

PDA Robotics

PDA 00 5/28/03 8:19 AM Page i

This page intentionally left blank.

PDA Robotics
Using Your Personal Digital Assistant
to Control Your Robot

Douglas H. Williams

McGraw-Hill
New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan Seoul
Singapore Sydney Toronto

PDA 00 5/28/03 8:19 AM Page iii

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means, or stored in a data-
base or retrieval system, without the prior written permission of the publisher.

0-07-143403-8

The material in this eBook also appears in the print version of this title: 0-07-141741-9

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales pro-
motions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUAR-
ANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF
OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMA-
TION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inac-
curacy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of lia-
bility shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort
or otherwise.

DOI: 10.1036/0071434038

ebook_copyright 8.5 x 11.qxd 8/12/03 12:00 PM Page 1

Dedicated to my family, Gylian, Olivia, Rachel, and Ethan.

PDA 00 5/28/03 8:19 AM Page v

This page intentionally left blank.

vii

Introduction xv

Acknowledgments xix

1 Anatomy of a Personal Digital Assistant (PDA) 1

2 Robotic System Overview 15

3 Tools and Equipment 23

4 Infrared Communications Overview 29

5 The Electronics 43

6 Building PDA Robot 107

7 Programming the PIC16F876 Microcontroller 137

8 PDA Robot Palm OS Software Using
Code Warrior 8.0 155

Contents Summary

PDA 00 5/28/03 8:19 AM Page vii

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

For more information about this title, click here.

9 PDA Robot Software for Pocket PC 2002
(Windows CE) 169

10 The PDA Robotics Command Center 195

11 Infinitely Expandable 211

Index 221

PDA Robotics

viii

PDA 00 5/28/03 8:19 AM Page viii

ix

Introduction xv

Acknowledgments xix

1 Anatomy of a Personal Digital Assistant (PDA) 1
Beneath the Cover 5

The SA-1110: An Example of ARM Architecture 7

2 Robotic System Overview 15
Major Electronic Parts 15

Microchip MCP2150 IrDA Standard
Protocol Stack Controller 15

Vishay TFDS4500 Serial Infrared Transceiver 17

PIC16F876 Microcontroller 18

L7805ACV Voltage Regulator (5 Volts) 18

L298 Dual Full-Bridge Driver 19

Sharp GP2D12 Infrared Range Finder 20

DYN2009635 20 MH and RXDMP49 11.0952 MHz
“AT” Cut Quartz Crystal Oscillator 21

Contents

PDA 00 5/28/03 8:19 AM Page ix

For more information about this title, click here.

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

3 Tools and Equipment 23
Essential Tools and Equipment 23

Safety First 26

Where to Get Equipment 27

4 Infrared Communications Overview 29
Technical Summary of IrDA Data and IrDA Control 31

IrDA’s New Full Range of Digital Information
Exchange via Cordless IR Connections 31

Optional IrDA Data Protocols 33

IrDA Control 33

Windows CE (Pocket PC) and IrDA 35

Communication Link Speeds 36

Communication Link Turnaround Times 37

SIR Coding 39

MIR Coding 39

FIR Coding 40

VFIR Coding 40

5 The Electronics 43
System Overview 43

Setting the Baud Rate 46

The MCP2150 Connection to the IR Transceiver 47

The MCP2150 Connection to the PIC16F876
Microcontroller 49

The Motor Controller Circuit 51

The Sharp GPD12 IR Range Finder 52

Component Descriptions 53

The Vishay TFDS4500 53

The Microchip MCP2150 Plug and Play IrDA 58

MCP2150 Applications: PDA Robot 59

Crystal Oscillator/Ceramic Resonators 62

PDA Robotics

x

PDA 00 5/28/03 8:19 AM Page x

Bit Clock 63

UART Interface 63

Baud Rate 63

Transmitting 64

Receiving 64

Modulation 64

Demodulation 65

Minimizing Power 65

Returning to Device Operation 65

Network Layering Reference Model 65

IrDA Data Protocols Supported by MCP2150 66

IRDA Standard Protocol Layers 69

PDA and PDA Robot Handshake: How Devices Connect 71

Normal Disconnect Mode (NDM) 72

Discovery Mode 74

Normal Connect Mode (NCM) 76

MCP2150 Operation 76

Optical Transceiver 77

Typical Optical Transceiver Circuit 78

MCP2150 Absolute Maximum Ratings 78

PIC16F876: PDA Robot’s Microcontroller 78

PORTA and the TRISA Register 84

PORTB and the TRISB Register 87

PORTC and the TRISC Register 90

The L298 Dual Full-Bridge Driver
(PDA Robot Motor Controller) 96

Description 97

The GP2D12 IR Range Finder 102

Connecting to the Sensor 104

Operation 104

Calibration 104

Contents

xi

PDA 00 5/28/03 8:19 AM Page xi

Ambient Light 105

IR Light 105

Laser Light 106

Operation 106

6 Building PDA Robot 107
Creating the Circuit Board 107

Positive Photofabrication Process Instructions 108

Parts Lists 115

Placing and Soldering the Main Board Components 117

Placing and Soldering the Motor Controller Components 120

The Infrared Transceiver 122

The Power Connectors 123

The Battery Packs 123

The IR Range Finder 124

Cutting the Aluminum Pieces and Drilling the Holes 125

Assembling the Geared Motors 127

The Ribbon Connectors 130

The Camera (Accessory) Mount 134

7 Programming the PIC16F876 Microcontroller 137
Software Installation 138

Hardware Installation 139

General Operation 140

EPIC for DOS 141

EPIC for Windows 95/98/ME/NT/2000/XP 142

EPICWin Controls 144

The PICmicro MCU Compiler 145

The Command Line Compiler 146

The Source Code 147

Program the PIC16F876 153

PDA Robotics

xii

PDA 00 5/28/03 8:19 AM Page xii

8 PDA Robot Palm OS Software
Using Code Warrior 8.0 155
Creating the PDA Robot Project 157

9 PDA Robot Software for Pocket PC 2002
(Windows CE) 169
Microsoft eMbedded Visual C++ 3.0 Overview 170

Increased Developer Productivity 173

Simplified Debugging and Deployment 173

Comprehensive Access to the Windows CE Platform 173

Build for the Latest Windows CE Devices 174

Fast, Flexible Data Access 174

Building the PDA Robot Pocket PC Application 175

Creating the IrDA Link 177

The Wireless RF Link 186

CCeSocket::CCeSocket 188

Parameters 188

Remarks 188

OnWireless: Implementing the CPDASocket Class 189

10 The PDA Robotics Command Center 195
The Video Link 195

Motion Detection 197

Sending Data Using FTP 201

The Wireless Data Link 206

11 Infinitely Expandable 211
Global Positioning System 211

Pocket CoPilot 3.0 GPS Jacket Edition:
PCP-V3-PAQJ2 212

The TeleType GPS 212

Symbol SPS 3000 Bar Code Scanner Expansion Pack 214

Contents

xiii

PDA 00 5/28/03 8:19 AM Page xiii

Sierra Wireless AirCard 555 215

Telesurgery 216

Operations of the Future 216

Index 221

PDA Robotics

xiv

PDA 00 5/28/03 8:19 AM Page xiv

xv

The NASA Mars Sojourner rover inspired this project
(http://mars.jpl.nasa.gov/MPF/index1.html). I followed the mission
with great enthusiasm and witnessed a giant leap in robotics that day
it began roaming the Martian terrain and sending images back to earth.
Though I was in awe when the Viking missions of the 1970’s were in
progress, we didn’t see that near real-time interaction with the craft
(http://nssdc.gsfc.nasa.gov/planetary/viking.html). The twin rovers
scheduled to launch May/July 2003 and land on the surface January
2004 will be something to follow (http://mars.jpl.nasa.gov/mer/)! PDA
Robot is a scaled down version of Sojourner that has a similar frame-
work, components, and functionality at a much lower cost!

The personal digital assistant is the main control unit of the robot, com-
municating with the craft’s body via a beam of infrared light and to
other machines on the wireless network. The PDA itself becomes a data
transponder. It (the PDA) is insulated and protected from the robotic
interface. It is said to be optically isolated, communicating on ripples
of light. Because of this design, no connectors are required and the soft-
ware provided will work with any Windows or PalmOS driven hand-
held PDA. I see a day when all components of a system are connec-
tionless with harmonically synchronized transistors.

I will go into the theory behind the operation of each component as
well as the practical hands-on information and processes needed to

Introduction

PDA 00 5/28/03 8:19 AM Page xv

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

complete this project. I will also make suggestions for enhancements
and modifications to the electronic, mechanical, and software design;
enhancements that I will leave up to you to explore.

The only limit to any enhancements or changes will be that of your
imagination. This book will give you the expertise to create anything.
One of many areas that I will touch on is the smart distributed network,
where each robot can pass the information that it gains onto the “col-
lective” to be shared with other robots. For instance, if two PDA Robots
pass each other they can exchange information about a room in the
house that has been mapped, saving any duplication of effort. The
robots can synchronize to coordinate effort as well. A good example of
a coordinated autonomous effort is the idea of traffic being directed by
a computer system. In the future, I believe the key to making the world
a better place is to effectively and fully use the resources we have avail-
able. Traffic congestion on the freeways could be eliminated for years to
come without building anymore highways if it was managed properly.
Cars outfitted with sensors and wireless technology could be tied into a
central coordination system making the commute to work an enjoyable
and relaxing experience. This is something that could be achieved on a
smaller scale with this project if you take it a step further.

Artificial intelligence, self-modifying code, and the emergent behavior
of computers is a fascinating area of research that will be touched on
in this book. Emergent behavior in a system is the system’s ability to
become intelligent over and above the programming that has been
coded into it. Sometime this is seen as a behavior or unanticipated
function that is the result of the interaction between two systems. I
have seen this happen with smart digital imaging archiving software
at the medical imaging company where I currently work. One must be
careful when enabling a machine with AI to make decisions around
humans though. A “smart” robot building an office tower may decide
that the best course of action may be to remove a support beam and
put it up at a later time. But if the programmer made a mistake and
didn’t have another algorithm check the structural integrity before
approving of the decision, then the whole building would come down.
A simple coding error of “if (StructuralIntegrityOk = TRUE){
RemoveBeam(BeamNumber); }” spells disaster. The equality operator
== is mistaken for and the assignment operator =. One must ensure
that AI bots stay within safe operating parameters, are monitored
closely, and have a remote kill switch.

PDA Robotics

xvi

PDA 00 5/28/03 8:19 AM Page xvi

Enabling the machine with a sense of sight is another topic that will
be explored and explained. PDA Robot can “see” through the use of an
infrared range finder and wireless video camera. The machine vision
algorithms used in this project interpret the surroundings and send
feedback to the robot. The ability to send video data into the wireless
network through a video capture card open the “window” to a virtual
presence. Amazing things are being done today with this technology.
Doctors can perform surgery from any point on earth to another; we
can be there from here!

One interesting point about the IR range detector is the fact that the
pulsed beam of IR light is highly visible to a modern IR target locking
system deployed by most modern military equipment. This could be
an advantage or a drawback. The invisible infrared beam can provide
a good source for a night vision video camera, in fact most low cost
video cameras will be able to detect the beam from the front. If you
have a video camera give it a try! I will discuss other methods of data
transmission (visible light) and range finding (invisible). If we tap into
the this range finder and pulse the light beam and use a telescope, we
can create a very long range point-to-point communication device
ideal for ground to air operations. Something I will leave you to exper-
iment with.

Once PDA Robot is on the network it is essentially an internet appli-
ance.

My hope is that this project will give you the knowledge and experi-
ence to create any electronic device that you can dream up. All the
information is out there—just follow the links from a good search
engine. Automation, ordering over the Web, and courier service allows
everything in this project to be delivered to your door. Please experi-
ment with the design—I’ve designed an amphibious and airborne
body that the circuitry can be “snapped” into. I hope you evolve this
design once you become familiar with it.

If this technology is applied in the same spirit as the space program
and with the ethics of modern medicine, then I can see great things
evolving from it

For online updates, source code, and other useful files that will aid
you in completing PDA Robot, please visit www.pda-robotics.com.

Douglas Williams

Introduction

xvii

PDA 00 5/28/03 8:19 AM Page xvii

This page intentionally left blank.

xix

Thanks goes out to everyone along the way made this book possible,
especially my brothers, Karl Williams and Geoff Williams, whom
without I would have not endeavored to write this book. Thanks to my
parents, Gord and Ruth Williams, for all their support over the years.
Thanks to my family for putting up with my late nights and lost week-
ends.

Thanks to Judy Bass and Patricia Wallenburg, for their patience and
the fabulous job they have done putting the whole thing together.

Special thanks to my friends and colleagues who have inspired me
along the way: Michael Foote, Bob Lazic, Paul Stienbach, Dave Huson,
Dave Smith, Stephane MacMaster, John Lammers, Julius Avelar, Erkan
Akyuz, Desh Sharma, Tim Jones, Tom Cloutier, Paul McNally, Barry
Reville, Bart Domzy, James Chase, Stephen Kingston, John Sanio, Kim
Martin, Clark MacDonald, Peter Madziak Stephen Frederick, Derrick
Barnes, Darren Tarachan, Steve Spicer, Mathew Sullivan, John
Kominar, Grant E, Paul Barton, Eric Peterson, Larry Williamson, and
anyone I may have left off of this list.

Thanks to Rebecca Tollen for the information on telesurgery and
Microsoft, Palm OS, MicroChip, HVW Tech, Sharp, ST Microelectronics,
Micro Engineering Labs, Protel, Intel, Intuitive Surgical, Handspring, HP,
and Compaq for helping to make this project possible.

Acknowledgments

PDA 00 5/28/03 8:19 AM Page xix

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

PDA Robotics

PDA 00 5/28/03 8:19 AM Page xxi

This page intentionally left blank.

1

The power is sitting in the palm of your hand. The technology exists
today to bring your world to you wherever you happen to be. Wireless
technology, a handful of electronic components, a small handheld
computer, and little software to glue everything together is all that is
needed to be “virtually” enabled. The culmination of this project will
provide you with the know-how to create a robotic device that can be
controlled through your PDA from anywhere over the World Wide
Web or allowed to roam autonomously using its PDA “brain.”

Why use a PDA? These devices are small and powerful, leveraging the
best technology that can be offered today in the palm of your hand.
They make for perfect robotic controllers, as they can be easily expand-
ed through their expansion slots. If you need a wireless network or a
global positioning system, simply slide in the card. Increasingly, they
have the wireless technology built into them, such as Bluetooth or dig-
ital/analog cellular phone technology, as seen in Figure 1.1. These
devices have rich application programming interfaces (APIs) that can
be used to create powerful end user applications, capitalizing on the
device capabilities, as shown in this book. The Infrared Data
Association (IrDA) functions contained in both the Windows CE and
Palm OS APIs are pure abstractions to the actual infrared transceivers
built into the PDA. For example, socket (AF_IRDA, SOCK_STREAM,
NULL) and IrOpen (irref, irOpenOptSpeed115200) are the Windows CE
and Palm OS API calls used to initiate the IrDA Data link to the PDA

Anatomy of a
Personal Digital
Assistant (PDA)

1

PDA 01 5/30/03 9:09 AM Page 1

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Robot. The source included will explain in detail how to accomplish a
data link used to send and receive information.

Once the link is established, users can virtually project themselves
anywhere. A doctor can perform surgery on a patient thousands of
miles away. You can roam around your house on PDA Robot from your
hotel room, cottage, or even flying 60,000 feet above the earth. This
book will give you the tools and know-how to transform this project
into anything. Explaining the schematic design, circuit board manu-
facturing, embedded software for the microchip, mechanical design
and the software source code for the world’s two most popular PDA
(handheld) operating systems, this book will take you on a tour of
today’s specialized electronic microchips and the inner workings of
PDA operating systems.

PDA (personal digital assistant) is a term for any small mobile handheld
device that provides computing and information storage and retrieval
capabilities for personal or business use, often for keeping schedule cal-
endars and address book information handy. The term handheld is a
synonym. Many people use the name of one of the popular PDA prod-
ucts as a generic term. These include Compaq/Hewlett-Packard’s IPAQ
and 3Com’s Palm devices, such as the Palm Pilot and m505.

PDA Robotics

2

Figure 1.1

Integrated wireless
PDAs.

PDA 01 5/30/03 9:09 AM Page 2

Most PDAs have a small keyboard that the PDA clips onto, and an
electronically sensitive pad on which handwriting can be received.
Typical uses include schedule and address book storage and retrieval
and note-entering. However, many applications have been written for
PDAs. Increasingly, PDAs are combined with telephones, paging sys-
tems, and wireless networks.

Some PDAs offer a variation of the Microsoft Windows operating sys-
tem called Windows CE (Pocket PC), which offers the familiar “MS
Windows” look and feel. Other products, such as the palm devices,
have their own operating system called Palm OS.

• Windows CE: Windows CE is a Microsoft operating system for
handhelds, TV set-top boxes, upcoming home appliances, even
game consoles (the new Sega Dreamcast is WinCE compatible).
Pocket PCs use Windows CE. Windows CE uses the familiar
Windows task bar, scroll bar, and drop-down menus. Unlike
Palm devices, WinCE products usually have a color screen.

• Palm OS: The Palm operating system runs the Palm series of
organizers, the IBM Wordpad series, the new Visor products, and
Sony Clie. Palm OS is known for its speedy navigation when
compared with Pocket PCs.

• Pocket PC: Pocket PCs are a direct competitor to Palm handhelds.
They use the Windows CE operating system and have color
screens, among other standard features.

Most PDAs are able to communicate directly with each other through
the use of an infrared (IR) port. This makes sharing information effort-
less. By simply lining up IR ports, people can “beam” information
back and forth. Documents can be “beamed” directly to a printer or
information exchanged bi-directionally to an IR transponder connect-
ed to a network.

Many university campuses, such as the University of California at
Berkeley, are IR enabled. Students can get class schedules and notes,
receive and transmit assignments, and even have the bus schedule
beamed directly to them from IR transponders placed around the
campus.

The PDA Robot featured in this book will use the IR port on the PDA
to communicate with its body. This protects the PDA from any dam-

Chapter 1 / Anatomy of a Personal Digital Assistant (PDA)

3

PDA 01 5/30/03 9:09 AM Page 3

age that could occur by an electronic malfunction in the robot body,
and eliminates the need for any physical connection to the PDA. The
PDA will act as the “brain” of the robot, monitoring and controlling its
systems. The IR beam of light could be considered the robot spinal
cord.

• IR port: Uses IR technology to transmit data to and receive data
from other Palm OS handhelds, and to perform HotSync opera-
tions. Used for communication with PDA Robot’s body.

• Power button/backlight control/LED indicator: Turns your hand-
held on or off and controls the backlight feature. If your handheld
is turned off, pressing the power button turns the handheld on
and returns you to the last screen you viewed. If your handheld
is turned on, pressing the power button turns the unit off.
Pressing the power button for about two seconds turns the back-
light on or off. The power button also lights steadily when the
handheld is charging in the cradle, and blinks to indicate alarms.
Some applications enable you to set alarms to remind yourself of
events or notes. You can set preferences for nonaudible alarm
notification.

• Handheld screen: Displays the applications and information
stored in your handheld. It is touch-sensitive and responds to the
stylus.

PDA Robotics

4

Figure 1.2

Palm m505: A
typical PDA.

PDA 01 5/30/03 9:09 AM Page 4

• Graffiti writing area: The area where you write letters and num-
bers using the Graffiti alphabet.

• Scroll buttons: Display text and other information that extends
beyond the area of the handheld screen. Pressing the lower scroll
button scrolls down to view information below the viewing area,
and pressing the upper scroll button scrolls up to view the infor-
mation above the viewing area.

• Application buttons: Activate the individual handheld applica-
tions that correspond to the icons on the buttons: Date Book,
Address Book, To Do List, and Note Pad. These buttons can be
reassigned to activate any application on your handheld.

• Tip: If your handheld is turned off, pressing any application
button activates the handheld and opens the corresponding
application.

Beneath the Cover
PDAs are miniature versions of typical desktop systems; however,
space and power consumption constraints have limited the processing
power, storage space, and memory available. (This may not be true for
long!) These constraints have led to very innovative designs.

Beneath the cover of each PDA is a microprocessor, which is the
“brain” of the unit. All information flows in or out of it. Attached to
the microprocessor are a number of peripheral devices such as the
touch screen, IR port, speaker, and memory modules.

Two popular PDA microprocessors are the Intel StrongARM (Figure
1.3) and the Motorola DragonBall. The Intel microprocessor is typical-
ly used in devices running Windows CE, and the Motorola is used
with devices running the Palm OS operating system. These processors
will be described in more detail below.

ARM was established in November 1990 as Advanced RISC Machines
Ltd. In 2001, more than 538 million Reduced Instruction Set
Computing (RISC) microprocessors were shipped, 74.6 percent of
which were based on the ARM microprocessor architecture. ARM
licenses its intellectual property (IP) to a network of partners, which
includes some of the world’s leading semiconductor and system com-
panies, including 19 out of the top 20 semiconductor vendors world-

Chapter 1 / Anatomy of a Personal Digital Assistant (PDA)

5

PDA 01 5/30/03 9:09 AM Page 5

wide. These partners utilize ARM’s low-cost, power-efficient core
designs to create and manufacture microprocessors, peripherals, and
system-on-chip (SoC) solutions. As the foundation of the company’s
global technology network, these partners have played a pivotal role

PDA Robotics

6

Figure 1.3

The Intel StrongARM device board SA-1110.

PDA 01 5/30/03 9:09 AM Page 6

in the widespread adoption of the ARM architecture. To date, ARM
partners have shipped more than one billion ARM microprocessor
cores!

Following is a list of ARM’s key semiconductor and system partners.
Obviously, this is a very well accepted architecture. 3Com, Agere,
Agilent, AKM, Alcatel, Altera, AMI Semiconductor, Analog Devices,
Atmel, Basis, Cirrus Logic, Cogency, Conexant, Epson, Ericsson,
Fujitsu, Global UniChip, Hynix, IBM, Infineon, Intel, LinkUp Systems,
LSI Logic, Kawasaki, Marvell, Micronas, Mitsubishi, Mobilan,
Motorola, National Semiconductor, NEC, Oak Technology, OKI,
Panasonic, Philips, Prairiecom, Qualcomm, Resonext, Rohn,
Samsung, Sanyo, Sharp, Silicon Wave, SiS, Sony, ST
Microelectronics, Texas Instruments, Toshiba, Triscend, Virata,
Yamaha, Zarlink, and ZTEIC.

The SA-1110: An Example of ARM Architecture
The SA-1110 is a general-purpose, 32-bit RISC microprocessor with a
16 kB instruction cache (Icache), an 8 kB write-back data cache
(Dcache), a minicache, a write buffer, a read buffer, an MMU, an LCD
controller, and serial I/O combined in a single component. The SA-
1110 provides portable applications with high-end computing per-
formance without requiring users to sacrifice available battery time. Its
power-management functionality provides further power savings. For
embedded applications, the SA-1110 offers high-performance com-
puting at consumer electronics pricing with millions of instructions
per second (MIPS)-per-dollar and MIPS-per-watt advantages. The SA-
1110 delivers in price/performance and power/performance, making it
a choice for portable and embedded applications.

Figure 1.4 shows that the StrongARM has five serial channels used to
communicate with peripheral devices. Because we will communicate
primarily through the serial ports, the use for each port will be
explained in detail.

• Channel 0: User datagram protocol (UDP) is a connectionless
protocol (one in which the host can send a message without
establishing a connection with the recipient) that, like transmis-
sion control protocol (TCP), runs on top of Internet protocol (IP)
networks. Unlike TCP/IP, UDP/IP provides very few error recov-
ery services, offering instead a direct way to send and receive

Chapter 1 / Anatomy of a Personal Digital Assistant (PDA)

7

PDA 01 5/30/03 9:09 AM Page 7

datagrams over an IP network. It is used primarily for broadcast-
ing messages over a network. In medical imaging, UDP is used to
log information from various devices to a system logging reposi-
tory. A datagram is a piece of a message transmitted over a pack-
et-switching network, and is a packet of information that con-
tains the destination address in addition to data.

• Channel 1: GPCLK/UART—This channel can be used as a general
purpose clock (GPCLK) or universal asynchronous receiver-trans-
mitter (UART). See Channel 3 for a more detailed description.

• Channel 2: Infrared Data Association (IrDA) is a group of device
manufacturers that developed a standard for transmitting data via
IR light waves. Increasingly, computers and other devices (such as
printers) come with IrDA ports. This enables you to transfer data

PDA Robotics

8

Figure 1.4

Block diagram of the Intel StrongARM SA-1110 microprocessor.

PDA 01 5/30/03 9:09 AM Page 8

from one device to another without any cables. For example, if
both your laptop computer and printer have IrDA ports, you can
simply put your computer in front of the printer and output a doc-
ument, without needing to connect the two with a cable.

IrDA ports support roughly the same transmission rates as tradi-
tional parallel ports. The only restrictions on their use are that
the two devices must be within a few feet of each other, and there
must be a clear line of sight between them. The IrDA port on the
PDA will be the main communication link to PDA-Bot; in
essence, it will be the spinal cord. PDA Robot responds to IrDA
discovery requests and identifies itself as “generic IrDA.” I decid-
ed to use an IrDA data link to the Robot because it is a very reli-
able communication link (error correction is built into it) that
requires absolutely no cables!

See: Chapter 4: Infrared Communications Overview, PDA Bot IR
transponder.

• Channel 3: Universal asynchronous receiver-transmitter (UART):
Intel provides a development board for the StrongARM SA-1100
microprocessors. It is interesting to note that most PDAs using
the StrongARM are almost identical in function to that of the
development board.

Increasingly, ARM-based microprocessors are being used in Palm OS
devices such as the Tungsten (see Figure 1.5). It has a Texas Instruments
OMAP1510 processor (an enhanced ARM-based processor).

The OMAP1510 processor includes the following:

• TI-enhanced ARM9 up to 175 MHz (maximum frequency).

• TMS320C55x DSP up to 200 MHz (maximum frequency).

• Voltage: 1.5v nominal.

• Optimized software architecture that allows designers to leverage
dual processing, and provides a complete and seamless software
foundation.

• DSP/BIOS Bridge that provides a seamless interface to the DSP
using standard APIs allowing easy access to DSP multimedia
algorithms.

Chapter 1 / Anatomy of a Personal Digital Assistant (PDA)

9

PDA 01 5/30/03 9:09 AM Page 9

• Open platform that enables a large network of independent
developers to provide a broad range of OMAP compatible soft-
ware solutions.

• LCD control/frame buffer for 16-bit QVGA display.

• USB client and host control.

• MMC-SD support.

• Bluetooth interface.

• USB, uWire, camera, and enhanced audio codec interface.

• Small, 289-pin MicroStar BGA package eases design in space-
constrained devices.

PDA Robotics

10

Figure 1.5

Palm OS Tungsten.

PDA 01 5/30/03 9:09 AM Page 10

To provide the optimal balance of high performance and low power
consumption necessary for these devices, the OMAP1510 combines
the TMS320C55x DSP core with a TI-enhanced ARM925 processor.

The ARM architecture is well suited for control-type code, such as the
operating system and user interface. The C55x DSP provides the addi-
tional processing power to handle the compute-intensive operations
such as security, multimedia, and speech. This is a great chip for
PDAs. Figure 1.6 shows the extensively integrated OMAP microchip.

A final example of a system on a chip design is the popular
MC68EZ328 (DragonBall EZ) Integrated Portable System Processor
used in many of the PDAs currently in use. Even though these proces-
sors typically run at a slower clock rate, they are capable of perform-
ing 2.7 MIPS performance at 16.58 MHz processor clock, and 3.25
MIPS performance at 20 MHz processor clock—very impressive for
their size and cost!

The second member of the DragonBall family, the MC68EZ328, inher-
its the display capability of the original DragonBall processor, but fea-
tures a more flexible LCD controller with a streamlined list of periph-
erals placed in a smaller package. This processor is mainly targeted for
portable consumer products, which require fewer peripherals and a
more flexible LCD controller. By providing 3.3 V, fully static operation
in efficient 100 TQFP and 144 MAPBGA packages, the MC68EZ328
delivers cost-effective performance to satisfy the extensive require-
ments of today’s portable consumer market. A number of the Visor
handspring PDAs utilize the Dragonball processors. Figure 1.7 is the
block diagram of the MC68EZ328.

Most PDAs have their small size and expandability in common,
regardless of the processor or operating system. In the near future, we
will likely see enough power in the palm of your hand to make the
desktop computer obsolete! The prices of even the high-end PDAs
have dropped dramatically over the last year, and will likely continue
to do so. There are slews of very low-cost, used PDAs floating around
at auctions, garage sales and in the classified ads. Even a very low-end
PDA running at least Palm OS version 1.1 will be sufficient for this
project. Look around if you don’t have one, and you will likely find a
very good deal on a used PDA.

Chapter 1 / Anatomy of a Personal Digital Assistant (PDA)

11

PDA 01 5/30/03 9:09 AM Page 11

1
2

DSP
MMU

OMAP5910

32

32

32

32

32

32

32 32

32

32

32

32

32

16

16

16

16

16

16

Flash and
SRAM

memories

SDRAM
memories

E
M
I
F
F

E
M
I
F
F

I
M
I
F

SRAM
1.5M bits

MPU
interface

Memory interface
traffic controller (TC)

JTAG/
emulation

I/F

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

ETM9

LCD
I/F OSC OSC

Clock and reset management

System
DMA

controller

12 MHz 32 MHz Clock Reset External
clock request

MPU
peripheral

bridge

TMS320C55x DSP
(instruction cache, SARAM,

DARAM, DMA,
H/W accelerators)

MPU Bus

MPU private peripherals bus

MPU public
peripherals bus

DSP private
peripheral bus

McBSP1

McBSP3

MCSI1
MCSI2

DSP public (shared) peripheral bus

DSP
private peripherals

timers (3)
Watchdog timer

level 1/2
interrupt handlers

DSP public peripherals

MPU/DSP shared peripherals

TIPB
switch

UART1
UART2

UART3 IrDA

Mailbox
GPIO I/F

MPU private peripherals
Timers (3)

Watchdog timer
Level 1/2 interrupt

handlers
Configuration registers

Device identification

MPU public peripherals
McBSP2

USB Host I/F

USB Function I/F

I2C
µWire

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

keyboard I/F
MMC/SD
LPG x2

Frame adjustment
counter

HDQ/1-Wire
RTC

Figure 1.6

Block diagram of an OMAP processor.

P
D
A

0
1

5
/
3
0
/
0
3

9
:
0
9

A
M

P
a
g
e

1
2

Chapter 1 / Anatomy of a Personal Digital Assistant (PDA)

13

Figure 1.7

Block diagram of
the MC68EZ328.

PDA 01 5/30/03 9:09 AM Page 13

This page intentionally left blank.

15

PDA Robot consists of a robotic body and a PDA (handheld computer)
brain. This book will guide you through the creation of PDA Robot.
The project consists of mechanical, electronic, and software compo-
nents. Figure 2.1 shows PDA Robot roaming autonomously through
the house, capturing images when any motion is detected. The PDA
sitting on top is the machine’s main controller, receiving, analyzing,
and sending data to the robot body. The PDA is connected to a desk-
top computer that is monitoring the system, interpreting both data and
the video stream. The personal computer (PC) also acts as a control
station where the robot can be controlled remotely, based on the video
that is displayed.

The block diagram in Figure 2.2 is a high-level conceptualization of
PDA Robot. It doesn’t show the PDA connected to the wireless network.

Major Electronic Parts
Microchip MCP2150 IrDA
Standard Protocol Stack Controller
The MCP2150 is a cost-effective, low pin-count (18-pin), easy to use
device for implementing Infrared Data Association (IrDA) standard
wireless connectivity (see Figure 2.3). The MCP2150 provides support
for the IrDA standard protocol “stack” plus bit encoding/decoding.

Robotic
System
Overview

2

PDA 02 5/27/03 8:20 AM Page 15

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

PDA Robotics

16

Figure 2.1

PDA Robot.

Figure 2.2

Block diagram of
PDABot.

PDA 02 5/27/03 8:20 AM Page 16

Vishay TFDS4500 Serial Infrared Transceiver
The TFDU4100, TFDS4500 (Figure 2.4), and TFDT4500 are a family of
low-power infrared (IR) transceiver modules compliant to the IrDA
standard for serial infrared (SIR) data communication, supporting
IrDA speeds up to 115.2 kb/s. Integrated within the transceiver mod-
ules is a photo PIN diode, infrared emitter (IRED), and a low-power
analog control integrated circuit (IC) to provide a total front-end solu-
tion in a single package. Telefunken’s SIR transceivers are available in
three package options, including our BabyFace package (TFDU4100),
once the smallest SIR transceiver available on the market. This wide
selection provides flexibility for a variety of applications and space
constraints. The transceivers are capable of directly interfacing with a
wide variety of I/O chips, which perform the pulse-width modula-
tion/demodulation function, including Telefunken’s TOIM4232 and
TOIM3232. At a minimum, a current-limiting resistor in series with
the IRED and a VCC bypass capacitor are the only external compo-
nents required to implement a complete solution.

Chapter 2 / Robotic System Overview

17

Figure 2.3

MCP 2150 chipset.

Figure 2.4

The vishay
TFDS4500.

PDA 02 5/27/03 8:20 AM Page 17

PIC16F876 Microcontroller
This powerful (200 nanosecond instruction execution) yet easy-to-
program (only 35 single-word instructions) CMOS flash-based 8-bit
microcontroller packs Microchip’s powerful programmable integrated
circuit (PIC) architecture into an 18-pin package, and is upwards com-
patible with the PIC16C7x, PIC16C62xA, PIC16C5X, and PIC12CXXX
devices. The PIC16F876 features 8 MHz internal oscillator, 256 bytes
of EEPROM data memory, a capture/compare/PWM, an addressable
USART, and two comparators that make it ideal for advantage ana-
log/integrated level applications in automotive, industrial, appliances,
and consumer applications (see Figure 2.5).

See Chapter 7: Programming the PIC16F876 Microcontroller for more
information.

L7805ACV Voltage Regulator (5 Volts)
The L7800A series of three terminal positive regulators is available in
TO-220, TO-220FP, and D2PAK packages and several fixed output volt-
ages, making it useful in a wide range of applications. These regulators

PDA Robotics

18

Figure 2.5

The PIC16F876.

PDA 02 5/27/03 8:20 AM Page 18

can provide local on-card regulation, eliminating the distribution
problem associated with single point regulation. Each type employs
internal current limiting, thermal shutdown, and safe area protection,
making it essentially indestructible. If adequate heat sinking is pro-
vided, they can deliver over 1A output current. Although designed
primarily as fixed voltage regulators, these devices can be used with
external components to obtain adjustable voltage and currents. Note:
PDABot draws very little current, so heat sinking is not necessary.
Figure 2.6 shows the available packages.

L298 Dual Full-Bridge Driver
The L298 is used in PDA Robot to drive the two DC motors. It is an
integrated monolithic circuit in 15-lead Multiwatt and Power SO20
packages. It is a high-voltage, high-current dual full-bridge driver
designed to accept standard TTL logic levels and drive inductive loads
such as relays, solenoids, DC, and stepping motors. Two enable inputs
are provided to enable or disable the device independently of the
input signals. The emitters of the lower transistors of each bridge are
connected together, and the corresponding external terminal can be
used for the connection of an external sensing resistor. Additional
supply input is provided so that the logic works at a lower voltage.
Figure 2.7 illustrates the physical layout of the L298.

Chapter 2 / Robotic System Overview

19

Figure 2.6

The L7800A
chipset.

PDA 02 5/27/03 8:20 AM Page 19

Sharp GP2D12 Infrared Range Finder
The GP2D12 is a compact, self-contained IR ranging system incorpo-
rating an IR transmitter, receiver, optics, filter, detection, and amplifi-
cation circuitry (see Figure 2.8). Along with the wireless video cam-
era, it gives PDA Robot a sense of sight, allowing it to navigate
autonomously around objects. The unit is highly resistant to ambient
light and nearly impervious to variations in the surface reflectivity of
the detected object. Unlike many IR systems, this has a fairly narrow
field of view, making it easier to get the range of a specific target. The
field of view changes with the distance to an object, but is no wider
than 5 cm (2.5 cm either side of center) when measuring at the maxi-
mum range.

PDA Robotics

20

Figure 2.7

The L298 h-bridge
chipset.

Figure 2.8

The GP2D12.

PDA 02 5/27/03 8:20 AM Page 20

DYN2009635 20 MH and RXDMP49 11.0952 MHz “AT”
Cut Quartz Crystal Oscillator
The PIC16F876 RISC microcontroller uses a 20 MHz crystal, and the
MCP2150 uses an 11 MHz crystal. While the PIC16F876 has an 8 MHz
internal oscillator, a higher clock rate is desired for the communica-
tion link, analog input turnaround, and motor control reaction time
via the digital outputs. Figure 2.9 shows the physical dimensions of
the crystals.

Chapter 2 / Robotic System Overview

21

Figure 2.9

Physical dimensions
of the RXDMP49
and DYN2009635
crystal oscillators.
Side and bottom
views.

PDA 02 5/27/03 8:20 AM Page 21

This page intentionally left blank.

23

To complete the PDA Robot project, some tools like the soldering iron
are essential; some simply make the job easier. The following lists the
essentials and then the “nice to have equipment” you can buy when
your skill in electronics and software earns you a great living, with a
lot of excitement along the way!

Essential Tools and Equipment
Essentials, shown in Figure 3.1, include a screwdriver (A), a pair of
side cutting pliers (B), a utility knife (C), a simple multimeter (D), a
soldering iron (E), a ruler (F), a hack saw (G), a porcelain cooking tray,
and about 45 minutes time on a drill press (www.thinkbotics.com).
Buy a drill press if you plan on making a lot of circuits (see Figure 3.2).

Another very useful tool is a chip puller. Quite often they come with
low-cost computer tool kits. When you reprogram the microchip
(PIC16F876) in this project, it needs to be pulled from the board, pro-
grammed, and reinserted. You can use your hands to pull the chips,
but you risk bending or squashing the pins, as well as frying chips
with a jolt of static electricity. I almost put the chip puller in the essen-
tial list until the couch swallowed mine, and I was simply (carefully)
pulling the chips from the board with my hand. A pair of wire cutters
for clipping the leads off the electronics components is helpful, in

Tools and
Equipment

3

PDA 03 5/27/03 8:23 AM Page 23

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

PDA Robotics

24

Figure 3.1

The essential tools.

Figure 3.2

Drill press.

PDA 03 5/27/03 8:23 AM Page 24

addition to a file to smooth any metal edges. Figure 3.3 shows a chip
puller (A), wire cutters (B), and a file (C).

To make the job of soldering safe, get the tools shown in Figure 3.4,
including a good soldering iron holder (A). When hot, it is a fire haz-
ard. The soldering iron tip cleaner (B) makes soldering a lot faster and
ensures a high-quality weld. The solder sucker (C) helps to easily
remove a component or fix a bad spot.

Chapter 3 / Tools and Equipment

25

Figure 3.3

Tools.

Figure 3.4

Soldering tools.

PDA 03 5/27/03 8:23 AM Page 25

You will need four drill bits, shown in Figure 3.5, to complete the cir-
cuit board and body of PDA Robot. Use the 7/64 (A) to drill the holes
in the aluminum plates to mount the circuits, supports, and motors.
Use the 1/16 (B), 1/32 (C), and the 3/64 (D) to drill holes in the circuit
for the various components.

Safety First
Please do yourself a favor and buy eye protection. You need safety
glasses when drilling and etching the circuit board. Always use com-
mon sense around any equipment. Remember to unplug your solder-
ing iron before going out, especially if you have pets or small children.

PDA Robotics

26

Figure 3.5

Drill bits.

PDA 03 5/27/03 8:23 AM Page 26

Where to Get Equipment
Go to garage sales and flea markets to find some very good deals. A lot
of equipment is in great shape even after collecting dust for years in
people’s basements. Asking for tools for birthdays and Christmas is a
great way to acquire them over time if you are on a limited budget.

Chapter 3 / Tools and Equipment

27

Figure 3.6

Drilling the holes on
the circuit board.

PDA 03 5/27/03 8:23 AM Page 27

This page intentionally left blank.

29

Infrared (IR) radiation lies between the visible and microwave por-
tions of the electromagnetic spectrum, and is the medium that the per-
sonal digital assistant (PDA) uses to talk to the robot control circuitry
(see Figure 4.1).

IR light is broken into the following three categories.

• Near-infrared (near-IR)—Closest to visible light, near-IR has
wavelengths that range from 0.7 to 1.3 microns, or 700 billionths
to 1300 billionths of a meter.

• Mid-infrared (mid-IR)—Mid-IR has wavelengths ranging from 1.3
to 3 microns. Both near-IR and mid-IR are used by a variety of
electronic devices, including remote controls. It is in this mid
range that the PDA will communicate with the robotic body using
the Infrared Data Association (IrDA) communication protocol.

• Thermal-infrared (thermal-IR)—Occupying the largest part of the
IR spectrum, thermal-IR has wavelengths ranging from 3 microns
to over 30 microns.

The infrared emitters (IREDs) used for PDA devices fall into the near-
IR category.

PDABot will use an IrDA protocol called IrCOMM (9-wire “cooked”
service class) and the IrLMP. To simplify the task of using the IrDA

Infrared
Communications
Overview

4

PDA 04 5/27/03 8:27 AM Page 29

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

protocol, PDABot uses a Microchip MCP2150, (see Figure 4.2) an IrDA
standard protocol stack controller, and a Vishay Telefunken TFDS4500
serial infrared transceiver (SIR 115.2 kb/s).

A widely used protocol that most devices using IR adhere to is IrDA.
Both Palm OS and Windows have incarnations of IrDA, which will be
explained in detail in Chapter 8: PDA Robot PalmOS Software Using
Code Warrior 8 and Chapter 9: PDA Robot Software for Pocket PC 2002
(Windows CE).

IrDA is an international organization that creates and promotes inter-
operable, low-cost IR data interconnection standards that support a
walk-up, point-to-point user model. The Infrared Data Association

PDA Robotics

30

Figure 4.1

PDA Robot’s IR
transceiver next to
an iPAQ 3850.

Figure 4.2

MCP2150 block
diagram.

PDA 04 5/27/03 8:27 AM Page 30

standards support a broad range of appliances, computing, and com-
munications devices. Figure 4.3 illustrates Windows IrDA architec-
ture, as defined today.

Technical Summary of IrDA Data
and IrDA Control

IrDA’s New Full Range of Digital Information
Exchange via Cordless IR Connections
Regarding present publications on IrDA features for PC99, IrDA Data
is recommended for high-speed, short-range, line-of-sight, point-to-
point cordless data transfer—suitable for handheld personal comput-
ers (HPCs), PDAs, digital cameras, handheld data collection devices,
etc. If IrDA is supported, it must be targeted at the 4 Mb/s components.
IrDA Control is recommended for in-room cordless peripherals to
hostPC. PC99 is for lower speed, full cross range, point-to-point or
point-to-multipoint cordless controller—suitable for keyboards (one-
way), joysticks (two-way and low latency), etc. IrDA Data and IrDA
Control require designer attention to ensure spatial or time-sharing
techniques, so as to avoid interference.

Since 1994, IrDA Data has defined a standard for an interoperable,
universal, two-way, cordless IR light transmission data port. IrDA
technology is already in over 300 million electronic devices including
desktops, notebooks, palm PCs, printers, digital cameras, public
phones/kiosks, cellular phones, pagers, PDAs, electronic books, elec-
tronic wallets, toys, watches, and other mobile devices.

Chapter 4 / Infrared Communications Overview

31

Figure 4.3

IrDA architecture.

PDA 04 5/27/03 8:27 AM Page 31

IrDA Data protocols consist of a mandatory set of protocols and a set
of optional protocols. The mandatory protocols include the following:

• Physical Signaling Layer (PHY)

• Link Access Protocol (IrLAP)

• Link Management Protocol/Information Access Service (IrLMP/
IAS)

Characteristics of Physical IrDA Data Signaling:

• Range: Continuous operation from contact to at least one (typical-
ly two can be reached). A low-power version relaxes the range
objective for operation from contact through at least 20 cm
between low-power devices, and 30 cm between low-power and
standard-power devices. This implementation affords 10 times
less power consumption. These parameters are termed the
required maximum ranges by certain classes of IrDA featured
devices, and set the end-user expectation for discovery, recogni-
tion, and performance.

• Bidirectional communication is the basis of all specifications.

• Data transmission from 9600 b/s with primary speed/cost steps
of 115 kb/s and maximum speed up to 4 Mb/s.

• Data packets are protected using a cyclic redundancy check (CRC)
(CRC-16 for speeds up to 1.152 Mb/s and CRC-32 at 4 Mb/s).

Characteristics of IrDA Link Access Protocol (IrLAP):

• Provides a device-to-device connection for the reliable, ordered
transfer of data.

• Device discovery procedures.

• Handles hidden nodes.

Characteristics of IrDA Link Management Protocol (IrLMP):

• Provides multiplexing of the IrLAP layer.

• Provides multiple channels above an IrLAP connection.

• Provides protocol and service discovery via the Information
Access Service (IAS).

PDA Robotics

32

PDA 04 5/27/03 8:27 AM Page 32

Optional IrDA Data Protocols
The optional IrDA data protocols include the following:

• Tiny TP provides flow control on IrLMP connections with an
optional segmentation and reassembly service.

• IrCOMM provides COM (serial and parallel) port emulation for
legacy COM applications, printing, and modem devices.

• OBEX™ provides object exchange services similar to hypertext
transfer protocol (HTTP).

• IrDA Lite provides methods of reducing the size of IrDA code,
while maintaining compatibility with full implementations.

• IrTran-P provides image exchange protocol used in digital image
capture devices/cameras.

• IrMC provides specifications on how mobile telephony and com-
munication devices can exchange information. This includes
phone book, calendar, and message data, as well as how call con-
trol and real-time voice are handled (RTCON) via calendar.

• IrLAN describes a protocol used to support IR wireless access to
local area networks.

IrDA Control
IrDA Control is an IR communication standard that allows cordless
peripherals such as keyboards, mice, game pads, joysticks, and point-
ing devices to interact with many types of intelligent host devices.
Host devices include PCs, home appliances, game machines, and tel-
evision/Web set-top boxes. IrDA Control is well suited to deal with
devices that leverage the USB HID class of device controls and home
appliances.

IrDA Control protocols consist of a mandatory set of protocols, including:

• PHY (Physical Layer)

• MAC (Media Access Control)

• LLC (Logical Link Control)

Chapter 4 / Infrared Communications Overview

33

PDA 04 5/27/03 8:27 AM Page 33

Characteristics of IrDA Control Physical Signaling:

• Distance and range equivalent current unidirectional IR remote
control units (minimum 5 m range).

• Bidirectional communication is the basis of all specs.

• Data transmission at 75 kb/s at the top end.

• The data are coded using a 16-pulse sequence multiplied by a
1.5-MHz subcarrier, which is allocated for high-speed remote
control in IEC 1603-1, although this base band scheme has har-
monics that can intrude upon other IEC bands.

• Data packets are protected with a CRC (CRC-8 for short packets
and CRC-16 for long packets). The physical layer is optimized
for low-power usage and can be implemented with low-cost
hardware.

Characteristics of IrDA Control MAC:

• Enables a host device to communicate with multiple peripheral
devices (1:n) and up to eight peripherals simultaneously.

• Ensures fast response time (13.8 ms basic polling rate) and low
latency.

Asymmetric MAC provides for dynamic assignment and reuse of
peripheral addresses. Scheduling of media access is actually buried in
the HID LLC.

Characteristics of the IrDA Control LLC:

• Provides reliability features that provide data sequencing and
retransmission when errors are detected.

• Works with an HID-IrDA control bridge to enable the link control
functions of USB-HID.

• All required and optional layers of the IrDA Data and IrDA
Control specifications are described in specifications that can be
downloaded at no charge from the IrDA Web site: www.irda.org.
Interop product registration is strongly advised on this site.

PDA Robotics

34

PDA 04 5/27/03 8:27 AM Page 34

IrDA specifications are now supported by all divisions of Microsoft
(IDG, WinCE, Win98, Win2000, and Windows XP), and this universal
data port is recommended on PC99 products (mandated on certain
WinCE products—PalmPC, etc.)

PDA Robot will use the IrDA Data protocol, not the IrDA Control pro-
tocol, to ensure a reliable high-speed bidirectional flow of data
between the body and the brain (PDA). All decisions will be made on-
board the PDA, using the software outlined in this book.

Windows CE (Pocket PC) and IrDA
One of the key features of Windows CE-based devices is the ability to
communicate with other devices. Windows CE supports two basic
types of communication: serial communication and communication
over a network. Most devices feature built-in communications hard-
ware, such as a serial port or an IR transceiver. The network driver
interface specification (NDIS) implementation on Windows CE sup-
ports the following communications media: Ethernet (802.3), Token
Ring (802.5), IrDA, and wide area network (WAN). The diagram shown
in Figure 4.4 outlines the communications architecture of the
Windows CE operating system, specifically the components of the
IrDA protocol layer and how IrDA miniport drivers communicate
through the NDIS library, with their network interface cards (NICs)
and applications.

In the Windows CE communications architecture, the NDIS interface
is located below the IrDA, transmission control protocol/Internet pro-
tocol (TCP/IP), and point-to-point protocol (PPP) drivers. The NDIS
wrapper presents an interface to the upper and lower edges of a mini-
port driver. To an upper-level driver, such as the TCP/IP protocol driv-
er, the NDIS interface looks like a miniport driver. To the miniport, the
NDIS interface looks like an upper-level protocol driver. On the bot-
tom of the communications architecture, the NDIS interface functions
as a network adapter driver that interfaces directly with the network
adapter at the lower edge. At the upper edge, the network adapter
driver presents an interface to allow upper layers to send packets on
the network, handle interrupts, reset or halt the network adapter, and
query or set the operational characteristics of the driver.

Chapter 4 / Infrared Communications Overview

35

PDA 04 5/27/03 8:27 AM Page 35

Communication Link Speeds
Unlike typical NDIS media, the IR medium supports a large number of
different speeds for transmitting and receiving bits. Current defini-
tions for operating speed vary from 2400 bits per second (b/s) to 16
megabits per second (Mb/s). In the future, more speeds may be defined
by IrDA. Varying design goals at different speeds have led to different
coding methods for frames: SIR, MIR, FIR, and VFIR. The differences
in frame coding methods must be handled by the IrDA miniport driv-
er and be transparent to the protocol.

The currently defined IrDA speeds and their corresponding frame cod-
ing methods (Serial IrDA [SIR] link speeds, Medium IrDA [MIR] link
speeds, Fast IrDA [FIR] link speeds, and Very Fast IrDA [VFIR] link
speeds) are listed in Table 4.1.

PDA Robotics

36

Figure 4.4

Windows
communication
architecture.

PDA 04 5/27/03 8:27 AM Page 36

Speed (in bps) Frame Coding Method

2400 SIR

9600 SIR

19,200 SIR

38,400 SIR

57,600 SIR

115,200 SIR

576,000 MIR

1.152 Mb/s MIR

4 Mb/s FIR

16 Mb/s VFIR

Communication Link Turnaround Times
An IR adapter consists of an IR transceiver, along with supporting
hardware for encoding and decoding frames. This IR transceiver con-
tains a transmitter light-emitting diode (LED) and a receiver diode that
are typically located quite close together. The receiver diode is sensi-
tive to IR light because it must receive transmissions from a remote IR
LED over distances up to at least 1 m. The transmitter LED is quite
powerful because it must transmit to a remote receiver diode over the
same distances.

During transmission, a local LED typically emits enough light to satu-
rate the local receiver diode. In much the same way that it is difficult
for people to see well after staring at the sun, it is difficult for the local
receiver diode to correctly receive incoming frames immediately after
the local LED transmits outgoing frames.

To allow time for the local receiver diode to recover from the satura-
tion state and become capable of again receiving incoming frames, the
IrDA protocol defines a parameter known as turnaround time.
Turnaround time specifies the amount of time, in milliseconds, that it
takes the receiver diode to recover from saturation. In some IrDA
devices, the turnaround time may be negligible; in other IrDA devices,
it can be a relatively long period of time.

The turnaround time of the local receiver diode does not affect the
behavior of the local transceiver. However, the turnaround time of the
local receiver diode affects the anticipated behavior of the remote
transceiver. For example, if a local transceiver requires a 1-ms delay

Chapter 4 / Infrared Communications Overview

37

Table 4.1

IrDA Speeds and
Corresponding
Frame Coding
Methods

PDA 04 5/27/03 8:27 AM Page 37

from the time its LED finishes transmitting to the time its receiver
diode is capable of receiving, the remote station must wait 1 ms from
receiving the last bit of a frame before beginning to transmit a new
frame. The remote station performs this wait to honor the local trans-
ceiver’s turnaround time.

To honor the turnaround time of the remote transceiver, the IrLAP pro-
tocol might sometimes specify to delay transmission of a packet. To do
so, the IrLAP protocol specifies the amount of time before a packet
should be transmitted. The IrDA miniport driver must not transmit the
packet before waiting the requested amount of time, although the driv-
er can wait longer if necessary. The IrLAP protocol specifies transmis-
sion delay time of a packet in the media-specific member of the pack-
et’s associated out-of-band (OOB) data block.

IrLAP defines the format of the frames sent and received on the IR
media. Each IrLAP frame consists of the following elements:

• One or more beginning of frame (BOF) flags that mark the begin-
ning of the frame. The size of the BOF member varies in length,
depending on the speed.

• An address (A) member that identifies the secondary connection
address. The address member is 8 b. The address member speci-
fies the address of a device that belongs to a particular IrDA mini-
port driver. This IrDA miniport driver transmits or receives the
frame that contains this address through this device.

• A control (C) member that specifies the function of the particular
frame. The control member is 8 b.

• An optional information (I) member that contains the informa-
tion data. The information member is an integral number of
octets.

• A frame check sequence (FCS) member that allows the receiving
station to check the transmission accuracy of the frame. The FCS
member is either 16 or 32 b, depending on the speed.

• An end of frame (EOF) flag that signals the end of the frame. The
size of the EOF member varies, depending on the speed.

The following example of an IrLAP frame shows the order of the ele-
ments that were described in the preceding section.

PDA Robotics

38

PDA 04 5/27/03 8:27 AM Page 38

SIR Coding
This topic describes how IrDA miniport drivers or their IR NICs code
frames for transmission at Serial IrDA (SIR) link speeds. The SIR spec-
ification defines a short-range IR asynchronous serial transmission
mode with one start bit, eight data bits, and one stop bit. The maxi-
mum data rate is 115.2 Kb/s (half duplex). This SIR coding scheme is
called return to zero, inverted (RZI). The primary benefit of coding
frames for SIR speeds is that existing serial hardware can be used very
cheaply. The low cost of using serial hardware is one of the reasons for
the widespread availability of IR SIR devices.

The BOF flag for SIR speeds is defined as 0xC0. The EOF value is
defined as 0xC1. To avoid ambiguity in a frame that contains BOF and
EOF, an escape sequence is defined for values of 0xC0 and 0xC1 that
occur in other parts of the frame. The escape character is defined as
0x7D.

For each byte that the transmitter encounters that is the same as a BOF,
EOF, or the escape character, the transmitter performs the following
steps:

1. Inserts a control-escape byte (0x7D) preceding such a byte.

2. Complements bit five of each byte that is the same as the BOF,
EOF, or escape character (i.e., performs an exclusive OR opera-
tion on such a byte with 0x20).

MIR Coding
This topic describes how IrDA miniport drivers and their IR NICs code
frames for transmission at Medium IrDA (MIR) link speeds. The MIR
data rates are 0.576 Mb/s and 1.152 Mb/s (half duplex).

For MIR link speeds, definitions for BOF and EOF values are the same;
both BOF and EOF are defined as 0x7E. To avoid ambiguity in the
frame with BOF and EOF, rather than using an escape sequence as is
done at SIR rates, a zero is inserted at MIR rates after any five consec-
utive one bits in all members, except BOF and EOF. Because the
process of inserting and stripping zeros at the bit level is highly

Chapter 4 / Infrared Communications Overview

39

BOF A C I FCS EOF

PDA 04 5/27/03 8:27 AM Page 39

processor-intensive, it is strongly recommended that this logic be
implemented in hardware. At MIR link speeds, two BOF flags are
required on every frame.

For MIR link speeds, the CRC used is the same as for SIR speeds. That
is, for MIR link speeds, the IrDA miniport driver also typically calcu-
lates the CRC value, rather than the driver’s hardware.

FIR Coding
This topic describes how IrDA miniport drivers and their IR NICs code
frames for transmission at Fast IrDA (FIR) link speeds. The FIR speci-
fication defines short-range, low-power operation at 4 Mb/s (half
duplex). All FIR devices are also required to support SIR operation.

For FIR link speeds, an entirely different coding scheme, called four
pulse position modulation (4PPM), is used. The 4PPM coding scheme
defines special flags for BOF and EOF. Always implement the 4PPM
coding scheme in hardware.

The IrDA miniport driver may still be required to calculate the CRC to
validate the frame. For FIR link speeds, a 32-bit CRC is used. An algo-
rithm for calculating the 32-bit CRC is available in the publication
Infrared Data Association Serial Infrared Physical Layer Link
Specification, available from IrDA.

VFIR Coding
This topic describes how IrDA miniport drivers and their IR NICs code
frames for transmission at Very Fast IrDA (VFIR) link speeds. The
VFIR specification defines short-range, low-power operation at 16
Mb/s (half duplex). All VFIR devices are also required to support FIR
and SIR operation.

For VFIR link speeds, an entirely different coding scheme, called
HHH(1,13), is used. The letters HHH that represent this coding scheme
are the initials of the three researchers who invented it. Always imple-
ment the HHH(1,13) coding scheme in hardware. For more informa-
tion on HHH(1,13), see the publication Infrared Data Association
Serial Infrared Physical Layer Link Specification, available from IrDA.

The IrDA miniport driver’s hardware can calculate the CRC to validate
the frame. However, if hardware does not calculate CRC, the IrDA

PDA Robotics

40

PDA 04 5/27/03 8:27 AM Page 40

miniport driver must calculate CRC. For VFIR link speeds, a 32-bit
CRC is used, which is the same as that used for FIR link speeds. An
algorithm for calculating the 32-bit CRC is available in the publication
Infrared Data Association Serial Infrared Physical Layer Link
Specification.

The IrDA specification will give you an idea of the technical details
involved in the protocol. When we write to the software, you will find
it is not as complicated as it seems. The creators of the Windows and
Palm operating systems gave an application programming interface
(API) that makes creating an association, sending, and receiving data
a fairly straightforward task.

Chapter 4 / Infrared Communications Overview

41

PDA 04 5/27/03 8:27 AM Page 41

This page intentionally left blank.

43

This chapter consists of two parts. First is an overview of the electron-
ic design, focusing on various portions of the schematic diagram.
Second is a description of each component, including its function and
how it interacts with the others. The next chapter will explain step-by-
step how to create the circuit, from “burring the board” to soldering
each component.

System Overview
The circuit consists of three parts that can be separated, as I have with
this project, or kept together. The main board is connected to the
infrared (IR) transceiver and the motor controller circuit via 6-wire rib-
bon connectors. I chose to do this so that the motor circuit and the
transponder could be placed anywhere, allowing for flexibility of
design. The artwork for the circuit in Figure 5.1 shows the three com-
ponents of the circuit.

Figure 5.2 shows the topside of the boards (with the top personal dig-
ital assistant (PDA) support plate removed) and how they have been
positioned on PDA Robot.

Not all PDAs have the IR port in the same position, so the ribbon con-
nector lets you position the PDA in any direction. You can easily cut

The
Electronics

5

PDA 05 5/30/03 11:35 AM Page 43

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

PDA Robotics

44

Figure 5.1

The circuit layout: Main board, motor controller, and the infrared transceiver (only one is
needed).

Figure 5.2

The main board (A),
infrared transceiver
(B), and the motor
controller (C)
mounted to the
bottom plate.

PDA 05 5/30/03 11:35 AM Page 44

a slot on the top plate and stand the PDA vertically. Figure 5.3 shows
an iPAQ and a Visor positioned next to the transceiver.

For this project, I used the MG Chemical process to create the circuit
board. Protel 98 SE was used to create the schematic diagrams and
printed circuit board (PCB) artwork used in the MG chemical process.
Figure 5.4 shows the main portion of the circuit board after it was

Chapter 5 / The Electronics

45

Figure 5.3

IPAQ and Visor
PDAs.

Figure 5.4

The main circuit
after exposure and
etching.

PDA 05 5/30/03 11:35 AM Page 45

exposed and etched. It is being drilled in preparation for placement of
the components. Figure 5.5 shows the schematic diagram of the main
circuit board.

Setting the Baud Rate
The MCP2150 baud rate lines, pins 1 and 18, are connected to the 8-
pin duel in-line packet (DIP) switch. Pins 5 and 7 are connected to
ground (low), and pins 6 and 8 are high (�5 V). This allows us to set
the baud rate that the MCP2150 communicates with PIC169876. It is
interesting to note that the baud rate at which the MCP2150 commu-
nicates with the PDA through the IR transceiver is independent of this
setting (see Figure 5.6). The actual IR baud rate is determined during
the handshake phase of the Infrared Data Association (IrDA) negotia-
tion and is transparent to users. The only parameter users can set is
the maximum baud rate that can be negotiated (this is explained in the
software chapters for the Palm OS and Windows handhelds).

Table 5.1 shows the DIP switch settings and the associated baud rates.

PDA Robotics

46

Figure 5.5

Schematic diagram of the main circuit board.

PDA 05 5/30/03 11:35 AM Page 46

Table 5.1

DIP Switch Settings and Associated Baud Rates

DIP Switch 1 DIP Switch 2 DIP Switch 3 DIP Switch 4 Baud Rate at
(Baud 0) (Baud 0) (Baud 1) (Baud 1) 11.0592 MHz

Off On Off On 9600

On Off Off On 19200

Off On On Off 57600

On Off On Off 115200

Figure 5.7 shows a close-up of the DIP switches with the baud of the
MCP2150 set to 115200.

The MCP2150 Connection to the IR Transceiver
The IR transponder used by PDA Robot consists of a Microchip
MCP2150 IrDA standard protocol stack controller and a Vishay
TFDS4500 serial IR transceiver (a TFDU6102 fast IR transceiver can be
used as well). The transceiver contains the IR emitter and receiver and
the MCP2150 handles the IrDA handshaking and data exchange
between the Robot and the PDA.

Chapter 5 / The Electronics

47

Figure 5.6

Portion of
MCP2150 showing
baud rate lines
connected to DIP
switch.

PDA 05 5/30/03 11:35 AM Page 47

The components required for the Vishay TFDS4500 transceiver are
located on the main board circuit, and the actual transceiver itself is
connected via the ribbon cable. Figure 5.8 shows the schematic dia-
gram connection of the MCP2150’s IR output (pin 2: TXIR) and input
pins (pin 3: RXIR) connected to the ribbon cable connector.

The IR transceiver schematic shows the pins of the transceiver tied to
the appropriate connector pins that line up with those on the main
board. Figures 5.9 and 5.10 illustrate this.

PDA Robotics

48

Figure 5.7

PDA Robot with the
baud rate set to
115200.

Figure 5.8

Schematic diagram showing MCP2150 connections to the IR transceiver.

PDA 05 5/30/03 11:35 AM Page 48

The MCP2150 Connection to the PIC16F876
Microcontroller
The microcontroller is connected to the MCP2150 IrDA protocol stack
decoder via the microcontroller’s configurable B port. The block dia-
gram in Figure 5.11 shows the relationship between the transceiver,
the controller, and the MCP2150.

The schematic diagram in Figure 5.12 shows the actual pin connec-
tions between the PIC16F876 and the MCP2150. RBO is configured as

Chapter 5 / The Electronics

49

Figure 5.9

IR transceiver schematic.

Figure 5.10

MCP2150 (A), the
ribbon connection
(B), and the
transceiver (C).

PDA 05 5/30/03 11:35 AM Page 49

the RS232 transmit pin and RB1 as the receive pin. Pins RB6 and RB7
are configured as inputs, used to monitor the MCP2150’s Request to
send (RTS: pin 13) and Clear to send (CTS: pin 12) pins. RB2, RB3,
RB4, and RB5 are configured as digital outputs used to switch the
L298 motor controller.

PDA Robotics

50

Figure 5.11

The PIC16F876, MCP2150, and TFDS4500 block diagram.

Figure 5.12

Schematic of PIC16F876 connection to MCP2150.

PDA 05 5/30/03 11:35 AM Page 50

The Motor Controller Circuit
The motor controller circuit is connected to the main board through a
six-wire ribbon connector, and has an independent load (separate from
the logic) used to power the motors and the IR range finder. The power
and ground for the L298’s logic is carried from the main board through
the ribbon cable, along with the data lines. The L298 requires that the
grounds for the logic and the load must be common, so powering the
logic from the regulated supply of the main board works out well.
Figure 5.13 shows the schematic diagram of the motor controller por-
tion of the circuit. Figure 5.14 shows the physical layout of the motor
controller and the ribbon cable that connects it to the main board.

Chapter 5 / The Electronics

51

Figure 5.13

Motor controller schematic diagram.

PDA 05 5/30/03 11:35 AM Page 51

The Sharp GPD12 IR Range Finder
The Sharp GPD12 IR range finder is connected to the first configurable
analog pin on the PIC16F876. Figure 5.15 shows the pin (C), which is
connected to the analog output of the range finder and the analog
input of the microchip.

PDA Robotics

52

Figure 5.14

Motor controller
PCB motor 1
connector (A),
ribbon connector
(B), motor 2
connector (C),
motor power supply
connector (D), range
finder power
connection (E),
L298 motor
controller chip (F),
and diode (G).

Figure 5.15

Left side of main
circuit, (A) 9 V
power connector,
(B) resistor, (C)
range finder input
pin, (D) capacitor,
(E) 20.0000 MHz
crystal oscillator, (F)
+5 voltage
regulator, (G)
16F876 micro-
controller, (H) and
motor controller
ribbon connector.

PDA 05 5/30/03 11:35 AM Page 52

Component Descriptions
The Vishay TFDS4500
The TFDU4100, TFDS4500, and TFDT4500 are a family of low-power
IR transceiver modules compliant to the IrDA standard for serial
infrared (SIR) data communication, supporting IrDA speeds up to
115.2 kb/s. Integrated within the transceiver modules is a photo PIN
diode, infrared emitter (IRED), and a low-power analog control inte-
grated circuit (IC) to provide a total front-end solution in a single pack-
age. Telefunken’s SIR transceivers are available in three package
options, including our Baby Face package (TFDU4100), once the
smallest SIR transceiver available on the market. This wide selection
provides flexibility for a variety of applications and space constraints.
The transceivers are capable of directly interfacing with a wide vari-
ety of I/O chips, which perform the pulse-width modulation/demodu-
lation function, including Telefunken’s TOIM4232 and TOIM3232. At
a minimum, a current-limiting resistor in series with the IR and a VCC
bypass capacitor are the only external components required to imple-
ment a complete solution, as is the case with PDA Robot.

TFDS4500 Features:

• Compliant to the latest IrDA physical layer standard (up to 115.2
kb/s).

• 2.7 to 5.5 V wide operating voltage range.

• Low power consumption (1.3 mA supply current).

• Power sleep mode through VCC1/SD pin (5 nA sleep current).

• Long range (up to 3.0 m at 115.2 kb/s).

• Three surface-mount package options—universal (9.7 � 4.7 �
4.0 mm), side view (13.0 � 5.95 � 5.3 mm), top view (13.0 � 7.6
� 5.95 mm).

• Directly interfaces with various super I/O and controller devices.

• Built-in electromagnetic interference (EMI) protection—no exter-
nal shielding necessary.

• Few external components required.

• Backward compatible to all Telefunken SIR IR transceivers.

Chapter 5 / The Electronics

53

PDA 05 5/30/03 11:35 AM Page 53

Figure 5.16 shows the three packages available. PDA Robot is using
the side mount package (TFDS).

The transceiver conveniently contains an amplifier, comparator, drivers,
ACG logic, the IRED, and receiver, as seen Figure 7.17.

Figure 5.18 shows the recommended circuit to use with the transceiv-
er. The outlined components described as optional have been includ-
ed in the design of PDA Robot. The capacitor is used to clean up any
noise normally caused by the power supply. The noise being sup-
pressed comes mostly from the two DC motors used in this project.
The capacitors on the motor control circuit and those tied to the
MCP2150 and TFDS4500 are used for logic circuit noise suppression.

The only required components for designing an IrDA 1.2 compatible
design using Telefunken SIR transceivers are a current limiting resis-

PDA Robotics

54

Figure 5.16

Transceiver package options.

Figure 5.17

Transceiver block diagram.

PDA 05 5/30/03 11:35 AM Page 54

tor to the IRED. However, depending on the entire system design and
board layout, additional components may be required. It is recom-
mended that the capacitors C1 and C2 be positioned as near as possi-
ble to the transceiver power supply pins. A tantalum capacitor should
be used for C1, while a ceramic capacitor should be used for C2 to sup-
press radio frequency (RF) noise. Also, when connecting the described
circuit to the power supply, use low impedance wiring.

R1 is used for controlling the current through the IRED. To increase
the output power of the IRED, reduce the value of the resistor.
Similarly, to reduce the output power of the IRED, increase the value
of the resistor. For typical values of R1, see Figure 5.19. For example,
for IrDA-compliant operation (VCC2 � 5 V � 5%), a current control
resistor of 14 ohms is recommended. The upper drive current limita-
tion is dependent on the duty cycle, and is given by the absolute max-
imum ratings on the data sheet and the eye safety limitations given by
IEC825–1. R2, C1 and C2 are optional and dependent on the quality of
the supply voltage VCC1 and injected noise. An unstable power sup-
ply with dropping voltage during transmission may reduce sensitivity
(and transmission range) of the transceiver.

Chapter 5 / The Electronics

55

Figure 5.18

Recommended circuit diagram.

PDA 05 5/30/03 11:35 AM Page 55

The sensitivity control (SC) pin allows the minimum detection irradiance
threshold of the transceiver to be lowered when set to a logic HIGH.
Lowering the irradiance threshold increases the sensitivity to IR signals
and increases transmission range up to 3 m. However, setting the Pin SC
to logic HIGH also makes the transceiver more susceptible to transmission
errors, due to an increased sensitivity to fluorescent light disturbances.

It is recommended that the pin SC be set to logic LOW or left open, if
the increased range is not required or if the system will be operating
in bright ambient light.

PDA Robotics

56

Figure 5.19

Physical dimensions of the side view package used in PDA Robot.

PDA 05 5/30/03 11:35 AM Page 56

This SC pin has been driven LOW in the PDA Robot circuit. However,
if you decide to modify the circuit, I recommend putting a switch on the
board or tying this line to a pin on the microcontroller. This would
allow you to set SC high or low physically through the switch or pro-
grammatically through the microcontroller. This would enable you to
hold the PDA at a much further distance from the craft when testing and
calibrating the system. You could also use the PDA as a remote control.

The guide pins on the side-view and top-view packages are internally
connected to ground, but should not be connected to the system
ground, to avoid ground loops. They should be used for mechanical
purposes only and should be left floating.

PDA Robot does not ground the guide pins. They are used only to help
secure the unit to the PCB.

Shutdown. The internal switch for the IRED in Telefunken SIR trans-
ceivers is designed to be operated like an open collector driver. Thus,
the VCC2 source can be an unregulated power supply, while only a
well-regulated power source with a supply current of 1.3 mA con-
nected to VCC1/SD is needed to provide power to the remainder of the
transceiver circuitry in receive mode. In transmit mode, this current is
slightly higher (approximately 4 mA average at 3 V supply current),
and the voltage is not required to be kept as stable as in receive mode.
A voltage drop of VCC1 is acceptable down to about 2.0 V when
buffering the voltage directly from the pin VCC1 to GND; see Figure
5.20a. This configuration minimizes the influence of high-current
surges from the IRED on the internal analog control circuitry of the
transceiver and the application circuit. Also, board space and cost sav-
ings can be achieved by eliminating the additional linear regulator
normally needed for the IRED’s high current requirements.

The transceiver can be very efficiently shut down by keeping the IRED
connected to the power supply VCC2, but switching off VCC1/SD. The
power source to VCC1/SD can be provided directly from a microcon-
troller. In shutdown, current loss is realized only as leakage current
through the current-limiting resistor to the IRED (typically 5 nA). The
settling time after switching VCC1/SD on again is approximately 50
µs. Telefunken’s TOIM3232 interface circuit is designed for this shut-
down feature. The VCC_SD, S0, or S1 outputs on the TOIM3232 can
be used to power the transceiver with the necessary supply current. If

Chapter 5 / The Electronics

57

PDA 05 5/30/03 11:35 AM Page 57

the microcontroller or the microprocessor is unable to drive the sup-
ply current required by the transceiver, a low-cost SOT23 pnp transis-
tor can be used to switch voltage on and off from the regulated power
supply. The additional component cost is minimal, and saves the sys-
tem designer additional power supply costs.

The 5-V regulator on the main board powers the transceiver in PDA
Robot.

The Microchip MCP2150 Plug and Play IrDA
The MCP2150 is a cost-effective, low pin-count (18-pin), easy to use
device for implementing IrDA standard wireless connectivity. The
MCP2150 provides support for the IrDA standard protocol “stack,”
plus bit encoding/decoding.

The serial interface baud rates are user selectable to one of four IrDA
standard baud rates between 9600 baud and 115.2 kbaud (9600, 19200,
57600, 115200). The IR baud rates are user selectable to one of five
IrDA standard baud rates between 9600 baud and 115.2 kbaud (9600,
19200, 37400, 57600, 115200). The serial interface baud rate will be
specified by the BAUD1:BAUD0 pins, while the IR baud rate is speci-
fied by the primary device (during Discover phase). This means that
the baud rates do not need to be the same.

The MCP2150 operates in data terminal equipment (DTE) applications
and sits between a UART and an IR optical transceiver. The MCP2150
encodes an asynchronous serial data stream, converting each data bit
to the corresponding IR formatted pulse. IR pulses received are decod-
ed and then handled by the protocol handler state machine. The pro-
tocol handler sends the appropriate data bytes to the host controller in
UART formatted serial data.

The MCP2150 supports point-to-point applications, that is, one pri-
mary device and one secondary device. The MCP2150 operates as a
secondary device. It does not support multipoint applications. Sending
data using IR light requires some hardware and the use of specialized
communication protocols. These protocol and hardware requirements
are described, in detail, by the IrDA standard specifications.

The chapters dealing with the software for the PDAs explain, in detail,
how to implement the specialized communication protocols.

PDA Robotics

58

PDA 05 5/30/03 11:35 AM Page 58

The encoding/decoding functionality of the MCP2150 is designed to
be compatible with the physical layer component of the IrDA stan-
dard. This part of the standard is often referred to as “IrPHY.” The
complete IrDA standard specifications are available for download
from the IrDA Web site (www.IrDA.org).

MCP2150 Applications: PDA Robot
The MCP2150 infrared communications controller supporting the
IrDA standard provides embedded system designers the easiest way to
implement IrDA standard wireless connectivity. Figure 5.20a shows a
typical application block diagram. IR communication is a wireless
two-way data connection, using IR light generated by low-cost trans-
ceiver signaling technology. This provides reliable communication
between two devices. Reliability is the main reason I chose this proto-
col and this chip. It certainly simplifies the task of creating the PDA-
to-Robot data link. You can port the PDA code to the PIC microcon-
troller if you have the time.

IR technology has the following advantages:

• Universal standard for connecting portable computing devices.

• Easy, effortless implementation.

• Economical alternative to other connectivity solutions.

• Reliable, high-speed connection.

• Safe to use in any environment (can even be used during air
travel).

• Eliminates the hassle of cables and the possibility of damage to
your PDA.

• Allows PCs and other electronic devices (such as PDAs, cell
phones, etc.) to communicate with each other. In this case it
allows the PDA to communicate with PDA Robot.

• Enhances mobility by allowing users to easily connect.

The MCP2150 allows the easy addition of IrDA standard wireless con-
nectivity to any embedded application that uses serial data. Figure
5.20a shows typical implementation of the MCP2150 in an embedded
system.

Chapter 5 / The Electronics

59

PDA 05 5/30/03 11:35 AM Page 59

Table 5.2 describes the MCP2150 pins for the 18-pin dual in-line pack-
age used in PDA Robot’s circuit.

Table 5.2

MCP2150 DIP Pin Descriptions

Pin Pin Buffer
Name Pin # Type Type Description

BAUD0 1 I ST BAUD1:BAUD0 specify the baud rate of the device.

TXIR 2 O _ Asynchronous transmit to IR transceiver.

RXIR

3 I ST Asynchronous receive from IR transceiver.

RESET 4 I ST Resets the device.

VSS

5 _ P Ground reference for logic and I/O pins.

EN

6 I TTL Device enable.
1 = Device is enabled.
0 = Device is disabled (low power). MCP2150 only
monitors this pin when in the NDM state.

TX 7 I TTL Asynchronous receive; from host controller UART.

RX 8 O _ Asynchronous transmit; to host controller UART.

RI 9 _ _ Ring indicator. The value on this pin is driven high.

DSR 10 O _ Data Set Ready. Indicates that the MCP2150 has
completed reset.
1 = MCP2150 is initialized.
0 = MCP2150 is not initialized.

(continued on next page)

PDA Robotics

60

Figure 5.20a

A typical application
block diagram.

PDA 05 5/30/03 11:35 AM Page 60

Table 5.2

MCP2150 DIP Pin Descriptions (continued)

Pin Pin Buffer
Name Pin # Type Type Description

DTR 11 I TTL Data Terminal Ready. The value of this pin is ignored
once the MCP2150 is initialized. It is recommended that
this pin be connected so that the voltage level is either
VSS or VCC. At device power up, this signal is used with
the RTS signal to enter device ID programming.
1 = Enter Device ID programming mode (if RTS is
cleared).
0 = Do not enter Device ID programming mode.

CTS 12 O _ Clear to Send. Indicates that the MCP2150 is ready to
receive data from the host controller.
1 = Host controller should not send data.
0 = Host controller may send data.

RTS 13 I TTL Request to Send. Indicates that a host controller is
ready to receive data from the MCP2150. The MCP2150
prepares to send data, if available.
1 = Host controller not ready to receive data.
0 = Host controller ready to receive data.

At device power up, this signal is used with the DTR
signal to enter device ID programming.
1 = Do not enter device ID programming mode.
0 = Enter device ID programming mode (if DTR is set).

VDD 14 _ P Positive supply for logic and I/O pins.

OSC2 15 O _ Oscillator crystal output.

OSC1/CLKIN 16 I CMOS Oscillator crystal input/external clock source
input.

CD 17 O _ Carrier Detect. Indicates that the MCP2150 has
established a valid link with a primary device.
1 = An IR link has not been established (No IR Link).
0 = An IR link has been established (IR Link).

BAUD1 18 I ST BAUD1:BAUD0 specify the baud rate of the device.

Legend: TTL = TTL compatible input; I = Input; P = Power; ST = Schmitt Trigger input with
CMOS levels; O = Output; CMOS = CMOS compatible input

Power Up. Figure 5.20b shows the pin’s physical layout conforming
to the numbering convention of first pin to the top left and the num-
bers wrapping around the bottom of the chip so that pin 1 is opposite
pin 18.

Any time the device is powered up (parameter D003), the Power Up
Timer delay (parameter 33) occurs, followed by an Oscillator Start-up

Chapter 5 / The Electronics

61

PDA 05 5/30/03 11:35 AM Page 61

Timer (OST) delay (parameter 32). Once these delays complete, com-
munication with the device may be initiated. This communication is
from both the IR transceiver’s side, as well as the controller’s UART
interface.

Device Reset. The MCP2150 is forced into the reset state when the
RESET pin is in the low state. Once the RESET pin is brought to a high
state, the Device Reset sequence occurs. Once the sequence completes,
functional operation begins.

Clock Source. The MCP2150 requires a clock source to operate. The
frequency of this clock is 11.0592 MHz (electrical specification param-
eter 1A). This clock can be supplied by either a crystal/resonator or as
an external clock input.

Crystal Oscillator/Ceramic Resonators
A crystal or ceramic resonator can be connected to the OSC1 and
OSC2 pins to establish oscillation (Figure 5.21). The MCP2150 oscil-
lator design requires the use of a parallel cut crystal. Use of a series cut
crystal may give a frequency outside of the crystal manufacturer’s
specifications.

PDA Robot uses 22 pf capacitors for both the MCP2150 and
PIC16F876. The values can range from 10 to 22 pf for a ceramic res-
onator and 15 to 30 pf for a crystal oscillator. Because PDA Robot uses

PDA Robotics

62

Figure 5.20b

MCP2150 pin’s
pyhsical layout.

PDA 05 5/30/03 11:35 AM Page 62

crystal oscillators, the 22 pf value provides good stability and an aver-
age start-up time. It also allows us to simply swap in a ceramic res-
onator if desired.

Higher capacitance increases the stability of the oscillator, but also
increases the start-up time. The resistor (RS) may be required to avoid
overdriving crystals with low drive level specification. Since each
crystal has its own characteristics, the user should consult the crystal
manufacturer for appropriate values of external components.

Bit Clock
The device crystal is used to derive the communication bit clock (BIT-
CLK). There are 16 BITCLKs for each bit time. The BITCLKs are used
for the generation of the start bit and the eight data bits. The stop bit
uses the BITCLK when the data are transmitted (not for reception).
This clock is a fixed frequency and has minimal variation in frequen-
cy (specified by crystal manufacturer).

UART Interface
The UART interface communicates with the controller. This interface
is a half-duplex interface, meaning that the system is either transmit-
ting or receiving, but not both simultaneously.

Baud Rate
The baud rate for the MCP2150 serial port (the TX and RX pins) is con-
figured by the state of the BAUD1 and BAUD0 pins. These two device
pins are used to select the baud rate at which the MCP2150 will trans-
mit and receive serial data (not IR data).

Chapter 5 / The Electronics

63

Figure 5.21

Crystal operation
(or ceramic
resonator). Note: A
series resistor may
be required for AT
strip cut crystals.

PDA 05 5/30/03 11:35 AM Page 63

Transmitting
When the controller sends serial data to the MCP2150, the controller’s
baud rate is required to match the baud rate of the MCP2150’s serial port.

Receiving
When the controller receives serial data from the MCP2150, the con-
troller’s baud rate is required to match the baud rate of the MCP2150’s
serial port. Matching up the baud rate of the microcontroller to that set
by the DIP switches is done in the software that is loaded into PDA
Robot’s microcontroller. Chapter 7: Programming the PIC16F876
Microcontroller explains this in detail.

Modulation
The data that the MCP2150 UART received (on the TX pin) that needs
to be transmitted (on the TXIR pin) will need to be modulated. This
modulated signal drives the IR transceiver module. Figure 5.22 shows
the encoding of the modulated signal. Each bit time is comprised of 16-
bit clocks. If the value to be transmitted (as determined by the TX pin)
is a logic low, then the TXIR pin will output a low level for 7-bit clock
cycles, a logic high level for 3-bit clock cycles, or a minimum of 1.6 µs.
(see parameter IR121). The remaining 6-bit clock cycles will be low. If
the value to transmit is a logic high, then the TXIR pin will output a
low level for the entire 16-bit clock cycles. Note: The signal on the
TXIR pin does not actually line up in time with the bit value that was
transmitted on the TX pin, as shown in Figure 5.22. The TX bit value
is shown to represent the value to be transmitted on the TXIR pin.

PDA Robotics

64

Figure 5.22

MCP2150 data encoding (modulated).

PDA 05 5/30/03 11:35 AM Page 64

Demodulation
The modulated signal (data) from the IR transceiver module (on RXIR
pin) needs to be demodulated to form the received data (on RX pin).
Once demodulation of the data byte occurs, the received data are
transmitted by the MCP2150 UART (on the RX pin). Figure 5.23 illus-
trates the data decoding. Note: The signal on the RX pin does not actu-
ally line up in time with the bit value that was received on the RXIR
pin, as shown in Figure 5.23. The RXIR bit value is shown to represent
the value to be transmitted on the RX pin.

Minimizing Power
The device can be placed in a low-power mode by disabling the device
(holding the EN pin at the low state). The internal state machine is
monitoring this pin for a low level. Once this is detected, the device is
disabled and enters into a low-power state.

Returning to Device Operation
When disabled, the device is in a low-power state. When the EN pin
is brought to a high level, the device will return to the operating mode.
The device requires a delay of 1024 TOSC before data may be trans-
mitted or received.

Network Layering Reference Model
Figure 5.24 shows the Open Systems Interconnect (OSI) Network
Layering Reference Model. The shaded areas are implemented by the

Chapter 5 / The Electronics

65

Figure 5.23

MCP2150 data encoding (demodulated).

PDA 05 5/30/03 11:35 AM Page 65

MCP2150; the cross-hatched area is implemented by an IR transceiv-
er. The unshaded areas should be implemented by the host controller.

IrDA Data Protocols Supported by MCP2150
The MCP2150 supports the following required IrDA standard protocols:

• Physical Signaling Layer (PHY)

• Link Access Protocol (IrLAP)

• Link Management Protocol/Information Access Service (IrLMP/
IAS)

The MCP2150 also supports some of the optional protocols for IrDA
data. The optional protocols that the MCP2150 implements are:

• Tiny TP

• IrCOMM

PDA Robotics

66

Figure 5.24

OSI layers.

PDA 05 5/30/03 11:35 AM Page 66

The software running on the PDA utilizes all the optional and required
protocols supported by the MCP2150 (see Chapters 8 and 9).

Figure 5.25 shows the IrDA data protocol stack and which components
are implemented by the MCP2150. The optional IR transceiver for the
asynchronous serial IR is the Vishay transceiver described earlier.

Physical Signal Layer (PHY). The MCP2150 provides the following
Physical Signal Layer specification support:

• Bidirectional communication.

• Data Packets are protected by a CRC—16-bit CRC for speeds up
to 115.2 kbaud.

• Data Communication Rate—9600 baud minimum data rate.

Chapter 5 / The Electronics

67

Figure 5.25

MCP2150 IrDA
protocol stack.

PDA 05 5/30/03 11:35 AM Page 67

The following Physical Layer Specification is dependent on the opti-
cal transceiver logic used in the application. The specification states:

• Communication range, which sets the end user expectation for
discovery, recognition, and performance.

• Continuous operation from contact to at least 1 m (typically 2 m
can be reached).

• A low power specification reduces the objective for operation
from contact to at least 20 cm (low power and low power) or 30
cm (low power and standard power).

IrLAP. The MCP2150 supports the IrLAP. The IrLAP provides:

• Management of communication processes on the link between
devices.

• A device-to-device connection for the reliable, ordered transfer
of data.

• Device discover procedures.

• Hidden node handling.

Figure 5.26 identifies the key parts and hierarchy of the IrDA proto-
cols. The bottom layer is the Physical layer, IrPHY. This is the part that
converts the serial data to and from pulses of IR light. IR transceivers
can’t transmit and receive at the same time. The receiver has to wait
for the transmitter to finish sending. This is sometimes referred to as
a “half-duplex” connection. The IR IrLAP provides the structure for

PDA Robotics

68

Figure 5.26

Key IrDA protocols.

PDA 05 5/30/03 11:35 AM Page 68

packets (or “frames”) of data to emulate data that would normally be
free to stream back and forth.

IRDA Standard Protocol Layers
The IrLAP frame is proceeded by some number of Beginning of Frame
characters (BOFs). The value of the BOF is generally 0xC0, but 0xFF
may be used if the last BOF character is a 0xC0. The purpose of mul-
tiple BOFs is to give the other station some warning that a frame is
coming. The IrLAP frame begins with an address byte (“A” field), then
a control byte (“C” field). The control byte is used to differentiate
between different types of frames and is also used to count frames.
Frames can carry status, data, or commands. The IrLAP has a com-
mand syntax of its own. These commands are part of the control byte.
Last, IrLAP frames carry data. These data are the information (or “I”)
field. The integrity of the frame is ensured with a 16-bit CRC, referred
to as the frame check sequence (FCS). The 16-bit CRC value is trans-
mitted least signification bit (LSB) first. The end of the frame is
marked with an end of frame (EOF) character, which is always a 0xC1.
The frame structure described here is used for all versions of IrDA pro-
tocols used for serial wire replacement for speeds up to 115.2 kbaud.

In addition to defining the frame structure, IrLAP provides the “house-
keeping” functions of opening, closing, and maintaining connections.
The critical parameters that determine the performance of the link are
part of this function. These parameters control how many BOFs are
used, identify the speed of the link, how fast either party may change
from receiving to transmitting, etc. IrLAP has the responsibility of
negotiating these parameters to the highest common set so that both
sides can communicate as quickly, and as reliably, as possible. This is
done during the handshaking phase when the PDA is connecting to
PDA Robot.

IrLMP. The MCP2150 implements the IrLMP. The IrLMP provides:

• Multiplexing of the IrLAP layer. This allows multiple channels
above an IrLAP connection.

• Protocol and service discovery via the IAS.

When two devices that contain the IrDA standard feature are connected,
generally one device has something to do and the other device has the

Chapter 5 / The Electronics

69

PDA 05 5/30/03 11:35 AM Page 69

resource to do it. For example, a laptop may have a job to print and an
IrDA standard compatible printer has the resources to print it. In IrDA
standard terminology, the laptop is a primary device and the printer is
the secondary device. When these two devices connect, the primary
device must determine the capabilities of the secondary device to deter-
mine if the secondary device is capable of doing the job. This determi-
nation is made by the primary device asking the secondary device a
series of questions. Depending on the answers to these questions, the pri-
mary device may or may not elect to connect to the secondary device.

The queries from the primary device are carried to the secondary
device using IrLMP. The responses to these queries can be found in the
IAS of the secondary device. The IAS is a list of the resources of the
secondary device. The primary device compares the IAS responses
with its requirements, and then makes the decision if a connection
should be made. For instance, the software running on the PDA
queries PDA Robot to see what it identifies itself as, and to see if it will
accept the “cooked-wire” service. If it identifies itself as what we are
looking for and supports the service, then a connection is made.

The MCP2150 identifies itself to the primary device as a modem. The
MCP2150 is not a modem, and the nondata circuits are not handled in
a modem fashion.

Link Management-Information Access Service (LM-IAS). The
MCP2150 implements the LM-IAS. Each LM-IAS entity maintains an
information database to provide:

• Information on services for other devices that contain the IrDA
standard feature (Discovery).

• Information on services for the device itself.

• Remote accessing of another device’s information base.

This is required so clients on a remote device can find configuration
information needed to access a service.

Tiny TP. Tiny TP provides the flow control on IrLMP connections.
An optional service of Segmentation and Reassembly can be handled.

IrCOMM. IrCOMM provides the method to support serial and paral-
lel port emulation. This is useful for legacy COM applications, such as

PDA Robotics

70

PDA 05 5/30/03 11:35 AM Page 70

printers and modem devices. The IrCOMM standard is just a syntax
that allows the primary device to consider the secondary device as a
serial device. IrCOMM allows for emulation of serial or parallel (print-
er) connections of various capabilities.

The MCP2150 (PDA Robot) supports the 9-wire “cooked” service class
of IrCOMM. Other service classes supported by IrCOMM are shown in
Figure 5.27. Note: The MCP2150 identifies itself as a modem to ensure
that it is identified as a serial device with a limited amount of memory.

PDA and PDA Robot Handshake:
How Devices Connect
When two devices implementing the IrDA standard feature (PDA and
PDA Robot) establish a connection using the IrCOMM protocol, the
process is analogous to connecting two devices with serial ports using
a cable. This is referred to as a point-to-point connection. This con-
nection is limited to half-duplex operation because the IR transceiver
cannot transmit and receive at the same time. The purpose of the IrDA
protocol is to allow this half-duplex link to emulate, as much as pos-
sible, a full-duplex connection. In general, this is done by dividing the
data into “packets,” or groups of data. These packets can then be sent
back and forth, when needed, without risk of collision. The rules of
how and when these packets are sent constitute the IrDA protocols.
The MCP2150 supports elements of this IrDA protocol to communi-
cate with other IrDA standard compatible devices. When a wired con-

Chapter 5 / The Electronics

71

Figure 5.27

Services supported by IrCOMM.

PDA 05 5/30/03 11:35 AM Page 71

nection is used, the assumption is made that both sides have the same
communications parameters and features. A wired connection has no
need to identify the other connector because it is assumed that the
connectors are properly connected. In the IrDA standard, a connection
process has been defined to identify other IrDA compatible devices
and establish a communication link. These two devices (PDA and
PDA Robot) go through three steps to make this connection. They are:

• Normal disconnect mode (NDM)

• Discovery mode

• Normal connect mode (NCM)

Figure 5.28 shows the connection sequence.

Normal Disconnect Mode (NDM)
When two IrDA standard compatible devices come into range, they
must first recognize each other. The basis of this process is that one
device has some task to accomplish, and the other device has a
resource needed to accomplish this task. One device is referred to as a
primary device and the other is referred to as a secondary device. This
distinction between primary device and secondary device is impor-
tant. In our case, the PDA is the primary device and PDA Robot is the
secondary. It is the responsibility of the primary device to provide the
mechanism to recognize other devices.

So the primary device must first poll for nearby IrDA standard com-
patible devices. During this polling, the default baud rate of 9600 baud
is used by both devices. For example, to print from an IrDA-equipped
laptop to an IrDA printer, utilizing the IrDA standard feature, first
bring your laptop in range of the printer. In this case, the laptop has
something to do and the printer has the resource to do it. The laptop
is called the primary device and the printer is the secondary device.
Some data-capable cell phones have IrDA standard IR ports. If you
used such a cell phone with a PDA, the PDA that supports the IrDA
standard feature would be the primary device, and the cell phone
would be the secondary device.

When a primary device polls for another device, a nearby secondary
device may respond. When a secondary device responds, the two
devices are defined to be in the NDM state. NDM is established by the

PDA Robotics

72

PDA 05 5/30/03 11:35 AM Page 72

primary device broadcasting a packet and waiting for a response.
These broadcast packets are numbered. Usually 6 or 8 packets are sent.
The first packet is number 0, and the last packet is usually number 5
or 7. Once all the packets are sent, the primary device sends an ID
packet, which is not numbered. The secondary device waits for these

Chapter 5 / The Electronics

73

Figure 5.28

Connection sequence.

PDA 05 5/30/03 11:35 AM Page 73

packets, and then responds to one of the packets. The packet it
responds to determines the “time slot” to be used by the secondary
device. For example, if the secondary device responds after packet
number 2, then the secondary device will use time slot 2. If the sec-
ondary device responds after packet number 0, then the secondary
device will use time slot 0. This mechanism allows the primary device
to recognize as many nearby devices as there are time slots. The pri-
mary device will continue to generate time slots, and the secondary
device should continue to respond, even if there is nothing to do.

During NDM, the MCP2150 handles all of the responses to the primary
device (Figure 5.28) without any communication with the host con-
troller. The host controller is inhibited by the clear to send (CTS) sig-
nal of the MCP2150 from sending data to the MCP2150. Note the fol-
lowing:

• The MCP2150 can only be used to implement a secondary
device.

• The MCP2150 supports a system with only one secondary device
having exclusive use of the IrDA standard IR link (known as
point-to-point communication).

• The MCP2150 always responds to packet number 2. This means
that the MCP2150 will always use time slot 2.

• If another secondary device is nearby, the primary device may
fail to recognize the MCP2150, or the primary device may not
recognize either of the devices. This is not the case with the soft-
ware developed for the PDAs. I get a list of all secondary devices
that respond to the discovery request and look for the identifier
for PDA Robot, which is “Generic IrDA” (the default setting of
the MCP2150). My printer and PDA Robot always respond, and
the software only connects to PDA Robot.

Discovery Mode
Discovery mode allows the primary device to determine the capabili-
ties of the MCP2150 (secondary device). Discovery mode is entered
once the MCP2150 (secondary device) has sent an XID response to the
primary device and the primary device has completed sending the
XIDs, and then sends a Broadcast ID. If this sequence is not complet-
ed, then a primary and secondary device can stay in NDM indefinite-

PDA Robotics

74

PDA 05 5/30/03 11:35 AM Page 74

ly. When the primary device has something to do, it initiates
Discovery. Discovery has two parts. They are:

• Link initialization

• Resource determination

The first step is for the primary and secondary devices to determine,
and then adjust to, each other’s hardware capabilities. These capabili-
ties are parameters like:

• Data rate

• Turnaround time

• Number of packets without a response

• How long to wait before disconnecting

Both the primary and secondary device begin communications at 9600
baud, which is the default baud rate. The primary device sends its
parameters, then the secondary device responds with its parameters.
For example, if the primary supports all data rates up to 115.2 kbaud
and the secondary device only supports 19.2 kbaud, the link will be
established at 19.2 kbaud.

Once the hardware parameters are established, the primary device
must determine if the secondary device has the resources it requires.
If the primary device has a job to print, then it must know if it is talk-
ing to a printer, not a modem or other device. This determination is
made using the IAS. The job of the secondary device is to respond to
IAS queries made by the primary device. The primary device must ask
a series of questions like:

• What is the name of your service?

• What is the address of this service?

• What are the capabilities of this device?

When all the primary device’s questions are answered, the primary
device can access the service provided by the secondary device.
During Discovery mode, the MCP2150 handles all responses to the pri-
mary device (see Figure 5.28) without any communication with the
host controller. The host controller is inhibited by the CTS signal of
the MCP2150 from sending data to the MCP2150.

Chapter 5 / The Electronics

75

PDA 05 5/30/03 11:35 AM Page 75

Normal Connect Mode (NCM)
Once discovery has been completed, the primary device and MCP2150
(secondary device) can freely exchange data. The MCP2150 can
receive IR data or serial data, but not both simultaneously. The
MCP2150 uses a hardware handshake to stop the local serial port from
sending data while the MCP2150 is receiving IR data. Both the pri-
mary device and the MCP2150 (secondary device) check to make sure
that data packets are received by the other without errors. Even when
data is required to be sent, the primary and secondary devices will still
exchange packets to ensure that the connection has not, unexpected-
ly, been dropped.

When the primary device has finished, it then transmits the close
link command to the MCP2150 (secondary device). The MCP2150
will confirm the close link command, and both the primary device
and the MCP2150 (secondary device) will revert to the NDM state. It
is the responsibility of the host controller program to understand the
meaning of the data received and how the program should respond
to it. It is just as if the data were being received by the host controller
from a UART. Note: The MCP2150 is limited to a data rate of 115.2
kbaud. Data loss will result if this hardware handshake is not
observed. If the NCM mode is unexpectedly terminated for any rea-
son (including the primary device not issuing a close link com-
mand), the MCP2150 will revert to the NDM state 10 seconds after
the last frame has been received. Figure 5.28 shows the connection
sequence.

MCP2150 Operation
The MCP2150 emulates a null modem connection. The application on
the DTE device sees a virtual serial port. This serial port emulation is
provided by the IrDA standard protocols. The link between the DTE
device and the embedded application is made using the MCP2150.
The connection between the MCP2150 and the embedded application
is wired as if there were a null modem connection.

The carrier detect (CD) signal of the MCP2150 is used to indicate that
a valid IrDA standard IR link has been established between the
MCP2150 and the primary device. The CD signal should be moni-
tored closely to make sure that any communication tasks can be com-
pleted. The MCP2150 data signaling rate (DSR) signal indicates that

PDA Robotics

76

PDA 05 5/30/03 11:35 AM Page 76

the device has powered up, is successfully initialized, and is ready
for service. This signal is intended to be connected to the DSR input
of the host controller. If the host controller was directly connected to
an IrDA standard primary device using a serial cable (the MCP2150 is
not present), the host controller would be connected to the primary
device’s data transfer rate (DTR) output signal. The MCP2150 gener-
ates the CTS signal locally because of buffer limitations. Only the
transceiver’s TXD and RXD signals are carried back and forth to the
primary device. The MCP2150 emulates a three-wire serial connec-
tion (TXD, RXD, and GND).

The code for the PIC16F876 used in PDA Robot creates a three-wire
serial connection with the MCP2150 using the following line of code.
See Chapter 7: Programming the PIC16F876 Microcontroller.

#use rs232(baud=115200, xmit=PIN_B1, rcv=PIN_B0, stream=PDA)

Optical Transceiver
The MCP2150 requires an IR transceiver. The transceiver that we are
using is the TFDS4500, as described earlier in this chapter. The trans-
ceiver can be an integrated solution. A typical optical transceiver cir-
cuit, using a Vishay TFDS4500, is shown in Figure 5.29.

Chapter 5 / The Electronics

77

Figure 5.29

Typical transceiver
interface to the
MCP2150.

PDA 05 5/30/03 11:35 AM Page 77

Typical Optical Transceiver Circuit
The optical transceiver logic can be implemented with discrete com-
ponents for cost savings. Care must be taken in the design and layout
of the photo-detect circuit, due to the small signals that are being
detected and their sensitivity to noise.

MCP2150 Absolute Maximum Ratings
Ambient Temperature under bias . –40°C to +125°C

Storage Temperature. –65°C to +150°C

Voltage on VDD with respect to VSS . –0.3 V to +6.5 V

Voltage on RESET with respect to VSS . –0.3 V to +14 V

Voltage on all other pins with respect to VSS –0.3 V to (VDD + 0.3 V)

Total Power Dissipation (1). 800 mW

Max. Current out of VSS pin . 300 mA

Max. Current into VDD pin . 250 mA

Input Clamp Current, IIK (VI < 0 or VI > VDD) . ±20 mA

Output Clamp Current, IOK (V0 < 0 or V0 > VDD) . ±20 mA

Max. Output Current sunk by any Output pin . 25 mA

Max. Output Current sourced by any Output pin. 25 mA

Note 1: Power Dissipation is calculated as follows:

PDIS = VDD x {IDD - ∑ IOH} + ∑ {(VDD-VOH) x IOH} + ∑(VOL x IOL)

NOTICE: Stresses above those listed under “Maximum Ratings” may
cause permanent damage to the device. This is a stress rating only, and
functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification
is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.

Figure 5.30 shows the physical layout of the MCP2150 chip used in
PDA Robot.

PIC16F876: PDA Robot’s Microcontroller
The PIC16F876 is used to send and receive commands from the robot
to the PDA, get analog readings from the range finder, and switch the
robot’s motors on and off. I chose this chip because it is low cost, very
fast, can be electronically erased, flashed programmed, and is readily
available.

PDA Robotics

78

PDA 05 5/30/03 11:35 AM Page 78

Chapter 5 / The Electronics

79

Figure 5.30

MCP2150 DIP physical dimensions used in PDA Robot.

Units INCHES* MILLIMETERS
Dimension Limits MIN NOM MAX MIN NOM MAX

Number of Pins
Pitch
Top to Seating Plane
Molded Package Thickness
Base to Seating Plane
Shoulder to Shoulder Width
Molded Package Width
Overall Length
Tip 10 Seating Plane
Lead Thickness
Upper Lead Width
Lower Lead Width
Overall Row Spacing §
Mold Draft Angle top
Mold Draft Angle Bottom

.140

.115

.015

.300

.240

.890

.125

.008

.045

.014

.310
5
5

18
.100
.155
.130

.313

.250

.898

.130

.012

.058

.018

.370
10
10

18
2.54
3.94
3.30

7.94
6.35

22.80
3.30
0.29
1.46
0.46
9.40

10
10

.170

.145

.325

.260

.905

.135

.015

.070

.022

.430
15
15

3.56
2.92
.038
7.62
6.10

22.61
3.18
0.20
1.14
0.36
7.87

5
5

4.32
3.68

8.26
6.60

22.99
3.43
0.38
1.78
0.56

10.92
15
15

n
p
A
A2
A1
E
E1
D
L
c

B1
B
eB
�

ß

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010" (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-007

PDA 05 5/30/03 11:35 AM Page 79

The following information about the specifics of this chip from the
data sheets explains the details of its inner workings. I highly recom-
mend going to www.microchip.com to download any updates. There
is enough information provided in the sheets to write a C or C++ com-
piler for the chip if you are so inclined. When the sheet explains how
the chip does the analog to digital conversions, you could use that
information to create one of your own externally with a capacitor. This
would allow you to buy a chip that has only digital input/output pins
and create the A/D converter yourself. The following summarizes
what you need to know. Features include:

• High-performance RISC CPU

• Only 35 single-word instructions to learn

• All single-cycle instructions except for program branches, which
are two cycle

• Operating speed: DC—20 MHz clock input DC—200 ns instruc-
tion cycle

• Up to 8K � 14 words of FLASH program memory, up to 368 � 8
bytes of data memory (RAM), up to 256 x 8 bytes of EEPROM
data memory

• Pinout compatible to the PIC16C73B/74B/76/77

• Interrupt capability (up to 14 sources)

• Eight-level-deep hardware stack

• Direct, indirect, and relative addressing modes

• Power-on Reset (POR)

• Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)

• Watchdog Timer (WDT) with its own on-chip RC oscillator for
reliable operation

• Programmable code protection

• Power saving SLEEP mode

• Selectable oscillator options

• Low-power, high-speed CMOS FLASH/EEPROM technology

• Fully static design

PDA Robotics

80

PDA 05 5/30/03 11:35 AM Page 80

• In-circuit serial programming (ICSP) via two pins

• Single 5V in-circuit serial programming capability

• In-circuit debugging via two pins

• Processor read/write access to program memory

• Wide operating voltage range: 2.0 V to 5.5 V

• High sink/source current: 25 mA

• Commercial, industrial, and extended temperature ranges

• Low power consumption:

– < 0.6 mA typical @ 3V, 4 MHz

– 20 µA typical @ 3V, 32 kHz

– < 1 µA typical standby current peripheral features:

• Timer0: 8-bit timer/counter with 8-bit prescaler

• Timer1: 16-bit timer/counter with prescaler, can be incremented
during SLEEP via external crystal/clock

• Timer2: 8-bit timer/counter with 8-bit period register, prescaler,
and postscaler

• Two capture, compare, PWM modules

– Capture is 16-bit; max. resolution is 12.5 ns

– Compare is 16-bit; max. resolution is 200 ns

– PWM max. resolution is 10-bit

• 10-bit multi-channel analog-to-digital converter

• Synchronous serial port (SSP) with SPI (master mode) and I to
the power of 2 C (master/slave)

• Universal synchronous asynchronous receiver transmitter
(USART/SCI) with 9-bit address detection

• Parallel slave port (PSP) 8 bits wide, with external RD, WR, and
CS controls (40/44-pin only)

• Brown-out detection circuitry for brown-out reset (BOR)

Figure 5.31 shows the pin layout of the chip.

Chapter 5 / The Electronics

81

PDA 05 5/30/03 11:35 AM Page 81

The block diagram in Figure 5.32 gives you an idea of the chip’s inner
architecture.

Table 5.4

PIC16F876 Pin Descriptions

Pin Pin Buffer
Name Pin # Type Type Description

OSC1/CLKIN 9 I ST/ Oscillator crystal input/external clock source
CMOS input.

OSC2/CLKOUT 10 O — Oscillator crystal output. Connects to crystal or
resonator in crystal oscillator mode. In RC mode,
OSC2 pin outputs CLKOUT which has 1/4 the
frequency of OSC1, and denotes the instruction
cycle rate.

MCLR/VPP 1 I/P ST Master Clear (Reset) input or programming
voltage input. This pin is an active low RESET to
the device.

PORTA is a bidirectional I/O port.

A0/AN0 2 I/O TTL RA0 can also be analog input0.

RA1/AN1 3 I/O TTL RA1can also be analog input0.

RA2/AN2/ 4 I/O TTL RA2 can also be analog input2 or negative analog
VREF- reference voltage.

RA3/AN3/ 5 I/O TTL RA3 can also be analog input3 or positive analog
VREF+ reference voltage.

RA4/T0CKI 6 I/O TTL RA4 can also be the clock input to the imer0
timer/counter. Output is open drain type.

(continued on page 84)

PDA Robotics

82

Figure 5.31

PIC16F876 pin
layout.

PDA 05 5/30/03 11:35 AM Page 82

Chapter 5 / The Electronics

83

Figure 5.32

PIC16F873 and PIC16F876 block diagram.

PDA 05 5/30/03 11:35 AM Page 83

Table 5.4

PIC16F876 Pin Descriptions (continued)

Pin Pin Buffer
Name Pin # Type Type Description

RA5/SS/AN4 7 I/O TTL RA5 can also be analog input4 or the slave select
for the synchronous serial port.

PORTB is a bidirectional I/O port. PORTB can be
software programmed for internal weak pull-up on
all inputs.

RB0/INT 21 I/O TTL/ST RB0 can also be the external interrupt pin.

RB1 22 I/O TTL

RB2 23 I/O TTL

RB3/PGM 24 I/O TTL RB3 can also be the low-voltage programming input.

RB4 25 I/O TTL Interrupt-on-change pin.

RB5 26 I/O TTL Interrupt-on-change pin.

RB6/PGC 27 I/O TTL/ST Interrupt-on-change pin or in-circuit debugger pin.
Serial programming clock.

RB7/PGD 28 I/O TTL/ST Interrupt-on-change pin or in-circuit debugger pin.
Serial programming data.

PORTC is a bidirectional I/O port.

RC0/T1OSO/ 11 I/O ST RC0 can also be the Timer1 oscillator output or
T1CKI Timer1 clock input.

RC1/T1OSI/ 12 I/O ST RC1 can also be the Timer1 oscillator input or
CCP2 Capture2 input/Compare2 output/PWM2 output.

RC2/CCP1 13 I/O ST RC2 can also be the Capture1 input/Compare1
output/PWM1 output.

RC3/SCK/SCL 14 I/O ST RC3 can also be the synchronous serial clock
input/output for both SPI and I2C modes.

RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI data in (SPI mode) or
data I/O (I2C mode).

RC5/SDO 16 I/O ST RC5 can also be the SPI data out (SPI mode).

RC6/TX/CK 17 I/O ST RC6 can also be the USART asynchronous
transmit or synchronous clock.

RC7/RX/DT 18 I/O ST RC7 can also be the USART asynchronous
receive or synchronous data.

VSS 8,19 — P Ground reference for logic and I/O pins.

VDD 20 — P Positive supply for logic and I/O pins.

PORTA and the TRISA Register
PORTA is a 6-bit-wide, bidirectional port. The corresponding data
direction register is TRISA. Setting a TRISA bit (= 1) will make the cor-
responding PORTA pin an input (i.e., put the corresponding output

PDA Robotics

84

PDA 05 5/30/03 11:35 AM Page 84

Chapter 5 / The Electronics

85

Data
Bus

WR
Port

WR
TRIS

RD
TRIS

Data Latch

RD Port

D Q

QCK

TRIS Latch

D Q

QCK

VDD

VSS

P

N

Analog
Input
Mode

Q D

EN

TTL
Input
Buffer

I/O pin(1)

To A/D Converter

Note 1: I/O pins have protection diodes to VDD and VSS.

Figure 5.33

Block diagram of RA3:RA0 and RA5 pins.

PDA 05 5/30/03 11:35 AM Page 85

driver in a high-impedance mode). Clearing a TRISA bit (� 0) will
make the corresponding PORTA pin an output (i.e., put the contents
of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writ-
ing to it will write to the port latch. All write operations are read-mod-
ify-write operations. Therefore, a write to a port implies that the port

PDA Robotics

86

Data
Bus

WR
Port

WR
TRIS

RD
TRIS

Data Latch

RD Port

D Q

QCK

TRIS Latch

VSS

N

Q D

EN

I/O pin(1)

TMR0 Clock Input

Note 1: I/O pins have protection diodes to VSS only.

D Q

QCK Schmitt
Trigger
Input
Buffer

Figure 5.34

Block diagram of RA4/TOCK1 pin.

PDA 05 5/30/03 11:35 AM Page 86

pins are read, the value is modified, and then written to the port data
latch.

Pin RA4 is multiplexed with the Timer0 module clock input to
become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger
input and an open drain output. All other PORTA pins have TTL input
levels and full CMOS output drivers. Other PORTA pins are multi-
plexed with analog inputs and analog VREF input. The operation of
each pin is selected by clearing/setting the control bits in the ADCON1
register (A/D Control Register1). Note: I/O pin has protection diodes to
VSS only.

The TRISA register controls the direction of the RA pins, even when
they are being used as analog inputs. The user must ensure the bits in
the TRISA register are maintained set when using them as analog
inputs.

Chapter 7: Programming the PIC16F876 Microcontroller explains how
to set the TRIS registers using a C code macro.

PORTB and the TRISB Register
PORTB is an 8-bit-wide, bidirectional port. The corresponding data
direction register is TRISB. Setting a TRISB bit (= 1) will make the cor-
responding PORTB pin an input (i.e., put the corresponding output
driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make
the corresponding PORTB pin an output (i.e., put the contents of the
output latch on the selected pin).

Three pins of PORTB are multiplexed with the Low Voltage
Programming function: RB3/PGM, RB6/PGC, and RB7/PGD.

Each of the PORTB pins has a weak internal pull-up. A single control
bit can turn on all the pull-ups. This is performed by clearing bit
RBPU (OPTION_REG<7>). The weak pull-up is automatically turned
off when the port pin is configured as an output. The pull-ups are dis-
abled on a Power-on Reset.

Four of the PORTB pins, RB7:RB4, have an interrupt on-change fea-
ture. Only pins configured as inputs can cause this interrupt to occur
(i.e., any RB7:RB4 pin configured as an output is excluded from the
interrupton-change comparison). The input pins (of RB7:RB4) are
compared with the old value latched on the last read of PORTB. The

Chapter 5 / The Electronics

87

PDA 05 5/30/03 11:35 AM Page 87

“mismatch” outputs of RB7:RB4 are ORed together to generate the RB
Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt
can wake the device from SLEEP. The user, in the Interrupt Service
Routine, can clear the interrupt in the following manner:

• Any read or write of PORTB. This will end the mismatch condition.

• Clear flag bit RBIF.

PDA Robotics

88

WR Port

Data Bus

RBPU(2)

I/O
pin(1)

WR TRIS

RD TRIS

RD Port

RB0/INT
RB3/PGM

Data Latch

TRIS Latch

TTL
Input
Buffer

Weak
Pull-upP

VDD

CK

Q

CK

QD

D

Q D

EN

Note 1:
2:

I/O pins have diode protection to VDD and VSS.

To enable weak pull-ups, set the appropriate TRIS
bit(s) and clear the RBPU bit (OPTION_REG<7>).

RD PortSchmitt Trigger
Buffer

Figure 5.35

Block diagram of RB3:RB0 pins.

PDA 05 5/30/03 11:35 AM Page 88

A mismatch condition will continue to set flag bit RBIF. Reading
PORTB will end the mismatch condition and allow flag bit RBIF to be
cleared. The interrupt-on-change feature is recommended for wake-up
on key depression operation and operations where PORTB is only
used for the interrupt-on-change feature. Polling of PORTB is not rec-
ommended while using the interrupt-on-change feature.

Chapter 5 / The Electronics

89

WR Port

Data Bus

RBPU(2)

I/O
pin(1)

WR TRIS

RD TRIS

RD Port

Set RBIF

Data Latch

TRIS Latch

TTL
Input
Buffer

Weak
Pull-upP

VDD

CK

QD

CK

QD

Q D

EN

Q D

EN

Note 1:
2:

I/O pins have diode protection to VDD and VSS.

To enable weak pull-ups, set the appropriate TRIS
bit(s) and clear the RBPU bit (OPTION_REG<7>).

From other
RB7:RB4 pins

Latch

ST
Buffer

Q1

Q3

RD Port

RB7:RB6
In Serial Programming Mode

Figure 5.36

Block diagram of RB7:RB4 pins.

PDA 05 5/30/03 11:35 AM Page 89

This interrupt-on-mismatch feature, together with software config-
urable pull-ups on these four pins, allows easy interface to a keypad
and make it possible for wake-up on key depression.

PORTC and the TRISC Register
PORTC is an 8-bit-wide, bidirectional port. The corresponding data
direction register is TRISC. Setting a TRISC bit (= 1) will make the cor-
responding PORTC pin an input (i.e., put the corresponding output
driver in a Hi-Impedance mode). Clearing a TRISC bit (� 0) will make
the corresponding PORTC pin an output (i.e., put the contents of the
output latch on the selected pin).

PORTC is multiplexed with several peripheral functions. PORTC pins
have Schmitt Trigger input buffers. When the I2C module is enabled,
the PORTC<4:3> pins can be configured with normal I2C levels, or
with SMBus levels by using the CKE bit (SSPSTAT<6>). When enabling
peripheral functions, care should be taken in defining TRIS bits for
each PORTC pin. Some peripherals override the TRIS bit to make a pin
an output, while other peripherals override the TRIS bit to make a pin
an input. Since the TRIS bit override is in effect while the peripheral is
enabled, read modify write instructions (BSF, BCF, XORWF) with
TRISC as destination, should be avoided. The user should refer to the
corresponding peripheral section for the correct TRIS bit settings.

Analog-to-Digital Converter (A/D) Module. The Analog-to-Digital
(A/D) Converter module has five inputs for the 28-pin devices and
eight for the other devices. The analog input charges a sample and
hold capacitor. The output of the sample and hold capacitor is the
input into the converter. The converter then generates a digital result
of this analog level via successive approximation. The A/D conversion
of the analog input signal results in a corresponding 10-bit digital
number. The A/D module has high- and low-voltage reference input
that is software selectable to some combination of VDD, VSS, RA2, or
RA3. The A/D converter has a unique feature of being able to operate
while the device is in SLEEP mode. To operate in SLEEP, the A/D
clock must be derived from the A/D’s internal RC oscillator.

The A/D module has four registers. These registers are:

• A/D Result High Register (ADRESH)

PDA Robotics

90

PDA 05 5/30/03 11:35 AM Page 90

• A/D Result Low Register (ADRESL)

• A/D Control Register0 (ADCON0)

• A/D Control Register1 (ADCON1)

The ADCON0 register controls the operation of the A/D module. The
ADCON1 register configures the functions of the port pins. The port

Chapter 5 / The Electronics

91

Port/Peripheral Select(2)

Peripheral
OE(3)

Peripheral Data Out

Data Bus
WR
Port

WR
TRIS

RD
TRIS

RD
Port

Peripheral input

I/O
pin(1)

Data Latch

TRIS Latch

Schmitt
Trigger

P

N

VDD

VSS

CK

Q

Q

D

CK

Q

Q

D

Q D

EN

Note 1:
2:

I/O pins have diode protection to VDD and VSS.

Port/Peripheral select signal selects between port
data and peripheral output.

3: Peripheral OE (output enable) is only activated if
peripheral select is active.

0

1

Figure 5.37

PORTC block diagram (peripheral output override) RC<2.0>, RC<7:5>.

PDA 05 5/30/03 11:35 AM Page 91

pins can be configured as analog inputs (RA3 can also be the voltage
reference), or as digital I/O. Additional information on using the A/D
module can be found in the PICmicro Mid-Range MCU Family
Reference Manual (DS33023).

Follow these steps when doing an A/D conversion:

PDA Robotics

92

Port/Peripheral Select(2)

Peripheral
OE(3)

Peripheral Data Out

Data Bus
WR
Port

WR
TRIS

RD
TRIS

RD
Port
SSPI Input

I/O
pin(1)

Data Latch

TRIS Latch

Schmitt
Trigger

P

N

VDD

VSS

CK

Q

Q

D

CK

Q

Q

D

Q D

EN

Note 1:
2:

I/O pins have diode protection to VDD and VSS.
Port/Peripheral select signal selects between port
data and peripheral output.

3: Peripheral OE (output enable) is only activated if
peripheral select is active.

0

1

0

1

Schmitt
Trigger
with
SMBus
levels

CKE
SSPSTAT<6>

Figure 5.38

PORTC block diagram (peripheral output override) RC<4:3>.

PDA 05 5/30/03 11:35 AM Page 92

1. Configure the A/D module:

• Configure analog pins/voltage reference and digital I/O
(ADCON1).

• Select A/D input channel (ADCON0).

• Select A/D conversion clock (ADCON0).

• Turn on A/D module (ADCON0).

2. Configure A/D interrupt (if desired):

• Clear ADIF bit.

• Set ADIE bit.

Chapter 5 / The Electronics

93

Figure 5.39

A/D block diagram.

PDA 05 5/30/03 11:35 AM Page 93

• Set PEIE bit.

• Set GIE bit.

3. Wait for the required acquisition time.

4. Start conversion:

• Set GO/DONE bit (ADCON0).

5. Wait for A/D conversion to complete, by either:

• Polling for the GO/DONE bit to be cleared (with interrupts
enabled); or

• Waiting for the A/D interrupt.

6. Read A/D result register pair (ADRESH:ADRESL); clear bit ADIF
if required.

7. For the next conversion, go to step 1 or step 2, as required. The
A/D conversion time per bit is defined as TAD. A minimum wait
of 2TAD is required before the next acquisition starts.

Once again, the C compiler we are using in this project takes care of
the preceding steps in a few simple lines of code!

Timer0 Module. The Timer0 module timer/counter has the follow-
ing features:

• 8-bit timer/counter

• Readable and writable

• 8-bit software programmable prescaler

• Internal or external clock select

• Interrupt on overflow from FFh to 00h

• Edge select for external clock

Figure 5.40 is a block diagram of the Timer0 module and the prescaler
shared with the WDT.

Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In
Timer mode, the Timer0 module will increment every instruction cycle
(without prescaler). If the TMR0 register is written, the increment is

PDA Robotics

94

PDA 05 5/30/03 11:35 AM Page 94

inhibited for the following two instruction cycles. The user can work
around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In
Counter mode, Timer0 will increment on either every rising or every
falling edge of pin RA4/T0CKI. The incrementing edge is determined
by the Timer0 Source Edge Select bit, T0SE (OPTION_REG<4>).
Clearing bit T0SE selects the rising edge.

The prescaler is mutually exclusively shared between the Timer0
module and the WDT. The prescaler is not readable or writable.

Timer0 Interrupt. The TMR0 interrupt is generated when the TMR0
register overflows from FFh to 00h. This overflow sets bit T0IF (INT-
CON<2>). The interrupt can be masked by clearing bit T0IE (INT-
CON<5>). Bit T0IF must be cleared in software by the Timer0 module
Interrupt Service Routine before re-enabling this interrupt. The TMR0
interrupt cannot awaken the processor from SLEEP, since the timer is
shut-off during SLEEP.

Chapter 5 / The Electronics

95

CLKOUT (= osc/4)

RA4/TOCKI
pin

TOSE
TOCS

Watchdog
Timer

0

0

0

01

1

1

1M
U
X

M
U
X

Prescaler

PSA

PSA

PSA
WDT Enable bit

8

WDT
Time-out

PS2:PS0

8-bit Prescaler

8- - to 1-MUX

MUX

Data Bus

8

Set Flag Bit T0IF
on Overflow

Sync
2

Cycles
TMR0 Reg

Note: TOCS, TOSE, PSA, PS2:PS0 are (OPTION_REG<5:0>.

M
U
X

Figure 5.40

Block diagram of the Timer0/WDT prescaler.

PDA 05 5/30/03 11:35 AM Page 95

Using Timer0 with an External Clock. When no prescaler is used,
the external clock input is the same as the prescaler output. The syn-
chronization of T0CKI with the internal phase clocks is accomplished
by sampling the prescaler output on the Q2 and Q4 cycles of the inter-
nal phase clocks. Therefore, it is necessary for T0CKI to be high for at
least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc
(and a small RC delay of 20 ns).

Prescaler. There is only one prescaler available, which is mutually
exclusively shared between the Timer0 module and the WDT. A
prescaler assignment for the Timer0 module means that there is no
prescaler for the WDT, and vice versa. This prescaler is not readable or
writable (see Figure 5.39).

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the
prescaler assignment and prescale ratio. When assigned to the Timer0
module, all instructions writing to the TMR0 register (e.g., CLRF 1,
MOVWF 1, BSF 1, etc.) will clear the prescaler. When assigned to
WDT, a CLRWDT instruction will clear the prescaler along with the
WDT. The prescaler is not readable or writable.

Note: Writing to TMR0, when the prescaler is assigned to Timer0,
will clear the prescaler count, but will not change the prescaler
assignment.

The L298 Dual Full-Bridge Driver
(PDA Robot Motor Controller)
• Operating supply voltage up to 46 V

• Total DC current up to 4 A

• Low saturation voltage

• Over temperature protection

• Logical ”0” Input voltage up to 1.5 V (high noise immunity)

Figure 5.41 shows two of the three available packages that the L298
comes in. In this project, we are using the vertical package shown on
the left.

PDA Robotics

96

PDA 05 5/30/03 11:35 AM Page 96

Description
The L298 is an integrated monolithic circuit in 15-lead Multiwatt and
PowerSO20 packages. It is a high-voltage, high-current, dual full-bridge
driver designed to accept standard TTL logic levels and drive inductive
loads such as relays, solenoids, DC, and stepping motors. Two enable
inputs are provided to enable or disable the device independently of
the input signals. The emitters of the lower transistors of each bridge
are connected together, and the corresponding external terminal can be
used for the connection of an external sensing resistor.

An additional supply input is provided so that the logic works at a
lower voltage, as is the case in PDA Robot. The logic supply comes
from the 5 V regulator on the main board via the ribbon connector and
the power supply, which drives the motors directly from the 6 V bat-

Chapter 5 / The Electronics

97

Figure 5.41

L298 packages.

Figure 5.42

L298 block diagram.

PDA 05 5/30/03 11:35 AM Page 97

tery pack. The grounds are, and must be, connected (common ground).
The circuit’s block diagram is shown in Figure 5.42.

Maximum Ratings. The maximum ratings are shown in Figure 5.43.
I really like this chip because it will shut down if it is overloaded and
becomes hot. It is a nasty sight (and smell) seeing a smoke plume
when an overloaded component like a transistor melts down. The
L298 can handle a respectable load for its compact size (3 amps, 25
watts). It might be overkill for the motors it drives in this project, but
it also means that you can connect much more powerful motors if you
decide to change the design. The enable feature and the 2-pin logic
lines (with a wide voltage range of –0.3 to 7 V) per side makesa great
logic interface. ST microelectronics and Protel provide the footprint
and profile for use in the Protel 98 and Protel DXP circuit design pro-
grams allowing you to simply drop the chip into your circuit design.

Figure 5.44 a picture of the package we are using in the project show-
ing the pin layout. The short pins are set forward, and the longer are
to the back of the chip.

Table 5.5

Pin Descriptions

Pins Name Function

1,15 Sense A; Sense B Between this pin and ground is the sense resistor
connected to control the current of the load.

2,3 Out 1; Out 2 Outputs of the Bridge A; the current that flows through
the load connected between these two pins is monitored
at pin 1.

(continued on next page)

PDA Robotics

98

Figure 5.43

Maximum ratings.

PDA 05 5/30/03 11:35 AM Page 98

Table 5.5

Pin Descriptions (continued)

Pins Name Function

4 Vs Supply Voltage for the Power Output stages. A
noninductive 100nF capacitor must be connected
between this pin and ground.

5,7 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.

6,11 Enable A; EnableB TTL Compatible Enable Input: the L state disables the
bridge A (enable A) and/or the bridge B (enable B).

8 GND Ground.

9 VSS Supply Voltage for the Logic Blocks. A100nF capacitor
must be connected between this pin and ground.

10,12 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.

13,14 Out 3; Out 4 Outputs of the Bridge B. The current that flows through
the load connected between these two pins is monitored
at pin 15.

Figure 5.45 shows how to wire one side of the chip for bidirectional
motor control. This is how the chip is wired in PDA Robot. Pins 10
and 12 are connected to Port B pins on the PIC16F876 that have been
configured through the C code as outputs (see Chapter 7: Programming
the PIC16F876 Microcontroller). In PDA Robot, the sense pins 1 and
15 are tied to the ground. We can feed this into one of the analog pins
on the PIC16F876 and determine the current draw on the motors
(explained below). If the motor is drawing too much current, shut it
down. You can experiment with this. A command could be sent to the

Chapter 5 / The Electronics

99

Figure 5.44

L298 pin layout.

PDA 05 5/30/03 11:35 AM Page 99

PDA Robotics

100

Figure 5.46

Paralleled channels
for high current.

Figure 5.45

Bidirectional motor
control. (C = 1 and
D = 0) Forward, (C
= 0 and D = 1)
Reverse, (C = D)
Fast Motor Stop.

PDA 05 5/30/03 11:35 AM Page 100

robot to retrieve and forward this information to the PDA (like the
range-finder information), where it can be displayed and analyzed. We
could determine the speed of PDA Robot based on the current draw
after calibrating on a hard, flat surface. This is not a very accurate
method of determining the speed and distance traveled, but it will
give you a good estimate. Things like the incline and traction will
affect the accuracy.

For higher currents, outputs can be paralleled. Take care to parallel
channel 1 with channel 4 and channel 2 with channel 3. Figure 5.46
shows how to accomplish this.

Power Output Stage. The L298 integrates two power output stages
(A; B). The power output stage is a bridge configuration, and its out-
puts can drive an inductive load in common or differential mode,
depending on the state of the inputs. The current that flows through
the load comes out from the bridge at the sense output. An external
resistor (RSA; RSB) allows one to detect the intensity of this current.

Input Stage. Each bridge is driven by means of four gates, the input
of which are In1; In2; EnA and In3; In4; EnB. The In inputs set the
bridge state when the En input is high; a low state of the En input
inhibits the bridge. All the inputs are TTL compatible.

Suggestions. A noninductive capacitor, usually of 100 nF, must be
foreseen between both Vs and Vss to ground as near as possible to
GND pin. When the large capacitor of the power supply is too far from
the IC, a second smaller one must be near the L298. The sense resis-
tor, not of a wire wound type, must be grounded near the negative pole
of Vs that must be near the GND pin of the IC. Each input must be con-
nected to the source of the driving signals by means of a very short
path.

Turn on and turn off: Before you can turn on the supply voltage and
to turn it off; the enable input must be driven to the low state.

Applications. The external bridge of diodes D1 to D4 is made of four
fast recovery elements (trr 3 200 n) that must be chosen from a VF as
low as possible at the worst case of the load current. The sense output
voltage can be used to control the current amplitude by chopping the

Chapter 5 / The Electronics

101

PDA 05 5/30/03 11:35 AM Page 101

inputs, or to provide overcurrent protection by switching the enable
input to low.

The brake function (Fast motor stop) requires that the absolute maxi-
mum rating of 2 amps must never be overcome. When the repetitive
peak current needed from the load is higher than 2 Amps, a paralleled
configuration can be chosen.

An external bridge of diodes is required when inductive loads are
driven and when the inputs of the IC are chopped; Schottky diodes are
preferred. This solution can drive until 3 amps in DC operation and
until 3.5 amps of a repetitive peak current. The L298 is great for driv-
ing a stepper motor. Figure 5.47 shows how this is accomplished
when the current is controlled by a L6506.

The GP2D12 IR Range Finder
The GP2D12 is a low-cost, short-range IR alternative to ultrasonic
range-finding systems. Usable detection range is 10 cm to 80 cm
(approx. 4" to 31.5"). The IR Object Detection System consists of the
Sharp GP2D12 Distance Measuring Sensor. The GP2D12 is a compact,

PDA Robotics

102

Figure 5.47

Two phase bipolar stepper motor control circuit by using the current controller L6506.

PDA 05 5/30/03 11:35 AM Page 102

self-contained IR ranging system incorporating an IR transmitter,
receiver, optics, filter, detection, and amplification circuitry. The unit
is highly resistant to ambient light and nearly impervious to variations
in the surface reflectivity of the detected object.

Unlike many IR systems, it has a fairly narrow field of view, making it
easier to get the range of a specific target. The field of view changes
with the distance to an object, but is no wider than 5 cm (2.5 cm either
side of center) when measuring at the maximum range. One negative
about this range finder is its starting range of 10 cm. Figure 5.48 shows
the physical dimensions of the range finder and its connector
(www.hvwtech.com).

Chapter 5 / The Electronics

103

Figure 5.48

Physical dimensions of the range finder.

PDA 05 5/30/03 11:35 AM Page 103

The sensor unit may be mounted using the bracket provided. The
black foam should be applied to the bottom of the bracket using the
sticky side of the foam, and then the black “snap rivet” is pushed
through the large center hole on the bracket. This snap rivet has been
chosen to allow the bracket and foam to be mounted on a standard
0.062" PCB. A 13/64" hole is required in the PCB for the snap rivet.

Connecting to the Sensor
A custom cable assembly is included with the kit. The miniature con-
nector is keyed so that it may only be inserted one way: 1 Vcc Red �
5 V DC, 2 GND Black Ground, 3 Vout Blue Input pin of microcontroller

Operation
The GP2D12 makes continuous analog measurements. It does not
require a trigger to initiate a measurement. The distance to an object is
returned as an analog voltage level. After reading the voltage level pro-
duced, a threshold can be set or a distance calculated. By attaching the
cabling to a suitable

The analog-to-digital converter or microcontroller with onboard A/D
can be incorporated into many systems.

Calibration
The calibration of the module is dependent on how the data are used
in your code. For threshold-type applications, calibration involves
determining the distance required and measuring the voltage at that
distance, allowing for some variations in measurement. In distance
measuring applications the relation between voltage level and dis-
tance is nonlinear; either a “look-up” table or a suitable calculation

PDA Robotics

104

ABSOLUTE MAXIMUM RATINGS (TA=25 °C, Vcc=5V)

Parameter Symbol Rating Unit

Supply Voltage

Output Terminal Voltage

Operating Temperature

Storage Temperature

Vcc

V0

Topr

Tstg

–0.3 to +7

–0.3 to Vcc +0.3

–10 to +60

–40 to +70

V

V

°C

°C

Figure 5.49

Maximum ratings.

PDA 05 5/30/03 11:35 AM Page 104

must be determined. The voltage levels representing distance will
vary slightly from unit to unit. A small survey of randomly selected
devices was conducted and data gathered are shown in Figure 5.50.
The columns Distance and Average Voltage in the sample data pro-
vided can be used as a look-up table.

Using the average of the voltage measurements for the four samples,
the following graph was produced. The data points indicate the aver-
age values, and the line shows the best fit equation calculated.

The equation derived that best fits the average voltages is given as:
Distance (cm) � 27 � (Voltage) �1.1. This equation can be used for
calculating the distance to an object by simply entering the voltage
measured and calculating the distance in centimeters. The preceding
formula is provided for reference only; while it is shown to be quite
accurate, part-to-part variation must be considered.

Ambient Light
Tests have shown the GP2D12 to be highly immune to ambient light lev-
els. Incandescent, fluorescent, and natural light do not appear to bother
it. The only instance where we were able to get it to falsely measure was
when a flashlight was pointed directly into the sensor’s receiver; even a
few degrees off center is enough for the sensor to ignore it.

IR Light
The GP2D12 uses a modulated IR beam to guard against false trigger-
ing from the IR component of incandescent, fluorescent, and natural
light. Tests with several kinds of IR remote controls have shown that
even with two or three remotes pointed at the GP2D12, the unit still
functions normally.

Chapter 5 / The Electronics

105

Figure 5.50

Average distance
versus voltage.

PDA 05 5/30/03 11:35 AM Page 105

Laser Light
Tests with a laser pointer had results similar to those with the flash-
light; only a beam aimed straight into the sensor’s receiver would
cause a false reading. If the beam comes from even a few degrees off
center, it has no effect.

Operation
The GP2D12 uses an array of photo diodes (called a position sensitive
detector, or PSD) and some simple optics to detect distance. An IR diode
emits a modulated beam; the beam hits an object and a portion of the
light is reflected back through the receiver optics and strikes the PSD.

CAUTION: The GP2D12 is a precision device. Do not attempt to open
the unit. Doing so will ruin the delicate alignment of the optics. If you
want to open one up, by all means do so, but realize beforehand that
it may not function properly afterward. A block diagram of the
GP2D12 is shown in Figure 5.51.

Overall I found this to be an average range finder for PDA Robot. I
found that the 10-cm starting range and the narrow beam lead to lim-
itations. I will describe them in the chapters on programming the
PIC16F876 and PDAs. I would recommend looking into a sonar range
finder.

PDA Robotics

106

Figure 5.51

GP2D12 block diagram.

PDA 05 5/30/03 11:35 AM Page 106

107

This chapter explains step-by-step how to create the electrical and
mechanical components of PDA Robot.

Creating the Circuit Board
I created the circuit board using the M.G. Chemicals system. The M.G.
Chemicals system allows you to make your own circuit boards quick-
ly and easily. It is perfect for prototyping, hobbyists, and educational
applications. Technicians will be impressed with the high resolution,
while amateurs will be impressed with the simplicity of the system.

I purchased the Photofabrication Kit 416-K to create the PDA Robot
circuit board. It includes the following:

• One 3" � 5" cat. #603 presensitized single-sided PCB

• One 4" � 6" cat. #606 presensitized single-sided printed circuit
board (PCB)

• One 6" � 6" cat. #609 presensitized single-sided PCB

• One 475 ml bottle cat. #418 developer

• One 475 ml bottle cat. #415 ferric chloride

• Two cat. #416-S foam brushes

Building PDA
Robot

6

PDA 06 5/27/03 8:37 AM Page 107

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

• Plastic development tray

• Rubber gloves

• Instruction sheet

Figure 6.1 shows everything that is included in the kit.

Positive Photofabrication Process Instructions

Setup. Protect surrounding areas from developer and etchant splash-
es. Plastic is ideal for this. Work under safe light conditions. A 40 W
incandescent bulb works well. Important: Do not work under fluores-
cent light. If you do so, you will expose the board, making it unusable.
Just prior to exposure, remove white protective film from the presen-
sitized board. Peel it back carefully.

Exposing Your Board. For best results, use M.G. Chemicals cat.
#416-X exposure kit; however, any inexpensive lamp fixture that will
hold two or more 18" fluorescent tubes is suitable.

Place the presensitized board with the copper side toward the expo-
sure source. Lay positive film artwork onto the presensitized copper
side of the board and position as desired. Place the artwork printed
side down to prevent light leakage through the side of the transparen-
cy. Artwork should have been produced by a 600 dpi or better printer.

PDA Robotics

108

Figure 6.1

Contents of the
Photofabrication Kit
416-K.

PDA 06 5/27/03 8:37 AM Page 108

Use a glass weight to cover the artwork, ensuring that no light will
pass under traces (approx. 3 mm glass thickness or greater works best).
Use a 10-minute exposure time at a distance of 5".

The artwork in Figure 6.3 needs to be reproduced on a transparency and
placed on the presensitized “green” surface of the circuit board. To do
this, either scan the artwork and print, make a high-quality photocopy,
or download the file from www.pda-robotics.com and print using a
photo editor. From the printer options, set the quality to its highest pos-
sible setting. I recommend checking the leads on the components to
ensure that the drill holes are the correct size and every hole lines up.
Important: You must print the image at 100%. If your printer settings
are not correct, the components will not fit. Watch out for the compo-
nents themselves. I found that the higher-priced components fit perfect-
ly, but with some of the less-expensive components, the pad and hole
sizes on the artwork may need to be enlarged or the leads filed or
crimped. This happened with the voltage regulators and L298 chips.
Variations from manufacturer to manufacturer will occur. To increase
the hole sizes, simply load the image into an image editor like
Paintbrush, and draw in white space after increasing the size of the pad.
Be careful when expanding the sizes. You don’t want any of the traces
to touch each other, and it’s good to leave as much space as possible.

After printing the artwork on a good-quality transparency, cut it out
using a utility knife or scissors and put it on the presensitized side
after carefully peeling the protective cover off (see Figures 6.3 and
6.4).

Note: Ensure that the printing on the board in not reversed when plac-
ing on the presensitized side. The lettering “PDA Robotics” should be
shown as printed normally, not reversed.

Chapter 6 / Building PDA Robot

109

Figure 6.2

Fluorescent
exposure.

PDA 06 5/27/03 8:37 AM Page 109

Important: Be sure that no fluorescent lights are on anywhere nearby
when doing this. Place a clear glass or acrylic weight over the board
and transparency and place under the fluorescent light source. Expose
the board.

Developing Your Board. The development process removes any pho-
toresist that was exposed through the film positive to ultraviolet light.

Warning: Developer contains sodium hydroxide and is highly corro-
sive. Wear rubber gloves and eye protection while using it. Avoid con-

PDA Robotics

110

Figure 6.3

Artwork for the circuit board.

PDA 06 5/27/03 8:37 AM Page 110

tact with eyes and skin. Flush thoroughly with water for 15 minutes if
it is splashed in the eyes or on the skin.

Using rubber gloves and eye protection, dilute one part M.G. cat. #418
developer with 10 parts of tepid water (weaker is better than stronger)
in a plastic tray. Immerse the board copper side up into the developer,
and you will quickly see an image appear while you are lightly brush-
ing the resist with a foam brush. This should be completed within one
to two minutes. Immediately neutralize development action by rinsing
the board with water. The exposed resist must be removed from the
board as soon as possible. When you are done with the developing
stage, the only resist remaining will be covering what you want your
circuit to be. Completely remove the rest.

Note: Ensure that the mixture of water and developer is mixed thor-
oughly. If it is not, the traces may wash away when the board comes
in contact with a pocket of highly concentrated developer.

Etching Your Board. For best results, use the 416-E Professional
Etching Process Kit or 416-ES Economy Etching Kit. The most popu-
lar etchant is ferric chloride, M.G. cat. #415, an aqueous solution that
dissolves most metals. Use this solution undiluted, and be sure to
completely cover your board.

Warning: This solution is normally heated up during use, generating
unpleasant and caustic vapors. It is very important to have adequate
ventilation. Use only glass or plastic containers. Keep out of reach of
children. It may cause burns or stain. Avoid contact with skin, eyes,

Chapter 6 / Building PDA Robot

111

Figure 6.4

Cutting out the
circuit board
artwork.

PDA 06 5/27/03 8:37 AM Page 111

or clothing. Store in a plastic container. Wear eye protection and rub-
ber gloves.

Directions: If you use ferric chloride cold, it will take a long time to
etch the board. To speed up etching, heat the solution. A simple way
of doing this is to immerse the ferric chloride bottle or jug in hot water,
adding or changing the water to keep it hot. A thermostat-controlled
crock pot is also an effective way to heat ferric chloride, as are ther-
mostatically controlled submersible heaters—glass-enclosed such as
an aquarium heater. An ideal etching temperature is 50°C (120°F). Be
careful not to overheat it. The absolute maximum working tempera-
ture is approximately 57°C (135°F). The warmer the etch solution, the
faster the boards will etch. Ferric chloride solution can be used over
and over again, until it becomes saturated with copper. As the solution
becomes more saturated, the etching time will increase. Agitation
assists in removing unwanted copper faster. This can be accomplished
by using air bubbles from two aquarium air wands with an aquarium
air pump. Do not use aquarium “air stone.”

The etching process can be assisted by brushing the unwanted resist
with a foam brush while the board is submerged in the ferric chloride.
I found that rocking the board back and forth in the pan by holding it
by the edges with rubber gloves on works well. The ferric chloride can
be kept warm by placing the glass basin on a stove element set to low.
Turn on the fume hood to expel any fumes.

After the etching process is completed, wash the board thoroughly
under running water. Do not remove the remaining resist protecting
your circuit or image. It protects the copper from oxidation.

PDA Robotics

112

Figure 6.5

Circuit board ready
for etching.

PDA 06 5/27/03 8:37 AM Page 112

Removal of resist is not necessary when soldering components to the
board. By leaving the resist on, you protect the circuit from oxidation.
Tin plating the board is not necessary. In soldering, the heat disinte-
grates the resist underneath the solder, resulting in an excellent bond.

Drilling Out the Circuit Board. Once the board is dry, drill out the
holes using the appropriate drill bits. Be sure that the bit is in straight
and that you hit the hole dead center. Figure 6.6 shows the main board
being drilled out. Figure 6.7 shows the ribbon connector holes on a
transponder circuit board.

Cutting the Board. The board can be cut into the three sections by
repeatedly scoring with a utility knife, using a hacksaw, or using a
band saw. Note: Only one of the infrared (IR) transceiver boards is
required for this project. Figure 6.8 shows where the board should
be cut.

Placing and Soldering the Components. The boards are now ready
to have the components soldered into place. The components go onto
the topside of the board (opposite side from the traces), with the
exception of the TFDS4500 on the transceiver circuit board.

Chapter 6 / Building PDA Robot

113

Figure 6.6

Drilling the main
board.

PDA 06 5/27/03 8:37 AM Page 113

PDA Robotics

114

Figure 6.8

Cut the boards on the dotted lines.

Figure 6.7

Dead center drill.

PDA 06 5/27/03 8:37 AM Page 114

Parts Lists

The Main Board. Parts for the main board include:

• One PIC16F876 microcontroller

• One 28-pin DIP IC socket (or 2 18-pin DIP IC sockets with one cut
down)

• One MCP2150 IrDA protocol chip

• One 18-pin DIP IC socket

• One L7805ACV voltage regulator

• One 8-pin DIP switch

• One 11.0592 MHz crystal

• One 20.0000 MHz crystal

• One 3.9 mm (.156") Molex wire connectors

• One Molex 3.9 mm 2P header with ramp connects

• Two 6-post 2.5 mm DIP headers

• Two IDC6F DIP connector with key

• One Red LED

• Three 1 K resistor

• Two 47R 1/4 W resistors

• One 4.7 UF tantalum capacitor

• Six 22 pF capacitors

• One 1-pin

• 8" of six-wire ribbon cable

The Motor Controller. Parts for the motor controller include:

• One L298N dual bridge driver

• Four 3.9 mm (.156") Molex wire connectors

• Four Molex 3.9 mm 2P header with ramp connects

• Two 6-post 2.5 mm DIP headers

Chapter 6 / Building PDA Robot

115

PDA 06 5/27/03 8:37 AM Page 115

• Two IDC6F DIP connector with key

• Eight 4007 746 diodes

• Three .1 UF capacitors (or higher)

The IR Transceiver. Parts for the IR transceiver include:

• One TFDS4500

• One 6-post 2.5 mm DIP headers

• One IDC6F DIP connector with key

• 6" of six-wire ribbon cable

Range Finder and Attachments. Parts for the range finder and
attachments include:

• One GP2D12 distance measuring system with cable and attach-
ments (AIRRS @ www.hvwtech.com)

• Two .156" wire connectors

The Body. Parts for the body include:

• Aluminum: 8" � 6" � 1/16" (main platform)

• Aluminum: 7" � 5 1/4" (top platform) � 1/16"

• Aluminum: 1" � 1/2" � 1/4" (accessory mount)

• Two Tamiya six-speed geared motors (www.hvwtech.com)

• Three Tamiya wheel sets

• Four 1" L-brackets

• Five 2" 4-40 hex spacers

• Eight 1/2" 4-40 hex spacers

• One 9 V battery connector

• One 6 V battery pack (4 � 1.5 V AA)

• 6" of Velcro with self-basting adhesive (secure batteries)

• 1' of double-sided Velcro (secure PDA)

• Package of 50 4-40 1/4" nuts, bolts, and washers.

PDA Robotics

116

PDA 06 5/27/03 8:37 AM Page 116

Placing and Soldering the
Main Board Components
Figures 6.9 to 6.11 show the placement of the parts. The following
numbers correspond to those on the main circuit board. Place and sol-
der the parts.

1. Molex 3.9 mm 2P header with ramp connects to Molex 156" (3.9
mm) wire connector

2. L7805ACV voltage regulator

3. 22 pF capacitors

4. 1 K resistors

5. Red LED

6. 47R 1/4 W resistors

7. 4.7 UF tantalum capacitor

Chapter 6 / Building PDA Robot

117

Figure 6.9

Main board parts placement.

PDA 06 5/27/03 8:37 AM Page 117

8. 8-pin DIP switch

9. 18-pin DIP IC socket (Note the PIC16F876 is using two—one cut
down)

10. 6-post 2.5 mm DIP headers

11. 20.0000 MHz crystal

12. 11.0592 MHz crystal

13. 1-pin header for analog input

It is good practice to check the conductance after soldering a compo-
nent to the board. This ensures that electricity will flow between the
points on the circuit and with little resistance. If conductivity is poor,
it means that the solder joint is poor and should be redone. To check
for conductivity, set the multimeter to RX 1 KΩ, and touch one probe
on the solder weld and the other on a trace to which it is connected.

PDA Robotics

118

Figure 6.10

Enlarged view of left side of main board.

PDA 06 5/27/03 8:37 AM Page 118

The needle on the meter should “spike” to the right, showing zero
resistance. Figure 6.12 shows the meter set to RX 1 KΩ, with the leads
crossed and the needle to the far right, indicating that there is no
resistance and that the meter is working properly. Figure 6.13 shows
testing the conductivity of the solder connections.

Chapter 6 / Building PDA Robot

119

Figure 6.11

Enlarged view of
right side of main
board.

Figure 6.12

Setting the meter
for conductivity
testing.

PDA 06 5/27/03 8:37 AM Page 119

To ensure a good solder joint, keep the tip of the iron clean. Buy high-
quality fairly thin solder, and ensure that the iron is hot. Clean the tip
after soldering two or three joints.

Placing and Soldering the
Motor Controller Components
Figures 6.14 to 6.16 show the placement of the parts on the motor con-
troller circuit. The following numbers correspond to those on the
motor controller circuit board. Ensure that the diodes are oriented cor-
rectly, as shown in the figure.

1. Molex 3.9 mm 2P headers with ramp connects to Molex .156"
wire connectors

2. .1 UF capacitors (or higher)

3. 4007 746 diodes

4. 6-post 2.5 mm DIP headers

5. L298N dual bridge driver

PDA Robotics

120

Figure 6.13

Testing the solder
connections on a
prototype circuit.

PDA 06 5/27/03 8:37 AM Page 120

Chapter 6 / Building PDA Robot

121

Figure 6.14

Parts placement on the motor controller circuit board.

Figure 6.15

Close-up of left side
of the motor
controller.

PDA 06 5/27/03 8:37 AM Page 121

The Infrared Transceiver
Solder the 6-post 2.5 mm DIP header to the board normally, with the
long pins on the top of the board. Position the TFDS4500 on the pads
on the bottom of the board, ensuring that the middle of the transceiv-
er is centered over the middle of the pads. Solder or epoxy the pins to
the pads being careful to not short any of the pads. Ensure that you are
using a good conductive epoxy. Figure 6.17 shows the TFDS4500
lined up and ready for the epoxy or solder to be applied. Note: If using

PDA Robotics

122

Figure 6.16

Close-up of right
side of the motor
controller.

Figure 6.17

Close-up of the
TFDS4500 ready to
be soldered or
epoxyed to the
board.

PDA 06 5/27/03 8:37 AM Page 122

epoxy, gently scrape off the photoresist (which protects the pads from
corrosion) in order to achieve a good contact. A small flathead screw-
driver works well for this. Once the solder or epoxy has set, it is a good
idea to cement the backside of the transceiver with a regular noncon-
ducting epoxy.

Set the boards aside until ready to drill the mounting holes. I recom-
mend putting them in a static-proof bag. We will mount the boards to
the craft once the other steps, such as creating the ribbon cables and
drilling the holes in the support pieces, etc., are done.

The Power Connectors
The Battery Packs
To prepare the power connectors for the battery packs, motors, and the
IR range finder, you will need to solder the Molex .156" (3.9 mm) wire
connectors and slide them into the plastic moldings provided. Figure
6.18 shows the connectors of the battery packs. Note: the ground wire
is always inserted on the left side of the connector. You may want to
solder on/off switches between one of the leads. I simply plug and
unplug the power connectors to the posts to turn the craft on or off.

Chapter 6 / Building PDA Robot

123

Figure 6.18

The power
connections.

PDA 06 5/27/03 8:37 AM Page 123

The IR Range Finder
The connector that comes with the Sharp GP2D12 needs to have the
power leads connected to the 3.9 mm Molex wire connector as well.
Solder the black and red wires to the inserts the same way as the
battery leads, with the ground wire on the left. The blue wire on the
connector goes to the analog input. I improvised a connector for the
solitary analog input pin of the PIC16F876 by using a 3.9 mm connec-
tor turned around with the end that normally has the wire soldered to
it, crimped to fit the pin. This works well because the connector is
secured to the pin by the flexible metal tab. Figure 6.19 shows the sol-
dered connections.

Figure 6.20 shows the improvised connector snug on the PIC16F876
analog input pin.

The two motors will also need to have the Molex power connectors
fastened. But first, we must assemble the gear boxes and drill the holes
that the wires will feed though from the bottom of the PDA Robot.

PDA Robotics

124

Figure 6.19

The IR range finder
connections. A:
Positive (red), B:
Ground (black), C:
Analog line (blue).

PDA 06 5/27/03 8:37 AM Page 124

Cutting the Aluminum Pieces
and Drilling the Holes
Cut the bottom plate (main platform) into an 8" � 6" piece. Cut the top
plate that is suspended on four hex spacers to 7" and 5-1/4". Drill out
the holes, as outlined in Figures 6.21 and 6.22.

• Aluminum: 8" � 6" � 1/16" (main platform)

• Aluminum: 7" � 5-1/4" (top platform) � 1/16"

• Aluminum: 1" � 1/2" � 1/4" (accessory mount)

• Two Tamiya six-speed geared motors (www.hvwtech.com)

• Three Tamiya wheel sets

• Four 1" L-brackets

Mount the hex brackets on the top of the platform. Mount the motors,
wheel brackets, and range finder on the bottom. Figure 6.23 shows the
underside with the motors and wheels mounted to the platform. The
2" hex spacers secure the outside bolts used to mount the motors.
Ensure that both motors are oriented in the same direction. If they
aren’t, the PDA control software will have to be modified to control
the direction of PDA Robot’s motion. Figure 6.23 shows the underside
of the main platform with the motors, range finder, and wheels mount-
ed. The two pieces of balsa wood under the motor gearboxes raise the

Chapter 6 / Building PDA Robot

125

Figure 6.20

The IR analog input
connector.

PDA 06 5/27/03 8:37 AM Page 125

PDA Robotics

126

Figure 6.21

Main platform drill
diagram.

Figure 6.22

Drilled out platform
showing parts
placement.

PDA 06 5/27/03 8:37 AM Page 126

motors so that they are higher than the outer wheels. This ensures
good traction so PDA Robot can turn easily.

Assembling the Geared Motors
I chose the Tamiya six-speed gearbox for this project and set the gear
ratio to 76.5:1. This gives the craft enough power to move over dense
carpet at a reasonable speed without stalling. The gear kit comes with
detailed instructions on assembling the motors. Figure 6.24 shows the
step in the assembly instructions detailing the gear placement for the
76.5:1 ratio (132-rpm). Figure 6.25 shows the assembled gearbox.

To mount the wheels on the gearboxes, insert the spring pin and use
wheel hub #2 provided with the sports tire set, and fasten the wheel
to the shaft using the hex wrench that comes with the kit. Figure 6.26
shows how to mount the wheel hub on the shaft. Figure 6.27 shows
the mounted gearbox with the wheel attached.

Chapter 6 / Building PDA Robot

127

Figure 6.23

Underside of the
main platform.

PDA 06 5/27/03 8:37 AM Page 127

Once the gearboxes have been mounted, push the motor wires through
the holes and solder the Molex wire connectors to the leads. Ensure
that the ground wire is inserted on the left of the plastic housing. See
Figure 6.22.

PDA Robotics

128

Figure 6.24

Assembling the gearbox.

Figure 6.25

The assembled
gearbox.

PDA 06 5/27/03 8:37 AM Page 128

Secure the L-brackets and mount the wheels using wheel hub #1 and
a 1" 4-40 bolt with a washer so that there is not too much wobble.
Figure 6.28 shows the side profile. Note: You may want to substitute
the L-brackets for casters that will allow the front and back wheels to
swivel freely. I found that the L-brackets work well on smooth surfaces

Chapter 6 / Building PDA Robot

129

Figure 6.26

Mounting the wheel
hub.

Figure 6.27

Mounted gearbox
with wheel
attached.

PDA 06 5/27/03 8:37 AM Page 129

or loose surfaces such as ceramic tile and gravel. The wheels may grab,
hindering the turn ability of PDA Robot when the carpet pile is not
low and tight. Another solution is to use smooth, hard plastic wheels
on the front and back that don’t grab.

Drill holes in the circuit board to correspond with the hex spacers
attached to the main platform, and mount them with 4-40 bolts. Pass
the IR range finder wire through the wire hole in the center of the plat-
form, and insert the presoldered wire connectors into the plastic
Molex housing.

The Ribbon Connectors
To connect the main board to the IR transceiver and the motor con-
troller, we need to prepare the ribbon connectors. For the main board
to motor controller connection, cut a 6" piece of ribbon six wires wide,
and secure the connector to it by sliding the wire into the groves and
pressing down on the top firmly until it is tight. Then slide the lock-
ing key in to hold everything together permanently. It is important that
pin 1 of each connector goes to pin 1 of the other. Secure one connec-
tor to the ribbon, flip it over and connect it the same way on the other
side. The red wire (wire 1) is always on the left. Figure 6.29 shows the
process of preparing the ribbon connector. Do the same for the IR
transceiver. A shorter piece of cable about 4" should work.

It is important that the connectors are placed in the correct orienta-
tion or the circuit will not function. The pins of one connector must
match up with the pins of the other. Figures 6.30 to 6.33 show the
connector’s orientation and how the cables should be aligned. As a
general rule, the red wire (wire 1) should always be over pin 1 of the
connector.

PDA Robotics

130

Figure 6.28

Side profile of PDA
Robot.

PDA 06 5/27/03 8:37 AM Page 130

Attach all the connectors and drill the holes in the top plate that will
support the PDA. Figure 6.34 shows the position of the drill holes
used to secure the top platform (7" � 5-1/4") to the hexagon spacers of

Chapter 6 / Building PDA Robot

131

Figure 6.29

Preparing the ribbon
connectors.

Figure 6.30

The IR transceiver
connector
orientation.

PDA 06 5/27/03 8:37 AM Page 131

PDA Robotics

132

Figure 6:31

The IR transceiver
connector
orientation to main
board.

Figure 6.32

The motor controller
connector
orientation on the
motor board.

PDA 06 5/27/03 8:37 AM Page 132

Chapter 6 / Building PDA Robot

133

Figure 6.33

The motor controller
connector
orientation on the
main board.

Figure 6.34

Top platform drill
holes.

PDA 06 5/27/03 8:37 AM Page 133

the main platform. Secure a piece of sticky Velcro to the top plate
(where you would like the transceiver to go) and to the transceiver
itself. We need to program the 16F876 microcontroller, so it’s best to
leave the top plate off until this is done (see the next chapter).

The Camera (Accessory) Mount
Drill two holes in the 1" � 1/2" � 1/4" piece of aluminum. One hole is
used to secure it to the hex spacer positioned on the front of PDA
Robot and the other to mount the camera. Figure 6.35 shows the cam-
era mount attached to the hex space. A X10 wireless video camera will
be mounted here to provide vision when PDA Robot is being con-
trolled remotely from a PC connected to the wireless network.

Now that PDA Robot’s physical body is complete, we need to give him
a brain. Information on how to program the microcontroller and the
PDA software is in the chapters to follow. Figures 6.36 and 6.37 show
PDA Robot fully assembled.

PDA Robotics

134

Figure 6.35

Camera mount
attached to the 2"
hex spacer.

PDA 06 5/27/03 8:37 AM Page 134

Chapter 6 / Building PDA Robot

135

Figure 6.36

PDA Robot being
controlled by a Palm
OS device (Visor
Deluxe).

Figure 6.37

PDA Robot being
controlled with a
Pocket PC device
(iPAQ).

PDA 06 5/27/03 8:37 AM Page 135

This page intentionally left blank.

137

The PIC compiler is used in this project to write the software running
on the PIC16F876 microcontroller, and the EPIC Plus Programmer is
used to download the software to the PIC16F84A. The PIC16F876
receives input data and commands from the infrared (IR) module and
the PDA via the MCP2150. It sends information such as range data and
motor control confirmation codes back to the PDA. The PIC16F876
could be considered the main node of the robot’s nervous system.
Figure 7.1 shows the EPIC Plus microcontroller programmer with the
PIC16F876 inserted into the ZIF adapter.

The pocket-sized EPIC Plus Programmer quickly and easily programs
most PICmicro microcontrollers, including the PIC16C55x, 6xx, 7xx,
84, 9xx, PIC16CE62x, PIC16F62x, 8x, 87x, PIC14Cxxx, PIC17C7xx,
PIC18Cxxx, 18Fxxx, the 8-pin PIC12Cxxx, PIC12CExxx, and the 14-
pin 16C505 microcontrollers. The basic programmer includes an 18-
pin socket for programming 8-, 14-, and 18-pin PICmicro microcon-
troler unit (MCUs). (It will not program or read the baseline PIC16C5x
or high-end 17C4x series.) A wide variety of adapters allow the EPIC
Plus to program devices in many different package formats such as
DIP, SOIC, PLCC, SSOP, TSOP, etc.

The EPIC Plus Programmer is software upgradeable for future PICs. It
includes DOS and Windows 95/98/Me/NT/2000 programming soft-
ware and a PIC macro assembler that works with both the Microchip

Programming
the PIC16F876
Microcontroller

7

PDA 07 5/27/03 8:44 AM Page 137

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

mnemonics and the Parallax “8051” style mnemonics. For this project,
I am using the PICmicro MCU C Compiler. It can also be used with
MPASM, a BASIC compiler, or a number of other C compilers.

The EPIC Plus Programmer can be powered with two 9-volt batteries
or an optional AC adapter (recommended). The EPIC Plus Programmer
connects to a PC compatible parallel printer port and includes an
assembler and programming software. It is available either assembled
or as a bare board.

Software Installation
The EPIC Plus Programmer files are compressed into a self-extracting
file on the disk. They must be uncompressed before use. To uncom-

PDA Robotics

138

Figure 7.1

The EPIC Plus
microcontroller
programmer with
zoomed in ZIF
socket.

PDA 07 5/27/03 8:44 AM Page 138

press the files, first create a directory on your hard drive called EPIC,
or another name of your choosing by typing:

c:\
md epic

at the DOS prompt.

Change to this directory:

cd epic

Assuming the distribution diskette is in drive a:, uncompress the files
into the EPIC subdirectory:

a:\epic2xx -d

where epic2xx is the name of the self-extracting file on the diskette.
Don’t forget the -d option on the end of the command. This ensures
that the proper subdirectories within EPIC are created. Alternatively,
INSTALL.BAT can be run to perform similar steps. If the EPIC direc-
tory already exists, you will get an error message and the installation
will continue.

Hardware Installation
Make sure there are no PICmicro MCUs installed in the EPIC pro-
gramming socket or any connected adapter’s socket until the program-
ming software is executed and the light-emitting diode (LED) is off.
Also, be sure that the EPIC Plus Programmer is placed on an insulat-
ed surface to prevent the shorting out of traces on the bottom.

Connect the EPIC Plus Programmer to a PC compatible parallel printer
port using a 25-pin male to 25-pin female printer extension cable. The
EPIC Plus Programmer uses pins 2–6, 10, and 19–25. A serial cable may
not have all of the necessary connections, so be sure to use a printer exten-
sion cable. A suitable cable is available from Micro-Engineering Labs.

Make sure the programmer is connected to a parallel printer port.
Connection to a serial port or SCSI port that has similar connectors
may result in damage to the port or to the programmer. If you are pow-
ering the EPIC Plus Programmer with the optional AC adapter, plug it
into the power connector on the programmer and then into a wall out-
let. The AC adapter should provide approximately 16VDC at 500ma.

Chapter 7 / Programming the PIC16F876 Microcontroller

139

PDA 07 5/27/03 8:44 AM Page 139

When an AC is used adapter to power the programmer, the state of the
“Batt ON” jumper does not matter.

If you are powering the EPIC Plus Programmer with two 9-volt batter-
ies, plug each battery onto the battery snaps. Connect the 2-pin short-
ing jumper to the 2-pin “Batt ON” posts. It is a good idea to check the
battery voltage from time to time or if there seems to be difficulty pro-
gramming parts.

Warning: Do not connect a battery across the center snaps. Doing so
shorts out the battery and may cause it to explode.

Note: The LED may be lit at this point. It should go out when the EPIC
programming software is run. Do not insert or remove a PICmicro
MCU when the LED is on.

The EPIC Plus Programmer should now be powered up and ready to
program PICmicro MCUs.

General Operation
The next task is simply to write your program using any text editor, such
as DOS Edit or Windows Notepad, and assemble it using the assembler,
PM, included on the disk, or MPASM (or MPLAB), available from
Microchip. Instructions for the use of PM are on the included disk.

Note: For PDA Robot, I am using the PICmicro MCU compiler. The
source code and the process of generating the .HEX file is explained in
detail in the next section of this chapter.

Once your program assembles properly, the generated .HEX file may
be programmed into a PICmicro MCU using the EPIC programming
software. Three versions of the EPIC software are included: two ver-
sions for DOS (one command line and one graphical) and one for
Windows 95/98/ME/NT/2000/XP. If you choose the graphical DOS
version, it should be used in a straight DOS session or from a full-
screen DOS window in Windows 95/98 or OS/2. (Running the graph-
ical DOS version of EPIC under Windows is discouraged. Windows
[all varieties] alters the system timing and plays with the ports when
you are not looking, which may cause programming errors.)

The Windows 95/98/ME/NT/2000/XP version should, of course, be
run under Windows 95, 98, ME, NT, 2000, or XP. The Windows and

PDA Robotics

140

PDA 07 5/27/03 8:44 AM Page 140

command line DOS versions are more up to date than the graphical
DOS version, and are able to program more types of PICmicro MCUs.

EPIC for DOS
Start the DOS version of the EPIC software by typing “epicdos” at the
DOS command prompt in the directory you created previously. The
EPIC software will look around to find where the EPIC Plus
Programmer is attached, and get it ready to program a PICmicro MCU.
If the EPIC Programmer is not found, check all of the above connec-
tions and verify that no PICmicro MCU is installed in the programmer
or any connected adapter.

Once the programming screen is displayed, select the device type you
wish to program. For PIC16C8x or PIC16F8x parts, select 8x. For the
PIC14C000, PIC16C55x, 6x, 7x, or 9x parts, select 6x/7x/9x. For
PIC12C5xx parts, select 12C50x.

Enter “Alt-O” (or click “Open” with the mouse) to open your assem-
bled object (.HEX) file. Double-click on the appropriate file to load it.
Once the file has been loaded, make sure the proper device character-
istics are selected. See the Microchip data books for information on
device configuration.

Caution: Be sure that Code Protect is set to OFF before programming a
windowed (JW) PICmicro MCU. You may not be able to erase a win-
dowed part that has been code protected.

Insert a PICmicro MCU into the EPIC Plus Programmer or connected
adapter socket. The end of the PICmicro MCU with the notch should
be all the way at the Pin 1 end of the socket, away from the battery
connectors. Press “Alt-P” (or click “Program” with the mouse) to pro-
gram the PICmicro MCU.

Before programming, the EPIC software does a blank check to ensure
that the part is erased. PIC12Cxxx parts are not completely blank from
the factory. They contain a calibration value in the last location. Simply
tell EPIC that it is OK to program them anyway, when it finds they are
not blank. If the PICmicro MCU is a 16F84 or another EEPROM or flash
part, it is usually not necessary to erase it before programming.

Typing “epicdos /?” at the DOS command prompt will display a list of
available options for the EPIC software.

Chapter 7 / Programming the PIC16F876 Microcontroller

141

PDA 07 5/27/03 8:44 AM Page 141

EPIC for Windows 95/98/ME/NT/2000/XP
Because the Windows version is the simplest and most up-to-date ver-
sion, I will explain how to program the PIC16F876 using it.

Start the Windows 95/98/ME/NT/2000/XP version of the EPIC soft-
ware by navigating to the EPIC directory using Explorer and double-
clicking on EPICWin. Alternatively, you can create a shortcut to EPIC
on your desktop and double-click it. The EPIC software will look
around to find where the EPIC Plus Programmer is attached and get it
ready to program a PICmicro MCU. If the EPIC Programmer is not
found, check all of the above connections and verify there is not a
PICmicro MCU installed in the programmer or any connected adapter.
The file EPIC.INI must be in the same directory EPICWIN.EXE resides
in, and the EPIC directory should be in your path so that Windows can
find the device drivers. Once the programming bar is displayed, select
the device type you wish to program. Figure 7.2 shows the main win-
dow with the 16F876 device selected as the target.

Click the Open button or File/Open with the mouse to open your
assembled object (.HEX) file. Double-click on the appropriate file to
load it. Once the file has been loaded, make sure the proper device
characteristics are selected under the Options menu. See the
Microchip data books for information on device configuration.

Caution: Be sure that Code Protect is set to OFF before programming a
windowed (JW) PICmicro MCU. You may not be able to erase a win-
dowed part that has been code protected.

For the PIC16F876 and the crystal oscillator used with PDA Robot,
ensure that the crystal is set to High Speed (HS) and enable the Power-
up timer and Brown-out reset under the Configuration menu. Use the
default values for everything else in the configuration menu. Figure
7.3 shows the settings required.

PDA Robotics

142

Figure 7.2

EPICWin main window.

PDA 07 5/27/03 8:44 AM Page 142

The Options I like to have set to ensure that everything works correct-
ly are Program/Verify Code, Program/Verify Configuration, Program/
Verify Data, Reread File Before Programming, Erase Before
Programming, and Verify After Programming. Even though it is not
necessary to erase the 16F876 before programming, I like to ensure
that it is because I have had the odd problem when I don’t erase it.
Figure 7.4 shows the Options menu.

Chapter 7 / Programming the PIC16F876 Microcontroller

143

Figure 7.3

PIC16F876
configuration
options.

Figure 7.4

PIC programming
options.

PDA 07 5/27/03 8:44 AM Page 143

Insert a PICmicro MCU into the EPIC Plus Programmer or connected
adapter socket. The end of the PICmicro MCU with the notch should
be all the way at the Pin 1 end of the socket, away from the battery
connectors. Click the Program button or Run/Program with the mouse
to program the PICmicro MCU.

Before programming, the EPIC software does a blank check to ensure
that the part is erased. If the PICmicro MCU is a 16F84 or another EEP-
ROM or flash part, it is usually not necessary to erase it before pro-
gramming. PIC16F7x and PIC18Fxxx devices do require erasing each
time before the MCU may be reprogrammed.

The current setup is saved to the file EPICCFG.INI when you exit
EPICWin. It is reloaded the next time EPICWin is started.

EPICWin Controls
The Open speed button opens a .HEX file for programming. The name
of an open file appears in the EPICWin title bar. Previous configura-
tion information will not be altered if Options/Update Configuration
is not checked.

The Save speed button will save the current code, data, ID, and con-
figuration information to the currently open file. If no file has been
previously selected, it will prompt for a filename.

The Program speed button will program the current code, data, ID, and
configuration into the selected device. It will optionally load the lat-
est version of the .HEX file before programming. The device will be
checked to ensure it is blank before programming, unless
Options/Skip Blank Check is checked.

The Verify speed button will compare the current code, data, ID,
and configuration to the programmed device. If the information
does not match, an error message is displayed. A verify is also done
as the device is being programmed. A code protected device cannot
be verified.

The Read speed button will read the current code, data, ID, and con-
figuration from the selected device. The configuration information
will not be read if Options/Update Configuration is not checked.

The Blank Check speed button will read the code space to ensure a
device is blank. It will not check the data space, ID, configuration, or

PDA Robotics

144

PDA 07 5/27/03 8:44 AM Page 144

the oscillator calibration word programmed by the factory into some
devices.

The Erase speed button will erase EEPROM or flash electrically erasa-
ble devices. It is grayed out for devices that cannot be electrically
erased.

The Device box allows selection of the device to be programmed. Click
the down arrow to the right of the box to drop down a list of support-
ed devices, then click on the device. This device information, includ-
ing the default device that is selected on start-up, is contained in the
file EPIC.INI. This file must be in the same directory as EPICWIN.EXE.
Select the device before a .HEX file is opened to ensure the configura-
tion information is properly interpreted. Devices with parentheses
after them indicate that they will program either the base version of
the part, or the version contained within the parentheses. For exam-
ple, selecting the device listed as PIC16F84(A) means that either the
PIC16F84 or the PIC16F84A may be programmed.

All of the speed buttons, along with other settings, are also available
using the drop-down menus.

The PICmicro MCU Compiler
The code for PIC16F876 used in PDA Robot was compiled using the
PICmicro MCU compiler. The code is written in C, and will be
explained in detail in this chapter.

The PCM compiler is for 14-bit opcodes, and PCH is for the 16- and
18-bit PICmicro MCU. This compiler is specially designed to meet the
special needs of the PICmicro MCU controllers. These tools allow
developers to quickly design application software for these controllers
in a highly readable high-level language.

The compilers have some limitations when compared to a more tradi-
tional C compiler. The hardware limitations make many traditional C
compilers ineffective. As an example of the limitations, the compilers
will not permit pointers to constant arrays. This is due to the separate
code/data segments in the PICmicro MCU hardware and the inability
to treat ROM areas as data. On the other hand, the compilers have
knowledge about the hardware limitations and do the work of decid-
ing how to best implement your algorithms. The compilers can imple-

Chapter 7 / Programming the PIC16F876 Microcontroller

145

PDA 07 5/27/03 8:44 AM Page 145

ment very efficiently normal C constructs, as well as input/output
operations and bit twiddling operations.

The Command Line Compiler
The command line compiler is invoked with the following command:

CCSC options cfilename

Valid options:

+FB Select PCB (12-bit). -D Do not create debug file.

+FM Select PCM (14-bit). +DS Standard .COD format debug file.

+FH Select PCH (PIC18XXX). +DM .MAP format debug file.

+F7 Select PC7 (PIC17XXX). +DC Expanded .COD format debug file.

+FS Select PCS (SX). +Yx Optimization level x (0-9).

+ES Standard error file. +T Create call tree (.TRE).

+EO Old error file format. +A Create stats file (.STA).

-J Do not create PJT file. -M Do not create symbol file.

The xxx in the following is optional. If included it sets the file extension:

+LNxxx Normal list file. +O8xxx 8-bit Intel HEX output file.

+LSxxx MPASM format list file. +OWxxx 16-bit Intel HEX output file.

+LOxxx Old MPASM list file. +OBxxx Binary output file.

+LYxxx Symbolic list file. -O Do not create object file.

-L Do not create list file.

+P Keep compile status window up after compile.

+Pxx Keep status window up for xx seconds after compile.

+PN Keep status window up only if there are no errors.

+PE Keep status window up only if there are errors.

+Z Keep scratch and debug files on disk after compile.

I="..." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"If no I= appears on the command
line the .PJT file will be used to supply the include file paths.

#xxx="yyy" Set a global #define for id xxx with a value of yyy, example:#debug="true"

+STDOUT Outputs errors to STDOUT (for use with third-party editors).

+SETUP Install CCSC into MPLAB (no compile is done).

+V Show compiler version (no compile is done).

+Q Show all valid devices in database (no compile is done).

If @filename appears on the CCSC command line command line,
options will be read from the specified file. Parameters may appear on
multiple lines in the file.

PDA Robotics

146

PDA 07 5/27/03 8:44 AM Page 146

If the file CCSC.INI exists in the same directory as CCSC.EXE, then
command line parameters are read from that file before they are
processed on the command line. For example, to compile the source
code and generate a .HEX file for PDA Robo, we would type the fol-
lowing from the PICC directory.

CCSC +FM +P C:\PROGRA~1\PICC\PDABOT.C

The Source Code
This section explains in detail the C language constructs used in the
source code of the program running on the PIC16F876. I have
offloaded most of the processing to the PDA so the code on the micro-
controller is very straightforward. To quote Albert Einstein, “Make
things as simple as possible, but not simpler.” The software waits for
a command from the PDA, signaling each motor to rotate forward,
reverse, or stop and a command prompting PDA Robot to send the
range data to the PDA. For example, the PDA can instruct the craft to
turn by sending two commands, a “motor 1 forward” command and a
“motor 2 reverse” command. This section describes an optimization to
the code and includes the HEX listing that can be copied to a file and
burned to the PIC16F876.

The following is the code listing for pdabot.c.

// PDABOT.C
//
// Software for the PIC16F876 used to controlPDA Robot
//
// Author: Douglas H Williams
// PDA Robotics: McGraw-Hill 2003
//

#include <16f876.h>

//
// We are using a 20 MHz oscillator so set the clock accordingly
//

#use delay(clock=20000000)

//
// Set pins B0 & B1 as our RS232 port which are connected to the
// MCP2150 IrDA Protocol Stack Controller
//

#use rs232(baud=115200, xmit=PIN_B1, rcv=PIN_B0, stream=PDA)

Chapter 7 / Programming the PIC16F876 Microcontroller

147

PDA 07 5/27/03 8:44 AM Page 147

main() {

//
// The value from the range finder
//

int range_value;

//
// The command sent from the PDA
//

char cmd;

//
// Set up port A as analog, pin A0 is connected
// to the sharp GP2D12 infrared range finder
//

setup_port_a(ALL_ANALOG);
setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);

//
// Set the B port pins that interface to the
// L298 motor controller low to ensure no
// motor movement on startup. Pins B2 & B3
// control Motor 1 and B4 & B5 control Motor 2.
//

output_low(PIN_B2);
output_low(PIN_B3);
output_low(PIN_B4);
output_low(PIN_B5);
output_low(PIN_B6);
output_low(PIN_B7);
delay_cycles(3);

//
// Let the PDA know we are alive by sending some data (A space characater)
//

fprintf(PDA, " ");

//
// Loop indefinitely handling commands from the PDA
//

while (1){

//

PDA Robotics

148

PDA 07 5/27/03 8:44 AM Page 148

// Get the command sent from the PDA
//

cmd = fgetc(PDA);

//
// Motor 1 commands
//

//
// Motor 1 Forward
//

if(cmd == 'a')
{

output_high(PIN_B2);
output_low(PIN_B3);

}

//
// Motor 1 Reverse
//

if(cmd == 'b')
{

output_low(PIN_B2);
output_high(PIN_B3);

}

//
// Motor 1 Stop
//

if(cmd == 'c')
{

output_low(PIN_B2);
output_low(PIN_B3);

}

//
// Motor 2 Forward
//

if(cmd == 'd')
{

output_high(PIN_B4);
output_low(PIN_B5);

}

//
// Motor 2 Reverse
//

Chapter 7 / Programming the PIC16F876 Microcontroller

149

PDA 07 5/27/03 8:44 AM Page 149

if(cmd == 'e')
{

output_low(PIN_B4);
output_high(PIN_B5);

}

//
// Motor 2 Stop
//

if(cmd == 'f')
{

output_low(PIN_B4);
output_low(PIN_B5);

}

//
// The PDA has requested that we get the value from the
// Analog input of the Range Finder
//

if(cmd == 'g')
{

//
// Give some time for the clear to send. We could check the CLS
// pin from the MCP2150 here by reading the port value of Pins
// RB6 and RB7 can be configured as.inputs and used to monitor the
// MCP2150's Request to send (RTS: pin 13) and Clear to send (CTS: pin 12)
// because I have connected them on the circuit board. However, if the data is
// lost the PDA will ask for it again. See Chapter 5, Figure 5.12: Schematic of
// PIC16F876 connection to MCP2150
//

delay_ms(3);

//
// Read the analog value from the range finder
//

range_value = Read_ADC();

//
// Send the value to the PDA
//

putc(range_value);
}

}
}

PDA Robotics

150

PDA 07 5/27/03 8:44 AM Page 150

This code can be optimized by having the PDA simply send a byte that
represents the state of the pins. By doing this, we can replace the six “if”
commands used to set the pins and the state of the motor with the line:

OUTPUT_B(value);

If we convert the number to binary, you can see that we need the first
four bits, and the fifth bit can be used to represent a request for the
rangefinder data. So if the value is less than 64, we know it is a motor
command, and if higher, a request for the range.

010100 (binary) = 20 (decimal) = Both motors moving forward
101000 (binary) = 40 (decimal) = Both motors moving Reverse
…
000000 (binary) = 0 (decimal) = Both motors stopped
1000000 (binary) = 64 decimal = The PDA has requested the range data.

The code preceding was written using Notepad and saved as pdabot.c
in c:\Program files\picc\pdabot. The next step is to invoke the com-
mand line compiler. When you use the following command in a com-
mand prompt from the picc directory, the +P flag instructs the com-
piler to leave the compilation window displayed when it is complete.
This allows you to see if any errors were detected in the code and on
what line the compiler was having the problem.

CCSC +FM +P C:\PROGRA~1\PICC\PDABOT\PDABOT.C

Figure 7.5 shows the command prompt with the CCSC command line
used to invoke the compiler and compiler the code to the .HEX file
that we will burn onto the PIC microcontroller.

The compiler displays a window, shown in Figure 7.6, indicating the
status of the compilation and information regarding the memory usage
of the device.

The following is the compiled hex listing for the above source code
that is loaded into the memory of the PIC16F876.

0000- 3000 008a 283f 0000 3008 00f7 1683 1406
0008- 1283 1806 2809 01af 17f7 281c 13f7 281c
0010- 1003 1806 1403 0caf 1777 281c 1377 0bf7
0018- 2810 082f 00f8 2829 3016 1bf7 3006 00f8
0020- 0bf8 2820 0000 0000 1bf7 280e 1b77 2816
0028- 2810 118a 120a 2862 302f 0084 0800 1903
0030- 283e 3006 00f8 01f7 0bf7 2834 0bf8 2833
0038- 307b 00f7 0bf7 283a 0b80 2831 3400 0184

Chapter 7 / Programming the PIC16F876 Microcontroller

151

PDA 07 5/27/03 8:44 AM Page 151

0040- 301f 0583 3007 1683 009f 1086 1283 1486
0048- 01a1 1683 1106 1283 1106 1683 1186 1283
0050- 1186 1683 1206 1283 1206 1683 1286 1283
0058- 1286 1683 1306 1283 1306 1683 1386 1283
0060- 1386 2804 0878 00a4 0b24 2866 1683 1106
0068- 1283 1506 3003 00af 202c 1683 1186 1283
0070- 1186 0824 3c02 1d03 2875 1683 1186 1283
0078- 1586 3003 00af 202c 1683 1106 1283 1106
0080- 0824 3c03 1d03 2884 1683 1106 1283 1106

PDA Robotics

152

Figure 7.5

Command line
compilation.

Figure 7.6

CCSC compilation
window.

PDA 07 5/27/03 8:44 AM Page 152

0088- 3003 00af 202c 1683 1186 1283 1186 0824
0090- 3c72 1d03 2893 1683 1106 1283 1506 1683
0098- 1186 1283 1186 3003 00af 202c 0824 3c0f
00a0- 1d03 28ad 1683 1206 1283 1606 1683 1286
00a8- 1283 1686 3003 00af 202c 0824 3c66 1d03
00b0- 28bc 1683 1106 1283 1106 1683 1186 1283
00b8- 1586 3003 00af 202c 0824 3c73 1d03 28c0
00c0- 1683 1106 1283 1106 1683 1186 1283 1186
00c8- 3003 00af 202c 0824 3c78 1d03 28cf 0824
00d0- 3c64 1d03 28d6 3003 00af 202c 0824 3c6d
00d8- 1d03 28dd 3003 00af 202c 2861 0063

Program the PIC16F876
Once the pdabot.hex file has been compiled, start the EPIC win pro-
gram after placing the PIC16F876 into the ZIF socket and pulling the
lever down. Open pdabot.hex, set the options described above, and
press the Run button on the user interface (see Figure 7.7).

Progress windows will pop up, indicating the status of the operation
being performed (see Figure 7.8).

When the programming is complete, a window indicating this will
pop up (see Figure 7.9).

The PIC16F876 can now be inserted into the IC socket on the main
board of PDA Robot.

Chapter 7 / Programming the PIC16F876 Microcontroller

153

Figure 7.7

Programming the
PIC16F876.

PDA 07 5/27/03 8:44 AM Page 153

PDA Robotics

154

Figure 7.8

Programming
status.

Figure 7.9

Programming
complete.

PDA 07 5/27/03 8:44 AM Page 154

155

I chose CodeWarrior 8.0 for this project for a number of reasons.
Metrowerks provides a free evaluation copy that lets you become famil-
iar with the intuitive integrated design environment (IDE), and every-
thing (including the emulator) is bundled in a simple to install pack-
age. The help that it provides is excellent. Everything has compiled,
linked, and worked without any problems, spectacularly. The evalua-
tion version has some limitations, however, like a limited code size and
the inability to link with additional software development kit (SDK)
libraries. If you get great job writing code, buy a full-blown version.

The evaluation version can be found at the following URL:
http://www.metrowerks.com/MW/Secure/Eval/Palm/default.htm.
After filling out some information, the evaluation serial number to
unlock the installation is e-mailed to you.

The program name is PDA Robot and the executable program that is
installed on the PDA is PDARobot.prc. It creates an Infrared Data
Association (IrDA) link with the robotic system, also named PDA
Robot, sends, receives, and interprets commands. The code demon-
strates obstacle avoidance by checking the range finder data and mak-
ing a decision to turn, based on a predefined distance threshold. The
standard Palm infrared (IR) library and the code supplied here are
used to achieve the IrDA link with PDA Robot. The creator code
“PDAr” has been registered with the Palm OS site.

PDA Robot
Palm OS
Software Using
Code Warrior 8.0

8

PDA 08 5/27/03 8:47 AM Page 155

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This chapter includes the steps required to complete the program,
while providing and explaining the C code in detail. This includes
designing the graphical interface, the IrDA link, and tying it all togeth-
er. Figure 8.1 shows the main screen of PDARobot.prc.

CodeWarrior for Palm OS Platform version 8.0 is a fully integrated
development environment for the Palm OS platform. It comes with the
4.0 SDK (the latest version of the SDK available at the time this book
went to print), so you can develop for any device that runs any version
of the Palm OS from the original 1.0 up to the recent 4.0. This is done
through the marriage of C or C++ code and the resources that make up
the user interface (UI). Resources include anything the user can inter-
act with—forms, menus, buttons, etc. This section includes a list of
the various UI elements that can be added to a Palm OS application.

First is the required copyright statement: Metrowerks and the
Metrowerks logo are trademarks or registered trademarks of
Metrowerks Corp. and/or its subsidiaries in the United States and
other countries. CodeWarrior, PowerPlant, Metrowerks University,
CodeWarrior Constructor, Geekware, and Discover programming are

PDA Robotics

156

Figure 8.1

PDA Robot.prc main
screen.

PDA 08 5/27/03 8:47 AM Page 156

trademarks and/or registered trademarks of Metrowerks Corp. in the
United States and other countries.

Creating the PDA Robot Project
Start the CodeWarrior IDE. Clicking on “File/New” brings up the new
project dialog that allows us to select the Palm OS Application Wizard
and enter the project name and where it will be saved (see Figure 8.2)
Enter PDARobot and select a directory where you want the source
code to reside (see Figure 8.3).

Chapter 8 / PDA Robot Palm OS Software Using Code Warrior 8.0

157

Figure 8.2

Creating a new project.

Figure 8.3

Palm OS Application
Wizard dialog.

PDA 08 5/27/03 8:47 AM Page 157

Click OK after entering the information and the dialog shown in
Figure 8.4 is displayed, showing the application information.

The additional SDKs to add are grayed out because this is the evalua-
tion version. No additional SDKs are needed for this project anyway.
The Creator Code and Minimum OS Version is grayed out as well, but
this will be changed in the code later.

Click Finish to create the project files and open the project window
(see Figure 8.5).

Click on the source folder and then double click on pdarobotMain.c to
open this file for editing. First, open the Constructor for the Palm OS
1.6 by clicking on the Resources folder and double-click the file pdaro-
bot.rsrc. The constructor window will appear with the project

PDA Robotics

158

Figure 8.4

Application
information.

Figure 8.5

The PDA Robot
project window.

PDA 08 5/27/03 8:47 AM Page 158

resources viewable in a dialog. From here, we will create the buttons
and labels that will make the graphical user interface (GUI) for
PDARobot.prc.

Double click Main under Forms to bring up the main dialog, allowing
us to place the buttons and labels, after which we can assign the IDs
needed for tracking in the event loop of main.c (see Figures 8.6 and
8.7).

Clicking Window/Catalog will bring up the catalog window that con-
tains the controls to be placed on the form (see Figure 8.8).

Figure 8.9 shows the form with the buttons and labels in place. The
IDs and captions have been assigned to each. I made the Object

Chapter 8 / PDA Robot Palm OS Software Using Code Warrior 8.0

159

Figure 8.6

Portion of the
constructor menu.

Figure 8.7

Clean palette where
the controls will be
placed.

PDA 08 5/27/03 8:47 AM Page 159

Identifier the same as the Label displayed on each Object. To generate
the header file used when we compile and link the program, click
File/Generate Header File or simply click File/Save.

PDA Robotics

160

Figure 8.8

UI Objects.

Figure 8.9

Form with the
controls placed.

PDA 08 5/27/03 8:47 AM Page 160

If we switch back to the Metrowerks CodeWarrior IDE and click
Project/Make or hit F7, the application will build and generate
PDARobot.prc that can be loaded on the PDA and run (though nothing
will happen when you press the buttons).

It can be run on the Windows desktop by starting the emulator pro-
vided by Palm OS (that was installed with the evaluation version of
CodeWarrior). To do this, start the emulator (after downloading or
acquiring a ROM of the device) and in the IDE, click Project/Run or hit
Ctrl+F5. Figure 8.11 shows the program so far, running in the Palm OS
Emulator. It looks exactly the same running on the device.

Chapter 8 / PDA Robot Palm OS Software Using Code Warrior 8.0

161

Figure 8.10

The Release and
Debug executables
in the OBJ directory.

Figure 8.11

PDA Robot running
on the Palm OS
Emulator.

PDA 08 5/27/03 8:47 AM Page 161

The AppStart() function reads in any saved information and initializes
the infrared libray by calling the function StartApplication, which I
should have called InitializeInfrared().

// FUNCTION: AppStart
//
// DESCRIPTION: Get the current application's preferences.
//
// RETURNED:
// errNone - if nothing went wrong

static Err AppStart(void)
{

UInt16 prefsSize;

// Read the saved preferences / saved-state information.
prefsSize = sizeof(pdarobotPreferenceType);
if (PrefGetAppPreferences(

appFileCreator, appPrefID, &g_prefs, &prefsSize, true) !=
noPreferenceFound)

{
// FIXME: setup g_prefs with default values

}

if (!StartApplication())
return 0;

return errNone;
}

The AppStop() function saves any preferences and calls
StopApplication() which shuts down the infrared communication.

// FUNCTION: AppStop
//
// DESCRIPTION: Save the current state of the application.

static void AppStop(void)
{

// Write the saved preferences / saved-state information. This
// data will be saved during a HotSync backup.
PrefSetAppPreferences(

appFileCreator, appPrefID, appPrefVersionNum,
&g_prefs, sizeof(pdarobotPreferenceType), true);

StopApplication();

// Close all the open forms.
FrmCloseAllForms();

}

PDA Robotics

162

PDA 08 5/27/03 8:47 AM Page 162

StartApplication loads the IR library, opens and binds a port, saving
the information in the variable irref so it can be used elsewhere. This
is the first step in creating the IrDA link.

//
// Loads the Infrared Library and opens and binds the port.
//

static Boolean StartApplication(void)
{

if (SysLibFind(irLibName,&irref) != 0)
{

FrmAlert(IrLibProblemAlert);
return false;

}
else
{

if (IrOpen(irref,irOpenOptSpeed115200) != 0)
{

FrmAlert(IrLibProblemAlert);
return false;

}
}

IrSetConTypeLMP(&connect);
packet.buff = (unsigned char *)"Data";
packet.len = 4;

IrBind(irref,&connect,callback);

return true;
}

StopApplication unbinds the port, disconnects, and closes the IR con-
nection.

//
// Shut down connections, close the library
//

static void StopApplication(void)
{

IrUnbind(irref,&connect);

if (IrIsIrLapConnected(irref))
IrDisconnectIrLap(irref);

IrClose(irref);
}

Chapter 8 / PDA Robot Palm OS Software Using Code Warrior 8.0

163

PDA 08 5/27/03 8:47 AM Page 163

The callback(IrConnect *con, IrCallBackParms *parms) function is
called whenever an infrared event happens, for example, when PDA
Robot sends us some data, this function is automatically called with
the event and data embedded in the parms parameter.

static void callback(IrConnect *con, IrCallBackParms *parms)
{

char* event;

char out= 0;
FormType *frm; // = FrmGetActiveForm();

switch (parms->event)
{
case LEVENT_DISCOVERY_CNF:

//
// This event was triggered by PDA Robot when
// we broadcast a discovery to ALL IrDA compliant
// devices. StoreDiscovery throws away all devices
// except PDA Robot. My HP printer always responds to
// the discovery request.
//

event = "DISCOVERY_CNF";
StoreDiscovery(parms->deviceList); break;

case LEVENT_PACKET_HANDLED:
packet_in_use = false;
event = "PACKET_HANDLED"; break;

case LEVENT_DATA_IND:

//
// PDA Robot has sent some data because we requested it.
// Let's copy the data to a global variable so it can be used
// elsewhere.
//

event = "DATA_IND";
MemMove(&received_data, parms->rxBuff, parms->rxLen);

MemMove(&out, &received_data[1], 1);
frm = FrmGetActiveForm ();
FrmDrawForm(frm);

StrPrintF((char *) range_data, "%u", out);//value);
current_range = out;

//

PDA Robotics

164

PDA 08 5/27/03 8:47 AM Page 164

// Display the range in the Range Label if we are in autonomous mode
//

if(autonomous == true)
{

FrmCopyLabel (frm, MainRangeLabel, (char*)&range_data);
}

range_aquired = true;
FrmDrawForm(FrmGetActiveForm());
break;

case LEVENT_STATUS_IND:
switch (parms->status)
{

case IR_STATUS_NO_PROGRESS:
event = "S_NO_PROGRESS"; break;

case IR_STATUS_LINK_OK:
event = "S_LINK_OK"; break;

case IR_STATUS_MEDIA_NOT_BUSY:
event = "S_MEDIA_NOT_BUSY"; break;

default:
event = "S_UNKNOWN";

}
break;

case LEVENT_TEST_CNF:
switch (parms->status)
{

case IR_STATUS_SUCCESS:
event = "TEST_SUCCESS"; break;

case IR_STATUS_FAILED:
event = "TEST_FAILED"; break;

}
break;

case LEVENT_TEST_IND:
event = "TEST_IND"; break;

default: event = "UNKNOWN";
}

}

//
// StoreDiscovery goes through the devices list returned when we
// sent out a Discovery request to all IrDA devices in the vicinity.
// It throws away all devices except PDA Robot and set the connection
// information returned to us by it.
//

void StoreDiscovery(IrDeviceList* deviceList)
{

UInt8 i;

Chapter 8 / PDA Robot Palm OS Software Using Code Warrior 8.0

165

PDA 08 5/27/03 8:47 AM Page 165

char info[36];

// clear the label
StrCopy((char *)&info, (char *)"______________________________");
FrmCopyLabel (FrmGetActiveForm(), MainStatusLabel, (char*)&info);

if(deviceList->nItems == 0)
{

StrCopy((char *)&info, (char *)"NO Devices Discovered ");
FrmCopyLabel (FrmGetActiveForm(), MainStatusLabel, (char*)&info);
return;

}

for (i = 0; i < deviceList->nItems; i++)
{

//
// We don't want to recognize any device but PDA Robot
// so ensure that the device name is 'Generic IrDA'. This
// is the default name used by the MCP2150 chip. We will
// connect with the first found
//

if((StrCompare((char *)"Generic IrDA", (char *) &deviceList->dev[i].xid[3])) == 0)
{

dev = deviceList->dev[i].hDevice;
connect.rLsap = deviceList->dev[i].xid[0];

StrCopy((char *)&info, (char *)"Discovered PDA Robot ");
FrmCopyLabel (FrmGetActiveForm(), MainStatusLabel, (char*)&info);

}
}

}

//
// Information Access Service Callback. This function
// is called when we query PDA Robot for information.
// If we received the LSAP information then we connect
// to to PDA Robot.
//

static void IrIasCallback(IrStatus status) {

UInt8 b;
UInt8 i;

if((query.retCode)!=IAS_RET_SUCCESS)
{

return;
}

i=IrIAS_GetType(&query);

PDA Robotics

166

PDA 08 5/27/03 8:47 AM Page 166

switch(i)
{
case IAS_ATTRIB_MISSING:

break;

case IAS_ATTRIB_INTEGER:

if(rtype!=0)
{

rlsap = connect.rLsap = IrIAS_GetIntLsap(&query);
}

connect.rLsap = rlsap;
packet.buff = (unsigned char *)&controlPacket;
packet.len = sizeof(controlPacket);

//
// Open a connection with PDA Robot
//

IrConnectReq(irref, &connect, &packet, DEFAULT_TTP_CREDIT);
rtype=0;
break;

case IAS_ATTRIB_USER_STRING:
b=IrIAS_GetUserStringCharSet(&query);

FrmCopyLabel (FrmGetActiveForm (), MainRangeLabel,
(char*)IrIAS_GetUserString(&query));

break;

default:
//

// Unknown IAS Reply
//

break;
}

}

Please go to www.pda-robotics.com to download the entire source
code and executable for this program.

Chapter 8 / PDA Robot Palm OS Software Using Code Warrior 8.0

167

PDA 08 5/27/03 8:47 AM Page 167

This page intentionally left blank.

169

The software for the Pocket PC was designed and written using the
eMbedded Visual Tools 3.0 IDE and compiler, in conjunction with the
Pocket PC 2002 Software Development Kit (SDK). Both are provided
free from Microsoft.

The Microsoft eMbedded Visual Tools 3.0 deliver a complete desktop
development environment for creating applications and system com-
ponents for Windows-powered devices, including the Pocket PC and
Handheld PC.

The eMbedded Visual Tools include eMbedded Visual Basic and
eMbedded Visual C++, including SDKs for the Pocket PC 2000, Palm-
size PC, and Handheld PC. The eMbedded Visual Tools are the suc-
cessor to the separate Windows CE Toolkits for VC++ and VB. This
version is stand-alone and does not require Visual Studio. Read the
specifications on the data sheet.

The Pocket PC 2002 SDK allows you to write enterprise and consumer
applications for this innovative platform. The Pocket PC 2002 SDK
provides a brand new Pocket PC 2002 device emulator, more docu-
mentation, and more samples. In addition, this SDK includes all the
necessary application programming interfaces (APIs) and documenta-
tion for both Pocket PC 2002 and Pocket PC 2002 Phone Edition
devices.

PDA Robot
Software for
Pocket PC 2002
(Windows CE)

9

PDA 09 5/27/03 8:50 AM Page 169

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Install eMbedded Visual Tools 3.0 (eVC 3.0) first, followed by Pocket
PC 2002. The Pocket PC 2002 installation will point the eVC 3.0 to the
correct header and library files, install the emulator, and set up the
compilation targets.

Figure 9.1 shows the main window of eMbedded Visual Tools 3.0.

When the code is complied and run with the Pocket PC 2002 emula-
tion option, the emulator is invoked and the program can be run on
your desktop. Figures 9.2 and 9.3 show the default emulator that ships
with Pocket PC 2002 and PDABot.exe running on the emulator.

Microsoft eMbedded Visual C++ 3.0 Overview
Microsoft eMbedded Visual C++ 3.0 is the most powerful way for
developers to build applications for the next generation of Windows
CE-based communication, entertainment, and information-access
devices. This stand-alone IDE brings a new level of productivity to
Windows CE development without compromising flexibility, perform-
ance, or control.

With eMbedded Visual C++, developers can accomplish the
following:

PDA Robotics

170

Figure 9.1

Embedded Visual
C++ IDE.

PDA 09 5/27/03 8:50 AM Page 170

Chapter 9 / PDA Robot Software for Pocket PC 2002

171

Figure 9.2

Standard Pocket PC
emulator.

Figure 9.3

PDA Robot running
on the Pocket PC
emulator.

PDA 09 5/27/03 8:50 AM Page 171

• Take advantage of a familiar development environment by build-
ing Windows CE applications using a stand-alone IDE designed
to target Windows CE development;

• Access Windows CE-specific documentation targeted for the
platform SDKs users have installed on their workstation;

• Save time and money by using the Windows CE version of the
Microsoft Foundation Classes (MFC) and the Active Template
Library; and

• Build enterprise solutions with data-access capabilities through
ActiveX Data Objects (ADO) for Windows CE, transactional pro-
cessing via Microsoft Transaction Server, and more through close
integration with Windows CE operating system services.

Benefits of using the eMbedded Visual C++ include the following:

• Gain direct access to the features of the underlying operating sys-
tem without the need for additional code, providing full control
over device hardware and operating system services.

• Access all the features of every permutation of the Windows CE
operating system to construct the fastest, most functional
Windows CE applications.

• Be the first to program the newest and most exciting Windows CE
devices, using Windows CE platform SDKs for eMbedded Visual
C++ as they become available.

• Get in on the ground floor and perhaps build the “killer applica-
tion” for a next-generation operating system.

• Expand development options to include a whole new group of
computer users and equip those normally resistant to computers
with the simplicity of Windows CE running focused applica-
tions, such as Internet browsing, task-specific business process-
es, or entertainment programs.

• Build highly mobile applications that can access remote data
stores and communicate with networked servers.

PDA Robotics

172

PDA 09 5/27/03 8:50 AM Page 172

Increased Developer Productivity
• Leverage existing knowledge and training by building Windows

CE solutions from within the same development environment as
that used for traditional Windows development.

• Gain increased programmer productivity with IntelliSense tech-
nology, providing on-the-fly programming assistance including
statement completion, parameter information, and syntax error
checking. Minimize software development effort by building
reusable ActiveX components—usable from both eMbedded
Visual C++ and eMbedded Visual Basic Windows CE applications.

• Quickly select and configure project deployment information
within the environment to target the widest variety of Windows
CE devices and processors.

Simplified Debugging and Deployment
• Quickly test and execute applications by allowing the eMbedded

Visual Tools to automatically copy and launch applications on a
mobile device or emulator after compilation.

• Fix bugs fast with an integrated debugger that helps eliminate
errors in applications as they are running on Windows CE
devices or within an emulator.

• Gain maximum control over Windows CE development through
a variety of additional tools designed to provide details on appli-
cation execution.

• Avoid the need for costly hardware investments by first testing
applications on a Windows CE device emulator, providing the
look and feel of a physical device from within a PC environment.
And, with the Pluggable SDK model, new emulators can be easi-
ly added to the Toolkit as they become available.

Comprehensive Access to the Windows CE Platform
• Gain control over communication mechanisms, such as TCP/IP,

running via an infrared port or serial port to build compelling
mobile applications.

Chapter 9 / PDA Robot Software for Pocket PC 2002

173

PDA 09 5/27/03 8:50 AM Page 173

• Take advantage of COM, the world’s most successful and power-
ful component model, to build reusable solutions for Windows
CE-based devices.

• Maximize development effort by reusing existing ActiveX con-
trols created for the Windows CE platform. Harness the full
power of Windows CE by using eMbedded Visual C++ to access
every API on all Windows CE devices.

• Graphically build applications using the CommandBar and
MenuBar controls, unique Windows CE graphical elements that
combine toolbars and menus onto a single control for Windows
CE platforms. Allow the Platform Manager to automatically con-
figure a connected Windows CE device for application testing
and execution.

• Build compact and efficient COM servers using the Windows CE
version of the Active Template Library.

• Use MFC for Windows CE, a proven application framework to
build solutions for Windows CE devices, including applications
using the DOC/View architecture.

Build for the Latest Windows CE Devices
• Build solutions for the Handheld PC Pro, Palm-size PC, and

Pocket PC Windows CE devices with maximum mobility and
minimum maintenance and administration.

• Build powerful data-retrieval and analysis applications for the
Pocket PC.

• Gain maximum flexibility and quickly add to the capabilities of
the Windows CE Toolkits by being able to plug in the develop-
ment kits for the latest Windows CE platforms.

Fast, Flexible Data Access
• Use a subset of the powerful ADO data access mechanism found

on desktop and workstation computers to build high-perform-
ance data-aware solutions.

• With Windows CE Services, maintain local copies of database
tables from any data store, including Microsoft Access and SQL

PDA Robotics

174

PDA 09 5/27/03 8:50 AM Page 174

Server, that are automatically synchronized upon connection to
the remote data source.

Building the PDA Robot Pocket PC Application
To build the application, first, download and install the free eVC 3.0
IDE and Pocket PC 2002 SDK installations from the Microsoft site.
Start the eVC IDE and click File/New. Select WCE Pocket PC 2002
MCF App Wizard and name the project. Check the central processing
units (CPUs) you would like to include as targets. To use the emulator,
you must check the WCE x86. Check the other CPUs such as WCE
ARM.PDABot. Click OK and select Dialog Based and the language you
want. Click Next and be sure to check the Windows Sockets option.
Enter the title you want in the case “PDA Robotics.” Click Next, Next,
Finish. The project has now been created and we can begin placing the
buttons and edit boxes on the screen.

Switch to the Resources tab, Under PDABot resources/Dialog, double-
click on IDD_PDABOT_DIALOG. The blank form will appear, on
which we will add the buttons and two edit boxes. Place the controls
as shown in Figure 9.4.

Chapter 9 / PDA Robot Software for Pocket PC 2002

175

Figure 9.4

Editing the
resources.

PDA 09 5/27/03 8:50 AM Page 175

To assign an ID to a control, highlight it and hit enter. Below is the
message map showing the IDs and their associated functions. When a
user clicks on a button, the associated function is called. This is all
handled by the Windows subsystem.

BEGIN_MESSAGE_MAP(CPDABotDlg, CDialog)
//{{AFX_MSG_MAP(CPDABotDlg)
ON_BN_CLICKED(IDC_CONNECT_IRDA, OnConnectIrda)
ON_BN_CLICKED(IDC_CLOSE_IRDA, OnCloseIrda)
ON_BN_CLICKED(IDC_ROBOT_FWD, OnRobotFwd)
ON_BN_CLICKED(IDC_ROBOT_LEFT, OnRobotLeft)
ON_BN_CLICKED(IDC_ROBOT_STOP, OnRobotStop)
ON_BN_CLICKED(IDC_ROBOT_RIGHT, OnRobotRight)
ON_BN_CLICKED(IDC_ROBOT_REV, OnRobotRev)
ON_BN_CLICKED(IDC_RANGE, OnRange)
ON_BN_CLICKED(IDC_AUTO, OnAuto)
ON_BN_CLICKED(IDC_MANUAL, OnManual)
ON_BN_CLICKED(IDC_WIRELESS, OnWireless)
ON_WM_TIMER()
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

In order to have access to some of the objects like the edit boxes, we
need to assign member variables to them. Do this by clicking
View/ClassWizard and switching to the Member Variables tab. Figure
9.5 shows the ClassWizard with the Member Variables assigned to the
edit boxes. We can now get and set the information of these edit boxes
because the Member Variable in the dialog gives users access to the
CEdit class.

PDA Robotics

176

Figure 9.5

ClassWizard.

PDA 09 5/27/03 8:50 AM Page 176

Double-clicking on a button will create a function that is called when
it is clicked. Users will be directed into the function where they can
add the code. The name of the function is generated by the IDE. For
example, the function generated for the Wireless button is named
OnWireless.

void CPDABotDlg::OnWireless()
{
// Add Code here
}

Creating the IrDA Link
The following code is used to establish the Infrared Data Association
(IrDA) data link with PDABot’s body. This socket could be equivalent
to the information that flows up and down the spinal column, trans-
ferring information to the brain (PDA), where it makes a decision and
sends a return control command. The PDA initiates a conversion with
the body and asks, “Who are you?” The MCP2150 will identify itself
as “Generic IrDA” until its identifier is reprogrammed to that which
the designer chooses. How to do this is discussed in detail in the chap-
ter about the MCP2150. For the explanation of this code, I will use the
default MCP2150 identifier (“Generic IrDA”). The fact that a device
must identify itself by the IrDA standard allows users to use this secu-
rity feature by means of a keyed handshake or simply by agreeing to
only accept the socket agreed upon association name.

When users click on the Connect button program control, they are
directed to the function OnConnectIrda() shown in the following code.
It checks to see if a link is already established by referencing the mem-
ber variable m_bIrDAConnected, which is set by the return value of
InitiateIrDAConnection(). I wrote the function InitiateIrDAConnection()
to do the work of creating the socket and establishing the link with PDA
Robot.

void CPDABotDlg::OnConnectIrda()
{

//
// Create the IrDA association with PDA Robot
//

if(!m_bIrDAConnected)
{

m_bIrDAConnected = InitiateIrDAConnection();

Chapter 9 / PDA Robot Software for Pocket PC 2002

177

PDA 09 5/27/03 8:50 AM Page 177

}

//
// Disable the wireless button since we MUST first be connetd to the command cen-

ter
// before initializing the IrDA connection if we want to use the wireless link

//

m_wireless_button.EnableWindow(FALSE);

}

Below is the code listing for InitiateIrDAConnection().

bool CPDABotDlg::InitiateIrDAConnection()
{

//
// Initiate an IrDA client
//

#define DEVICE_LIST_LEN 5
#define IAS_QUERY_ATTRIB_MAX_LEN 32

//
// DevListBuff discovery buffer stores the information that PDARobots body will send to
// us in the initial stages of the IrDA handshake
//

BYTE DevListBuff[sizeof(DEVICELIST) - sizeof(IRDA_DEVICE_INFO) +
(sizeof(IRDA_DEVICE_INFO) * DEVICE_LIST_LEN)];

int DevListLen = sizeof(DevListBuff);

//
// This list stores all the devices that responded to our IrDA query. There may
// be an IrDA compliant printer, like my HP1000, and the PDABot body. We
// should look for 'Generic IrDA' and connect with only this device. I will
// leave this modification up to you. See the chapter on the PalmOS software
// for instructions on how to do this. For now I pick the first device in the list.
//

PDEVICELIST pDevList = (PDEVICELIST) &DevListBuff;

//
// buffer for IAS query
//

BYTE IASQueryBuff[sizeof(IAS_QUERY) - 3 + IAS_QUERY_ATTRIB_MAX_LEN];
int IASQueryLen = sizeof(IASQueryBuff);
PIAS_QUERY pIASQuery = (PIAS_QUERY) &IASQueryBuff;

//
// for searching through peers IAS response

PDA Robotics

178

PDA 09 5/27/03 8:50 AM Page 178

//

BOOL Found = FALSE;
UCHAR *pPI, *pPL, *pPV;

//
// for the setsockopt call to enbale 9 wire IrCOMM
//

int Enable9WireMode = 1;

CString msg;

SOCKADDR_IRDA DstAddrIR = { AF_IRDA, 0, 0, 0, 0, "IrDA:IrCOMM" };

//
// Create the Infrared Socket
//

if ((Infrared_Socket = socket(AF_IRDA, SOCK_STREAM, NULL)) == INVALID_SOCKE{
//
// Get the error and display it in the status edit box
//

int last_error = WSAGetLastError();

if (last_error == WSAESOCKTNOSUPPORT)
{

//
// MessageId: WSAESOCKTNOSUPPORT
//
// MessageText:
//
// The support for the specified socket type does not exist
// in this address family.
//

char err_buff[10];
_itoa(last_error, &err_buff[0], 10);

msg = "Error: ";
msg += err_buff;
msg = "no support for type in this address family";

AfxMessageBox(msg);

}else{
msg = "Couldn't get socket ";
this->m_status_window.SetWindowText((LPCTSTR) msg);

}

return false;

Chapter 9 / PDA Robot Software for Pocket PC 2002

179

PDA 09 5/27/03 8:50 AM Page 179

}

//
// search for the peer device, In this case PDA Robot
//

pDevList->numDevice = 0;
if (getsockopt(Infrared_Socket, SOL_IRLMP, IRLMP_ENUMDEVICES, (CHAR *) pDevList,

&DevListLen) == SOCKET_ERROR)
{

msg = "No Peer conection";
this->m_status_window.SetWindowText((LPCTSTR) msg);
return false;

}else{

//
// print number and name of devices found
//

char bu[20];

_ultoa(pDevList->numDevice , bu, 10);

msg = "Num devices: ";
msg += bu;
msg += " Name ";
msg += pDevList->Device->irdaDeviceName;

this->m_status_window.SetWindowText((LPCTSTR) msg);
}

if (pDevList->numDevice == 0)
{

msg = "No IrDA device found";
this->m_status_window.SetWindowText((LPCTSTR) msg);
return false;

}

//
// Assume first device, we should check the name of the device
// to ensure that it is 'Generic IrDA', the default name provided by the
// MCP2150 IrDA chip used on the PDA Robot circuit.
//

memcpy(&DstAddrIR.irdaDeviceID[0], &pDevList->Device[0].irdaDeviceID[0], 4);

//
// query the peer to check for 9wire IrCOMM support
//

PDA Robotics

180

PDA 09 5/27/03 8:50 AM Page 180

memcpy(&pIASQuery->irdaDeviceID[0], &pDevList->Device[0].irdaDeviceID[0], 4);

//
// IrCOMM IAS attributes. see chapter on the IrDA protocol
//

memcpy(&pIASQuery->irdaClassName[0], "IrDA:IrCOMM", 12);
memcpy(&pIASQuery->irdaAttribName[0], "Parameters", 11);

if (getsockopt(Infrared_Socket, SOL_IRLMP, IRLMP_IAS_QUERY, (char *) pIASQuery,
&IASQueryLen) == SOCKET_ERROR)

{
this->m_status_window.SetWindowText((LPCTSTR) CString("Couldn't get Ir socket

options"));
return false;

}

if (pIASQuery->irdaAttribType != IAS_ATTRIB_OCTETSEQ)
{

//
// peer's IAS database entry for IrCOMM is bad
//

this->m_status_window.SetWindowText((LPCTSTR) CString("IAS database entry is
corrupt"));

}

if (pIASQuery->irdaAttribute.irdaAttribOctetSeq.Len < 3)
{

//
// peer's IAS database entry for IrCOMM is bad
//

this->m_status_window.SetWindowText((LPCTSTR) CString("IAS database entry is
corrupt"));

}

//
// search for the PI value 0x00 and check for 9 wire support, see IrCOMM spec.
//

pPI = pIASQuery->irdaAttribute.irdaAttribOctetSeq.OctetSeq;
pPL = pPI + 1;
pPV = pPI + 2;

while (1)
{

if (*pPI == 0 && (*pPV & 0x04))
{

//
// It's good, don't need to check any futher

Chapter 9 / PDA Robot Software for Pocket PC 2002

181

PDA 09 5/27/03 8:50 AM Page 181

//

Found = TRUE;
break;

}

if (pPL + *pPL >= pIASQuery->irdaAttribute.irdaAttribOctetSeq.OctetSeq +
pIASQuery->irdaAttribute.irdaAttribOctetSeq.Len)

{
break;

}

pPI = pPL + *pPL;
pPL = pPI + 1;
pPV = pPI + 2;

}

if (! Found)
{

//
// Peer doesn't support 9 wire mode.
//
msg = "peer doesn't support 9 wire mode";
this->m_status_window.SetWindowText((LPCTSTR) msg);
return false;

}

//
// enable 9wire mode before we call connect()
//

if (setsockopt(Infrared_Socket, SOL_IRLMP, IRLMP_9WIRE_MODE, (const char *)
&Enable9WireMode,
sizeof(int)) == SOCKET_ERROR)

{
msg = "Couldn't set socket options";
this->m_status_window.SetWindowText((LPCTSTR) msg);
return false;

}

//
// Nothing special for IrCOMM from now on, we treat it as
// a normal socket. Try to connect with PDA Robot
//

if (connect(Infrared_Socket, (const struct sockaddr *) &DstAddrIR,
sizeof(SOCKADDR_IRDA))
== SOCKET_ERROR)

{
msg = "Couldn't connect via IrDA";
this->m_status_window.SetWindowText((LPCTSTR) msg);
return false;

PDA Robotics

182

PDA 09 5/27/03 8:50 AM Page 182

}

//
// Test the connection to make sure all is good. If not
// then display an error
//

char err_buff[10];
int ret = send(Infrared_Socket, (const char *) "o\n",3, MSG_DONTROUTE);

if (ret == SOCKET_ERROR)
{

int last_error = WSAGetLastError();
_itoa(last_error, &err_buff[0], 10);
msg = "Send to socket errror error ";
msg += err_buff;
this->m_status_window.SetWindowText((LPCTSTR) msg);
return false;

}

return true;
}

Once the connection has been established, users can now send com-
mands to PDA Robot to instruct it to send range data or motion the
motors. The following is the code to send a command to PDA Robot
and to request the range data. Recall from the chapter on programming
the PIC Microcontroller that a signals the electronics to move Motor1
forward. b – Motor1 Reverse. c – Motor1 Stop. d – Motor2 forward. e
– Motor2 Reverse. f – Motor2 Stop. g – request for PDA Robot to send
the range finder data. The range finder sends a value between 0 and
128, representing the distance to the front of the craft. 0 is approxi-
mately 90 cm and 128 is 10 cm from the range finder.

void CPDABotDlg::OnRobotFwd()
{

char err_buff[10];

CString msg = "Forward";

//
// Send the command to PDA Robot
//

int ret = send(Infrared_Socket, (const char *) "be", 2, MSG_DONTROUTE);

if (ret == SOCKET_ERROR)
{

//

Chapter 9 / PDA Robot Software for Pocket PC 2002

183

PDA 09 5/27/03 8:50 AM Page 183

// Display the error in the status indicator
//

int last_error = WSAGetLastError();
_itoa(last_error, &err_buff[0], 10);

msg = "socket error";
msg += err_buff;
this->m_status_window.SetWindowText((LPCTSTR) msg);
return;

}

//
// Set the status inidcator that we are moving forward
//

this->m_status_window.SetWindowText((LPCTSTR) msg);
}

void CPDABotDlg::OnRange()
{

// Below is how you would query for the range data

char err_buff[10];
char irda_buffer[128];
u_long numbytes;

int ret;

//
// Send PDA Robot the command prompting it to get the range data and
// forward it to us
//

ret = send(Infrared_Socket, (const char *) "d", 1 , MSG_DONTROUTE);

if (ret == SOCKET_ERROR)
{

int last_error = WSAGetLastError();
_itoa(last_error, &err_buff[0], 10);
return;

}

//
// You may want to get this data in the timer after giving PDA Robot some time to

respond
//

//
// Ensure that we won't be blocked waiting here on the function

PDA Robotics

184

PDA 09 5/27/03 8:50 AM Page 184

// to read the data by calling ioctlsocket. This will indicate how much data
// is in the buffer as well.
//

ret = ioctlsocket (Infrared_Socket, FIONREAD, &numbytes);
if((ret == 0) && (numbytes > 0))
{

//
// Receive what is in the buffer and set the
// range edit box
//
ret = recv (Infrared_Socket, &irda_buffer[0], 26, 0);
this->m_range.SetWindowText((LPCTSTR) CString(irda_buffer));

}
}

To close the IrDA link, press the Disconnect button and the following
function is called. It, in turn, calls CloseIrdaSocket listed below.

void CPDABotDlg::OnCloseIrda()
{

CloseIrdaSocket();
}

void CPDABotDlg::CloseIrdaSocket()
{

//
// Purge the receive buffer and close the Socket to disconnect.
//

char irda_buffer[128];
int ret;
u_long numbytes;

//
// Ensure that we won't be blocked waiting here on the function
// to read the data by calling ioctlsocket. This will indicate how much data
// is in the buffer as well.
//

ret = ioctlsocket (Infrared_Socket, FIONREAD, &numbytes);
if((ret == 0) && (numbytes > 0))
{

ret = recv (Infrared_Socket, &irda_buffer[0], numbytes, 0);
}

ret = closesocket(Infrared_Socket);

//
// Set the member variable of this class that we use to determine our status
// of the link

Chapter 9 / PDA Robot Software for Pocket PC 2002

185

PDA 09 5/27/03 8:50 AM Page 185

//

m_bIrDAConnected = false;

}

I have left the autonomous roaming mode code up to you. See the pre-
vious chapter on the Palm OS software for an idea of how to imple-
ment this AI-like functionality. To see how I implemented this, please
visit www.pda-robotics.com to download the entire project (includes
all the source code).

void CPDABotDlg::OnAuto()
{

// TODO: See the chapter on PalmOS autonomous mode
// and implement something similar. I want to leave
// something for you to do. see www.pda-robotics to
// download the entire project to see my implementation

}

void CPDABotDlg::OnManual()
{

// Disengage the Auto Mode.
}

The Wireless RF Link
The command center application (described in the next chapter) is the
host application to which we will connect. It displays the video data
to the user and allows the sending of commands to this program. The
commands are interpreted and forwarded to the robot body using
Infrared_Socket. The link is established using the class listed below. It
is derived from the CceSocket and is a member of the CPDABotDlg
class. I am using a Linksys WPC11 version 3.0 wireless PC card on my
3850 iPAQ handheld and a PC connected to a wireless digital sub-
scriber line (DSL) router (see Figure 9.6). The WPC11 features the fol-
lowing:

• 11 Mb/ps high-speed data transfer rate compatible with virtually
all major network operating systems.

• Plug-and-play operation providing easy setup.

• Full compliance with IEEE 802.11b standard high-speed data
rate of up to 11 Mb/ps.

PDA Robotics

186

PDA 09 5/27/03 8:50 AM Page 186

PDASocket.hpp

//
// The class definition
//

class CPDASocket : public CCeSocket
{

DECLARE_DYNAMIC(CPDASocket);
public:

//
// Constructor
//

CPDASocket(PURPOSE_E iPurpose=FOR_DATA);

protected:

//
// Called when data arrives over the wireless link
//

virtual void OnReceive(int nErrorCode);
};

PDASocket.cpp

//
// CPDASocket Derived from CceSocket Implementation
//

#include "stdafx.h"

#ifdef _DEBUG

Chapter 9 / PDA Robot Software for Pocket PC 2002

187

Figure 9.6

Wireless card.

PDA 09 5/27/03 8:50 AM Page 187

#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

IMPLEMENT_DYNAMIC(CPDASocket, CSocket)

CPDASocket::CPDASocket(PURPOSE_E iPurpose):
CCeSocket(iPurpose)

{

}

void CPDASocket::OnReceive(int nErrorCode)
{

//
// Call the ReadPDAData() that exists in
// the CPDABotDlg class
//
((CPDABotDlg *)AfxGetApp())->ReadPDAData();
CSocket::OnReceive(nErrorCode);

}

CPDASocket inherits everything from CceSocket, meaning users call
and access all the public member functions and variables. The virtual
function OnReceive(int nErrorCode) is overridden so that users can
implement their own version, but still use the underlying code and
features. Note that the default socket type is set to data.

CCeSocket::CCeSocket
This constructor creates an instance of a socket object.

CCeSocket (PURPOSE_E iPurpose = FOR_DATA);

Parameters
iPurpose specifies the enumerated constant that designates whether
the socket is to be a listening socket or a data socket. It is one of the
following values:

• FOR_LISTENING

• FOR_DATA

Remarks
When constructing a CCeSocket object, specify whether it is a listen-
ing socket or a data socket. After construction, call the Create method.

PDA Robotics

188

PDA 09 5/27/03 8:50 AM Page 188

If you do not specify the purpose of the socket, the constructor con-
structs a data socket by default.

OnWireless: Implementing the CPDASocket Class
The following code is from CPDABotDlg and gets called when the user
clicks the Wireless button. It creates the socket, identifying itself as the
name of the PDA it is running on by calling gethostname() and then
initiates the connection with the command center. If it went well, the
command center will send back the message “SUCCESS.” We then lis-
ten for other commands such as FORWARD, REVERSE, RIGHT, LEFT,
STOP, and RANGE. The PDA sends the corresponding commands to
PDA Robot via the infrared socket.

//
// OnWireless connects to the command center over the wireless network. NOTE: YOU
// MUST connect to the command center before initializing the IrDA. If you initialize the
// IrDA first this button will be disable until the application is restarted. This will be fixed
// in the next version which can be downloaded at www.pda-robotics.com
//

void CPDABotDlg::OnWireless()
{

//
// Listen on the wireless socket for commands from the
// command center and forward them to PDA Robot on the
// Infrared socket.
//

UpdateData(TRUE);

m_hostname.GetWindowText(m_strServer);
m_username.GetWindowText(m_strUsername);
m_password.GetWindowText(m_strPassword);

CheckForAuthentication();

::SetTimer(this->CWnd::m_hWnd, 1, 1000, NULL);
}

bool CPDABotDlg::CheckForAuthentication()
{

if(!StartApplication())
{

return FALSE;
}

m_bClientConnected=true;

Chapter 9 / PDA Robot Software for Pocket PC 2002

189

PDA 09 5/27/03 8:50 AM Page 189

char szHostName[25];

//
// Get the name of the PDA this is running and send it
// to the command Centre.
//

gethostname(szHostName,25);
m_pSocket->Send (szHostName,25,0);

char szUsername[255];
char szPassword[255];

strcopy(szUsername,m_strUsername);
strcopy(szPassword,m_strPassword);

//
//send the user name and the password
//

m_pSocket->Send (szUsername,255,0);
m_pSocket->Send (szPassword,255,0);

return TRUE;
}

//
// ConnectSocket Creates the CPDASocket which is derived from a CCeSocket
// and attempte to connect to the remote host that the control center is
// running on.
//

BOOL CPDABotDlg::ConnectSocket(LPCTSTR lpszHandle, LPCTSTR lpszAddress, UINT
nPort)
{

m_pSocket = new CPDASocket(CCeSocket::FOR_DATA);

if (!m_pSocket->Create())
{

delete m_pSocket;
m_pSocket = NULL;
this->m_status_window.SetWindowText((LPCTSTR) CString("Can't create sock"));
return FALSE;

}

if(!m_pSocket->Connect(lpszAddress, nPort + 700))
{

this->m_status_window.SetWindowText((LPCTSTR) CString("Failed to connect"));
delete m_pSocket;
m_pSocket = NULL;
return FALSE;

PDA Robotics

190

PDA 09 5/27/03 8:50 AM Page 190

}
return TRUE;

}

//
// StartApplication sets the connection parameters and
// calls ConnectSocket. If the connection fails ensure
// that the Control Center (which acts as the Server)
// is running.
//

BOOL CPDABotDlg::StartApplication()
{

m_strHandle="7";
m_hostname.GetWindowText(m_strServer);
m_nChannel=7;

if (ConnectSocket(m_strHandle, m_strServer, m_nChannel))
return TRUE;

else
{

this->m_status_window.SetWindowText((LPCTSTR) CString("Connection Failed "));
return FALSE;

}
}

//
// ReadPDAData() Is called when the CESocket signals that
// data has arrived from the Command Center. The data is
// a string indicating that the connection was successful
// or a Motion command that will be relayed to PDA Robots
// body.
//

void CPDABotDlg::ReadPDAData()
{

CString status_message;
char szMessage[512];
static int initialized;
u_long numbytes;
int ret;

//
// Ensure that we won't be blocked waiting here on the call
// to read the data.
//

ret = ioctlsocket ((SOCKET) m_pSocket, FIONREAD, &numbytes);

if((ret == 0) && (numbytes > 0))

Chapter 9 / PDA Robot Software for Pocket PC 2002

191

PDA 09 5/27/03 8:50 AM Page 191

{
//
// Receive the data from Command Center
//

ret = recv ((SOCKET) m_pSocket, &szMessage[0], numbytes, 0);
}
else{

return;
}

//
// Set the status to the last command so it can be displayed
// in the status edit box named m_status_window and used in the
// OnTimer() function to relay the commands to PDA Robot
//

LastStatus = szMessage;

//
// Note: The Timer was started when the Wireless link was
// Enabled and the data received is interpreted when the timer
// goes off.
//

}

void CPDABotDlg::OnTimer(UINT nIDEvent)
{

m_status_window.SetWindowText((LPCTSTR) LastStatus);

if(LastStatus == "SUCCESS")
{

//
// We have connected to the Command Center
//

m_status_window.SetWindowText((LPCTSTR) CString("Connect Infrared"));

}else if(LastStatus == "FORWARD"){

//
// Instruct PDA Robot to move Forward via the IR Socket if
// an IrDA link has been established
//

if(m_bIrDAConnected)
{

send(Infrared_Socket, (const char *) "be", 2, MSG_DONTROUTE);

PDA Robotics

192

PDA 09 5/27/03 8:50 AM Page 192

}

}else if(LastStatus == "REVERSE"){

//
// Instruct PDA Robot to move Reverse via the IR Socket if
// an IrDA link has been established
//

if(m_bIrDAConnected)
{

send(Infrared_Socket, (const char *) "ad", 2, MSG_DONTROUTE);
}

}else if(LastStatus == "LEFT"){

//
// Instruct PDA Robot to move Left via the IR Socket if
// an IrDA link has been established
//

if(m_bIrDAConnected)
{

send(Infrared_Socket, (const char *) "ae", 2, MSG_DONTROUTE);
}

}else if(LastStatus == "RIGHT"){

//
// Instruct PDA Robot to move Left via the IR Socket if
// an IrDA link has been established
//

if(m_bIrDAConnected)
{

send(Infrared_Socket, (const char *) "bd", 2, MSG_DONTROUTE);
}

}else if(LastStatus == "STOP"){

//
// Instruct PDA Robot to Stop via the IR Socket if
// an IrDA link has been established
//

if(m_bIrDAConnected)
{

send(Infrared_Socket, (const char *) "cf", 2, MSG_DONTROUTE);
}

}else{
//

Chapter 9 / PDA Robot Software for Pocket PC 2002

193

PDA 09 5/27/03 8:50 AM Page 193

// couldn't log on or we received some bad data
//

}

CDialog::OnTimer(nIDEvent);
}

Once the wireless connection to the command center (PC) and the
infrared connection has been established, we can now control the PDA
Robot remotely, seeing through the wireless camera (see Figure 9.7).

PDA Robotics

194

Figure 9.7

PDA with wireless
card.

PDA 09 5/27/03 8:50 AM Page 194

195

The command center runs on a Windows 95 or better operating system
PC that is connected to the wireless network through a Network
Everywhere Cable/DSL Router. It has a Video Capture Card connected
to an X10 wireless video receiver.

From the command center, users can control PDA Robot remotely. It
can detect motion, as well as save and send images via file transfer
protocol (FTP) or simple mail transfer protocol (SMTP). When the
application starts, it listens for a connection from the PDA that is con-
trolling PDA Robot. When PDA Robot successfully logs in, users can
begin controlling the craft remotely, looking through its eyes. Figure
10.1 shows the main screen of the command center.

The Video Link
The following program is using the Video for Windows application
programming interface (API) provided by Microsoft. A window is cre-
ated in the dialog, with the Dialog window being the parent, and it is
registered as the video window.

void CBeamDlg::OnInitializeDriver()
{

//
// Display the video source window that allows the user to select the input

10
The PDA
Robotics
Command Center

PDA 10 5/27/03 8:51 AM Page 195

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

//

BOOL code = capDlgVideoSource(h_capwin);

//
// Create the Capture window
//

h_capwin = ::capCreateCaptureWindow("PDABot Video",
WS_CHILD|WS_CLIPSIBLINGS|WS_VISIBLE|WS_EX_DLGMODALFRAME ,
20,
20
,320,
240,this->m_hWnd,0
);

//
// Hook into the video driver. Check up to 10 and use the first one encountered
//

for(int j=0; j<10;j++){
code = capDriverConnect(h_capwin, j);
if(code){

// Select the video source
code = capDlgVideoSource(h_capwin);
// Set the preview rate
code = capPreviewRate(h_capwin, 100);
// turn video previewing on
code = capPreview(h_capwin, TRUE);
break;

PDA Robotics

196

Figure 10.1

Command center.

PDA 10 5/27/03 8:51 AM Page 196

}else{
//
// No Driver Detected

}
}

m_stretch_video.SetCheck(1);

//
// Add the name of the video driver to the title bar of the window
//

code = capDriverGetName(h_capwin, &szName[0], wSize);
if(code == TRUE)
{

title_text += " - Capture driver : ";
title_text += szName;
this->SetWindowText(title_text);

}

}

The video should now be displayed on the main window, as shown in
Figure 10.1. If the user has selected motion detection, stream the video
into a callback function, checking to see if anything has changed
between the first image that was stored in memory and the current
frame.

Motion Detection
void CBeamDlg::OnCheckVision()
{

if(m_check_vision.GetCheck() == 1)
{

m_radar_stat.SetWindowText("Motion Sense : ON");

//
// Disable stretch feature... the stretch requires significant processor cycles
//

if(m_stretch_video.GetCheck() == 1)
{

m_stretch_video.SetCheck(0);
capPreviewScale(h_capwin, FALSE);
m_stretch_video.EnableWindow(FALSE);
this->InvalidateRect(NULL, TRUE);

}

Chapter 10 / The PDA Robotics Command Center

197

PDA 10 5/27/03 8:51 AM Page 197

//
// Activate the motion detection
//

CAPTUREPARMS cap_params;
long struct_size = sizeof(CAPTUREPARMS);

capCaptureGetSetup(h_capwin, &cap_params, struct_size);
cap_params.fLimitEnabled = FALSE;
cap_params.fAbortLeftMouse = FALSE;
cap_params.fAbortRightMouse = FALSE;
cap_params.wTimeLimit = 3600; // reset after 60 second test
cap_params.fYield = TRUE;

//
// Throw away the audio for now ... will use same algorithm
// for sound detection
//

cap_params.fCaptureAudio = FALSE;
cap_params.wNumVideoRequested = 1;
capCaptureSetSetup(h_capwin, &cap_params, struct_size);

//
// Set the callback to which the vidoe will be stramed
//

BOOL ret = capSetCallbackOnVideoStream(h_capwin, (LPVOID) stream_callback);
capCaptureSequenceNoFile(h_capwin);

}else{

//
// Unchecked the motion detection
//

m_radar_stat.SetWindowText("Motion Sense : OFF");
capCaptureAbort(h_capwin);
m_stretch_video.EnableWindow(TRUE);

}
}

The video frames will be sent to this callback function where we will
compare the last video frame sent to the current

LRESULT stream_callback(HWND hWnd, LPVIDEOHDR lpVHdr)
{

static initialized;
static DWORD frame_same_total;
static last_frame_bytes;

PDA Robotics

198

PDA 10 5/27/03 8:51 AM Page 198

static DWORD trigger_threshold;
static BYTE *last_frame_data;

BYTE *frame_data = (BYTE *) malloc((size_t)lpVHdr->dwBytesUsed);

//
// We will run into a problem if the frame buffer size has
// increased (user switched the video format settings while
// detecting motion).so realloc to the correct size.
//

if(!initialized){
last_frame_data = (BYTE *) malloc((size_t)lpVHdr->dwBytesUsed);
last_frame_bytes = (size_t)lpVHdr->dwBytesUsed;

}
else
{

// Ensure that the bytes used hasn't changed. User may change
// video settings along the way. Resize our frame buffer

if(last_frame_bytes != (size_t)lpVHdr->dwBytesUsed)
{

// AfxMessageBox(" Reallocating the frame buffer sise !");
last_frame_data = (BYTE *) realloc(last_frame_data,

(size_t)lpVHdr->dwBytesUsed);
last_frame_bytes = (size_t)lpVHdr->dwBytesUsed;

}
}

if((frame_data == NULL) || (last_frame_data == NULL))
{

//
// Frame data couldn't be allocated
//

return FALSE;
}

memcpy(frame_data, lpVHdr->lpData, lpVHdr->dwBytesUsed);
if(!initialized)
{

memcpy(last_frame_data, frame_data, lpVHdr->dwBytesUsed);
frames_sampled = 0;
frame_same_total = 0;
initialized = 1;

}

void *frame_data_start = frame_data;
void *last_frame_data_start = last_frame_data;

//

Chapter 10 / The PDA Robotics Command Center

199

PDA 10 5/27/03 8:51 AM Page 199

// Scan through the frames comparing the last to the new
//

long same_count = 0;
for (DWORD i = 0; i < lpVHdr->dwBytesUsed; i++)
{

if(*frame_data == *last_frame_data)
{

same_count++;
}
frame_data++;
last_frame_data++;

}

//
// Reset our pointers or we are wading through deep @#*!
//

frame_data = (BYTE *) frame_data_start;
last_frame_data = (BYTE *) last_frame_data_start;

if(frames_sampled < 5)
{

if(frames_sampled > 0)
{

frame_same_total += same_count;
average_frame_similarity = frame_same_total / frames_sampled;
trigger_threshold = (average_frame_similarity / 30) *
global_detection_threshold;

}

frames_sampled++;
}

//
// If the slider has been moved recalculate
//

if(recalculate_threshold == 1)
{

trigger_threshold = (average_frame_similarity / 30) * global_detection_threshold;
recalculate_threshold = 0;

}

//
// Note : If sound capture is activated you can detect the *wave*
// cap_params.fCaptureAudio = TRUE;
//

//
// If we are over the threshold then motion has been detected

PDA Robotics

200

PDA 10 5/27/03 8:51 AM Page 200

//

if((same_count < trigger_threshold) && (frames_sampled >= 4))
{

detected_motion = TRUE;

//
// Stop the streaming and grab a frame
//
capCaptureAbort(h_capwin);
capGrabFrame(h_capwin);

initialized = 0;

//
// TODO: ENSURE no mem leakage
//

AfxGetMainWnd()->SetTimer(CLEAR_MOTION_DETECT ,50, NULL);

return TRUE;
}
else
{

detected_motion = FALSE;
}

//
// Save the last frame
//

memcpy(last_frame_data, frame_data, lpVHdr->dwBytesUsed);
free(frame_data);
return TRUE;

}

When motion is detected, the program will save an image and forward
it via FTP or SMTP (mail).

Sending Data Using FTP
class CFtp
{

public:

CFtp();
~CFtp();

Chapter 10 / The PDA Robotics Command Center

201

PDA 10 5/27/03 8:51 AM Page 201

BOOL UpdateFtpFile(CString host,
CString user,
CString password,
CString remote_path,
CString filename,
CString remote_filename,
CString& status_msg);

BOOL CFtp::TestConnect(CString host,
CString user,
CString password,
INTERNET_PORT port,
CString& status_msg);

protected:

CInternetSession* m_pInetSession; // objects one and only session
CFtpConnection* m_pFtpConnection; // If you need another create another Cftp

};

CFtp::CFtp()
{

m_pFtpConnection = NULL;

// the CInternetSession will not be closed or deleted
// until the dialog is closed

CString str;
if (!str.LoadString(IDS_APPNAME))

str = _T("AppUnknown");

m_pInetSession = new CInternetSession(str, 1, PRE_CONFIG_INTERNET_ACCESS);

// Alert the user if the internet session could
// not be started and close app
if (!m_pInetSession)
{

AfxMessageBox(IDS_BAD_SESSION, MB_OK);
OnCancel();

}

}

// Destructor

CFtp::~CFtp()

PDA Robotics

202

PDA 10 5/27/03 8:51 AM Page 202

{
// clean up any objects that are still lying around
if (m_pFtpConnection != NULL)
{

m_pFtpConnection->Close();
delete m_pFtpConnection;

}
if (m_pInetSession != NULL)
{

m_pInetSession->Close();
delete m_pInetSession;

}
}

// Update our file

BOOL CFtp::UpdateFtpFile(CString host, CString user, CString password, CString
remote_path, CString filename, CString remote_filename, CString& status_msg)
{

CString strFtpSite;
CString strServerName;
CString strObject;
INTERNET_PORT nPort;
DWORD dwServiceType;

if (!AfxParseURL(ftp_host, dwServiceType, strServerName, strObject, nPort))
{

// try adding the "ftp://" protocol
CString strFtpURL = _T("ftp://");
strFtpURL += host;

if (!AfxParseURL(strFtpURL, dwServiceType, strServerName, strObject, nPort))
{

// AfxMessageBox(IDS_INVALID_URL, MB_OK);
// m_FtpTreeCtl.PopulateTree();
status_msg = "Bad URL, please check host name";

return(FALSE);
}

}

// If the user has provided all the information in the
// host line then dwServiceType, strServerName, strObject, nPort will
// be filled in.. but since I've provided edit boxes for each we will use these.

// Now open an FTP connection to the server
if ((dwServiceType == INTERNET_SERVICE_FTP) && !strServerName.IsEmpty())
{

try
{

Chapter 10 / The PDA Robotics Command Center

203

PDA 10 5/27/03 8:51 AM Page 203

m_pFtpConnection = m_pInetSession->GetFtpConnection(strServerName, user,
password, 21);

}

catch (CInternetException* pEx)
{

// catch errors from WinINet
TCHAR szErr[1024];
if (pEx->GetErrorMessage(szErr, 1024))

// AfxMessageBox(szErr, MB_OK);
status_msg = szErr;

else
status_msg = szErr;
//AfxMessageBox(IDS_EXCEPTION, MB_OK);

pEx->Delete();
m_pFtpConnection = NULL;
return(FALSE);

}

}
else
{

status_msg = "Bad URL, please check host name";

}

BOOL rcode = m_pFtpConnection->SetCurrentDirectory(remote_path);
if(FALSE == rcode)
{

status_msg = "Could not goto directory specified. Please re enter";

}

CString strDirName;
rcode = m_pFtpConnection->GetCurrentDirectory(strDirName);

rcode = m_pFtpConnection->PutFile(filename, (LPCTSTR) remote_filename,
FTP_TRANSFER_TYPE_BINARY, 1);

if(FALSE == rcode)
{

status_msg = "Could not update file. Check settings";
return(FALSE);

}

return(TRUE);
}

// Test connection

BOOL CFtp::TestConnect(CString host, CString user, CString password, INTERNET_PORT
port, CString& status_msg)
{

PDA Robotics

204

PDA 10 5/27/03 8:51 AM Page 204

CString strFtpSite;
CString strServerName;
CString strObject;
INTERNET_PORT nPort;
DWORD dwServiceType;

// If the user has provided all the information in the
// host line then dwServiceType, strServerName, strObject, nPort will
// be filled in.. but since I've provided edit boxes
// for each we will use these.

//
// Ensure Valid connection parameters
//

CString diagnostic_msg = "";

if (host.IsEmpty())
{

diagnostic_msg = " check Host ";
}
if ((user.IsEmpty()) || (user == ""))
{

diagnostic_msg = " check Username ";
}

if (password.IsEmpty())
{

diagnostic_msg = " check password ";
}

if (port < 1)
{

diagnostic_msg = " check port ";
}

// Now open an FTP connection to the server
try
{

m_pFtpConnection = m_pInetSession->GetFtpConnection(host, user, password, port);
}

catch (CInternetException* pEx)
{

// catch errors from WinINet
TCHAR szErr[1024];
if (pEx->GetErrorMessage(szErr, 1024))
{

// AfxMessageBox(szErr, MB_OK);
status_msg += diagnostic_msg;
status_msg += szErr;

Chapter 10 / The PDA Robotics Command Center

205

PDA 10 5/27/03 8:51 AM Page 205

}else{
status_msg += diagnostic_msg;
status_msg = szErr;

}
//AfxMessageBox(IDS_EXCEPTION, MB_OK);

pEx->Delete();
m_pFtpConnection = NULL;
return(FALSE);

}

return(TRUE);
}

The Wireless Data Link
On startup, the command center listens on a socket for a connection
request from the PDA controlling PDA Robot. The listening socket is
derived from the CCeSocket, as is the socket created on the PDA.

#include "stdafx.h"

CListeningSocket::CListeningSocket(CBeamDlg* pDoc)

void CListeningSocket::OnAccept(int nErrorCode)
{

CSocket::OnAccept(nErrorCode);
m_pDlg->ProcessPendingAccept();

}

CListeningSocket::~CListeningSocket()
{
}
IMPLEMENT_DYNAMIC(CListeningSocket, CSocket)

The Main Dialog window of the command center contains the
ClisteningSocket as a member variable. When we receive the request
and it is authenticated, we send the string “SUCCESS” back to the
PDA. Because the socket is established, we can send commands such
as “FORWARD” to the PDA, which sends the corresponding com-
mands to PDA Robot via the infrared Link.

CBeamDlg::CBeamDlg(CWnd* pParent /*=NULL*/)
: CDialog(CBeamDlg::IDD, pParent)
{

//{{AFX_DATA_INIT(CBeamDlg)
// NOTE: the ClassWizard will add member initialization here

PDA Robotics

206

PDA 10 5/27/03 8:51 AM Page 206

//}}AFX_DATA_INIT
}

CBeamDlg::~CBeamDlg()
{

//m_oAnimateCtrl.Stop();
}

void CBeamDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CBeamDlg)
DDX_Control(pDX, IDC_PROGRESS1, m_WndProgressCtrl);
//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CBeamDlg, CDialog)
//{{AFX_MSG_MAP(CBeamDlg)
ON_WM_TIMER()
ON_WM_CLOSE()
ON_BN_CLICKED(IDC_BUTTON1, OnDetailsClick)
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

// CBeamDlg message handlers

BOOL CBeamDlg::OnInitDialog()
{

CDialog::OnInitDialog();

m_pClientSocket = new CClientSocket(this);

m_pSocket = new CListeningSocket(this);
if (m_pSocket->Create(707))
{

if (m_pSocket->Listen())
{

return TRUE;
}

}

return TRUE;
}

void CBeamDlg::ProcessPendingAccept()
{

char szHost[25];
if (m_pSocket->Accept(*m_pClientSocket))
{

m_pClientSocket->Receive(szHost,25,0);

Chapter 10 / The PDA Robotics Command Center

207

PDA 10 5/27/03 8:51 AM Page 207

m_WndProgressCtrl.StepIt();

m_csHost=szHost;
}

}

void CBeamDlg::ProcessPendingRead()
{

char szUserName[255];
char szPassword[255];

m_pClientSocket->Receive(szUserName,255,0);
m_pClientSocket->Receive(szPassword,255,0);

m_WndProgressCtrl.StepIt();
GetDlgItem(IDC_STATUS_STATIC)->SetWindowText("Authenticating..");

if(!CheckForAuthentication(szUserName,szPassword))
{

m_pClientSocket->Send("ERROR",255,0);
GetDlgItem(IDC_STATUS_STATIC)->SetWindowText("Bad user name or password..");

}
else
{

//Recv the instant message here

m_pClientSocket->Send("SUCCESS",255,0);
///play sound to inform the user
PlaySound("wireless.wav",NULL,SND_FILENAME);

}
}

BOOL CBeamDlg::CheckForAuthentication(char * pszUserName,char *pszPassword)
{

WCHAR szUserName[100];
WCHAR szPassWord[100];

//
//Convert to unicode
//

MultiByteToWideChar(CP_ACP, 0, pszUserName,
strlen(pszUserName)+1, szUserName,
sizeof(szUserName)/sizeof(szUserName[0]));

//
//Convert to unicode
//

MultiByteToWideChar(CP_ACP, 0, pszPassword,

PDA Robotics

208

PDA 10 5/27/03 8:51 AM Page 208

strlen(pszPassword)+1, szPassWord,
sizeof(szPassWord)/sizeof(szPassWord[0]));

//
// Determine if the password is correct by changing it
// to the same.
//

int nStatus= NetUserChangePassword(NULL,
szUserName,
szPassWord,
szPassWord);

if (nStatus == NERR_Success){
return TRUE;

}else{
return FALSE;

}

}

Please visit www.pda-robotics.com to download this program.

Chapter 10 / The PDA Robotics Command Center

209

PDA 10 5/27/03 8:51 AM Page 209

This page intentionally left blank.

211

PDA Robot is a fusion of the latest technologies on all fronts. The way
technology evolves, this may not be true for long. I hope that users
take from this project not only knowledge of the technology, but the
realization that with a little research and a Web browser, users can find
a solution to any problem.

PDA Robot can be easily expanded to use the wide range of add-on
technology available, such as a global positioning system (GPS) card.
This chapter lists a number of cards and pieces of equipment that
could be used with this project, and concludes with a great piece of
equipment used for telesurgery.

Global Positioning System
These devices allow users to get an exact position on where they are
located. This means that users can program PDA Robot to
autonomously go to any location on the earth or navigate with the aid
of a long-range wireless video transmitter anywhere in the city. I will
have to do my own calculations for the moon mission by triangulation
off three transmitter beacons, though. If you buy one, be sure that you
can get the position information through an application programming
interface (API) that the manufacturer provides. I won’t buy one if I
can’t write a program to access the data.

11
Infinitely
Expandable

PDA 11 5/27/03 8:53 AM Page 211

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Pocket CoPilot 3.0 GPS Jacket Edition: PCP-V3-PAQJ2
The iPAQ Pocket PC-based navigation solution guides users safely and
intuitively, using detailed voice directions (full street names). It has
the following features:

• Seamless nationwide routing from anywhere to anywhere.

• Fastest full route automatic recalculation.

• Traffic congestion detour feature.

• Superior CoPilot GPS jacket with 4x faster acquisition; 50%
reduction in power consumption; sleek, ultra-thin design; and
integrated power port, battery, and CF slot.

• Vehicle mount, power adapter, and complete nationwide map data.

• BMW Mini certified accessory option for Europe.

Users can turn their iPAQ into an amazing GPS navigation system
with Pocket CoPilot (see Figure 11.1). This exciting new technology
gets users precisely where they need to be, with directions to any
address nationwide.

And with dynamic voice navigation and route guidance technology,
Pocket CoPilot not only shows users where to go, it verbally guides
them to their destination in real-time, with audible text-to-speech
directions. Yes, you will hear, “1.3 miles ahead, turn left on South
Street.” If you miss a turn or get off track, Pocket CoPilot automatical-
ly reroutes you (Figure 11.1).

The TeleType GPS
I like the GPS PCMCIA Receiver Card teletype card, because it fits
right into my expansion pack.

The Wireless PCMCIA GPS receiver has been designed especially for
use with the popular Compaq iPAQ Pocket PC. The combination of the
GPS receiver and the TeleType GPS software allows travelers to navi-
gate worldwide via land, air, and water using a completely integrated
device, eliminating cumbersome wires. The TeleType Wireless PCM-
CIA package includes the TeleType GPS software and street-level
maps for the entire United States allowing real-time position to be
accurately shown (see Figure 11.2).

PDA Robotics

212

PDA 11 5/27/03 8:53 AM Page 212

Chapter 11 / Infinitely Expandable

213

Figure 11.1

CoPilot.

Figure 11.2

TeleType.

PDA 11 5/27/03 8:53 AM Page 213

Symbol SPS 3000 Bar Code Scanner Expansion Pack
Users can increase the effectiveness of their iPAQ Pocket PC with
powerful data capturing capabilities. Data capture through bar code
scanning is more accurate and significantly improves productivity,
creating a dynamic business tool for your workforce. The Symbol SPS
3000 enables one-dimensional bar code scanning, and is available in
the following two feature configurations:

• Bar code scanning only:

– Very low power consumption.

• Bar code scanning with integrated wireless local area network
(WLAN):

– Integrated 802.11b WLAN (see Figure 11.3).

– Internal battery to power the WLAN radio.

Symbol Technologies, Inc. will provide service and support warranty.
More information, available from Symbol, includes SDK, technical
specs and driver downloads (Figure 11.3).

It’s the NEX best thing... the Compaq iPAQ Pocket PC becomes a digi-
tal camera—ideal for business and personal use. Users can quickly
upload photos to their desktop or laptop and access full-color photo-
graph images (24-bit SVGA; 800 � 600).

PDA Robotics

214

Figure 11.3

Symbol scanner
integrated 802.11b.

PDA 11 5/27/03 8:53 AM Page 214

Sierra Wireless AirCard 555
With the AirCard 555, users will also be able to make voice calls and
send SMS (two-way messaging) messages.

With the dual-band 1X Sierra Wireless AirCard 555, users will experi-
ence the following:

• Faster speeds: up to 86 kb/s, making it more efficient to access
your time-sensitive information.

• Always being connected: allows users to maximize productivity
by becoming dormant when data are not actively being trans-
ferred through their wireless connection, yet still maintains a vir-
tual connection to the network. This will free up resources,
allowing users to multitask by sending or receiving voice calls or
text messages on their device. When users are ready to resume
their data session, they can re-engage the network immediately—
there’s no need to dial in again, and no waiting. Instant-on Bell
Mobility acts as the Internet service provider (ISP). Users can
connect in seconds to the information they need.

The Sierra Wireless AirCard 555 lets users access their information sim-
ply by sliding it into the PC Card slot in their laptop computer or hand-
held device (see Figure 11.4). Coupled with the easy-to-install software
included in the kit, and a Bell Mobility 1X Data plan, the AirCard 555
transforms the device into a complete wireless business solution.

Chapter 11 / Infinitely Expandable

215

Figure 11.4

AirCard.

PDA 11 5/27/03 8:53 AM Page 215

Telesurgery
Dr. Louis Kavoussi uses the Internet to lend expertise to operating
rooms all over the world.

With the help of the Internet and telecommunications technology, this
doctor in Baltimore, Maryland can operate on patients all over the
world without leaving his home office. Working from home using a PC
and four ISDN lines, Dr. Kavoussi of Johns Hopkins Bayview Medical
Center controls robotic surgical tools and cameras remotely, and can
transmit and view images in real time.

During surgery, Kavoussi can view either the operating room or inside
the patient. He can also give surgeons written assistance and operate a
device that burns and seals tissue, as well as control robots that hold
cameras or place needles in the patient’s body.

“Our applications have been used specifically for what’s called mini-
mal invasive surgery,” said Kavoussi. “Examples of that are laparo-
scopies, putting a little tube in the stomach to look around;
arthroscopy, looking at knee joints; and thoracoscopy, looking at the
chest.”

Operations of the Future
With the help of high-speed data lines and advanced robotics, sur-
geons will eventually be able to perform and complete operations
remotely from anywhere in the world.

“There is no doubt in my mind that this is the way surgical care is per-
formed in the future,” Kavoussi said.

Doctors in New York took telemedicine one step further when they
used a dedicated fiber-optic line and a remote-control robot to remove
the gall bladder of a patient in an operating room in France—more
than 4,000 miles away.

Telesurgery may also be employed during future space exploration.
Traveling to Mars and back may take three or more years, during
which time astronauts may need access to medical and surgical care.

The da Vinci Robotic System. The da Vinci Surgical System is inte-
gral to the operating room and supports the entire surgical team. The

PDA Robotics

216

PDA 11 5/27/03 8:53 AM Page 216

system consists of a surgeon console, patient-side cart, instruments
and image processing equipment.

• The Surgeon Console: The surgeon operates at the console using
masters (that replicate surgery motions) and the high-performance
vision system that is controlled using foot pedals and displays in
the same orientation of open surgery. Using the da Vinci Surgical
System, the surgeon operates while seated comfortably at a con-
sole viewing a 3-D image of the surgical field. The surgeon’s fin-
gers grasp the master controls below the display, with wrists nat-
urally positioned relative to his or her eyes. This technology
seamlessly translates the surgeon’s movements into precise, real-
time movements of the surgical instruments inside the patient.

• Patient-Side cart: The patient-side cart provides the two robotic
arms and one endoscope arm that execute the surgeon’s commands.
The laparoscopic arms pivot at the 1 cm operating port, eliminating
the use of the patient’s body wall for leverage, minimizing tissue
and nerve damage. Supporting surgical team members install the
correct instruments, prepare the 1 cm port in the patient, and super-
vise the laparoscopic arms and tools being utilized.

• EndoWrist Instruments: A full range of instruments is provided
to support the surgeon while operating. The instruments are
designed with seven degrees of motion to mimic the dexterity of
the human wrist. Each instrument has a specific surgical mission
such as clamping, suturing, and tissue manipulation. Quick-
release levers speed instrument changes during surgical proce-
dures.

• Insite High Resolution 3-D Endoscope and Image Processing
Equipment: Provides the true to life 3-D images of the operative
field. Operating images are enhanced, refined, and optimized
using image synchronizers, high-intensity illuminators, and cam-
era control units.

The da Vinci Surgical System is the only commercially available tech-
nology that can provide the surgeon with the intuitive control, range
of motion, fine tissue manipulation capability, and 3-D visualization
characteristic of open surgery, while simultaneously allowing the sur-
geon to work through small ports of minimally invasive surgery (see
Figure 11.5).

Chapter 11 / Infinitely Expandable

217

PDA 11 5/27/03 8:53 AM Page 217

Robotic Heart Surgery: Making Repairs without Lifting the Hood. In
the United States, open-heart surgery was performed without opening
the chest, in more than a dozen patients. Researchers reported pre-
liminary results at the American Heart Association’s Scientific
Sessions in 2002.

In this procedure, surgeons remotely maneuver robotic arms from a seat
in front of a console away from the patient. Instead of opening the chest
and cutting the skin and muscle to view the area, surgeons make four
holes (8 to 15 mm each), through which robotic arms are inserted. The
robotic arms include one with a camera-like device to transmit the image
to the console. The other arms are fitted with operating instruments.

Surgeons used this new procedure to successfully repair the hearts of
patients with atrial septal defect (ASD) or patent foramen ovale—con-
ditions in which people are born with an opening between the heart’s
two upper chambers. This opening allows some blood from the left
atrium to return to the right atrium, instead of flowing through the left
ventricle, out the aorta, and to the body. It is repaired either by plug-
ging the hole with a patch or suturing the hole closed.

Open-heart surgery traditionally requires that surgeons make a foot-
long chest incision to cut patients’ breastbones in half. “We wanted to
know if it was possible to operate inside the hearts of these patients

PDA Robotics

218

Figure 11.5

da Vinci system.

PDA 11 5/27/03 8:53 AM Page 218

without making any incisions,” says Mehmet Oz, M.D., director of the
Heart Institute at Columbia-Presbyterian Medical Center in New York.
“Not only did we show that the operation is feasible, but we demon-
strated it in more than a dozen patients.”

During 12 months, 15 patients (ages 22 to 68) underwent ASD repair
using the robotic technology, called the da Vinci system described in
the preceding section. “Although the equipment is costly, this is defi-
nitely part of the future,” says Michael Argenziano, M.D., lead author
of the study and director of robotic cardiac surgery at Columbia-
Presbyterian. “Patients are going to insist on it despite the expense
because it’s cosmetically superior and allows for much faster recovery.
For certain procedures, like the ASD repair, it’s already proving to be
a worthy alternative to conventional surgery.”

The researchers found that robot-assisted endoscopic heart surgery
takes a little longer than the traditional technique, but that might be
attributable to the learning curve necessary to use the new approach.
The heart was stopped for 34 minutes on average, versus about 20 for
traditional surgery. The time needed on a cardiopulmonary bypass
machine was also slightly longer.

Patients in the study had no major complications. In 14 cases, imaging
tests confirmed that the defect had been successfully closed. One
patient required a repair five days later. Surgeons did this through a
three-inch incision (a mini-thoracotomy). The average length of stay in
the intensive careunit was 18 hours, which is about the same as for the
traditional approach. The average hospital stay was three days—two
to four days shorter than for a traditional operation.

“The primary advantages of this minimally invasive surgery are faster
patient recovery, less pain, and dramatically less scarring than tradi-
tional open-heart surgery,” Argenziano says. Patients return to work
and normal activity about 50 percent faster than those who have the
open procedure, he says. Quality-of-life measures also revealed the
robotically treated patients had improved social functioning and less
pain compared to patients undergoing traditional surgical approaches.
Doctors are also using the robotic technology to repair mitral valve
defects through incisions in the side of the chest.

“What makes the totally endoscopic ASD repair a significant advance is
that it is the first closed-chest open-heart procedure,” Argenziano says.

Chapter 11 / Infinitely Expandable

219

PDA 11 5/27/03 8:53 AM Page 219

Argenziano is also principal investigator of several Food and Drug
Administration-sanctioned trials of robotic cardiac surgery including
one in which it is used for closed-chest coronary artery bypass graft
surgery (CABG). In early 2002, the Columbia team performed the first
totally endoscopic CABG in the United States.

“We have wonderful surgical cures for heart disease, in that they’re
very effective and long-lasting,” Oz says. “However, they’re also very
traumatic. So, we’re evaluating a technology that might provide us
with the same wonderful results without the trauma.”

Several facilities nationwide offer the da Vinci technology, and
researchers at approximately four other centers have been specifically
trained to perform ASD closure, the researchers say.

PDA Robotics

220

PDA 11 5/27/03 8:53 AM Page 220

221

address (A), 38
address book, 3
Agere, 7
Agilent, 7
AirCard 555, 215, 215
AKM, 7
Alcatel, 7
Altera, 7
aluminum, cutting and drilling,

125–127, 126
ambient light requirements for

Sharp GP2D12 infrared range
finder, 105

American Heart Association,
robotic heart surgery,
218–220

AMI Semiconductor, 7
Analog Devices, 7
analog to digital (A/D) converter

module, PIC16F876
microcontroller and, 90–94, 93

application programming interfaces
(API), 1–2

application button, 4, 5
AppStart() function, Code Warrior

8.0 and, 162
AppStop() function, Code Warrior

8.0 and, 162
Argenziano, Michael, 219–220
artwork for circuit board, 109–110,

110
Atmel, 7

BabyFace TFDU4100, 17, 53
bar code scanner, 214, 214
Basis, 7
battery packs, 123
baud rate setting, 46–47, 47, 48, 63

MCP2150 IrDA protocol
controller and, 58, 67

beginning of frame (BOF), 38, 69
bidirectional motor control, L298

dual full-power driver and,
99, 100, 101

bit clock, MCP2150 IrDA protocol
controller and, 63

Index

Note: Boldface numbers indicate illustrations and tables.

PDA Index 5/27/03 8:57 AM Page 221

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

block diagram of PDA Robot, 15,
16

Bluetooth, 1, 10
body

camera (accessory) mount, 134,
134

cutting and drilling guides for,
125–127, 126

parts lists for, 116

C language source code, PIC16F876
microcontroller and, 147–153

calibration, Sharp GP2D12 infrared
range finder and, 104–105

callback () function, Code Warrior
8.0 and, 164–167

camera
camera (accessory) mount, 134,

134
motion detection in, 197–201
video link for, 195–197

campus networks, 3
carrier detect (CD) signal, MCP2150

IrDA protocol controller and,
76–77

CCeSocket::CCeSocket, 188–189,
206–209

cellular phones, 1
ceramic resonators, MCP2150 IrDA

protocol controller and,
62–65

channels, SA-1110 microprocessor
using ARM and, 7–9

chip pullers, 23, 25
circuit board, 2, 44, 107–116

artwork for, 109–110, 110
cutting, 113, 114
developing, 110–111
drilling, 113, 113, 114
etching, 45–46, 45, 111–113,

112
exposing the board in, 45–46,

45, 108–110, 109

circuit board (continued)
photocopying or printing the

artwork for, 109
photofabrication kit for,

107–108, 108
positive photofabrication

process instructions for,
108–114

ribbon connectors to, 130–134
soldering components on, 113,

117–120, 117, 118, 119
circuit layout, 44, 44
Cirrus Logic, 7
clock source, MCP2150 IrDA

protocol controller and, 62,
63

CMOS, 18
Code Warrior 8.0, 155–167

Application Wizard in, 157, 157
application information in, 158,

158
AppStart() function in, 162
AppStop() function in, 162
callback () function in, 164–167
constructor window in,

158–159, 159
controls placed on form in,

150–16, 160
copyright for, 156–157
creating the PDA Robot project

in, 157–167, 157
downloading of, 155
infrared link to, 155
opening a file in, 158–159
palette for controls in, 158–159,

159
Palm OS Emulator showing,

161, 161
PDARobot.prc in, 155, 156
project windows in, 158, 158
release and debug executables

in, 161
StartApplication in, 163

Index

222

PDA Index 5/27/03 8:57 AM Page 222

Code Warrior 8.0 (continued)
StopApplication in, 163
UI objects in, 159, 160

Cogency, 7
command center for PDA Robot,

195–209, 196
downloading, 209
file transfer protocol (FTP) and,

195, 201–206
motion detection in, 197–201
simple mail transfer protocol

(SMTP) and, 195
video link for, 195–197
wireless data link in, 206–209

command line compiler for
PIC16F876 microcontroller,
146–147, 152

Compaq, 2
comparators, 18
compiler for PIC16F876

microcontroller, 145–146
component descriptions,

electronics, 53–58
conductance testing after soldering,

118–120, 119, 120
Conexant, 7
connection sequence, 72, 73
constructor window, Code Warrior

8.0, 158–159, 159
control (C), 38
CPDASocket class, Pocket PC 2002

and Windows CE, 189–194
crystal oscillator/ceramic

resonators, MCP2150 IrDA
protocol controller and,
62–65, 63

cutting body parts, 125–127, 126
cutting the circuit board, 113, 114
cyclic redundancy check (CRC),

40–41

da Vinci robotic system, telesurgery
and, 216–217, 218, 220

data links, 2
data terminal equipment (DTE),

MCP2150 IrDA protocol
controller and, 58

data transfer using file transfer
protocol (FTP), 201–206

delays in transmission, 38
demodulation, MCP2150 IrDA

protocol controller and, 65,
65

developing the circuit board,
110–111

development environment (See
Code Warrior 8.0)

digital information exchange using
IrDA, 31–32

Discover Programming, 156
discovery mode, 72, 74–75
distance vs. voltage calibration,

Sharp GP2D12 infrared range
finder and, 104–105, 105

DOS, EPIC Plus Programmer and,
141

DragonBall MC68EZ328 system
processor, 11, 13

drill bits, 26, 26
drill press, 23, 24
drilling body parts, 125–127, 126
drilling circuit board, 27, 113, 113,

114
driver (See L298 dual full-bridge

driver)
DSL routers, 195
dual full-bridge driver (See L298

dual full-bridge driver)
duplex communication, 39, 40, 71
DYN2009635 20 MH quartz crystal

oscillator, 21, 21

EEPROM memory, 18
electronics, 15–21, 43–106

baud rate setting in 46–47, 47, 48
circuit layout in, 44

Index

223

PDA Index 5/27/03 8:57 AM Page 223

electronics (continued)
component descriptions for,

53–58
crystal oscillator/ceramic

resonators in, 62–65, 63
L298 dual full-bridge driver in,

96–102
main board in, 44, 46
MCP2150 connection to Vishay

TFDS4500 transceiver, 47–48,
48, 49, 50

MCP2150 IrDA protocol
controller in, 58–79

MCP2150 to PIC16F876
connection in, 49–50, 50

motor controller circuit in,
51–52, 51, 52

PIC16F876 microcontroller in,
78–96

Sharp GP2D12 infrared range
finder, 52, 52, 102–106

system overview of, 43–53
embedded software, 2
eMbedded Visual Tools 3.0 (See

also Pocket PC 2002),
169–175, 170

end of frame (EOF), 38, 69
EPIC Plus Programmer, 137–154

configuration options for, in
Windows, 142, 143

DOS and, 141
EPICWin controls in, 144–145
general operation of, 140–145
hardware installation for,

139–140
HEX files and, 140
MPASM/MPLAB and, 140
programming options for, in

Windows, 143, 143
programming sequence in, 153,

153, 154
software installation for,

138–139

EPIC Plus Programmer (continued)
Windows and, 140–144, 142

EPICWin controls, 144–145
Epson, 7
Ericsson, 7
etching the circuit board, 45–46,

45, 111–113, 112
Ethernet, 35
exposing the circuit board, 45–46,

45, 108–110, 109

fast IrDA (FIR) links, 36, 37, 40
file transfer protocol (FTP), 195,

201–206
flash memory, 18
four pulse position modulation

(4PPM), 40
frame check sequence (FCS), 38, 69
frames, in IrDA data transmission,

38, 39, 69
Fujitsu, 7
full-bridge driver (See L298 dual

full-bridge driver)

geared motors assembly, 127–130,
128

Geekware, 156
general purpose clock (GPCLK),

SA-1110 microprocessor
using ARM and, 8

global positioning system (GPS), 1,
211–215

Pocket CoPilot 3.0
(PCP–V3–PAQJ2), 212, 213

TeleType, 212, 213
Global UniChip, 7
graffiti writing area, 4, 5

half-duplex, 39, 40, 68–69
handshake phase and, 71–78

handshake phase, 46, 71–78
connection sequence in, 72, 73
discovery mode in, 72, 74–75

Index

224

PDA Index 5/27/03 8:57 AM Page 224

handshake phase (continued)
half-duplex and, 71–72
normal connect mode (NCM) in,

72, 76
normal disconnect mode (NDM)

in, 72–74
heart surgery, robotic, 218–220
heat sinks, 19
Hewlett Packard, 2
HEX files, EPIC Plus Programmer

and, 140
hex listing for source code,

PIC16F876 microcontroller
and, 151–153

HHH(1,13) coding, 40
Hynix, 7
hypertext transfer protocol (HTTP),

33

IBM, 7
IDG, 35
Infineon, 7
infrared (IR) port, 3, 4, 4
infrared communications, 29–41

advantages of, 59
delays in, 38
digital information exchange

using, IrDA, 31–32
fast IrDA (FIR) links in, 36, 37,

40
frames in, 38, 39, 69
Infrared Data Association (IrDA)

and, 29, 30–35, 31
infrared emitters (IRED) in, 29
IR adapters and, 37
IrCOMM protocol in, 29–30
IrDA Control and, 31–35
IrDA Data and, 31–32
link access protocol (IrLAP) in,

32
link management protocol/

information access service
(IrLMP/IAS) in, 32

infrared communications
(continued)

logical link control (LLC) in, 33,
34–35

MCP2150 protocol controller in,
30, 30

media access control (MAC) in,
33, 34

medium IrDA (MIR) links in 36,
37, 39–40

mid-infrared (mid-IR) in, 29
near infrared (near-IR) in, 29
network driver interface

specification (NDIS), 35
optional IrDA data protocols in,

33
peripheral controls and, 33–35
physical signaling layer (PHY)

in, 32, 33, 34
Pocket PC 2002 and Windows

CE, IrDA link creation in,
177–186

protocol layers in, 69–71
serial IrDA (SIR) links in, 36, 37,

39, 53
speed of data transmission in,

36–41
thermal-infrared (thermal-IR)

and, 29
turnaround time for

communication link in,
37–39

very fast IrDA (VFIR) links in,
36, 37, 40–41

Vishay TFDS4500 serial infrared
transceiver in, 30

Windows CE (Pocket PC) and,
35–36, 36

Infrared Data Association (IrDA), 1,
15, 29, 30–35, 31, 46

SA-1110 microprocessor using
ARM and, 8–9

infrared emitters (IRED), 17, 29, 53

Index

225

PDA Index 5/27/03 8:57 AM Page 225

infrared ports, SA-1110
microprocessor using ARM
and, 8–9

infrared range finder (See Sharp
GP2D12 infrared range
finder), 20

Intel, 7
Intel StrongARM microprocessor,

5–7, 6
DragonBall MC68EZ328

system processor and,
11, 13

OMAP1510 microprocessor and,
9–11, 12

Palm OS devices and, 9
SA-1110 using, 7–13, 8

Internet protocol (IP), 35
SA-1110 microprocessor using

ARM and, 7–8
interrupt on change feature,

PIC16F876 microcontroller
and, 89

iPAQ, 2, 45, 45, 135
IR adapters, 37
IR light requirements for Sharp

GP2D12 infrared range finder,
105

IR port, 43, 45, 45
IR transceivers (See Vishay

TFDS4500)
IrCOMM, 33, 29–30

handshake phase and,
71–78

MCP2150 IrDA protocol
controller and, 66, 70–71,
71

IrDA Control, 31–35
IrDA Data, 31–32, 31
IrDA Lite, 33
IrLAN, 33
IrMC, 33
IrOpen, 1–2
IrTran-P, 33

Kavoussi, Louis, 216–220
Kawasaki, 7
keyboard, 3

L298 dual full-bridge driver, 19, 20,
96–102, 97

applications for, 101–102
bidirectional motor control

using, 99, 100, 101
block diagram of, 97
capacitor suggested for, 101
description of, 97–102
input stage in, 101
logic supply for, 97
maximum ratings for, 98–101,

98
on/off for, 101
parallel channels for high

current in, 100
pin layout and descriptions for,

98–99
power output stage in, 101
power supply for, 97
two-phase bipolar stepper motor

control circuit using, 102,
102

L7805ACV voltage regulator, 18–19,
19

laser light requirements, Sharp
GP2D12 infrared range finder
and, 106

least significant bit (LSB), 69
licensing, 5
light emitting diodes (LED), in

communication link,
37–39

light requirements for Sharp
GP2D12 infrared range finder,
105–106

link access protocol (IrLAP), 32
MCP2150 IrDA protocol

controller and, 66,
68–69

Index

226

PDA Index 5/27/03 8:57 AM Page 226

link management protocol/
information access service
(IrLMP/IAS), 32

MCP2150 IrDA protocol
controller and, 66, 69–70

LinkUp Systems, 7
logical link control (LLC), 33,

34–35
LSI Logic, 7

main board (See also circuit
board), 44, 46

parts list for, 115
Marvell, 7
MCP2150 IrDA protocol controller,

15, 17, 30, 30, 58–79
applications for, in PDA Robot,

50–62, 51
baud rate setting in, 46–47, 47,

48, 58, 63, 67
bit clock in, 63
carrier detect (CD) signal in, 76–77
clock source for, 62
connection sequence in, 72, 73
crystal oscillator/ceramic

resonators in, 62–65, 63
data terminal equipment (DTE)

and, 58
demodulation of, 65, 65
device reset for, 62
DIP switch setting, 46–47, 47,

48, 60–61
discovery mode in, 72, 74–75
encoding/decoding in, 59
half-duplex action of, 68–69
handshake phase and, 71–78
IrCOMM and, 66, 70–71, 71
link access protocol (IrLAP) and,

66, 68–69
link management

protocol/information access
service (IrLMP/IAS) and, 66,
69–70

maximum ratings for, 78
modulation of, 64, 64
normal connect mode (NCM) in,

72, 76
normal disconnect mode (NDM)

in, 72–74
null modem connection in, 76
operation of, 76–77
optical transceiver for, 77–78, 77
OSI network layer reference

model and, 65–71, 66
physical dimensions of, 79
physical signaling layer (PHY)

and, 66, 67–68
PIC16F876 microcontroller

connection to, 49–50, 50
pinout diagram for, 61–62, 62
point to point protocol (PPP)

and, 58
power mode setting for, 65
power up for, 61–62
protocol support in, 66–71, 67,

68
receiving using, 64
returning to device operation

from low-power mode in, 65
Tiny TP and, 66, 70
transmission using, 64
UART interface for, 63
Vishay TFDS4500 transceiver

connection to, 47–48, 48, 49,
50

MCU compiler for PIC16F876
microcontroller, 145–146

media access control (MAC), 33, 34
medium IrDA (MIR) links, 36, 37,

39–40
Metrowerks, 156
MG Chemical process, 45
microcontrollers (See PIC16F876

microcontroller)
Micronas, 7
microprocessor, 5

Index

227

PDA Index 5/27/03 8:57 AM Page 227

Microsoft Windows (See Windows
CE; Pocket PC)

MicroStar BGA, 10
mid-infrared (mid-IR), 29
Mitsubishi, 7
MMC–SD, 10
Mobilan, 7
modulation, MCP2150 IrDA

protocol controller and, 64,
64

motion detection, 197–201
motor controller circuit, 44, 51–52,

51, 52
parts list for, 115–116
placing and soldering

components of, 120–121, 121,
122

ribbon connectors to, 130–134,
132, 133

Motorola, 7, 11
Motorola DragonBall

microprocessor, 5
motors

gear assembly in, 127–130, 128
wheel hub mounting on,

127–128, 129
MPASM/MPLAB, EPIC Plus

Programmer and, 140
Multiware, 19

National Semiconductor, 7
near infrared (near-IR), 29
NEC, 7
network driver interface

specification (NDIS), 35
Network Everywhere Cable, 195
normal connect mode (NCM), 72,

76
normal disconnect mode (NDM),

72–74
null modem connection, MCP2150

IrDA protocol controller and,
76

Oak Technology, 7
OBEX, 33
OKI, 7
OMAP1510 microprocessor, 9–11, 12
OnWireless and CPDASocket class,

Pocket PC 2002 and
Windows CE, 189–194

operating systems, 2, 3, 5, 11, 35
optical transceiver, MCP2150 IrDA

protocol controller and,
77–78, 77

optional information (I), 38
oscillator (See DYN2009635 and

RXDMP49)
OSI network layer reference model,

MCP2150 IrDA protocol
controller and, 65–71, 66

out of band (OOB) data blocks, 38
Oz, Mehmet, 219, 220

pagers, 3
Palm m505, 2
Palm OS, 1, 3, 5, 135

Code Warrior 8.0 and, 155–167
Intel StrongARM

microprocessors and, 9
Palm Pilot, 2
Panasonic, 7
parts lists, 115–116
PDA Robot, 15, 16, 135
PDARobot.prc, 155, 156
peripheral control, 33–35
Philips, 7
photocopying or printing the

artwork for circuit board, 109
photofabrication kit for circuit

board, 107–108, 108
physical signaling layer (PHY), 32,

33, 34
MCP2150 IrDA protocol

controller and, 66, 67–68
PIC16F876 microcontroller, 78–96,

137–154

Index

228

PDA Index 5/27/03 8:57 AM Page 228

PIC16F876 microcontroller
(continued)

analog to digital (A/D) converter
module in, 90–94, 93

block diagram of, 83
capacitors in, 62
command line compiler for,

146–147, 152
command prompt for, 151
EPIC Plus Programmer for (See

EPIC Plus Programmer), 137
features list for, 80–81
hex listing for source code,

151–153
interrupt on change feature in, 89
MCP2150 IrDA protocol

controller connection to,
49–50, 50

MCU compiler for, 145–146
pin layout and descriptions for,

81, 82–84
PORTA register in, 84–87
PORTB register in, 87–90
PORTC register in, 90–96, 91, 92
prescaler in, 96
programming of (See EPIC Plus

Programmer; MCU compiler)
programming sequence in,

153154, 153, 154
RA3:RA0 and RA5 pins, block

diagram of, 85
RA4/TOCK1 pin, block diagram

of, 86
RB3:RB0 pin, block diagram of,

88
RB7:RB4 pins, block diagram of,

89
SLEEP mode in, 88, 95
source code for, in C language,

147–151
timer0 interrupt in, 95
timer0 module timer/counter in,

94–95, 95

PIC16F876 microcontroller
(continued)

timer0 used with external clock
in, 96

TRISA register in, 84–87
TRISB register in, 87–90
TRISC register in, 90–96
updates for, downloading, 80

PIC16F876 microcontroller, 18, 18
PIN diodes, 17
plug and play IrDA (See MCP2150

IrDA protocol controller)
Pocket CoPilot 3.0

(PCP–V3–PAQJ2) GPS, 212,
213

Pocket PC, 3
Pocket PC 2002, 169–194

application building in, 175–177
CCeSocket::CCeSocket in,

188–189, 206–209
ClassWizard for, 176–177, 176
compatibility with Windows CE

devices and, 174
data access in,174–175
debugging in, 173
deployment in, 173
editing resources in, 175, 175
eMbedded Visual Tools 3.0 and,

169–175, 170
IrDA link creation in, 177–186
OnWireless and CPDASocket

class in, 189–194
Pocket PC emulator in, 171
productivity and, 173
range finder and link to,

183–186
standard emulator in, 171
Windows CE access and,

173–174
wireless card and, 187, 194
wireless RF link creation in,

186–194
point to point protocol (PPP), 35

Index

229

PDA Index 5/27/03 8:57 AM Page 229

point to point protocol (continued)
MCP2150 IrDA protocol

controller and, 58
PORTA register, PIC16F876

microcontroller, 84–87
PORTB register, PIC16F876

microcontroller, 87–90
PORTC register, PIC16F876

microcontroller and, 90–96,
91, 92

positive resist photofabrication of
circuit board, 108–114

power button, 4, 4
power connectors, 123–125, 123

IR range finder connection and,
124–125, 124, 125

power mode setting, MCP2150
IrDA protocol controller and,
65

Power SO20, 19
power supplies, 11

battery packs, 123
connectors for, 123–125, 123
L298 dual full-power driver and,

96–102, 97
PowerPlant, 156
Prairiecom, 7
prescaler, PIC16F876

microcontroller and, 96
prices of PDAs, 11
protocol controller, 15, 30, 30
protocol support, MCP2150 IrDA

protocol controller and,
66–71, 67, 68

Qualcomm, 7

radio frequency (RF) link creation,
Pocket PC 2002 and
Windows CE, 186–194

range finder (See Sharp GP2D12
infrared range finder)

real time voice calls (RTCON), 33

reduced instruction set computing
(RISC), 5

Resonext, 7
return to zero (RZI), 39
ribbon connectors, 130–134, 132,

133
roaming, 2
robotic system overview, 15–21
Rohn, 7
RXDMP49 11.0952 MHz AT quartz

crystal oscillator, 21, 21

SA-1110 microprocessor using
ARM, 7–13, 8

channels in, 7–9
safety, 26–27
Samsung, 7
Sanyo, 7
scheduler, 3
screen, 4, 4
scroll button, 4, 5
sensors, Sharp GP2D12 infrared

range finder and connection
to, 104

serial IrDA (SIR) links, 36, 37, 39,
53

Sharp, 7
Sharp GP2D12 infrared range

finder, 20, 20, 52, 52,
102–106

ambient light requirements for,
105

block diagram of, 106
calibration of, 104–105
camera (accessory) mount, 134,

134
distance vs. voltage calibration

in, 104–105, 105
field of view in, 103
IR light requirements for, 105
laser light requirements for, 106
maximum ratings for, 104
motion detection in, 197–201

Index

230

PDA Index 5/27/03 8:57 AM Page 230

Sharp GP2D12 infrared range
finder (continued)

motor controller circuit in,
51–52, 51, 52

operation of, 104, 106
parts list for, 116
physical dimensions of, 103, 103
Pocket PC 2002 and Windows

CE link to, 183–186
power connectors for, 124–125,

124, 125
sensor connection in, 104

side profile of PDA Robot, 130
Sierra Wireless AirCard 555, 215,

215
Silicon Wave, 7
simple mail transfer protocol

(SMTP), command center for
PDA Robot and, 195

SIR transceivers, 17
SiS, 7
size of PDAs, 11
SLEEP mode, PIC16F876

microcontroller and, 88, 95
socket, 1–2
soldering, 25, 25

circuit board, 113, 117–120,
117, 118, 119

conductance testing after,
118–120, 119, 120

IR transceiver components,
122–123, 122

motor controller components,
120–121, 121, 122

Sony, 7
source code, 2
source code for PIC16F876

microcontroller, in C
language, 147–151

speed of data transmission, 36–41
ST Microelectronics, 7
StartApplication, Code Warrior 8.0

and, 163

StopApplication, Code Warrior 8.0
and, 163

Symbol SPS 3000 bar code scanner,
214, 214

system on chip (SOC) solutions, 6

TCP/IP, 35
technology of PDA, 1
Telefunken, 17, 53
Telefunken TOIM4232/3232, 17, 53
telephones, 3
telesurgery applications, 216–220
TeleType GPS, 212, 213
Texas Instruments, 7, 9
TFDS4500 serial infrared

transceiver (See Vishay
TFDS4500)

thermal-infrared (thermal-IR), 29
3Com, 2, 7
timer0 interrupt, PIC16F876

microcontroller and
timer0 module timer/counter,

PIC16F876 microcontroller
and, 94–95, 95

Tiny TP, 33
MCP2150 IrDA protocol

controller and, 66, 70
TOCK1 pin, PIC16F876

microcontroller and, block
diagram of, 86, 87

Token Ring, 35
tools and equipment, 23–27, 24, 25
Toshiba, 7
touch pad, 3
transceiver (See Vishay TFDS4500)
transmission control protocol

(TCP), 35
SA-1110 microprocessor using

ARM and, 7–8
TRISA register, PIC16F876

microcontroller and, 84–87
TRISB register, PIC16F876

microcontroller, 87–90

Index

231

PDA Index 5/27/03 8:57 AM Page 231

TRISC register, PIC16F876
microcontroller and, 90–96

Triscend, 7
Tungsten, 9–11, 10
turnaround time for

communication link, 37–39
two-phase bipolar stepper motor

control circuit using, L298
dual full-power driver and,
102, 102

universal asynchronous
receiver–transmitter (UART),

MCP2150 IrDA protocol
controller and, 63

SA-1110 microprocessor using
ARM and, 8, 9

universal serial bus (USB), 10
University of California, Berkeley, 3
USART, 18
user datagram protocol (UDP), SA-

1110 microprocessor using
ARM and, 7–8

user interfaces, 11
uWire, 10

very fast IrDA (VFIR) links, 36, 37,
40–41

video camera, 20
video capture cards, 195
video link, 195–197
Virata, 7
Vishay TFDS4500 infrared

transceiver, 17, 17, 30, 44, 48,
53–58, 54

block diagram of, 54, 54
circuit diagram for, 54–55, 55
MCP2150 protocol controller

connection to, 47–48, 48,
49, 50

Vishay TFDS4500 infrared
transceiver (continued)

package styles for, 54, 54
parts list for, 116
placing and soldering

components of, 122–123,
122

ribbon connectors to, 130–134,
131, 132

shutdown for, 57–58
specifications for, 55–57, 56

Visor Deluxe, 135
Visor, 45, 45
voltage regulators, 18–19, 19

wheel hub mounting, 127–128,
129

wide area networks (WAN), 35
Windows, 35

EPIC Plus Programmer and,
140–144, 142

EPICWin controls in, 144–145
Windows CE (See also Pocket PC),

1, 3, 5
IrDA and, 35–36, 36
software for PDA Robot in (See

Pocket PC 2002)
wireless card, 187, 194
wireless data link, 206–209
wireless networks, 1–3, 33, 35

Pocket PC 2002 and Windows
CE, link creation in, 186–194

wireless RF link creation, Pocket
PC 2002 and Windows CE,
186–194

Yamaha, 7

Zarlink, 7
ZTEIC, 7

Index

232

PDA Index 5/27/03 8:57 AM Page 232

Doug Williams is a software designer for Agfa Healthcare. A resident
of Ontario, Canada, he has worked in the computer industry for near-
ly 10 years, specializing in radar systems control, medical imaging
software, and electronic interface technologies.

About the Author

PDA Index 5/27/03 8:57 AM Page 233

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

