Use b2 to hold pulse width variable for servo
b3 var byte ‘Use b3 to hold pulse width variable for servo
b4 var byte ‘Use b4 to hold pulse width variable for servo
b6 var byte ‘Variable for pause routine

b7 var word ‘Variable for pause routine

sl var byte ‘Unassigned delay variable

s2 var byte ‘Assigned delay variable

‘Initialize servomotor variables

b0 = 150 ‘Start up position servo 1
bl = 150 ‘Start up position servo 2
b2 = 150 ‘Start up position servo 3
b3 = 150 ‘Start up position servo 4
b4 = 150 ‘Start up position servo 5
s2 = 4 ‘Delay variable

start:

‘Output servomotor position

portb = 0 ‘Prevents potential signal inversion on reset
pulsout portb.7, b0 ‘Send current servo 1 position out
pulsout portb.6, bl ‘Send current servo 2 position out
pulsout portb.5, b2 ‘Send current servo 3 position out
pulsout portb.4, b3 ‘Send current servo 4 position out
pulsout portb.3, b4 ‘Send current servo 5 position out

‘Routine to adjust pause value (nom 18) to generate approx 50 Hz update

b7 = b0 + bl + b2 + b3 + b4

b6 = b7/100
b7 = 15 - b6
pause b7

‘Check for switch closures
if portc.3 = 0 then left5 ‘Is swl left active?
if portc.2 = 0 then right5 ‘Is swl right active?
if portc.l = 0 then leftd ‘Is sw2 left active?

U W N



if
if
if
if
if
if
if

portc.
porta.
porta.
porta.
porta.
porta.
porta.

then
then
then
then
then
then
then

O B N W i U1 O
Il
O O O O O O O

goto start

right4
left3
right3
left2
right2
leftl
rightl

‘Routines for servomotor 1

leftl:
sl = sl
if s1 =
b0 = b0
sl =0
endif

+ 1
s2 then
+ 1

if b0 > 254 then max0
goto start
rightl:
sl = s1 + 1

if
b0
sl

sl =
= b0
=0

endif
if b0 < 75 then min0
goto start

max0:
b0 = 254
goto sta
minO:
b0 = 75
goto sta

s2 then
-1

rt

rt

‘Routines for servomotor 2

left2:
sl =s1 + 1
if s1 = s2 then
bl = bl + 1
sl =0
endif

if bl > 254 then maxl
goto start
right2:
=sl + 1

sl
if
bl
sl

sl =
= bl
=0

endif
if bl < 75 then minl

s2 then
-1

Robotic Arm

‘Is sw2 right active?
‘Is sw3 left active?
‘Is sw3 right active?
‘Is swd left active?
‘Is sw4 right active?
‘Is sw5 left active?
‘Is swb right active?

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width

‘Minimum .75 millisecond

‘Cap max bl at 2.54 milliseconds

‘Cap min bl at .75 millisecond

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width

‘Minimum .75 millisecond
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goto start

maxl:
bl = 254
goto start
minl:
bl = 75

goto start

‘Routines for servomotor 3
left3:
sl = sl + 1
if s1 = s2 then
b2 = b2 + 1
sl =0
endif
if b2 > 254 then max2
goto start
right3:
sl = s1 + 1
if sl = s2 then

b2 = b2 -1
sl =0
endif

if b2 < 75 then min2
goto start

max2:
b2 = 254
goto start
min2:
b2 = 75

goto start

‘Routines for servomotor 4
leftd:
sl =s1 + 1
if s1 = s2 then
b3 = b3 + 1
sl =0
endif
if b3 > 254 then max3
goto start
rightd:
sl = sl + 1
if sl = s2 then

b3 =b3 -1
sl =0
endif

if b3 < 75 then min3
goto start
max3:

‘Cap max bl at 2.54 milliseconds

‘Cap min bl at .75 millisecond

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width

‘Minimum .75 millisecond

‘Cap max b2 at 2.54 milliseconds

‘Cap min b2 at .75 millisecond

‘Increase the pulse width

‘Maximum 2.54 milliseconds

‘Decrease the pulse width

‘Minimum .75 millisecond
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b3 = 254 ‘Cap max b3 at 2.54 milliseconds
goto start

min3:
b3 = 75 ‘Cap min b3 at .75 millisecond

goto start

‘Routines for servomotor 5
lefth:

sl = s1 + 1

if sl = s2 then

b4 = bd +1 ‘Increase the pulse width
sl =0
endif
if b4 > 254 then max4 ‘Maximum 2.54 milliseconds

goto start
right5:

sl = s1 + 1

if s1 = s2 then

b4 = bd -1 ‘Decrease the pulse width
sl =0
endif
if b4 < 75 then min4 ‘Minimum .75 millisecond

goto start

max4 :
b4 = 254 ‘Cap max b4 at 2.54 milliseconds
goto start

mind:
bd = 75 ‘Cap min b4 at .75 millisecond

goto start

end

In the above program variable S2 is assigned a value of 4. To increase the
speed of the servomotor’s movement, decrease this value. To slow down the
servomotor movement, increase this value.

Increasing the Lifting Capacity of the Robotic Arm

Substituting the top two HS-322 servomotors connected to the gripper with
two HS-85MG servomotors can increase the lifting capacity of the robotic
arm. The HS-85MG servomotors are substantially smaller and lighter, while
producing close to the same torque as the HS-322 servomotors. The downside
is that the HS-85MG servomotors cost about 3 times the amount of the HS-
322 servomotors. Do not try to substitute the HS-85BB servomotor for the
HS-85MG. The HS-85BB uses plastic gears, which will strip pretty quickly.
The HS-85MG incorporates metal gears that last.

To use the HS-85MG servomotors in the robotic arm, substitute the top HS-
322 bracket for an HS-85MG bracket. In addition you need to order the ser-
vomotor gripper that has been modified to use an HS-85MG servomotor.
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Adding a Robotic Arm Base

The weakest link in the robotic arm, as it stands right now, is the base servo-
motor. The bearing in the bottom servomotor is subjected to all the stress and
weight of the entire arm as it turns and lifts any object. We can greatly
improve upon this situation by adding a second bearing that removes most of
the stress on the servomotor’s small bearing. To incorporate this second bear-
ing, we need to build a small base.

I tried a number of designs. The one that I feel works best is made primarily
from *,-in-thick hardwood. The following drawings show the five pieces needed
to make the base. Figures 12.35 and 12.36 show the wood blocks needed for
mounting the base servomotor. Figures 12.37 and 12.38 show the sides for the
base. Figure 12.39 is a metal baseplate. The two servomotor blocks are mount-
ed to the baseplate, using wood screws through the bottom. The servomotor is
mounted to the wood blocks (see Fig. 12.40). Next the side pieces are mounted
to the wood block (see Fig. 12.41). We need a 0.40-in, “length of 1”-in-diameter
wood dowel. To this piece of wood we center and attach a round servomotor
horn, using two small wood screws (see Fig. 12.42). The top of the servomotor
horn should be sanded flat to remove the small lip around the center.

The wood dowel is fitted onto the base servomotor (see Fig. 12.43). Next the
3-in-square bearing is placed on the sides to ensure everything lines up prop-
erly. The wood dowel should be centered in the bearing (see Fig. 12.44). Mount
the bearing to the sides, using four wood screws.

A top plate for the 3-in-square bearing is shown in Fig. 12.45. This plate is
mounted to the bearing using four 6-32 plastic machine screws and nut.

1.5
A Material %, - thick hardeod
10 All holes'/; diameter
Y /Q\
Semicircle % diameter

.555 .945

.158
Top

CL Bottom
.375

375 1.125

All dimensions in inches
Figure 12.35 Servomotor block A.
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A
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»  Material ¥, - thick hardwood

All holes '/, diameter

A
1.0
Side
Y
.555 .945
.158
Top
CL Bottom
.375
375 1.125
All dimensions in inches
Figure 12.36 Servomotor block B.
Material %/, - thick hardwood
3.5
N
1.7
Side
Y
.2?8 218
216 T I All holes '/;5 diameter
Top
5 3.0
.375 Bottom

All dimensions in inches

Figure 12.37 Side block A.
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Material %/, - thick hardwood

P 3.5 _
i
1.7
Side
Y
.228 2.8
All holes /g diameter
Top
534
5 3.0
.375 Bottom
All dimensions in inches
Figure 12.38 Side block B.
1/8 - 3/16 aluminum or CRS
5 3.0
375 st &P
@ ! 1.129
s 4 1.879
2625 & ®
.696 3.119

All holes ¥, diameter,
countersunk on bottom.
All dimensions in inches.

Figure 12.39 Baseplate.



Figure 12.40 Assembling servomotor blocks and servomotor to base.
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Figure 12.41 Attaching sides to base.
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Figure 1242 A 1-in X 0.40-in
wood dowel with round servomo-
tor horn.

Figure 12.43 Attaching a servomotor horn to servomotor base.

When the top plate is secured to the bearing, the top of the wood dowel
should be right underneath the top plate. Place the bottom servomotor brack-
et of the robotic arm on top of the top plate. Secure the servomotor bracket
(and top plate) to the underlying dowel through the four center holes in the
top bearing plate (see Fig. 12.46).

The top section of the robotic arm is fitted to the base servomotor brack-
et. The finished robotic arm is shown in Figs. 12.47 and 12.48. In the pic-
ture note the use of the smaller HS-85MG servomotors connected to the

gripper.



Figure 12.44 Attach 3-in-square bearing to base, check for alignment.
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All dimensions in inches

Figure 12.45 Top bearing plate.
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Figure 12.46 Attach top bearing plate, servomotor bracket to
3-in-square bearing.

Figure 12.47 Finished robotic
arm with base (right side).
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Figure 12.48 Finished robotic
arm with base (left side).

Parts List

Robotic arm

(3) HiTec servomotors (HS-322HD)
(2) HiTec servomotors (HS-475HB)
(5) Servomotor bracket assemblies
(1) Servomotor gripper assembly
(1) Base board

(5) 12- or 24-in servomotor extensions

Base

Servomotor blocks A and B
Baseplate
Base sides A and B



224 Chapter Twelve

3-in-square bearing
Top bearing plate
1-in-diameter X 0.40-in wood dowel

Plastic machine screws and nuts, wood screws

Available from Images SI Inc. (see Suppliers at end of book).

Four-servomotor controller

(1) PIC 16F84

(1) 4-MHz Xtal

(2) 22-pF capacitors

(4) SPDT PC-mounted switches with center-off position
(8) 10-kQ, /,-W resistors

(1) 4.7-kQ, Y/,-W resistor

(1) 0.1-p.F, 50-V capacitor

5-V power supply (regulated)

Kit available from Images SI Inc. (see Suppliers).

Five-servomotor controller

(1) PIC 16F873

(1) 4-MHz Xtal

(2) 22-pF capacitors

(5) SPDT PC-mounted switches with center-off position
(11) 10-kQ, Y/,-W resistors

(1) 4.7-kQ) resistor

(1) 0.1-wF, 50-V capacitor

5-V dc power supply

Kit available from Images SI Inc. (see Suppliers).
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13

Bipedal Walker Robot

In this chapter we will construct and program a bipedal walking robot (see Fig.
13.1). Bipedal robots more closely resemble humans because they use two legs
to walk. Bipedalism is a necessary step to creating advanced robots that can
work and function in human environments. The heart and mind of this robot
are the 16F84 microcontroller. The microcontroller will be programmed using
the PicBasic (or PicBasic Pro) compiler. Muscle for motion is generated using
a series of eight HS-322 servomotors, four servomotors for each leg.

I have not taken any shortcuts in building this bipedal robot, meaning this
robot is a true bipedal walker robot. This criterion demands that the robot bal-
ance itself on one leg in order to lift the other leg to initiate walking. This
action is accomplished using independent ankle, knee, and hip movements.
This bipedal robot does not have oversized feet or footpads. This eliminates the
type of low-technology tilting bipedal walker that uses oversized feet to keep
the robot from tipping over when movement proceeds from one leg to the oth-
er. You may have seen this type of “big-foot” walker; the older units have a
motor-activated cam that rises and moves one leg after the other. Lately I've
seen servomotor-powered tilting big-foots on the loose.

To see a movie of this bipedal robot walking, go to the Internet to the fol-
lowing page: www.imagesco.com/catalog/biped/walker.html.

My design calls for using four servomotors in each leg (see Fig. 13.1). The ini-
tial walking gait programmed into the robot resembled that of the flamingo
bird. This particular bird has a reverse knee joint. If that bird doesn’t bring a
clear enough picture to mind, perhaps the Imperial walker from the original
Star Wars film(s) will suffice.

Nature has evolved a three-jointed leg for most walking animals. Although
it may appear that our robotic leg has four joints, because it has four servo-
motors, it is essentially a three-jointed leg. The reason is that our first and sec-
ond servomotors, starting from the bottom of the leg, form a two-directional
ankle. It is important that the ankle can tilt the foot, left to right as well as

225
Copyright © 2004 The McGraw-Hill Companies. Click here for terms of use.



226 Chapter Thirteen

Figure 13.1 Bipedal robot ready
to walk.

forward and backward. Humans have two-directional ankles; this requires two
servomotors to replicate in our leg.

So the third servomotor is considered the knee joint, and the forth servomo-
tor the hip joint.

A Question of Balance?

When we walk, we receive constant feedback from our leg muscles and feet
such as stretch, tension, and load, in addition to having tilt and balance infor-
mation present from our inner ear. Remove this physical feedback information
and remove any visual clues, and it becomes much harder to walk. Imagine
how much harder, if not impossible, it would be to learn how to walk without
sensory feedback.

This lack of feedback is a dilemma for robotics. It is possible to program a
bipedal walker robot to walk without feedback and a sense of balance. To do so,
exact position control and movements are measured for each leg servomotor
action, each action sequence is programmed into the microcontroller, the pro-
gram is initiated, and the sequence repeated to achieve a walking gait.
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Figure 13.2 FlexiForce pressure sensor.

This brute-force programming works, but it is not adaptive. If any weight on the
robot shifts (battery pack moves) or if you have the robot carry a weight, anything
that changes the robot’s center of gravity, then the program will need to be adjust-
ed. A little sensory feedback may help the robot walk and be more adaptive.

A Little Feedback

Feedback comes in many forms. The sensor I would incorporate into this robot
is a pressure sensor. I will be placing a pressure sensor on the base of each foot-
pad. The sensor could tell the microcontroller when there is no pressure
(weight) on a foot. This could be used to adaptively tilt the robot until there is
no weight on the opposite footpad.

The sensor is a FlexiForce pressure sensor (see Fig. 13.2). (FlexiForce is a
trademark of Tekscan, Inc.) This particular sensor is made to detect pressure
from O to 1 lb. Although the final weight of the robot may be slightly more the
sensor top weight, I feel it’s a better (more sensitive) choice than taking the
next sensor that measures pressure between 0 and 25 Ib.

The pressure sensor is a variable-resistor type. As pressure increases, its
resistance drops. Since we are using the sensor to determine when there is
zero weight on a leg, we don’t need to perform an A/D conversion to read vary-
ing pressure (weight). Instead we can use an op-amp and comparator. The op-
amp converts the resistance change in the sensor to an electric change. The
comparator is set to trigger on zero weight. The output of the comparator can
be read by the microcontroller as a simple high-low signal.

This bipedal robot does not use any feedback, so it is not adaptive to shift-
ing weight loads. I have provided this feedback information in case you wish
to advance this basic bipedal walker on your own.

Servomotors

This bipedal walker utilizes common inexpensive HiTec HS-322HD 42-oz torque
servomotors. Other more powerful servomotors are available, such as the HS-
425 and HS-475, and they will increase the weight-carrying capacity of the
robot. However, these more powerful servomotors also require greater electric
current. So the battery pack will need to be increased proportionally. The robot,
as it stands, is capable of carrying its own 6-V battery pack and circuitry.
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Figure 13.3 Servomotor brackets needed for one leg.

Servomotor Brackets

Footpads

This robot uses the same servomotor brackets as outlined in Chap. 12. That infor-
mation will not be repeated here. In Fig. 13.3 the brackets needed for one robot-
ic leg are shown. You need two such sets of servomotor brackets, eight in all, to
build this bipedal robot. The servomotor horns used on these servomotor brack-
ets are included with all the compatible HiTec servomotors, such as HS-322, HS-
425, HS-475, and HS-35645. These brackets may also be used with similar-size
Futaba servomotors, but you may have to purchase the horns separately.

The footpads for the robot are shown in Figs. 13.4 and 13.5. I glued rubber gas-
ket material to the bottom of the plastic footpad to make the pad nonskid.

The footpads provide a larger surface area that makes it easier for the
biped to balance and walk. They are attached to the bottom U bracket of the
bottom servomotor. I arbitrarily chose to make the footpad size 1.5 in wide
X 4 in long. I cut out this size rectangle from /,-in-thick acrylic plastic. The
location of the servomotor bracket on the feet is shown in Fig. 13.4. You will
notice the bracket is not centered on the plastic foot; it is located at one side
toward one end (considered the back). Drill four '/ -in-diameter holes in the
plastic that line up with the four holes on the U bracket. Each drilled hole
must be countersunk on the bottom of the foot, so that the machine screw
head will not protrude from the bottom of the foot; see side view and close-
up of Fig. 13.4 and finished footpad in Fig. 13.5. This will allow the foot to
lie flat against the floor.

On the prototype the corners of the footpads are square (see Fig. 13.5). I
plan to round the corners of the footpads, so they will be less likely to catch
on something and trip the robot when walking. The footpads are attached to
the U bracket using four 4-40 machine screws, nuts, and lockwashers.
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Figure 13.4 Diagram of footpad.

Figure 13.5 Picture of footpad.
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Assembly

Material /8 X 1 X 4 aluminum

2 | Hole size 5/32 dia. ﬁ
|
1 1 1

fa
o \\P \\P \ C/lL

A
A

A
Y
A
Y

C/L
All dimensions in inches

Figure 13.6 Aluminum hip bar.

The bottom of the acrylic plastic feet can be slippery, depending upon the
surface material the bipedal robot is walking on. I glued soft rubber sheet gas-
ket material to the bottom of the acrylic feet to create a nonskid bottom sur-
face for the feet. If just the front and back of the gasket material are glued to
the plastic foot, a small flat pocket is created in the center section of the foot.
This flat pocket is ideal for locating a flat sensor that could be slid in between
the gasket material and the acrylic plastic. Although we will not be using any
flat sensor in this robot, it could become a future modification, and you may
want to leave this option open when gluing the gasket material to the footpad.

I have found this robot biped walks and balances so easily that I believe it’s
possible to reduce the size of the footpads or remove them entirely. This idea
is open for future experimentation.

The hip bar that connects the top servomotor brackets of both legs is shown
in Fig. 13.6. The base material is '/-in-thick aluminum bar 1 in wide X 4 in
long. Mark a centerline (C/L) across the width and the length, as shown in Fig.
13.6. From the width C/L mark another line 1 in away from the C/L on each
side. Next use the base of the servomotor bracket to mark the four mounting
holes. Align the bracket on the left side so that an “X” from the drawn center-
lines is centered in the rightmost hole. Mark the four holes with a pencil. Align
the bracket on the right side so that an “X” from the drawn centerlines is cen-
tered in the leftmost hole. Mark the four holes with a pencil.

Punch the center of each hole with a hammer and punch. Drill the punch
holes with a %,,-in drill. Clean each hole to remove any burrs with a file or
deburring tool.

When you assemble the servomotors to the servomotor brackets, center each
servomotor before attaching the servomotor shaft to the horn-bracket assem-
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Figure 13.7 Bipedal robot with
all servomotors centered.

bly. The walking program expects the servomotors to be aligned in this way. If
a centering servomotor signal is sent to all eight servomotors, the robot walk-
er will appear as shown in Fig. 13.7. This is not the start position of the walk-
ing program.

Figure 13.8 is the schematic of our bipedal walker robot. To achieve maxi-
mum torque from the servomotors, I needed to run them at 6 V. To run the
PIC 16F84 at close to 5V, I incorporated a 1IN4007 diode. The average volt-
age drop across a silicon diode is 0.7 V. So at peak power from the batteries
(under load) the microcontroller will receive about 5.3 V, which is within the
voltage range for this microcontroller. A photograph of the prototype circuit
is shown in Fig. 13.9. The battery pack I used is below the circuit board. It
holds four AA batteries. I used a small piece of Velcro to secure the battery
pack to the hip bar. I secure the circuit board by using two small elastic
bands (see Fig. 13.10).
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Figure 13.8 Bipedal robot schematic.

Figure 13.9 Top view of prototype circuit board.

The four AA battery, 6-V power supply only lasts a short time. The bipedal
robot appears to be able to lift more weight than I placed on it, so you may be able
to add a second 6-V power supply and increase the untethered walking time. In
any case I only use the battery pack for demonstrations. For most development
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Figure 13.10 Side view of circuit board and battery pack attached to robot.

work you may want to build an external regulated power supply for the biped, as
I have, and tether the power supply to the robot. Keep the unused battery pack
on the robot, so you will not have to compensate for the additional weight when
demonstrating the robot’s walking ability using the battery pack.

When the robot is assembled, you may have to adjust the program slightly.
There will be slight variances in your servomotor positions as compared to my
prototype due to small variances in the construction. You only need to add or
remove one line in the entire program to make adjustments, and the line is:

goto hold

The hold subroutine keeps the servomotors locked in their last position. The
robot stays frozen, giving you plenty of time to look over its position.

This is the procedure for using that one line and adjusting the program. You
place that line after each robotic movement. Check the position, adjust the
movement if necessary, check again, and adjust if necessary until the position
is perfect. Movement is adjusted by varying the Y1 and Y2 numbers in each
movement. I cannot imagine the variance being more that +5 points off what
the program is showing.

There are 15 movements to check. I would advise letting the robot step
through each movement; you will see if there is a problem. The robot may
either trip on its feet or lose its balance. If that happens, you know you have
to adjust that movement. But you must work it through movement by move-
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Figure 13.11 Front view of robot.

ment. If you just try to let the walker walk, it will be hard for you to determine
which movement (if any) is causing a problem.

The first thing to check is the start position of the robot. Write the goto
hold line right after the command Gosub servoout. The robot should be
level, standing in a position shown in Figs. 13.11 and 13.12.

If adjustments are necessary, you need to make them in the “initialize vari-
ables” section. Once you are satisfied, remove the goto hold line you wrote
in the program. Place the goto hold line at the end of the “First movement.”
Check position, adjust if necessary, then move the goto hold line to the end
of the “Second movement.” Continue in this manner until all movements have
been checked.

The way the program is written, the robot will take three steps and then
stop. You can change the range of B(10) to increase or decrease the amount of
steps taken.

Subroutines M1, M2, and M3

The subroutines M1, M2, and M3 are delay routines. These routines slow the
servomotor movement, so the movement is smooth. Without these routines the



Bipedal Walker Robot 235

Figure 13.12 Side view of robot.

servomotors would jerk into position so quickly that the motion would topple
the robot. The reason for three routines is that I want to affect two independent
servomotor motions at the same time. The numbers controlling the servomotor
positions could be both (1) decreasing (M1 —,—) and increasing (M2 +,+) and
(2) increasing and decreasing (M3 +,-). Hence we need the three subroutines
to handle the motion.

‘Bipedal walker program
‘Declare variables

x1 var byte

x2 var byte

vyl var byte

y2 var byte

lp var byte

‘Declare array
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b var byte[12]

‘Initalize array variables

b(0) = 148 ‘Right ankle (vertical)
b(1) = 121 ‘Right ankle (horiz.)
b(2) = 204 ‘Right knee

b(3) = 126 ‘Right hip

b(4) = 150 ‘Left ankle (vertical)
b(5) = 178 ‘Left ankle (horiz.)
b(6) = 101 ‘Left knee

b(7) = 180 ‘Left hip

b(8) =0 ‘Counter

b(9) =0 ‘Counter

b(10) = 0 ‘Counter

b(11l) =0 ‘Dummy value

start:

gosub servoout

if b(8) < 180 then goto start

b(8) =0 ‘Reset loop counter

for b(10) = 1 to 3 ‘Take 3 steps forward

‘Leg movements for one whole step

‘

‘First movement

xl =0 ‘Servomotor 0

x2 =4 ‘Servomotor 4

vyl = 129 ‘Tilt right ankle (horiz.)
y2 = 135 ‘Tilt left ankle (horiz.)
1lp = 106 ‘Loop counter

gosub ml

xl =5 ‘Servomotor 5
x2 = 6 ‘Servomotor 6



vl = 2

v2 = 70
1p = 140
gosub m3

‘Third movement

x1l = 4
x2 =7
yl = 150
y2 = 160
1p = 75
gosub m3

‘Fourth movement

x1l =1
x2 =5
yl = 132
y2 = 200
1p = 90
gosub m3

‘Fifth movement

xl =6
x2 =0
yl = 85
y2 = 140
1p = 96
gosub m2

‘Sixth movement

x1 =0
x2 = 4
vl = 167
v2 = 169
1p = 80
gosub m2

xl =6
x2 =5
yl = 101
y2 = 178
1p = 95

Bipedal Walker Robot

‘Left ankle (vert.)
‘Left knee
‘Loop counter

‘Servomotor 4
‘Servomotor 7
‘Left ankle
‘Left hip
‘Loop counter

‘Servomotor 1
‘Servomotor 5
‘Straighten ankle
‘Straighten ankle
‘Loop counter

‘Servomotor 6
‘Servomotor 0
‘Left knee
‘Straighten ankle
‘Loop counter

‘Servomotor 0
‘Servomotor 4
‘Tilt ankle left
‘Tilt ankle left
‘Loop counter

‘Servomotor 6
‘Servomotor 5
‘Tilt knee
‘Tilt ankle
‘Loop counter

237
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‘Eighth movement

x1l = 2 ‘Servomotor 2
x2 =1 ‘Servomotor 1
vl = 244 ‘Right ankle
y2 = 104 ‘Right knee
1lp = 140 ‘Loop counter
gosub m3

‘Ninth movement

x1l =3 ‘Servomotor 3
x2 =17 ‘Servomotor 7
yl = 140 ‘Right hip

yv2 = 180 ‘Left hip

1p = 80 ‘Loop counter
gosub m2

‘Tenth movement

xl =1 ‘Servomotor 1
x2 = 2 ‘Servomotor 2
vyl = 121 ‘Right ankle
y2 = 204 ‘Right knee
1lp = 150 ‘Loop counter
gosub m3

‘Eleventh movement

x1 =0 ‘Servomotor 0

x2 = 4 ‘Servomotor 4

vyl = 129 ‘Straighten right ankle
y2 = 135 ‘Straighten left ankle
1p = 150 ‘Loop counter

gosub ml

‘Twelfth movement

xl =5 ‘Servomotor 5
x2 = 6 ‘Servomotor 6
vl = 217 ‘Left ankle
y2 = 70 ‘Left knee

1lp = 144 ‘Loop counter
gosub m3

‘Thirteenth movement

x1l =4 ‘Servomotor 4
x2 =3 ‘Servomotor 3
vl = 133 ‘Left ankle

v2 = 126 ‘Right hip



1lp = 66
gosub ml

‘Fourteenth movement

xl =6
x2 =5
vyl = 101
y2 = 178
lp = 144
gosub m3

‘Fifteenth movement

‘Loop counter

‘Servomotor 6
‘Servomotor 5
‘Left knee
‘Left ankle
‘Loop counter

‘Prevent signal inversion

current
current
current
current

current
current
current
current

d delay

xl =0 ‘Servomotor 0
x2 = 4 ‘Servomotor 4
yl = 148 ‘Left knee
y2 = 150 ‘Left ankle
1lp = 115 ‘Loop counter
gosub m2
next b (10) ‘Next step
hold: ‘Hold position
gosub servoout
goto hold
servoout:
‘Output servomotor position(s)
portb = 0
‘Right leg
pulsout portb.0, b(0) ‘Send
pulsout portb.1l, b(1l) ‘Send
pulsout portb.2, b(2) ‘Send
pulsout portb.3, b(3) ‘Send
‘Left leg
pulsout portb.4, b(4) ‘Send
pulsout portb.5, b(5) ‘Send
pulsout portb.6, b(6) ‘Send
pulsout portb.7, b(7) ‘Send
pause 5 ‘5 millisecon
return ‘To servomoto

1

rs

servo
servo
servo
servo

servo
servo
servo
servo

to generate 50 Hz signal

Bipedal Walker Robot

position
position
position
position

position
position
position
position

out
out
out
out

out
out
out
out
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ml:

m2:

b(8) =Db(8) + 1
if b(9) = 2 then ml2
b(9) =Db(9) + 1
goto ml3
ml2
b(x1l) = b(x1l) -
b(x2) = b(x2) -1
b(9) =0
ml3:
if b(xl) < y1 then
b(xl) =yl
endif
if b(x2) < y2 then
b(x2) = y2
endif

gosub servoout

if b(8) < 1lp then ml

b(xl) =yl

b(x2) = y2

b(8) =0

b(9) =0

return

b(8) =Db(8) + 1
if b(9) = 2 then m22

b(9) =Db(9) + 1

goto m23

m22
b(x1l) = b(x1) + 1
b(x2) = b(x2) + 1
b(9) =0

m23
if b(x1l) > y1 then

b(xl) =yl
endif
if b(x2) > y2 then
b(x2) = y2

endif

gosub servoout

if b(8) < 1lp then m2
b(x1l) = vyl

b(x2) = y2

b(8) =

b(9) =

‘ (negative increment (s)

‘ (positive increment (s)

-0 )

1)
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return
m3: ‘ (positive - negative increment +, -)
b(8) =Db(8) + 1
if b(9) = 2 then m32
b(9) =Db(9) + 1
goto m33
m32:
b(xl) = b(x1l) + 1
b(x2) = b(x2)
b(9) =0
m33
if b(x1l) > y1 then
b(xl) = yl
endif

if b(x2) < y2 then
b(x2) = y2

endif

gosub servoout
if b(8) < 1lp then m3

b(xl) =yl
b(x2) = y2
b(8) =0
b(9) =0
return

Going Further

There are many areas for improvement. One of the simplest tasks you can
perform is to reduce the loop counter (LP) variable in each movement. I
exaggerated this number to ensure that the servomotors got to their proper
position.

The walking gait used in this robot was the first one I developed. I am sure
there is much room for improvement for anyone who wants to take the time
and develop one. In addition, you can try to program completely different walk-
ing gaits. Right now the robot used two reverse knee joints. I looked at the
robot stance using one reversed knee and one forward knee. It appears to have
better been balanced than the current two reverse knee biped stance. In the
future I may try to develop a gait using a forward and reverse knee stance.
This would most definitely be a robotic gait, since I don’t believe there is any
animal that uses both a reverse and a forward knee leg for locomotion. This is
another area you may want to work on.
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Turning right and left

Parts List

As the bipedal walker stands, it can only walk forward. While I was develop-
ing the walking program, I happened across an interesting accident. On cer-
tain occasions the robot would pivot to the left or to the right. I plan on
developing this “accident” to see if I can use it to turn the robot to the left and
right. If you want to attempt this, here are the basic instructions. To make the
robot pivot, first raise one leg. On the raised leg tilt the horizontal ankle ser-
vomotor slightly, and then tilt the vertical ankle servomotor up slightly. Next
place the weight back down on the raised leg; the robot will pivot as the weight
shifts. Turning the robot in this manner must be accomplished incrementally.
Try to turn it too much at one time, and the robot will topple.

Finally with a little work, you should be able to make the robot walk back-
ward.

I mentioned adaptive walking and balance control. We used all eight pins of
port B on the PIC 16F84, but the PIC 16F84 still has five unused pins assigned
to port A. These pins could be used for programming options such as adaptive
balance control, or a run/walk switch, perhaps a forward/backward switch, or
even a turn left/right sensor.

So you see, we have only scratched the surface of playing with this biped
walker. There is much one can do and learn from this project.

(8) HiTec servomotors (or similar-size and -torque servomotor) (HS-322)
(8) Servomotor brackets

(2) Y/,-in X 1.5-in X 4-in acrylic plastic

(1) PIC 16F84 (4-MHz)

(1) 4.0-MHz Xtal

(2) 22-pF capacitors

(1) Diode (1N4007)

(1) 6-V AA battery holder (flat)

(8) Three-position headers (for connecting servomotors to circuit)

Plastic screws and nuts, Velcro, prototyping breadboard, elastic bands
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Color Robotic Vision System

The robot we will build in this chapter will be capable of looking at and seeing
an object (or target) and following that object. If the object gets too close to the
robot, the robot will back away from it. Choose a bright target that will have
good contrast with the background environment. Colored objects are fine; a
bright red or yellow ball works fine. For my tests I used a 2.5-in square of
orange construction paper taped to a stiff wire.

One of the most difficult areas in robotics today is the creation of an artifi-
cial vision system for a robot to see. Teaching a robot to see is not simply a case
of connecting a video camera to a computer. The electronic representation of an
image created by a video camera must be presented in a way a computer can
“look at” and interpret (“see”) the image.

To gain an understanding of the processes involved, let’s examine how a
computer might look at a simple black-and-white image. We must first define
the resolution of the picture image in pixels. For our discussion let’s assume a
low-resolution picture of 80 X 143 pixels. At that resolution our computer must
look at 11,440 pixels (80 X 143 = 11,440). Each pixel of the picture can be any
tonality of gray between pure black and pure white. We now have to determine
how many different shades our computer can differentiate between pure black
and pure white. If we wanted each pixel to be represented by a single byte (8-
bit number), there would be 256 shades of gray, including pure white (0) and
black (255).

The computer would look at each pixel and assign a number between 0 and
255 depending upon its tonality (grayness). After the computer assigned num-
bers to each 11,440 pixels, it transformed the basic image into a numbered
representation it needs to “look” at the image.

The software that looks at an image and interprets visual features is appro-
priately called image processing. Robotists over the years have gleaned some
techniques for helping computers to see. One technique is called edge detec-
tion. Here the computer looks through the image. You program the computer

243
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Figure 14.1 Field of view from CMU camera.

so that any pixel dark enough to be a 200 number or larger is a possible edge,
and you change that pixel to pure black, number 256. Any number less than
200 probably isn’t an edge, and the computer changes those pixels to pure
white, number 1. What is left is a simplified representation of the picture that
can be more easily analyzed.

The same process used for edge detection may also be used to detect partic-
ular colors in an image or the contrast between colors. Once an object has been
detected, through contrast, color, or edge detection, the processing software can
assign location parameters to the object within the image and field of view
(FOV) of the camera.

In Fig. 14.1 we have a representation of the FOV from the CMU camera we
will be using and a few of the image processing parameters available. Once an
object is detected by the camera, we can read these image processing parame-
ters in real time from the serial communication port of the camera. We use
these parameters to track an object in the camera’s image space and to move
our robot accordingly.

CMU Camera

The CMU camera (see Fig. 14.2) was developed at Carnegie Mellon University
(CMU). The CMU camera uses an SX28 microcontroller interfaced to an
Omnivision OV6620 CMOS camera chip. The SX28 microcontroller does much
of the image processing for us. We communicate with the camera via a stan-
dard RS-232 or TTL serial port.

A few of the CMU camera features are as follows:

Tracks user-defined color objects at 17 frames per second
Finds the center of the object
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Figure 14.2 Front CMU camera.

Gathers mean color and variance data
Resolution of 80 X 143 pixels
Serial communication at 115,200, 38,400, 19,200, and 9600 Bd

Demo mode that automatically locks onto and drives a servomotor to track
an object

Serial Communication

As stated, we communicate to the CMU camera via a serial interface. We will
create a serial communication link between the CMU camera and both a per-
sonal computer (PC) and the PIC microcontroller. We will first look at the PC
communication to the CMU camera.

Figure 14.3 is a simple Windows 98 program. It allows you to test the CMU
camera and the serial communication link (port number and baud rate). You
can adjust the PC’s baud rate and serial port through drop-down menu items.
This program may be downloaded without cost from this website:
http:/www.cmucam.com.

Before you start the Windows program, you need to set up the CMU cam-
era’s baud rate. Figure 14.4 shows the back of the CMU camera, where the
male header is located to place various jumpers. The baud rate is selected
using jumper 2 and jumper 3 on the back of the CMU camera:
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Figure 14.3 Basic serial Windows PC communication
program.

Jumper3 —{|
Jumper2 —_|

BAUD RATE

Figure 14.4 Back of CMU camera showing baud rate jumpers.
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Baud rate Jumper 2 Jumper 3
115,200 Open Open
38,400 Set Open
19,200 Open Set
9,600 Set Set

For PC communication I recommend using the 115,200-Bd rate. Use this
baud rate because once you have your simple communication up and running,
you can switch over to a more sophisticated Windows program to evaluate the
CMU camera parameters.

With the baud rate set, connect the serial cable to the CMU camera (see Fig.
14.5). Connect a DB-9 pin serial cable from the PC to the camera.

Start the program. Set the program’s baud rate to match the CMU camera’s
baud rate. Set the serial port to the one you connected to the CMU camera. If
your computer has multiple serial ports, you may have to try different COMM
ports to find out which one is connected to the camera.

To test a port, set the serial port to COMM]1. Turn on the CMU camera.
The following message should be displayed when the camera is turned on:

cmucam V1.12

DB-9
Female

DB-9
Male
from

PC
Connects
to CMU

TN ( ) ( ) Female
DB-9

Ribbon Cable

Header

Figure 14.5 PC serial cable connection to CMU camera.
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If you do not see this message, turn off the camera, set the serial port to
COMM2, and test again. Continue in this manner until you find the right
COMM port. If you don’t see the message with any of the COMM ports on
your computer, you may have the baud rate set improperly—double-check.
Once you see the message, you begin to communicate with the CMU camera.

To turn on the camera’s green LED, enter the command 11 1 and hit Return.
To turn off the green LED, enter the command 11 2 and hit Return.

Once you have the communication link working, you are finished with the
first program, and it is time to move onto the main VB application program.

VB Application Program

The VB application program is included on the CD-ROM with the CMU camera. The
application allows you to see how the CMU camera images different scenes or
targets. The current VB application isn’t stable; however, by the time this book
goes to press, a newer, (hopefully) more stable application program will be avail-
able. The simple application we used before provided the correct port number that
you will need to allow this program to function properly. The baud rate used on this
program is fixed at 115,200. So make sure the CMU camera is set at 115,200 Bd.

3 Seattle_Robotics_CmuCam H =] B3
File Help
EE]

£+ Normal

{90 clockwise

£~ 90 counter clockwise

" Fotate 180

r Clear screen for
new Dump Frame

a4/

Dump Frame F loop

Send |

| Esit

[ Status | 6725703 [ 7:06 PM 7

Figure 14.6 Windows PC program.
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Figure 14.7 Windows PC program showing frame dump.

To view the image properly from the camera, hit the 180° option (see Fig.
14.6). Select the proper COMM port number and open the port. Turn on the
camera. You should receive the “CMUcam V1.12” message. Hit the Dump
Frame button and wait. It can take 10 s for the software to dump the frame.

The image shown in the Dump Frame window (see Fig. 14.7) is a simple tar-
get I constructed. This target helped me calibrate the camera’s field of view.
The target is a 2.5-in square of orange paper (see Fig. 14.8), held at a distance
of 12 in from the camera lens. I also used this target to read the image pro-
cessing parameters from my PIC program 2 as I moved the target left, right,
up, and down. I assembled these image process readings in a small table; more
about this later.

You should use this opportunity to find a good target. Place the object you
want to use as your target in front of the camera, and do a frame dump. You
are looking to see that the object shows well in the image and has good con-
trast with the background. You can also see how much space the object takes
up in the image. This will give you an idea of how close you should hold the
object to the camera.

Once you have your target, you can start using the communication port for
issuing commands to the CMU camera. Try turning the green LED on and off
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Figure 14.8 Target used for calibrating CMU camera.

as before. You can use this communication port to implement more challeng-
ing commands and see the results on the screen dump.
Here are a few commands you may want to try:

Turn on auto light adjustment. This command tells the camera to adjust to
the ambient lighting. When you use this command, do not have your
object/target in front of the camera. The command is cr 18 44. Now press
the Return key or Send button.

Wait 10 to 20 s for the camera to complete its ambient light adjustment.
Then enter this command to turn off auto light adjustment: cr 18 44 19
32. Now press the Return key or Send button.

This next command I found particularly useful. It turns on a fluorescent
band filter with the auto light adjustment: cr 45 7 18 44.Now press the
Return key or Send button.

You can find other commands in the CMU manual.

Interfacing the CMU Camera to a Robot

The first step in interfacing the camera to a robot is to establish communica-
tion between the PIC microcontroller and the CMU camera. Remove the DB9
serial cable used for communicating with the PC. The camera has a TTL seri-
al output next to the jumpers (see Fig. 14.9). Before we can use the TTL seri-
al input/output pins, first we remove the MAX232 IC from the back of the
CMU camera.
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Figure 14.9 Back of CMU showing TTL serial communication
jumpers.

Note: At any time you need or want to reconnect the CMU camera serial
interface to a PC, you will need to place the MAX232 chip back onto the
board.

Plug the TTL cable onto the appropriate header pins on the CMU camera.
Figure 14.10 is the schematic we will be using. You do not need to connect the
two servomotors for our first two programs.

PIC 16F84 Runs at 16 MHz

Program 1

One important note about the CMU schematic you must be aware of. The PIC
16F84 used in this circuit is a 20-MHz version operating at 16 MHz with a 16-
MHz crystal. I needed to jump up in speed because the 9600-Bd communica-
tion is running at the limit of the capacity of 16F'84 at 4 MHz. To keep the baud
rate timing accurate when we change clock speeds, we enter the command

define osc 16

This informs the compiler that we are running at 16 MHz. The compiler auto-
matically adjusts the serial commands to keep the baud rate accurate.

This first program establishes a communication link between the CMU cam-
era and PIC 16F84 microcontroller. It turns the green LED on the CMU cam-
era on and off. You should not proceed to the more advanced programs until
you have this program functioning properly.
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When the program starts, it begins with a 5-s countdown. If you look into the
countdown loop, you will see that the program issues a reset command each
time through the loop. I have found it necessary to send a few reset commands
before the camera communication link becomes responsive.

‘PIC to CMU test
‘Send serial information to CMU camera true

define osc 16
x var byte

y var byte
recdata var byte[10]

trisb = 0
portb = 0
pause 1500

serout portb.1,6, [“CMU Program V1”]

for x = 0 to 4

vy =5 -x

portb.3 =1

serout portb.1,6,[254,192, “Starting in”, #y]
serout portb.2,2, [“RS”,13]

pause 500

portb.3 = 0

pause 500

next x

serout portb.1,6, [254,1, “Resetting Cam.”]
serout portb.1,6, [254,192] ‘Move to second line
serout portb.2,2, [“RS”,13]

gosub display
pause 1000

start:

‘Turn green CMU LED on

serout portb.1,6, [254,1, “Green LED On”]

serout portb.1,6, [254,192] ‘Move to second line
serout portb.2,2, [“L1 1”,13]

gosub display

pause 1000

‘Turn green CMU LED off

serout portb.1,6,[254,1, “Green LED Off”]

serout portb.1,6,[254,192] ‘Move to second line
serout portb.2,2, [“L1 2", 13]

gosub display

pause 1000
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Program 2

goto start

display:

serin2 portb.0,84,20,error, [str recdata\4]

for x = 0 to 4

serout2 portb.1,16468, [ ”,#recdata[x]]
recdata[x] = 32

next x

pause 1000

return

error:

‘No acknowledgment

serout portb.1l,6, [“No ACK - Cont.”]
pause 1000

return

This second program displays on the LCD the major image processing parame-
ters available from the CMU camera. This program just fits into the 1K mem-
ory space of the PIC 16F84. If you add a programming line or a couple of
letters or spaces in any of the LCD displays, the program will not compile,
because it will exceed the PIC 16F84 memory limit. Keep that in mind, if you
encounter an error, when compiling this program.

Incandescent or fluorescent lighting

When I first starting working with the CMU camera, I was working under flu-
orescent lighting. The camera was not tracking its target as well as I expected.
Going through the literature I had on the camera, I found a fluorescent filter. I
incorporated the filter into my program, and the camera started tracking bet-
ter. The program uses the fluorescent filter; it is in the following line:

‘Turn on fluorescent band filter and auto lighting adjust
serout portb.2,2, [“CR 45 7 18 44", 13]

If you are using fluorescent lighting, you can leave this line alone. However, if
your lighting is incandescent, change the command line to

serout portb.2,2, [“CR 18 44", 13]

Obviously this program is more sophisticated than our first program. It dis-
plays the type S data packet and then displays the type M data packet in a
loop for real-time object tracking. Let’s first look at the information that is pro-
vided in the type S data packet.
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Displayed program
parameter Item Description
RM Rmean The mean red found in the current window
GM Gmean The mean green found in the current window
BM Bmean The mean blue found in the current window
Rdev Rdeviation = The deviation of red found in the current window
Gdev Gdeviation The deviation of green found in the current window
Bdev Bdeviation  The deviation of blue found in the current window

Here’s a listing of the information that is provided in the type M data packet.

Type M Data Packet

Displayed program

parameter Item Description
MMX mx The middle of mass x value
MMY my The middle of mass y value
LCX x1 The leftmost corner’s x value
LCY yl The leftmost corner’s y value
RCX x2 The rightmost corner’s x value
RCY y2 The rightmost corner’s y value
pix pixel Number of pixels in the tracked region
conf confidence Number of pixels in area—capped at 255

It’s time to choose an object/target if you haven’t done so already. Program 2
needs an object to lock onto, too. When the microcontroller runs, it displays
information on the LCD screen. During the 10-s autoadjust period, the camera
should just be looking at the background. When LED 1 (see schematic) starts
to blink, place your object/target in front of the CMU camera.

‘CMU parameter display program

‘By J. Iovine

define osc 16

recdata var byte[10]

x var byte

trisb =

o O

portb
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pause 1500

serout portb.2,2, [“RS”, 13]

serout portb.1l,6, [“CMU Test Program”]
pause 1000

serout portb.2,2, [“RS”, 13]

serout portb.1,6, [254,1]

‘Reset CMU camera
serout portb.2,2, [“RS”, 13]
gosub display

‘Turn green CMU LED on
serout portb.2,2, [“L1l 1”,13]
gosub display

portb.3 =1

‘Turn on fluorescent band filter & auto lighting adjust
serout portb.2,2, [“CR 45 7 18 44", 13]
gosub display

serout portb.1l,6, [“Auto Adj.”]
pause 10000 ‘Hold 10 seconds

serout portb.1,6, [254,1]
pause 50

‘Turn off auto lighting adjust
serout portb.2,2, [“CR 18 44 19 327, 13]
gosub display

‘Turn green CMU LED off
serout portb.2,2, [“L1 2”,13]
gosub display

portb.3 = 0

For x = 0 to 10 ‘Blink red LED to tell user to ready target
portb.3 =1

pause 250

portb.3 = 0

pause 250

next x

‘Set poll mode - 1 packet
serout portb.2,2, [“PM 1", 13]
pause 100

‘Set raw data
serout portb.2,2, [“RM 3", 13]
pause 100
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‘Track window command looks at center of CMU window
‘Grabs data and sends them to track color function
‘Track:

serout portb.2,2, [“TwW”, 13]

‘Gather the s statistics packet from TW command
serin2 portb.0,84, [str recdata\8]

‘Display data on LCD screen
serout portb.1,6, [“RM”, #recdatal[2]]
gosub hold

serout portb.1l,6, [“GM”,#recdatal3]]
gosub hold

serout portb.1,6, [“BM”,#recdatal[4]]
gosub hold

serout portb.1l,6, [“RDev.”,#recdata[5]]
gosub hold

serout portb.1,6, [“GDev.”,#recdatal[6]]
gosub hold

serout portb.1l,6, [“BDev.”, #frecdata[7]]
gosub hold

pause 2000

main:

‘Send command - track color (with no arguments)
‘Will track last color grabbed by TW command

serout portb.2,2, [“TC”, 13]

‘Gather the m statistics packet from TW command
serin2 portb.0,84, [str recdata\1l0]

‘Display data on LCD screen
serout portb.1,6, [“MM-X",#recdatal[2]]
gosub hold

serout portb.1l,6, [“MM-Y”,#frecdata[3]]
gosub hold

serout portb.1,6, [“LC-X",#recdatal4]]
gosub hold

serout portb.1l,6, [“LC-Y”,#recdata[5]]
gosub hold
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serout portb.1l,6, [“RC-X",#frecdata[6]]
gosub hold

serout portb.1,6, [“RC-Y”,#recdatal7]]
gosub hold

serout portb.1l,6, [“Pix”,#irecdata[8]]
gosub hold

serout portb.1,6, [“Conf”, #recdatal9]]
gosub hold

goto main:
display:
serin2 portb.0,84,20,main, [str recdata\3]

for x = 0 to 3
serout2 portb.1,16468,[” ”,recdata[x]]
next x

hold:

pause 500

serout2 portb.1,16468, [254,1]
pause 40

return

When the object is captured, the program first displays the S data packet.
Then it goes into the main program loop, capturing and displaying the M data
packet. Using this program, I constructed a data table that shows how my
camera tracked my object/target. In the following table, n/c = no change.
Although this isn’t 100 percent accurate, I ignored small changes of less than
a few points in either direction. The reasons are that (1) I don’t want anyone
getting bogged down focusing on small changes and missing the important
main changes and (2) when I moved a target to the left or right, I didn’t keep
the height exactly in line. I just moved the target over and kept the height
approximately the same. Obviously this caused minor fluctuations that can be
ignored.

Data Table +X (Left and Right)

Target Target Target Target Target
Parameter 2 in left linleft centered 1linright 2inright
MMX 67 57 45 35 20
MMY n/c n/c 74 n/c n/c

LCX 53 45 33 23 4



LCY
RCX
RCY
PIX
CONF

n/c
80
n/c
144
31

n/c
70
n/c
150
215

47
58
102
163
232

n/c
53
n/c
162
142
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n/c
28
n/c
162
39
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From the above table we can make a general observation: As the target moves
from left to right, MMX, LCX, and RCX decrease. The reverse is also true; as
the target moves to the left, MMX, LCX, and RCX increase.

Data Table +Y (Up and Down)

Target Target Target Target Target
Parameter 2 in up linup centered 1lindown 2indown
MMX n/c n/c 45 n/c n/c
MMY 31 52 74 98 116
LCX n/c n/c 33 n/c n/c
LCY 7 26 47 71 96
RCX n/c n/c 58 n/c n/c
RCY 57 80 102 125 143
PIX 153 157 163 164 116
CONF 246 233 232 237 181

From the above table we can make a general observation. As the target moves
up, MMY, LCY, and RCY decrease. The reverse is also true. As the object/tar-

get moves down, MMY, LCY, and RCY increase.

Servomotors for robot

This robot we will build uses two HS-425 servomotors modified for continuous
rotation. The procedure for modifying these servomotors for continuous rota-
tion was discussed in Chap. 8. Once you have the modified servomotors, it is
essential that you determine the pulse widths needed for slow forward, slow

backward, and stop.

Figure 14.11 is a schematic for a circuit you can use along with the follow-
ing PicBasic Pro program to determine the pulse widths. The pulse width is
shown in real time on the LCD display. You change the pulse widths up or
down by using the SPDT switch. It is essential that the switch used in this cir-

cuit have a center-off position.

‘Continuous rotation servomotor calibration

‘Serial communication to LCD display is 2400 baud inverted

x var byte
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LCD Display
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Figure 14.11 Servomotor schematic for determining pulse widths for slow forward, slow
backward, and stop.

y var byte

pause 1500

serout portb.1,4, [“Servomotor Test”]
pause 1000

serout portb.1,4, [254,1]

pause 20

x = 150

main:

pulsout portb.0,x

if porta.l = 0 then
x =x + 1

endif

if porta.0 = 0 then
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x =x -1
endif
serout portb.0,4, [254,1,” ", #x]

goto main

Here are the pulse width numbers I needed for the servomotors I used in my
prototype robot.

Function Right servomotor  Left servomotor
Stop 167 169
Slow backward 160 176
Slow forward 174 162

Note that the numbers represent 10-us increments in time.
So the 167 used in the program is equal to 1.67 ms.

The following program is for our tracking robot. It uses information from the
+X data table to track an object/target from left to right. The PIX pixel parame-
ter is used to determine range of the object. If the object (PIX gets too large)
comes too close to the robot, the robot will back away from the object.
Everything stated about program 2 also applies to this program. Keep in mind
the lighting—fluorescent or incandescent—and remember to keep the target out
of the camera’s FOV when it is adjusting for the ambient light. Again this pro-
gram just fits into the PIC 16F84; so if you add anything to the program, even a
few spaces in the display, you stand a good chance of its not compiling properly.

‘CMU tracking program
‘By J. Iovine

define osc 16
recdata var byte[10]

X var byte
confid var byte

trisb = 0
portb = 0
pause 1500

serout port.1l,6, [“CMU Prg.”]
serout portb.2,2, [“RS”, 13]
pause 1250

‘Reset CMU camera
serout portb.2,2, [“RS”, 13]
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gosub display

‘Turn green CMU LED on
serout portb.2,2, [“L1 1”,13]
gosub display

portb.3 =1

‘Turn on auto lighting adjust & fluorescent band filter ***
serout portb.2,2, [“CR 45 7 18 44", 13]
gosub display

serout portb.1,6, [“A L”] ‘Auto lighting adjustment
pause 20000 ‘Hold 20 seconds

‘Turn off auto lighting adjust
serout portb.2,2, [“CR 18 44 19 327, 13]
gosub display

‘Turn green CMU LED off
serout portb.2,2, [“L1 2”,13]
gosub display

portb.3 = 0

‘Set poll mode--1 packet
serout portb.2,2, [“PM 1", 13]
pause 100

‘Set raw data
serout portb.2,2, [“RM 3", 13]

for x = 0 to 10 ‘Blink red LED to tell user to ready target
portb.3 =1

pause 250

portb.3 = 0

pause 250

next x

portb.6 = 1 ‘Track LED on

‘Track window command looks at center of CMU window
‘Grabs data and sends it to track color function
‘Track:

serout portb.2,2, [“TW”, 13]

pause 2000

portb.6 = 0 ‘Track LED off

main:
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portb.3 =1
‘Send command--track color (with no arguments)
‘Will track last color grabbed by TW command

serout portb.2,2, [“TC”, 13]

‘Gather the m statistics packet from TW command
serin2 portb.0,84, [str recdata\1l0]

confid = recdatal9]

if recdatal[2] > 50 and confid > 20 then left / MMX
if recdatal[2] < 40 and confid > 20 then right ‘ MMX
if recdatal[8] < 175 and confid > 25 then fwd ‘PIX
if recdatal8] > 200 and confid > 25 then bwd ‘PIX
serout portb.1,6, [254,1,“S"] ‘Stop
portb.3 = 0
pulsout portb.4, 668 ‘Right servo stop
pulsout portb.5, 676 ‘Left servo stop

pause 18
portb.3 =1
goto main

left:
serout portb.1,6,[254,1,“L"”, #recdatal2]]
for x=1 to 7

pulsout portb.4, 696 ‘Right servo forward
pulsout portb.5, 676 ‘Left servo stop
pause 20

next x

goto main:

right:
serout portb.1,6,[254,1,“R”,#recdatal2]]
for x= 1 to 7

pulsout portb.4, 668 ‘Right servo stop
pulsout portb.5, 648 ‘Left servo forward
pause 20

next x

goto main:

fwd:
serout portb.1,6, [254,1,“F”,#recdatal[8]]
for x= 1 to 7

pulsout portb.4, 696 ‘Right servo forward
pulsout portb.5, 648 ‘Left servo forward
pause 20

next
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goto main:

bwd:
serout portb.1,6, [254,1,“B”,#recdatal[8]]
for x=1 to 7

pulsout portb.4, 640 ‘Right servo backward
pulsout portb.5, 704 ‘Left servo backward
pause 20

next x

goto main:

display:

serin2 portb.0,84,20,main, [str recdata\3]

for x = 0 to 3

serout2 portb.1,16468, [“ ”,recdata[x]]
next x

pause 1500

serout2 portb.1,16468, [254,1]

return

Robot construction

By the time this book goes to print, this artificial vision robot will be available
as a kit from Images SI Inc. Visit the CMU camera website at http://www.cmu-
cam.com. We begin by assembling two part A’s of the standard servomotor

Figure 14.12 Two servomotor brackets, part A, assembled.
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bracket together (see Fig. 14.12). A front U bracket is made to assemble to the
front of the two part A’s (see Fig. 14.13). The inside width of the front U brack-
et is the same as the width of the CMU camera, approximately 2.125 in. The
front U bracket has a hole near the front for the shaft of the front wheel. There
are holes near the top front of the U bracket also, not shown in the figure.

Figure 14.13 Brackets with U bracket assembled.

Figure 14.14 Robot base with servomotors, wheels, and multidirectional
front wheel.
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Figure 14.15 Finished robot.

Next we assemble our two servomotors and front wheel onto the base assem-
bly (see Fig. 14.14). The wheels for the servomotors are the same type of
wheels used in Chap. 8. The front universal multidirectional wheel is the same
one used in the Braitenberg vehicles in Chap. 9. Two small L-shaped mount-
ing ears are made to attach the CMU camera to the front of the U bracket.

I constructed the entire circuit on a PIC Experimenter’s Board. I changed
the Xtal on the board from 4.0 MHz to 16 MHz. Power for the circuit may be
obtained from an external power supply or an onboard battery power supply.
The finished robot is shown in Fig. 14.15.

Running the Program

When you first run the robot, you may want to have it lifted so the wheels don’t
touch. It’s a lot easier to check operation and function without having to run
after the robot. Use the experience you gained with object/targets using pro-
gram 2. The LED D1 flashes after the auto light adjustment to signal you to
put the target in front of the camera.

The D1 LED also flashes when the robot is in the stop loop. I included the
flashing LED because it’s not always easy to see the LCD display.

The program reads the MMX value from the CMU camera and determines
whether the robot should turn left or right. You can adjust these values to suit
your particular target. Do not make the greater than (>) and less than (<) val-
ues of MMX too close. If you do, the robot will quiver left and right constantly.

If you find the robot constantly overshooting when it turns to the left or
right, you can reduce the loop value (x) in these turn subroutines.
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Going Further

Parts List

Obviously, we have just scratched the surface of playing with the CMU camera.
One feature I didn’t have time to implement was an up-and-down tilt servomo-
tor that uses the MMY parameter. This involves adding another servomotor to
the robot, but would allow the robot to follow a target as it moves up and down.

I quickly approached the memory limit of the PIC 16F84. If I had had more
time, I would have implemented it, using another PIC microcontroller with a
little more memory. The PIC 16F628 is port B—compatible with the 16F84 and
has twice as much memory (2048 bytes).

Latest updates and information on the CMU camera can be found at
http://www.cmucam.com or http:/www.cmucamera.com.

CMU camera

(2) Servomotors (HS-425)

(2) Part A servomotor brackets
16-MHz PIC Experimenter’s Board
(2) Servomotor wheels

PIC 16F84, 20 MHz

16-MHz crystal

(2) 22-pF capacitors

(2) 330-Q, /,-W resistors
4.7-kQ, '/,-W resistor
Multidirectional wheel

Aluminum sheet metal, shaft, plastic screws, and nuts

Available from Images SI Inc. (see Suppliers at end of book).
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Images SI Inc.

109 Woods of Arden Road
Staten Island, NY 10312
(718) 698-8305

(718) 982-6145 (fax)
www.imagesco.com

Jameco Electronics
1355 Shoreway Road
Belmont, CA 94002
(800) 831-4242

(800) 237-6948 (fax)
WWW.jameco.com

JDR Microdevices

1850 South 10th Street
San Jose, CA 95112
(800) 538-5000

(800) 538-5005 (fax)
www.jdr.com

Suppliers
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AutoCodeCompletion, 23
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Behavior-based robotics, 86, 87
Berger, Hans, 87
Big-foot walker, 225
Binary, 65-68
Binary counting program, 71-72
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assembly, 230-231
feedback, 227
finished product (photographs), 234, 235
footpads, 228-230
movie, 225
parts list, 242
pivoting, 242
possible improvements, 241-242
program, 233-241
schematic, 231-233
servomotor brackets, 228
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button, 72-75
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Color robotic vision system (Cont.): Hammer, 90
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250-251 center (tilt) servomotor, 154—155
parts list, 267 construction, 148-164
program 1, 251-254 electronics, 158-159
program 2, 254 leg positioning, 152-153
program 3, 261-264 linkage, 154, 155
robot construction, 264-266 microcontroller program, 159-164
running the program, 266 mounting the servomotors, 151-152
serial communication, 245248 moving backward (backward gait), 146-147
servomotor for robot, 259-261 moving forward (forward gait), 145-146
16F84 runs at 16 MHz, 251 parts list, 164
VB application program, 248-250 photograph of finished robot, 161
Compiler, 2 robot base (diagram), 149
installing PicBasic, 11-12 robot legs (diagram), 150
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PicBasic (PicBasic Pro), 2—4 servomotors, 144, 145
using, 7 tripod gait, 143-144
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Connected speech recognition system, 168 turning right, 148
Consumables, 5 (See also Bipedal walker robot)
Continuous speech recognition systems, 168 High-level language, 2
copy, 16 HiTec HS-322HD servomotors, 227
Counting program, 71-72 HiTec HS-425BB servomotor, 90-97
Creation of intelligence, 83—-86 HiTec servomotor horn, 189
CRS, 90 HM2007 speech recognition integrated circuit, 165
HS-85MG servomotors, 215
dir, 16 HS-322HD servomotors, 227
DOS commands, 16 HS-425BB servomotor, 90-97
DOS programming, 37-48
compile, 39-43 Image processing, 243
EPIC programming board software, 44—48 (See also Color robotic vision system)
programming the PIC chip, 43-44 Images SI Inc., 269
DOS prompt, 17 “Imitation of Life, An” (Walter), 88
DOS window, 17 Input, 72, 77-78
Drill, 90 input, 77-78
Installation:
Edge detection, 243-244 CodeDesigner software, 25
8-bit number, 65 EPIC software, 19-22
Elmer and Elsie, 88 firmware, 7
EPIC Programmer, 3 PicBasic compiler software, 11-12
EPIC Programmer software/hardware, 3 PicBasic Pro compiler, 12-18
EPIC programming board software, 33—-34, Intelligence, 83—-86
44-48 Isolated speech recognition systems, 168
EPIC programming carrier board, 4, 5
Experimenter’s Board (see PIC Experimenter’s Jameco Electronics, 269
Board) JDR Microdevices, 269

Expert system, 83—-86
Label listbox, 24

Finished products (see Photographs of finished Layered behavioral responses, 85-86
products; Projects) LCD display, 54-56, 60—65

Firmware, 5 Legged walkers, 143

Flash memory, 5 (See also Bipedal walker robot; Hexapod

FlexiForce pressure sensor, 227 walkers)
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xcopy, 16



ABOUT THE AUTHOR

John Iovine is the author of several popular TAB titles that
explore the frontiers of scientific research. He has written
Homemade Holograms: The Complete Guide to Inexpensive,
Do-It-Yourself Holography; Robots, Androids, and
Animatrons: 12 Incredible Projects You Can Build,
considered a cult classic; Kirlian Photography: A Hands-On
Guide; Fantastic Electronics: Build Your Own Negative-

Ion Generator and Other Projects; and A Step into Virtual
Reality. Mr. Iovine has also written extensively for Popular
Electronics, Nuts & Volts, Electronics Now, and

other periodicals.



This page intentionally left blank.



	Cover
	Contents
	Preface
	Chapter 1. Robot Intelligence
	What Is a Microcontroller?
	Why Use a Microcontroller?
	Designer Computers So Many Microcontrollers
	The Compiler
	PIC Programming Overview
	Software and Hardware
	PicBasic and PicBasic Pro Compilers
	EPIC Programmer
	Firmware
	Consumables
	16F84 PIC Microcontroller
	Step 1: Writing Code (the Basic Program)
	Step 2: Using the Compiler
	Step 3: Installing the Firmware, or Programming the PIC Chip
	Ready, Steady, Go
	Parts List

	Chapter 2. Installing the Compiler
	Installing the PicBasic Compiler Software
	Installing the PicBasic Pro Compiler

	Chapter 3. Installing the EPIC Software
	Installing the EPIC Software in Windows
	Installing the EPIC Software, DOS Version
	Supplemental Applications Directory

	Chapter 4. CodeDesigner
	CodeDesigner Features
	Software Installation
	Setting CodeDesigner Options
	First Program
	The EPIC Programming Board Software
	Parts List

	Chapter 5. Using DOS to Code, Compile, and Program
	Compile
	Programming the PIC Chip
	The EPIC Programming Board Software
	Using EPIC DOS Version
	Continuing with the wink.bas Program


	Chapter 6. Testing the PIC Microcontroller
	The PIC Microntroller
	The Solderless Breadboard
	Three Schematics, One Circuit
	Wink
	Troubleshooting the Circuit

	PIC Experimenter's Board and LCD Display
	PIC Experimenter's Board
	Use
	Simple Experiment
	Built-in LCD
	Using the LCD:  PicBasic and PicBasic Pro Examples

	Introduction to Binary and the PIC Microcontroller
	Using TRIS and Port Registers
	Accessing the Ports for Output
	Counting Program
	Counting in Binary by 1
	Input
	The button Command
	A button Example
	peek
	peek and PicBasic Pro
	Basic Input and Output Commands

	Servomotors
	Parts List

	Chapter 7. Intelligence
	Approaches to Building Intelligence
	Where's the Intelligence?
	Layered Behavioral Responses
	Behavior-Based Robotics

	Chapter 8. Walter's Turtle
	Behavior-Based Robotics
	William Grey Walter Robotics Pioneer
	Four Modes of Operation
	Observed Behavior
	Building a Walter Tortoise
	Drive and Steering Motors
	Modifying the HS-425BB Servomotor
	Sheet Metal Fabrication
	Shell
	Finding the Center of Gravity
	Attaching Bumper to Robot Base
	Bumper Switch
	Mounting the Steering Servomotor
	Photoresistor
	Trimming the Sensor Array
	Schematic
	Program
	Adding Sleep Mode
	Power
	Behavior
	Fudge Factor
	Light Intensity
	Handedness
	Parts List

	Chapter 9. Braitenberg Vehicles
	Neural I/O Relationships
	Vehicles
	Building Vehicles
	Back Wheels
	Front Wheels
	CdS Photoresistor Cells
	Trimming the Sensor Array
	PIC 16F84 Microcontroller
	Testing

	Second Braitenberg Vehicle (Avoidance Behavior)
	Parts List

	Chapter 10. Hexapod Walker
	Imitation of Life
	Six Legs Tripod Gait
	Three-Servomotor Walker Robot
	Function
	Moving Forward
	Moving Backward
	Turning Left
	Turning Right
	Construction
	Mounting the Servomotors
	Leg Positioning
	Linkage
	Center (Tilt) Servomotor
	Sensors
	Electronics
	Microcontroller Program

	Parts List

	Chapter 11. Speech Recognition
	Applications
	Software Approach
	Learning to Listen
	Speaker-Dependent and Speaker-Independent Recognition
	Recognition Style
	Speech Recognition Circuit
	Circuit Construction
	Keypad
	To Train

	Testing Recognition
	Error Codes
	Clearing the Trained Word Memory

	Independent Recognition System
	Voice Security System
	Speech Interface Control Circuit
	How the Circuit Works
	PIC 16F84 Microcontroller Program
	Active High Output
	SPDT Relay Output

	Circuit Construction
	Programming the Speech Recognition Circuit Training, Testing, and Retraining
	SRI-02 and SRI-03 Interfaces
	Robot Control
	Parts List

	Chapter 12. Robotic Arm
	Servomotor Building Blocks for Robotics
	Basic Servomotor Bracket Assembly
	Assembling Multiple-Servomotor Assemblies
	Building a Five-Servomotor Robotic Arm
	Servomotors
	Servomotor Controllers
	Simple Servomotor Controller

	Four- and Five-Servomotor Controllers
	Increasing the Lifting Capacity of the Robotic Arm
	Adding a Robotic Arm Base
	Parts List

	Chapter 13. Bipedal Walker Robot
	A Question of Balance?
	A Little Feedback
	Servomotors
	Servomotor Brackets
	Footpads
	Assembly
	Schematic
	Program
	Subroutines M1, M2, and M3

	Going Further
	Turning Right and Left

	Parts List

	Chapter 14. Color Robotic Vision System
	CMU Camera
	Serial Communication
	VB Application Program
	Interfacing the CMU Camera to a Robot
	PIC 16F84 Runs at 16 MHz
	Program 1
	Program 2
	Incandescent or Fluorescent Lighting
	Servomotors for Robot

	Program 3
	Robot Construction

	Running the Program
	Going Further
	Parts List

	Suppliers
	Index



