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Foreword

Biologically inspired walking machines are fascinating objects to study, from
the point of view of their mechatronical design as well as the realisation of con-
trol concepts. Research on this subject takes its place in a rapidly growing,
highly interdisciplinary field, uniting contributions from areas as diverse as
biology, biomechanics, material science, neuroscience, engineering, and com-
puter science.

Nature has found fascinating solutions for the problem of legged locomo-
tion, and the mechanisms generating the complex motion patterns performed
by animals are still not very well understood. Natural movements provide the
impression of elegance and smoothness, whereas the imitation of their artificial
analogues still looks rather clumsy.

The diverse research on artificial legged locomotion mainly concentrated
on the mechanical design and on pure movement control of these machines;
i.e., in general these machines were unable to perceive their environment and
react appropriately. Contributions developing embodied control techniques for
sensor-driven behaviors are rare, and if considered, they deal only with one
type of behavior; naturally, this is most often an obstacle avoidance behavior.
There are only a few approaches devoted to the multimodal generation of
several reactive behaviors.

This book presents a pioneering approach to tackle this challenging prob-
lem. Inspired by the obstacle avoidance and escape behaviors of cockroaches
and scorpions, which here are understood as negative tropisms, and by the
prey-capturing behavior of spiders, taken as a positive tropism, corresponding
sensors and neural control modules are introduced in such a way that walk-
ing machines can sense and react to environmental stimuli in an animal-like
fashion.

Besides obstacle avoidance, which is realised in indoor environments by
using simple infrared distance sensors, other types of tropisms can be imple-
mented by using diverse types of sensors. Especially, readers may find the
introduction of hair sensors inspiring. These sensors are employed as contact
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sensors and at the same time serve as sound detectors, allowing for a “sound
tropism”.

One intriguing aspect of the presented neural technique is that it instanti-
ates a very general design method. The neuromodules, manually constructed
or developed with the help of evolutionary techniques, can serve as control
structures for four-legged machines as well as for six- or eight-legged devices.
The combination of a neural central pattern generator together with neural
modules processing sensor inputs and modulating the output behavior points
to an interesting opportunity for further developments. The simplicity of the
utilised recurrent neural networks allows researchers to analyse and to under-
stand their inherent dynamical properties. This makes the feasibility of an
engineering approach to modular neural control even more convenient.

Heading towards autonomous walking devices, carrying all that is needed
for an autonomous reactive behavior, i.e., energy supply, external sensors, and
computer power, already makes the mechanical construction of these machines
a difficult problem. The book provides some basic insights into biologically
motivated mechanical constructions of four- and six-legged walking machines,
which lead to robust platforms for robotic experiments.

Furthermore, the author demonstrates that using a modular neurodynam-
ics approach to behavior control, which most efficiently acts in a sensorimotor
loop, reduces the necessary computer power considerably. The multimodal-
ity of the described neural system furnishes these autonomous machines with
convincing reactive behaviors.

The book provides a couple of ideas which can be taken up by students
and researchers interested in the area of autonomous robots in general, and
especially in the field of embodied intelligence. Autonomous walking machines
are challenging systems because the coordination of many degrees of freedom
has to be combined with a versatile set of external sensors. It should be noted
that no proprioceptors, i.e., internal sensors like angle encoders, were used for
generating walking patterns or behavior modulations. Together with this type
of sensor, the mechatronical design methods and neural network techniques
presented in this book will open up a new and wide domain of applications
for autonomous walking devices. One really can congratulate the author for
his achievements, for presenting this exciting research in general, and also for
providing convincing practical examples in particular.

Sankt Augustin, Germany Frank Pasemann
November 2006



Foreword

The motion and locomotion patterns of living things are complicated and
have been neither easy to understand nor to imitate in action. However, it is
well recognized by researchers around the world that such biological motion is
naturally performed with the highest efficiency and effectiveness. Especially,
biological reactive behaviors are considered as critical characteristics of animal
survival in hostile environments.

Recognizing that, to date, there are quite a few prototypes of walking ma-
chines that can respond to environmental stimuli, the author has proposed a
unique scheme of “Modular Neural Control” to be implemented in his walk-
ing machines. His scheme refers to a network containing multiple different
modules and functionalities.

The simplicity of this network leads to an understanding of its inherent
dynamic properties such as hysteresis profile and undesirable noise. This is
then considered a major advantage, compared to the massive recurrent con-
nections of traditional evolutionary algorithms. When applying this scheme to
different types of walking machines, it requires less adaptation and changes of
internal structure and parameters. This generic scheme enables walking ma-
chines to work in the real world, not just in a simulated environment. I think
that the scheme will soon prove itself to be a pragmatic tool for the robotics
design community.

An additional feature of this work is the “versatile artificial perception–
action” system. An example of this versatility is the ability to perform more
than one reactive behavior such as obstacle avoidance and sound tropism. It
is our belief that an animal uses multiple reactive responses for survival in
daily life.

While reading this book, I discovered that this research could also reveal a
correlation between the complex walking behaviors of animals and their joint
mechanism as well as the number of degrees of freedom. I have spent most of
my life attempting to understand the relation between robotic structure and
its function. It is clear from this book that the author has gone to a further
step of a “designed” behavior of walking machines. I salute his achievement
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for doing exciting research in general and for getting practical results in par-
ticular.

Bangkok, Thailand Djitt Laowattana
September 2006



Preface

The rationale behind this book is to investigate neural mechanisms underly-
ing different reactive behaviors of biologically inspired walking machines. The
systems presented here are formed in a way that they can react to real en-
vironmental stimuli (positive and negative tropism) using only sensor signals
but no task-planning algorithm or memory capacities. On one hand, they can
be used as a tool in order to properly understand embodied systems which, by
definition here, are physical agents interacting with their environment. On the
other hand, they can be represented as so-called artificial perception–action
systems, which are inspired by an ethological study.

Most current physically embodied systems from the domain of biologically
inspired walking machines have so far been limited to only one type of reac-
tive behavior, although there are only few examples where different behaviors
have been implemented in one machine at the same time. In general, these
walking machines were solely designed for pure locomotion, i.e., without sens-
ing environmental stimuli. This highlights that to date less attention has been
paid to the walking machines which can interact with an environment.

Thus, in this book, biologically inspired walking machines with different re-
active behaviors are presented. Inspired by obstacle avoidance and the escape
behavior of scorpions and cockroaches, such behavior is implemented in the
walking machines as a negative tropism. On the other hand, a sound-induced
behavior called “sound tropism”, in analogy to the prey capture behavior of
spiders, is employed as a model of a positive tropism. The biological sensing
systems which those animals use to trigger the described behaviors are inves-
tigated so that they can be reproduced in the abstract form with respect to
their principal functionalities. In addition, the morphologies of a salamander
and a cockroach capable of performing efficient locomotion are also taken into
account for the leg and trunk designs of four- and six-legged walking machines,
respectively.



XII Preface

Indeed, most of this book is aimed at explaining how to:

• Use a modular neural structure where the neural control unit can be cou-
pled with the different neural preprocessing units to form the desired be-
havior controls. The neural structures are simple to understand and can
be applied to control different types of walking machines.

• Minimize the complexity of the neural preprocessing and control unit by
utilizing dynamic properties of small recurrent neural networks and apply-
ing by an evolutionary algorithm.

• Employ a sensor fusion technique to integrate the different behavior con-
trollers in order to obtain an effective behavior fusion controller for activat-
ing the desired reactive behaviors with respect to environmental stimuli.

• Investigate morphologies of walking animals and their principle of loco-
motion control to benefit the design of the physical four- and six-legged
walking machines.

• Achieve autonomous walking machines interacting with a real environment
whereby the systems are challenged with unexpected real-world noise.
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Introduction

Research in the domain of biologically inspired walking machines has been
ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused
on the construction of such machines [34, 47, 216, 223], on a dynamic gait
control [43, 117, 201] and on the generation of an advanced locomotion control
[30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In
general, these walking machines were solely designed for the purpose of motion
without responding to environmental stimuli. However, from this research
area, only a few works have presented physical walking machines reacting to
an environmental stimulus using different approaches [6, 36, 72, 95]. On the
one hand, this shows that less attention has been paid to walking machines
performing reactive behaviors. On the other hand, such complex systems can
serve as a methodology for the study of embodied systems consisting of sensors
and actuators for explicit agent–environment interactions.

Thus, the work described in this book is focused on generating different
reactive behaviors of physical walking machines. One is obstacle avoidance
and escape behavior, comparable to scorpion and cockroach behavior (neg-
ative tropism), and the other mimics the prey capture behavior of spiders
(positive tropism). In addition, the biological sensing systems used to trigger
the described behaviors are also investigated so that they can be abstractly
emulated in these reactive walking machines.

In the next section, the background of research in the area of agent–
environment interactions is described, which is part of the motivation for
this work, followed by the details of the approaches used in this work. The
chapter concludes with an overview of the remainder of the book.

1.1 Survey of Agent–Environment Interactions

Attempts to create autonomous mobile robots that can interact with their en-
vironments or that can even adapt themselves into specific survival conditions
have been ongoing for over 50 years [8, 41, 53, 75, 86, 136, 141, 143, 144, 157].
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There are several reasons for this, which can be summarized as follows:
first, such robotic systems can be used as models to test hypotheses regarding
the information processing and control of the systems [69, 115, 146, 175].
Second, they can serve as a methodology for the study of embodied systems
consisting of sensors and actuators for explicit agent–environment interactions
[98, 99, 112, 135, 161]. Finally, they can simulate the interaction between
biology and robotics through the fact that biologists can use robots as physical
models of animals to address specific biological questions while roboticists can
formulate intelligent behavior in robots by utilizing biological studies [63, 64,
173, 213, 214].

In 1953, W.G. Walter [208] presented an analog vehicle called “tortoise”
(Fig. 1.1) consisting of two sensors, two actuators and two “nerve cells” re-
alized as vacuum tubes. It was intended as a working model for the study of
brain and behavior. As a result of his study, the tortoise vehicle could react
to light stimulus (positive tropism), avoid obstacles (negative tropism) and
even recharge its battery. The behavior was prioritized from lowest to high-
est order: seeking light, move to/from the light source, and avoid obstacles,
respectively.

Fig. 1.1. (a) Walter’s tortoise (photograph courtesy of A. Winfield, UWE Bristol).
(b) The tortoise Elsie successfully avoids a stool and approaches the light (copyright
of the Burden Neurological Institute, with permission)

Three decades later, psychologist V. Braitenberg [32] extended the princi-
ple of the analog circuit behavior of Walter’s tortoise to a series of “Gedanken”
experiments involving the design of a collection of vehicles. These systems re-
sponded to environmental stimuli through inhibitory and excitatory influences
directly coupling the sensors to the motors. Braitenberg created varieties of
vehicles including those imagined to exhibit fear, aggression and even love
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(Fig. 1.2) which are still used as the basic principles to create complex behav-
ior in robots even now.

Fig. 1.2. Braitenberg vehicles. (a) Vehicle 1 consists of one sensor and one motor.
Motion is always forward in the direction of the arrow and the speed is controlled
by a sensor, except in the case of disturbances, e.g., slippage, rough terrain, friction.
(b) Vehicle 2 consists of two sensors and two motors. Vehicle 2a responds to light
by turning away from a light source (exhibiting “fear”). Because the right sensor of
the vehicle is closer to the source than the left one, it receives more stimulation, and
thus the right motor turns faster than the left. On the other hand, vehicle 2b turns
toward the source (exhibits “aggression”). (c) Vehicle 3 is similar to vehicle 2 but
now with inhibitory connections. Vehicle 3a turns toward the light source and stops
when it is close enough to the light source. It “loves” the light source, while vehicle
3b turns away from the source, being an “explorer”. (Reproduced with permission
of V. Braitenberg [32])
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One primitive and excellent example of a complex mobile robot (many
degrees of freedom) that interacts with its environment appeared in Brooks’
work [36, 38] in 1989. He designed a mechanism which controls a physical six-
legged walking machine, Ghengis (Fig. 1.3), capable of walking over rough
terrain and following a person passively sensed in the infrared spectrum. This
mechanism was built from a completely distributed network with a total of 57
augmented finite state machines known as “subsumption architecture”[37, 39].
It is a method of decomposing one complex behavior into a set of simple be-
haviors, called layers, where more abstract behaviors are incrementally added
on top of each other. This way, the lowest layers work as reflex mechanisms,
e.g., avoid objects, while the higher layers control the main direction to be
taken in order to achieve the overall tasks. Feedback is given mainly through
the environment. This architecture is based on perception–action couplings
with little internal processing. Having such relatively direct couplings from
sensors to actuators in parallel leads to better real-time behavior because it
makes time-consuming modeling operations and higher-level processes, e.g.,
task planning, unnecessary. This approach was the first concept toward so-
called behavior-based robotics [10]. There are also other robots in the area of
agent–environment interactions which have been built based on this architec-
ture, e.g., Herbert [40], Myrmix [52], Hannibal and Attila [70, 71].

Fig. 1.3. The six-legged walking machine Genghis. It consists of pitch and roll incli-
nometers, two collision-sensitive antennas, six forward-looking passive pyroelectric
infrared sensors and crude force measurement from the servo loop of each motor.
(Photograph courtesy of R.A. Brooks)

In 1990, R.D. Beer et al. [22, 24] simulated the artificial insect (Fig. 1.4)
inspired by a cockroach, and developed a neural model for behavior and lo-
comotion controls observed in the natural insect. The simulation model was
integrated with the antennas and mouth containing tactile and chemical sen-
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sors to perceive information from the environment; that is, it performs by
wandering, edge following, seeking food and feeding food.

Fig. 1.4. (a) Periplaneta computatrix, the computer cockroach where the black
squares indicate feet which are currently supporting the body. (b) The path of a
simulated insect. It shows periods of wandering, edge following and feeding (arrow).
(Reproduced with permission of R.D. Beer [22])

In 1994, Australian researchers A. Russell et al. [179] emulated ant behav-
ior by creating robotic systems (Fig. 1.5) that are capable of both laying down
and detecting chemical trails. These systems represent chemotaxis: detecting
and orienting themselves along a chemical trail.

Fig. 1.5. Miniature robot equipped to follow chemical trails on the ground. (Pho-
tograph courtesy of A. Russell)
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Around 2000, B. Webb et al. [212, 215] showed a wheeled robot that local-
izes sound based on close modeling of the auditory and neural system in the
cricket (cricket phonotaxis). As a result, the robot can track a simulated male
cricket song consisting of 20-ms bursts of 4.7-kHz sound. Continuously, such
robot behavior was developed and transferred into an autonomous outdoor
robot – WhegsIM ASP – three years afterwards [95]. The Whegs (Fig. 1.6)
was able to localize and track the simulated cricket song in an outdoor envi-
ronment. In fact, Webb and her colleagues intended to create these robotic
systems in order to better understand biological systems and to test biologi-
cally relevant hypotheses.

Fig. 1.6. (a) The Whegs. (b) Thirty sequential outdoor trials, recorded using the
tracker, showing the robot approaching the sound source from different directions.
(Reproduced with permission of A.D. Horchler [95])

The extension of the work of Webb was done by T. Chapman in 2001
[46]. He focused on the construction of a situated model of the orthopteran
escape response (the escape response of crickets and cockroaches triggered
by wind or touch stimulus). He demonstrated that a two-wheeled Khepera
robot (Fig. 1.7) can respond to various environmental stimuli, e.g., air puff,
touch, auditory and light, where the stimuli referred to a predatory strike.
It performed antennal and wind-mediated escape behavior, where a sudden
increase in the ambient sound or light was also taken into account.

In 2003, F. Pasemann et al. [155] presented the small recurrent neural
network which was developed to control autonomous wheeled robots show-
ing obstacle avoidance behavior and phototropism in different environments
(Fig. 1.8). The robots were employed to test the controller and to learn about
the recurrent neural structure of the controller.
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Fig. 1.7. (a) The robot model-mounted artificial hairs, antennas, ocelli and ear. (b)
The combined set of wind-mediated escape run tracks, where the arrow indicates the
stimulus. The robot was oriented in different directions relative to the stimulus. The
tracks show the complete set of 48 escape run trials. (Reproduced with permission
of T. Chapman [46])

Fig. 1.8. (a) An evolved neural controller generating exploratory behavior with pho-
totropism. (b) The simulated robot performing obstacle avoidance and phototropic
behavior. (Reproduced with permission of F. Pasemann [155])
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At the same time, H. Roth et al. [176, 177] introduced a new camera
based on Photonic Mixer Device (PMD) technology with fuzzy logic control
for obstacle avoidance detection of a robot called Mobile Experimental Robots
for Locomotion and Intelligent Navigation (MERLIN, Fig. 1.9). The system
was implemented and tested on a mobile robot, which resulted in the robot
perceiving environmental information, e.g., obstacles, through its vision sys-
tem. It can even recognize the detected object as a 3D image for precisely
performing an obstacle avoidance behavior.

Fig. 1.9. MERLIN robots equipped with PMD cameras driving on a terrain with
obstacles. (Reproduced with permission of H. Roth [177])

The above examples are robots in the domain of agent–environment inter-
actions, a field which is growing rapidly. The most comprehensive discussion
can be found in the following references: R.C. Arkin (1998) [10], J. Ayers et
al. (2002) [11] and G.A. Bekey (2005) [26].

1.2 Aims and Objectives

The brief history of the research presented above shows that the principle
of creating agent–environment interactions combines various fields of study,
e.g., the investigation of the robotic behavior control and the understanding
of how a biological system works. It is also the basis for the creation of a
so-called Autonomous Intelligent System, which is an active area of research
and a highly challenging field. Thus, the work described here continues in
this tradition with the extension of the use of biologically inspired walking
machines as agents. They are reasonably complex mechanical systems (many
degrees of freedom) compared to wheeled robots, which have been used in
most previous research. In addition, the creation of desired reactive behaviors
has to be done using more advanced techniques.
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However, there are many different techniques and approaches for robotic
behavior control which can be classified into two main categories: one is de-
liberate control and the other is reactive control. According to R.C. Arkin
(1998) [10], a robot employing deliberative reasoning requires relatively com-
plete knowledge about the world and uses this knowledge to predict its actions,
an ability that enables it to optimize its performance relative to its model of
the world. This results in the possibility that the action may seriously err
if the information that the reasoner uses is inaccurate or has changed since
being first obtained. On the other hand, reactive control is a technique used
for tightly coupling perception and action, and it requires no world model to
perform the action of robots. In other words, this reactive system typically
consists of a simple sensorimotor pair, where the sensory activity provides
the information to satisfy the applicability of the motor response. Further-
more, it is suitable for generating robot behavior in the dynamic world. This
means that robots can react to environmental stimuli as they perceive without
concern for task planning algorithms or memory capacities.

In this book, we shall concentrate on the concept of reactive control to
generate the behavior of four- and six-legged walking machines. In particular,
we shall present a behavior controller based on a modular neural structure
with an artificial neural network using discrete-time dynamics. It consists of
two main modules: neural preprocessing and neural control1 (Fig. 1.10).

The function of this kind of a neural controller is easier to analyze than
many others which were developed for walking machines, for instance, by
using evolutionary techniques [30, 72, 103, 119, 149, 168]. In general, they
were too large to be mathematically analyzed in detail, in particular, if they
used a massive recurrent connectivity structure. Furthermore, for most of
these controllers, it is hardly possible to transfer them successfully onto walk-
ing machines of different types, or to generate different walking modes (e.g.,
forwards, backwards, turning left and right motions) without modifying the
network’s internal parameters or structure [22, 27, 56, 221].

In contrast, the controller developed here can be successfully applied to a
physical four-legged as well as to a six-legged walking machine, and it is also
able to generate different walking modes without altering internal parameters
or the structure of the controller. Utilizing the modular neural structure, dif-
ferent reactive behavior controls can be created by coupling the neural control
module with different neural preprocessing modules. Because the functional-
ity of the modules is well understood, the reactive behavior controller of a
less complex agent2 (four-legged walking machine) can be applied also to a
more complex agent (six-legged walking machine), and vice versa. A part of
1 Here, neural preprocessing refers to the neural networks for sensory signal pro-

cessing (or so-called neural signal processing). Neural control is defined as the
neural networks that directly command motors of a robot (or so-called neural
motor control). These definitions are used throughout this book.

2 In this context, the complexity of an agent is determined by the number of degrees
of freedom.
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Fig. 1.10. The diagram of the modular reactive neural control (called behavior
control). The controller acts as an artificial perception–action system, i.e., the sensor
signals go through the neural preprocessing module into the neural control module
which commands the actuators. As a result, the robot’s behavior is generated by
the interaction with its (dynamic) environment in the sensorimotor loop

the controller is developed by realizing dynamic properties of recurrent neural
networks, and the other is generated and optimized through an evolution-
ary algorithm. On the one hand, the small recurrent neural networks (e.g.,
one or two neurons with recurrent connections [150, 151, 153]) exhibit several
interesting dynamic properties which are capable of being applied to create
the neural preprocessing and control for the approach used in this book. On
the other hand, the applied evolutionary algorithm Evolution of Neural Sys-
tems by Stochastic Synthesis (ENS3) [97] tries to keep the network structure
as small as possible with respect to the given fitness function. Additionally,
every kind of connection in hidden and output layers, e.g., self-connections,
excitatory and inhibitory connections, is also allowed during the evolutionary
process. Consequently, the neural preprocessing and control can be formed
using a small neural structure.

In order to physically build four- and six-legged walking machines for test-
ing and demonstrating the capability of the behavior controllers, the mor-
phologies of walking animals are used as inspiration for the design. The basic
locomotion control of the walking machines is also created by determining the
principle of animal locomotion. In addition, an animal’s behavior as well as
its sensing systems are also studied to obtain robot behavior together with
its associated sensing systems. Inspired by the obstacle avoidance and escape
behavior of scorpions and cockroaches, including their associated sensing sys-
tems, the behavior controller, called an “obstacle avoidance controller”, and
the sensing systems are built in a way that enables the walking machines to
avoid obstacles or even escape from corners and deadlock situations. This be-
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havior is represented as a negative tropism while a positive tropism is triggered
by a sinusoidal sound at a low frequency—200 Hz. The sound induced behav-
ior, in analogy to prey capture behavior of spiders, is called sound tropism. It
is driven by a so-called sound tropism controller together with a correspond-
ing sensory system. As a result, the walking machine reacts to a switched-on
sound source (prey signal) by turning toward and finally making an approach
(capturing a prey).

Eventually, all these different reactive behaviors are fused by using a sensor
fusion technique3 to obtain an effective behavior fusion controller, where dif-
ferent neural preprocessing modules have to cooperate. These reactive systems
also aim to work as artificial perception–action systems in the sense that they
perceive environmental stimuli (positive and negative tropism) and directly
perform the corresponding actions. However, the created systems have no ap-
propriate benchmarks for judging their success or failure. Thus, the ways to
evaluate the systems are by empirical investigation and by actually observing
their performance.

1.3 Organization of the Book

This chapter provided an overview of the research in the domain of agent–
environment interactions, followed by the details of approaches to versatile
artificial perception–action systems. The rest of this book is organized as fol-
lows:

Chapter 2 provides the biological background that served as an inspiration
for the design of the reactive behaviors of walking machines, the physical sens-
ing systems, the structures of walking machines and their locomotion control.
It also shows how these biologically inspired systems are applied to the work
done in this book.

Chapter 3 contains a short introduction to a biological neuron together with
an artificial neuron model. Furthermore, it also describes, in detail, the dis-
crete dynamical properties of a single neuron with a recurrent connection and
an evolutionary algorithm. These are employed as the methods and tools used
throughout this book.

Chapter 4 describes the biologically inspired sensory systems and walking
machines which were originally built with physical components in this book.
They serve as hardware platforms for experiments with the modular neural
controllers or even as artificial perception–action systems.

3 This fusion technique consists of two methods: a look-up table, which manages
sensory input by referring to their predefined priorities, and a time scheduling
method, which switches behavioral modes.
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Chapter 5, which is the main contribution of this book, introduces the neu-
ral preprocessing of sensory signals and neural control for the locomotion of
walking machines. It also presents different behavior controls which are the
product of the combination between the different neural preprocessing units
and the neural control unit. It ends up with the detail of behavior fusion
control that combines all created reactive behaviors and leads to versatile ar-
tificial perception–action systems.

Chapter 6 shows the detailed results of the neural preprocessing tested with
the simulated and real sensory signals. It also shows the capabilities of the
controllers implemented on the physical walking machine(s) which generate
different reactive behaviors.

Chapter 7 examines what has been achieved so far and suggests new avenues
for further research.



2

Biologically Inspired Perception–Action
Systems

Most of this book is devoted to creating and demonstrating so-called artificial
perception–action systems inspired by biological sensing systems (perception)
and animal behavior (action). Thus this chapter attempts to provide the bi-
ological background for understanding the approach taken in this book. It
begins with a short introduction to some of the necessary principles of an-
imal behavior. Then it concentrates on the obstacle avoidance and escape
behavior of a scorpion and a cockroach, and continues with the prey capture
behavior of a spider. Here, attention is given to the biological sensing systems
used to trigger the described behaviors. Furthermore, different morphologies
of walking animals are presented as inspiration for the design of walking ma-
chine platforms. Finally, a biologically inspired locomotion control, called a
“central pattern generator” (CPG), is also discussed. This concept is later
employed to generate the rhythmic leg movements of the machines.

2.1 Senses and Behavior of Animals

How can robotic behavior be designed, and how can it be created in a ratio-
nal way? How can the desired behaviors cooperate? How are these behaviors
applied to sensors and actuators? What kind of primitive behavior should be
implemented in a robotic system, in particular in a mobile robot, before adding
more complex behaviors? These are example questions which most roboticists
always keep in mind before creating a robotic system that can interact with
an environment. Therefore, all these questions must be answered somehow to
provide the principal idea for creating the robot behavior as well as its phys-
ical system such as sensor and actuator types. A possible solution to these
problems may be to observe and study animal behavior (actions) as well as
sensing systems (perceptions), whereby they serve as inspiration for designs.
It seems that animal behavior defines intelligence in the sense that an animal
has the ability to improve its prospects of survival in the real world. From
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studying animal behaviors in their natural environment, ethologist roughly
classified the behaviors into three major classes (from R.C. Arkin 1998 [10]).

• Reflexes are rapid stereotyped responses triggered by a certain environ-
mental stimulus. The response perseveres as long as the stimulus is pre-
sented and depends upon the strength of the stimulus. Reflexes allow an
animal to quickly adapt its behavior to unexpected environmental changes.
Reflexes are usually employed for tasks such as postural control, with-
drawal from painful stimuli and the adaptation of gait to uneven terrain.

• Taxes are orientational responses. These behaviors involve the orientation
of an animal toward (positive tropism) or away (negative tropism) from a
stimulus. Taxes occur in response to visual, chemical, mechanical and elec-
tromagnetic effects in a wide range of animals. For instance, a wandering
spider exhibits positive tropism; that is, it orients to the airflow produced
by a buzzing fly to capture the fly, which is known as “prey capture be-
havior” [18, 90]. Another kind of positive tropism is also evident in female
crickets. They perform phonotaxis during courtship; that is, they turn into
the direction of the calling of a male [137]. On the other hand, the neg-
ative tropism can be compared with, for example, an obstacle avoidance
behavior during navigation or exploration in a scorpion [4, 202] as well as
in an insect. They try to turn away from an obstacle which is perceived by
their tactile sensing systems (e.g., hairs, antennas). However, the obstacle
avoidance behavior can also be realized as part of the reflex response.

• Fixed-action pattern is a time-extended response pattern activated by a
stimulus; i.e., the action perseveres for longer than the stimulus itself. The
intensity and duration of the response are not controlled by the strength
and duration of the stimulus. The triggering stimulus of a fixed-action
pattern is usually more complex and specific than reflexes. In fact, once
a fixed-action pattern has been activated, it will be performed even if the
activating stimulus is removed. An example of a fixed-action pattern is
the escape behavior of cockroaches. They immediately turn and run away
when a predator attacks [172].

The easiest way to generate robotic behavior is perhaps by adopting animal
behaviors described above. They are a reaction to an environmental stimulus
perceived via the sensory system. Such a reaction is called a “reactive behav-
ior”. It can be used to express how a robot should react to its environment.
To do so, a reactive robot system can also be clarified as a perception–action
system; i.e., a robot perceives some environmental information and reacts to
its environment without the use of background information or time history.
This system is suitable for dynamic and hazardous environments because it
responds directly to the environment that it senses.

Here, two distinctive reactive behaviors of animals were investigated, and
associated sensing systems were focused upon. One is obstacle avoidance and
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escape behavior, which is represented by a negative tropism, while the other
is a prey capture behavior, which acts as a positive tropism. Both behaviors
are detailed in the following subsections; this information forms the basis for
the design of the robot behavior and its physical sensing system in Chaps. 4
and 5.

2.1.1 Obstacle Avoidance Behavior

Obstacle avoidance behavior is realized in most animals because they are able
to escape or avoid obstacles in cluttered real environments during the perfor-
mance of an ordinary task (e.g., wandering around or seeking food). Indeed,
if an animal is faced with an obstacle, it sometimes turns away from, climbs
over, follows or even makes an exploration of the obstacle. These different
behaviors usually depend on a situation and the property of the obstacle. The
interesting parts of this desired behavior are how the animal senses the obsta-
cle and which sensory system provides perceptual information of the obstacle.
The biological evidence which supports these hypotheses is described below.

Scorpions are nocturnal and predatory animals that feed on a variety of
insects, spiders, centipedes and even other scorpions. They have a poor visual
system with difficulties in detecting obstacles or prey at long distances. In-
stead, it is mainly used as a photoreceptor for distinguishing between day or
night [48]. Thus they mostly perceive environmental information via sensory
hairs distributed over most parts of the body. For example, F.T. Abushama
[4] observed that the scorpion Leiurus quinquestriatus uses the hairs on the
distal-tarsal segments of the legs for humidity sensing while the pedipalps (the
pincers), the pectines and the poison bulb appear to carry the hairs responsive
to touch, odor and temperature, respectively (Fig. 2.1).

On the other hand, A. Twickel [202] observed the scorpion Pandinus
cavimanus (Fig. 2.1) in the situation where the hairs on the pedipalps were
used for collision detection. Here, the pedipalps play a role in the active per-
ception of obstacles. Once the hairs on the first pedipalp collided with an
obstacle, the scorpion started to slowly turn away from the side of the touch.
During obstacle avoidance, it also performs a tactile exploration of the obstacle
through the active pedipalps. Using the tactile hairs for obstacle perception,
it is finally able to escape the obstacle. The series of photos of the obstacle
avoidance behavior is presented in Fig. 2.2.

In analogy to obstacle avoidance behavior of scorpions, most insect species
(e.g., crickets, cockroaches, stick insects, etc.) are also capable of escaping
from an obstacle or even their predators. Some of them mainly perceive the
information of obstacles or predators through antennal systems. The sensory
system consists of two actively mobile antennas that project from the head
of the insect, and are associated with the neural signal processing. Generally,
insect antennas are exterior sensory structures composed of many tiny seg-
ments. They are highly sensitive to touch stimuli, and may even be able to
discriminate textures [45]. They are flexible, and each of them can be swept



16 2 Biologically Inspired Perception–Action Systems

Fig. 2.1. The scorpion Pandinus cavimanus (modified from S.R. Petersen 2005
[160] and A. Twickel 2004 [202] with permission)

Fig. 2.2. Obstacle avoidance behavior of the scorpion Pandinus cavimanus (see
from (a) to (d)). Small windows show the obstacle avoidance behavior while large
windows present obstacle detection in close-up view. (Reproduced with permission
of A. Twickel [202])
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independently. The insect actively moves the antenna by controlling the mus-
cle in specialized segments located at the base. An example of antennas in the
female cricket Gryllus bimaculatus and the cockroach Blaberus discoidalis
is shown in Fig. 2.3.

Fig. 2.3. The antennas of insects. (a) The female cricket where arrows indicate the
position of antennas (reproduced with permission of T.P. Chapman [46]). (b) Front
view of the cockroach where arrows indicate based segments for moving anten-
nas. (c) Side view of the cockroach where arrows indicate the position of antennas
(pictures (b) and (c) reproduced with permission of R.E. Ritzmann [163])

In fact, insect antennas appear to serve an amazing variety of tasks. For ex-
ample, the use of antennas for chemical pheromone sensing has been suggested
by D. Schneider in 1964 [183] and 1999 [184]. Antennas are also sensitive to
air currents [31], which is found in the carrion beetle, while in cockroaches
they have been determined for wind-mediated escape [25, 194]. Particularly,
through the sense of touch to be required for acting as mechanoreceptor, they
can probe for foothold in rough terrain [79] and actively explore it during
walking [62] (e.g., antennas of stick insects). Furthermore, they are used for
wall-following [45] and even for touch-evoked behavior1 [50, 51, 181] (e.g.,
antennas of cockroaches).

Ideally, the work here would concentrate on touch-evoked behavior in cock-
roaches to understand how they react to touch stimuli through the anten-
nas. Touch-evoked behavior was precisely investigated by C.M. Comer et al.
[49, 51]. There, the reaction of a cockroach with a predatory wolf spider was
1 The context implies to “an obstacle avoidance behavior” if antennas make contact

with an obstacle or to “a predator escape behavior” if stimulus is produced by
an attack of its predator, e.g., a wolf spider.
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attempted. In the observed situation, at the beginning before the antennas
made contact with the spider, the spider was in motion toward the cockroach
while the cockroach was standing still. After that the right antenna touched
the striking spider and the cockroach started to turn to the left. Finally, the
cockroach was able to escape from its predator. The described behavior [49]
is shown in Fig. 2.4.

Fig. 2.4. A predator escape behavior of a cockroach, where the shaded outlines
indicate animal’s initial position (the spider on the left and the cockroach on the
right); numbers present position at successive video frames. They came into contact
on frame 8, and the cockroach began to turn and was able to escape at the end (see
from frame 8 to 13). The figure is taken from C.M. Comer et al. [49]

Other experiments to observe the evasive behavior (escape behavior) of
cockroaches are reported in [49]. The behavior was triggered by artificial touch
stimuli at one antenna. The resulting response was that cockroaches mostly
oriented away from the side of touch with an average vector suitable for escape.
In this situation, the cockroaches turned to the left side when the right antenna
was tapped. The orientation of turns is summarized as a circular histogram
shown in Fig. 2.5, and extremely short latency was observed where the mean
latency of the turn was 33 ms.

From the investigation above, the obstacle avoidance and escape behavior
of a scorpion and a cockroach can be determined as reactions to a negative
tropism. Such reactions are also standard. Animals actually turn away from
the side on which contact is made using their sensing systems. This negative
tropism will be later taken into account for the behavior control of walking
machines in the way that the machines will turn away from the side of the
stimulus (e.g., obstacle detection). Another aspect from this biological inves-
tigation states that biological sensory systems (e.g., the tactile hairs of the
scorpion and the antennas of the insects) at the anatomical level are some-
what complicated. Thus, no attempt to model the detailed anatomy of these
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Fig. 2.5. The circular histogram shows the orientation of turns which respond to
touch stimuli. The open arrow indicates the average angle of turning while the black
one represents the position where the right antenna has been touched. The figure is
taken from C.M. Comer et al. [49]

sensors is done in this book. Instead, physical sensors associated with their
neural preprocessing will be modeled in a simple way with respect to the
functionality of biological sensory systems.

2.1.2 Prey Capture Behavior

All spiders are really hairy creatures, and most spiders have very poor eyesight.
Thus, they mostly rely on their hairs for sensing their environment instead of
their eyes. The hair is used to perform a surprising variety of tasks (Fig. 2.6,
right). For example, tactile-sensitive hairs on the legs help the spider to move
freely around its terrain [186, 187]. There are also airflow-sensitive hairs which
are important for detecting its prey [16, 17]. Furthermore, the hairs on the
pedipalps are used as chemoreceptors which are sensitive to taste and odor
[60, 61] and also associated with mate recognition [76, 147].

From concise investigation on sensing systems of spiders, several attractive
functions of the hairs have been mentioned. By now, the airflow-sensitive hairs
called Trichobothria of the spider Cupiennius salei (Fig. 2.6, left) are well
researched. Actually, trichobothria are the sensillum (sense organ), having
the hair-like structure which arises from a socket in the cuticle. They have
low mass and are very flexible. Thus, they are extremely sensitive to the
airflow stimulus and the auditory cues2 in a low-frequency range between

2 In 1883, F. Dahl found that the trichobothria respond to low tones produced by
bowing a violin, and thus he classified them as “auditory hairs” [57]. Later on,
in 1917, H.J. Hansen published an article describing sensory organs in arachnida
where auditory hairs were also mentioned [87].
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Fig. 2.6. Left: the wandering spider Cupiennius salei (Copyright 2002 by
F. Tomasinelli and reproduced with permission [200]). Right: the layout of the hairs
on the spider leg (Copyright 2002 by Australian Museum and reproduced with per-
mission [1])

approximately 40 and 600Hz [16, 19]. Through the use of these hairs, the
spider is able to detect its prey (e.g., a buzzing fly) which generates the airflow
at a frequency range of around 100 Hz. In other words, this sensing system
(the hairs together with associated neural signal processing) acts as a matching
filter. It reacts to the biologically significant signals (e.g., prey signals) while
it filters out surrounding noise as well as interfering signals (e.g., background
airflow). This is because most background noise has a very low frequency
(a few hertz), which nicely contrasts with the frequency of prey signals [15].
Figure 2.7 shows the response of the individual hair to the prey signal (airflow
generated by a buzzing fly during stationary flight 5 cm away).

In fact, the spider Cupiennius salei has approximately 950 tirchobothria
with the length up to 1400µm which are located on the tarsus, the metatarsus
and the tibia of the spider leg (Fig. 2.7). This sensing system is adequate to
perform “prey capture behavior” when it is stimulated by the airflow gener-
ated by a buzzing fly at a distance of up to approximately 30 cm. As a result,
the spider orients its movement toward the direction of the stimulus and then
jumps to the targeted buzzing fly [18, 35, 90]. The series of photos of prey
capture behavior is shown in Fig. 2.8.

As shown here, the prey capture behavior represents a positive tropism.
Such reaction is mostly found in predatory animals, e.g., spiders, scorpions
and so on. They respond to a prey stimulus through sensing systems, e.g.,
sensory hairs. Consequently, they turn in the direction of the stimulus source
and then try to capture a targeted prey. These kinds of a positive tropism
and the described sensing system (trichobothria) of the spider are able to be
reproduced on a walking machine (in an abstract form) whereby a puff of
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Fig. 2.7. The recorded signal of the trichobothria at location D1 on the leg of the
spider Cupiennius salei in response to the airflow produced by a stationary buzzing
fly (modified from F.G. Barth 2002, p. 253 [15])

Fig. 2.8. The spider Cupiennius salei jumps toward a buzzing fly on a leash (see
from (a) to (f)). The action time is indicated on the lower left corner of each photo
(modified from F.G. Barth 2002, p. 257 [15])
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the wind, which is normally generated by the buzzing fly, is replaced by a
low-frequency sound around 200Hz. Also, the biological airflow detectors are
simplified to physical sound detectors instead. Thus, as a result, the physical
sound detectors together with associated artificial neural preprocessing3 shall
enable the walking machine to react to a switched-on sound source by turning
toward and making an approach to it at the end (like capturing prey). This
sound-induced behavior is called “sound tropism”.

Eventually, these different reactive behaviors will be integrated into a be-
havior controller of a walking machine, where the controller has to cooperate
as in a versatile perception–action system. For example, the stimulus through
antenna-like sensors generates a negative tropism while the low-frequency
sound triggers a positive tropism, so that the walking machine (i.e., a preda-
tor) follows a switch-on sound source (i.e., a prey signal) but avoids obstacles.

2.2 Morphologies of Walking Animals

In order to explore the neural control of the biologically inspired behaviors in
a physical agent, the specific agent’s body must be carefully designed because
it defines the possible interactions with its environment. In addition, the body
of the agent also determines the boundary conditions of an environment in
which it can operate successfully. The design of the neural control depends
on the morphology of the agent, i.e., the type and position of the sensors
and the configurations of the actuators. Choosing too simple a design, the
behavior of the body may be of limited interest and it may obstruct the need
for an effective neural control for a complex system. To achieve this potential,
agents having morphologies similar to walking animals are preferred. In other
words, biologically inspired walking machines are the robot platforms for the
approach of this work. Such machines are more attractive because they can
behave somewhat like animals and they are still a challenge for locomotion
control.

Two walking animals were observed to benefit the leg and trunk designs
of four- and six-legged walking machines (physical agents). The inspiration
for the structure of a four-legged walking machine came from the biological
principles that a salamander uses to obtain an efficient walking pattern [34,
165], while the design of the legs and the trunk of a six-legged walking machine
follows the way that a cockroach walks and climbs [163, 216]. The details of
the morphologies of both walking animals are described below.

3 This physical sensing system together with its neural preprocessing shall perform
like trichobothria with associated biological neural processing (a matched filter).
That is, the physical sensors detect the signal while the neural preprocessing acts
as a matched filter passing only the low-frequency sound (200Hz) to trigger a
so-called sound tropism.
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2.2.1 A Salamander

A salamander is a vertebrate walking animal that belongs to the group of
amphibian tetrapod. It is able to traverse both on land and water. It has small
limbs projecting from its trunk for walking on land. Each limb is formed of
three main segments which are thigh, shank and foot (Fig. 2.9).

Fig. 2.9. The limbs of a salamander. (Reproduced with permission of G. Nafis 2005
[139] (left) and K. Grayson 2000 [83] (right))

All limbs are quite small and far from each other, causing difficulty for
locomotion, in particular on land. Therefore, it also uses the movement of the
trunk bending back and forth coordinated with the movements of the limbs
for an efficient walking pattern [100]. The trunk is mainly created from mus-
cles propagating along the backbone (musculature). This musculature has the
advantage of more flexible and faster motions and aids in climbing. Generally,
during locomotion on land, its trunk bends to one side causing an increase in
the step length of the two diagonally opposite lifted limbs which are pushed
forward while the other two limbs are pushed backward simultaneously. As
a result, it performs a trot gait. The locomotion of a salamander on land is
presented in the series of photos in Fig. 2.10.

Fig. 2.10. The locomotion of a salamander (from left to right). An open circle
of each photo assumes to a backbone joint which connects the first segment (1 )
with the second segment (2 ) and makes an active bending movement of a trunk for
locomotion. (Courtesy of J.S. Kauer [108] (Kauer Lab at Tufts University))
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By realizing the salamander structure, the trunk of a four-legged walking
machine was designed with a backbone joint which can rotate in a vertical axis.
The joint then facilitates more flexible and faster motions like the movement
of a salamander. Each leg is modeled more simply than a salamander leg
but still maintains the operations of a salamander leg; i.e., it can perform
forward–backward and up–down motions (see in Sect. 4.2).

2.2.2 A Cockroach

A cockroach is an invertebrate walking animal in the phylum of arthropods. It
has six legs, and each leg is composed of multiple segments: coxa, trochanter,
femur, tibia and tarsus (foot). The upper leg segments generally point upwards
and the lower segments downwards. The legs project out from the trunk like a
salamander. They are oriented around its trunk in a way that the two front legs
point forwards while the four rear legs typically point backwards to maintain
stability in walking (Fig. 2.11). Such orientation can be beneficial in climbing
over an obstacle; i.e., a cockroach can easily move its front legs forward to
reach the top of an obstacle while the rear legs power its motion by rising its
trunk up and pushing it forward. As a result, it can climb over the obstacle
(Fig. 2.3c) [216]. Moreover, front legs are also used to detect stimulus coming
from the front while rear legs perceive stimulus from the back.

Fig. 2.11. The legs of a cockroach and the orientation of legs around its trunk
(modified from J.T. Watson et al. 2002 [211])

Concerning its number of legs, a cockroach normally performs a typical
tripod gait for the walking pattern, where the front and rear legs on one side
together with the middle leg on the other side support the trunk (so-called
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stance phase) simultaneously while the other three legs are in the air (so-
called swing phase). These support legs are then replaced by the other three
legs in the next step. While walking under normal conditions, its trunk does
not bend back and forth like a salamander as the structure of its trunk is
different from a salamander. The trunk is not formed by a muscle. Instead,
it consists of three main segments: prothoracic (T1), mesothoracic (T2) and
metathoracic (T3) (Fig. 2.11, left). This structure is advantageous for climb-
ing on an obstacle, as it has the transition between vertical and horizontal
surface. It can bend its trunk downward at the joint between the first (T1)
and second (T2) thoracic segments to keep the legs close to the top surface of
the obstacle for an optimum climbing position and even to prevent unstable
actions (Fig. 2.12).

Fig. 2.12. A cockroach climbing over a large obstacle block (adapted from R.E. Ritz-
mann 2004 [163])

Inspired by the morphology of a cockroach, the trunk of a six-legged walk-
ing machine was constructed with a backbone joint rotating in a horizontal
axis. Thus, the backbone joint is like the connection between the first and
second thoracic segments of a cockroach. It will provide enough movement for
the machine to climb over an obstacle by rearing the front legs up to reach the
top of an obstacle and then bending them downward during step climbing.
Each leg was designed with respect to the movement of a cockroach leg. It
consists of three joints, where the first joint can move the leg forward and
backward, the second one can move the leg up and down, and the last one is
for elevation and depression or even for extension and flexion of the leg (see
more details in Sect. 4.2).
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2.3 Locomotion Control of Walking Animals

The basic locomotion and rhythm of stepping in walking animals mostly relies
on a CPG [55, 84, 158, 193]. The CPG is a group of interconnected neurons
that can be activated to generate a motor pattern without the requirement
of sensory feedback [58, 94]. The evidence which supports this hypothesis was
originally demonstrated by T.G. Brown in 1911 [42]. He discovered that the
rhythmic patterned activity of leg muscles in a cat, similar to those that appear
during walking, could be activated although all input from sensory nerves in
the legs had been eliminated. This is because the processes underlying cat
locomotion are situated in the spinal cord; i.e., if the dorsal roots4 of a cat are
cut, the ventral roots5 are still able to induce a rhythmic patterned activity
(Fig. 2.13). Later on, in 1966, M.L. Shik et al. [188] presented that cats without
the higher levels of the nervous system (the cerebral hemispheres and the
upper brain stem (Fig. 2.13)) are still able to walk in a controlled manner on
a treadmill. This result has been accumulated to support the original proposal
of T.G. Brown that the basic rhythmic movements in each leg of the cat can
be generated without sensory input.

Fig. 2.13. The spinal cord and lower brain stem of a cat are cut from the cerebral
hemispheres and the upper brain stem at the cross section A′ - A (modified from
K.G. Pearson 1976 [158] and Copyright 2005 by Pearson Education with permission)

Moreover, S. Grillner and his colleagues [85, 148] made experiments on
the pattern of activity in the flexor and extensor muscles of cats after the
elimination of sensory input from the receptors in the legs. They found that
the rhythmic patterned activities in flexors and extensors of the cat’s hind
leg could still be generated although the spinal cord was cut from the hind-
leg segments. This important result leads to the discovery that the rhythmic
4 The two nerve fiber bundles of a spinal nerve that carries sensory information to

the central nervous system.
5 The part of a spinal nerve, consisting of motor fibers, that arises from the previous

section of the spinal cord.
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patterned activity is generated not only by the spinal cord but also with
the effect from a central rhythm generator for each leg. Similar results were
obtained by K.G. Pearson and J.F. Iles [158, 159] in studies of the cockroach.
After disconnecting all sensory input from the legs, the rhythmic patterned
activities in hind-leg flexor and extensor motor neurons remain functional.
The examples of the rhythmic patterned activities after all sensory input from
receptors in the hind leg of the cat and the cockroach had been eliminated
are shown in Fig. 2.14.

Fig. 2.14. The existence of a central rhythm generator for each leg of the cat and
the cockroach is corroborated by the fact that even after all sensory input from
receptors in the hind legs had been eliminated, they could still work. The rhythmic
bursts of electrical activity were generated in the flexor and extensor muscles in the
hind legs of both animals (adapted from K.G. Pearson 1976 [158])

The rhythmic patterned activities of the CPGs together with the mecha-
nism that coordinates the motion of all legs form the basic walking patterns
[44]. In the cat, there are four basic patterns (walking gaits): the walk, the
trot, the pace and the gallop. During walking, trotting and pacing the move-
ments of the two hind legs are out of phase as are the movements of the two
forelegs. The difference between the three gaits is the timing of the stepping
of the two legs on each side of the animal. For example, during slow walking,
the left foreleg steps shortly after the left hind leg and before the right hind
leg. The stepping sequence is the following: left hind leg, left foreleg, right
hind leg, and right foreleg, and so on. When the walking speed is increased
until the diagonal legs step at the same time, then the animal is trotting.
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Pacing is realized by the simultaneous stepping of the two legs on one side.
As a result, the animal can move with slightly higher speed than trotting.
The fastest movement of the animal is galloping where the opposite legs move
almost synchronously and the forelegs are out of phase with the hind legs. In
the cockroach, which of course has six legs, the walking patterns can instead
be simply determined by the walking speed. For fast walking gait, the animal
is always supported by at least three legs; e.g., the left rear, right middle and
left front legs step in phase while the remaining legs step out of phase. For
that reason, the gait is called the tripod gait. If the walking speed decreases,
the gait is changed and it can be described as a sequence of the three legs on
each side moving from the back to the front. The basic walking gaits of the
cat and the cockroach are presented in Fig. 2.15.

Fig. 2.15. Walking gaits of the cat and the cockroach are depicted from left to
right. Each white block indicates that the foot has no ground contact (swing phase),
while each black block indicates that the foot touches the ground (stance phase).
During slow walking, there is a back-to-front sequence of stepping for both animals;
the sequence are marked by the ellipses (modified from K.G. Pearson 1976 [158])

The CPGs mentioned above seem to underly the production of all basic
rhythmic walking gaits. This does not mean that sensory inputs are unim-
portant in the patterning of locomotion. In fact, the sensory input also plays
an important role, to change the walking patterns and animal behaviors. For
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example, animals use the sensory feedback from the moving legs to adapt the
walking patterns for irregular terrain [21, 79]. It is even used to produce well-
coordinated motor patterns which are mostly found in stick insects [20, 44].
In addition, the sensory input also controls animal behavior responding to
environmental stimuli, and it, of course, effects to generate the appropriate
motions. Thus, on the one hand, the basic locomotion or the rhythmic pat-
terned activity of legs is generated by the CPGs performing as a low level
control while, on the other hand, the sensory input acting as a high level
control will command for different walking patterns, e.g., changing a walking
gait from slow to fast walking or vice versus as well as changing the walking
directions.

From the biologically inspired locomotion control, the basic rhythmic
movements of the legs of the four- and six-legged walking machines will be
basically generated by the CPG and the sensory information will be also used
to modify the leg movements to obtain the various walking patterns. Con-
sequently, the walking machines shall normally walk with the trot gait for
four legs and the tripod gait for six legs, and the sensory inputs will steer
the walking directions of the machines in turning left, right and even walking
backward (see more details in Sect. 5.2).

2.4 Conclusion

Animals are excellent models for the design of robotic systems. They show fas-
cinating behaviors which can serve as an inspiration for modeling the behav-
ior control of the walking machines including their physical sensing systems.
Generally, animals respond directly to their environment through their senses.
This reaction is defined as a reactive behavior and it is the basis to express
how the walking machines should react to their environment. In this book,
different reactive behaviors together with the associated sensing systems are
investigated, whereby one is an obstacle avoidance behavior represented as
the negative tropism and the other is a prey capture behavior classified as
positive tropism. Both behaviors are to be emulated in abstract forms in our
walking machine(s).

We also tried to simulate the morphologies of walking animals. The mor-
phologies of a salamander and a cockroach were taken into account so as to
benefit the leg and trunk designs of the four- and six-legged walking machines,
especially their use of the backbone joint or the interconnection joint between
segments for efficient locomotion. Furthermore, the basic locomotion control
of the walking animals was also studied. It mostly relies on a CPG, which is
the group of interconnected neurons producing rhythmic patterned outputs
without the requirement of sensory feedback. Thus, the locomotion control of
the two walking machines will be basically generated by realizing the concept
of the CPG, and it will then be modified by sensory signals with respect to
environmental stimuli.
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Neural Concepts and Modeling

This chapter presents methods and tools which are to be used throughout this
book. It starts with a short introduction to a biological neuron together with
an artificial neuron which is followed by the comparison of network structures
between feedforward and recurrent neural networks. Then the discrete-time
dynamical properties of the single neuron with a recurrent connection are
described. Finally, artificial evolution is presented as a tool to develop and
optimize neural structures as well as the strength of synapses.

3.1 Neural Networks

As illustrated by research which applied artificial neural networks (ANNs) to a
wide field of applications, e.g., signal processing [123, 127, 196, 205, 225], robot
control [23, 29, 56, 100, 114, 128, 156, 219], robot learning [14, 73, 82, 182, 220],
etc., neural networks have the capability to deal with many kinds of problems
including nonlinear problems. Moreover, there are various reasons for using
neural networks for the work in this book. First, they are based on biological
neural processing systems. Therefore, they are parallel-distributed processing
patterns; i.e., their structure can consist of a very large number of synapses
and neurons that can convey and process information simultaneously with a
strong fault-tolerant behavior. In other words, many synapses or neurons must
be damaged before the overall neural network system stops working properly.
Second, they have a number of excellent properties; i.e., they are robust, they
can be adaptive if a suitable on-line learning method is designed, they have
the ability to handle small variations of noise and they even exhibit dynamical
behavior (oscillatory, hysteresis, chaotic patterns, etc.), in particular recurrent
neural networks (RNNs). And last, which is of relevance in this book, is that
they are able to build a robot brain as a composition of different neural mod-
ules interacting in a cooperative or competitive way to produce the desired
robot behavior. This means that ANNs can extend an existing neural system
to improve the robot’s behavior or even to obtain a robust behavior.
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3.1.1 A Biological Neuron

In this section, a biological neuron is briefly discussed in order to provide
a basic idea of its structure and principal functions. Thus, the physiological
processes are not detailed here but are discussed further in the following ref-
erences: J.A. Anderson (1995) [7], R. Hecht-Nielsen (1990) [142] and R. Rojas
(1996) [174].

The human brain is the most complex structure known in the universe.
It consists of approximately 1011 neurons, which are highly interconnected,
and they communicate through a connection network having a density of
approximately 104 synapses per neuron. This produces approximately 1014

synapses in the whole network. Figure 3.1 shows a model of the biological
neuron consisting of four main components: the dendrites, the cell body called
“soma”, the axon and the synapses.

Fig. 3.1. A diagram of the generic neuron and a sample of an electrical impulse
(modified from J.A. Anderson 1995, p. 7 [7])



3.1 Neural Networks 33

Dendrites transmit information from other neurons to the soma. The axon
makes connections to other neurons via synapses. Synapses can be excitatory
if they cause firing in the form of spikes (increasing the activation level of a
neuron) or they can be inhibitory if they prevent the firing of the response
(decreasing the activation level of a neuron). The firing condition occurs when
the excitation exceeds the inhibition by the amount called the threshold of the
neuron, typically a value of roughly +40 mV [9]. Since a synaptic connection
causes the excitatory or inhibitory reactions, it is useful to assign positive and
negative weight values, respectively, to such connections.

However, there are a large number of various types of real neurons in the
human brain, and they have also different dendritic shapes. Examples of real
neurons are shown in Fig. 3.2.

3.1.2 An Artificial Neuron

A biological neuron has a high complexity in its structure and function; thus,
it can be modeled at various levels of detail. If one tried to simulate an artificial
neuron model similar to the biological neuron, it would be impossible to work
with. Hence an artificial neuron has to be created in an abstract form which
still provides the main features of the biological neuron. In the abstract form
for this approach, it is simulated in discrete time steps and a neural spiking
frequency (or called a firing rate)1 is reduced to only the average firing rate.
It is given by one simple output value. Moreover, the amount of time that a
signal travels along the axon is neglected.

Before describing the artificial neural model in more detail, one can com-
pare the correspondence between the respective properties of biological neu-
rons in the nervous system and abstract neural networks to see how the bio-
logical neuron is transformed into the abstract one. This comparison is shown
in Table 3.1 (from R. Pfeifer and C. Scheier 1999 [161]).

Table 3.1. Comparison of biological and artificial neurons

Nervous system Artificial neural network

Neuron Processing element, node, artificial neuron, abstract neuron
Dendrites Incoming connections
Cell body (Soma) Activation level, activation function, transfer function,

output function
Spike Output of a node
Axon Connection to other neurons
Synapses Connection strengths or multiplicative weights
Spike propagation Propagation rule

1 The number of spikes that a neuron produces per second.
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Fig. 3.2. Four different types of biological neurons are shown, each specialized for
the specific function which they perform (from S.W. Kuffler et al. 1984, p. 10 [116])

The structure of a standard additive neuron model is shown in Fig. 3.3.
This neural structure together with the given activation function and transfer
function is employed throughout this book.

All weighted inputs (coming from sensors or other neurons, indicated by
oj) and a bias term used as a fixed input bi are simply summed up and passed
through an activation function to produce a level of activation. Therefore, the
activation function of the standard additive neuron is given by:
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Fig. 3.3. The structure of an artificial neuron. Each neuron can have multiple input
connections, which can originate from other neurons or from a sensor, but there is
only one output signal. Then the single output signal can be distributed in parallel
(in other words, multiple connections carrying the same signal) to other neurons or
to an external system, e.g., a motor system

ai =
n∑

j=1

wijoj + bi, i = 1, . . . , n, (3.1)

where ai is the activity of neuron i, n denotes the number of units, wij rep-
resents the synaptic strength or weight of the connection from neuron j to
neuron i, bi refers to a fixed internal bias term together with a stationary
input to neuron i, and oj is the input(s). In discrete time steps, the activation
is then updated at each time step t, defined as an integer value. Thus, the
activation function given in Eq. (3.1) can be rewritten as:

ai(t + 1) =
n∑

j=1

wijoj(t) + bi, i = 1, . . . , n . (3.2)

The activation function is then transformed by a transfer function fi to
obtain a neuron output oi. The most widely used transfer functions are shown
in Fig. 3.4.

The linear threshold transfer function is similar to a step function. It sums
the inputs and the activation level of the neuron is inactive (zero or −1) until
the threshold value Θ is reached, at which point the neuron becomes active
(+1) (Fig. 3.4a). For the linear transfer function (Fig. 3.4b), it simply sums
the input, and it is often used as a buffer between external input signals (e.g.,
coming from sensors) and the determined network. The last transfer function
which has been commonly used in a neural network model is the sigmoid
or logistic transfer function (Fig. 3.4c). It is a smoothed version of a step
function. Its output value is around zero (or ≈ −1), at a lower bound for low
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Fig. 3.4. (a)–(c) Most widely used transfer functions. (a) Linear threshold transfer
function. (b) Linear transfer function. (c) Nonlinear sigmoid transfer function

input. At some point, it begins to increase rapidly before saturating (≈ +1 for
an upper bound) at higher levels of input. The sigmoid transfer function with
a lower bound at ≈ −1, called the “hyperbolic transfer function” (tanh(x)), is
used throughout the rest of the book because it is more convenient to apply
in controlling a robot. It can also be justified by the observation that many
biological neurons have a nonzero spontaneous firing rate. The equation of
this transfer function is given by:

f(ai) = tanh(ai) =
2

1 + e−2ai
− 1. (3.3)

This transfer function is bounded between −1 and +1. Its boundary can
be interpreted as the summation of synaptic inputs at the dendrites and cell
body level in biological neurons. By applying the sigmoid transfer function,
the neuron output oi is determined as follows:

f(ai) = tanh
( n∑

j=1

wijoj + bi

)
. (3.4)

In any case, if the inputs to neuron i come from other neurons (i.e., outputs
of neuron j) instead of sensors, the activation function of the standard additive
neuron in the discrete-time domain can be described by:

ai(t + 1) =
n∑

j=1

wijtanh(aj(t)) + bi, i = 1, . . . , n . (3.5)

3.1.3 Models of Artificial Neural Networks

The arrangement of artificial neurons and their interconnections can have a
profound effect on the processing capabilities of the neural networks. In gen-
eral, all neural networks have a set of neurons receiving inputs from the outside
world (e.g., sensor data). This set is indicated as the “input neurons”. Many
neural networks also have one or more internal neurons called the “hidden
neurons” which receive inputs from other neurons or themselves. The set of
neurons that represent the final result of the neural network, which is sent out
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to control external devices (e.g., motors), is defined as the “output neurons”.
Sets of neurons that have similar characteristics and are connected to other
neurons in similar ways are called “layers” or “slabs”.

Concerning connection topologies that define the direction of data flows
between the input, hidden and output neurons, these can be classified into
two different types of network architectures, so-called feedforward network
and recurrent network. A feedforward network has a layered structure. Each
layer consists of neurons which receive their input from neurons in a layer
directly below and send their output to neurons in a layer directly above.
This network does not have internal feedback; in other words, there exist only
forward connections which produce forward activities of neurons. Therefore,
feedforward networks are static; that is, their output depends only on the
current inputs and the networks represent just simple nonlinear input–output
mappings (Fig. 3.5, left).

On the contrary, if feedback exists within the connection structure which
allows cyclic propagation of activity (or backward activities), the network
is called a recurrent network (Fig. 3.5, right). The output of the network
depends on the past inputs; thus, the network can represent various dynamical
properties (e.g., hysteresis, oscillation and even deterministic chaos). Some
dynamical behaviors of the network are useful for signal processing and robot
control being the approach of the book. Therefore, this book is concentrated
on applying recurrent neural networks together with their dynamical behavior
to create so-called versatile artificial perception–action systems described in
Chap. 5. However, there are two exceptions of applying the network to create
the neural controller of the system, where input neurons can receive only input
from the outside world (sensor data) and the number of the input and output
neurons is determined by the number of sensors and motors used, respectively.

3.2 Discrete Dynamics of the Single Neuron

The single neuron with a self-connection, namely a recurrent neuro-module,
has several interesting (discrete) dynamical properties which have been inves-
tigated by F. Pasemann [151, 152] and others [13, 88, 89, 170]. From these
investigations, the single neuron with an excitatory self-connection has a hys-
teresis effect while the stable oscillation with period-doubling orbit can be
observed for an inhibitory self-connection. However, both phenomena occur
for specific parameter domains of an input and a self-connection weight.

In this book, the hysteresis effect is utilized for preprocessing sensor signals
as well as robot control (described in Sect. 5.1). By now, the recapitulation of
the used dynamical property of a recurrent neuro-module is discussed by em-
ploying the single neuron model presented in the previous section. The corre-
sponding dynamics is parameterized by the input I and the self-connection w.
The discrete dynamics of the single neuron with a self-connection is given by:
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Fig. 3.5. Examples of a feedforward network (left) and a recurrent network (right).
Generally for robot control, the input for the networks comes from the sensors while
their output is sent to control the motors

a(t + 1) = wf(a(t)) + θ, (3.6)

with the hyperbolic transfer function

f(a) = tanh(a) =
2

1 + e−2a
− 1, (3.7)

where the parameter θ stands for the sum of the fixed bias term b and the
variable total input I of the neuron. The model neuron with a self-connection
for the investigation is presented in Fig. 3.6.

Fig. 3.6. The model neuron with a self-connection
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As mention above, the hysteresis effect is observed only for an excitatory
self-connection with the specific parameter domains; thus, the dynamics of an
excitatory self-connection is shown here while the dynamics of an inhibitory
self-connection as well as the detail of mathematical proof are referred to
[151, 152].

By simulating the dynamical behavior of varying the excitatory self-
connection w together with the input θ, two different domains in the (θ,
w)-space are observed (Fig. 3.7).

Fig. 3.7. The dynamics of a neuron with an excitatory self-connection. Left : Param-
eter domains for one stable fixed point (I), two stable and one unstable fixed points
(II). Right : The cusp catastrophe with respect to the dynamics of the neuron. One
can compare between the left and right diagrams to obviously see two stable fixed
points and one unstable fixed point which exist in region II. There are also tran-
sition states shown on the right diagram where the system changes from one (low)
stable fixed point to another (high) stable fixed point and vice versa (F. Pasemann
2005, personal communication)

In region I, there exists a unique stable equilibrium (one fixed point at-
tractor) for the system while three stationary states (one unstable fixed point
and two coexisting fixed point attractors which are the low and high points)
are found in region II. In fact, the hysteresis effect of the output appears
when the input θ crosses the region I and II; e.g., θ sweeps over the input
interval between −2 and +2 for a fixed w = 2 (see also an arrow line between
c and d in Fig. 3.7). If w is increased to 4 while θ still varies over the input
interval (between −2 and +2); i.e., θ does not pass back and forth through
the region I and II (see also an arrow line between a and b in Fig. 3.7).
Instead, it varies inside the region II; consequently, the output O will stay at
one fixed point attractor (either high or low fixed point attractor) depending
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on where the input starts. Furthermore, the width of the hysteresis loop is
defined by the strength of the self-connection w >+1; i.e., the stronger the
self-connection, the wider the loop is [96]. The comparison of the width of the
hysteresis loop is presented in Fig. 3.8.

Fig. 3.8. Comparison of the “hysteresis effects” between the input θ and output O
for w = 2.0, 4.0 and 6.0, respectively (F. Pasemann 2005, personal communication)

One can utilize such different sizes of a hysteresis loop for robot control,
e.g., the turning angle of a mobile robot for avoiding obstacles can be deter-
mined by the width of a hysteresis loop. In other words, the wider the loop,
the larger the turning angle is (see also Sect. 5.1.3). Additionally, there is an
example situation shown in Fig. 3.9 where the hysteresis effect depends on
the frequency of a dynamic input, e.g., slowly and quickly varying inputs.

Fig. 3.9. The example of the dynamics of the recurrent neuron with the dynamic
input. Left : The dynamic input θ varies between ≈ −1 which is in region I and ≈ 0.5
which is near to the border where the system can jump from one fixed point (low)
to another fixed point (high). Right : The hysteresis effect of the dynamic input for
a fixed w = 2, see text for details (F. Pasemann 2005, personal communication)
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In this situation, the hysteresis will appear if the dynamic input has low
frequencies; i.e., the system will move from point e to f ′ through f in one
path and it will return to point e again in another path, resulting in the
hysteresis loop. On the other hand, if the frequency of the dynamic input
is high, the system will move from point e to point f and it cannot jump
to point f ′ because of the transient; i.e., the signals change so rapidly that
transient cannot die out. It will then return to point e again at nearly the
same path; therefore, the hysteresis loop cannot be observed. By utilizing this
phenomenon, the single neuron with excitatory self-connection for the specific
parameter domains is applied to filter the signals having different frequencies;
i.e., the neuro-module can perform as a low-pass filter (see more details in
Sect. 5.1.1).

3.3 Evolutionary Algorithm

An evolutionary algorithm is used to develop the network’s structure as well
as to optimize its synaptic weights. This algorithm is inspired by the principles
of natural evolution based on genetic variation and selection rules. There are
many evolutionary algorithms which have been developed during the last 30
years; e.g., Genetic Algorithms (GAs) were introduced by J.H. Holland in
1970s [93], Evolutionary Strategies (ESs) were developed in the 1960s by
I. Rechenberg [167] and H.P. Schwefel [185] and Evolutionary Programming
(EP ) was presented by L.J. Fogel et al. in the early 1960s [77, 78] and there
are plenty of textbooks, e.g., [118, 145, 210], and conference series on this
topic.

Here, Evolution of Neural Systems by Stochastic Synthesis (ENS3)
[97] was employed as reference material for the production of a neural con-
trol unit as well as a neural preprocessing unit for the approach of artificial
perception–action systems. It has the capability to develop size and connectiv-
ity structure as well as simultaneously optimize parameters of neuro-modules2

like the synaptic weights and bias terms. It has been successfully applied to
various optimization and control problems in robotics as well as signal pro-
cessing, e.g., [74, 131, 203, 204, 217, 218, 224].

The ENS3 algorithm is an implementation of a variation–evaluation–selec-
tion cycle (Fig. 3.10) operating on a population3 of n neuro-modules (pi,
i = 1,..., n).

A population pi consists of two sets which are parents P (t) and offspring
P̂ (t) where the parameter t denotes the generation of the population. It can
be initialized (t = 0) by a population of an empty network consisting of only
input and output neurons without any hidden neurons and connections or

2 Here, neuro-modules are sometimes referred to as neural networks, neural modules
or even just neural nets. However, all these terms mean exactly the same thing.

3 One population can be determined as one problem or one fitness function.
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Fig. 3.10. The general function of the ENS3 algorithm. The algorithm can start
with the empty network (upper picture on the left) or the given network structure
(lower picture on the left). The initial network is then presented to a variation-
evaluation-selection process (cycle diagram shown in the middle). There is no formal
stop criteria; i.e., it is repeated until the user manually stops the process, possibly
if the reasonable network (picture on the right) is found

it can start with a given network structure (Fig. 3.10). However, there are
two restrictions for using this evolutionary algorithm. One is that the transfer
function of all neurons has to be the same. The other is that input neurons
are solely used as a buffer; thus, no feedback connections to the input neurons
are permitted. On the other hand, every kind of connection in hidden and
output layers, e.g., self-connections, excitatory and inhibitory connections, is
allowed.

Several operators in a variation–evaluation–selection cycle of the algorithm
have to be considered for the evolutionary process. They can be formally
represented as follows:

p(t + 1) = S(E(V (R p(t)))), (3.8)

where p ∈ P (t) ∪ P̂ (t) is a population of individuals and R, V , E and S are
the reproduction, variation, evaluation and selection operators, respectively.

• The reproduction operator R creates a certain number of copies of each
individual neuro-module from the parent group P (t). The copies represent
as the group of offspring P̂ (t) in generation t. The number of copies is
calculated by the selection operator S. This number is initially set to 1 for
each module at the beginning (t = 0).
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• The variation or mutation operator V is a stochastic operator and it is
applied to offspring P̂ (t) while the parents P (t) are not allowed to change.
It realizes the combinatorial optimization and real-valued parameter op-
timization. On the one hand, the combinatorial optimization refers to the
fact that the number of hidden neurons and connections can be increased
or decreased during the evolutionary process. It is determined by per-
neuron and per-connection probabilities which are calculated according
to a given probability and a random variable (0, 1). On the other hand,
the real-valued parameter optimization refers to the variation of the bias
and weight terms. It is calculated by using a Gaussian distributed random
variable (0, 1).

• The evaluation operator E is defined in the term of a fitness function
F that measures the performance or fitness value of each neuro-module.
To keep the size of the evolved networks within limits, the fitness value
takes into account the number of hidden neurons and connections; i.e., the
desired number of neurons and connections can be negatively added to the
fitness function by means of cost factors.

• The selection operator S is a stochastic operator. It selects which neuro-
module from the group of the parent and offspring should be reproduced
and passed to the next generation. This is achieved by taking into account
the fitness value based on a ranking process and a Poisson distribution. A
neuro-module becomes member of the parent set of the next generation if
its number of offsprings is >0.

This evolutionary process has no formal stop criteria. Thus it is repeated
until the interruption by the user takes place. This means that the user has
to manually decide when the process has to stop by observing all essential
parameters, e.g., fitness values.

The ENS3 algorithm was integrated as a part of the Integrated Structure
Evolution Environment (ISEE) [97]. It is a powerful software platform not
only for the evolution of structures but also for nonlinear analysis of evolved
structures and even for connecting different simulators as well as physical
robot platforms. This ISEE platform combines three different components
which are the evolution program EvoSun, the execution program Hinton
and the simulators. The scheme of the ISEE is presented in Fig. 3.11.

At the beginning, individual neuro-modules are created in EvoSun (re-
production process) and then EvoSun sends the neuro-module information
to Hinton for processing (evaluation process). Hinton executes one individ-
ual neuro-module at a time and communicates with a simulator. Two kinds
of simulators, the Y et Another Robot Simulator (Y ARS) [2] and the Data
Reader, are provided for the evolutionary process. Hinton has to be connected
to one of them depending upon the desired task. If Hinton is connected to the
YARS, then the motor and sensory data will be sent and received, respectively.
In this case, the YARS is used to simulate walking machines together with
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Fig. 3.11. The scheme of the evolutionary process with the ISEE modified from
B. Mahn 2003, p. 32 [124] (see text for details)

their sensors (see also Sect. 4.2) in a virtual environment to test and optimize
the neural control. The simulator processes a certain number of steps with
the update frequency of 75 Hz, which is similar to the update frequency of the
target system (a preprocessing of antenna-like sensors on a mobile processor).
On the other hand, if Hinton is interfaced with the Data Reader, sensory data
together with target data (or known as training data) will be received instead.
It is used as the buffer of the sensory data and target data for evolving the
neural preprocessing where the evolution task is the minimization of an error
function. In this case, the executed neuro-module will be processed at an up-
date frequency with respect to the update frequency of simulated or recorded
sensor data. For example, it will be updated at 48 kHz if the sensor data is
simulated or recorded through the sound card at a sampling rate of 48 kHz
on a 1-GHz personal computer (PC). On the other hand, it will be updated
at ≈ 2 kHz if the sensor data is recorded via a mobile system consisting of a
personal digital assistant (PDA) and the Multi-Servo IO-Board (MBoard).

In both cases, the executed neuro-module is updated in accordance with
the sensory data coming from the YARS or the Data Reader and a new output
signal of the neuro-module is then calculated. The resulting output signal will
be returned as motor data to the simulator, if Hinton is linked to the YARS.
This updated execution–simulation process is continuously performed as long
as a specified number of cycles is not fulfilled and a fitness value is constantly
calculated according to a given fitness function. After that, the final fitness
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value of the executed neuro-module is sent back to EvoSun and a new indi-
vidual neuro-module is again sent to Hinton for the execution and evaluation
process until all individual neuro-modules of one generation are evaluated.
EvoSun then selects a certain number of the neuro-modules (selection pro-
cess) by taking into account the fitness value based on the ranking process.
The selected neuro-modules, consisting of the parent and the offspring, are
reproduced to the next generation and the offspring continues to the varia-
tion process afterwards. Each individual neuro-module of a new generation is
again executed at Hinton and evaluated with the help of the simulator. This
variation–evaluation–selection cycle is repeatedly run, until the evolutionary
process is stopped by the user. During evolution the user is able to modify
all essential evolution parameters: e.g., population size, variation probabili-
ties, evaluation steps, cost factors of neurons and synapses, etc. Moreover,
the user can on-line monitor the population parameters, evolution dynamics,
properties of individuals, performance of individuals, and so on via EvoSun
and the user can even analyze the resulting neuro-module via the analyzer
tool implemented on Hinton.

3.4 Conclusion

Neural networks have a number of excellent properties; e.g., they can process
information simultaneously, they can be adaptive, they exhibit dynamical be-
havior and they are even able to build a robot brain as an integration of
different neuro-modules. Especially, for recurrent neuro-modules with specific
parameter domains hysteresis effects can be observed. We can benefit from
this dynamical effect in the preprocessing of sensory signals as well as in robot
control. Therefore, artificial neural networks can be adequately employed for
our work. Furthermore, the evolutionary algorithm ENS3 was also presented,
and it is realized by the principles of natural evolution in the form of varia-
tion, selection and evaluation rules. On the one hand, the algorithm permits
every kind of connection in hidden and output layers. On the other hand,
it maintains a network structure as small as possible with respect to the
given fitness function. Thus, recurrent neuro-modules with a small network
structure can be produced. Therefore, the ENS3 is applied as a tool for devel-
oping and optimizing the neural preprocessing and control to achieve artificial
perception–action systems.



4

Physical Sensors and Walking Machine
Platforms

This chapter describes the development of the physical components that lead
to the artificial perception–action systems. It begins with the descriptions of
different physical sensors which are used to sense environmental information,
followed by the details of the walking machines simulated in a physical simu-
lation environment as well as the robots we have built.

Inspired by the function of the hairs of a spider for sound detection and
a scorpion for tactile sensing, an artificial auditory–tactile sensor in analogy
to these sensory hairs is introduced. In addition, the set-up of a so-called
stereo auditory sensor together with its electronic circuit for sound tropism
approach is also presented. We then discuss the use of physical infrared sensors
as a functionally equivalent antenna model for detecting obstacles. Finally, the
design and the construction of biologically inspired four- and six-legged walk-
ing machines with different morphologies as well as their physical simulators
are presented.

4.1 Physical Sensors

To generate the different reactive behaviors of the walking machines in accor-
dance with an environmental condition, sensory information is required. Three
physical sensor systems for providing the signals to trigger several behaviors
were implemented and tested on physical walking machines.

4.1.1 An Artificial Auditory–Tactile Sensor

The wandering spider Cupiennius salei preys on a flying insect by using the
special sensory hair (Trichobothria) on its limbs which is also sensitive to
the auditory cues in a low-frequency range described in Sect. 2.1. Differently,
the scorpion Pandinus cavimanus uses its hairs as tactile sensors to perform
several tasks, e.g., an obstacle avoidance task (see also Sect. 2.1). Analogs of
these auditory and tactile hair sensor systems of spiders and scorpions can
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be useful in providing environmental information for a sensor-driven control
system in wheeled robots as well as in walking machines.

There exist implementations of the tactile sensors [92, 105, 106] and the
auditory sensors [95] on real robots but roboticists have not yet implemented
these two sensor functions into one sensor system. However, M. Lungarella
et al. [122] and H. Yokoi et al. [222] introduced an artificial whisker sensor
with a real mouse whisker attached, hair-like, to a capacitor microphone. In
the works of M. Fend et al. [67, 68], the whisker sensors were applied for an
obstacle avoidance task and texture discrimination while the use of the sensors
for sound detection was not mentioned.

Here, the whisker sensor is applied for the auditory–tactile application
[127]. It will enable autonomous mobile robots as well as walking machines to
move around for indoor applications. The sensor shall protect a robot’s body
and especially the legs of walking machines from colliding with obstacles, like
chair or desk legs. In addition, with the implementation of the sound tropism,
the robot will also be able to navigate. A so-called auditory–tactile sensor
consists of a mini-microphone (0.6-cm diameter) built in an integrated ampli-
fier circuit, a root (a small rubber wire) and a whisker-shaped material taken
from a whisker of a real mouse (4.0-cm long). The sensor and its components
are shown in Fig. 4.1.

Fig. 4.1. The auditory–tactile sensor consists of a whisker of a real mouse, a rub-
ber root and a capacitor microphone built in an integrated amplifier circuit. Left :
Assembly parts of a sensor. Right : The real sensor built in an amplifier circuit

In order to build this sensor, the mouse whisker was inserted into a root
which was glued onto the diaphragm of a microphone. The physical force of
the whisker vibrates the diaphragm of the capacitor microphone, which results
in a voltage signal. The signal is amplified via the integrated amplifier circuit
on the mini-microphone. The maximum output voltage with respect to the
given input signals, e.g., a sine wave signal, is around 1.8 peak volt AC. To
record the signal via a line-in port of a PC sound card, it has to be scaled in
the range of a maximum output voltage at around 0.5 peak volt AC. It was
done by using a potentiometer which functions as a variable voltage divider.
The scaled output signal is then digitized on the sound card at a sampling
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rate of 48 kHz for the purpose of monitoring and feeding it into the neural
preprocessor afterwards. The basic scheme of the sensor system is shown in
Fig. 4.2.

Fig. 4.2. The basic scheme of the auditory–tactile sensor system. The detected
signal is first amplified via an integrated amplifier circuit of the mini-microphone,
then the amplitude of an amplified signal is reduced by a variable voltage divider.
Eventually, the scaled signal goes into the line-in port for digitizing and then is fed
into the neural preprocessor

By applying this sensor system to obtain tactile and auditory signals, one
should keep in mind that the tactile signal requires a high sampling rate of
an analog to digital converter (ADC), e.g., 48 kHz, while the auditory signal
depending on a used frequency can be digitized at a lower sampling rate. The
response of the sensor to an auditory signal and a tactile signal recorded via
the line-in port is exemplified in Fig. 4.3.

In comparison to the auditory and tactile signals (Fig. 4.3), the tactile
signal has a vibrating waveform with slightly higher frequency while the audi-
tory signal has a sine waveform with a lower frequency. Such different signal
properties are crucial to seek signal processing by using neural network and
evolutionary approaches (described in Chap. 5).

4.1.2 A Stereo Auditory Sensor

To perform a sound tropism which is inspired by the prey capture behavior
of the spider Cupiennius salei (see also Chap. 2), a so-called stereo auditory
sensor is employed. The sensor together with its signal processing (described



50 4 Physical Sensors and Walking Machine Platforms

Fig. 4.3. (a) The response of the auditory–tactile sensor to an auditory signal at
a frequency of 100 Hz which is generated by a loudspeaker. (b) The response of the
sensor to a tactile signal which is generated by sweeping the sensor over an object
back and forth. All figures have the same scale in the x -axis while the y-axis is
different

in Chap. 5) will enable a walking machine to detect sound1 and discern the
direction of the source. The processed sensor signals can then control an au-
tonomous mobile robot to move in the direction of the sound source and make
an approach to it in a real environment.

There are several examples of robot experiments that use an auditory
sensor–in a form of a microphone–for different purposes. Most researchers use
an array of four or more microphones to perform auditory source localization
[3, 195, 206, 209]. Such a system is too expensive to compute a signal pro-
cessor, too complex and also too energy consuming, despite the fact that it
can detect the signals in three-dimensional space and precisely localize the
source. There are other examples, for instance, the SAIL robot uses the mi-
crophone for online learning of verbal commands [226] and a humanoid robot
called ROBITA uses two microphones to follow a conversation between two
persons [133]. The behavior generated by auditory signals is also studied in
[95, 169, 215]. They used two miniature microphones allowing the robot to
detect and move toward a simulated male cricket song—4.8 kHz [121, 134].

The above-stated research study shows that the use of a microphone can
achieve several tasks and even two microphones are adequate to perform sound
source localization in two-dimensional space. Thus, in this book, the stereo
auditory sensor system was built from two miniature microphones with a 0.6-
cm diameter (for the left and the right detections in two-dimensional space),
a support circuitry and the MBoard. The system was suitably implemented
on a four-legged walking machine.

Concerning time delay of arrival (TDOA) [54, 138] of the sound coming
from the two microphones (later called the stereo auditory sensor), the micro-
phones were installed on the (moving) fore left and rear right legs of the walk-

1 Here, sound having a sine waveform at a frequency of 200Hz is used for a sound
tropism approach. The sound with this property is later called an auditory signal.
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ing machine. Consequently, they can scan the auditory signals in the wider
angle because they are moving with the legs. The locations where the stereo
auditory sensor (the left and right microphones) were installed are shown in
Fig. 4.4.

Fig. 4.4. (a) The distance between the microphones of the stereo auditory sensor
is equal to 42 cm. (b) The real sensor built in a preamplifier circuit was installed
on the left foreleg of the walking machine. (c) The sensor was installed on the right
hind leg of the walking machine

The auditory signals are initially amplified via the microphones’ integrated
amplifier circuit, and then scaled to the range between 0 and 5 volts by a
support circuitry. Afterwards, they are digitized via ADC channels of the
MBoard at a sampling rate of up to 5.7 kHz. To obtain the sensor data, the
MBoard can be interfaced with either a PC or a PDA via a serial (RS232)
port. The basic scheme of the sensor system is shown in Fig. 4.5.

According to the dimension of the walking machine and the distance be-
tween the fore left and the rear right microphones, the maximum time delay
between the left and the right is equivalent to one-fourth of the wavelength
of the frequency—200 Hz. The response of the sensor to the auditory signals
recorded via the MBoard and displayed on a 1-GHz PC is exemplified in
Fig. 4.6.

As shown in Fig. 4.6, the desirable occurrence of time delay between the
left and the right microphones in accordance with the location of the sound
source will be used to seek signal processing to generate a sound tropism. In
addition, the amplitude of the signal will also be used to estimate the distance
between the walking machine and the source where high amplitude indicates
to approach the source and vice versa (see more details in Chap. 5).

4.1.3 Antenna-like Sensors

In order to achieve versatile artificial perception–action systems, the walking
machine should not only have sound tropism, but it should also perform other
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Fig. 4.5. The basic scheme of the stereo auditory sensor system. The detected
signals coming from the left and right microphones are initially amplified via the
integrated amplifier circuit of the microphone. Then, amplified signals are scaled
to a range between 0 and 5 volts through the support circuitry. After that, the
MBoard digitizes the scaled output voltages to a 7-bit value, where 0 represents
silence and 128 represents maximum volume. Eventually, the digital signals from
the MBoard are displayed on a PC or a PDA via an RS232 interface at a transfer
rate of 57.6 kbits/s

behaviors like an animal, e.g., wandering and avoiding objects or even escaping
from a deadlock situation.

Therefore, additional sensors which can detect obstacles are required. In-
spired by an insect antenna (cf. Chap. 2), our physical sensors were modeled
using the infrared (IR) sensors. An IR sensor has a lot in common with an
insect antenna. Although an IR sensor acts differently from an insect antenna,
by measuring the brightness of the IR light reflected by objects, the result-
ing measurement is the same. It is a well-known fact in robotics, that using
IR sensors instead of antennas is a simplification as well as a solution with
low power consumption. Most researchers use the sensors in a mobile robot
as well as in a walking machine for obstacle avoidance [72, 74, 128] or even
wall following [46].
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Fig. 4.6. (a) The sound source is close to the fore left microphone. This results in
the signal coming from the fore left microphone (dashed line) having high amplitude
and it is followed by the signal coming from the rear right microphone (solid line)
with a delay, while the reverse case is presented in (b). All figures have the same
scale in the x -axis and the y-axis

In this book, three types of the IR sensor, later called “antenna-like sen-
sors”, were chosen to detect obstacles at distances of 4–30 cm, 10–80 cm and
20–150 cm. The antenna-like sensors were implemented and tested on two dif-
ferent walking machines (four-legged and six-legged walking machines). Two
antenna-like sensors which can detect obstacles at a distance of 10–80 cm were
installed on the (moving) forehead of the four-legged walking machine AMOS-
WD02.2 They make an angle of approximately 25 degrees with respect to the
horizontal body axis of the walking machine. The angle was manually ad-
justed for optimal operation. Consequently, the walking machine is able to
detect obstacles on the fore left and right of its body (Fig. 4.7).

As a result of the structure of the four-legged walking machine, its head,
where the sensors were implemented, can vertically turn left and right with
respect to the walking pattern by activating the backbone joint. Consequently,
the sensors can also scan obstacles in a wider angle. In other words, they
perform like an active antenna scanning an obstacle in two-dimensional space
(Fig. 4.8).

Normally, two antenna-like sensors on its left and right foreheads are suf-
ficient to perform an obstacle avoidance. However, to prevent the legs of the
walking machines from hitting obstacles, like chair or desk legs, more sensors
are needed and they can be installed on the (moving) legs.

Here, the six sensors were implemented on the six-legged walking machine
AMOS-WD06. Two of them, which can detect the obstacle at a long distance
of 20–150 cm, were fixated at the forehead while the rest of them, operating
at a shorter distance 4–30 cm, were fixated at the two forelegs and two middle
legs. The configuration of the sensors on the AMOS-WD06 and the idealized
field of the sensors are presented in Fig. 4.9.

2 Advanced MObility Sensor driven-Walking Device.
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Fig. 4.7. The antenna-like sensors implemented on the forehead of the four-legged
walking machine. Left : The outline of the sensors from a top view. Right : The real
sensors fixated on the forehead of the physical four-legged walking machine AMOS-
WD02 (arrows)

Fig. 4.8. The idealized field of the antenna-like sensors when the backbone joint of
the walking machine is activated. Left : The outline of the idealized field where the
sensors can scan obstacles (dashed curve). Right : The visualization of the sensors
moving with the head of the walking machine when the backbone joint turns right
(upper picture) and left (lower picture)

As shown in Fig. 4.9, one pair of the forehead sensors performs like a
passive antenna detecting obstacles in front of the walking machine, while the
other two pairs installed on the (moving) legs perform like active antennas
because they move along the legs. Therefore, these (active) sensors can scan
the obstacle in three-dimensional space; i.e., they move forward and backward
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Fig. 4.9. Left : The visualization of the locations where the sensors are implemented
and the idealized field of the sensors protecting the walking machine from crashing
into obstacles (dashed line around the walking machine). Right : The six sensors on
the physical walking machine (arrows)

in parallel to the ground (Fig. 4.9) and they also move up and down in a
vertical direction (Fig. 4.10).

To obtain the sensory data for controlling the behavior of the walking
machine, all sensors were interfaced and digitized via the ADC channels of
the MBoard at the sampling rate of up to 5.7 kHz. Subsequently, the digital
signals are sent to either a PC or a PDA through an RS232 interface at
a transfer rate of 57.6 kbits/s for the purpose of monitoring and feeding the
data afterwards into the preprocessing network. The basic scheme of the sensor
system is shown in Fig. 4.11.

The example of the sensor signals responding to a presented object is
shown in Fig. 4.12. As shown in Fig. 4.12, the sensor signals have some noise
resulting in uneven signals, and this may lead to difficulties in controlling the
behavior of the walking machines. Therefore, the preprocessing of these sensor
signals, described in Sect. 5.1.3, is required to eliminate the unwanted sensory
noise and to trigger the obstacle avoidance behavior of the walking machines.

4.2 Walking Machine Platforms

To demonstrate reactive behaviors and to experiment with neural controllers,
a mobile robot platform is required, and it would be desirable that it has a
morphology like a walking animal (cf. Sect. 2.2). There are several examples for
the construction of the four- and six-legged walking machines. Most of them
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Fig. 4.10. Left : The idealized field of the antenna-like sensor on the right foreleg of
the six-legged walking machine (dashed curve) with the remaining sensors operating
on the other legs. The sensor moves in a vertical direction when the basal and distal
joints are activated. Right : The physical sensor on the right foreleg

Fig. 4.11. The basic scheme of the antenna-like sensor system. Here, two sensors
are presented. They are connected to the ADC channels of the MBoard. The digital
signals from the MBoard will be displayed or analyzed on a PC or a PDA via an
RS232 interface
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Fig. 4.12. The sensory signals coming from the left forehead (a) and the right
forehead (b) of the four-legged walking machine

were designed to have a trunk without a backbone joint, such as Lobster [12],
Sprawlita [47], Tarry I, II [80], LAURON series robots [81], ARAMIES [91],
Warp1 [102], TITAN series robots [107], AirBug [109], Jumping Quadruped
[110], TUM [162], Cockroach series robots [164] and Scorpion [191]. How-
ever, some of these examples gain the benefits of having different configura-
tions which promote stability and flexibility of locomotion while maintaining
animal characteristics BISAM [28], Robo-Salamander [34], Hexamos [178],
MechaRoach II [216] and Hyperion [223].

Thus, the four- and six-legged walking machines were constructed with
different morphologies analogous to the principal structures of a salamander
and a cockroach, respectively. Their structures were initially designed and
visualized in 3D models before assembling the physical components in the
final stage. Furthermore, a physical simulation was used to create the walking
machines in the virtual world to test and experiment with neural controllers
before downloading them into the real-world walking machines.

4.2.1 The Four-Legged Walking Machine AMOS-WD02

The AMOS-WD02 [125] consists of four identical legs. Each leg has two joints
(two degrees of freedom (DOF)), which are a minimum requirement to obtain
the locomotion of a walking machine and which follow the basic principle of
movement of a salamander leg (cf. Sect. 2.2). The upper joint of the legs,
called the thoracic joint, can move the leg forward (protraction) and back-
ward (retraction), and the lower one, called the basal joint, can move it up
(elevation) and down (depression) [12] (Fig. 4.14).

The length of the levers which are attached to the basal joints is propor-
tional to the dimension of the machine. They are kept short to avoid greater
torque in the actuators [163]. The configuration of the leg, built from a con-
struction kit [33], is shown in Fig. 4.13.
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Fig. 4.13. The leg with two DOF. Left : The 3D model of the leg. Right : The
physical leg of the AMOS-WD02

Inspired by vertebrate morphology of the salamander’s trunk and its mo-
tion (described in Sect. 2.2), the robot was constructed with a backbone joint
which can rotate around a vertical axis. It facilitates a more flexible and faster
motion.3 The backbone joint is also used to connect the trunk, where two hind
legs are attached, with the head, where two forelegs are installed. The trunk
and the head are formed with the maximum symmetry to keep the machine
balanced for stability while walking. They are also designed to be as narrow
as possible to ensure optimal torque from the supporting legs to the center
line of the trunk. The construction of the walking machine together with the
working space of the legs and the active backbone joint is shown in Fig. 4.14.
The detail of the dimension is presented in Appendix A.

Moreover, a tail with two DOF rotating in the horizontal (y-axis) and
vertical (z -axis) axes was implemented on the back of the trunk. In fact, this
actively moveable tail, which can be manually controlled, is used only to install
a mini wireless camera for monitoring the environment while the machine is
walking. However, the tail also gives the walking machine a more animal-like
appearance, e.g., in analogy to a scorpion’s tail with its sting [4] (Fig. 4.15).

All leg joints are driven by analog modelcraft servomotors producing a
torque between 70 and 90 Ncm. The backbone joint is driven by a digital ser-
vomotor with a torque between 200 and 220 Ncm. For the tail joints, micro-
analog servomotors with a torque around 20Ncm were selected. The height
of the walking machine is 14 cm without its tail, and the weight of the fully
equipped machine (including 11 servomotors, all electronic components, bat-
tery packs and a mobile processor) is approximately 3.3 kg. In addition, this
machine has two antenna-like sensors and two auditory sensors to perform

3 A walking speed is approximately 12.7 cm/s when the backbone joint is inacti-
vated, while it is approximately 16.3 cm/s with the activation of the backbone
joint in accordance with the walking pattern. The measurements were done with
the walking frequency of the machine at 0.8 Hz.
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Fig. 4.14. (a) The angle range of the backbone joint (top view). (b) The angle
ranges of all thoracic joints on the right side of the walking machine with the left
side being symmetric (top view). (c) The angle range of the basal joint of the left
foreleg with the remaining legs having the same angle ranges (front view)

Fig. 4.15. Left : A scorpion’s tail with a sting (modified from S.R. Petersen 2005
[160] with permission). Middle: The tail of the four-legged walking machine AMOS-
WD02. Right : The tail of the six-legged walking machine AMOS-WD06. The two
DOF tail is constructed in an abstract form of a scorpion’s tail. It is mainly used to
install the camera

different reactive behaviors; e.g., an obstacle avoidance and a sound tropism,
respectively. The 3D model of the walking machine and the real walking ma-
chine are shown in Fig. 4.16.
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Fig. 4.16. The four-legged walking machine AMOS-WD02. Left : The 3D model of
the walking machine. Right : The real walking machine

All in all, the AMOS-WD02 has 11 active DOF, 4 sensors and 1 wireless
camera (for more details of the AMOS-WD02, see Appendix A). Therefore,
it can serve as a reasonably complex platform for experiments concerning the
function of the neural perception–action systems.

However, to test the neural controller and to observe the resulting behav-
ior of the walking machine (e.g., obstacle avoidance), they were first simulated
in the physical simulation environment YARS (cf. Sect. 3.3). The simulator,
developed at the Fraunhofer Institute in Sankt Augustin, is based on Open
Dynamics Engine (ODE) [189]. It provides a defined set of geometries, joints,
motors and sensors which is adequate to create the four-legged walking ma-
chine AMOS-WD02 with IR sensors in a virtual environment with obstacles
(Fig. 4.17).

The YARS enables first implementation which is precise enough to re-
produce the behavior of the physical walking machine with sufficient quality.
This simulation environment is also connected to the ISEE, which is a software
platform for developing neural controllers (described in Chap. 3).

In the final stage, a neural controller which is developed after the test on
the simulator is then applied to the physical walking machine to demonstrate
the behavior in the real environment. The neural controller is programmed into
a mobile processor (a PDA). The PDA is interfaced with the MBoard, which
digitizes sensory signals and generates a pulse width modulation (PWM) sig-
nal at a period of 20 ms, to command the servomotors. The communication
between the PDA and the MBoard is accomplished via an RS232 interface at
57.6 kbits/s.
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Fig. 4.17. Different views of the simulated walking machine in its environment.
The properties of all simulated components are defined with respect to the physical
properties of the real walking machine, e.g., weight, dimension, motor torque and
so on. The simulated walking machine consists of body parts (head, backbone joint,
trunk and limbs), servomotors and IR sensors, while the auditory sensor was not
available in the simulation

4.2.2 The Six-Legged Walking Machine AMOS-WD06

The AMOS-WD06 [126] consists of six identical legs, and each leg has three
joints (three DOF), which is somewhat similar to a cockroach leg. A thoracic
joint has similar functionality to the thoracic joint of the AMOS-WD02, while
another two joints, the basal and distal joints, are used for lifting (elevation)
and lowering (depression) and for extension and flexion of the leg [12]. The
levers which are attached to distal joints were built in the same manner as the
levers of the AMOS-WD02. The configuration of the leg is shown in Fig. 4.18.

Fig. 4.18. The leg with three DOF. Left : The 3D model of the leg. Right : The
physical leg of the AMOS-WD06
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This leg configuration provides the machine with the ability to perform
omnidirectional walking; i.e., the machine can walk forwards, backwards, lat-
erally and turn with different radii. Additionally, the machine can also perform
a diagonal forward or backward motion to the left or the right by activating
the forward or backward motion together with the lateral left or right mo-
tion. The high mobility of the legs enables the walking machine to walk over
an obstacle, stand in an upside-down position or even climb over obstacles
(Fig. 4.19).

Fig. 4.19. The walking machine AMOS-WD06 walking over an obstacle with the
maximum height of 7 cm (a), standing in an upside-down position (b) and climbing
position on obstacles which is enabled by the active backbone joint (c)

Inspired by the invertebrate morphology of the American cockroach’s
trunk and its motion (described in Sect. 2.2), a backbone joint which can
rotate in a horizontal axis was constructed. It is designed to operate like a
cockroach while the machine is climbing over obstacles (Fig. 4.19c). However,
this active backbone joint will be fixed under normal walking conditions of
the machine. Mainly, it is used to connect the trunk, where two middle legs
and two hind legs are attached, with the head, where two forelegs are in-
stalled. The trunk and the head were designed with the same concepts as
the AMOS-WD02 described above. The construction of the AMOS-WD06 to-
gether with the working space of the legs and the active backbone joint is
shown in Fig. 4.20 (see also in Appendix A).

Similar to the AMOS-WD02, one (active) tail with the same configuration
was also implemented on the back of the trunk (Fig. 4.15). It has a similar
function as the AMOS-WD02’s tail.

All leg joints are driven by analog servomotors producing a torque be-
tween 80 and 100 Ncm. For the backbone joint and the tail joints, the same
motors which were used on the AMOS-WD02 were employed. The height of
the walking machine is 12 cm without its tail, and the weight of the fully
equipped robot (including 21 servomotors, all electronic components, battery
packs and a mobile processor) is approximately 4.2 kg. Like the AMOS-WD02,
a mini wireless camera with a built-in microphone was installed on the tail
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Fig. 4.20. (a) The angle ranges of all thoracic joints on the right side of the walking
machine with the left side being symmetric (top view). (b) The angle ranges of the
basal and distal joints of the left foreleg with the remaining legs having the same
angle ranges (front view). (c) The angle range of the backbone joint (side view)

for monitoring and observing the environment while walking. In addition, the
walking machine has six antenna-like sensors to help detect obstacles and one
upside-down detector which is implemented beside the trunk of the machine.
The 3D model of the walking machine and the real machine are shown in
Fig. 4.21.

All in all, the AMOS-WD06 has 21 active DOF, 7 sensors and 1 wireless
camera (for more detail of the AMOS-WD06, see Appendix A); thus it can
also serve as a testing platform like the AMOS-WD02. The AMOS-WD06
was also simulated by the YARS with the same virtual environment and the
same purpose as described above. The basic features of the simulated walking
machine are closely coupled to the physical walking machine, e.g., weight,
dimension, motor torque and so on. It consists of body parts (head, backbone
joint, trunk and limbs), servomotors, IR sensors and an additional tail. The
simulated walking machine with its virtual environment is shown in Fig. 4.22.
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Fig. 4.21. The six-legged walking machine AMOS-WD06. Left : The 3D model of
the walking machine. Right : The real walking machine

Fig. 4.22. Different views of the simulated walking machine in its environment

The final neural controller will also be implemented on the physical walk-
ing machine for testing its behavior in a physical environment. Again, the
controller is programmed on the same mobile processor system with the same
update frequency as the AMOS-WD02.

4.3 Conclusion

We used three types of physical sensor systems: an auditory–tactile sensor, a
stereo auditory sensor and antenna-like sensors. The auditory–tactile sensor,
which was inspired by the function of the hairs of a scorpion and a spider, can
be used for tactile sensing as well as sound detection. Using the stereo auditory
sensor in analogy to the hairs of the spider, the sound can be detected and
the direction of the incoming sound can also be distinguished by determining
the TDOA from the left and right auditory sensors. The antenna-like sensors
are used to detect impediments as well as to protect the legs of the walking
machine from colliding with obstacles.
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Two walking machines with different morphologies were built with physical
components. They were also simulated in a physical simulation environment
with the intention to develop and test neural controllers before implementation
in the real-world walking machines. Thus, the walking machines together with
the sensor systems can serve as hardware platforms for experiments with
neural controllers and for artificial perception–action systems.



5

Artificial Perception–Action Systems

Where Chap. 2 investigated the biologically inspired perception–action sys-
tems, this chapter focuses on applying the principles of the biological do-
main to create artificial perception–action systems. First, several preprocess-
ing units of different types of sensory signals are presented. They are used
to filter and recognize the corresponding sensory signals and they can be
described as perception parts. Second, the neural control of the four- and six-
legged walking machines, which generates and controls the locomotion of the
machines, is described. Third, the combination of the neural preprocessing
and the neural control is explained. It gives rise to the ability of controlling
reactive behaviors such as obstacle avoidance and sound tropism. Finally, both
behavior controls are merged under a so-called behavior fusion controller by
applying a sensor fusion technique to give a versatile perception–action sys-
tem.

5.1 Neural Preprocessing of Sensory Signals

We shall now present three different types of neural preprocessing modules
which use the dynamic properties of recurrent neural networks (as described
in Chap. 3). The first module is a so-called auditory signal processor which is
used to preprocess the auditory signals detected by means of a stereo auditory
sensor or auditory–tactile sensors. It consists of two subordinate networks, one
for filtering auditory signals to detect the low-frequency sound, and the other
to distinguish the direction of detected signals between the right and the
left. The second module is known as the tactile signal processor and it has the
capability to recognize the tactile information coming from an auditory–tactile
sensor. The last module does the preprocessing of antenna-like sensor data,
which can eliminate the sensory noise, and its outputs are used to control the
walking behavior of the machines for avoiding obstacles or even escaping from
a corner.
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5.1.1 Auditory Signal Processing

Inspired by the function of the sensory hair of the spider (cf. Chap. 2), the
auditory signal processing is studied. The function of the auditory signal pro-
cessing is similar to the described sensory and sensing systems. It enables the
walking machine(s) to recognize low-frequency sound and to distinguish the
auditory signals coming from the left or the right. In order to create such
signal processing, first a simple network that acts as a low-pass filter is inves-
tigated [127]. Subsequently, the other network which will help the machine(s)
to discern the direction of a sound source is constructed. At the end, the in-
tegration of both networks leads to the complete auditory signal processing
network. This effective network is then applied to preprocessing the signals of
the stereo auditory sensor or the auditory–tactile sensors.

A Low-Pass Filter for Auditory Signals

In order to have a network which can detect low-frequency sound, an artificial
neural network together with an evolutionary algorithm is employed. Also,
an input signal of sine shape which is a mixture of 100 Hz and 1000 Hz is
simulated on a 1-GHz PC with an update frequency of 48 kHz. The input
signal is mapped to a range between −1 and +1, and then it is buffered into
the simulator called Data Reader (described in Sect. 3.3) for the purpose of
feeding the data to evolve or test the network. To keep the problem simple
an ideal noise-free signal with constant amplitude (Fig. 5.1a) is used at the
beginning. If a network, which is found, can distinguish between low-frequency
(100Hz) and high-frequency (1000 Hz) sounds, the next step of the experiment
is to apply the signal with varying amplitudes (Fig. 5.1b) which is recorded
via a physical auditory–tactile sensor. The recorded signal is digitized through
the line-in port of a sound card at a sampling rate of 48 kHz on a 1-GHz PC.

To design the neural preprocessing structure, a single model neuron con-
figured as a hysteresis element [151] is utilized; i.e., the network consists of
an input neuron and a neuron with a positive self-connection corresponding
to a dynamical neural Schmitt Trigger [96] (Fig. 5.2a). The network is con-
structed, experimented and analyzed through the ISEE connecting with the
Data Reader. This is the software platform for developing neural controllers,
and it is implemented on a 1-GHz PC (described in more detail in Sect. 3.3).
In this case, the network is updated at a frequency of 48 kHz. Applying the
results from [96], the weight (W1 = 1) from the input unit to the output
unit and the bias term (B = −0.1) are fixed while the self-connection weight
W2 of the output unit is varied from 0 to 2.5. The ideal noise-free signal
with constant amplitude (Fig. 5.1a) is given to the network. For W2 = 2.45
the network suppresses high-frequency sound of 1000 Hz, while low-frequency
sound of 100 Hz passes through it. The resulting network, called the “simple
auditory network”, is shown in Fig. 5.2.
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Fig. 5.1. The input signal of sine shape mixed between 100Hz and 1000Hz. (a)
The simulated noise-free signal with constant amplitude. (b) The noisy signal with
varying amplitudes recorded via the physical sensor. Both signals are updated at a
frequency of 48 kHz

In addition, the resulting network is tested with varying frequencies of an
input signal from 100 Hz to 1000 Hz (Fig. 5.3a). The output signal shows that
it can detect the signal at a frequency up to approximately 300Hz (see dashed
frame in Fig. 5.3b), where this frequency is defined as the cutoff frequency
of the network which is represented in Fig. 5.2b.

Fig. 5.2. (a) The simple auditory network realizing a low-pass filter; parameters
are W1 = 1, W2 = 2.45 and B = −0.1. (b) The characteristic curve of this network
with its cutoff frequency at approximately 300Hz

From the result, it can be observed that this simple auditory network with
its specific parameters has the property of a low-pass filter. By varying a
weight W2 of the self-connection of the output unit, one observes a splitting
of the output signal, due to the hysteresis effect, which is different at various
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Fig. 5.3. (a) The varying frequencies of an input signal from 100 Hz to 1000 Hz. (b)
The output signal of the network. The dashed frame is the frequency range (from
100Hz to approximately 300Hz) in which the network can detect the auditory signal

frequencies. This suggests that the hysteresis domain of a single neuron with
self-connection [151] can play an important role for the filtering of signals.

To visualize this phenomenon, output versus input for low- and high-
frequency signals are plotted in Fig. 5.4, and the different “hysteresis ef-
fects” can be compared in accordance with the different strengths of the
self-coupling. Figure 5.4 shows that the hysteresis effect for high-frequency
sound has already occurred for W2 = 0.25, although it cannot yet be observed
for low-frequency sound. If W2 is increased up to W2 = 2.45, high-frequency
sound will almost be suppressed (a small amplitude of the output signal),
whereas the hysteresis effect for low-frequency sound switches the amplitude
between almost saturation values (between approximately −1 and +1). In-
creasing the strength of the self-connection up to W2 = 2.50 low-frequency
sound is also suppressed.

As the bias term defines the base activity of the neuron, the amplitude of
high-frequency output is compensated, and it oscillates with small amplitude
between −0.804 and −0.998. Eventually it will never rise above 0 again. In this
situation, we suggest a low-pass filter function for a configuration with this
specific bias (−0.1) and weight (W2 = 2.45) (cf. Sect. 3.2). The neural network
behaves as a low-pass filter because the output amplitude of high-frequency
sound stays around −0.9 while the output amplitude of low-frequency sound
remains oscillating between −0.997 and 0.998.

Having established the single neuron to act as a low-pass filter for noise-free
signals of constant amplitude, the following step is to derive a network, which
behaves like a robust low-pass filter and which is capable of recognizing low-
frequency sound in the real environment. The input signal presented to the
network is recorded through the physical auditory–tactile sensor and digitized
at a sampling rate of 48 kHz. Then it is again mapped to a range between −1
and +1 and preserved into the Data Reader (Fig. 5.1b). The simple auditory
network is now improved by adding one self-connected hidden unit, and by
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Fig. 5.4. Comparison of the “hysteresis effects” between input and output signals
of high- and low-frequency sounds for W2 = 0.25, 2.45 and 2.50, respectively. (a)
Low-frequency sound (100Hz); (b) High-frequency sound (1000Hz)

manually adjusting the weights via the ISEE. With specific parameters, the
network behaves like a robust low-pass filter; i.e., it can detect the noisy low-
frequency sound. The final result, an advanced auditory network,1 is shown
in Fig. 5.5.

One should remark that the network can recognize the input signal only
if the amplitude of an input signal is higher than the threshold, here 0.5. For
this reason, it is also relevant to the sensing system of the spider because
it can detect the signal of its prey at a close distance (see also Sect. 2.1.2),

1 The network is named the advanced auditory network because of its uncom-
plicated neural structure and its performance that can detect the noisy low-
frequency signal with varying amplitudes.
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Fig. 5.5. (a) The principal advanced auditory network, performing as a low-pass
filter of the noisy signal with varying amplitudes. The bias term B is equal to −6.7
and all weights are positive, W1 = 0.01, W2 = 32, W3 = 1 and W4 = 0.27. (b) The
characteristic curve of this network with its cutoff frequency at approximately 400Hz

meaning that the amplitude of a detected signal should also be higher than
the threshold.

To consider the characteristics of the network, an input signal with varying
frequencies from 100Hz to 1000Hz having constant amplitude is presented to
the network (Fig. 5.6a). The output signal is plotted in Fig. 5.6b with respect
to the given input.

Fig. 5.6. (a) The varying frequencies of an input signal from 100 Hz to 1000 Hz. (b)
The output signal of the network. The dashed frame is the frequency range (from
100Hz to approximately 400Hz) in which the network can detect the auditory signal.
Here, the amplitude of the signal which is smaller than a threshold value, e.g., 0.5,
is neglected
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Figure. 5.6b shows that the network can detect the signal at the frequency
up to approximately 400Hz (see dashed frame) because the amplitude of
higher frequency output (>400 Hz) is smaller than a threshold value, e.g., 0.5.
To analyze and observe the network behavior, the input signal from the Data
Reader is sent to the network implemented on the ISEE and the signals from
all neurons are monitored (Fig. 5.7).

Fig. 5.7. The mixed signals between low- and high-frequency sounds with varying
amplitude from all neurons. (a) The signals from an input neuron. (b) The signals
from a hidden neuron. (c) The signals from an output neuron

As shown in Fig. 5.7, the first synapse W1 and the excitatory self-
connection W3 of the hidden unit reduce the amplitude of the input. As a
result, the amplitude of a high-frequency sound becomes smaller than the am-
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plitude of a low-frequency sound due to the critical self-connection (W3 = 1)
performing as an effective integrator. Afterwards, the signals are again ampli-
fied by W2. Then the bias term B together with the excitatory self-connection
W4 of the output unit shifts the high-frequency sound to oscillate around
−0.998 with very small amplitude. Consequently, the network suppresses the
high-frequency sound and only the low-frequency sound with a high enough
amplitude can pass through the network.

The final step is to implement the advanced auditory network into the
mobile system of the walking machine(s) [129]. That is, the auditory signal2

detected via either the stereo auditory sensor or the auditory–tactile sensor is
digitized via the MBoard at a sampling rate of up to 5.7 kHz, and the signal
processing network will be programmed on a PDA with an update frequency
of ≈ 2 kHz. For that, the parameters (weights and a bias) of the advanced
auditory network have to be recalculated. An evolutionary algorithm ENS3

(described in Sect. 3.3), is applied to optimize the parameters of this network.
It is implemented on the ISEE, and it receives the input signal for evolutionary
process from the Data Reader (cf. Sect. 3.3). The first population consists of
the fixed network shown in Fig. 5.8a, and the evolutionary process runs until
a reasonable solution is reached, which is determined by the fitness value. The
fitness function F that minimizes the mean squared error between the target
and the output signals is given by:

F =
10

1 + E
· (5.1)

In an ideal situation, the maximum value of F should be 10 while the mean
squared error E should be equal to 0. The mean squared error E is evaluated
by:

E =
1
N

N∑
t=1

(target(t) − output(t))2 , (5.2)

where N is the maximum number of time steps. Here, it is set to N = 6000.
The target signal is activated by oscillating between around −1 and +1 only
if a low-frequency signal from 100 to 400 Hz3 is presented, and it is around
−1 in all other cases. This is exemplified in Figs. 5.8b and 5.8c.

After 55 generations, the resulting network had a fitness value of F = 8.76,
which is sufficient to recognize the low-frequency signal in a desirable fre-
quency range. This is shown in Fig. 5.9.

This evolved advanced auditory network has a similar property as the
sensory hair of the spider meaning that both of them act as low-pass filters at
the same frequency range. In addition, this preprocessing network can filter the

2 In this set-up, the stereo auditory sensor is used to detect the auditory signal
which will be provided to the evolutionary process.

3 The frequency range is proportional to the frequency range in which the sensory
hair of the spider can sense the signal of its prey.
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Fig. 5.8. (a) An initial network structure with given weights and a bias. (b) The
varying frequencies of an input signal from 100Hz to 1000Hz. The input signal
is recorded from the physical stereo auditory sensor and then digitized through the
ADC channel of the MBoard at a sampling rate of up to 5.7 kHz. (c) A corresponding
target signal

noise at high frequencies (>400 Hz) which might occur from the motors of the
machine(s) during walking, standing or from the surrounding environments
(see demonstration in Chap. 6).

The Sound–Direction Detection Network

In the previous section, the neural preprocessor whose function is similar to a
low-pass filter was explained. It is applied to filter undesirable signals coming
from, e.g., motors, motions and environments, while it will pass through the
sinusoidal sound at a frequency of 200 Hz4 to trigger a sound tropism.

To discern the direction of the auditory signals for a sound tropism [129],
the mentioned ENS3-evolutionary algorithm is again applied to find the ap-
4 The selected frequency depends on the distance between two microphones from

which the time delay of two signals occurs.
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Fig. 5.9. (a) The evolved advanced auditory network applied to the mobile system
is optimized by the evolutionary algorithm. It is able to filter the frequency of
the auditory signals that are higher than around 400Hz. (b) The output signal of
the network is presented. In the dashed frame, there are auditory signals at a low-
frequency range approximately between 100 and 400Hz. (c) The characteristic curve
of this network with its cutoff frequency at around 400Hz where the amplification
is smaller than a threshold value, e.g., 0.6

propriate neural network based on the concept of the TDOA [54, 138]. Here,
the input signals for the evolved network are detected by the stereo auditory
sensor, and they are digitized via the MBoard and then recorded on a PDA
at an update frequency of approximately 2 kHz. According to the dimension
of the four-legged walking machine AMOS-WD02 and the distance between
the fore left and the rear right auditory sensors (see Chap. 4), the maximum
time delay between the left and the right signals is equivalent to one-fourth
of the wavelength of a frequency of 200Hz. To evolve the neural network, the
same strategy as described above is employed. The initial neural structure
is based on the minimal recurrent controller (MRC) [96], and its parameters
are shown in Fig. 5.10a. This neural structure consists of two input and two
output neurons. The input signals are first filtered via the evolved advanced
auditory network; as a result, only noise-free signals at low frequencies can
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pass through the evolved network. The input signals together with the delay
of each are shown in Fig. 5.10b. The fitness function F is determined by (5.1),
and the mean squared error E is estimated by:

E =
1
N

N∑
t=1

[ 2∑
i=1

(targeti(t) − outputi(t))2
]

. (5.3)

N is equal to 7000, referring to the maximum number of time steps and
i = 1; 2 refers to the signals on the right and the left, respectively. The target
signals are prepared in such a way that they refer to the recognition of a
leading signal or to only one active signal. For instance (Fig. 5.10c), Target1
(solid line) is set to +1 if the signal of Input1 (I1) leads the signal of Input2
(I2) or only I1 is active indicating that “the sound source is on the right side”
and it is set to −1 in all other cases. Correspondingly, Target2 (dashed line)
is set to +1 in the reverse cases indicating “the sound source is on the left
side”.

The network resulting from the evolution after 260 generations has a fitness
value of F = 6.96, which is sufficient to solve this problem. This sound–
direction detection network as well as the inputs and the outputs are presented
in Fig. 5.11.

The main feature of this network is its ability to distinguish the direction
of incoming signals by observing a leading signal or solely an active signal, and
it is easy to implement on the mobile processor because of its uncomplicated
neural structure. In addition, its outputs can be directly connected to the
neural control module such that it can determine the walking direction of the
machine(s); e.g., the machine(s) turns left when the sound source is on the
left side and vice versa.

The output neurons of this small network are excited by straight and
cross-connections coming from each of the input neurons. There are also ex-
citatory self-connections at both output neurons providing hysteresis effects.
They allow the switching between two fixed point attractors corresponding to
stationary output values of the output neurons, one low and the other high
(Fig. 5.12). The strength of a self-connection W >+1 determines the width
of the hysteresis interval in the input space (see also Sect. 3.2) [96].

However, if the strength of W is too large (for instance, the weight at
Output1 W1 >2.0 and at Output2 W2 >3.5), then the inputs will not sweep
back and forth across the hysteresis domains, with the result that the output
signal will oscillate around the high output value when the input signal is
activated. This phenomenon is demonstrated in Fig. 5.12, where Output2
versus Input2 for smaller self-connection weights (W1 = 2.0, W2 = 3.5) and
larger self-connection weights (W1 = 2.206, W2 = 3.872) are plotted.

Figure 5.12a shows the switching of the output of Output2 (O2) be-
tween almost saturation values (corresponding to the fixed point attractors)
while I2 varies over the whole input interval and I1 is provided with a de-
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Fig. 5.10. (a) An initial network structure with given weights. (b) The input signals
at a frequency of 200Hz from the right (solid line) and the left (dashed line) sensors
involving the delay between them. At the first period, the sound source is on the
right of the walking machine until around 75 time steps it changes to the left. There,
only the left sensor can detect the sound, implying that the sound source is a little far
away from the right sensor. Then, after around 150 time steps, the walking machine
gets closer to the sound source with the result that the right sensor also detects the
sound. After around 210 time steps, the sound source is again changed to its right
and a little farther away from the left sensor. (c) Target1 (solid line) and Target2
(dashed line) correspond to the directions of the signals on the right and the left,
respectively

lay (Fig. 5.13a). On the other hand, O2 in Fig. 5.12b jumps and then stays
oscillating with very small amplitude around the high output value.

Moreover, one can also see this effect in Fig. 5.13. The output signals
corresponding to the different strengths of the self-couplings are plotted for
W1 = 2.0, W2 = 3.5, and for the original weights, i.e., W1 = 2.206, W2 = 3.872
(cf. Fig. 5.11a). The sound source is on the left side causing I1 to follow I2

with a delay (Fig. 5.13a). Also, the output of Output1 (O1) is suppressed
while O2 is activated (Figs. 5.13b and 5.13c).
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Fig. 5.11. (a) The resulting network called “sound–direction detection network”.
(b) The input signals from both sensors with the delay between each other. At the
first period, the sound source is on the left of the walking machine while it changes
to the right after around 110 time steps. (c) During the first period, the signal of
Output2 is active and the signal of Output1 is inactive, while the signal of Output2
becomes inactive after around 105 time steps and the signal of Output1 becomes
active after around 110 time steps

For the smaller self-connection weights, O2 oscillates between the low
value (approximately −1) and the high value (approximately +1) as shown in
Fig. 5.13b. For the larger self-connection weights, O2 oscillates finally with a
very small amplitude around the high value above a threshold which can be set
from the experiment and which depends on the system, e.g., 0.5 (Fig. 5.13c).
Furthermore, one can see that the output neurons form a so-called even loop
[150]; i.e., they are recurrently connected by inhibitory synapses (Fig. 5.11a).
This configuration guarantees that only one output at a time can be positive,
i.e., it functions as a switch, sending the output to a negative value for the
delayed input signal. The output signals of this phenomenon can be observed
in Fig. 5.11c. By utilizing the phenomena of the larger self-connection weights
and the even two-module, one can easily apply the output signals to control
the walking direction of the machine(s) for a sound tropism approach.
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Fig. 5.12. Comparing outputs for different self-connection weights at Output1 and
Output2 while I2 sweeps over the input interval (between −1 and +1) and I1 is given
by following Input2 with a delay. (a) Varying Output2 for smaller self-connection
weights (W1 = 2.0, W2 = 3.5), and (b) for larger self-connection weights (W1 = 2.206,
W2 = 3.872). Black spots indicate the initial output values, which are then following
the indicated paths (dotted line). There is no hysteresis loop in (b) like there is in
(a); instead it oscillates around the high output value

The Auditory Signal Processing Network

Here, the integration of the evolved advanced auditory network and the sound–
direction detection network leads to the conclusive auditory signal processing
network [129] (Fig. 5.14). This network has the ability to filter the auditory
signals and to discern the direction of the input signals. First, the evolved
advanced auditory network filters the sensory inputs (Auditory Input1 and
Auditory Input2 in Fig. 5.14) so that only low-frequency sounds can pass
through. Second, the outputs from the evolved advanced auditory network
are connected to the inputs of the sound–direction detection network. The
sound–direction detection network then indicates the direction of the corre-
sponding signals. Subsequently, the output neurons of the sound–direction de-
tection network will be connected to the modular neural controller (described
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Fig. 5.13. (a) The input signals with a delay; (b) the corresponding oscillating O2

(dashed line) for the smaller self-connection weights (W1 = 2.0, W2 = 3.5) while
O1 (solid line) is suppressed. (c) O2 jumps and stays higher than a threshold (here
0.5 (arrows)) for larger self-connection weights (W1 = 2.206, W2 = 3.872)

in Sect. 5.2.3) to make the walking machine(s) turn into the appropriate di-
rection. Eventually, the walking machine(s) will approach and stop near to
the source by checking a threshold of the amplitude of the auditory signals
(demonstrated in Chap. 6).
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Fig. 5.14. The auditory signal processing network which functions as a low-pass fil-
ter circuit and which has an ability to detect the directionality of the corresponding
signals. The network is developed to operate at an update frequency of approxi-
mately 2 kHz

5.1.2 Preprocessing of a Tactile Signal

Employing the auditory–tactile sensor for sensing an environment in robotic
applications will enable mobile robots to detect sound, e.g., at low-frequency
(100Hz), and to avoid collision. These sensor signals consist of an auditory
signal and a tactile signal. Both signals are digitized through the line-in port
of a sound card at a sampling rate of 48 kHz on a 1-GHz PC, and the pre-
processing network will be updated at the same frequency of 48 kHz. The
auditory signal is produced via a loudspeaker. It is filtered and recognized by
applying the principal advanced auditory network shown in Fig. 5.5. For the
tactile signal, it is simulated by sweeping the sensor back and forth over an
object. The recorded signal together with its Fast Fourier Transform (FFT)
spectrum5 is exemplified in Fig. 5.15.

5 The FFT spectrum is analyzed by FFTSCOPRE 1.2 software of Physics Dept.
at Rutgers University.
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Fig. 5.15. (a) The oscillating peaks are the tactile signal coming from the auditory–
tactile sensor. (b) The FFT spectrum displays the compound frequency of the signal.
By observing the compound frequency, the first and the second resonance frequencies
appear at around 1400Hz and 5200Hz

To process the tactile signal, the input signals consisting of the simulated
tactile signal and the low-frequency sound at 100Hz with varying amplitude
are prepared on the Data Reader (Fig. 5.16a), and the ENS3 algorithm is
applied to evolve for an appropriate neural network via the ISEE. At the
beginning only one input and one output unit without connections are given.
The ENS3 algorithm then increases or decreases the number of synapses and
the hidden units throughout the evolutionary process, which optimizes the
parameters at the same time, until the output signals are good enough for
a reasonable solution. The fitness function F is chosen in such a way that
the evolution minimizes the square error between the target and the output
signals; i.e., it is defined by:

F =
1
N

N∑
t=1

(1 − (target(t) − output(t))2) , (5.4)

where N is the maximum number of time steps, usually set to N = 25,000. For
an ideal case, the maximum value of F should be +1 while the square error
between the target and the output signals should be equal to 0. The target
signal gives +1 if a tactile signal is presented, and −1 in all other cases. This
is exemplified in Fig. 5.16b.

The resulting network, a tactile signal processing network, at 800 genera-
tions has a fitness value of F = 0.6, which is sufficient to recognize the tactile
signal (see the recognized output signal in Fig. 5.18d). The network consists
of 2 hidden units and 7 synapses as shown in Fig. 5.17. To understand the
network behavior, the signals from all neurons are monitored by means of the
ISEE, and they are presented in Fig. 5.18.

From observing the signals at the hidden and the output units, the am-
plitude of low-frequency sound (100Hz) is reduced at the first hidden unit
because of the feedback from the second hidden unit. It becomes smaller than
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Fig. 5.16. (a) A real input signal coming from the physical sensor. It is mixed
between the tactile signal and the low-frequency sound at 100Hz. (b) The corre-
sponding target function

Fig. 5.17. The tactile signal processing network which filters the low-frequency
sound. Its output signal follows the tactile signal, which consists of many frequencies
and which has hight resonance frequencies as shown in Fig. 5.15b

the amplitude of the tactile signal. Afterwards the amplitudes of both signals
are again added in the second hidden unit. Then the excitatory synapse from
the input unit together with the excitatory self-connection of the output unit
shifts the signal of low-frequency sound to oscillate around −0.78 with small
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Fig. 5.18. The mixed signals between low-frequency sound (100 Hz) and the tactile
signal from all neurons. (a) The signals from an input neuron. (b), (c) The signals
from hidden neurons. (d) The signals from an output neuron

amplitude. As a result the tactile signal processing network suppresses the
signal of low-frequency sound and only the tactile signal is activated.
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Here, the combination between the principal advanced auditory network
and the tactile signal processing network leads to an auditory–tactile signal
processing network. The network is able to distinguish between low-frequency
sound and a tactile signal coming from the physical auditory–tactile sensor.
This network, consisting of one input unit, three hidden units and two output
units, is shown in Fig. 5.19.

Fig. 5.19. The auditory–tactile signal processing network recognizes low-frequency
sound up to 400Hz (O1), and the described tactile signal (O2). It is developed to
operate at an update frequency of 48 kHz

The sensor signal is simultaneously provided for the input unit of the
principal advanced auditory network and the tactile signal processing net-
work. The signal of output1 (O1) is active and oscillates between values of
approximately 0.998 and −0.997 if low-frequency sound is recognized. And
the signal of output2 (O2) is active if a tactile signal is recognized. Otherwise
both output signals are inactive.



5.1 Neural Preprocessing of Sensory Signals 87

5.1.3 Preprocessing of Antenna-like Sensor Data

To obtain an obstacle avoidance behavior by using the sensory information
of IR-based antenna sensors, which is digitized via the ADC channels of the
MBoard at the sampling rate of up to 5.7 kHz, the preprocessing of the sensor
data is required. Here, the property of the MRC [96] is again applied. The
MRC has been developed to control a miniature Khepera robot [135], which is
a two-wheel platform. The desired preprocessing network was developed and
analyzed by using the YARS connecting to the ISEE (cf. Sects. 3.3 and 4.2).
The simulation was implemented on a 1-GHz PC with an update frequency
of 75Hz. Eventually, the effective preprocessing network will be transferred
to the mobile processor on a physical walking machine.

On the basis of its well-understood functionality [96], the parameters were
manually readjusted with the help of the simulation for using it in this ap-
proach. First, the weights W1,2 from the input to the output units were set to
a high value to amplify the sensory signals, i.e., W1,2 = 7. As a result, under
some conditions the sensory noise was eliminated. In fact, these high multi-
plicative weights drive the output signals to switch between two saturation
domains, one low (≈ −1) and the other high (≈ +1). Then the self-connection
weights of the output neurons were manually adjusted to derive a reasonable
hysteresis interval on the input space. The width of the hysteresis is pro-
portional to the strength of the self-connections. This effect determines the
turning angle in front of the obstacles for avoiding them, i.e., the wider the
hysteresis, the larger the turning angle. Both self-connections are set to 5.4
to obtain the suitable turning angle of the AMOS-WD02. Finally, the recur-
rent connections between output neurons were symmetrized and manually
adjusted to the value −3.55. This guarantees the optimal functionality for
avoiding obstacles and escaping from sharp corners. The resulting network is
shown in Fig. 5.20.

Generally, two IR-based antenna sensors installed on the forehead of a
walking machine (see also Sect. 4.1.3) together with the neural preprocessing
above are sufficient to sense the obstacles on the left front and the right
front. However, to enhance the avoiding capacity, e.g., protecting the legs of a
walking machine from hitting obstacles, like chair or desk legs, one can easily
install more sensors at the legs (cf. Sect. 4.1.3), and send all their signals to the
corresponding input neurons of the network. For instance, by implementing six
sensors on the six-legged walking machine AMOS-WD06, the three sensory
signals on each side are simply connected with hidden neurons which are
directly connected to the two original output neurons with large weights. To
stay in the linear domain of the sigmoid transfer function of the hidden neuron,
each sensory signal is multiplied with a small weight, here 0.15, and the bias
term (B) is set to determine a threshold value of the sum of the input signals,
e.g., 0.2. When the measured value is greater than the threshold in any of the
three sensory signals, excitation of the hidden neuron on the corresponding
side occurs. Consequently, the activation output of each hidden neuron can
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Fig. 5.20. The signal processing network of antenna-like sensors with appropriate
weights. The network is developed to operate at an update frequency of 75Hz. Here,
it is applied for controlling the AMOS-WD02

vary in the range between ≈ −0.245 (“no obstacle is detected”) and ≈ 0.572
(“all three sensors on the appropriate side simultaneously detect obstacles”).
Furthermore, the weights from the hidden to the output units are set to a
high value, e.g., 25, to amplify these signals. Again the other parameters
(self-connection and recurrent-connection weights of the output neurons) were
manually optimized in the similar way as described above. As a result, they
are set to 4 and −2.5, respectively. The optimization was first simulated and
then finally tested on the AMOS-WD06. The improved structure of this neural
preprocessing together with its optimized weights is shown in Fig. 5.21.

In both cases (Figs. 5.20 and 5.21), all sensory signals are linearly mapped
onto the interval [−1, +1] before feeding them into the networks, with −1
representing “no obstacles”, and +1 “a near obstacle is detected”. The output
neurons of the networks have so-called super-critical self-connections (>1.0)
which produce a hysteresis effect for both output signals. A strong excitatory
self-connection will hold the slightly constant output signal longer than a
smaller one, resulting in a larger turning angle to avoid obstacles or corners.
To visualize this phenomenon, the network shown in Fig. 5.20 is exemplified
and the hysteresis effect is plotted in Fig. 5.22. There, the different weights of
excitatory self-connection can be also compared.

In addition, there is a third hysteresis phenomenon involved which is as-
sociated to a so-called even loop of the inhibitory connection [150] between
the two output neurons. Under general conditions, only one neuron at a time
is able to get a positive output, while the other one has a negative output,
and vice versa. The network shown in Fig. 5.20 is again used to illustrate this
phenomenon (Fig. 5.23).

By applying the described phenomena, the sensory noise is eliminated
(Fig. 5.22) and the walking machines are able to avoid the obstacles and
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Fig. 5.21. The signal processing network of antenna-like sensors for the six sensory
inputs. The network is also developed to operate at an update frequency of 75 Hz.
Here, it is applied for controlling the AMOS-WD06

even to escape from a corner and a deadlock situation. The machines will be
driven to turn away from the objects with the angle that is determined by the
excitatory self-connections of the output neurons. Also, due to the inhibitory
synapses, they will determine the direction to which the walking machines
should turn when obstacles are detected.

5.2 Neural Control of Walking Machines

To generate the locomotion of walking machines and to change the appropriate
motions, e.g., turning left, right or walking backward with respect to sensor
signals, an artificial neural network together with the principle of dynamic
properties of recurrent neural networks described in Chap. 3 is employed.
The neural control [128] for this approach consists of two subordinate net-
works. One is a neural oscillator network, which generates the rhythmic leg
movements, while the other is the velocity regulating network (VRN), which
expands the steering capabilities of the walking machines.

5.2.1 The Neural Oscillator Network

Neural oscillators for the walking machines have often been studied [29, 65,
131, 132, 140, 197]. Inter alia, H. Kimura et al. [111] constructed a neural
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Fig. 5.22. Comparison of the “hysteresis effects” with different self-connection
weights at the output neuron. (a) The output signal (dashed line) decreases from
≈ +1 to ≈ −1 when the input signal (solid line) is inactive (≈ −1). This effect
corresponds to a very small turning angle of the walking machine in avoiding an ob-
stacle. (b) The output signal (dashed line) stays longer at ≈ +1 and then decreases
to ≈ −1 when the input signal (solid line) is inactive. This effect corresponds to an
appropriate turning angle of the walking machine in avoiding an obstacle. (c) The
output signal (dashed line) stays longest at ≈ +1 and then decreases to ≈ −1. This
effect corresponds to a larger turning angle of the walking machine in avoiding an
obstacle

oscillator network with four neurons. The network has been applied to con-
trol the four-legged walking machine TEKKEN where each hip joint of the
machine is driven by one of the neurons. J. Ayers et al. [12] used a neu-
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Fig. 5.23. (a)–(d) The input signals (solid line) of the sensors and the output
signals (dashed line) of the output neurons. Due to the inhibitory synapses and
the high activity of Output1 (a), the Output2 (b) is still inactive although Input2
is active. (c) and (d) show the switching condition between Output1 and Output2
when the activity of Input1 is low, meaning “no obstacles detected” and the activity
of Input2 is still high, meaning “obstacles detected”. This phenomenon is responsible
for escaping from sharp corners as well as deadlock situations

ral oscillator consisting of so-called elevator and depressor synergies. They
are arranged as an endogenous pacemaker network with reciprocal inhibi-
tion, and are used to generate walking patterns for the eight-legged Lobster
robot. Here a so-called two-neuron network [154] is employed. It is used as
a CPG [101, 113, 171, 198] which follows one principle of locomotion control
in walking animals (cf. Sect. 2.3). It generates the rhythmic movement for
basic locomotion of the walking machines without the requirement of sensory
feedback. The network structure is shown in Fig. 5.24.

The network parameters are experimentally adjusted via the ISEE to ac-
quire the optimal oscillating output signals for generating locomotion of the
walking machines. The parameter set is selected with respect to the dynam-
ics of the two-neuron system staying near the Neimark–Sacker bifurcation,
where the quasi-periodic attractors occur [154]. Examples of different oscillat-
ing output signals generated by different weights and bias terms are presented
in Fig. 5.25.

Figure 5.25 shows that such a network has the capability to generate var-
ious oscillating outputs depending on the weights and the bias terms. For
instance, if the bias terms are small (cf. Fig. 5.25a), the initial output sig-
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Fig. 5.24. The structure of the two-neuron network

nals will oscillate with a very small amplitude and then the amplitude will
increase during a transient time, while the amplitude of the output signals
for large bias terms is high right from the beginning (cf. Fig. 5.25b). Fur-
thermore, different bias terms also affect the waveform of the output signals.
Different self-connection weights result in different amplitude and waveforms
of the oscillating output signals (compare Figs. 5.25c and 5.25d). To adjust
the oscillating frequency of the outputs, one can also control the connection
weights between two output neurons; i.e., for small connection weights (ab-
solute values), the output signals oscillate at low frequency, while the large
connection weights (absolute values) make the outputs oscillate at high fre-
quency with different waveforms (compare Figs. 5.25e and 5.25f). However,
one can utilize this modifiable oscillating output behavior with respect to the
weights and the bias terms in the field of neural control, e.g., for controlling
the type of walking and the walking speed of legged robots.

Here, the actual parameter set for the network controller is given by B1 =
B2 = 0.01, W1 = −0.4, W2 = 0.4 and W3 = W4 = 1.5, where the sinusoidal
outputs correspond to a quasi-periodic attractor (Fig. 5.26). They are used
to drive the motor neurons directly to generate the appropriate locomotion of
the walking machines [74, 128, 130].

The output of neuron 1 (Output1) is used to drive all thoracic joints and
an additional backbone joint, and the output of neuron 2 (Output2) is used
to drive all basal joints (and all distal joints for a three DOF leg). This oscil-
lator network is implemented on a PDA with an update frequency of 25.6 Hz.
It generates a sinusoidal output with a frequency of approximately 0.8Hz
(Fig. 5.27) analyzed by the free scientific software package Scilab-3.0.6

By using asymmetric connections from the oscillator outputs to corre-
sponding motor neurons, a typical trot gait for a four-legged walking machine
and a typical tripod gait for a six-legged walking machine are obtained which

6 See also: http://scilabsoft.inria.fr/. Cited 18 December 2005.
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Fig. 5.25. The oscillating output signals of neurons 1 (dashed line) and 2 (solid
line) from the network having different weights and bias terms. (a) For small bias
terms (B1 = B2 = 0.0001) while W1 = −0.4, W2 = 0.4 and W3 = W4 = 1.5. (b)
For larger bias terms (B1 = B2 = 0.1) and all weights as in (a). (c) For smaller
self-connection weights (W3 = W4 = 1) while W1 = −0.4, W2 = 0.4 and bias terms
= 0.01. (d) For larger self-connection weights (W3 = W4 = 1.7) and all weights
together with bias terms as in (c). (e) For smaller absolute values of connection
weights between two output neurons (W1 = −0.25, W2 = 0.25) while W3 = W4 = 1.5
and the bias terms = 0.01. (f) For larger absolute values of connection weights
between two output neurons (W1 = −0.8, W2 = 0.8) and all weights together with
bias terms as in (e)
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Fig. 5.26. (a) The output signals of neurons 1 (dashed line) and 2 (solid line) from
the neural oscillator network. (b) The phase space with quasi-periodic attractor of
the oscillator network which is used to drive the legs of the machines

Fig. 5.27. (a) The sinusoidal output generated by the neural oscillator network
is recorded for 5 seconds. (b) The FFT spectrum of the recorded sinusoidal out-
put shows that the output has the eigenfrequency around 4Hz. Then, the walking
frequency of the machines can be approximately (4/5) 0.8Hz

are similar to the gaits of a cat and a cockroach, respectively (described in
Sect. 2.3). In a trot gait as well as a tripod gait, (Figs. 5.28 and 5.29), the
diagonal legs are paired and move together (see also Sect. 2.3). These typical
gaits will enable efficient forward motions.

5.2.2 The Velocity Regulating Network

To change the walking modes, e.g., from walking forwards to walking back-
wards and from turning left to turning right, the efficient way is to perform a
180-degree phase shift of the sinusoidal signals which drive the thoracic joints.
To do so, the VRN is introduced. The network used is modified from [73]. It
approximates the multiplication function on two input values x, y ∈ [−1,1]
(Fig. 5.30). One can optimize this approximation, for instance, by using back-
propagation, but it is good enough for the purpose of controlling the machine.
Multiplication by higher-order synapses is not used here for consistency rea-
sons.
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Fig. 5.28. (a) The typical trot gait. The x -axis represents time and the y-axis
represents the legs. During the swing phase (white blocks) the feet have no ground
contact. During the stance phase (gray blocks) the feet touch the ground. (b) The
orientation of the legs of the AMOS-WD02

Fig. 5.29. (a) The typical tripod gait. The x -axis represents time and the y-axis
represents the legs. During the swing phase (white blocks) the feet have no ground
contact. During the stance phase (gray blocks) the feet touch the ground. (b) The
orientation of the legs of the AMOS-WD06

For this purpose the input x is the oscillating signal coming from the
neural oscillator network to generate the locomotion and the input y is the
sensory signal coming from the neural preprocessing network, e.g., the audi-
tory signal processing, the tactile signal processing or the signal processing of
antenna-like sensors, to drive the corresponding behavior. Figure 5.31a repre-
sents the network, consisting of four hidden neurons and one output neuron.
Figure 5.31b shows that the output signal gets a phase shift of 180 degrees,
when the sensory signal (input y) changes from −1 to +1 and vice versa.

Because the VRN behaves qualitatively to a multiplication function, it
then should also be able to increase and decrease an amplitude of the oscillat-
ing signal. To explore the behavior of this network, the fixed oscillating signal
is connected to the input x of the network while the input y gets constant
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Fig. 5.30. (a) The multiplication function F(x, y) = x × y, and (b) its approxi-
mation O(x, y) of the VRN with average mean square error (e2) ≈ 0.0046748. The
output O of the neuron is given by the sigmoidal transfer function tanh; therefore
the suitable input values x, y are in the range of [−1 · · · 1]

Fig. 5.31. (a) The VRN with four hidden neurons, where the parameter set for
the network is given by W1 = W3 = W5 = W8 = 1.7246, W2 = W4 = W6 = W7 =
−1.7246, W9 = W10 = 0.5, W11 = W12 = −0.5, and the bias terms B are all equal
to −2.48285. (b) The output signal (solid line) when the input y is equal to +1 and
the output signal (dashed line) when the input y is equal to −1

input values to be multiplied with the oscillating signal. The resulting outputs
for the different y-input values which are monitored via the ISEE are shown
in Fig. 5.32.
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Fig. 5.32. The output signal (solid line) when the input y is equal to positive value
and the output signal (dashed line) when the input y is equal to negative value.
The different given values of the input y result in the different amplitudes of the
output signal

From Fig. 5.32, it can be seen that the network is not only able to make
a 180-degree phase shift of the oscillatory output signal but, using the input
y, it can also modulate its amplitude. Especially the amplitude of the output
will be 0 if the given input y is equal to 0. This function of the network enables
the machines to perform different motions by making a 180-degree phase shift
of the oscillatory signal. It even can stop the walking machines by setting the
input y to 0. Furthermore, the different amplitudes of the oscillating signal
will affect the walking velocity of the machines; i.e., the higher amplitude of
the signal the faster they walk and vice versa.
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To compare the effect of the different amplitudes of the oscillating signal
with the walking velocity of the machines, the VRNs together with the neural
oscillator are implemented on the mobile processor of the physical four-legged
walking machine AMOS-WD02. The network is updated with 25.6 Hz.To de-
termine the walking velocity of the machine depending on the y-input values,
the time needed to cover a fixed distance (1m) was measured several times
for every y-input. The average velocity values for the different y-input are
displayed in Fig. 5.33.

Fig. 5.33. Comparison of the walking velocity with different input y of the VRN

Figure 5.33 shows that the amplitude of the oscillating signal influences
the walking velocity of the machine because the higher amplitude provides
the larger angle of the thoracic joints in moving forwards and backwards; e.g.,
|input y| = 0.2 generates a very small amplitude (Fig. 5.32) of the output re-
sulting in a slow motion (0.027m/s), on the other hand |input y| = 1.0 causing
a high amplitude and a fast motion (0.127 m/s). Therefore, the VRN together
with the neural oscillator can accelerate, decelerate or stop the motion of the
walking machines simply driven by sensor input through the so called y-input
of the VRN.

5.2.3 The Modular Neural Controller

The integration of two different functional neural modules, the neural pre-
processing and the neural control (the neural oscillator network and the ve-
locity regulating networks), gives the effective modular neural controller to
generate reactive behaviors. One oscillating output signal from the neural os-
cillator network is directly connected to all basal joints, while the other is
connected to the thoracic joints, only indirectly, passing through all hidden
neurons of the VRNs through their x-inputs (Fig. 5.31a). The output signals
of the neural preprocessing module go to Input1 (I1) and Input2 (I2) of the
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VRNs (Figs. 5.34 and 5.35). Thus, the rhythmic leg movements are generated
by the neural oscillator network, and the steering capabilities of the walking
machines are realized by the VRNs in accordance with the outputs of the
neural preprocessing module. The structure of this controller and the loca-
tion of the corresponding motor neurons on the four-legged walking machine
AMOS-WD02 are shown in Fig. 5.34.

The same controller can also be applied to control even more complex
systems, e.g., the six-legged walking machine AMOS-WD06 with additional
distal joints, without changing the internal parameters and the structure of the
controller (compare the dashed frame in Figs. 5.34 and 5.35). Only motor and
sensory neurons are added. One output of the neural oscillator network drives
all basal and distal joints. The other drives all thoracic joints by connecting
through all hidden neurons of the VRNs. The network structure and the
corresponding positions of the motor neurons of the AMOS-WD06 are shown
in Fig. 5.35.

5.3 Behavior Control

Now we shall look at those neural modules which are used on the mobile
system,7 where two signal processing networks have been employed. One is
the signal processing network of the antenna-like sensors, and the other is
the auditory signal processing network. Utilizing the modular concept, each
signal processing network from neural preprocessing module is selected and
connected to the neural control module of the four- or six-legged walking ma-
chine. Thus different behavior controllers, for instance, obstacle avoidance and
sound tropism controllers, can be created by taking this concept into account.
In order to achieve more complex behavior in the walking machine(s), a sensor
fusion technique is also applied, whereby it has to cooperate or manage the
sensory signals.

5.3.1 The Obstacle Avoidance Controller

Our obstacle avoidance controller is constructed from two modules: the sig-
nal processing network of antenna-like sensors from the neural preprocessing
module and the modular neural controller from the neural control module
(Fig. 5.36).

The controller generates the obstacle avoidance behavior where the mod-
ular neural controller together with the preprocessing network will enable the
machines to walk as well as steer the walking directions of the machines by
changing the rhythmic leg movements at the thoracic joints in accordance

7 The controllers are implemented on the PDA with an update frequency of 25.6Hz,
and the sensor signals are digitized via the MBoard at the sampling rate of up to
5.7 kHz.
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Fig. 5.34. The modular neural controller of the four-legged walking machine AMOS-
WD02. It generates a trot gait which is modified when I1 or I2 is changed by the
sensory signals. The bias terms B of the VRNs are all equal to −2.48285. The
outputs from the neural preprocessing module are directly connected to the input
neurons (I1, I2) of the neural control module (dashed frame)



5.3 Behavior Control 101

Fig. 5.35. The modular neural controller of the six-legged walking machine AMOS-
WD06. The bias terms B of the VRNs are again all equal to −2.48285
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Fig. 5.36. The modular architecture of the obstacle avoidance controller consists
of the neural preprocessing and control modules. The preprocessing of antenna-
like sensor data from the neural preprocessing module is selected and linked to the
modular neural controller (of a four- or six-legged walking machine)

with the sensory signals. Furthermore, the controller even has the capabil-
ity to prevent the walking machines from getting stuck in a corner or in a
deadlock situation because of the hysteresis effects provided by the recurrent
structure of the preprocessing network (cf. Figs. 5.22 and 5.23). The structure
of the obstacle avoidance controller for the four-legged walking machine [128]
is shown in Fig. 5.37.

The same concept can be applied to the six-legged walking machine by
connecting the preprocessing of antenna-like sensor data (cf. Fig. 5.21) to the
modular neural controller of the six-legged walking machine. The structure of
the obstacle avoidance controller for the six-legged walking machine [130] is
shown in Fig. 5.38.

As a result, the output signals of the preprocessing network together with
the VRNs determine and switch the behavior of the walking machines; for in-
stance, switching the behavior from “walking forward” to “turning left” when
there are obstacles on the right, and vice versa. The output signals also deter-
mine the direction of the walking machines. Practically, which way they should
turn depends on which antenna-like sensor signals have been previously active.
In special situations, like walking toward the wall, the antenna-like sensors of
the fore left and the fore right might get positive outputs at the same time,
and, because of the VRNs, the walking machines are able to walk backward.
While walking backward, one of the sensory signals might be still active while
the other might be inactive. Correspondingly, the walking machines will turn
into the opposite direction of the active signal and they can finally leave the
wall.
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Fig. 5.37. The controller is built from a combination of the preprocessing of
antenna-like sensor data and the modular neural controller of the four-legged walk-
ing machine. The left and the right signals of the antenna-like sensors are directly
connected to input neurons of the signal processing network

5.3.2 The Sound Tropism Controller

The controller that generates a sound tropism inspired by the prey capture
behavior of the spider Cupiennius salei is built by realizing a modular con-
cept.; i.e., the auditory signal processing of the neural preprocessing module
is assembled with the modular neural controller. The modular architecture of
the sound tropism is drawn in Fig. 5.39.

In the sound tropism controller [129], the auditory signal processing acts
as a low-pass filter by passing through the specific frequency sound (200 Hz)
to trigger a behavior and by filtering all high-frequency noise (>400 Hz). Ad-
ditionally, it can discern the direction of the signals while the modular neural
controller has the capacity to enable and to control the motions of the walk-
ing machine(s). Consequently, the desired different walking patterns which
respond to a switch-on sound source are performed. That is, the machine(s)
walks straight, turns toward a switched-on sound source, then makes an ap-
proach and then stops near to it by checking the amplitude of the auditory
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Fig. 5.38. The controller is built from a combination of the preprocessing of
antenna-like sensor data and the modular neural controller of the six-legged walking
machine

signals. The controller structure of the four-legged walking machine, generat-
ing a so-called sound tropism is presented in Fig. 5.40.

However, due to the modular concept, the sound tropism controller can be
modified to be implemented on the six-legged walking machine as well. This
can be achieved by connecting the auditory signal processing network with
the modular neural controller of the six-legged walking machine.

5.3.3 The Behavior Fusion Controller

The combination of the mentioned controllers leads to a versatile artificial
perception–action system. This means that the resulting controller can pro-
duce different reactive behaviors in accordance with the sensory inputs. For
instance, the sensory signals of antenna-like sensors should generate a neg-
ative tropism, while the auditory signals should generate a positive tropism
so that the machine(s) follows a sound source but avoid obstacles. The mod-
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Fig. 5.39. The modular architecture of the sound tropism consists of the neural
preprocessing and control modules. The auditory signal processing of the neural
preprocessing module is chosen to connect to the modular neural controller (of a
four- or six-legged walking machine)

ular architecture of the controller generating different reactive behaviors is
illustrated in Fig. 5.41.

As shown in Fig. 5.41, two signal processing networks of different sensory
inputs together with the modular neural controller are employed to construct
a so-called behavior fusion controller. Both sensory signals have to be managed
before directing them to the modular neural controller to execute a behavior.
To do so, a fusion technique for the sensor signals is required. It will combine
two different sensor data, namely the auditory signals coming from the stereo
auditory sensor and IR signals coming from the antenna-like sensors. The
preprocessed signals of both sensors go into a fusion procedure in parallel.
It manages all input signals and provides only two output signals which are
later connected to the modular neural controller. Consequently, the modular
neural controller sends the command to the motor neurons of the walking
machine(s) to activate the desired behavior. The controller structure is shown
in Fig. 5.42.

This fusion procedure consists of two methods: a look-up table and time
scheduling. The look-up table method for this approach is used like a table
that manages the input signals concerning their priorities. To manage the
priority of the sensory signals, the IR signals are desired to have higher pri-
ority than the auditory signals. If the obstacles and the auditory signals are
detected at the same time, the controller will execute the obstacle avoidance
behavior instead of the sound tropism. The sound tropism is performed if and
only if the obstacles are not detected. From these statements, 16 actions in
accordance with 4 sensory inputs can be executed, where 2 of them come from
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Fig. 5.40. The controller is built from a combination of the auditory signal process-
ing network and the modular neural controller of the four-legged walking machine.
The left and the right signals of the auditory sensors are directly connected to input
neurons of the auditory signal processing network

the stereo auditory sensor, and the other 2 come from the antenna-like sen-
sors. The driven actions are shown in Table 5.1, where IRR and IRL indicate
IR signals of the right and the left antenna-like sensors after preprocessing,
respectively; AR and AL indicate auditory signals of the right and the left au-
ditory sensors after preprocessing, respectively; +1 and −1 indicate the active
and the inactive signals, respectively.
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Fig. 5.41. The modular architecture of the behavior fusion controller, which com-
pletes the perception–action systems, consists of the neural preprocessing and con-
trol modules. The auditory signal processing and the preprocessing of antenna-like
sensor data are selected to connect to the modular neural controller (of a four- or
six-legged walking machine)

Fig. 5.42. The controller structure of behavior control compounds of preprocessing
sensory signals, a sensor-fusion procedure and the motion generator. It filters the
input signals at preprocessing channels and then it integrates and manages the
signals at the fusion channel. Finally, it sends the output commands to the motor
neurons Mn via the motion generator; where n = 3 is the number of thoracic motor
neurons of the four-legged waking machine and n = 5 is the number of thoracic
motor neurons of the six-legged walking machine
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Table 5.1. The look-up table to manage the sensory inputs

Behavior Actions IRR IRL AR AL

Obstacle avoidance Turn Left +1 −1 −1 +1
Sound tropism Turn Left −1 −1 −1 +1
Obstacle avoidance Turn Right −1 +1 −1 +1
Sound tropism Turn Left +1 +1 −1 +1
Obstacle avoidance Turn Left +1 −1 +1 +1
Sound tropism Forward −1 −1 +1 +1
Obstacle avoidance Turn Right −1 +1 +1 +1
Obstacle avoidance Backward +1 +1 +1 +1
Obstacle avoidance Turn Left +1 −1 +1 −1
Sound tropism Turn Right −1 −1 +1 −1
Obstacle avoidance Turn Right −1 +1 +1 −1
Sound tropism Turn Right +1 +1 +1 −1
Obstacle avoidance Turn Left +1 −1 −1 −1
Default behavior Forward −1 −1 −1 −1
Obstacle avoidance Turn Right −1 +1 −1 −1
Obstacle avoidance Backward +1 +1 −1 −1

As a result, there are only two situations where the machine(s) is driven
to walk forward. One is when the obstacles are not detected (IRR and IRL
= −1) and the auditory signals are active (AR and AL = +1) at the same
time, which rarely occurs because auditory sensors are installed on the AMOS-
WD02 in the diagonal locations. The other one is the normal condition (de-
fault behavior) in which the obstacles and auditory signals are not detected.
Thus, the machine(s) might have difficulties approaching the sound source
although eventually it can reach and stop near the source (see demonstration
in Sect. 6.2.2).

To overcome the described problem, a time scheduling technique is added
into the fusion procedure. It switches between two behavioral modes, namely
obstacle avoidance mode (Om) and composite mode (Cm), made up of the
sound tropism and the obstacle avoidance behavior. The obstacle avoidance
mode is the mode in which the machine(s) cannot react to the auditory signals
although the signals can be detected. On the other hand, the composite mode
is the mode in which the walking machine(s) can react to the auditory signals
and can also avoid the obstacles, but the performed action is checked by the
look-up table method (see Table 5.1).

Two behavioral modes are executed with different time scales and are con-
stantly repeated until the processor time is expired; for instance, the obstacle
avoidance mode is primarily executed at approximately 3.2 s of the total (ap-
proximately 16.9 s) while the composite mode is suspended. After that the
obstacle avoidance mode becomes a suspension and the composite mode be-
comes executable for approximately 13.7 s. The process will repeatedly run
until the processor time is terminated (e.g., ≈ 15 minutes). The different time
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scales of the behavioral modes can be calibrated and optimized by the ex-
periment depending on each system. Normally, the time scale of a composite
mode should be larger than the obstacle avoidance mode. The time scheduling
diagram is presented in Fig. 5.43.

Fig. 5.43. The time scheduling diagram of the sensor fusion technique. At the start,
the obstacle avoidance mode (Om) is executed for t1 ≈ 3.2 s while the composite
mode (Cm) is suspended. After that the Cm becomes executable for ≈ 13.7 s and
the Om becomes suspension at the same time. At time t2 (≈ 16.9 s), the process is
complete. It then repeats itself by executing the Om and suspending the Cm. The
switching between executing and suspending the Om and Cm is performed until the
processor time is terminated, e.g., ≈ 15minutes

From the described strategy, the walking machine(s) walks forward if no
obstacles and no sound are detected. It then orients its movement into the
direction of the sound source if the sound is detected, with no obstacles, during
execution of the composite mode. After that, it will be able to walk forward
for a while when the obstacle avoidance mode becomes active and no obstacles
are detected. Eventually, it will approach the sound source and stop near it.

To prevent the walking machine(s) from colliding with the sound source
while approaching it, the amplitude of the auditory signals must be closely
observed and checked. If the amplitude is higher than the threshold, then
the input signals (Input1 and Input2) which are connected to the modular
neural controller are set to 0. Consequently, the signals of the thoracic motor
neurons are inhibited causing the walking machine(s) to stop at a distance
determined by the amplitude threshold of the auditory signals. The structure
of the behavior fusion controller of the four-legged walking machine together
with the specific parameters is given in Fig. 5.44.

To reproduce the sound tropism in the six-legged walking machine, the
modular neural controller of the four-legged walking machine can be replaced
by the controller of the six-legged walking machine. However, using the be-
havior fusion controller together with a sensor fusion technique, the output
signals from the preprocessing channels are prioritized and coordinated in the
fusion channel before sending out the final sensory signals to drive the be-
havior through the modular neural controller. On the one hand, the output
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Fig. 5.44. The behavior fusion controller for generating the different reactive be-
haviors of the four-legged walking machine

signals of the preprocessing of the antenna-like sensors are clarified as the
negative response to the stimulus which drives the machine(s) to turn away
from the obstacles. On the other hand, the output signals of the auditory
signal processor act as the positive response to the stimulus which drives the
machine(s) to turn toward the sound source.
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5.4 Conclusion

In this chapter, artificial perception–action systems which perform the differ-
ent reactive behaviors of the walking machine(s) were introduced. They are
built from a combination of neural preprocessors for sensor data processing
and the neural control for locomotion of the walking machines. The neural pre-
processing and control are achieved by applying the dynamic properties of the
recurrent neural networks. The optimization of the parameters of the neural
preprocessing is achieved by an evolutionary algorithm. Three different types
of neural preprocessing modules are presented: auditory signal processing,
preprocessing of the antenna-like sensor data and the tactile signal process-
ing. Using the stereo auditory sensor, the sound is processed by the auditory
signal processing network acting as a low-pass filter and also discerning the
direction of the signals. For the preprocessing of the antenna-like sensor data,
it has the capability to eliminate the sensory noise and to control the walk-
ing direction of the machines by utilizing the hysteresis effect. Applying the
auditory–tactile sensor for collision detection and low-frequency sound detec-
tion, the signal coming from the tactile channel is recognized by the tactile
signal processing network while the low-frequency sound is recognized by a
part of the auditory signal processing network.

In order to obtain the different behavior controllers of the walking ma-
chine(s), e.g., an obstacle avoidance controller and a sound tropism controller,
each neural preprocessing module of the corresponding sensory signals can be
connected to a neural control called a “modular neural controller”. This mod-
ular neural controller composes the neural oscillator network, which generates
the rhythmic leg movements as the CPG, and the VRNs, which expand the
steering capabilities of the walking machines. Eventually, the combination of
the neural preprocessing and neural control, including the additional sensor
fusion technique, will lead to an effective behavior fusion control which enables
the walking machine(s) to respond to environmental stimuli, e.g., wandering
around, avoiding obstacles and moving toward a sound source.



6

Performance of Artificial Perception–Action
Systems

In order to test the capabilities of the artificial perception–action systems,
several experiments were carried out. First, the signal processing networks
were tested with the simulated signals and the real sensor signals. Afterwards
the physical sensors, the neural preprocessing and the neural control were
all together implemented on the physical walking machine(s) to demonstrate
different reactive behaviors.

6.1 Testing the Neural Preprocessing

This section describes the experiments which show the performance of the
neural preprocessing by testing it with the simulated data and the physical
sensor data. Afterwards the effective neural preprocessing together with the
physical sensor systems, known as an artificial perception part, will be applied
for behavior control of the reactive walking machine(s).

6.1.1 The Artificial Auditory–Tactile Sensor Data

An artificial auditory–tactile sensor was built, together with its preprocess-
ing networks. The purpose of this sensor system is to provide environmental
information for a sensor-driven system in wheeled robots as well as in walk-
ing machines. Here the performance of the auditory signal processing of the
sensor, which helps recognizing low-frequency sound (e.g., 100Hz) as well as
eliminating unwanted noise, was previously tested. Afterwards the capability
of the tactile signal processing of the sensor, which should detect a real tactile
signal, was presented. Thus, using the sensor coupled with the effective signal
processing will enable the sensor system to distinguish and to recognize the
real auditory and tactile signals.

First of all, the signal processing networks of the auditory–tactile sensor,
simple and principal advanced auditory networks, were created on the ISEE
(cf. Sect. 3.3) running on a 1-GHz PC at an update frequency of 48 kHz. They
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Fig. 6.1. (a) The simulated input consisting of two different frequencies (100 Hz
and 1000 Hz). (b) The corresponding output of the simple auditory network. (c)
The corresponding output of the principal advanced auditory network. All figures
have the same scale in the x -axis and the y-axis

were then tested with a simulated sinusoidal input1 having constant-amplitude
signals and consisting of two different frequencies, one low (100 Hz) and the
other high (1000 Hz). Figure 6.1 shows the ideal noise-free input signals and
the output signals of the networks.

The same procedure was done with the noisy signals; i.e., the low- and high-
frequency sounds were produced by a powered loudspeaker system (30watts)
and recorded via the sensor from a real environment (Fig. 6.2). The output
signals of the sensor were digitized through the line-in port of a sound card
at a sampling rate of 48 kHz.

1 The signals were simulated with an update frequency of 48 kHz by the wave
generator software of Physics Dept. of Rutgers University. They were buffered
into the simulator called “Data Reader”.
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Fig. 6.2. The experimental equipment to record real auditory signals via the
auditory–tactile sensor. (a) The loudspeaker producing the low- and high-frequency
sounds. (b) The auditory–tactile sensor system consisting of the sensor, a voltage
divider circuit and a PC having a line-in port

The recorded signals with varying amplitudes consisted of the low- and
high-frequency sounds, 100 Hz and 1000 Hz, respectively. These signals were
filtered through the networks that behaved like a low-pass filter. That is, the
simple auditory network can almost pass through the low-frequency sound
having the highest amplitude. Although there is some remaining noise from
the high-frequency sound which has the highest amplitude input, the noise
can be ignored because all of it is low amplitude output (e.g., below −0.50).
On the other hand, the advanced auditory network has more capability to
pass through some other lower amplitudes of the low-frequency sound. These
processes are presented in Fig. 6.3.

Finally, the sensor was applied to a real walking machine, i.e., one sensor
was implemented on one leg of the walking machine AMOS-WD02 (Fig. 6.4)
and the signals were again recorded through the line-in port.

There were three different settings for recording signals to test the net-
works. The first setting was that the walking machine was switched on in the
initial standing position. The next setting was to let the machine walk, and
the last setting was to generate the sound at 100Hz while the machine was
walking (the experimental set-up was similar to the set-up shown in Fig. 6.7).
The signals of all settings are shown in Fig. 6.5a and the resulting signals
after filtering by the simple and principal advanced auditory networks are
presented in Figs. 6.5b and 6.5c, respectively.

Comparing the performance between the simple and principal advanced
auditory networks, Fig. 6.1 shows that both networks are able to recognize the
low-frequency signal when the signal is noise-free with high-constant ampli-
tude. For the noisy signals shown in Fig. 6.3, the principal advanced auditory
network is more robust and it can detect the low-frequency sound with suf-
ficiently high amplitude while the simple auditory network can detect only
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Fig. 6.3. (a) The real input signals (consisting of 100Hz and 1000 Hz) with varying
amplitudes recorded via the physical auditory–tactile sensor. (b) The corresponding
output signals of the simple auditory network. (c) The corresponding output signals
of the advanced auditory network. All figures have the same scale in the x -axis and
the y-axis

the highest amplitude (Figs. 6.3b and 6.3c). Additionally, both networks can
filter noise coming from the motor sound of the walking machine in motion
as well as in a standing position; but, only the principal advanced auditory
network can recognize the low-frequency sound while the machine is walking
and simultaneously listening to the sound.

Therefore, the principal advanced auditory network is appropriate for fur-
ther applications, e.g., one can blend the principal advanced auditory network
with the tactile signal processing network to acquire a so-called auditory–
tactile signal processing network of the auditory–tactile sensor (described in
Sect. 5.1.2). Moreover, one can even combine the evolved advanced auditory
network developed on the basis of the principal advanced auditory network
with the sound–direction detection network and then implement the combined
network, known as “auditory signal processing network”, on the mobile sys-
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Fig. 6.4. The auditory–tactile sensor was installed on one leg of the AMOS-WD02.
The sensor has the extension part (the whisker of a real mouse) around 4.0 cm from
the leg

tem of the walking machine(s) to perform the sound tropism as described in
the previous chapter.

To show the capability of the auditory–tactile signal processing network
in detecting and distinguishing a sound and a tactile signal, the network was
again implemented on the ISEE at an update frequency of 48 kHz and re-
ceived the input data via the Data Reader. The experiment was performed
with mixed signals between the low-frequency sound (100 Hz) with varying
amplitudes and the tactile signal where the signals come from the physical
sensor. The low-frequency sound was generated by a loudspeaker system and
the tactile signal was produced in a simple way; that is, the sensor was man-
ually moved back and forth across an object. The input data were recorded
through the line-in port and then buffered into the Data Reader connected
to the ISEE. The input and output signals of the auditory–tactile signal pro-
cessing network are exemplified in Fig. 6.6.

As a result, the signal of Output1 (O1) is shifted to around −0.9 when the
low-frequency sound is not presented and the signal of Output2 (O2) is shifted
to around −0.77 when the tactile signal is not presented. Both output signals
will be activated in reverse cases. The output signals (O1, O2, see Figs. 6.6b
and 6.6c) of the network prove that the evolutionary algorithm ENS3 is able
to construct an effective network for a signal processing approach by utilizing
discrete-time dynamical properties of recurrent neural networks.
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Fig. 6.5. (a) The real input signals consisting of three different conditions (standing,
walking and walking while listening to the sound). (b) The corresponding output
signal of the simple auditory network. (c) The corresponding output signal of the
principal advanced auditory network. All figures have the same scale in the x -axis
and the y-axis

6.1.2 The Stereo Auditory Sensor Data

The supplemental application of an evolved advanced auditory network (cf.
Fig. 5.9) was attempted. It shall be used for producing a sound tropism in the
walking machine(s). The network is developed to work on a mobile system
which consists of a PDA having an Intel (R) PXA255 processor coupled with
the MBoard. They communicate via an RS232 interface at 57.6 kbits/s.

All of the forthcoming experiments were carried out on the mobile system
of the four-legged walking machine AMOS-WD02. All tested signal processing
networks were programmed on the PDA, which has an update frequency of
up to 2 kHz. The sensor signals coming from the fore-left and the rear-right
auditory sensors were digitized via the ADC channels of the MBoard at a
sampling rate of up to 5.7 kHz.
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Fig. 6.6. (a) The mixed signals between the low-frequency sound (100Hz) with
varying amplitudes and the tactile signal. They were recorded via the auditory–
tactile sensor. (b) The response of the network to the low-frequency sound. (c) The
response of the network to the tactile signal. Both outputs are active only for sound
and the tactile signal. All figures have the same scale in the x -axis and the y-axis

The first attempt was to test the evolved advanced auditory network with
the unexpected noise of three different conditions: standing, walking without
listening to sound and walking while listening to sound. In the last condition,
the walking machine was initially placed in front of a loudspeaker at a distance
of 30 cm, and the low-frequency sound at 200 Hz having a basic sine shape was
generated via the loudspeaker (Fig. 6.7). The sound with this frequency was
selected for testing because it was later applied to trigger the sound tropism.

The inputs and the corresponding outputs of the network from the different
conditions are illustrated in Figs. 6.8 and 6.9. As a result, Figs. 6.8 and 6.9
show that the network is able to remove most unwanted noise, e.g., the motor
sound of the walking machine during standing and unpredictable noise during
the walk. This is because some of them have a low-amplitude signal and
most of them vibrate at high frequencies. However, some unwanted noise still
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Fig. 6.7. The walking machine AMOS-WD02 was initially placed in front of a
loudspeaker at a distance of 30 cm to test the effect of motor noise while it was
walking and listening to the sound at the same time

remains (Figs. 6.8b and 6.9b, right). Most low amplitude noise (e.g., below
0) can be ignored and some part having high amplitudes (e.g., above 0) can
be eliminated by the following network, called a sound–direction detection
network (demonstrated later).

The second attempt was to observe the behavior of the evolved advanced
auditory network when the signal having different waveforms was applied.
Three waveforms were employed: sine, square and triangle shapes. All wave-
forms were generated at the same frequency—200Hz—via a function gener-
ator. The signal from the function generator was directly connected to the
analog port and digitized via the ADC channel of the MBoard. The digital
signal was then provided as an input to the network. The input of the different
waveforms, the FFT spectrum of each and the corresponding output of the
network are shown in Fig. 6.10.

By testing with three different waveforms, the network apparently had a
difficult time recognizing a triangle shape although it contains low-frequency
signal (200Hz). However, the network can obviously detect the signal of sine
and square shapes even though the square shape is composed of more than
one frequency (Fig. 6.10b, right). Thus, it can be concluded that not only
the frequency but also the waveform of an input signal play important roles
in the signal detection; i.e., the network can recognize the signal having sine
and square waveforms at low frequencies while it cannot recognize the signal
having triangle waveforms. Nevertheless, these network characteristics would
be adequate for our approach, where the aim is to detect a sine wave signal
to activate the sound tropism of the walking machine.

The last attempt was to show the performance of the sound–direction
detection network (Fig. 5.11a) in filtering unwanted noise and discerning the
direction of the signals. The stereo input given to the network was first filtered
by the evolved advanced auditory network. However, there is remaining noise
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Fig. 6.8. Left : The input signal coming from the fore left sensor under three different
conditions. Right : The output signal of the evolved advanced auditory network with
respect to the input on the left side. (a) The noisy signal when the machine was in a
standing position. (b) The noisy signal during the walk. (c) The noisy signal which
was compensated between the sound and a noise during the walk. All figures have
the same scale in the x -axis and the y-axis

which occurs from the locomotion of the walking machine. The network has to
get rid of such noise and discern the direction of the stereo input signal based
on the concept of the TDOA between left and right inputs. The capability
of the sound–direction detection network in filtering the remaining noise is
presented in Fig. 6.11.

The outputs of the sound–direction detection network (Figs. 6.11a and
6.11b, right) show that the network is able to filter the remaining noise which
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Fig. 6.9. Left : The input signal coming from the rear right sensor under three
different conditions. Right : The output signal of the evolved advanced auditory
network with respect to the input on the left side. (a) The noisy signal when the
machine was in a standing position. (b) The noisy signal during the walk. (c) The
noisy signal which was compensated between the sound and a noise during the walk.
All figures have the same scale in the x -axis and the y-axis

comes from the machine while walking. As a result, no existing noise will
disturb the controller for generating the behavior of the walking machine.

To test the ability of the network to discern the direction of the sound
source, the walking machine was placed in front of a loudspeaker at a distance
of 30 cm (Fig. 6.7) and the low-frequency sound at 200Hz, having a basic sine
shape, was generated. Additionally, the walking machine was manually turned
to the opposite side during the experiment. The examples of input and output
signals of the network are drawn in Fig. 6.12.
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Fig. 6.10. Left : The different waveforms of the input signal at 200 Hz generated by
a function generator. Middle: The output signal of the network with respect to the
input signal on the left side. Right : The FFT spectrum of each input signal. (a) The
signal having a sine shape. (b) The signal having a square shape. (c) The signal
having a triangle shape

Figure 6.12 shows that the sound–direction detection network can distin-
guish the direction of the sound source by observing a leading signal or solely
an active signal. In these example situations, when the signal of Input2 (I2)
leads the signal of Input1 (I1) or only I2 gets activated, this indicates that
“the sound source is on the left” and the reverse case indicates that “the sound
source is on the right”.

6.1.3 The Antenna-like Sensor Data

In this section the tests for the preprocessing of the antenna-like sensor data
(cf. Sect. 5.1.3) are presented. The IR-based antenna sensors together with the
preprocessing shall be implemented on the walking machines for an obstacle
avoidance task.

The following experiments were performed on the mobile processor (the
PDA together with the MBoard) of the walking machines. The sensory inputs
were digitized via the ADC channels of the MBoard at the sampling rate of
up to 5.7 kHz. The preprocessing network was applied on the PDA with an
update frequency of 75 Hz, and the communication between the board and
the PDA was done by an RS232 interface at 57.6 kbits/s.
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Fig. 6.11. Left : The input signals which were first filtered via the evolved advanced
auditory network before going into the sound–direction detection network. Right :
The output signals of the sound–direction detection network. (a), (b) The input
and output signals of the sound–direction detection network on the left and right,
respectively. Both unwanted parts of noise were almost removed by the sound–
direction detection network

The experimental apparatus consists of two IR-based antenna sensors in-
stalled on a forehead of the walking machine AMOS-WD02, the mobile pro-
cessor and the objects, which are boxes. The objects were placed in front of
the walking machine at a distance of 25 cm for the left and right detectors. In
order to observe the network behavior when both inputs are very highly acti-
vated, the objects were put at the closer distance of 10 cm. The experimental
set-up is shown in Fig. 6.13.

Two networks for signal processing were introduced, a standard version
working with two sensory inputs (compare with Fig. 5.20) and a develop-
mental version working with more than two sensory inputs (compare with
Fig. 5.21). However, only the performance of the standard version was shown
in this experiment because both networks behave in the same manner. Three
situations were carried out to provide the sensory information to the network
(compare with Fig. 6.13). The sensory inputs from different situations are
illustrated on the left of Fig. 6.14, and the resulting signals from the prepro-
cessing network are shown on the right.

The preprocessing network functions as an on–off switch (Fig. 6.14); i.e., it
switches on (Output neuron is active (≈ +1)) when the obstacles are detected;
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Fig. 6.12. Left : The input signals of the sound–direction detection network which
were first filtered via the evolved advanced auditory network. Right : The output sig-
nals of the sound–direction detection network. (a) The signal of Input2 (I2, dashed
line) led the signal of Input1 (I1, solid line) with the result that the signal of Out-
put2 (O2, dashed line) was active while the signal of Output1 (O1, solid line) was
inactive. The activated O2 indicates that the sound source was on the left side. (b)
I2 followed I1 with the delay resulting in O2 being inactivated while O1 was acti-
vated. The activated O1 indicates that the sound source was on the right side. (c)
In this situation, the network detected that the sound source was on the right side
because I1 was solely detected at the first period although I2 having in phase with
I1 was also detected after around 150 time steps

otherwise it switches off (Output neuron is inactive (≈ −1)). This behavior of
the network is mainly caused by the excitatory self-connection weights at the
output neurons and the strong synapses from the input to the output units
(Fig. 5.20). One of their properties, the noise of sensor data, is eliminated.
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Fig. 6.13. (a) The situation where objects were presented on the left side in front
of the walking machine at a distance of 25 cm. (b) The situation where objects were
presented on the right side having the same distance like as (a). (c) The situation
where objects were presented on both sides at the closer distance of 10 cm

The resulting smooth outputs together with the velocity regulating networks
VRNs (cf. Sect. 5.2.2) will control the walking machines to avoid obstacles.

In some situations, like in a corner and in a deadlock, both input signals
might be active. If both of them do not get a very high activation value, like
the situation demonstrated in Fig. 6.14c, the network will provide only one
active output (≈ +1) at a time. Such a situation was simulated and is shown
in Fig. 6.15.

As a result, the network is able to control the output signals corresponding
to the active input signals. Generally, only one output gets active at a time,
which is determined by the previous active input. This phenomenon is mainly
affected by an even loop between the output neurons of the network (see
Sect. 5.1.3). By utilizing this effect to control the walking machines, they are
then able to escape from a corner or a deadlock situation without getting
stuck.

6.2 Implementation on the Walking Machines

In this section, the performance of the behavior controllers derived from the
neural preprocessing and neural control is presented. The controllers, which
generate the different reactive behaviors, were developed for a mobile sys-
tem. The first attempt was to test the capability of the obstacle avoidance
controller. After that the performance of the sound tropism controller was
demonstrated, and the last attempt was to show the behavior fusion. It is
controlled by the behavior fusion controller combination with the sensor fu-
sion technique.

All the following experiments were performed on the four-legged walking
machine AMOS-WD02 with installed physical sensor systems (the stereo au-
ditory sensor and two antenna-like sensors) and all controllers were applied to
the PDA. Additionally, the six-legged walking machine AMOS-WD06 with the



6.2 Implementation on the Walking Machines 127

Fig. 6.14. (a) The situation where objects were fully presented on the left side
after around 170 time steps. The left input signal (I2, dashed line) was active after
around that time causing the signal of Output2 (O2, dashed line) to become active
(≈ +1) while the signal of Output1 (O1, solid line) remained inactive (≈ −1). (b)
The situation where the objects were fully presented on the right side after around
120 time steps. The right input signal (I1, solid line) was active after that time,
causing O1 to become active (≈ +1) while O2 remained inactive (≈ −1). (c) The
situation where the objects were presented on both sides. Although objects were
presented on both sensors at the same time, I2 was gradually activated to a high
level and directly afterwards I1 was activated to a high level following a similar
pattern to I2. Consequently, O2 was activated first after around 90 time steps while
O1 became activated after around 120 time steps

installed six antenna-like sensors was also used to test the obstacle avoidance
controller.
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Fig. 6.15. (a)The input signals of the left (I2, dashed line) and right (I1, solid line)
sensors. (b) The signals of Output1 (O1, solid line) and Output2 (O2, dashed line)
correspond to the right and left inputs, respectively. At first, the left sensor detected
one side of the corner after around 160 time steps while another side of the corner
was also detected by the right sensor after around 300 time steps. Correspondingly,
O2 was excited (≈ +1) while O1 was inhibited (≈ −1). After around 600 time steps,
the left sensor did not detect the corner assuming that the machine had already
turned right and then walked away from the corner. However, the right sensor was
still active assuming that an obstacle was presented on the right side. This caused
O2 to become inactive and O1 to become active

6.2.1 Obstacle Avoidance Behavior

This section describes experiments carried out to assess the ability of the
obstacle avoidance controller to account for the obstacle behavior data. It
focuses solely on avoiding obstacles, with the stereo auditory sensor system
of the four-legged walking machine disabled at the sensor input level; i.e., the
machine cannot react to any auditory signal in these experiments.

The performance of the obstacle avoidance controller (of the four- and six-
legged walking machines) introduced in Sect. 5.3.1 was first tested in a sim-
ulated complex environment (cf. Sect. 4.2). It was then loaded into a mobile
processor (the PDA) for a test on the physical autonomous walking machines.2

However, the simulated walking machines and the physical walking machines
behave similarly. The functionality and the property of the preprocessing of
the antenna-like sensor data were shown in the section above. Here, the out-
put signals of the network were directly connected to the neural control to
modify the machine behavior as expected from a perception–action system. If
obstacles are presented on either the right side or the left side, the controller
will change the rhythmic movement of the legs at the thoracic joints, causing

2 In the experiment, the AMOS-WD02 performs normal walking (without activat-
ing a backbone joint) with a walking cycle at 1.25 s or a walking speed at ≈
0.45 body length/s (12.7 cm/s), while the AMOS-WD06 has a walking cycle at
1.52 s or a walking speed at ≈ 0.175 body length/s (7 cm/s). With these optimal
walking speeds, the walking machines using battery packs can autonomously run
up to 35minutes during the experiments.
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the walking machines to turn on the spot and immediately avoid the obsta-
cles. In some situations, like approaching a corner or a deadlock situation, the
preprocessing network determines the turning direction, left or right, with re-
spect to the previously active input signal (see Sect. 6.1.3). The ability of the
controller for the four-legged walking machine (cf. Fig. 5.37) which executes
the obstacle avoidance behavior is illustrated in Fig. 6.16.

As shown in Fig. 6.16, Motor0 (M0) and Motor1 (M1) of the thoracic
joints were turned to the opposite direction if the left sensor (IR2) detected
the obstacle (compare a left column in Fig. 6.16). Correspondingly, Motor2
(M2) and Motor3 (M3) of the thoracic joints turned to the opposite direction
when the right sensor (IR1) was active (compare a middle column in Fig. 6.16).

In special situations, e.g., walking toward the wall or detecting obstacles
on both sides, both antenna-like sensors might be simultaneously active. Thus
M0, M1, M2 and M3 of the thoracic joints turned to other directions which
causes the walking machine to walk backward (compare a right column in
Fig. 6.16). While walking backward one of the sensors might still be active,
causing the active sensory signal to make the machine turn to the correspond-
ing side until, eventually, it is able to leave the wall. Figure 6.17 displays a
series of photos showing the avoidance of obstacles as well as the machine
leaving from a deadlock situation.

The photos on the left column in Fig. 6.17 show that the walking machine
can avoid an unknown obstacle, and it can also escape from a corner-like
obstacle and a deadlock situation (see middle and right columns in Fig. 6.17).
By using two antenna-like sensors installed at the forehead of the four-legged
walking machine together with the neural controller, the walking machine has
a capability to avoid the unknown obstacle as well as to escape from the corner
or the deadlock situation.

However, some difficult situations were experienced in the presence of ob-
stacles such as the legs of a chair or a desk. To protect the legs of the machine
from colliding with these obstacles, more sensors need to be implemented on
each leg of the machine, as mentioned in Chap. 4, and the preprocessing of
the sensor data given in Sect. 5.1.3 is also required. The performance of the
preprocessing for six sensory inputs combined with the neural control of the
six-legged walking machine is exemplified in Figs. 6.18 and 6.19.

The modification of the signals at the motor neurons of the thoracic joints
(M3, M4 and M5) into the reverse direction is shown in Fig. 6.18. There,
object was presented to each of the right sensors at different time steps. Also,
the controller changes the signals of the motor neurons (M0, M1 and M2)
to the opposite direction when the object was presented to each of the left
sensors at different time steps (Fig. 6.19). Figure 6.20 presents the example
of reactive behavior of the walking machine AMOS-WD06 driven from the
sensory inputs through the neural controller. A series of photos on the left
and middle columns in Fig. 6.20 shows that the walking machine can protect
its legs from colliding with the legs of the desk as well as the legs of the chair.
Moreover, the walking machine was also able to turn away from the unknown
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Fig. 6.16. Left : If the obstacles were presented on the left of the walking machine,
then the output signals of the motor neurons (M0, M1) on its right change their
direction as indicated by the arrow dashed lines in the lower picture. Middle: If the
obstacles were detected on the right of the walking machine, then the motors (M2,
M3) on its left would reverse as indicated by the arrow dashed lines in the lower
picture. Right : In this situation, the obstacles were simultaneously detected on both
sides resulting in the reversion of all motors (M0, M1, M2 and M3) as indicated by
the arrow dashed lines in the lower picture, and the machine then walks backward



6.2 Implementation on the Walking Machines 131

Fig. 6.17. Examples of the behavior driven by the antenna-like sensors of the
four-legged walking machine AMOS-WD02. Left : The typical obstacle avoidance
behavior. Middle: Another situation where the walking machine was able to avoid
a corner. Comparing the two photos at 3.0 s and 4.4 s, one may observe that the
machine is able to slightly step backward because both sensory signals were active
at nearly the same time (at around 3.0 s). While walking backward (at around
4.4 s), the right sensor was still active while the left sensor was already inactive.
Consequently, the walking machine turned left and walked away from the obstacle
afterwards. Right : The walking machine was also able to escape from a deadlock
situation without getting stuck
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Fig. 6.18. An obstacle detected by each of the right sensors (IR1, IR2 and IR3)
at different time steps; this caused the left motor neurons (M3, M4 and M5) to
change into the opposite direction as indicated by the arrow dashed lines in the
lower picture. As a result, the walking machine turns left

obstacles which were first sensed by the sensors at the forehead and then were
detected by the sensors on the left legs (see right column in Fig. 6.20).

As demonstrated, the obstacle avoidance controller (of the four- and six-
legged walking machines) is adequate to successfully solve the obstacle avoid-
ance task. Additionally, the controller can protect the machines from getting
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Fig. 6.19. An obstacle was presented at each of the left sensors (IR4, IR5 and IR6)
at different time steps; this caused the right motor neurons (M0, M1 and M2) to
change into the opposite direction as indicated by the arrow dashed lines in the
lower picture. As a result, the walking machine turns right

stuck in the corner or the deadlock situation. Thus, due to this functionality,
the reactive walking machines can automatically perform an exploration task
or a wandering behavior.
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Fig. 6.20. Examples of the behavior driven by the antenna-like sensors of the
six-legged walking machine AMOS-WD06. Left : The walking machine was able to
protect its legs from colliding with the leg of the desk which was detected by the
sensors installed on the right legs of the machine. Middle: The machine was also
able to avoid the legs of the chair. Right : The walking machine turned away from
the unknown obstacles which were detected by the sensors at the forehead (IR1 and
IR4) and then at the left legs (IR5 and IR6)
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6.2.2 Sound Tropism

This section describes experiments carried out to test the capacity of the
model performing the sound tropism. By now, it concerns solely a behavior
reacting to an auditory signal. To do so, the stereo auditory sensor system
was enabled while all antenna-like sensors were disabled at the sensor input
level; i.e., the four-legged walking machine cannot avoid obstacles in these
experiments.

The neural preprocessing of the stereo auditory signal was tested in the
section above. The experimental results show that such preprocessing can filter
unexpected noise. In addition, it can recognize and discern the direction of the
sound source at low frequencies. Here, the combination of this preprocessing
unit, called “auditory signal processing network”, and the neural control unit
leads to a so-called sound tropism controller (cf. Fig. 5.40). As a result, it
performs a desired sound tropism in the four-legged walking machine AMOS-
WD02.

The controller was applied to the PDA. It was then tested on the AMOS-
WD02 in a real environment. An auditory signal having a sine shape at the
frequency of 200Hz was produced by a powered loudspeaker system (30 watts).
The signal was detected via the stereo auditory sensor and was then digitized
through the ADC channels of the MBoard at a sampling rate of up to 5.7 kHz.

For the first experiment, the maximum distance at which the system is able
to detect the signal was measured. During the test, the signal was produced,
and the experiment was repeated six times at each of the different locations
shown in Fig. 6.21.

Fig. 6.21. The experimental set-up with the sound source and the markers (black
square areas) where the walking machine was placed
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The detection rates of the signal, i.e., the number of the correct detection3

divided by the number of the experiments, are shown in Table 6.1. From the
table, it can be concluded that the system can reliably react to the signal in
the radius up to around 60 cm.

Table 6.1. Detection rate of the auditory signal at 200Hz from different distances

Distance Detection rate

40 cm 100%
60 cm 67%
80 cm 0%

The second experiment was to show the ability of the controller which
can identify the location of the sound source (on the left or the right of the
walking machine) and to present the modified signals of the motor neurons of
the thoracic joints (M0, M1, M2 and M3). The sensory inputs coming from
the right and left auditory sensors (Input1 and Input2, respectively) and the
signals of the motor neurons were monitored. They are presented in Figs. 6.22
and 6.23.

As shown in Fig. 6.22, M2 and M3 of the thoracic joints turned to the
opposite direction if the sound source was on the left of the walking machine.
On the other hand, M0 and M1 of the thoracic joints would reverse to the
other direction when the sound source was on its right (Fig. 6.23). Due to
these effects, the controller has the capability to enable the walking machine
to turn toward the sound source.

After the walking machine turns toward and approaches the sound source,
it will stop (simulating that it is capturing its prey). This action can be
performed by comparing the amplitude of either the left or right signal with
a threshold value. That is, if and only if the amplitude of one signal is larger
than a threshold value, then the signal of motor neurons (M0, M1, M2 and
M3) will automatically be set to 0 with the result that the machine cannot
turn left, right nor even step forward. The monitored amplitudes of the left
and right signals together with the signals of the motor neurons are shown in
Fig. 6.24.

The last task of this section was to display the sound tropism in the real
environment. The walking machine started from different initial positions and
the auditory signal of 200 Hz having a sine shape generated by a loudspeaker
while the machine was walking. Figures 6.25 and 6.26 show a series of photos
of these example experiments.

By observing the behavior of the walking machine in the given examples,
one can see that the walking machine behaved almost the same. It turned

3 Correct detection means that the machine can correctly discern if the signal is
coming from the left or the right.
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Fig. 6.22. (a) The auditory input signals from the left sensor (dashed line) and
the right sensor (solid line) with the delay between each other. In this situation,
Input2 led to Input1, indicating that the sound source was on the left of the walking
machine. (b) The output signals after preprocessing via the auditory signal pro-
cessing network. The network drove Output2 became activated while it inhibited
Output1. (c), (d) The signals of the right motor neurons which are controlled by
Output1 had no effect. (e), (f) The signals of the left motor neurons were modified
(see dashed frames) because they are controlled by the activated Output2. The
modified motors are also presented by the arrow dashed lines in the lower picture.
Consequently, the walking machine turns left
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Fig. 6.23. (a) The auditory input signals from the right sensor (solid line) and
the left sensor (dashed line) with the delay between each other. In this situation,
Input1 led to Input2, indicating that the sound source was on the right. (b) The
output signals after preprocessing via the auditory signal processing network. The
network drove Output1 became activated while it inhibited Output2. (c), (d) Due
to the activation of Output1, two motor neurons of the right thoracic joints were
reversed (see dashed frames) while the signals of left motor neurons in (e) and (f)
had no effect. The arrow dashed lines in the lower picture also show the reversion
of right motors. Consequently, the walking machine turns right
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Fig. 6.24. Left : The sound source was on the right of the walking machine. During
the first period, the walking machine was still far from the source and it walked closer
to the source. After around 510 time steps the auditory signals were recognized and
the signals of two motor neurons (M0, M1) were modified (indicated by arrows).
The machine then turned right and approached the source; after around 1200 time
steps the amplitude of the right signal was larger than the threshold value (here,
0.37). This results in the signals of the motor neurons (M0, M1, M2 and M3) being
automatically set to 0. Right : In this situation, the sound source was on the left
side. The auditory signals were detected after around 400 time steps and the signals
of two motor neurons (M2, M3) were modified (indicated by arrows). Finally, the
signals of the motor neurons (M0, M1, M2 and M3) were set to 0 after around 1300
time steps because the amplitude of the left signal was larger than 0.37
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Fig. 6.25. The example of the sound tropism whereby the sound source was initially
on the left of the walking machine and was generated during the walk. At the
beginning, it walked forward and then it started to turn left at around 3.9 s because
it detected the sound. Subsequently, it was steered to start turning right at around
12.5 s because the sound source now was on its right. Eventually, the machine made
an approach and stopped in front of the source because the amplitude of the left
sensor signal was higher than the threshold value
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Fig. 6.26. The example of the sound tropism where the sound source was initially
in front of the walking machine and was generated during the walk. In this situation,
the walking machine also behaved like the previous example. It walked forward and
then turned into the direction of the sound source when the sound was detected.
After that, it approached and stopped beside the sound source

toward the sound source if it heard the sound; otherwise it kept walking
forward until a threshold value was reached. This can be compared with one
of the amplitude of the auditory signals. Finally, it stopped close to the sound
source.

Additionally, the experimental results show that the walking machine has
also oscillating-like movements when the sound is detected; i.e., it switched
back and forth between turning left and right until it came close to the sound
source. Also, it did not always reach the sound source with its head pointing to
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the source, but sometimes with the side of the body. However, these oscillating-
like movements and approaching positions would not matter; if the walking
machine reaches the sound source that is sufficient. In conclusion, the walking
machine can successfully perform the sound tropism at the frequency of 200Hz
at the distance of up to around 60 cm.

6.2.3 Behavior Fusion

This last section will demonstrate behavior fusion between an obstacle avoid-
ance including an exploration and a sound tropism in the four-legged walking
machine. In this situation, all sensors were activated to sense the surrounding
environment, e.g., detecting the obstacles via two antenna-like sensors and
listening to sound via a stereo auditory sensor. The behavior fusion controller
collaborating with a sensor fusion technique (see also Sect. 5.3.3) was employed
for the behavior fusion approach. A part of the controller was implemented
on the PDA while the other was programmed on the servo controller board.
The sensor inputs were digitized via the ADC channels of the MBoard at a
sampling rate of up to 5.7 kHz.

The controller will switch between two modes whereby one is called “obsta-
cle avoidance mode (Om)”, which enables the machine to solely avoid obsta-
cles, and the other is known as the “composite mode (Cm)”, which is capable
of obstacle avoidance and sound detection. The executing time of each mode
was optimized experimentally. Here, it was set to around 3.2 s for the obstacle
avoidance mode and around 13.7 s for the composite mode; i.e., the obstacle
avoidance mode will be first executed for around 3.2 s after that the composite
mode will be executed for around 13.7 s. This process will be repeated until a
processor time is reached, e.g., ≈ 15 minutes. However, one can remark that
these desired executing and processor times can be adjusted depending on
each physical perception–action system.

A series of photos in Figs. 6.27 and 6.28 presents the combined reactive
behaviors of the walking machine AMOS-WD02 which can avoid the obstacles,
wander around and also respond to a switched-on sound source when it can
detect it. It is indicated at a lower left corner of each photo whether or not
the sound source was switched on (On) or off (Off). In addition, the executed
mode (Om or Cm) can be observed in the upper left corner and the action
time is also shown in the lower right corner of each photo.

As demonstrated in Figs. 6.27 and 6.28, the behavior fusion controller to-
gether with the sensor fusion technique has the ability to generate different
walking patterns which were driven by the sensory inputs, such that the ma-
chine could walk straight if no obstacle and no sound were detected. And then
it turned toward a switched-on sound source and afterwards it would again
continue walking forward without making the oscillating-like movement if and
only if the obstacle avoidance mode is executed and no obstacle is detected.
Eventually, it will approach and stop close to the sound source by determining
one of the amplitudes of the auditory signals.
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Fig. 6.27. At the first period, the source was switched off and the walking machine
was wandering around and avoiding obstacles if they were detected. The source was
then switched on at around 25.5 s to steer the walking machine; consequently, the
machine started to turn left until around 34 s, at which point the obstacle avoid-
ance mode was executed. Due to operating in the obstacle avoidance mode, and no
obstacles being detected, the machine walked forward and got close to the source.
Again the composite mode became activated at around 39.4 s, which made the walk-
ing machine turn slightly left and stop nearby the source at the end because the
amplitude of the sensor signal was larger than the threshold value

However, there was a circumstance found in Fig. 6.28 at around 23.9 s.
The walking machine turned right while it should normally turn left because
the auditory signal of the left sensor was active. This occurred because the
obstacle (a loudspeaker) was also detected at the same time, causing the IR
signal of the left antenna-like sensor to be activated. Subsequently, both active
signals (the left auditory signal and the left IR signal) were managed by the
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Fig. 6.28. The source was switched off and the walking machine was wandering
around and avoiding obstacles if they were detected at the beginning. Then the
source was switched on to control the walking machine to start turning right at
around 14.2 s. Afterwards the walking machine started to walk forward at around
20.1 s because the obstacle avoidance mode was executed. It continued to walk for-
ward until around 23.9 s, it turned right, not because of the sound but because of
a detected obstacle instead (a loudspeaker), although the composite mode was op-
erated. Eventually, the walking machine approached and stopped beside the source

sensor fusion technique in the composite mode (cf. Sect. 5.3.3). As a result,
the observed behavior was performed.
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6.3 Conclusion

The results given in this chapter showed that the neural preprocessing of the
physical auditory–tactile sensor data has the ability to recognize two different
signals with different frequencies that come from the tactile and auditory
channels of the sensor. Also, the neural preprocessing of the stereo auditory
sensor was tested with the real signal. It eliminates unexpected noise occurring
from the motor sound of the walking machine, lets a low-frequency sound pass,
and discerns the direction of the sound source (on the left or the right of the
walking machine). Furthermore, the performance of the neural preprocessing
of antenna-like sensor data was presented. It removes the noise of the sensor
data and behaves like an on–off switch; i.e., it switches on (Output neuron
is active) when the obstacles are detected otherwise it switches off (Output
neuron is inactive).

The final section highlighted the co-operation between the different neu-
ral preprocessing units and the neural control unit leading to the behavior
controllers to generate different reactive behaviors of the walking machine(s).
First, the obstacle avoidance controller was implemented and tested on the
physical walking machines (AMOS-WD02 and -WD06). They were able to
avoid unknown obstacles and escape from a corner or a deadlock situation.
One of them (AMOS-WD06), having more sensors installed on the two front
and two middle legs, can ensure that its legs do not collide with obstacles,
e.g., the legs of a desk or a chair. Second, the sound tropism was reproduced
on the AMOS-WD02 by employing the sound tropism controller. It enables
the walking machine to recognize the auditory signals coming from the left or
the right. The machine turned into the direction of the sound source, then ap-
proached it, and finally stopped beside the source at the distance determined
by a threshold of the amplitude of the signal. In the final demonstration, both
reactive behaviors are fused and performed on the AMOS-WD02 by applying
a so-called behavior fusion controller, which includes the sensor fusion tech-
nique. It generates a desired behavior driven by both auditory and IR stimuli.
As a result, the walking machine wanders around, avoids obstacles, and walks
toward and stops in front of the auditory signal (sound tropism).
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Conclusions

7.1 Summary of Contributions

This book presents biologically inspired walking machines (four- and six-
legged walking machines) interacting with their real environmental stimuli
as agent–environment interactions. Different reactive behaviors of animals
were investigated for the behavior design of the walking machine(s). On the
one hand, the obstacle avoidance behavior, in analogy to the obstacle avoid-
ance and escape behavior of scorpions and cockroaches, was implemented in
the walking machines as a negative tropism. On the other hand, the sound
tropism which mimics prey capture behavior of spiders is represented as a
positive tropism. It was simulated on the four-legged walking machine.

The biological sensing systems which are used to trigger the described
reactive behaviors were also investigated. Three types of sensory systems,
which are an auditory–tactile sensor, a stereo auditory sensor and antenna-
like sensors were constructed with respect to the biological sensing systems.
The auditory–tactile sensor, which was inspired by the function of hairs of a
scorpion and a spider, is used for tactile sensing as well as sound detection.
Using the stereo auditory sensor in analogy to the hairs of the spider, the
sound can be detected and the direction of the incoming sound can also be
distinguished by determining the TDOA from the left and right auditory
sensors. The antenna-like sensors, which were modeled with respect to the
basic function of insect antennas, are used to detect impediments as well
as to protect the legs of the six-legged walking machine from colliding with
obstacles.

In addition, the morphologies of a salamander and a cockroach, which are
used to perform efficient locomotion, were also considered for the leg and trunk
designs of the four- and six-legged walking machines, respectively. They were
successfully built with mechanical constructions. The rhythmic movements of
the legs of the machines are basically generated by the CPG which corresponds
to the basic locomotion control of walking animals.
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The main focus of this book is not only to generate biologically inspired
reactive behaviors in the physical walking machine(s) but also to present the
simple mechanism for the desired behavior controls. On the basis of a mod-
ular neural structure, they were built from a combination of different neural
preprocessing units for sensor data processing and the neural control unit
for locomotion control of the walking machines. This means that each neu-
ral preprocessing unit can be connected with a neural control unit to obtain
a different behavior control. Neural preprocessing and control were achieved
by applying the discrete-time dynamical properties of recurrent neural net-
works generated by the evolutionary algorithm ENS3. Three types of neural
preprocessing were presented: auditory signal processing, preprocessing of the
antenna-like sensor data and tactile signal processing. Auditory signal process-
ing is used to recognize the low-frequency sound at 200 Hz for producing the
sound tropism while it filters background noise at high frequencies (>400 Hz).
In other words, it acts as a simple low-pass filter with its cutoff frequency at
approximately 400 Hz. It also has the capability to discern the direction of the
auditory signals coming from either the left or the right. For the preprocessing
of the antenna-like sensor data, it is able to eliminate the sensory noise and to
control an obstacle avoidance behavior. Applying the auditory–tactile sensor
for collision detection and low-frequency sound detection, the signal coming
from the tactile channel is recognized by the tactile signal processing network
while the low-frequency sound is recognized by a part of the auditory signal
processing called “the advanced auditory network”.

The neural control was formed with two subordinate neural networks: the
neural oscillator network, which generates the rhythmic leg movements as a
central pattern generator, and the VRNs, which expand the steering capabil-
ities of the walking machines. This neural control was created for generating
a typical trot gait of the four-legged walking machine. Then it was modified
(still having the same structure except more output motor neurons) to move
the six-legged walking machine with a typical tripod gait.

Eventually, the integration between neural control and different types of
neural preprocessing leads to several behavior controllers. For example, the
obstacle avoidance controller is formed by connecting the preprocessing of
the antenna-like sensor data with the neural control while the sound tropism
controller is constructed by replacing preprocessing of the antenna-like sen-
sor data with the auditory signal processing. Furthermore, a sensor fusion
technique was employed. It combines all preprocessed sensory signals of the
preprocessing of the antenna-like sensor data and the auditory signal process-
ing to obtain a so-called behavior fusion controller.

Three behavior controllers together with the associated sensory systems
were successfully implemented and tested on the walking machine(s). First,
the obstacle avoidance controller was implemented on the physical walking
machines. The walking machines were able to avoid unknown obstacles and
escape from a corner or a deadlock situation. Moreover, one of them (the six-
legged walking machine), having more sensors installed on the two front and
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two middle legs, can ensure that its legs do not collide with obstacles, e.g.,
the legs of a desk or a chair. Second, the sound tropism was reproduced on
the four-legged walking machine by employing the sound tropism controller.
It enables the walking machine to recognize the auditory signals (sinusoidal
sound at 200Hz) coming from the left or the right at a distance of up to
approximately 60 cm. The machine turned toward the source like a predator
reacting to a prey signal, then approached it, and finally stopped beside the
source at the distance determined by a threshold of the amplitude of the
signal (simulating that it is capturing its prey). In the final demonstration,
both reactive behaviors are combined to one controller and then implemented
on the four-legged walking machine. It generates the desired behavior, i.e.,
positive and negative tropism. The walking machine, as a result, reacts to
the auditory signal, wanders around, avoids obstacles and even escapes from
corners as well as deadlock situations.

The resulting reactive behaviors of the physical embodied system(s) show
that the behavior controllers are robust and sufficient to deal with real unex-
pected noise, and due to the modular neural structure they are then flexible
to adapt to the various target systems with a different complexity. On the
other hand, they prove that the discrete-time dynamical properties of recur-
rent neural networks (e.g., hysteresis effect) together with an evolutionary
algorithm can be applied to find the appropriate solution for neural prepro-
cessing and control in a robotic domain. The described systems can also be
defined as versatile artificial perception–action systems; i.e., they perceive en-
vironmental stimuli and display the corresponding actions without knowledge
of an environmental model.

7.2 Possible Future Work

The work presented in this book was intended to be a basic step to achieve
an “Autonomous Intelligent System”, which should maintain its energy sup-
ply, survive in complex environments, show a certain degree of autonomy
(although no robotic system is totally autonomous), learn to behave in an
efficient way, etc. Thus, possible work based on the existing systems may be
extended to:

• add an additional sensor like an energy sensor to monitor the energy con-
sumption and to activate efficient walking gaits in a specific condition for
maintaining the energy supply;

• add proprioceptors like foot contact sensors for ground sensing and angle
encoders of joints to detect the movement of the legs and so on;

• implement more reactive behaviors (e.g., avoiding a predatory attack, pho-
totropism) and using an evolutionary algorithm to cooperate or complete
all these different reactive behaviors;
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• utilize a learning technique, e.g., reinforcement learning, to allow the walk-
ing machines to behave in an efficient way (e.g., learning to find the fastest
way to escape from an undesired situation or to make an approach to a
target).

However, it would also be interesting to enable the walking machine to
interact not only with its environment but also with other machines (agent–
agent interactions). On the one hand, one may think about predator–prey
interactions. While the walking machines can also assist each other when the
requested signal is perceived. Generally, robotic models are indeed suited to
the investigation of how behavior decisions arise from multiple sources of sen-
sory information and can establish these ideas in specific neural mechanisms.
Moreover, they can be used as tools to establish the relationship between
biology, (computational) neuroscience and engineering as was shown in this
book.
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Description of the Reactive Walking Machines

Two physical reactive walking machines were built as mobile robot platforms.
They are used for experiments with neural controllers so as to perform dif-
ferent reactive behaviors and also to demonstrate artificial perception–action
systems.

A.1 The AMOS-WD02

The AMOS-WD02 is a four-legged walking machine with two degrees of free-
dom by leg. Its body consists of an (active) tail and a central chassis, which is
connected to its head through an (active) backbone joint rotating on a vertical
axis. Two rear legs are attached at the central chassis while another two are
fixed at the head (Fig. A.1).

Fig. A.1. The physical four-legged walking machine AMOS-WD02. Left : Top view
while turning its backbone joint. Right : Front view while in its standing position

Some basic characteristics that define the AMOS-WD02 are the following:
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Mechanics

• Dimensions without the tail (L x B x H): 28 x 30 x 14 cm.
• Weight: 3.3 kg.
• Structure of polyvinyl chloride (PVC) and aluminum alloys AL5083.
• Four legs with two degrees of freedom in each leg.
• Backbone joint rotating on a vertical axis.
• Active tail rotating on horizontal and vertical axis.
• Driven by eight analog (90Ncm), one digital (220 Ncm) and two micro

(20Ncm) servomotors.

Electronics

• Multi-Servo IO-Board (MBoard)1 developed at the Fraunhofer Institute in
Sankt Augustin. It is able to control up to 32 servomotors simultaneously.
At the same time, 32 (+4 optional) analog input channels can be sampled
and read with an update rate of up to 50 cycles per second. The board has
an RS232 interface, which serves as the standard communication interface.

• Personal digital assistant (PDA) having an Intel (R) PXA255 processor
for programming neural preprocessing and control. It communicates with
the MBoard via an RS232 interface.

• The support circuitry of the auditory sensors.
• Battery of 4.8V NiMH 2100 mAh for the servomotors.
• Battery of 4.8 V NiMH 2100mAh for the support circuitry of the auditory

sensors.
• Battery of 9 V NiMH for the MBoard.
• Battery of 9 V NiMH for the wireless camera.
• Two distance-measurement infrared sensors (antenna-like sensors) located

at the forehead.
• Two auditory sensors located at the fore left and rear right legs.
• Mini wireless camera built in a microphone installed on the top of the tail.

Programming

• C programming on the MBoard for controlling servomotors and for reading
digitized sensor data.

• Embedded Visual C++ on the PDA for programming neural preprocessing
and control.

A.2 The AMOS-WD06

The AMOS-WD06 is a six-legged walking machine with three degrees of free-
dom by leg. Its body consists of an (active) tail and a central chassis which

1 See also: http://www.ais.fraunhofer.de/BE/volksbot/mboard.html. Cited 18 De-
cember 2005.
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is connected to its head through an (active) backbone joint rotating on a
horizontal axis. Two legs are attached at the rear of the central chassis, and
another two are installed at the front of the central chassis while the rest are
fixed at the head (Fig. A.2).

Fig. A.2. The physical six-legged walking machine AMOS-WD06. Left : Top view
in its climbing position. Right : Front view in its standing position

Some basic characteristics that define the AMOS-WD06 are the following:
Mechanics

• Dimensions without the tail (L x B x H): 40 x 30 x 12 cm.
• Weight: 4.2 kg.
• Structure of polyvinyl chloride (PVC) and aluminum alloys AL5083.
• Six legs with three degrees of freedom in each leg.
• Backbone joint rotating on a horizontal axis.
• Active tail rotating on horizontal and vertical axis.
• Driven by eighteen analog (100 Ncm), one digital (220Ncm) and two micro

(20Ncm) servomotors.

Electronics

• MBoard which is able to control up to 32 servomotors simultaneously. At
the same time, 32 (+4 optional) analog input channels can be sampled and
read with an update rate of up to 50 cycles per second. The board has an
RS232 interface, which serves as the standard communication interface.

• PDA having an Intel (R) PXA255 processor for programming neural pre-
processing and control. It communicates with the MBoard via an RS232
interface.

• Battery of 6 V NiMH 3600mAh for the servomotors.
• Battery of 4.8V NiMH 800 mAh for six distance measurement infrared

sensors.
• Battery of 9 V NiMH for the MBoard.
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• Battery of 9 V NiMH for a wireless camera.
• Six distance-measurement infrared sensors (antenna-like sensors) where

two of them were located at the forehead while the rest of them were fixed
at the levers of the two front and two middle legs.

• Mini wireless camera built in a microphone installed on the top of the tail.
• One upside-down detector located beside of the body.

Programming

• C programming on the MBoard for controlling servomotors and for reading
digitized sensor data.

• Embedded Visual C++ on the PDA for programming neural preprocessing
and control.

A.3 Mechanical Drawings of Servomotor Modules and
the Walking Machines

The drawings of a set of joint modules for the digital and analog servomo-
tors and the walking machine constructions which were manufactured by alu-
minum alloys are shown in Figs. A.3–A.12.

Fig. A.3. The drawing of a set of joint modules (JM1,2,3,4,5) for the digital and
analog servomotors. The size of the servomotor (L x B x H): 40.5 x 20 x 40.5mm
with a weight of 65 g
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Fig. A.4. The drawing of the joint modules 1 and 2 (JM1,2) of the servo motor
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Fig. A.5. The drawing of the joint modules 3 and 4 (JM3,4) of the servo motor
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Fig. A.6. The drawing of the joint module 5 (JM5) of the servo motor
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Fig. A.7. The drawing of a cover plate at each side of the servo motor and a
backbone joint connector
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Fig. A.8. The drawing of a lever and its connector
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Fig. A.9. The drawing of the AMOS-WD02 (front view)
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Fig. A.10. The drawing of the AMOS-WD02 (top view)
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Fig. A.11. The drawing of the AMOS-WD06 (front view)
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Fig. A.12. The drawing of the AMOS-WD06 (top view)
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Symbols and Acronyms

List of Symbols

ai the activity of neuron i
bi, Bi a fixed internal bias term
Cm the composite mode
E the mean squared error
F the fitness function
Ii the input of neuron i
Mn the motor neuron n
N the maximal number of time steps
oi, Oi = f (ai) the output of neuron i
Om the obstacle avoidance mode
wij , Wij the synaptic strength of the connection

from neuron j to neuron i
θ the sum of a fixed internal bias term

and the variable total input I of the neuron



166 B Symbols and Acronyms

List of Acronyms

ADC Analog to Digital Converter
AL Auditory signal of the Left auditory sensor
AMOS-WD Advanced MObility Sensor driven-Walking Device
AMOS-WD02 The four-legged walking machine
AMOS-WD06 The six-legged walking machine
ANNs Artificial Neural Networks
AR Auditory signal of the Right auditory sensor
CPG Central Pattern Generator
DOF Degrees Of Freedom
ENS3 Evolution of Neural Systems by Stochastic Synthesis
FFT Fast Fourier Transform
IR Infrared
IRL Infrared signal of the Left antenna-like sensor
IRR Infrared signal of the Right antenna-like sensor
ISEE Integrated Structure Evolution Environment
MBoard Multi-Servo IO-Board
MERLIN Mobile Experimental Robots for Locomotion and

Intelligent Navigation
MRC Minimal Recurrent Controller
ODE Open Dynamics Engine
PC Personal Computer
PDA Personal Digital Assistant
PMD Photonic Mixer Device
PWM Pulse Width Modulation
RNNs Recurrent Neural Networks
TDOA Time Delay Of Arrival
VRN Velocity Regulating Network
YARS Yet Another Robot Simulator
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[21] Bässler, U.; Büschges, A. (1998). Pattern generation for stick insect walk-
ing movements–multisensory control of a locomotor program. Brain Re-
search Reviews 27, 65–88

[22] Beer, R. D. (1990). Intelligence as Adaptive Behavior: An Experiment
in Computational Neuroethology . New York: Academic

[23] Beer, R. D.; Chiel, H. J.; Quinn, R. D.; Espenschield, K. S.; Larsson,
P. (1992). A distributed neural network architecture for hexapod robot
locomotion. Neural Computation 4(3), 356–365

[24] Beer, R. D.; Chiel, H. J.; Sterling, L. S. (1990). A biological perspective
on autonomous agent design. Robotics and Autonomous Systems 6(1–
2), 169–186

[25] Beer, R. D.; Ritzmann, R. E.; McKenna, T. (eds.) (1993). Biological Neu-
ral Networks in Invertebrate Neuroethology and Robotics (Neural Net-
works, Foundations to Applications). Boston, Massachusetts: Academic

[26] Bekey, G. A. (2005). Autonomous Robots From Biological Inspiration to
Implementation and Control . Cambridge, Massachusetts: MIT Press

[27] Berns, K.; Cordes, S.; Ilg, W. (1994). Adaptive, neural control architec-
ture for the walking machine LAURON. In: Proceedings of the IEEE/RSJ



References 169

International Conference on Intelligent Robots and Systems (IROS), vol.
2, pp. 1172–1177

[28] Berns, K.; Ilg, W.; Eckert, M.; Dillmann, R. (1998). Mechanical con-
struction and computer architecture of the four-legged walking machine
BISAM. In: Proceedings of the First International Symposium on Climb-
ing and Walking Robots (CLAWAR’98), pp. 167–172

[29] Billard, A.; Ijspeert, A. J. (2000). Biologically inspired neural con-
trollers for motor control in a quadruped robot. In: Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks
(IJCNN 2000), vol. 6, pp. 637–641

[30] Bongard, J.; Zykov, V.; Lipson, H. (2006). Resilient machines through
continuous self-modeling. Science 314(5802), 1118–1121
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Synapses, 32
Synaptic strength, 35

Tactile sensing systems, 14

Tactile signal processing, 67, 83, 86
Taxes, 14
TDOA, see Time delay of arrival
Threshold value, 72, 76, 139
Time delay of arrival, 50, 76, 121
Time scheduling, 105
Touch-evoked behavior, 17
Transfer function, 35, 36
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Update frequency, 44, 68, 76, 87, 118
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Versatile artificial perception–action
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VRN, see Velocity regulating network
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YARS, see Yet another robot simulator
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