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PREFACE

Under the notion ‘cooperative work’, is understood, in a widest sense the real-
ization of a coordinated action of several participants (cooperators) engaged in a
given task. Cooperative work is performed by a cooperative system consisting of
cooperators and work object.

Cooperative work incorporates the joint work of the cooperators, their coordi-
nated action in task execution, contact with the environment, and mutual contact
of the cooperators, either directly or indirectly via the work object.

In joint work, the action of individual participants in the cooperation cannot be
independent in time and space from the work (action) of the other participants. It is
assumed that the actions of the cooperation participants take place simultaneously
and not consecutively. Thereby cooperation means that each participant in the joint
work carries out its own work taking care of the state of the other cooperation par-
ticipants. Namely, to every different state of an individual cooperator corresponds
an equal number of different states of the other cooperation participants. It is as-
sumed that each cooperator obtains, in some way or other, information about the
state of the other participants. The object on which cooperative work is performed,
along with all cooperation participants, represent to an individual participant a dy-
namic environment with which it interacts.

There are a lot of tasks that can be performed in cooperation. Most often they
are related to manipulating bulky objects whose weights exceeds the working ca-
pacities of the individual participants in the cooperation. For example, assembly of
mechanical blocks carried out by several participants is a common case in techno-
logical practice. A frequent task is passing an object from one participant or group
of participants in the cooperation to another participant or group of participants.
In cooperative work, the participants perform mutually coordinated actions, while
ensuring different types of contacts or avoiding them.

If, however, the extremities of an animal are considered as participants in co-
operative work (manipulation or locomotion), then such synchronized motion is a
specific cooperative task. The same also holds for the work (cooperation) of the
fingers of a hand holding an object.

xi
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Analogous to the cooperative work of an animal’s extremities is the robotic
manipulation performed by several robots or by the fingers of an artificial hand.
While object grasping and transferring, as well as the work on it, are the tasks of
manipulation cooperation, synchronized work of the lower extremities represents
locomotion cooperation that enables motion of the locomotion platform (vehicle)
in the form of a bipedal or, more frequently, multipedal gait. Therefore, cooperative
work of artificial systems has its biological counterpart in locomotion-manipulation
activities of living beings. It can be said that results of studying active locomotion-
manipulation mechanisms and their cooperation counterparts with living beings
can be generally used in the corresponding procedures of the synthesis of artificial
gait and control systems in manipulation and locomotion robotics.

When cooperative manipulation is concerned, a fundamental research task is
to find out the appropriate way to control the system of robots and object in the
work space at any stage of cooperative work. This requires an exact understand-
ing of the physical nature of the cooperative system and deriving the mathematical
basis for its description. In the realization of this goal, two crucial problems are
encountered. The first of them is the occurrence of kinematic uncertainty and the
second one is the force uncertainty in the mathematical description of the physi-
cal nature of the cooperative system. These problems have been considered by a
number of authors [1–5, 12–20, 42–46, 50–55], and they can be interpreted simply
as the impossibility to uniquely determine contact forces, driving torques of the
manipulation mechanism, as well as kinematic quantities of cooperating robots,
starting from the required motion of the object of cooperative manipulation.

On the basis of their research in the domain of cooperative manipulation, the
authors of this monograph have recently come up with several consistent solutions
concerning cooperative system control. This was achieved by solving three sepa-
rate tasks that are essential for solving the problem of cooperative manipulation as
a whole. The first task is related to understanding the physical nature of coopera-
tive manipulation and finding a way for a sufficiently exact characterization of the
cooperative system statics, kinematics, and dynamics. After successfully complet-
ing this task, in the frame of a second task, the problem of coordinated motion of
the cooperative system is solved. Finally, as a solution to the third task, the control
laws of cooperative manipulation are synthesized.

The starting point in dealing with the above three tasks of cooperative manip-
ulation was the assumption that the problem of force uncertainty in cooperative
manipulation can be solved by introducing elastic properties into the cooperative
system. This monograph is concerned with the case when elastic properties are
introduced only in that part of the cooperative system in which force uncertainty
arises. Coordinated motion and control in cooperative manipulation are solved as
the problem of coordinated motion and control of a mobile elastic structure, taking
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into account the specific features of cooperative manipulation.
The contents of this monograph are organized into seven chapters.
Chapter 1 defines the notions and basic problems related to a cooperative sys-

tem, cooperative manipulation and contact in cooperative manipulation. Also, co-
ordinate systems used to describe the cooperative system characteristics are intro-
duced.

In Chapter 2, some basic problems of cooperative manipulation are analyzed
and a mathematical interpretation of the problem of kinematic uncertainty and
force uncertainty is given.

Chapter 3 provides a concise systematization of previous solutions of the task
of cooperative manipulation. It gives an analysis of the assumptions that are to
be introduced in order to correctly solve the problem of cooperative manipulation
under static conditions. It is shown that the problem cannot be solved without intro-
ducing the elastic properties of the loaded structure. Further, it is demonstrated that
the cooperative system must be approximated by a mobile elastic structure. Also,
it is shown how the problem of force uncertainty can be resolved by considering
the deformation work of the elastic structure as a function of absolute coordinates.
In other words, on the basis of such analysis, using a concrete simple example, a
way is indicated for establishing a methodology of modeling dynamics of complex
cooperative systems.

The difference between the way of considering statics and dynamics of the
elastic structure of cooperative systems in the present book and in the available
literature is in the following. In the literature [1–5], the authors start from the a
priori implicit assumption that elastic displacements, needed to define the position
of the elastic system in space, are not independent variables (state quantities), but
they represent the displacements given in advance (like, for example, the known
displacement of the support of an elastic structure when defining its statics [6, 7]).
A consequence of such an a priori assumption is that the position of the unloaded
state of elastic structure in the motion is known in advance, and the stiffness matrix
of the elastic system is nonsingular. The elastic structure position in space can
be defined by choosing any point, including a contact one. As a consequence,
the manipulator internal coordinates that contact point belongs to, are given in
advance, i.e. they are not state quantities. In deriving mathematical the model used
in this work, it is assumed that all displacements of the elastic system (i.e. position
of contact points and manipulated object mass center) are independent variables
(state quantities), necessary and sufficient for describing elastic-system dynamics
[8]. A consequence of such an assumption is that the stiffness matrix of the elastic
part of the cooperative system is singular, i.e. it has to also contain the modes of
motion of the elastic structure as of a rigid body.

Chapter 4 is concerned with the task of cooperative manipulation of a rigid
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object by an arbitrary number of rigid manipulators, a task that has been most
often considered in the literature. The task was modified by introducing elastic
interconnections between the object and manipulators. The problem of modeling
cooperative manipulation is analyzed in detail. In order to make the cooperative
system properties more comprehensible, assumptions are introduced by which the
problem of modeling is significantly simplified. Namely, the cooperative system
is divided into its rigid part (manipulators) and elastic part (object and elastic in-
terconnections). Each part is modeled separately using Lagrange equations. The
elastic system model is derived on the basis of the description of its deformation
work as a function of internal forces defined in dependence of absolute coordi-
nates (extended method of finite elements [9]). The cooperative system dynamics
is modeled for the displacement with respect to the elastic system unloaded state.
This means that the reference coordinate frame is attached to the unloaded state
of the elastic system. The general motion of the cooperative system is described
in terms of absolute (external) coordinates, and the mathematical forms of mo-
tion equations are generalized. Stationary and equilibrium states of the cooperative
system are analyzed in detail. The results obtained by model testing for selected
examples show the consistency of our approach to modeling cooperative manipu-
lation.

The problem of the synthesis of cooperative system nominals is essentially
made more complex by introducing the elastic properties of the cooperative system
[10]. Solving this problem is the subject of Chapter 5, where the nominals are syn-
thesized using the properties of cooperative manipulation, as well as the properties
of macro and micro motions. The cooperative system motion, in which the object
is firstly gripped and then transferred, whereby the manipulator’s motion does not
significantly disturb the gripping conditions (i.e. the geometric configuration real-
ized at the end of the gripping phase is not significantly changed) is adopted as the
system’s coordinated motion. The coordinated motion of the cooperative system is
synthesized in a two-stage procedure, in which contact loads of the elastic system
are approximately determined. On the basis of the approximate values of contact
forces or driving torques, adopted as nominals, procedures are proposed for the
synthesis of the other nominal quantities of the overall cooperative system. The
synthesis procedures are illustrated by a simple example.

The control of cooperative manipulation is analyzed in Chapter 6 for the model
of cooperative manipulation dynamics with the problem of force uncertainty re-
solved. The analysis encompasses definitions and criteria of controllability and
observability of linear systems from the point of view of mapping the domains of
inputs, states, and outputs. It is shown that the conclusions about mapping of lin-
ear systems can be applied without any change onto the mapping of the domains
of inputs, states and outputs of the nonlinear systems. This was the basis for de-
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riving conclusions on the controllability and observability of cooperative systems.
Results of this analysis are applied to perform mapping between two of any of the
following sets: the set of internal coordinates, the set of external coordinates, the
set of driving torques, the set of contact forces, and the set of elasticity forces.
A systematization of the controlled outputs along with the typification of control
tasks in cooperative manipulation is carried out. Two types of tasks are selected
[11]. Control laws are proposed for the asymptotically stable tracking of the object
nominal trajectory and nominal trajectories of contact points of the manipulators-
followers, along with control laws for the asymptotically stable tracking of the
object trajectory and nominal contact forces at the contact points of the followers.
The analysis also encompasses the behavior of uncontrolled quantities. The choice
of the control laws and behavior of the controlled cooperative system are illustrated
with a simple example.

The concluding Chapter 7 provides a brief survey of the research results that
have been achieved in studying cooperative manipulation, which is the subject of
this monograph. The conclusions are grouped according to particular topics. Also,
some possible directions of the future research are indicated.

A complete derivation of the elastic system dynamic model for its immobile
and mobile states is given in Appendices A and B, respectively.

The authors are indebted to Professor Luka Bjelica for translating the manu-
script and for editing and proofreading the complete text.

Milovan Živanović and Miomir Vukobratović
June 2005
Belgrade, Serbia and Montenegro



1 INTRODUCTION TO COOPERATIVE
MANIPULATION

1.1 Cooperative Systems – Manipulation Systems

The term ‘cooperative system’ is generally understood as several coordinated par-
ticipants simultaneously engaged in the execution of a given task.

In robotics, for example, the term cooperative system is understood as a ma-
nipulation system (Figure 1). The cooperation participants and the object may be
either rigid or elastic. Rigid cooperators and objects are those that undergo defor-
mation at an infinite load.

A cooperative system performs cooperative work. Cooperative work encom-
passes the joint work of the cooperators, their coordination on task execution, con-
tact with the environment, and their direct contact or, due to the nature of the task,
their indirect contact.

The joint work refers to the sum of works of all the individual cooperators,
whereby the work of none of them can be independent in time and space from the
work of the other participants. It is usually understood that the cooperative work
is performed simultaneously. Cooperation means that each cooperator performs its
own work, taking into account the state of the other participants in the cooperation.
To each different state of one of the cooperators corresponds a different state of
the other cooperator(s) and/or object. This assumes that each of the cooperators
receives and possesses information about the state of the other cooperators and ob-
jects. To each of the cooperators, the object and other cooperators are, in principle,
a dynamic environment with which it interacts, i.e. in contact. Apart from par-
ticipating in cooperation, each cooperator is constantly in contact with the work
space, which may impose, but not necessarily, some constraints on the motion of
the object and/or cooperators.

The main objective of a cooperative system in robotics is to manipulate an
object. Manipulation is performed with the aim of

• changeing the space position of an object (transfer it from one place to an-
other),

1



• tracking a given trajectory of the object at a given orientation along the tra-
jectory and/or

• performing some work on a stationary or mobile object.

To explain the mode and stages of the work of a cooperative system, it is nec-
essary to observe several stationary objects that should be jointly transferred by
several manipulators, one by one, from one place to another along a predetermined
trajectory, while not overturning or damaging them. At the initial moment, the
manipulator grippers are at a distance from the object. The stages, the work con-
tent, and essential characteristics of the work of a cooperative system in the object
manipulation are as follows:

1. planning of the approach,

2. approach to the object,

3. grasping,

4. gripping,

5. lifting,

6. transferring,

7. lowering,

8. releasing,

9. withdrawing.

At the stage of approach planning, free motion trajectories are chosen for each
of the manipulators in order to avoid a collision during the motion prior to contact-
ing the object. A different trajectory should be selected for each object.

By approaching, we mean the motion of each individual manipulator towards
the object, which is terminated by touching the object, while no force is established
between the manipulator gripper and object.

All the manipulators do not necessarily approach the object simultaneously. If
the grasping started without the synchronous action of all the manipulators, this
could lead to an uncontrolled displacement of the object. To prevent this, it is
necessary to ensure termination of the grasping stage when all the manipulators
have approached the object.

In the step of object gripping, the corresponding forces are established between
the manipulator’s tip and object, and these forces should be as such to cause no

2 Multi-Arm Cooperating Robots
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Figure 1. Cooperative manipulation system

object damaging. The gripping forces are internal forces of the system consisting
of the manipulators and object (Figure 1). These forces arise as a consequence of
elastic or plastic displacements (micro motion) of the structure of the object and
manipulator. In the majority of cases, the inertial loads in gripping, due to the
micro motion, are negligible in comparison with the loads produced by elastic or
plastic displacements of the structures of the object and manipulator.

The steps of lifting, transferring, and lowering assume the motion in a macro
space, whereby the object weight and all the forces produced by the motion of the
object/manipulator are taken up by the manipulators. In these motions, the inertial
loads are not negligibly small compared to the other loads.

The lifting step follows after the gripping. Prior to the steps of gripping and
lifting, the object weight is distributed over the supports on the ground. Not later
than at the beginning of the lifting stage, the object weight is distributed on as the
load between the manipulators. In the lifting step, the object is raised from the
support and the height of its position is gradually changed. The character of the
motion of the cooperative system depends on the nature of the concrete task.

The transferring step consists of moving the object along a predetermined tra-
jectory at a predetermined orientation. The manipulators move in such a way as
to force the object to satisfy the preset motion requirements and/or produce the
required gripping loads.

The object motion in manipulation is terminated by placing the object at a
desired place. At the end of this step, the supports on the ground take over the

Introduction to Cooperative Manipulation



object weight as the load, so that the manipulators retain only the load due to the
deformations of their own structure and of the object.

In the lowering step, the load due to deformational displacements is reduced to
zero, but without any additional motion of the already placed object.

Withdrawing assumes the motion of the manipulators to a safe distance from
the placed object.

Then a new cycle is planned with the next object.
In this chapter we consider the cooperative system in the course of object grip-

ping, lifting, and transferring. These stages of cooperative work assume that the
manipulators are in contact with the object and thus with each other.

1.2 Contact in the Cooperative Manipulation

By contact in the cooperative manipulation is understood the mutual touching of
the manipulators, touching of the manipulator and manipulated object, or some
of these with obstacles. In this chapter we consider only the contact between the
manipulator and object.

The site of interaction of the cooperators or of the cooperators and object is
called contact (Figure 2). Contact represents the common boundary (interface) of
the materials of the bodies being in contact.

A fundamental property of contact is its capacity to transfer information and
loads between the contact participants. From the point of view of mechanics, the
transfer of loads is the main interest. The transferred load is further conveyed to
the structure (material) of the contact-making bodies, causing structural changes.
Hence, the contact properties are to be defined separately in respect of the char-
acteristics and behavior of the contiguous surfaces and separately in view of the
characteristics of the structure adjacent to the interface (contact). In the general
case, the structure adjacent to the contact is elastic. In the cooperative manipula-
tion, a set of elastic environments of all contacts of the manipulators and object is
called an elastic system.

1.3 The Nature of Contact

Physical contact consists of two contiguous surfaces and the space between them.
The contacting surfaces belong to the contacting bodies, i.e. they are the envelopes
of their structures. In a general case, the envelopes of the structures have not nec-
essarily the same characteristics as the structures they envelop. When there exist
one-to-one correspondence of points of the contacting surfaces (as if they were
glued so that there is no void between them), the space between them is an empty

4 Multi-Arm Cooperating Robots
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space. In all other cases, there is a real space, either homogenous or inhomoge-
neous, between the surfaces in contact.

Contact properties are defined on the basis of the structural characteristics of
the envelopes of the bodies in contact and on the basis of the mutual displacements
taking place during the contact (Figure 2).

The envelopes of the contacting bodies may be either rigid or elastic. If the
contact involves two bodies, it is possible to have four combinations of envelopes,
and the contacts are named accordingly. A rigid contact is formed between two
participants with rigid envelopes. An elastic contact is formed if the envelopes of
both participants are elastic. If an elastic contacting surface of one contact partici-
pant is adjacent to a rigid contacting surface of the other participant, such contacts
can also be treated as rigid.

During the contact, the contacting surfaces can be either translation-
ally/rotationally fixed or mobile with respect to each other. Displacements in the
contact are caused by a sliding or rotational macro motion of the contact partici-
pants. Depending on the type of the allowed motion, contacts can be either trans-
lational or rotational. If the contacting surfaces are mutually immobile during any
general motion of the participants, we speak of a stiff translational/rotational con-
tact. If, however, the contacting surfaces are mutually movable, then a sliding
translational/rotational contact is in question.

One essential property of contact is that the loads between contacting bod-
ies are transferred through it so that the contact is conceptually different from a
kinematic pair. If the friction at the sliding contact is negligible, the load can be
transferred only in those directions in which there is no relative displacement of
contacting surfaces. This means that the requirement for load transfer imposes
kinematic constraints on the motion of the bodies in contact. In a small vicinity of
any point of contacting surfaces, there can exist maximally six constraints, three
on translational and three on rotational motion, to ensure transfer of forces and
moments. The number of motion constraints in a small environment of any point
of contacting surfaces decreases by the number of different mutual motions of the
contacting surfaces. Thus, for example, a ball contact imposes three constraints on
translational and none on rotational displacements.

Transfer of loads in the contact is realized via the contacting surfaces of the
contact participants. The load that is transferred at the contact is an acting load of
the structure of each of the contact participants at their interface (Figure 2c). An
essential characteristic of the contact is that all the loads appearing in it are internal
loads of a system whose parts are the contact participants. Loads are transferred
between the contact participants in the directions in which the contact imposes
motion constraints. In the directions in which contact does not impose constraints,
unpowered kinematic pairs (sliding and/or revolute) are formed, and the load can

Introduction to Cooperative Manipulation



Figure 2. Contact
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not be transferred. More precisely, in reality, in these directions appear the losses
that are defined as friction, and they are usually neglected in the analysis.

A cooperative system may be represented by a kinematic chain having both
powered and unpowered joints and/or by a kinematic chain having at least one
link formed by all contact participants (e.g. the object and the cooperator’s link in
contact with it). This property of the cooperative system means that it can always
have a smaller number of drives at joints than degrees of freedom (DOFs) (i.e.
equations of motion).

Description of the contact must not be erroneous, as any error inevitably leads
to erroneous conclusions about the mechanical characteristics of the cooperative
system and automatically yields incorrect results on the basis of such a description.

The contact environment – elastic system. The three-dimensional space (struc-
ture) of a contact participant whose envelope is forming the contact, is the contact
environment. The structure can be either rigid or elastic.

The contact load is an acting load of the structure of one of the contact partic-
ipants at one of its interfaces. The boundary of the contact environment is chosen
in accordance with the needs of the concrete task.

The motion and conditions in the contact environment are described by approx-
imate models.

A rigid structure is approximated by a rigid body.
An elastic structure can be approximated by a continuous medium with an

infinite number of infinitesimal material elements, with a finite series of elastically
connected lumped masses, with a series of finite elements of different properties,
etc. The points at which the elements are joined form the so-called nodes of the
elastic structure. A series of nodes form a spatial grid. Nodes of the spatial grid
can be either internal or external. Inertial properties can be ascribed to an elastic
structure in the whole space or only at certain points, e.g. at all or only at some
nodes, midway between them, at the gravity centers whose apexes are nodes, or at
the gravity centers of the finite elements, etc.

In the cooperative manipulation, elastic properties can be assigned to the ma-
nipulators, to the object, or only to the environment of the manipulator-object con-
tact (elastic interconnection). A set of selected approximations of the elastic
structure of an individual manipulator and object in contact with the environment,
is called an elastic system.

1.4 Introducing Coordinate Frames

A simple example of a cooperative system of the manipulation type is presented in
Figure 3a. Three fingers – the thumb, index finger, and middle finger are gripping
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Figure 3. Cooperative work of the fingers on an immobile object

an object, making a rigid contact.
Properties of such a simple system are presented on the basis of the description

of the kinematics, statics, and dynamics of the approximate cooperative system
(Figure 3b). An approximate cooperative system (hereafter, cooperative system)
will be the basis for all the analyses of the cooperative work. The analysis assumes
such computations in which the calculated value assigned to a quantity in space
can also be obtained (confirmed) by measurement. The quality of the adopted
approximation determines the quality of the results of the analysis.

The cooperative system properties are described on the basis of the description
of the kinematics, statics and dynamics of the approximate cooperative system. For
that purpose, it is necessary to enumerate the cooperative system constituents and
select coordinate frames in which this description will be made.

We say that the object bears the number ‘0’ and that the manipulators have the
numbers from 1 to m (in the example from Figure 3, m = 3). All the quantities
related to the object have 0 as the last subscript, and all the quantities related to the
manipulators have have as the last subscript an ordinal number, i = 1, . . . , m of the
corresponding manipulator. The cooperative manipulator from which numbering
begins is the leader.

The choice of coordinate frames depends on the selected approximation. Here
we consider a cooperative system consisting of a rigid object and rigid manipula-
tors with elastic interconnections between them. The motion of the rigid manipu-
lators is described in the internal coordinates and the object motion in the external
coordinates. The selected form of the approximate cooperative system allows us
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to easily obtain the relation to the known theoretical results of the robotics for the
motion of rigid manipulators and the dynamics of rigid bodies and elastic systems.
The introduction of elasticity only to the contact is of great technical significance.
Such contact is convenient for the technical realization of some new and improve-
ment of existing robotic systems by introducing the appropriate elastic inserts.

Replacement of a real cooperative system with an approximate one, as well
as the enumeration and introduction of coordinate frames, will be discussed in the
example illustrated in Figure 3. For a real cooperative system, we introduce the
following assumptions: Let the palm be supported on the ground. Let all the palm
links form an immobile link. Let all the finger links be rigid and let all the links of
a finger lie in the same plane. In this plane only, let each link have one DOF with
respect to the neighboring link. Under these assumptions, the natural cooperative
system is approximated by a cooperative system formed by one three-DOF and two
four-DOF manipulators connected with the object (Figure 3b). The properties of
the joints and contact are defined separately for the concrete cases considered. We
say has that the joints in this example are rigid and that the contact at the beginning
is rigid. The cooperative system consists of four elements. The subscript ‘0’ is
assigned to the object, ‘1’, ‘2’, ‘3’ to the fingers – manipulators, and ‘e’ to the
support.

The external coordinate frame Oxeyeze is immobile and fixed to the support
(this is usually the ground) of the work space. This system of coordinates deter-
mines the position of every point on the object, but it does not allow the determi-
nation of the object’s orientation. The object’s position is defined with the aid of
the position vector of one of its points, usually of the mass center (MC), given by
the three coordinates r0 = col(rex

0 , r
ey

0 , rez
0 ) with respect to the external coordinate

frame and vector of its instantaneous orientation A0 = col(ψ0, θ0, ϕ0) defined by
three Euler angles of the coordinate frame attached to the object with respect to the
external coordinate frame. This means that the object position in three-dimensional
space is determined by the six-component vector

Y0 = col(r0,A0) =
[

r0

A0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

rex
0

rey
0

rez
0

ψ0

θ0

ϕ0

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R6 (1)

In an analogous way, we introduce the coordinates Yc1, Yc2, Yc3 for the position
of the manipulator tips, i.e. the coordinate system fixed to the manipulator tip at
the contact points C1, C2, C3, whereby the subscripts stand for the ordinal number
of the manipulator. The vectors Yci = col(rci ,A ci ∈ R6, i = 0, 1, 2, 3, represent
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the position vectors of the points in the six-dimensional coordinate frame, which
we call the natural coordinate frame of the object position.

The motion equations are obtained on the basis of the quantities defined in the
fixed inertial coordinate frame. If we neglect the motion of the natural coordinate
frame with respect to the inertial coordinate frame, then the derivatives of position
vector of any point in the system of external coordinates and the derivatives of the
position vector of that point in the inertial coordinate frame will coincide. In that
case, the system of external coordinates has the properties of the inertial coordinate
frame, and its coordinates we call absolute coordinates. This allows us to derive
the motion equations in the system of external coordinates in the same way as in
the inertial coordinate frame.

Task space represents the work space in which the cooperative system moves.
If the work space does not impose any constraints on the motion of any part of
the cooperative system, then the work space coincides with the six-dimensional
natural frame of the position coordinates. If the work space contains the obstacles
imposing on the object motion d constraints (lt for translation, r0 ∈ R3−lt and
lr for rotation, A 0 ∈ R3−lr , d = lt + lr ), then the free object motion takes
place in the (l = 6 − d)-dimensional free space. For example, if we assume that
during the gripping step the manipulator motion can take place only in the plane
parallel to the coordinate plane Oyeze (Figure 3), then we have one constraint on
translation (xe = const) and two constraints on rotation (ψ0 = const and ϕ0 =
const). Free work space is then three-dimensional and the object can perform two-
dimensional motion as a free motion. For the different cases considered, the task
space is obtained by reducing the natural coordinate frame of the object.

The internal coordinate frame serves to describe the state of the manipulator.
Internal coordinates represent the angles between individual links and their num-
ber is just equal to the number of DOFs of all the manipulator links. If all the
manipulator joints are simple kinematic pairs (kinematic pairs of fifth class), then
the number of internal coordinates is equal to the number of links.

In the example shown in Figure 3, for the known lengths of the particular links
of the first manipulator l

j

1 , j = 1, 2, 3, its tip position, as of a three-DOF ma-
nipulator, can be fully determined by the three angles: between the first link and
the support q1

1 and between the particular links q2
1 and q3

1 . Analogously, we can
introduce the internal coordinates of a four-DOF manipulator q1

2 , q2
2 , q3

2 , q4
2 and

q1
3 , q2

3 , q3
3 , q4

3 .
The general convention designation (symb)

j

i , i = 1, . . . , m, j = 1, . . . , ni is
adopted, where (symb) stands for the symbol of the internal coordinate q or driving
torque τ ; m is the total number of manipulators, and ni is the number of DOFs of
the ith manipulator (in this example, m = 3, n1 = 3, n2 = n3 = 4). In the
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general case, for m manipulators, of which every ith has mi DOFs, the vectors
q1 = col(q1

1 , . . . , q
n1
1 ) ∈ Rn1 to qm = col(q1

m, . . . , qnm
m ) ∈ Rnm form the space of

the internal coordinates of the individual manipulators, and the vector

q = col(q1, . . . , qm) = col(q1
1 , . . . , q

n1
1 , q1

2 , . . . , q
nm−1
m−1 , q1

m, . . . , qnm
m ) ∈ Rn,

n =
∑m

i
ni = n1 + . . . + nm

forms the space of the internal coordinates of all the manipulators, i.e. the space of
internal coordinates of the cooperative system.

In this example, the vectors of internal coordinates are

(see Figure 3).
Elastic system space is intended for the description of the elastic system mo-

tion. In the general case, the structure around each node may have a maximum six
DOFs, i.e. the maximum allowed displacements of the elastic system. In concrete
cases, depending on the given task, displacements can be allowed only in certain
directions. Loads are introduced at the nodes depending on the concrete needs.

It is essential to point out that the number of allowed independent displace-
ments of the elastic system nodes determines the total number of motion equations
that describe its physical nature (statics and dynamics). For some particular cases,
the local characteristics of the structure (e.g. composed of finite elements), nodes,
and their allowed displacements, as well as mass distribution within the structure,
may be a subject of choice.

An appropriate choice of elastic system suitable for technical application, con-
sists of m finite elastic elements with the elastic properties defined in advance,
placed at the external nodes (tips of the grippers) and with the object placed at the
internal node.

We select an elastic system suitable for the presentation of the features of coop-
erative manipulation. The system has m external nodes and only one internal node.
Six independent displacements of the elastic system are allowed at each node. All
inertial properties of the elastic system are defined only by the nodes. The distri-
bution of inertial characteristics may be different. It is assumed that the structure
around each node has inertial properties possessed by rigid bodies. The selected
presentation of the elastic system can be thought of as a system of m+1 elastically
connected rigid bodies. The suitability of the choice is revealed through the clear
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q1 = col(q1
1 , q2

1 , q3
1 ) ∈ R3, q2 = col(q1

2 , q2
2 , q3

2 , q4
2 ) ∈ R4,

q3 = col(q1
3 , q2

3 , q3
3 , q4

3 ) ∈ R4 and

q = col(q1, q2, q2) = (q1
1 , q2

1 , q3
1 , q1

2 , q2
2 , q3

2 , q4
2 , q1

3 , q2
3 , q3

3 , q4
3 ) ∈ R11



presentation of the consistent mathematical procedure of modeling statics and dy-
namics of the elastic system. If the inertial properties of the rigid bodies at external
nodes are small compared to the inertial properties at the internal node, they can be
neglected. Then, all the inertial properties are assigned to the internal node and to
the rigid body placed there. The load is transferred through the external nodes be-
tween the gripper tip and elastic system as an external load of the elastic structure.
For the internal node of the elastic system enter all the forces of the manipulated
object.

When no loads are present at the elastic system nodes, displacements of the
nodes are equal to zero. This state of the elastic system is called state 0.

Any load or displacement at some of the nodes causes displacement of the
structure with respect to state 0, and thus determines the angles at the boundary sur-
faces of the contact-forming bodies, as well as the conditions at the elastic structure
nodes through which the load is transferred onto the object. To describe the statics
and dynamics of such an elastic system we need six quantities for each node, three
for rotation and three for translation. These 6m + 6 quantities define the space of
an elastic system in cooperative manipulation.

In the theory of elasticity, the state of a loaded structure is described via the
displacements of the loaded structure from the state 0 or from a pre-loaded state,
known in advance, caused by the known load (e.g. by the elastic system weight).
These displacements are defined in the local coordinate frame attached to the elas-
tic part of the system and then, depending on the need, expressed in some global
coordinate frame common to all the elements of the elastic system.

Cooperative manipulation takes place in the same space for all the cooperation
participants. Space coordinates of the elastic system are adopted in the global
coordinate frame, which is the same for all the parts of the elastic system.

The adopted elastic system is described in two coordinate frames.
The cooperative work done on the elastic system, whose unloaded state 0 is

immobile, is described by the displacement coordinates denoted by the small let-
ter y. Namely, in the unloaded state, at each node of the elastic system is placed
a three-dimensional coordinate frame parallel to the coordinate frame of the ex-
ternal coordinates Oxeyeze at each node. A fictitious rigid body having a cer-
tain initial orientation is placed. From these positions of rigid bodies, displace-
ments are measured of the loaded state of the elastic system. Since connection
of these rigid bodies is stiff, the displacements of the elastic systems are identi-
cal to the displacements of the rigid bodies. The displacement vector of the ith
node is yi = col(�ri,�Ai) ∈ R6. The displacement vector of all the nodes
y = col(y0, y1, . . . , ym) ∈ R6m+6 represents the radius vector of the (6m + 6)-
dimensional space of the elastic system, whose unloaded state 0 is fixed (immo-
bile).

12 Multi-Arm Cooperating Robots



13

The work on the elastic system whose unloaded state performs general motion
is described by means of coordinates of the nodes of loaded elastic system denoted
by the capital Y . For the ith node, the vector Yi = col(ri,Ai ) ∈ R6 describes the
instantaneous position and orientation of the rigid body (in the sequel, the position
and orientation will be termed attitude) placed at that node, i.e. the instantaneous
attitude of the elastic system at that node with respect to the external coordinate
system Oxeyeze. The position vector of all the nodes Y = col(Y0, Y1, . . . , Ym) ∈
R6m+6 represents the radius vector of the (6m+6)-dimensional elastic system space
whose unloaded state performs the general motion.

Contact space serves to describe the constraints imposed by the contact on the
motion of the grippers.

The character and the number of quantities needed for the description of con-
tact depends on the approximations introduced for particular classes of task, i.e.,
of the contact.

A precise description of motion constraints imposed by the contact assumes a
precise description of the mutual motion of the contiguous surfaces of the contact-
ing bodies, i.e. of the load transferred through the interface (Figure 2c,d). In this
description, it is essential that those parts of the interface that are immobile with
respect to each other, i.e. cannot move in some rotation/translation directions, have
the same velocity in these directions, and any load at these points and in these di-
rections represents the internal load of the overall contact structure. If we split the
system along the mutually immobile parts of the interface, then in the split entities
will act as loads of the same direction but in an opposite sense (Figure 3c,d). This
means that the loads between the contact-forming bodies can be transferred only
in the directions in which the contact imposes constraints on their motion.

Conditions at the contact are most simply and most correctly described by mu-
tual displacements of the coordinate frames C ′

ix
′
cy

′
cz

′
c and C ′′

i x′′
c y′′

c z′′
c , fixed to the

elementary boundary surfaces of the contact-forming bodies (Figure 2c), with the
axes C ′

iz
′
c and C ′′

i z′′
c in the normal direction. Let the origin of these coordinate

frames be at the point Ci = C ′
i = C ′′

i , whose radius vector in the coordinate frame
Oxeyeze is rci = r ′

ci = r ′′
ci . Let the orientation of these coordinate frames with

respect to the coordinate frame Oxeyeze be A ci = A′
ci = A′′

ci. It is supposed
that in the initial moment of contact, these two coordinate frames are immobile
and that they coincide. In these coordinate frames, we select arbitrary vectors ρ ′
and ρ ′′ which, at the initial moment, also coincide, ρ ′ = ρ ′′. If the contact is stiff,
there is no relative translational displacement of the boundary points. This means
that the coordinate frames C ′

ix
′
cy

′
cz

′
c and C ′′

i x′′
c y′′

c z′′
c coincide during the motion. For

a stiff contact we can preset three conditions for translational ṙci = ṙ ′
ci = ṙ ′′

ci and
three conditions for rotational Ȧ ci = Ȧ′

ci = Ȧ′′
ci relative motion of the coordinate

frames C ′
ix

′
cy

′
cz

′
c and C ′′

i x′′
c y′′

c z′′
c at the point Ci = C ′

i = C ′′
i . Hence, we say that the
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stiff contact imposes three constraints in respect of rotation and three constraints in
respect of translation or, that the space of translation and rotation of the bodies in
contact coincide at the point Ci = C ′

i = C ′′
i .

If the contacting surface is rigid, then the radius vectors between any of its
points during the motion are constant and can be expressed in any coordinate frame
attached to the boundary surface. This allows us to express the properties of the
contact boundary (usually surface) via the mutual motion of the coordinate frames
attached at only one of its points Ci .

Therefore, to describe the constraints imposed by stiff and rigid contact, it is
necessary to have six quantities that describe the space at the point Ci . If the
coordinate system C ′

ix
′
cy

′
cz

′
c is attached to a rigid gripper whose tip is at the point

Ci , these quantities are the coordinates of position vector of the gripper tip in the
natural coordinate frame connected to the ground, Yci = col(rci ,Aci) ∈ R6. In the
cooperative manipulation involving n manipulators with rigid grippers, the space
of the stiff and rigid contact of the cooperative system is formed by the subspaces
of contact of all the manipulators. The space of the stiff and rigid contact of the
cooperative system is defined by the following vector:

Yc = col(Yc1, . . . , Ycm) = col(rc1,Ac1, . . . , rcm,Acm) ∈ R6m,

Yci = col(rci ,Aci) ∈ R6. (2)

Sliding contact can be realized either as translational or rotational. If the con-
tact is translational sliding, the coordinate frames Ox′

cy
′
cz

′
c and Ox′′

c y′′
c z′′

c will move
in parallel to each other and the radius vector of any point of these spaces can be
expressed in its own coordinate frame as a function of the realized displacement
expressed by only one increment vector dρ , ρ ′ = ρ ′′ + dρ and ρ ′′ = ρ ′ − dρ.
In the case of sliding, the vector dρ has maximally two coordinates, the third co-
ordinate being equal to zero. If the third coordinate is different from zero, the
contact is broken. This means that the load in the translational sliding contact can
be transferred at least in one and, at most, in two directions. In the case of sliding
rotational contact, the radius vector ρ ′ of any point of the one coordinate frame can
be obtained as an orthogonal transformation of the radius vector ρ ′′ of the other co-
ordinate frame which, before transformation (prior to rotational sliding), coincided
with the vector ρ ′. In the directions in which orientation cannot be changed, load
transfer is possible, while in the directions in which orientation can be changed, no
load can be transferred.

As an example, we will consider the rigid contact at the point Ci of the rigid
object and the ith rigid manipulator that is stiff in respect of translation and sliding
in respect of rotation. The translation space is defined by the contact position
vector given by the three coordinates rci = col(rex

ci , r
ey

ci , rez
ci ) ∈ R3 with respect to
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the external coordinate frame. The rotation space is defined by means of the vector
of instantaneous orientation Aci ∈ Rlrci≤3 determined by such a number of Euler
angles of rotation of the coordinate frame attached to the contact with respect to
the external coordinate frame that is equal to the number of constraints the contact
imposes in respect of rotation. This means that the position of the ith contact in
contact space is determined by the (ci = 3 + lrci ≤ 6)-component vector

Yci =
(

rci

Aci

)
=

⎛
⎜⎜⎝

rex
ci

r
ey

ci

rez
ci

Aci

⎞
⎟⎟⎠ ∈ Rci , ci ≤ 6, i = 1, . . . , n . (3)

The vector Yc = col(Yc1, . . . , Ycm) ∈ Rc, c = ∑m
i ci , forms the space of all

contacts of the object and manipulators, i.e. the cooperative system contact space.
The description of contact space becomes much more complex if the contact

is elastic or if the assumptions on contact properties are changed. With elastic
contacts, the contiguous surface changes its form during the motion. Because of
that, the vectors of the normals to the adjacent elementary surfaces of one of the
contact-forming bodies are mutually displaced, and so are the coordinate frames
attached to them. Thus, the conditions on contacting surfaces cannot be considered
without loss in accuracy by taking into account only one contact point. Depending
on the desired accuracy, the conditions at the elastic contact can be described not
only by using an arbitrary finite number but also by using an infinite number of
coordinates. However, elastic contacts are not the subject matter of this chapter.

It should be noticed that the motion constraints imposed by the contact due
to rigid grippers are defined with respect to the mutual motion of the contiguous
surfaces and not with respect to the properties of their environments. This allows
the environment of the rigid grippers to be either rigid or elastic, irrespective of
whether this environment is represented by elastic manipulators or the external
environment of the gripper.

Cooperative system state space is determined by the necessary and sufficient
number of independent quantities needed to describe its dynamics. In the analysis
of the cooperative system’s dynamics, the number of these quantities depends on
the assumptions about the characteristics of the cooperative system constituents.

If we consider a cooperative system composed of m 6-DOF rigid manipulators
handling a rigid object performing an unconstrained motion, the necessary and
sufficient number of quantities needed to describe its motion will be 6m + 6. The
space state vector of a such cooperative system is

Y = col(Y0, q1, . . . , qm) ∈ R6m+6. (4)
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In the adopted approximation of the cooperative system, there appears the prob-
lem of the so-called force uncertainty (see Section 2.2).

If elastic bodies are inserted between the gripper tips and the object, to form
an elastic system with m + 1 nodes, and if it is assumed that the grippers of non-
redundant manipulators form a stiff and rigid contact with the elastic system at
the contact points that coincide with the external nodes, then the state vector of
such a cooperative system is identical to the state vector of the elastic system. The
adopted state vector of the elastic system, i.e. of the cooperative system

y = col(y0, yc1, . . . , ycm) ∈ R6m+6 (5)

will describe the gripping phase and the vector

Y = col(Y0, Yc1, . . . , Ycm) ∈ R6m+6 (6)

will describe its general motion. As the manipulators are non-redundant, there is a
unique functional dependence between the position of the manipulator gripper and
internal coordinates, so that the vector (4) can also be adopted as the state vector
of the cooperative system.

Such a choice of approximation of the cooperative system and its state quanti-
ties allows us to get a clear insight into the needs, differences, and consequences
produced in the description of the cooperative system by introducing elastic prop-
erties in the part of the cooperative system consisting of rigid grippers and rigid
object. The issue of recognizing the needs, differences, and consequences of the
introduction of elastic properties is the main subject of this monograph.

If the assumption on the characteristics of contact and elastic system is
changed, the number and character of state quantities of the cooperative system
will be changed too.

1.5 General Convention on Symbols and Quantity Designations

In the description of the statics and dynamics, the load vector coordinates are the
projections of this vector onto the axes of the coordinate frame used to describe
the motion of that part of the cooperative system in which the given load is acting.
Thus, the load vector coordinates (generalized forces) at the object MC, described
in term of the natural coordinate frame coordinates will be

F0 =
(

F̄0

M0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

Fex
0

F
ey

0
Fez

0
Mx

0
M

y

0
Mz

0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R6 , (7)
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where Fex
0 [N], F

ey

0 [N] and Fez
0 [N] are the force projections onto the axes of

the fixed coordinate frame Oxeyeze, while Mx
0 [Nm], M

y

0 [Nm] and Mz
0 [Nm] are

the moment projections onto the axes of the coordinate frame Ox0y0z0 fixed to
the object. In an analogous way, we define the vector of contact force at the ith
rigid contact Fci = col(F ex

ci , F
ey

ci , F ez
ci ,Mx

ci,M
y

ci,M
z
ci ) ∈ R6. For this contact, the

vector of contact force of the cooperative system is formed by all contact forces of
particular contacts, Fc = col(Fc1, Fc2, . . . , Fcm) ∈ R6m.

In order that the manipulator links could maintain their arbitrary position, move
and perform work in a certain field of forces, active/resistance torques have to act
at the joints. In the example shown in Figure 4 these torques are τ

j

i , i = 1, 2, 3,
j = 1, 2, 3 for the first manipulator and j = 1, 2, 3, 4 for the second and third
manipulators. If we assume that all the joints are powered and there are no losses
at them, then the torques τ

j

i are driving torques of the fingers, i.e. manipulators.
In the general case, for m manipulators, of which every ith one has ni DOFs, the
vectors from τ1 = col(τ 1

1 , . . . , τ
n1
1 ) ∈ Rn1 to τm = col(τ 1

m, . . . , τ nm
m ) ∈ Rnm are

driving torques of the individual manipulators, and

τ = col(τ1, . . . , τm) = col(τ 1
1 , . . . , τ

n1
1 , τ 1

2 , . . . , τ
nm−1
m−1 , τ 1

m, . . . , τ nm
m ) ∈ Rn,

n =
∑m

i
ni = n1 + . . . + nm,

is the vector of driving torques of all the manipulators, i.e. the vector of driving
torques of the cooperative system. In the example shown in Figure 4 the vectors of
the driving torques are

τ1 = col(τ 1
1 , τ 2

1 , τ 3
1 ) ∈ R3,

τ# = col(τ 1
# , τ 2

# , τ 3
# , τ 4

# ) ∈ R4, # = 2, 3

and

τ = col(τ1, τ2, τ3)

= col(τ 1
1 , τ 2

1 , τ 3
1 , τ 1

2 , τ 2
2 , τ 3

2 , τ 4
2 , τ 1

3 , τ 2
3 , τ 3

3 , τ 4
3 ) ∈ R11.

By convention, the notation for all the quantities that are projected onto one and
the same axis is determined with respect to the direction of the coordinate axis. For
example, if the z-axis is vertical and oriented upwards, then the projections of all
the vectors onto this axis are taken with this orientation as being positive.

For all linear displacements, linear velocities, linear accelerations and forces
we assume the coordinates to be positive if their direction is in the sense of an
increase of the coordinate onto which these quantities are projected.
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All angular displacements, angular velocities, angular accelerations and mo-
ments are assumed to be positive if they tend to produce a positive rotational mo-
tion of the coordinate frame they are projected into.

1.6 Relation to Contact Tasks Involving One Manipulator

If the object from the example shown in Figure 3 is rigid and immobile, the co-
operative work is reduced to the action of three independent manipulators. A still
simpler case would be if, for example, the first and third manipulators were not ac-
tive and were not in contact with the object. Then the problem of cooperative work
would reduce to the problem of contact of the second manipulator and the environ-
ment. Obviously, the contact of one manipulator with environment is a particular
case of cooperative work.
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2 PROBLEMS IN COOPERATIVE WORK

The basic problems of cooperative work considered in the available literature are
the problem of kinematic uncertainty and the problem of force uncertainty.

2.1 Kinematic Uncertainty

Kinematic uncertainties in cooperative manipulation arise as a consequence of the
redundancy of manipulators and/or of contact characteristics.

2.1.1 Kinematic uncertainty due to manipulator redundancy

This instance of kinematic uncertainty in cooperative manipulation arises in the
case of using redundant manipulators whose mobility index is higher than the num-
ber of DOFs of the manipulator gripper. This kinematic uncertainty is identical to
the kinematic uncertainty of a redundant manipulator.

Let us explain this on the example of the second manipulator in Figure 3. Let
the object and manipulator be rigid and let contact between the object and the
terminal link of the manipulator be stiff. Let all four links move in one plane,
rxe
c2 = const. The attitude of the contact on the object C2 may be arbitrarily defined

by defining the six-dimensional vector of the contact space Yc2 = col(rc2,Ac2) ∈
R6. The contact space consists of the translation subspace and rotation subspace.
Translation subspace is determined by the vector rc2 = col(rxe

c2 = const, rye

c2 , rze
c2).

Two coordinates of this vector can be arbitrarily chosen, i.e. we can arbitrarily
choose the contact on the object in the plane rxe

c2 = const. The subspace of ro-
tation (orientation) is determined by the rotation vector Ac2 = col(ψc2 = const,
θc2, ϕc2 = const), whereby the rotation about the axis xe by the angle θc2 can be
arbitrary.

Let us determine the vector of manipulator tip position Y
f

c2 = col(rf

c2,A
f

c2) ∈
R6 as a function of the internal coordinates. The coordinates of the manipulator tip
position are determined, via internal coordinates, by the following vector:
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r
f
c2 =

⎛
⎜⎜⎝

rxe
c2 = const

yo2 + l12 cos q1
2 + l22 cos(q1

2 + q2
2 ) + l32 cos(q1

2 + q2
2 + q3

2 ) + l42 cos(q1
2 + q2

2 + q3
2 + q4

2 )

zo2 + l12 sin q1
2 + l22 sin(q1

2 + q2
2 ) + l32 sin(q1

2 + q2
2 + q3

2 ) + l42 sin(q1
2 + q2

2 + q3
2 + q4

2 )

⎞
⎟⎟⎠,

where yo2, zo2 are the internal coordinates of the manipulator base O2 and l
j

2 , j =
1, 2, 3, 4 are the lengths of the manipulator links.

Orientation of the manipulator tip is determined by the vector

Af

c2 =
⎛
⎝ ψc2 = const

q1
2 + q2

2 + q3
2 + q4

2
ϕc2 = const

⎞
⎠ .

If the contact is stiff, the position vectors of the contact point on the object rc2

and the vector of manipulator tip position r
f

c2 are identical, rc2 = r
f

c2. For a stiff
and rigid contact of the manipulator tip and object, the contact space vector A c2

and vector of the manipulator tip orientation Af

c2 are identical A c2 = Af

c2. Hence,
it follows that

where rxe
c2 = const, ψc2 = const and ϕc2 = const.

For the case of a planar motion, upon eliminating constant coordinates, we ob-
tain three coordinates of the contact space as a function of four internal coordinates
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of the manipulator

Yc2 =
(

rc2
A c2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

rc2
rze
c2

ψc2
θc2
ϕc2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rxe
c2 = const

yo2 + l1
2 cos q1

2 + l2
2 cos(q1

2 + q2
2 )

+ l3
2 cos(q1

2 + q2
2 + q3

2 ) + l4
2 cos(q1

2 + q2
2 + q3

2 + q4
2 )

zo2 + l1
2 sin q1

2 + l2
2 sin(q1

2 + q2
2 )

+ l3
2 sin(q1

2 + q2
2 + q3

2 ) + l4
2 sin(q1

2 + q2
2 + q3

2 + q4
2 )

ψc2 = const

q1
2 + q2

2 + q3
2 + q4

2

ϕc2 = const

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

= Y
f

c2,
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If the internal coordinates q1
2 , q2

2 , q3
2 , q4

2 on the right-hand side of equality (8)
or (9) are known, then the position of the contact point C2 on the object is uniquely
determined by the vector (r

ye

c2 , rze
c2 , θc2), and is explicitly calculated from (9). If

the contact point position is known (three quantities on the left-hand side of equal-
ity (9)) because of the existence of four unknown quantities and because of the
periodicity of trigonometric functions, there is an infinite number of positions of
the manipulator link that allow the manipulator tip to touch the object at a given
point and with a given orientation of the terminal link. The uncertainty arising
due to the periodicity of trigonometric functions is easily eliminated by the addi-
tional requirement that the joints constantly belong to a smooth function with an
exactly determined second derivative (e.g. only to a concave or a convex function,
Figure 4). In this case, we say that the manipulator is redundant and that kine-
matic uncertainty in the cooperative work is a consequence of the redundancy of
the cooperation participants.

2.1.2 Kinematic uncertainty due to contact characteristics

Another situation arises when the contact does not impose kinematic conditions
whose number is equal to the number of DOFs of the manipulator tip motion, irre-
spective of whether it is redundant or non-redundant (Figure 4). Let us explain this
in the example of the first manipulator. If it is known that the manipulator joints
constantly belong to a concave function, then the manipulator moving in the plane
is also non-redundant (analogously to Equation (9), we obtain three equations with
three unknowns). Let us suppose that the contact is stiff in respect of translation
and sliding in respect of rotation. Then, the contact does not impose any con-
straints on the manipulator tip in respect of orientation, but only the requirement
that the contact exists at a certain point. This is mathematically expressed by the
requirement that the position vector rc1 at the given point C1 on the object and the
vector of manipulator tip position, r

p

c1, are identical, rc1 = r
p

c1 for an arbitrary tip
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⎛
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Figure 4. Kinematic uncertainty due to contact

orientation, ∀Ap

c2. The contact imposes two constraints, in which two quantities
depend of three quantities.(

r
ye

c1
rze
c1

)
=
[

r
pye

c1 (q1
1 , q2

1 , q3
1 )

r
pze

c2 (q1
1 , q2

1 , q3
1 )

]
. (10)

As in the previous case of kinematic uncertainty, after stating the requirement
concerning the object, there appears an infinite number of manipulator positions
satisfying that requirement.

Kinematic uncertainty, however, is not essentially a problem of cooperative
manipulation and will not be considered in this book.

2.2 Force Uncertainty

Let us consider the simplest example of the cooperative work of two manipulators
with which we can explain the problem of force uncertainty. More correctly, this
problem could be stated as the problem of distribution of the total load produced
by the object in motion or at rest over the cooperation participants.

Let the two manipulators hold the object from the previous example and let
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Figure 5. Cooperative work of two manipulators on the object

them manipulate it without any constraint imposed on the object’s motion (Fig-
ure 5).

Let the manipulators hold the object so that it is immobile. Let the contact
points and object MC lie in the same vertical plane. Let the manipulators take up
the object weight. Finally, let the manipulator tips be glued to the object, and let
them transfer force only along the vertical.

With this example we will demonstrate the use of the general convention em-
ployed in this monograph. First, we adopt the reference coordinate frame and
orientation of the position coordinate, e.g. of y, upward. The adopted orientation
is positive and is marked by an arrow on the coordinate z. Projections of all vector
quantities (g, fc1, fc2, Fc1, Fc2) on this direction is represented by the same di-
rectional. The application of the general notation convention in decomposing the
system into subsystems and in the extraction of one of its elements, is illustrated
in Figure 5b. The basic principle is that all the vector quantities are presented with
the positive direction both at the points of their action in the overall system and on
the singled-out element, irrespective of the fact that it may not be their real direc-
tion. The real direction is regulated by the values of the coordinates and additional
(algebraic) conditions imposed by the system, i.e. contact.

In the object-manipulator contact, the realized forces may be of an arbitrary
intensity and direction. Let us denote by capitals the contact forces operating as
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acting forces on the object, Fc1 and Fc2 and, by small letters, the contact forces
operating as acting forces at the manipulator tips fc1 and fc2. According to the
general convention of notation used in the schematic, all the forces act in the same
direction. Since the contact is preserved, the contact forces are internal forces of
the cooperative system and, being the forces of action and reaction, they mutually
annul, i.e. Fc1 = −fc1 and Fc2 = −fc2.

Let us consider the load of the disjointed system (Figure 5b). If the object is
only in the gravitational field of force, the force balance can be expressed by the
following vector equation:

F0 + Fc1 + Fc2 = 0 ⇒ G = F0 = −Fc1 − Fc2 = fc1 + fc2, (11)

where F0 = G = col(0, 0,−mg) is the weight vector, m [kg] is the object mass,
and g [m/s2], gravitational acceleration. Since all forces are collinear, it is not
necessary to write a moment equation. In the motion and/or cooperative work
involving additional forces, nothing is essentially changed. In that case, the contact
forces balance the result of the inertial, damping and all external forces acting on
the object, F0 = G + Fin + Fs + · · · (Figure 5c).

If the contact forces (right-hand side of Equation (11)) are known, the object
weight G is uniquely determined. However, if the weight is known, there is an
infinite number of ways of load distribution at the contacts, i.e. at the manipulator
tips taking up the object’s weight. This property of the cooperative system is known
as ‘the problem of force uncertainty’.

If the object is rigid and if there is no danger of its breaking, the problem is
easily solved by allowing the contact forces to be those that the manipulators can
produce and so that condition (11) is satisfied. In order to have the problem of
force distribution uniquely solvable, it is necessary to introduce the assumption on
the elasticity of the system in that part where uncertainty appears. The relationship
describing the elastic system properties is assigned to Equation (11). In a mathe-
matical sense, the task becomes closed and all forces are uniquely determined. The
solution of force uncertainty is given in Chapters 3 and 4.

2.3 Summary of Uncertainty Problems in Cooperative Work

In the robotics of cooperative systems, the problems of kinematic uncertainty and
force uncertainty are treated as the impossibility of finding the kinematic quantities
and forces on the manipulators when the kinematic quantities and forces for the
manipulated object are known.

It should be noticed that the problem of kinematic uncertainty can be elimi-
nated by an appropriate choice of manipulator characteristics and type of contact.
Hence, this problem is not essentially the problem of cooperative work.
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However, whatever choice of the type of contact and manipulator characteris-
tics is made, the problem of force uncertainty will still exist. Hence, the problem
of force uncertainty is a crucial problem of cooperative work, at least in the sense
of how the problem has been defined.

It should be pointed out that neither the problem of kinematic uncertainty nor
the problem of force uncertainty can exist if the kinematic quantities and forces
exerted by the manipulator on the manipulated object are determined on the basis of
the kinematic quantities and forces of the manipulators as cooperation participants.

2.4 The Problem of Control

We have discussed two problems that have been identified as crucial issues in co-
operative manipulation. Here, several questions arise. First, whether these prob-
lems are a unique characteristic of cooperative work? Second, how these problems
arise? Third, do these problems really exist?

In fact, the essential problem of cooperative work is not the kinematic uncer-
tainty and force uncertainty but the control of the cooperative system. More pre-
cisely, the problem is how to synthesize the cooperative system control laws on the
basis of existing knowledge.

It has already been mentioned that for the known right-hand sides of the re-
lations (9), (10) and (11), their left-hand sides are uniquely determined. If the
cooperative work is solved starting only from the information contained within the
cooperation participants (internal coordinates and forces), then the problem of un-
certainty in cooperative work does not exist, but the problem of the synthesis of
cooperative system control does arise. The problem is the synthesis of control al-
gorithms only on the basis of information from the sensors measuring the physical
quantities that are also measured by the sensors of living beings.

The cooperative system and object move in the work space that is most simply
described by means of a coordinate frame fixed to the support. The work space is
also seen by the user of the cooperative system. By means of the coordinate system
fixed to the support (inertial system) the user easily describes the requirements
concerning the object motion in the work space. The dynamics and control laws for
manipulators are usually described by means of internal coordinates. The problem
of cooperative work thus stated lead unavoidably to the need of the existence of
a mutually unique relation between the kinematic quantities and manipulator load
and (required) information about the position and load of the body in the inertial
system, i.e. it leads to the problem of force uncertainty.

Cooperative work always involves some sort of guidance. One part of the co-
operative system imposes forced motion, on the other part, that is guidance. For
example, the manipulators in Figure 3 can force the object to stand, to move, to get
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deformed, etc. If we bear in mind that a cooperative system always has the number
of drives at joints smaller than the number of DOFs, the question is what are the
quantities to be controlled and how one is to control them in order to guide the
cooperative system? After finding the solution to the previous task, it is necessary
to synthesize the logic and methodology of solving the problem of a cooperative
system control.

The proposed control solutions are given on the basis of a dynamic model in-
volving unresolved uncertainty problems, and are not consistent solutions of co-
operative system control. A consistent solution of the law of cooperative system
control is given in Chapter 6. That solution has been obtained on the basis of a
model in which the problem of force uncertainty was solved (Chapter 3).
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3 INTRODUCTION TO MATHEMATICAL
MODELING OF COOPERATIVE
SYSTEMS

In this chapter we present a consistent procedure for modeling a simple cooperative
system consisting of two non-redundant manipulators handling a rigid object. We
explain the origin of force uncertainty and present a method to solve this problem.
It is shown that the problem of force uncertainty can be solved by introducing
the assumption of elasticity of the cooperative system in its part where the force
uncertainty arises. The problem of modeling, modeling procedure, and the model
itself are illustrated by a simple example.

The basic problem in describing cooperative work is the determination of
forces at the contact of the manipulator tip with the object and the determination of
the object position on the basis of the known manipulator position and vice versa.

These problems can be defined as the problems of choice of the assumptions of
the system’s characteristics and behavior and the problems of a reliable mathemati-
cal description of the cooperative work based on these assumptions. In the majority
of papers dealing with cooperative work, it is assumed that the manipulators and
object are rigid. An unavoidable consequence of this assumption is the appear-
ance of force uncertainty, which is manifested as the impossibility of establishing
a unique relation between the force vector at the MC of the manipulated object and
the force vector at the manipulator-object contact. Various approaches have been
proposed to solve these problems, and a common feature of all of them is that con-
tact forces are determined on the basis of the conditions proposed by the authors
and not as a consequence of physical phenomena [12–18]. These conditions were
given from the standpoint of the object requirements, manipulator requirements, or
by a combination of both.
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3.1 Some Known Solutions to Cooperative Manipulation Models

In [12] and [13], the vector of forces at contact points fc was chosen as being
completely independent of the manipulator dynamics, the criterion for choosing
this vector being obtained on the basis of the requirements concerning the object.
The solution adopted for contact force is the one that minimizes the square criterion

If = f T
c Wfc, (∗)

yielding the solution in the form

fc = W−1HT (HW−1HT )−1F0, (∗∗)

i.e.

fci = W−1
i

⎛
⎝ n∑

j=1

W−1
j

⎞
⎠

−1

F0, i = 1, . . . , n,

where W = diag(w1, . . . , wn) is the weighting matrix; F0 is the force vector at
the object MC, and H = (I I . . . I ) is the block matrix of unit matrices, resulting
from the relation F0 = ∑ fc = Hfc.

In [14], a practical solution was given for the redistribution of the loads fc onto
the ‘slave’ manipulators as a function of the vector of internal forces fI . In [13],
the adopted distribution is the solution that minimizes the functional

min{‖fc‖}
under the condition of satisfying static friction conditions expressed by the inequal-
ity

eNifci ≥ ηi‖fci‖,
where

eNi = grad S(pi)/‖grad S(pi)‖
is the vector of the normal at the point pi on the object surface, described by
S(x, y, z) = 0, and η is the friction coefficient. In [15], the internal force re-
quirements were selected so that they preserve the contact force within the friction
cone.

The solution to the redundancy problem has also been sought as being indepen-
dent of the object dynamics [16, 19]. In [19], the authors minimized the functional

τWτ
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solution of the minimization of contact forces. The work [16] considers the possi-
ble optimal splitting of the load between two industrial robots. As a possibility, a
solution was proposed for the drives τ that satisfy the condition

OBJ > ‖τ‖2,

where OBJ represents the criterion of minimal energy. For a uniform distribution
of loads, it is proposed that contact forces are the same and also equal to one-half
of the force at the object MC.

One possible approach is to consider both the object dynamics and manipula-
tor dynamics. For the case of the absence of constraints on driving torques of the
‘leader’ and ‘follower’, by combining the right-hand sides of the behavior of the
object and manipulator and minimizing the driving vector norm (which is equiva-
lent to minimal energy), it was found in [16] that, because of extensive calculation,
the solution for driving moments in the form τ l/f = τ l/f (τ, F0, fc) is almost inap-
plicable. As an alternative, the following distribution was considered

f l
c = αF0, f f

c = (1 − α)F0, 0 < α < 1.

The minimization of the norm of contact forces

min{‖fc‖} = min{(‖f l
c‖2 + ‖f f

c ‖2)}
yielded a solution as a function of the internal forces fI

αr = αr(τ, F0, fI ).

In [20], driving torques were presented in the form

τ = τ ′ − J T (I − G+G)ε,

where τ ′ represents the drive that ensures the motion along the trajectory; G is
the transformation matrix of the expanded velocity vector of the contact points to
the velocity vector of the object MC; G+ is the generalized pseudo-inverse matrix
(Moore–Penrose) of the matrix G, and ε is an arbitrary vector. The choice of the
vector ε was made so as to allow the possibility of supervising internal forces, one
possible choice being

ε = sgn(τ ′)[J T ]Ti ,

where [J T ]Ti is the ith row of the transformation matrix J for transforming the
velocity vector’s internal coordinates into the expanded velocity vector of the con-
tact points that yields a reduction of the manipulator load. For the case when the
cooperative system mobility exceeds the dimensions of the operative space of the
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object, such a choice of vector ε was proposed that satisfies the condition [P ] of a
certain sub-task described in the form

[P ]τ = α.

The obtained solution

ε = ([P ] − J T (I − G+G))+(α − [P ]τ ′)

represents the generalization of the approach from [16].
From a formal point of view, until the system is not closed in a mathematical

sense, the differential equations describing the cooperative manipulation behavior
are to be supplemented by new equations.

3.2 A Method to Model Cooperative Manipulation

In the description of the cooperative system motion, there must always appear at
least one relation that describes the equilibrium of the contact forces and forces
at MC of the manipulated object. The form of this relation depends on the as-
sumptions of the contact characteristics of the manipulators and object and of the
structural properties of the environment.

If we assume that the manipulators and object are rigid and their contact is
stiff and rigid, then only one vector relation, analoguous to (11), describes the
equilibrium of m vectors of contact forces and one force vector that is acting at the
object MC. If the contact force vectors are known, the force vector at the object MC
is uniquely determined. If, however, the force vector at the object MC is known,
the force vector at one contact point can be determined as a function of the known
force vector at the object MC and m−1 unknown force vectors at the other contact
points.

The reason for the existence of only one relation for describing the equilibrium
of the contact forces and forces at the object MC is that the description is based on
the approximation of the cooperative system by rigid manipulators, rigid object,
and rigid and stiff contact between them. A consequence of the existence of only
one relation that describes the equilibrium of the contact forces and forces at the
object MC is the impossibility of unique determination of contact forces as a func-
tion of only the forces acting at the object MC. In other words, the problem of the
so-called ‘force uncertainty’ unavoidably arises.

Hence, the task is to consider some new assumptions that would ensure a
unique solution of the cooperative system model, i.e. a unique distribution of forces
at the contacts. The ‘non-uniqueness’ appears only in the description of the part of
the system between the manipulator tips (grippers) and object. This suggests the
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Figure 6. Reducing the cooperative system to a grid

conclusion that the approximation of this part of the cooperative system does not
faithfully reflect its physical nature. Therefore, it is necessary to find some new ap-
proximation of the cooperative system between the manipulator tips (grippers) and
object, from which will come our additional natural conditions that would ensure
a unique mathematical description of the overall cooperative system model.

The mathematical model of a mechanical system should uniquely describe its
kinematics, statics, and dynamics. A correct choice of the approximation of co-
operative system is most simply made by analyzing the statics of the cooperative
system, i.e. by analyzing the cooperative system’s load in the state of rest. The
appropriate choice of approximation of cooperative system leads to the solution of
force uncertainty.

In the system at rest, the driving torques and forces at the contact of the tips
of manipulators and object can be considered as a system of internal generalized
forces, and gravitational forces as the system of external forces acting on the co-
operative system. Then the cooperative system corresponds to a statically undeter-
mined spatial grid made of the sticks fixed at one end to the support and at the other
being in contact with the object (Figure 6). A detailed procedure for solving such a
grid has been given in [6, 7, 21–24]. For the rest conditions, the results obtained in
the mechanics of cooperative work should be in agreement with the results already
obtained in other branches of mechanics (statics, dynamics, strength of materials,
and structure theory).

Force uncertainty can be overcome by abandoning the assumption of the rigid-
ity of the manipulators and object, or by retaining the same assumption but insert-
ing elastic connections between the rigid manipulators and rigid object to satisfy
the condition of deformation compatibility. According to the condition of defor-
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Figure 7. Approximation of the cooperative system by a grid

mation compatibility, each construction deforms so that no breaking of the con-
nections between particular elements of the construction takes place. The number
of static uncertainties of the construction requires the same number of additional
explicit geometric conditions from which, for the known displacements, one can
determine unknown forces, or determine unknown displacements for the known
forces. The choice of geometric conditions depends on the concrete form of the
grid and character of the acting load (Figure 7). As a result, unique relations
between forces/moments and structural displacements at all of its points (cross-
sections) are obtained. In other words, none of the proposed criteria is adopted,
but the assumption on construction rigidity is abandoned, from which come some
additional geometric conditions.

There are several methods to solve the problems of static uncertainty. We will
consider the method of deformation work, implying from the principle of minimal
potential energy of the system. When considering the strength of materials, it is
assumed that the deformation is not accompanied by a change of the amount of
heat nor by acceleration of any particle of the material, i.e. the load changes are
very slow so that, due to the principle of energy conservation, the equation

δAd + δQ = δT + δU (12)

for any elastic system is reduced to the equality of the increments of deformation
work and potential energy

δAd = δU, (13)

where δU is the work increment due to external forces; δQ is the heat increment;
δT is the increment of kinetic energy, and δAd is the increment of internal potential
energy (i.e. deformation work).

32 Multi-Arm Cooperating Robots



33

For small displacements of the elastic system, or for the displacements in the
region of a linear relationship between the stress and dilatation, the deformation
work is a homogeneous quadratic form of external forces and ‘statically unknown’
forces Fi (the law of superposition holds)

Ad = U = 1

2

n∑
i=1

n∑
j=1

αijFiFj = FT Wf F (14)

or of the displacements u

Ad = U = 1

2

n∑
i=1

n∑
j=1

βij uiuj = uT Ku, (15)

where Wf is the matrix of the so-called ‘Maxwell’s displacement influence num-
bers’ αij (flexibility matrix), which represent the projection of the displacement of
the acting point of the force Fi onto the direction of this force due to the unit force
Fj ; K is the stiffness matrix or the matrix of ‘Maxwell’s dual (reciprocal) coef-
ficients’ βij , representing the force that, by acting at the point j , produces a unit
displacement at the point i, whereby the displacements at all other points equal
zero, and ui are the corresponding displacements (deflections).

According to the first and second Castigliano principles, the displacements and
forces are determined as the derivative of deformation work with respect to forces
and displacements

ui =
n∑

k=1

αikFk = ∂Ad

∂Fi

= W
f

i F, (16)

Fi =
n∑

k=1

βikuk = ∂Ad

∂ui

= Kiu, (17)

where W
f

i and Ki are the ith rows of the matrices Wf and K, respectively.
Let us notice that the deformation work and deflections are inversely propor-

tional to the elasticity module.
By comparing what was said above with the attempts to solve the problem of

redundancy in cooperative work, it can be said that the criterion (∗) given in [12] is
most similar to the expression for deformation work. However, it does not represent
the deformation work itself, but an arbitrarily chosen criterion with a matrix of
weighting elements and not of ‘Maxwell’s displacement influence numbers’. Even
if that criterion would represent deformation work, it could be correctly applied
only for static conditions of the cooperative system, and even then the forces at
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the contact of manipulator tips and object, as the grid internal forces could not be
determined according to (∗∗) [12], but according to (16).

On the basis of (16) and (17), we can derive several important conclusions.
Between displacements and forces, there exists a unique functional depen-

dence. The relation is linear for small displacements and displacements that are
in the area of the linear relation between the stress and dilatation. If a prescribed
force Fi is to be realized, it is necessary to realize the corresponding displacements
(deflections), i.e. the grid position (of the cooperative system) with respect to the
unloaded system, i.e. with respect to the position corresponding to the contact for-
mation, for which the contact forces of the manipulator tips and object are equal
to zero. If the force increment is to be sought, it would be necessary to real-
ize displacement increments with respect to the state for which displacements are
considered. In other words, force control (at the contact too) is realized through
position control, whereby potential force measurement allows us to find the grid
position to which the measured force corresponds. From the point of view of tech-
nical realization, there appear the problem of precise control of displacements at
the micrometer level, which are usually in the domain of the hysteresis of the posi-
tion of regulation circuits. Such work is manifested as position oscillations in the
domain of hysteresis and of the corresponding force oscillations. All this imposes
the need for actuators of extremely high quality. In order to overcome this, it is
convenient to have the terms with large displacements in the force expression (17),
so that their influence is dominant in the force calculation, which is possible to
realize provided the grid is made of a part that is very rigid and a part that is very
elastic.

The influence coefficients αij are products of the dimensionless part (which
is a function that comes out from the geometric configuration of grid nodes and
system of forces) and the dimensional part (dimension [position/force]) that is in-
versely proportional to the elasticity module of the material and characteristics of
the cross-section of the load gearing. In a similar way, we can also decompose the
coefficients βij , whereby the dimensional part will be proportional to the elasticity
module. Hence, it can be concluded that the values of forces and displacements
can also be influenced by the appropriate choice of geometric configuration of the
grid and a suitable choice of characteristics of the material and cross-section of the
load gearing. In the case of a cooperative system, the sites of load action are given
in advance, and the geometric arrangement of nodes is changeable. The choice of
the geometric arrangement of nodes can be optimized so that, for example, force
sensitivity at the contact of the manipulator tip and object to the internal coordi-
nates is maximal, or that in no case does there arise the need for extremely small
changes of internal coordinates.

During the cooperative system motion, the derivatives of coordinates are differ-
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ent from zero, so that there will appear forces dependent on these derivatives. This
means that, unlike the static conditions, we cannot exclude from consideration the
change of kinetic energy δT and dissipation (if it exists) as a function of velocity.

For a consistent description of the behavior of cooperative system motion, like
for the one at rest, it is also necessary to form a correct set of assumptions on elastic
properties of one part or entire cooperative system and characteristics of the contact
of manipulator tips and object (stiff, hinged, spheric, point/surface, with/without
friction). The adopted set of assumptions defines the geometric conditions for
determining static/dynamic unknown quantities and, thus, the task of cooperative
manipulation is classified.

Depending on the adopted assumptions, theoretical expressions of higher or
lower complexity will be obtained for the kinetic energy T and deformation work
Ad = 
 (potential energy). On the basis of them, the kinetic potential (Lagrange
function) is formed, L = T − 
. It is important to notice that, in the coopera-
tive system motion, all the conditions coming from the system’s elastic properties
must be simultaneously satisfied and all basic principles concerning the motion of
a mechanical system must retain their validity. Because of that, the motion equa-
tions ought to be obtained by using some fundamental variational principle (e.g.
Hamilton’s integral principle or d’Alembert’s differential principle) in the form of
Lagrange, Newton, or Hamilton equations. In the resulting equations of motion,
according to the Castigliano principles, elastic force is a derivative of deforma-
tion work with respect to displacement and, in each moment of motion, must be
obtainable from the principle of minimal potential energy for the elastic system
experiencing the action of the resulting external, inertial, and other elastic system
loads existing at that moment.

In a number of works, the elastic properties of the manipulators and/or object
have been considered without a clear and precise definition of the above physical
properties, and without recognizing the need for introducing the elastic properties
of the cooperative system or of manipulators in contact with the environment, but
based only on profound research intuition. The models were formed for simple
examples and for the cases of motion of an elastic system around the unloaded
state of the elastic cooperative system [1–3, 25, 26]. In [4], an analysis was made
of the cooperative system general motion but the resulting description of motion
contained twice as many state quantities than was necessary.

In practical tasks, the problem of force uncertainty is solved in a simple way by
considering both the manipulator and object as rigid bodies, whereas the connec-
tions of the object and manipulator are considered as an elastic body or a system
of such bodies whose characteristics can be considered only in one direction and,
if possible, without damping and with the link mass that is much smaller than the
object mass. In that case, spatial inertial forces are reduced to the resulting inertial
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force of the rigid body with the acting point at the object MC, so that the object
and the links can be considered as a grid under the action of a system of exter-
nal forces (contact forces and object inertia force). All the volume integrals that
appear in the description of kinetic and potential energy of elastic body are then
transformed into definite integrals with the boundaries from the related straight
line. Assuming the oscillation law as a sum of the products of orthogonal func-
tions and generalized coordinates, kinetic and potential energies can be presented
as homogeneous quadratic forms of these coordinates. For example, potential en-
ergy can be presented in the form (15), wherefrom differential equations of the
behavior are obtained in the form of second-order Lagrange equations.

If, however, the mass of the link and its damping cannot be neglected, the
corresponding forces produced should be projected onto the directions of the elas-
tic forces, then superimposed with the elastic forces, to finally apply d’Alembert
principle [1–3]. In other words, in practical technical applications, upon all these
neglectings, the task is reduced to the use of the d’Alembert principle for solv-
ing dynamic tasks by static methods, constantly checking the equilibrium of active
forces, forces of elastic interconnections (resistance of the supports/connections)
and inertia forces during the motion.

In technical practice, for example, the airplane is considered as an elastic sys-
tem under the action of external forces, the model being closest to the model of
an object involved in cooperative work. In [27], the models were given for such a
system. The simplest model is based on decomposing the plane into partial elasti-
cally interconnected masses, the so-called lumped-mass model. The other model,
the so-called distributed-mass model, uses classical elasticity theory, whereby the
plane is approximated by a set of elementary finite elements and takes a finite
number of wave states (tones). The assumption on the elastic connection of the
manipulators and object was adopted in modeling the one-dimensional horizon-
tal translatory motion of the object [1–3]. However, the necessity of introducing
such assumptions for resolving force uncertainty has not been explained and nor
has there been presented a modeling methodology for such a simple example that
could be potentially extended into the general case of cooperative system motion.

Therefore, if we want to abandon the assumption about rigid objects, rigid
manipulators and their non-elastic contact, and retain the assumption about stiff
contact, the problem of force uncertainty would be resolved, and kinematic un-
certainty could appear only on the manipulators. The position vectors of contact
points in the case of elastic contact become independent quantities so that we can
speak of redundant manipulators, i.e. about the relationship between the number
of DOFs of motion of the manipulators and the number of dimensions of free work
space. If, however, kinematic uncertainty of the manipulators still appear, it is most
suitable to overcome in a way similar to that nature has done with living beings.
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If possible, one should choose manipulators whose number of DOFs is equal to
the number of DOFs of the object’s motion. Then there exists a unique kinematic
relationship between the position and its derivatives for the tips of the manipulators
and internal coordinates. If, however, this is not possible, then the kinematic chain
should be decomposed into parts, the number of which is equal to the number of
DOFs of the object motion. For each such part, it is necessary to define the work
space in which a unique relationship will exist between the position of the decom-
posed part and points of the work space. In that space, it is necessary to choose,
according to a certain criterion, the most favorable point or area for the tip of the
decomposed part. Further on, the decomposed subspaces should be regarded as
links of a fictitious manipulator, resolving kinematic relationship for the given sub-
spaces. Then, within the given subspace, the relations are established between the
subspace coordinates and internal coordinates of the concrete links. If the move-
ments of the links are small, then their configuration should be set out so that they
form a smooth curve (as with living beings). The analysis of possible ways of
solving kinematic uncertainty of manipulators is not going to be considered in this
chapter.

3.3 Illustration of the Correct Modeling Procedure

To illustrate the correct modeling procedure, we will consider an example that was
dealt with in [1] and [4]. We will slightly modify the example by altering the
axis along which the motion takes place. Namely, we will consider the object mo-
tion between the thumb and index finger as manipulators, along a vertical straight
line, so that the object weight and manipulator reactions will lie on a straight line
that is collinear to the gravitational acceleration. The alteration has been made
to clearly define the characteristics under the conditions of rest of the cooperative
system composed of two non-redundant manipulators and object. It is assumed
that both the object and manipulators are rigid. Elastic interconnections will be
placed between the manipulators and object, whereby the mass of these elastic
interconnections is much smaller than that of the object, so it will be neglected.
The damping properties are neglected, too. The adopted model is presented in
Figure 8.

We shall first compose the model of the elastic system made of elastic inter-
connections and object. Applying displacement method [6, 7, 23, 24] we obtain

(a) y1 	= 0, y2 = y3 = 0 ⇒ F1 = cpy1∑
F = 0 ⇒ F1 + F2 = 0, F3 = 0

⇒ F1 = −F2, F3 = 0,
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Figure 8. Linear elastic system

(b) y2 	= 0, y1 = y3 = 0 ⇒ F2 = (cp + ck)y2

⇒ F1 = −cpy2

⇒ F3 = −cky2,

(18)

(c) y3 	= 0, y1 = y2 = 0 ⇒ F3 = cky3

⇒ F2 = −F3 = −cky3

⇒ F1 = 0.

where cp, ck are the stiffnesses of the elastic interconnections, F1, F2, F3 are the
forces acting at the nodes 1, 2, and 3 of the elastic system, whose respective dis-
placements are y1, y2, y3. The displacements measured with respect to the geomet-
ric figure formed in the moment of establishing the manipulator-object contact, i.e.
for the conditions under which forces at the manipulator-object contact are equal
to zero (state 0).

If all the displacements take place simultaneously (y1 	= 0, y2 	= 0, y3 	= 0),
then the superimposition yields the equations of force equilibrium for each node

F1 = cpy1 −cpy2 = −F2 − F3,

F2 = −cpy1 +(cp + ck)y2 −cky3 = −F1 − F3,

F3 = −cky2 +cky3 = −F1 − F2, (19)
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or, in matrix form,

Fe =
⎡
⎣F1

F2

F3

⎤
⎦ =

⎡
⎣ cp −cp 0

−cp cp + ck −ck

0 −ck ck

⎤
⎦ ·
⎡
⎣ y1

y2

y3

⎤
⎦ = Ky,

K = KT , rank K = 2, (20)

from which the forces are easily expressed as a function of displacements.
As det K = 0, rank K = 2, the system is kinematically unstable (mobile), so

that the two displacements can be expressed as a function of the third one and of
the acting forces. According to the theory of elastic systems, the matrix K contains
the modes of rigid body motion. Expression (20) defines the relationship between
the forces at m external nodes and one force at the internal node of the elastic
system, where m = 2 is the number of manipulators. This expression defines the
relationship between 2 · (m+ 1) (2 · (2 + 1) = 6) quantities for the known constant
stiffness matrix K = const, of which m + 1 (2 + 1 = 3) are the quantities of
displacement of nodes and m + 1 (2 + 1 = 3) are the forces acting at the nodes of
the elastic system. The origin of m+1 forces F1, F2 and F3 is not essential (external
forces transferred to the contact, gravitational, inertial, damping, etc, forces). It is
essential to know that they, being the resultant acting forces, must act at the nodes
of the elastic system to produce m + 1 displacements, y1, y2 and y3.

It is necessary to make a distinction between the resultant forces acting on the
elastic system and the external forces transferred to the contact, as of one of their
components. Any resultant force acting on the elastic system at each node is bal-
anced by the elastic force formed by the displacement of the elastic structure. This
means that these forces are of the same intensity but acting in the opposite direc-
tions. Hence, the resultant forces acting on the elastic system will be called elastic
forces. In the sections below, the elastic forces will be marked with a subscript ‘e’
(e.g. the elastic force at the ith node will be Fei). The external forces transferred to
the contact will be termed contact forces and they will bear the subscript ‘c’ (e.g.
the force at the ith node will be Fci).

Let A be part of the matrix K for which rank A = 2. Then (20) can be trans-
formed to (

Fs

Fv

)
=
(

A b

c d

)
·
(

ys

yv

)
,

Fs = Ays + byv ⇒ ys = A−1Fs − A−1byv = A−1Fs|yv=0,

Fv = cys + dyv ⇒ Fv =
rank A∑
i=1

Fsi + (d − cA−1b)yv =
rank A∑
i=1

Fsi, (21)
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where Fs is the vector of any two selected forces; ys are the corresponding dis-
placements at the points of action of the forces Fs ; Fv and yv are the remaining
forces and displacement, respectively, while b, c, d are the corresponding vectors
of the reduced matrix. In this example one can make three choices of forces:
Fs = Fc = col(F1, F3), Fs = col(F1, F2), Fs = col(F2, F3) and three corre-
sponding displacements, yv = y2, yv = y3, and yv = y1, to define an elastic
system in space. These properties of the elastic system represent the leadership
principle in cooperative manipulation. The leader is that part of the cooperative
system that defines the attitude of the elastic system in space. In this example, this
can be either the object (yv = y2) or one of the manipulators (yv = y3 or yv = y1).

It should be noted that in order to determine the position of elastic system in
space, it is necessary to provide (m+1)−rank K (= 1) displacements of the elastic
system nodes. This means that we can take as a known displacement of not only
one node but of several nodes of the complex elastic system.

Let the displacement of the tip of the first (leader) manipulator be given, yv =
y1. Displacement of the mass center of the solid object y2 and the displacement
of the tip of the second (slave) manipulator y3 are determined as a function of the
displacement y1 and forces F1 and F2 according to (21). The force F2 is equal to
the sum of the weight and inertia of the object mass F2 = m(g + ÿ2) (provided ÿ2

is the absolute acceleration).⎡
⎣F1

F2

F3

⎤
⎦ =

⎡
⎣ cp −cp 0

−cp cp + ck −ck

0 −ck ck

⎤
⎦ ·
⎡
⎣ y1

y2

y3

⎤
⎦ , (22)

(
y2

y3

)
= A−1

(
F2

F3

)
− A−1by1

=
(

cp + ck −ck

−ck ck

)−1 (
F2

F3

)
−
(

cp + ck −ck

−ck ck

)−1 (−cp

0

)
y1,

(
y2

y3

)
=

⎛
⎜⎝

1

cp

1

cp

1

cp

1

cp

+ 1

ck

⎞
⎟⎠(F2

F3

)
+
(

1
1

)
y1

= Af

(
F2

F3

)
+
(

1
1

)
y1, Af = A−1. (23)

In the state of rest F2 = mg, and the first manipulator (leader) does not announce
the motion requirement (displacement yv = y1 = y0

1 = const ). The first manip-
ulator tip represents support and the system is kinematically stable (fixed), so that
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the displacements are

(
y2

y3

)
=
⎛
⎜⎝

1

cp

1

cp

1

cp

1

cp

+ 1

ck

⎞
⎟⎠(F2

F3

)
+
(

1
1

)
y0

1 = Af

(
F2

F3

)
+
(

1
1

)
y0

1 .

From this simple example, we can derive the following conclusions.
To determine contact forces it is necessary to assume the existence of elastic

interconnections. In order to calculate the forces, one needs to know the character-
istics of the elastic connections and displacements of the elastic connections and
object MC with respect to the state when the contact of the object and manipulators
is just established. The values of displacements of nodes can be determined if the
displacement of any node and the values of acting forces at the other nodes are
known. The known values can be obtained either by measurement or by calcula-
tion.

Kinematically stable elastic systems are the subject matter of the theory of
materials resistance, theory of constructions and theory of elasticity. The non-
singular matrix A is adopted as a stiffness matrix for kinematically stable elastic
systems. Its inverse matrix is the flexibility matrix Af = A−1 [6, 7, 23, 24]. A
basic consequence of this assumption is that a kinematically stable elastic system
is characterized by the existence of a unique relation between its displacements on
the one hand and external and internal forces on the other.

An essential characteristic of the cooperative work is that the elastic system
is not kinematically stable. This means that elastic displacements of all nodes in
the elastic system motion change simultaneously. A consequence of kinematic
instability is the singularity of the system’s stiffness matrix K, which means that
this matrix also contains modes of the rigid body motion.

Measurements of the displacements of contact points can be carried out in an
indirect way, i.e. by the calculation based on the known internal coordinates of
the manipulators. Displacement of the object MC is not suitable for measurement
and it is better to do the calculations according to (23). This expression shows
that if the number of DOFs of object motion is l(= 1) and the number of nodes at
which forces are acting is m + 1 (= 2 + 1 = 3), then, on the basis of the known
l displacements, one can calculate the displacements of the rest (m + 1) · l − l

(= 3 − 1 = 2) nodes. At that, it is also necessary to know the forces for which
the displacements at the nodes are determined. Contact forces are easily measured
with the aid of sensors built-in in the tips of the manipulators. If the measured
quantity is given the superscript ‘M’, the measured contact force F3 will be FM

3 .
The force at the object MC cannot be measured but it can be calculated on the
basis of the measured acceleration of the MC (g + ÿ2))

M and object mass. The
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mass can be determined by measuring the displacement ya
1 of the node 1 for static

conditions (a), for which y1 	= 0 and y2 = y3 = 0. Based on these conditions
mM = −(cp/g)ya

1 , so that the force at the MC is determined by the expression

F s
2 = −cp

g
ya

1 (g + ÿ2)
M.

By introducing the known (+)P , measured (+)M , and calculated (+)S quantities
into (23) one can calculate the displacements of (m + 1) · l − l (= 2) nodes

(
y2

y3

)S

=
⎛
⎜⎝

1

cp

1

cp

1

cp

1

cp

+ 1

ck

⎞
⎟⎠

P (
FM

2
FS

3

)
+
(

1
1

)
yP

1 ,

i.e. on the basis of knowing the acceleration at the object MC, contact force at
one node and displacement at the other, we can determine the displacements at the
other two nodes. By introducing the calculated displacements into (22), we can
determine the force at the first node, F1, which, (like with node 2), because of the
absence of mass and connection damping, is equal to contact force. It is easy to
check whether the replacement of the last expression in (22) yields the identity
(F = F ∈ Rm+1(=3)), i.e. whether the procedure is correct. Analogous proce-
dure could also be employed for more complex examples under the assumption of
motion realization as in the considered example.

A case interesting for technical practice appears when the displacements of ma-
nipulators tips and forces at them are known (or measured), as well as the distance
between the tips of the manipulators. Let us suppose that, according to the static
conditions (a) from (18), the object mass has been determined and that the rigidity
of the manipulator-object connection was known in advance. For the determina-
tion of all 2(m + 1) quantities in the expression (20) (i.e. (21)), for determining
m + 1 connections, it is necessary to know (measure) m + 1 (= 3) quantities.
The simplest case for calculation is when we know m + 1 (= 3) displacements of
the elastic system nodes. If the displacement of the object MC is not measured,
and since det K = 0, then m + 1 − l (= 2) measured quantities should be dis-
placements/forces and l-measured quantities should be forces/displacements at the
contact of the manipulators and object. Let us suppose that l = 1 contact forces
(Fv) and (m + 1) · l − l = 2 displacements of contact points (ys) have been mea-
sured. Then the number of displacements that were not measured corresponds to
the number of DOFs of the object motion. The selection of l-measured contact
forces should be carried out so that, after introducing the measured quantities into
(20) or (21), one obtains a non-homogeneous system of equations from which it is
possible to uniquely obtain the remaining l-unmeasured displacements, based on

42 Multi-Arm Cooperating Robots



43

the overall displacements and remaining (m+ 1)l − l unmeasured forces. This can
be done provided the rank of the matrix of the obtained non-homogeneous system
is equal to l. For example, let yM

1 , yM
3 and FM

1 be measured and let y2, F2 and F3

be determined. From (22), (i.e. from (19)) we have

cpy2 = cpyM
1 + 0 · yM

3 − FM
1 ⇒ yS

2 = yM
1 − FM

1

cp

.

After determining the l non-measured displacements, along with the (m + 1)l − l-
measured ones, the overall displacements of all the nodes are known. By intro-
ducing them into (22), we also have all the forces at both the contact points and
object’s MC. On the basis of the determined forces at the MC and object mass we
can determine acceleration at the object MC.

In the above analysis, we assumed that all the motions are generated around
an immobile figure, known in advance, formed at contact points at the moment
of contact formation, which has been considered in [1]. If the manipulators move
together with the object, the problem becomes more complex. In order to explain
these phenomena, a complete mathematical model has been derived for the object
motion along a vertical straight line to which belong all the contact points, as well
as the object’s MC. Also, it is supposed that breaking of connections cannot take
place for any value of displacements of contact points 1 and 3 (tips of the ma-
nipulators are glued to the object). Thus, the analysis of the friction forces and
characteristics of different types of contact is avoided.

In the example considered, the displacements y1, y2 and y2 are independent
quantities (generalized coordinates), so that Equation (20) can be derived using the
Lagrange equations.

Kinetic energy is given by the expression

T = 1

2
mẎ 2

2 = 1

2
m(Ẏ20 + ẏ2)

2 = 1

2
m(Ẏ10 + ẏ2)

2, (24)

where Ẏ2 is the absolute velocity of the object MC; Ẏ20, Y10 are the velocities of
the points at which the object MC and contact point 1 would be found if the elastic
system moved as a rigid body, or as a system with the displacements realized in
the moment of contact formation (fci = 0, i = 1, 2), and ẏ2 is the MC velocity
with respect to the state of contact formation (Figure 9). If the masses of elastic
interconnections were not neglected, the total kinetic energy would be equal to the
sum of kinetic energies of elastic interconnections and of the manipulated object,
given by the expression (24).

When fci = 0, i = 1, 2, no change will occur in the geometric figure formed
by the contact points 1, 2 and 3, and determined by the node coordinates y10, y20
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Figure 9. Approximating a linear elastic system

and y30 (si = const, i = 1, 2, 3), so that, in accordance with the designations in
Figure 9, we have

Y20 = Y10 + l0
1 + l∗2 = Y10 + s1,

Y30 = Y10 + l0
1 + l0

2 + l0
3 = Y10 + s2,

Y30 = Y20 + l0
2 + l0

3 − l∗2 = Y20 + s3,

i.e.⎡
⎣−1 1 0

−1 0 1
0 −1 1

⎤
⎦
⎡
⎣Y10

Y20

Y30

⎤
⎦ =

⎡
⎣ s1

s2

s3

⎤
⎦⇒ Ẏ10 = Ẏ20 = Ẏ30, Ÿ10 = Ÿ20 = Ÿ30.

(25)
The coordinates and derivatives of coordinates of the position vectors of the acting
points of the active forces F1, weight mg, and F3 are

Yi = Yi0 + yi ⇒ Ẏi = Ẏi0 + ẏi ⇒ Ÿi = Ÿi0 + ÿi , i = 1, 2, 3, (26)

from which one obtains the relative displacements of the elastic system nodes �y12

and �y23:

y1 − y2 = �y12 = Y1 − Y2 + Y20 − Y10 = Y1 − Y2 + s1

=
(

1 − Y10 − Y20

||Y1 − Y2||
)

(Y1 − Y2),
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y2 − y3 = �y23 = Y2 − Y3 + Y30 − Y20 = Y2 − Y3 + s3

=
(

1 − Y20 − Y30

||Y2 − Y3||
)

(Y2 − Y3), (27)

because (Yi −Yj)/(||Yi −Yj ||), (i, j) = (1, 2), (2, 3) is the unit vector along which
the motion is performed.

It is assumed that the potential energy of elastic system 
 is the energy of its
deformation 
 = Ad . Deformation energy is the accumulated energy of the elastic
structure, i.e. of the elastic system (springs). This energy is defined as the overall
work of the internal forces Fij on their entire path, i.e. by the displacements yij . It
is important to emphasize that these displacements are measured from the state of
the elastic system in which displacements are equal to zero (state 0 of the elastic
system). The deformation energy is defined by the expression


 = 1

2
F12�y12 + 1

2
F23�y23 = 1

2
cp�y2

12 + 1

2
ck�y2

23

= 1

2
cp(y1 − y2)

2 + 1

2
ck(y2 − y3)

2

= 1

2
cp(Y1 − Y2 + s1)

2 + 1

2
ck(Y2 − Y3 + s3)

2

= 1

2
π12(Y1 − Y2)

2 + 1

2
π23(Y2 − Y3)

2, (28)

where the spring forces (internal forces of the elastic system) are given by the
expressions

F12 = cp�y12 = cp(y1 − y2) = cp(Y1 − Y2 + s1)

= cp

(
1 − Y10 − Y20

||Y1 − Y2||
)

(Y1 − Y2),

F23 = ck�y23 = ck(y2 − y3) = ck(Y2 − Y3 + s3)

(29)= ck

(
1 − Y20 − Y30

||Y2 − Y3||
)

(Y2 − Y3),

whereas the generalized stiffnesses are defined by

π12 = π21 = cp

(
1 + s1

||Y1 − Y2||
)2

= cp

(
1 − Y10 − Y20

||Y1 − Y2||
)2

,

π23 = π23 = ck

(
1 + s3

||Y2 − Y3||
)2

= ck

(
1 − Y20 − Y30

||Y2 − Y3||
)2

. (30)
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It is important to notice that generalized stiffnesses are products of two factors.
The first is the stiffness of the elastic structure (springs cp and ck) that can be mea-
sured or determined by one of the methods based on the considering the properties
of the elastic system and its local coordinate frame with respect to the fixed un-
loaded state. The other factor defines the relation by which the stiffness from the
local coordinate frame is transposed into the absolute coordinate frame using the
information about the instantaneous absolute coordinates Y1 − Y2, Y2 − Y3 and in-
formation about the known state of the unloaded elastic system Y10−Y20, Y20−Y30.

In a geometrical sense, potential (deformation) energy represents the sum of
the areas of the right-angle triangles. The number of triangles is equal to the num-
ber of internal forces, i.e. relative displacements of the elastic system nodes. In
each triangle, the cathetuses make one internal force and the corresponding rela-
tive displacement of the elastic system node in the direction of action of that force.

In matrix form, according with (27) and (28), the potential (deformation) en-
ergy is


 = 1

2

[
y1 − y2

y2 − y3

]T [
cp 0
0 ck

][
y1 − y2

y2 − y3

]
= 1

2
εT
y πεεy,

εy = col(y12, y23), πε = diag(cp, ck),


 = 1

2

[
Y1 − Y2

Y2 − Y3

]T [
π12 0
0 π23

] [
Y1 − Y2

Y2 − Y3

]
= 1

2
εT πεε,

ε = ε(Y ) = col(y12(Y ), y23(Y )),

(31)


 = 1

2

⎡
⎣ y1

y2

y3

⎤
⎦

T ⎡
⎣ cp −cp 0

−cp cp + ck −ck

0 −ck ck

⎤
⎦ ·
⎡
⎣ y1

y2

y3

⎤
⎦ = 1

2
yT Ky,

y = col(y1, y2, y3), (32)


 = 1

2

⎡
⎣ Y1

Y2

Y3

⎤
⎦

T ⎡
⎣ π12 −π12 0

−π12 π12 + π23 −π23

0 −π23 π23

⎤
⎦ ·
⎡
⎣Y1

Y2

Y3

⎤
⎦ = 1

2
Y T π(Y )Y,

Y = col(Y1, Y2, Y3). (33)

According to the Castigliano principle (17), elastic forces at the elastic system
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nodes given in terms of displacements y, are

F = ∂


∂y
= Ky =

⎡
⎣ cp −cp 0

−cp cp + ck −ck

0 −ck ck

⎤
⎦ ·
⎡
⎣ y1

y2

y3

⎤
⎦

=
⎡
⎣ cpy1 − cpy2

−cpy1 + (cp + ck)y2 − cky3

−cky2 + cky3

⎤
⎦ =

⎡
⎣F1

F2

F3

⎤
⎦ . (34)

The same forces are obtainable by using the absolute coordinates. By applying
the Castigliano principle in expression (28), the potential energy expressed with
the aid of absolute coordinates will be

F = ∂


∂Y
=
⎡
⎣ cp(Y1 − Y2 + s1)

−cpY1 + (cp + ck)Y2 − ckY3 − cps1 + cks3

ck(Y3 − Y2 − s3)

⎤
⎦

=
⎡
⎣ cpy1 − cpy2

−cpy1 + (cp + ck)y2 − cky3

−cky2 + cky3

⎤
⎦ =

⎡
⎣F1

F2

F3

⎤
⎦ . (35)

If the potential energy is expressed in matrix form (33), then the elastic forces at
the nodes are defined by the following expression:

F = ∂


∂Y
= 1

2

∂(Y T π̄(Y )Y )

∂Y
+ π(Y )Y, (36)

where ∂(Y T π̄Y )/∂Y is the vector of the derivative of the quadratic form (scalar)
Y T πY with respect to the vector Y , whereby the macron denotes that the partial
derivative is taken over the matrix π . According to (36), the elastic force F1 at the
first node will be determined by the expression

F1 = ∂


∂Y1
= 1

2
Y T ∂π̄(Y )

∂Y1
Y + π1st_row(Y )Y,

where π1st_row(Y ) denotes the first row of the matrix π(Y ).
The generalized forces are defined by the expressions

Q1 = F1
∂Y1

∂Y1
= F1

∂Y1

∂y1

∣∣∣∣
Y1=λ1Y10=λ2y1

= F1,

Q2 = (−mg)
∂Y2

∂Y2
= (−mg)

∂Y2

∂y2

∣∣∣∣
Y2=λ1Y20=λ2y2

= −mg,

Q3 = F3
∂Y3

∂Y3
= F3

∂Y3

∂y3

∣∣∣∣
Y3=λ1Y30=λ2y3

= F3. (37)
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The kinetic potential is

L = T − 
 = 1

2
m(Ẏ10 + ẏ2)

2 − 1

2
cp(y1 − y2)

2 − 1

2
ck(y2 − y3)

2 (38)

= 1

2
m(Ẏ10 + ẏ2)

2 − 1

2
cp(Y1 − Y2 + s1)

2 − 1

2
ck(Y2 − Y3 + s3)

2,

so that the derivatives of the kinetic potential are

∂L

∂Ẏ1
= ∂L

∂ẏ1
= 0 ⇒ d

dt

∂L

∂Ẏ1
= 0,

∂L

∂Ẏ2
= ∂L

∂ẏ2
= mẎ2 = m(Ẏ10 + ẏ2) ⇒ d

dt

∂L

∂Ẏ2
= mŸ2 = mŸ10 + mÿ2,

∂L

∂Ẏ3
= ∂L

∂ẏ3
= 0 ⇒ d

dt

∂L

∂Ẏ3
= 0,

∂L

∂Y1
= −cp(Y1 − Y2 + s1) = −cp(y1 − y2) = ∂L

∂y1
,

∂L

∂Y2
= cp(Y1 − Y2 + s1) − ck(Y2 − Y3 + s3)

= cp(y1 − y2) − ck(y2 − y3) = ∂L

∂y2
,

∂L

∂Y3
= ck(Y2 − Y3 + s3) = ck(y2 − y3) = ∂L

∂y3
.

Such simple relations are obtained only because the fact that only translatory mo-
tion is considered, taking the example in which position vectors have only one
coordinate. This allows us to decompose in a simple way the motions that would
correspond to the motion of elastic system as a rigid body and the motion at defor-
mation. In the case of pure translation, we have

d

dt

∂L

∂Ẏ2
= d

dt

∂L

∂ẏ2
= mŸ10 + mÿ2 = f20(Ÿ10) + f2(ÿ2)|Ÿ20=Ÿ10

,

∂L

∂Yi

= ∂L

∂yi

,
∂L

∂Yi

= f̄i0(Y0) + f̄i(Y ), Y0 = col(Y10, Y30, Y30), i = 1, 2, 3.

(39)
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In the case of a rotational motion, both the kinetic and potential energies are non-
linear functions of the absolute coordinates. Hence, the decomposition of the mo-
tion can be carried out without essential loss in accuracy in the dynamics descrip-
tion. The reason lies in the fact that

d

dt

∂L

∂Ẏi

= d

dt

∂L

∂(Ẏi0 + ẏi )
	= fi0(Ÿi0) + fi(ÿi),

∂L

∂Yi

= ∂L

∂(Yi0 + yi)
	= f̄i0(Y0) + f̄i(y), i = 1, 2, 3, (40)

so that the question arises as to the correctness of the results obtained in [4].
As damping properties are neglected, their dissipation energy D is equal to

zero, D = 0.
After introducing the obtained expressions into the Lagrange equations

d

dt

∂T

∂Ẏi

− ∂T

∂Yi

− ∂D

∂Ẏi

+ ∂


∂Yi

= Qi, i = 1, 2, 3,

d

dt

∂L

∂Ẏi

− ∂L

∂Yi

= Qi, L = T − 
, D = 0, i = 1, 2, 3, (41)

we obtain a model of an elastic system in the coordinates that characterize de-
formation y1, y2, y3 and coordinates characterizing the motion of elastic system
described as a rigid body Y10 described by the expressions

cpy1 −cpy2 = F1,

mÿ2 −cpy1 +(cp + ck)y2 −cky3 = − m(g + Ÿ10),

−cky2 +cky3 = F3, (42)

or, in absolute coordinates,

Ÿ2 + cp + ck

m
Y2 = cp

m
Y1 + ck

m
Y3 + cp

m
s1 − ck

m
s3 − g,

F1 = cp(Y1 − Y2 + s1),

F2 = −mŸ2 − mg = −cpY1 + (cp + ck)Y2 − ckY3 − cps1 + cks3,

F3 = ck(Y3 − Y2 − s3). (43)

By its form, model (42) is identical to expression (20) for the description of an
elastic system under static conditions, whereby in this case the force at the MC is
defined as

F2 = −m(g + Ÿ10 + ÿ2) = −mg − mŸ2, (44)
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i.e. the dependence F = ∂
/∂y = Ky has been fully preserved. Thus, the prin-
ciple of the minimum of deformation (potential) energy (13) is preserved at any
moment, which means that the quasi-static conditions of elastic system have been
preserved at any moment of the motion.

Equations (25), (26) and (42) or (43) determine in full the dynamic model of
the elastic system composed of elastic interconnections and object. The drives for
the manipulators are driving torques at joints, so that the output quantities of the
manipulators are positions of contact points 1 and 3. Hence, the input quantities to
the model of the elastic system are instantaneous absolute positions of the contact
points with the manipulators Y1 and Y3. If the masses of elastic interconnections
are neglected, the state quantities of the elastic system are identical to the state
quantities of the manipulated object. In that case, the state quantities are the po-
sition and velocity of the object MC Y2 and Ẏ2. The elastic forces are at the same
time the contact forces F1 = −fc1 and F3 = −fc2 (fc1 and fc2 are the forces at
the tips of the manipulators) and can be adopted as output quantities of the elas-
tic system. However, problems appear if the elastic system model is presented in
the form (42). The number of state quantities (positions and velocities) is exactly
twice the number of DOFs of the object motion. That number of state quantities is
necessary and sufficient for the description of the overall object dynamics. In (42),
it is convenient to select y2 and ẏ2 as state quantities, but then the acceleration
Ÿ10 = Ÿ20 remains undetermined. As the number of state quantities cannot exceed
two, the quantities related to the motion of unloaded elastic system as a rigid body
(here, the acceleration is Ÿ10 = Ÿ20) have to be taken as known or measured, as
was done in [4].

Let us assume that the manipulators are rigid and non-redundant and let their
contact with the manipulated object be rigid and stiff. Let the mathematical model
of manipulators be given by Hi(qi)q̈i + hi(qi, q̇i ) = τi + J T

i fci and let the math-
ematical form of kinematic relationship between the internal and external coordi-
nates be Yi = �i(qi) ∈ R6×1, i = 1, . . . , m (the complete mathematical model of
the manipulators is given in Section 4.8 and kinematic relations in Section 4.9).

A correct model of the cooperative manipulation, without any uncertainty, is
determined by the elastic system model (43), model of manipulators, and kinematic
relationships between the internal and external coordinates, with the remark that
fc1 = −F1 and fc2 = −F3. A block diagram of this model is given in Figure 10.

From the block diagram it is evident that, for solving the cooperative system
dynamics, it is necessary to know:

• model parameters (e.g. mass of the manipulated object m, stiffnesses
cp, ck, g, . . .),

• distances s1 and s3 between the nodes 1–2 and 2–3 of the elastic system in
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Figure 10: Block diagram of the model of a cooperative system without force
uncertainty

its unloaded state, in which all displacements are zero, and

• input quantities represented by the driving torques τ1 and τ2.

Therefore, the input to the cooperative system model is only the driving
torques, as in the reality, and all other quantities are uniquely determined with-
out any uncertainty.

3.4 Simulation of the Motion of a Linear Cooperative System

In order to demonstrate the correctness of the modeling process, we simulated the
‘linear cooperative system’ dealt with in [1] and [4]. The model was expanded by
introducing dissipative properties of the elastic interconnections.

The dissipation function was taken in the form

D = −1

2
dp(ẏ1 − ẏ2)

2 − 1

2
dk(ẏ2 − ẏ3)

2 = −1

2
dp(Ẏ1 − Ẏ2)

2 − 1

2
dk(Y2 − Y3)

2.
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To describe the motion in the gripping phase, it is convenient to use the model of
the elastic system described with the aid of coordinates with respect to the deviation
y from the unloaded state (if it is fixed, then Ÿ10 = 0). The elastic system model in
the coordinates with respect to the deviation from the unloaded state 0 is

ÿ2 + (dp + dk)

m
ẏ2 + (cp + ck)

m
y2 = dp

m
ẏ1 + dk

m
ẏ3 + cp

m
y1 + ck

m
y3 − g − Ÿ10,

Fe1 = cpy1 − cpy2,

Fe2 = −cpy1 + (cp + ck)y2 − cky3

= −m(Ÿ10 + ÿ2) − mg + dpẏ1 − (dp + dk)ẏ2 + dkẏ3,

Fe3 = −cky2 + cky3,

Fc1 = dpẏ1 − dpẏ2 + cpy1 − cpy2,

Fc2 = −dkẏ2 + dkẏ3 − cky2 + cky3,

where dp and dk are the damping coefficients of connections, Fei , i = 1, 2, 3 are
the elasticity forces generated at the nodes, and Fcj , j = 1, 2 are the contact forces.

To describe the general motion of the elastic system, one should use the model
presented in the absolute coordinates Y , given by the relations

Ÿ2 + (dp + dk)

m
Ẏ2+ (cp + ck)

m
Y2 = dp

m
Ẏ1+ dk

m
Ẏ3 + cp

m
Y1+ ck

m
Y3−g+ cp

m
s1 − ck

m
s3,

Fe1 = cpY1 − cpY2 + cps1,

Fe2 = −cpY1 + (cp + ck)Y2 − ckY3 − cps1 + cks3

= −mŸ2 − mg + dpẎ1 − (dp + dk)Ẏ2 + dkẎ3,

Fe3 = −ckY2 + ckY3 − cks3,

Fc1 = dpẎ1 − dpẎ2 + cpY1 − cpY2 + cps1,

Fc2 = −dkẎ2 + dkẎ3 − ckY2 + ckY3 − cks3.

Models of the one-DOF linear manipulators are taken in the form

m1q̈1 + m1g = τ1 + fc1, fc1 = −Fc1,

m2q̈2 + m2g = τ2 + fc2, fc2 = −Fc2.
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Kinematic relations between the external and internal coordinates are given by the
following expressions:

q1 = Y1 = Y10 + y1, q2 = Y3 = Y30 + y3,

q̇1 = Ẏ1 = Ẏ10 + ẏ1 = ẏ1|Y10=const, q̇2 = Ẏ3 = Ẏ30 + ẏ3 = ẏ3|Y30=const,

q̈1 = Ÿ1 = Ÿ10 + ÿ1 = ÿ1|Y10=const, q̈2 = Ÿ3 = Ÿ30 + ÿ3 = ÿ3|Y30=const.

By coupling the kinematic relations and models of elastic system dynamics and
manipulators, one obtains the model of cooperative manipulation. For the general
motion, the model of cooperative manipulation expressed via absolute coordinates
is

m1Ÿ1 + dpẎ1 − dpẎ2 + cpY1 − cpY2 + m1g + cps1 = τ1,

m2Ÿ3 − dkẎ2 + dkẎ3 − ckY2 + ckY3 + m2g − cks3 = τ2,

mŸ2 − dpẎ1 + (dp + dk)Ẏ2 − dkẎ3 − cpY1 + (cp + ck)Y2 − ckY3 + mg − cps1 + cks3 = 0,

dpẎ1 − dpẎ2 + cpY1 − cpY2 + cps1 = Fc1,

−dkẎ2 + dkẎ3 − ckY2 + ckY3 − cks3 = Fc2.

(45)

The compact form of the model

m1Ÿ1 + m1g + Fc1 = τ1

m2Ÿ3 + m2g + Fc2 = τ2

mŸ2 + mg − Fc1 − Fc2 = 0
⇒

m1Ÿ1 + m1g = τ1 + fc1,

m2Ÿ3 + m2g = τ2 + fc2,

mŸ2 + mg = −fc1 − fc2,

(46)
shows that the mathematical form of the cooperative system (all rigid) model has
been preserved. The introduced elasticity property gives the meaning to contact
forces as a function of the current (relative) position of manipulator tips and object.

Numerical values of the parameters of elastic system (Figure 8) are s1 = s2 =
0.05 [m], m = 25 [kg], cp = 20 × 103 [N/m], ck = 10 × 103 [N/m], dp = 500
[N/(m/s)] and dk = 1000 [N/(m/s)]. Numerical values of the manipulator model
parameters are m1 = 12.5 [kg] and m2 = 12.5 [kg].

The initial position of the cooperative system prior to the gripping process is
determined by the nodes coordinates Y10 = 0.150 [m], Y20 = 0.200 [m] and Y30 =
0.250 [m].

Results obtained by simulating a linear cooperative system are presented in
Figure 11. The selected driving torques perform gripping, lifting, and further os-
cillatory motions of the object. Since the cooperative system is not stabilized, the
absolute positions of contact points diverge, retaining though the necessary mutual
distances.

In all the diagrams, the independent variable (on the abscissa) is the simulation
time in seconds. The dependent variables are the inputs and simulation results.
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Figure 11. Results of simulation of a ‘linear’ elastic system

The explanations at the bottom of each diagram give first the independent variable
(T ) and then the dependent variable and its dimension. The letter denotes phys-
ical quantity used in simulation, while the numeral gives the ordinal number of
the physical quantity vector. The symbols for the MC position and force of the
manipulated object are X0, Y0 and FI0, whereas Yi , Fi , Fci and τi , i = 1, 2 are
the displacements of contact points, elastic forces, contact forces and manipula-
tor drives, respectively. Symbols for the first and second derivatives are obtained
by adding the letters ‘S’ and ‘SS’ to the basic symbol of the quantity. Thus, for
example, the symbols for the first and second derivatives of Y are Y1S and Y1SS,
respectively.

3.5 Summary of the Problem of Mathematical Modeling

Based on the introductory consideration concerning the consistent mathematical
procedure for modeling a simple cooperative system it is possible to derive the fol-
lowing general conclusions that could serve as landmarks in the process of model-
ing complex cooperative systems:

• The problem of force uncertainty is to be solved by introducing the assump-
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tion on elasticity of that part of the cooperative system in which that uncer-
tainty appears.

• It is convenient to model an elastic system separately in order to ensure an
easier and more correct description of its (quasi)statics and dynamics.

• In modeling an elastic system, it is necessary to first solve the static con-
ditions on the basis of the minimum of potential (deformation) energy
(δAd = δU , (13)).

As a result of this step, we get:

– the relation F = Ky between the elastic forces F and stiffness char-
acteristics K and displacement of the elastic system with respect to its
unloaded state y,

– the number of state quantities of elastic system ny equal to the dimen-
sion of the vector y ∈ Rny ,

– singular stiffness matrix K (det K = 0, rank K < ny),

– kinematically unstable (mobile) elastic system,

– arbitrary choice ny−rank K of displacements of the leader for the given
elastic system in space.

• The relation F = Ky is to be transposed into the dependence of elastic force
on the absolute coordinates F = K(Y )Y and deformation energy determined
as a function of the absolute coordinates Y , the energy needed to perform the
general motion of the elastic system.

• The kinetic and deformation energies and generalized forces should be de-
termined as a function of absolute coordinates Y and Lagrange formalism is
to be applied to generate the equation of motion of the elastic system.

• A model of the cooperative system dynamics is to be formed by coupling
the model of elastic system motion with the models of manipulators and
relations describing the contact conditions.
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4 MATHEMATICAL MODELS OF
COOPERATIVE SYSTEMS

4.1 Introductory Remarks

In Chapter 3 we stated that the problem of force uncertainty in cooperative manip-
ulation can be eliminated and that a consistent description of cooperative manipu-
lation is achieved by considering the cooperative system as an elastic system. Thus
the problem arises of introducing the elastic properties and modeling dynamics of
the complex cooperative system as an elastic system.

A model of a cooperative system dynamics can be formed on the basis of equa-
tions coming from integral principles (e.g. Hamilton principle) or equations com-
ing from differential principles (e.g. D’Alembert principle, principle of virtual
displacements). Thus, one obtains Lagrange’s, Hamilton’s, or Newton’s equations,
which are mutually equivalent [28].

In order to apply differential principles, it is necessary to know all the
forces/moments. When applying the D’Alembert principle, the equations of mo-
tion are obtained by forming equations of dynamic equilibrium of forces and mo-
ments, by supplementing active forces and connection forces with all the forces
that appear during the motion (inertial forces, forces of damping, and elastic-
ity). The application of the principle of virtual displacements requires knowing
the forces/moments as a function of kinematic quantities for the chosen DOFs as
arguments. Equations of dynamic equilibrium are obtained by equating to zero the
total work of forces/moments on the virtual displacements.

To apply integral principles, it is necessary to know Lagrange’s function (ki-
netic and potential energies), dependent on the generalized coordinates and their
derivatives, dissipation function, and generalized forces. The advantage of this
principle is that Lagrange’s function, its components, and dissipation function are
scalar quantities (work, energy) and their values for the overall system are obtained
simply by adding particular values of these functions given for the system compo-
nents. It is only essential that these functions are given in the same system of
inertial (or absolute, Section 1.4) coordinates.
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In this chapter, cooperative manipulation dynamics will be modeled on the ba-
sis of Lagrange’s equations derived by applying Hamilton’s principle. The number
of generalized coordinates and the number of equations obtained are exactly equal
to the number of DOFs of the system’s motion. To obtain these equations it is
necessary to determine first the Lagrange function which is equal to the differ-
ence between the kinetic and potential energy, and then dissipation function and
generalized forces. The choice of the form of these equations depends on the de-
gree of accuracy of description of the physical nature one wants to achieve by the
mathematical model of the cooperative system. The accuracy will depend on the
introduced assumptions on the characteristics of the cooperative system, first of all
of its elastic properties.

As already mentioned, the problem of force uncertainty does not exist if at least
one part of the cooperative system is elastic. This means that a cooperative system
must be elastic. An elastic cooperative system can be considered as composed of

• elastic components (manipulators and object),

• elastic manipulators and rigid object,

• rigid manipulators and elastic (deformable) object, and

• rigid manipulators, rigid object and elastic interconnections at the contacts.

For technical application, manipulators should be rigid enough. Hence, it is
assumed that the manipulators in cooperative manipulation are rigid.

Manipulated objects may have very diverse elastic properties, which depends
of both the nature of the material and object shape (structure). In modeling, one
should allow for the possibility of elastic properties of the object. However, the
same manipulators should be capable of manipulating both rigid and elastic ob-
jects. If only elastic properties of the object are assumed, then the choice of con-
trol law has to be based on the detailed knowledge of the elastic properties of each
manipulated object. This means that control tasks should be solved separately for
each manipulated object, which is not acceptable in practice. Hence, it is adopted
that the connections between the object and manipulators are elastic, whereas the
object is either rigid or has elastic properties at least in the neighborhood of the
contact points, so that such an object, together with elastic interconnections, can
be considered as an ideal elastic whole (body).

In this way, the cooperative system is decomposed into an elastic part and a
rigid part. Rigid part consists of the subsystems of interconnected rigid bodies
made of manipulator links. The elastic part of the cooperative system (in the se-
quel, elastic system) is represented by elastic interconnections at the contact and
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rigid manipulated object or by the elastic part of the manipulated object in the
neighborhood of the contact points, along with the rest (rigid) part of the object.

In the preceding chapter, we described the correct procedure of modeling, as-
suming that the cooperative system can be decomposed first into its constitutive
parts. Then, each of the parts is modeled separately. The overall model of coop-
erative system is obtained by joining the separate models with the aid of relations
that describe the conditions at contact of the decomposed parts (equality of forces,
positions, velocities, and accelerations).

Models of manipulators, especially of non-redundant ones, have been dealt
with in many papers and can be without alterations taken over for the model of that
part of the cooperative system.

A specific feature of a cooperative system is the existence of the manipulator-
object contacts and necessity of introducing elasticity.

Mathematical description of contact is trivial if the contact is rigid and stiff and
very complex when it is elastic and sliding. This means that the problem of contact
is not essentially a problem of mathematical modeling of cooperative systems, as
it can be overcome by an appropriate choice of contact characteristics.

The introduction of elasticity cannot be avoided if one wants to get a consistent
solution to the problem of force uncertainty, i.e. if exact distribution of the loads
at the manipulator tips and object in the course of cooperative system motion is
sought. This means that a key problem in mathematical modeling of cooperative
system dynamics is the modeling of the dynamics of an elastic system.

Properties of elastic systems can be described in different ways and thus the
resulting description of their motion will have a higher or lower degree of accuracy.
An exact description of cooperative system motion will be obtained by the exact
description of the properties and motion of elastic parts of the system, which is a
subject dealt with in the theory of elasticity and theory of oscillations of continual
bodies [6, 7, 23, 24, 29, 30]. According to the theory of elasticity, the object elastic
properties are judged on the basis of comparison of the kinematic characteristics of
an elementary volume before and after the deformation, whereby the conditions are
found for the load that can produce the given deformed state. To make conclusions
about the overall body, it is necessary to consider all the volume elements, which
means integrating the entire volume. The smaller the volume elements, the more
exact the description and the more extensive calculations are needed.

The motion of an elementary volume of cooperative system can be mathemati-
cally described as the displacement of a spatial vector consisting of one translation,
one rotation, and one deformation. In other words, if position vectors are associated
with the unloaded and loaded states of an elementary volume, then it is possible
to obtain one vector by transforming the coordinates of the other vector. For small
displacements of an elementary volume, the transformation is linear and non-linear

Mathematical Models of Cooperative Systems



for the overall volume. The skew-symmetric part of the transformation describes
rotation, while the symmetric one describes deformation. If the non-deformed state
vector is known and if this state is fixed, the study of static/dynamic displacements
of the elastic system is reduced to studying only the symmetric part of transforma-
tion, which is the subject matter of all the disciplines dealing with displacements
around a known unloaded state in space (strength of materials, aeroelasticity, dy-
namics of constructions, oscillation theory). Then the position of any point of the
loaded elastic system can be described in Cartesian coordinates defined by the dis-
placements with respect to the unloaded state, or by the coordinates of the initial
unloaded state which, for the loaded state, represent curvilinear coordinates. The
coordinates of any point of the initial unloaded state can be expressed as a func-
tion of position coordinates of that point in the loaded state, and then the Cartesian
coordinates of the loaded state are curvilinear coordinates of the unloaded state.
In other words, if the fixed frame Oxyz and the frame Oi0xi0yi0zi0 describing the
undeformed state are assumed to be Cartesian, then the absolute coordinates of any
point of the strained elastic system are curvilinear coordinates of that point in the
unloaded state. And contrary, if the absolute coordinates of any point of the loaded
elastic system are adopted to be Cartesian, then the coordinates of that point in
the unloaded state represent curvilinear coordinates of the absolute coordinates of
that point. The problem of determining stress and deformation for a known shape,
dimensions, material characteristics and system of external forces for a loaded ide-
ally elastic system assumes finding 15 functions, viz., six stress components, six
deformation components and three displacement components at each point of the
body. The exact method of solving is reduced to solving Lamé equations that con-
tain only displacements, or Beltrami–Mitchell equations defining the given stress
state, or the Saint Venant semi-inverse method. In engineering practice, wide ap-
plications have found approximate methods, which can be divided in two groups.
The first group includes the methods based on the approximate solving of the sys-
tem of differential equations for an approximate model with a finite number of
DOFs. To these methods belong the finite-difference method, iteration method, and
finite-element method, in the frame of the latter being the developed force method,
displacement method, and method of direct stiffness as a generalization of the dis-
placement method. The other group encompasses variational methods, of which
most well known are the Rayleigh–Ritz and Galerkin methods. The Rayleigh–Ritz
method is based on the approximate representation of the task extremal by a class
of a finite number of suitably selected functions that satisfy the contour conditions
and for which unknown coefficients should be determined, which eventually re-
duces to solving an algebraic system of equations. The application of any of these
methods requires extensive calculations.

A description of the dynamics of elastic systems is primarily needed to study
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their oscillatory motion around a selected position, with the aim of finding the form
of oscillations and characteristic frequencies of that elastic body. In engineering
practice, elastic bodies are usually constructions of mechanical and civil engineer-
ing. The dynamics of continual elastic bodies is described by integro-differential
equations or by Lagrange’s equations, whereby each elementary part of the body
possesses its own DOF, so that an elastic body has an infinite number of DOFs.
This description allows us to recognize all the forms of oscillations (modal forms)
and all the characteristic frequencies of the elastic body. Upon decomposing the
body into smaller elastically interconnected parts, the number of DOFs of the elas-
tic body becomes limited. Then the number of characteristic frequencies that one
can observe and the number of corresponding oscillation forms are exactly equal to
the number of adopted DOFs. The degree of qualitative and quantitative agreement
of the results with reality will depend on the choice of the decomposed structure
as a substitute for the continual structure and inertial properties assigned to the
components of that structure. For example, if the decomposed mass of the grid
is replaced with the concentrated masses at the grid nodes, we will obtain a suffi-
ciently good approximation of at least first (basic) modal form.

The cooperative manipulation proceeds relatively slowly. As the bandwidths
of the actuators of the control system are in the range from parts to about 15 Hz,
it means that the manipulation drives cannot be of high frequency. A question
arises as to what frequency the model should faithfully describe the dynamics of
the elastic system handled by the manipulators. If, in the domain of the bandwidth
of manipulator actuators, there are no characteristic oscillations (modes) of the
elastic system, or if there are no other modes (except for the first one) close to it,
then it suffices to describe the elastic system motion via a high-quality presentation
of the first modal form. A consequence of a such conclusion is that the coopera-
tive system dynamics is sufficiently well characterized when the elastic system is
considered as a system with a finite number of DOFs of motion.

Another problem is the choice of the DOFs of motion and the arrangement of
the elastic system inertial properties that are assigned to the adopted DOFs.

An elastic system can be approximated by a discontinual structure in different
ways.

A basic goal of this chapter is not to attain high accuracy of the model but to
find a consistent method of solving the problem of force uncertainty in cooperative
work, so that a minimal number of DOFs will be sought. The simplest way to
find this number of DOFs is to replace the elastic system with a space grid whose
external nodes coincide with the contact points, whereas the only internal node
coincides with the MC of the manipulated object. The links between the nodes
of the grid thus formed are simply approximated by different forms of elementary
beams. The choice of link characteristics is given through the selection of charac-
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teristics of the corresponding matrices of rigidity and elasticity in the domain of the
linear stress-deformation relationship, which represents the subject of special stud-
ies. Here we describe an elastic system by using the results of the direct stiffness
method and the displacement method from the group of finite-element methods.

In a multi-robot work involving m manipulators, there are m contact points, so
that there also exist the same number of external nodes of the grid thus formed.
Hence, the total number of external and internal nodes is m + 1. If all the mass of
external elements is placed between the grid nodes, then the DOFs of the connect-
ing elements between nodes will be lost and only DOFs of the motion of the nodes
will remain.

A minimal number of DOFs of such a grid will correspond to the point masses
at the grid nodes and will be 3(m + 1). If it is adopted that the grid nodes coincide
with the MCs of the rigid bodies that, by their inertial properties, replace the iner-
tial properties of the continual elastic system, then the number of grid DOFs will be
6(m+1). The appropriateness of placing rigid bodies at the grid nodes is related to
the simple introduction of external loads consisting of three force components and
three moment components, simplicity of the application of finite-element method,
and forming a model with easily measurable quantities. In accordance with the
above, it is adopted that the elastic system can be approximated by a spatial grid
at the nodes of which act external loads. It is assumed that each node has six DOFs
and that the nodes coincide with the MCs of the solid rigid objects as representa-
tives of the inertial properties of the elastic interconnections at the contact and
manipulated object, i.e. the total number of DOFs of the elastic system is 6m + 6
(Figure 12).

Let us consider a choice of coordinate frames suitable to describe the dynamics
in cooperative work and elastic system dynamics. In its basic approach, the exist-
ing theory of elasticity considers the motion of an elastic system with respect to
the unloaded state. In order to directly apply the results of the theory of elasticity,
in the case where the cooperative work involves an object whose unloaded state is
immobile, the cooperative manipulation dynamics will be described in the system
of coordinates representing displacements of the loaded state with respect to the
unloaded state. The choice of this coordinate frame for the general case of an elas-
tic system motion would mean that the coordinate system should be attached to the
unloaded (undeformed) state of the elastic system, to seek the position of that state
during the motion, and with respect to it, determine the loaded (deformed) state.
The advantage of such a choice of coordinates stems from the developed procedure
of the theory of elasticity for describing elastic systems and the possibility of de-
coupling the motion into a transmission motion of the rigid unloaded system and
relative motion due to deformation of the loaded cooperative system. A drawback
would be the fact that the introduction of this coordinate frame requires finding the
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Figure 12. Elastic system

position of the unloaded state 0 during the motion.
In the general case, the manipulated object performs a general motion. The

manipulator position is usually given in the internal coordinates. For a known po-
sition of a manipulator, i.e. for its known internal coordinates, the position of the
manipulator tip is uniquely determined in the external (absolute) coordinate frame.
As kinetic energy is described in terms of absolute velocities, it is necessary to
know the absolute coordinates of the inertial parts of the system, i.e. of both the
manipulator and the elastic system. Hence, the cooperative system dynamics can
be conveniently described in absolute coordinates. If the manipulators in coopera-
tive manipulation are non-redundant, the choice of internal coordinates to describe
the motion is equivalent to the choice of absolute coordinates. Contact forces arise
as a consequence of the instantaneous state of the mobile elastic system, i.e. of the
instantaneous state of the absolute coordinates of the elastic system, which is also
an advantage of selecting absolute coordinates.

However, there arises the problem of describing the elastic system’s motion due
to deformation, as the above choice of coordinates assumes that the coordinates of
elastic system’s loaded state, and not those of the unloaded state, are taken as basic
coordinates. Knowing the position of the absolute coordinates of the loaded state,
the problem is how to determine the accumulated deformation energy and energy
of dissipation that are needed in forming Lagrange equations. In other words, the
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problem is how the choice of absolute coordinates connected to the deformed state
can ensure the description of the deformation of the elastic system and establish
connections with the existing theory of elasticity given in the Cartesian system of
coordinates attached to the unloaded state.

The objective of introducing assumptions on the cooperative system charac-
teristics is to propose a simple modeling procedure based on specified properties
of the system, which would potentially enable avoiding the exact solving of the
system of differential equations used to describe deformation of the elastic system.

A specific feature of cooperative work is that it is to be performed in steps. The
manipulated object has to be approached to perform its grasping and gripping. Po-
sitions of the cooperative system in these work stages have to be stored, so that they
can be used as known. Of special importance are all the pieces of information about
the non-deformed state of the elastic system. These data are related to the instant
of establishing contact between the tips of the manipulators and the object. On the
basis of information about the state of internal coordinates of the manipulators it
is possible to uniquely determine the positions of all contact points at the moment
of contact formation, i.e. positions of the nodes of the unloaded space grid, their
mutual distances and orientation, are uniquely determined. For the known masses
of the links and manipulated object in the instant of contact formation, it is pos-
sible to determine the static position of the elastic spatial grid, for which there is
no system of forces acting at it and where all node displacements are equal to zero
(in the sequel, unloaded state 0 or only state 0). That position corresponds to the
non-deformed space grid, free from the action of any load. The non-deformable
grid’s motion in space takes place purely geometrically, as the motion of a non-
deformable geometric figure. In the real motion, any deformed state of the elastic
system whose coordinates during the motion are known, is obtained by deforming
that figure, whose exact position during the motion is not known. Although the
position of the undeformed state 0 during the motion is not known, information
exists about the relative position of its nodes (see Figure 9 and expressions (26)
and (27)). Along with the known absolute coordinates of the loaded state, there are
enough pieces of information (finite number of coordinates (28), (31) to (33)) for
the approximate formation of the expressions for the energies of deformation and
dissipation during the deformation as a function of the absolute coordinates.

Therefore, by knowing the absolute coordinates of the unloaded state, along
with information about the relative distances and orientation of contact points in
the instant when contact between the manipulators and the object is established,
the problem of describing the elastic system is simplified, hence the absolute coor-
dinates are adopted to describe the general motion of the elastic system.
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4.2 Setting Up the Problem of Mathematical Modeling of a Complex
Cooperative System

Consider the cooperative work of m rigid manipulators with six DOFs that are ma-
nipulating the object whose general motion in three-dimensional space takes place
without any constraint. It is assumed that either the manipulator-object connections
are elastic and the object is rigid or that the object is elastic (Figure 1). For both
cases, it is assumed that each connection or the part of the manipulated object in
the vicinity of the contact point can be represented by a rigid body and its elastic
environment. Contact forces, gravitation forces, and the forces of damping and
elasticity are acting at the MC of the rigid body.

A separate body with an elastic environment can be considered as a system of
m+ 1 elastically interconnected rigid bodies (Figure 12). Thus, the system formed
has m + 1 nodes. Let the elastic system nodes and rigid bodies MCs coincide,
and let six DOFs of motion be allowed to each body. Displacement of the elastic
system at the nodes is identical to the displacement of the rigid body whose MC is
connected to that node. Gravitational and contact forces are considered as external
forces acting at the object MC, i.e. they represent the acting forces of the elastic
structure at its nodes (Figure 13).

The following task is encountered: assuming that the mutual positions of the
manipulator tips at the moment of formation of the manipulator-object contact are
known, derive a mathematical model of the cooperative system motion describing
the steps of gripping, lifting, general motion, lowering, and releasing.

To model the general motion of a cooperative system consisting of m rigid
manipulators with six DOFs, rigid object, and elastic interconnections between the
manipulator tips and the object, it is necessary to do the following:

• Carry out modeling of the dynamics of the cooperative work for which un-
loaded state 0 of the elastic system is immobile during the cooperative work.

• Knowing the mutual position of the manipulator tips at the moment of form-
ing the manipulator-object contact, carry out mathematical modeling of the
cooperative manipulation dynamics for the general case of motion of the
manipulated object as a function of the absolute coordinates of the contact
points and the MC of the manipulated object.

• Synthesize a mathematical model of the cooperative system from the pre-
viously derived mathematical models for elastic system, manipulators, and
relations that describe kinematic connections and load at the connections of
these subsystems.
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Figure 13. Displacements of the elastic system nodes – the notation system

The mathematical model has to be formed in such a way that the same model
sufficiently describes the cooperative system under static and dynamic conditions.
Neglecting mass, damping, and elastic properties in the model of the general mo-
tion of the elastic system, model the general motion of the manipulated object as a
rigid body. Zero values of all elastic forces must be obtainable whenever the loaded
state coincides with the unloaded state 0.

4.3 Theoretical Bases of the Modeling of an Elastic System

The motion of the cooperative system can be considered as the motion of a system
of bodies in a complex field of forces composed of the fields of gravitational and
elastic forces. The gravitational field is of a potential character, whereas the poten-
tiality of the elastic field holds only for the linear stress-deformation relationship in
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the close neighborhood of the unloaded state 0. To form the equations of motion in
this field, it is necessary to know the accumulated potential energy in the system of
bodies. If the potential gravitational forces (they constantly act in the direction of
the Oz axis of the absolute coordinate frame) in Lagrange’s equations are associ-
ated with non-potential forces and are considered as a system of unknown external
forces, then it remains only to determine the potential energy of the elastic forces
(deformation energy).

The purpose of the introduced assumptions and proposed modeling procedure
is to avoid solving a system of equations that describes the deformation of the
elastic system and, using approximate methods, derive the model of the coopera-
tive system only on the basis of known absolute coordinates of the MCs and their
derivatives, along with gripping points at the initial moment, i.e. the contact points
(tips of the manipulators) and the MC of the manipulated object.

The idea of modeling in the system of absolute coordinates is based on the
following. As it is assumed that all the mass is concentrated at the elastic system
nodes, inertial and external forces (represented by gravitational and contact forces)
act at these nodes. The links between particular nodes are massless, so that the
dissipation forces of the elastic system are also associated with the forces at other
nodes. As we do not deal with manipulation in a resistive environment, there are
no surface resistance forces. Hence, the forces acting at each node can be replaced
with one resulting force. These resulting forces act at the nodes of the elastic
system. To each deformed state corresponds only one system of node forces. The
instantaneous deformed state can be obtained by static deformation of the unloaded
state 0 involving the same system of forces, which enables one to calculate defor-
mation energy by using static procedures. The work of the external forces is equal
to the work of the internal forces, i.e. to the deformation energy. Components of
the balancing elastic forces are equal to the derivatives of deformation work with
respect to the corresponding coordinate and are equal to the components of the
resulting node forces. The resulting forces are decomposed along the axis of the
absolute coordinate frame, so that deformation energy also has to be expressed in
the same coordinate frame as a global frame for the elastic system.

Deformation energy is a function of the properties of the concrete shape and
elastic system material, and can be determined using exact or approximate meth-
ods. When adopting assumptions needed to form the mathematical model, cooper-
ative manipulation should be considered as a system with a finite number of DOFs
and, hence, the deformation energy (i.e. the stiffness matrix) should be determined
by some approximate methods.

The basic notion of describing the deformation energy via the absolute coordi-
nates will be illustrated using the finite-element method.

The theoretical basis of the finite-element method is the principle of mini-
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mum energy for varying displacements (the principle of virtual displacements),
whereby the increments of the works of the external and internal forces are the
same [6, 7, 23, 24]. Generally, the method consists of decomposing the structure
into characteristic elementary finite elements, separately forming stiffness equa-
tions for each of the finite elements in the local coordinate frame, and forming
equations of global stiffness of the overall structure in the joint (global) coordinate
frame for all the elements, whereby it is necessary to take into account the condi-
tions of interconnection of the finite elements into a whole (the conditions of force
equilibrium and compatibility of displacements).

The procedures of forming equations of individual stiffnesses have been de-
scribed in detail in [6, 7, 23, 24]. The equation of individual stiffness of the ith
finite element is of the form

Fei = Kei�ei, Kei = (Kei)T , (47)

where Fei is the vector of node forces acting on a finite element; Kei is the square
matrix of individual stiffness of the finite element, and �ei is the vector of node
displacements of the finite element that defines the number of DOFs of the finite-
element motion in the direction of the node force Fei . The number of DOFs of the
finite-element motion depends on the choice of the type of load or displacement
that is to be taken into consideration. For a given choice of displacements �ei ,
the matrix Kei for one finite element is determined only once. If the stiffness
matrix also contains the motion modes of the finite element as a rigid body, then
it is singular. If this equation is given in the local coordinate frame of the finite
element attached to the element position in the elastic structure, an orthogonal
transformation has to be applied to transpose it into the global coordinate frame.

By uniting all the equations of the finite elements, one obtains the following
system of equations

Fe = Ke�e, Ke = (Ke)T , (48)

with the disassembled stiffness matrix Ke = diag(Ke1,Ke2,Ke3, . . .), and ex-
panded vectors of the force Fe = column(F e1, F e2, F e3, . . .) and displacement
�e = column(�e1,�e2,�e3, . . .). If the equations of stiffness of each finite ele-
ment are given in a global coordinate frame, the conditions of structure assembly
are reduced to equating the forces and displacements of the finite elements at the
common mode and eliminating redundant rows and columns from the disassem-
bled stiffness matrix (method of direct stiffness [7]). On the contrary, one seeks
the matrix a of the global kinematic conditions of the connection of node displace-
ments (continuity) of the elastic structure � in the common (global) coordinate
frame of the node displacements of finite elements �e which, for the statically de-
termined systems (a = a0), is represented by the algebraic relation (displacement
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method)
�e = a0�. (49)

This relation defines how the finite elements are assembled in the structure and
it is easily obtained for the statically determined systems. Elements of the ma-
trix a0 are obtained by considering the geometry of the relation between the node
displacements of finite elements �e and individual unit displacements in the direc-
tion of each displacement �i as known, whereby all the other displacements �j ,
j 	= i are zero. If the system is statically indeterminate, then from the viewpoint of
kinematics, the system is indeterminate too. Then, it is not possible to define the
above relation on the basis of kinematic observations but is necessary to also take
into account the equilibrium conditions from which kinematically indeterminate
quantities are associated with the displacements �. If the kinematically uncertain
quantities are denoted by �k , the preceding relation will acquire the form

�e = a0� + a1 · �k, (50)

where a1 denotes the matrix by which the function describing how finite elements
are connected in the structure is supplemented by kinematically indeterminate
quantities �k. The forces Fe act at the location and in the direction of the displace-
ment �e. These forces must act on the overall structure because of the existence of
node displacements of the overall structure �, and they are

Fe = Ke�e = Kea0� + Kea1�k. (51)

Using the principle of virtual displacements and considering the equations of vari-
ation of the unknown and independent kinematically indeterminate quantities �k

for the given constant displacements �, one obtains

aT
1 Fe = aT

1 Kea0� + aT
1 Kea1�k = 0, (52)

because the work of external forces is realized only on the given displacements �.
From this we have

�k = −(aT
1 Kea1)

−1aT
1 Kea0�, (53)

so that the relationship between the node displacements �e and predetermined dis-
placements � for the statically indeterminate (kinematically indeterminate) system
is

�e = a�, a = a0 − (aT
1 Kea1)

−1aT
1 Kea0. (54)

Taking into account that the node forces F� acting in the direction of displacement
� are related to the forces Fe via the transformation matrix b (it can be determined
by the force method)

F� = bF e, (55)
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the total deformation energy in the deformed elastic structure generated from the
moment of the beginning of deformation �e = 0 to the final deformation state,
caused by the given displacements � and resulting node displacements �e, is de-
termined by

Ad = 1

2
(F e)T �e = 1

2
(F e)T a� = 1

2
�T aT Kea�

= 1

2
�T aT Kea� = 1

2
�T K��, K� = aT Kea, (56)

where K� is the stiffness matrix of the overall elastic structure defined in the global
coordinate frame �. The work of the node forces F� on the displacements � is
determined by

AF = 1

2
(F�)T � = 1

2
(F e)T bT �. (57)

As the works of the forces are the same, then a = bT and

1

2
(F�)T � = 1

2
�T aT Kea�, ⇒ F� = aT Kea� = K��. (58)

If the work expressions are known, i.e. if the stiffness matrices and node displace-
ments are determined, the forces Fe along the displacement �e and the forces F�

along the displacement � are

Fe = ∂Ad

∂�e
= Ke�e, F� = ∂Ad

∂�
= 2

∂AF

∂�
= aT Kea� = K��. (59)

The matrix Ke is a constant diagonal block matrix. The matrix K� = aT Kea is
also a constant matrix because the elastic system deformation is considered with
respect to the immobile non-deformed state of the system. This means that if the
stiffness matrix of the system is known, the forces along the given values of the
displacement can be uniquely determined. Also, if the forces along the given dis-
placements are known, the work of internal forces (as a scalar) is uniquely de-
termined. As the strains of elastic structures are considered with respect to the
immobile unloaded state, it is customary to measure the components of the vector
� in the global coordinate frame attached to that state. It is also assumed that the
states of the elastic structure before and after the deformation are kinematically
determined (the positions of the supports and their displacements are known).

The above discussion has been related to the modeling of an elastic system
for the immobile unloaded state 0. Detailed standardized procedures of forming
a stiffness matrix for concrete elastic systems can be found in the literature con-
cerning the theory of elastic systems [6, 7]. If the displacements � are expressed
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in external coordinates of the cooperative system, then the results of the theory
of elasticity can be used without any alteration to model those phases of the co-
operative system’s motion in which the unloaded state 0 of the elastic system is
immobile. These phases are the gripping and releasing of the immobile object.

In the case of the immobile unloaded state 0, it is necessary to find an expres-
sion for the deformation energy in the system of absolute coordinates, which are
global coordinates for the elastic system.

In cooperative manipulation, the distances of the nodes ‖ρij0‖, i, j =
0, 1, . . . , m are known, as well as the relative orientation of the bodies with the
MC at the nodes ‖Aij0‖, i, j = 0, 1, . . . , m of the elastic system before deforma-
tion and absolute coordinates of the nodes after deformation Y . Let the relation
between the given displacements � and these quantities be defined as

� = �(Y, ‖ρij0‖|i,j=0,...,m, ‖Aij0‖|i,j=0,...,m) = �(Y ),

‖ρij0‖ = const, ‖A‖ij0 = const, i, j = 0, . . . , m. (60)

Deformation work of the elastic system determined in the coordinate frame � by
the relation (56), in the new coordinate frame Y , will be

Ad = 1

2
(F�)T � = 1

2
�T (Y )K��(Y ) = Ad(�(Y )) = Ad(Y ). (61)

As the derivative of the scalar function Ad with respect to the vector argument, Y

is the vector of the function � as an argument of the scalar function Ad determined
by

∂Ad(�(Y ))

∂Y
=
(

∂�

∂Y

)T
∂Ad

∂�
, (62)

the resulting node forces FY along the displacement Y are

FY = ∂Ad

∂Y
=
(

∂�

∂Y

)T

F�. (63)

If the coordinates Y are expressed as a function of the coordinates � and transfor-
mation matrix c(Y ) by the relation

� = c(Y ) · Y ⇒
(

∂�

∂Y

)T

=
(

∂c(Y )

∂Y
Y

)T

+ cT (Y ), (64)

the deformation work will be

Ad(Y ) = 1

2
Y T cT (Y )K�c(Y )Y = 1

2
Y T π(Y )Y, (65)
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where π(Y ) = cT (Y )K�c(Y ).
The force FY in the direction of the displacement Y is obtained by introducing

(64) and (59) into (63) or by differentiating (65)

FY =
[(

∂c(Y )

∂Y
Y

)T

+ cT (Y )

]
K�c(Y )Y

= 1

2
Y T ∂π(Y )

∂Y
K�c(Y )Y + cT (Y )K�c(Y )Y

= 1

2
Y T ∂

∂Y
(cT (Y )K�c(Y ))Y + cT (Y )K�c(Y )Y

= 1

2
Y T ∂π(Y )

∂Y
Y + π(Y )Y (66)

or, in a shorter form,

FY = ∂Ad(Y )

∂Y
= K(Y )·Y, K(Y ) =

[(
∂c(Y )

∂Y
Y

)T

+ cT (Y )

]
K�c(Y ), (67)

where K(Y ) is the generalized stiffness matrix, dependent of the generalized coor-
dinates Y .

Therefore, to form the expression for deformation work (65) or for the resulting
node forces of the elastic system in the absolute coordinates (66), it is necessary to
determine the relationship between the elastic displacements of the elastic system
nodes and absolute coordinates (60), as well as the stiffness matrix of the assembled
system K�.

The stiffness matrix of assembled system K� is identical to the stiffness matrix
of the elastic system considered with respect to the immobile unloaded state. This
matrix is determined by the usual methods of the theory of elasticity. If the method
of finite elements is used, it is necessary to divide the elastic system into character-
istic finite elements, choose for each of them the local representative displacements
�ei , determine individual stiffness matrices Kei , and finally, determine the relation
�e = a� for connecting the finite elements into a unique elastic system. The pro-
cedure can be carried out only for a concrete known structure of the elastic system.
This problem in cooperative manipulation can be overcome if the elastic properties
are assigned to the tips of the manipulator grippers only. Then, it is possible to
choose in advance the suitable forms of the elastic tips of the grippers as finite ele-
ments and determine the matrices of individual stiffness for them in advance. The
synthesis of the stiffness matrix of the composed system would reduce to forming
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efficient on-line algorithms for connecting such finite elements and manipulated
object into a unique whole, which can be the subject of future research.

It is not simple to establish a relationship between the elastic displacements of
elastic system nodes and absolute coordinates (60). If that relation is of the form
(64), the deformation work and forces at the nodes will be of the form (65), (66),
(67).

It is necessary to describe the method of forming deformation work (65). The
basic goal of the methods of the theory of elasticity is to establish a relationship
between the known load of the elastic system and unknown elastic displacements,
or between the known elastic displacements and unknown acting load of the elastic
system. After establishing these relations, the internal strain and support reactions
are determined.

To model the general motion of the cooperative system, it is necessary to ex-
press deformation work and/or node forces as a function of absolute coordinates of
the loaded elastic system in the form of (65), (66), (67). This can be done without
finding the transformations (60) or (64).

The basic idea in describing deformation energy with the aid of absolute coor-
dinates is the following. On the basis of the known instantaneous positions of the
nodes of a loaded elastic system and positions of the nodes at the moment of object
gripping, instantaneous relative displacements of nodes are found. For the known
values of instantaneous relative displacements of nodes, internal forces between
them are determined. The deformation energy of the elastic system is determined
as one-half of the sum of the products of internal forces and the corresponding
relative displacements of the nodes.

Namely, deformation work is the work of the internal forces (strains) and is a
function of the relative displacements of nodes as known quantities (see relations
(27), (28), (29) and (31)).

Ad = 1

2
εT Fint = 1

2
εT πεε, (68)

where Fint = Fint(Y ) and ε = ε(Y ) are the vectors of internal forces and relative
displacements of nodes (deformation) of the elastic system, and πε is the constant
diagonal matrix in the direction of the action of the internal forces.

Members of the matrix πε are uniquely calculated as a function of the stiffness
matrix K˙ and spatial characteristics of the unloaded elastic system. Characteristics
of the elastic system depend on the type of contact, geometric configuration of con-
tact points, and elastic properties of the object and tips of the manipulators. To each
different elastic system corresponds a different stiffness matrix and, consequently,
a different matrix πε .
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The procedure to calculate stiffness members of the matrix πε as a function of
the members of the stiffness matrix K˙ is the subject of the theory of elasticity. In
deriving the model of cooperative system dynamics, it is essential that this rela-
tionship is unique and that stiffness members of the matrix πε are constant for a
concrete elastic system. To illustrate the modeling procedure the adopted members
of the matrix πε (given in Appendix B) represent the stiffness of linear and torsion
springs between any two nodes of the elastic system, without determining their
values by the procedures of the theory of elasticity for the concrete elastic system.

The relationship between the mutual displacements of elastic system nodes ε

and their absolute coordinates Y are relatively easily established (see (27)). As a
result, one obtains the expression for the deformation energy whose mathematical
form is identical to expression (65) (see (33), i.e. the same effect is achieved as in
determining the transformation of coordinates (60).

4.4 Elastic System Deformations as a Function of Absolute
Coordinates

Let the elastic system be driven out of the state 0 and let the corresponding dis-
placements of the nodes yi be given as (Figure 13)

yi =
(

δi

Ai

)
=
(

ria − ri0

Aia − Ai0

)
∈ R6×1, i = 0, 1, . . . , m, (69)

where ria and ri0 are the respective position vectors of the instantaneous MC and
the MC in the state 0 of the ith body in the three-dimensional Cartesian space,
while Aia and Ai0 are the orientation vectors of the instantaneous state and state 0
of the ith body measured by the angular displacement of the coordinate frame with
the origin at the MC and axes directed along the main inertia axes with respect
to the Cartesian coordinate frame. The subscript i = 0 relates to the rigid object
handled by the manipulators, whereas the subscripts i = 1, . . . , m refer to the
elastic interconnection.

According to (69), it is obvious that there are two different ways of deforming
an elastic system:

• deforming the elastic system around its immobile unloaded state

ri0 = const
Ai0 = const

⇒ ṙi0 = 0
Ȧi0 = 0,

(70)

• deforming the elastic system around its mobile unloaded state

ri0 	= const
Ai0 	= const

⇒ ṙi0 	= 0
Ȧi0 	= 0.

(71)
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The state 0 can be represented by only one coordinate frame which is adopted
as the O0x0y0z0 frame, with the origin attached to the manipulated object MC,
whose orientation at the given moment is given by the vector A0 = A0

0 = A00 =
col(ψ00 θ00 φ00), and the position of the coordinate frame origin is r00. The other
coordinate frames Oi0xi0yi0zi0, whose origins are placed at the MCs of elastic
interconnections, i.e. at contact points, are rotated with respect to O0x0y0z0 by a
constant value of orientation A0

i during all the time of the motion of the unloaded
state 0 (Figure 14). This means that the coordinate frames Oi0xi0yi0zi0 for the
unloaded state of the elastic system may have a different orientation A0

0,A
0
0 +

A0
1, . . . ,A

0
0 + A0

m.
According to (69) and Figures 13 and 14, the following vector relations hold

ria = ri0 + δi, ṙia = ṙi0 + δ̇i , i = 0, 1, . . . , m,

Aia = Ai0 + Ai , Ȧia = Ȧi0 + Ȧi , i = 0, 1, . . . , m, (72)

where ri0, ria and Ai0, Aia are the MC positions and orientations of the ith body
in the unloaded and loaded states; δi and Ai are the MC displacements and change
of orientation of the ith body in the case of deformation. The dot over a quantity
denotes the time derivative of that quantity.

For the unloaded state we have

ri0 = r00 + ρi0, ṙi0 = ṙ0 + ρ̇i0, i = 1, . . . , m,

Ai0 = A0
0 + A0

i = A0|A0
i =0 = A00|A0

i =0,

Ȧi0 = Ȧ0
0 + Ȧ0

i = Ȧ0|A0
i =0 = Ȧ00|A0

i =0, (73)

where ρi0 is the position vector of the MC of the ith object of the elastic system
in the unloaded state 0, given with respect to the coordinate origin of the space
O0x0y0z0. From this follow the relations for the coordinates and their derivatives
of the state 0:

r00 = r0a − ρ00 − δ0 = r1a − ρ10 − δ1 = . . . = rma − ρm0 − δm, ρ00 = 0,

A0 = A0a − A0 = . . . = Aia − A0
i − Ai = . . . = Ama − A0

m − Am,

ṙ00 = ṙ0a − δ̇0 = ṙ1a − ρ̇10 − δ̇1 = . . . = ṙma − ρ̇m0 − δ̇m,

Ȧ0 = Ȧ0a − Ȧ0 = . . . = Ȧia − Ȧ0
i − Ȧi = . . . = Ȧma − Ȧ0

m − Ȧm. (74)
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Figure 14. Angular displacements of the elastic system

Relative angular displacement of two arbitrary bodies is defined by the differ-
ence of absolute values of their orientation (Figure 14). Let the bodies before elas-
tic system deformation have the same orientation A0 for A0

i = 0, i = 1, . . . , m,
or let their orientations differ by a constant value A0

ij = A0
i − A0

j , = Ai0 − Aj0,
A0

i 	= A0
j . Starting from the state with the orientation Ai0, three (and four if A0

ij 	=
0), successive changes of orientation yield the same state. Let the initial state have
the orientation Ai0. By changing the orientation to Ai = Aia − Ai0, the state with
the absolute orientation Aia = Ai0 + (Aia −Ai0) is attained. By changing the ori-
entation to −Aija = −(Aia −Aja), the attained orientation of the j th body is Aja

= Ai0 +(Aia − Ai0) −(Aia − Aja). After a further change of orientation to −Aj

= −(Aja − Aj0) and Aij0 = (Ai0 − Aj0) = (A0
i − A0

j ), the resulting states will
be of the orientation Aj0 = Ai0 + (Aia − Ai0) − (Aia − Aja) − (Aja − Aj0) and
Af in = Ai0+(Aia−Ai0)−(Aia−Aja)−(Aja−Aj0)+(Ai0−Aj0), respectively.
Simple adding gives Af in = Ai0, i.e. we return to the state with the initial value of
orientation. Hence, it comes out that the change of relative orientation of two arbi-
trary bodies attained in the loaded state is defined by the difference of the absolute
values of their orientations Aij = Ai−Aj = Aia−Ai0 −(Aja−Aj0) = Aia−Aja

−(Ai0 − Aj0) = Aia − Aja −Aij0 = Aia − Aja|A0
i =A0

j
. To achieve a more legi-

ble presentation, we assume that all coordinate frames Oi0xi0yi0zi0 have the same
orientation for the unloaded state of the elastic system, A0

i = 0, i = 1, . . . , m.
Relative displacements of the points of a loaded elastic system are defined by
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the difference of displacements of the points with respect to the unloaded state

δij = −δji = δi − δj = ria − ri0 − (rja − rj0)

= ria − rja − (ri0 − rj0) = ρija − ρij0

(75)Aij = −Aji = Aia − Aja = Ai − Aj |A0
i =0,A0

j =0, i, j = 0, 1, . . . , m,

where ρija and ρij0 are the relative position vectors of the ith and j th object MC
in the loaded and unloaded state of the elastic system, given with respect to the
coordinate frame attached to the MC of the manipulated object.

The rate of displacement of the points of the loaded elastic system with respect
to the unloaded state is

δ̇i = ṙia − ṙi0 = ṙia − ṙ0 − ω0 × ρi0,

Ȧi = Ȧia − Ȧi0 = Ȧia − Ȧ0|A0
i =0, (76)

where ω0 is the angular velocity of the figure formed by the elastic system nodes
in the state 0.

As there is no force system acting in the unloaded state, the state 0 moves as a
rigid body, so that

‖ρij0‖ = ‖ρi0 − ρj0‖ = const, ρ̇ij0 = ω0 × ρij0 = −ρij0 × ω0, (77)

i.e., the vector ρij0 has a constant intensity and changeable direction. In the case
of a translatory motion of the unloaded state 0, we have ω0 = 0 and ρij0 = const,
and in the case when the MCs of the ith and j th body coincide in the state 0, then
ρij0 = 0.

The rate of change of the distance between the loaded state point is

δ̇ij = δ̇i − δ̇j = ṙia − ṙja − ρ̇ij0

= ṙia − ṙja − ω0 × ρij0 = ṙia − ṙja + ρij0 × ω0,

(78)Ȧij = Ȧia − Ȧja,

By joining (75) and (78), we obtain the relation for displacements and displace-
ment rates between the points of arbitrary MCs of the elastic interconnections and
manipulated object (Figure 15).

yij =
[

δij

Aij

]
=
[

(δD
ij + δR

ij )

Aij

]

=
[

ria − rja − ρij0

Aia − Aja

]
=
[

ρija − ρij0

Aia − Aja
,

]
(79)
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Figure 15. Displacements of the elastic system

ẏij =
[

δ̇ij

Ȧij

]
=
[

(δ̇D
ij + δ̇R

ij )

Aij

]
=
[

ṙia − ṙja + ρij0 × ω0

Ȧia − Ȧja

.

]
(80)

In the general case, in relations (79) and (80), the vector ρij0 and its derivative
are unknown quantities. It is known that the intensity of this vector does not change
with respect to the one at the moment of formation of contact between the manipu-
lators and the object. In other words, if the stored configuration of contact points in
the beginning of the gripping phase is ρ0

ij0, then the intensities of the initial radius
vectors of mutual displacements of node positions are known. The vector ρij0 is
obtained by rotating the vector ρ0

ij0, corresponding to the beginning of the gripping
phase for an instantaneous value of orientation A0 of the unloaded state 0. This
means that the only unknown quantities are the instantaneous orientation A0 and
angular velocity ω0 of the unloaded state 0.

The vector δij can be decomposed into the component δD
ij that is colinear to

the vector ria − rja = ρija and the component δR
ij non-colinear to this vector (Fig-

ure 15). The component δD
ij reflects the linear change of the distance between the

nodes, whereas the component δR
ij reflects the rotation of the deformed state, i.e.

78 Multi-Arm Cooperating Robots



79

the curvilinear coordinates of the loaded state. From the point of view of vector
calculus, the component δR

ij reflects the rotation of the vector ρij0 with respect to
the direction defined by the vector ρija .

In accordance with the above, the vector yij is decomposed into the components

yij = yD
ij + yR

ij =
[

δD
ij

Aij

]
+
[

δR
ij

0

]
. (81)

The vector yij is used to define the potential energy of the elastic system, i.e. its
deformation work, and it should be expressed as a function of absolute coordinates
only.

As the intensity ‖ρij0‖ does not change, the component yD
ij is defined by

yD
ij = yD

ij (Y ) =
⎡
⎣ ρija − ‖ρij0‖ ρija

‖ρija‖
Aia − Aja

⎤
⎦ =

⎡
⎣ ρija − ‖ρij0‖ ria − rja

‖ria − rja‖
Aia − Aja

⎤
⎦

=
⎡
⎣ (1 − ‖ρij0‖

‖ria − rja‖)(ria − rja)

Aia − Aja

⎤
⎦ , (82)

i.e., by
yD

ij = �ij (Yi, Yj )(Yi − Yj), (83)

where Yi = col(ria,Aia), i = 0, 1, . . . , m and

�ij (Yi, Yj )) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ‖ρij0‖
‖ria−rja‖ 0 0 0 0 0

0 1 − ‖ρij0‖
‖ria−rja‖ 0 0 0 0

0 0 1 − ‖ρij0‖
‖ria−rja‖ 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

det �ij (Yi, Yj )) 	= 0. (84)

The vector yD
ij (i.e., its component δD

ij ), determined by (82), becomes indeter-
minate for ‖ρija‖ = 0. That case corresponds to the coincidence of the MCs of the
ith and the j th body. As all the bodies are by assumption solid and rigid, that case
is not possible. For each passage of the elastic structure through the unloaded state
0, the vector yD

ij becomes zero. In that case ‖ρij0‖ = ‖ρija‖ and Aia = Aja = A0,
from which (1 − ‖ρij0‖/‖ρija‖) = 0 and Aia − Aja = A0 − A0 = 0.
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The component yR
ij contains only the term δR

ij . By combining (82) and (79), we
obtain

δR
ij = δij − δD

ij = ‖ρij0‖ ρija

‖ρija‖ − ρij0

yR
ij = diag

(
ρij0

‖ρija‖ ,
ρij0

‖ρija‖ ,
ρij0

‖ρija‖ , 0, 0, 0

)
(Yi − Yj) − col(ρij0, 03),

(85)

where 03 denotes the zero vector with three components. In this relation, the un-
known is the orientation of the vector ρij0, i.e. the orientation A0 of the unloaded
state 0.

By differentiating (82) and (85), we obtain complex expressions for the deriv-
atives of the vectors δD

ij and δR
ij . Simpler expressions for these derivatives can be

obtained in the following way.
The translational component δ̇D

ij of the displacement rate δ̇ij is equal to the
projection of that rate onto the direction of the vector ρija , which is described by

δ̇D
ij = (δ̇T

ij · ρija)

‖ρija‖ · ρija

‖ρija‖ = (δ̇T
ij · (ria − rja)) · ria − rja

‖ria − rja‖2

= (ria − rja) · (ria − rja)

(ria − rja)T · (ria − rja)
· δ̇ij . (86)

In the case of the colinearity of δ̇ij and ρija , δ̇R
ij = ρij0 × ω0 = 0 and (δ̇T

ij ·
ρija)/‖ρija‖ = ‖δ̇ij ‖ and, as the unit vectors are identical, δ̇ij /‖δ̇ij‖ = ρija/‖ρija‖,
then δ̇D

ij = δ̇ij = ṙia − ṙja . For small displacements of the elastic system, the vec-
tors ρija = ria − rja and ρij0 × ω0 are approximately normal (Figure 15), so that
(ρij0 × ω0)

T · (ria − rja) ≈ 0, wherefrom

δ̇D
ij � (ṙia − ṙja)

T · (ria − rja)

‖ria − rja‖2
· (ria − rja)

= (ria − rja) · (ria − rja)

(ria − rja)T · (ria − rja)
· (ṙia − ṙja), (87)

i.e.
δ̇D
ij � Gija(ria, rja)(ṙia − ṙja). (88)

The rotation component is given by

δ̇R
ij = δ̇ij − δ̇D

ij = (I − Gija(ria, rja))(ṙia − ṙja) + ρij0 × ω0, (89)
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where

Gija(ria, rja) = GT
ija(ria, rja) = (ria − rja) · (ria − rja)

(ria − rja)T · (ria − rja)
∈ R3×3, (90)

det Gija(ria, rja) = �(ria − rja)

‖ria − rja‖2
= 0, ria 	= rja, rank Gija(ria, rja) = 1 (91)

and �(ria −rja) is the determinant of the matrix (ria −rja) ·(ria −rja). In the trans-
lational motion of the state 0, we have ω0 = 0, and if the vectors ri0, rj0, ria, rja ,
i.e. ρij0 and ρija are colinear, then Gija(ria, rja)(ṙia − ṙja) = ‖ρij0‖(ṙia − ṙja) and
ρ̇ij0 = ρij0 × ω0 = 0, so that δ̇R

ij = 0.
In a developed form, Gija(ria, rja) is

Gija(ria, rja) = 1

(xia − xja)
2 + (yia − yja)

2 + (zia − zja)
2

× (92)

×
⎡
⎣ (xia − xja)

2 (xia − xja)(yia − yja) (xia − xja)(zia − zja)

(xia − xja)(yia − yja) (yia − yja)
2 (yia − yja)(zia − zja)

(xia − xja)(zia − zja) (yia − yja)(zia − zja) (zia − zja)
2

⎤
⎦ .

In (89), the unknown quantities are the instantaneous orientation A0 and angular
velocity ω0 of the vector ρij0, i.e. the orientation and angular velocity of the un-
loaded state 0. The instantaneous orientation and angular velocity of the unloaded
state 0 are used to calculate only the component δR

ij and its derivative δ̇R
ij .

This problem can be overcome in several ways.
These components can be neglected, which yields an insufficiently exact de-

scription of the deformation work. In this way, part of the load is left out of con-
sideration.

A smaller error is made if the instantaneous orientation and angular velocity of
the unloaded state 0 are taken as approximate values. In this way, part of the load
is not left out of consideration, but this does not mean that it is taken as accurate.
Namely, the elastic displacements are small compared to macro displacements. A
sufficiently good approximation of the instantaneous orientation and angular veloc-
ity of the unloaded state 0 is obtained by adopting their values as the mean values
of instantaneous orientation and angular velocity of the loaded elastic system as of
a block.

The problem can also be solved by using the types of contacts and elastic sys-
tem characteristics that do not produce bending loads, i.e. for which δR

ij = 0.
Finally, it should be noticed that the expression (82) for the component yD

ij of
the vector of relative displacement of elastic system nodes has the same mathemat-
ical form as the expression (27) for relative displacements of nodes of the ‘linear’
elastic system. By its form, the expression (85) for the component yR

ij differs only
by the term col(ρij0, 03).
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4.5 Model of Elastic System Dynamics for the Immobile Unloaded
State

In this section, all the models of dynamics are derived using Lagrange’s equations

d

dt

∂T

∂ġi

− ∂T

∂gi

− ∂D

∂ġi

+ ∂


∂gi

= Qi, i = 0, 1, . . . , m, (93)

where T is the kinetic energy; 
 is the potential energy; D is the dissipation
energy; Qi are the generalized forces, and gi, ġi are the generalized coordinates
and their derivatives.

The complete procedure of deriving elastic system dynamics for an immobile
unloaded state is given in Appendix A. Here we give only a summary of the ob-
tained results.

In describing elastic system dynamics for the immobile unloaded state, the
deviations yi (gi = yi) of the loaded state of the elastic system from its unloaded
state 0, are used as generalized coordinates. Such choice of coordinates is correct as
the unloaded state 0 is immobile (see (69) and (70)). Also, it is possible to use the
results of the theory of elasticity without any alteration, provided the coordinates
yi are used as global coordinates of the elastic system when defining the stiffness
matrix, which actually has been assumed.

It is assumed that in the elastic system composed of m+ 1 elastically intercon-
nected rigid bodies the relations of dimensions of the particular bodies and overall
elastic system are such that the continuity of the first derivative of elastic hyper-
surface is preserved, i.e. one part of the smooth continual elastic hyper-surface
(part of the elastic line of a linear body) can be replaced with a hyper-chord that is
sufficiently close to the hyper-tangent to the elastic hyper-surface. Displacements
of the elastic system due to the deformation with respect to the state 0 form an
elastic hyper-surface. To each point of the elastic hyper-surface corresponds the
deflection and slope angle of the hyper-tangent. For the case of the introduced as-
sumption, the elastic system deflection at the MC of a concrete object corresponds
to the translation of the object MC, whereas the slope of the hyper-tangent to the
elastic hyper-surface at the MC corresponds to the object rotation with respect to
the state it had in the state 0 (Figure 16) measured by the angle of rotation of the
coordinate frames at the object MC with the axes directed along the main inertia
axes. Such an arrangement shows that the choice of the coordinates yi is also valid
for the description of dynamics of the rigid bodies placed at the elastic system
nodes.

The effect of the gravitation field is not accounted for via its potential energy
but is associated with the external forces acting on the elastic system in the direc-
tion yz

i . The total potential energy 
 of the elastic system is only its deformation
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Figure 16. Planar deformation of the elastic system

energy, and it is determined by the expression

2
 = yT Fe = yT Ky = (δT AT )K

(
δ

A

)
,

K = KT ∈ R(6m+6)×(6m+6), rank K ≤ 6m. (94)

If the elastic system is to have displacements of nodes y, then the elastic forces Fe

(in this case it is the result of contact and dissipative forces and weight) must act
at its nodes Oai, i = 0, 1, . . . , m. In the domain of linear relationship between the
strain and dilatation, these forces are equal to the derivative of the potential energy
(deformation work) with respect to the displacements

Fe = ∂
/∂y = Ky ∈ R6m+6, Fei = ∂
/∂yi = Kiy ∈ R6×1, (95)

where Fe = col(Fe0, Fe1, . . . , Fem) = col(Fe0, Fec) ∈ R6m+6 are the expanded
vector of generalized forces (forces and moments); y = col(y0, y1, . . . , ym) =
col(y0, yc) ∈ R6m+6 is the expanded vector of displacements; K ∈ R(6m+6)×(6m+6)

is the stiffness matrix; y0 and Fe0 are the vectors of displacements and forces at the
manipulated object MC, whereas yc and Fec are the expanded vectors of displace-
ments and forces at the MCs of the elastic interconnection at the contact. Relation
(95) implies, from the principle of potential energy, a minimum for variable dis-
placements (i.e. from the principle of virtual displacements of an elastic body and
Castigliano’s principles, see (15), (16), (17)). This principle states that, of all the
possible displacements allowed on the outer surface, only those will appear for
which potential energy of the system has a minimal value.
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The stiffness matrix K is determined by some of the methods for static de-
formation of elastic system. Its rank can be at most rank K ≤ 6m. The elastic
system is kinematically unstable (mobile, contains all the modes of motion of a
solid body), so that 6m + 6 − rank K displacements should be adopted as known
(displacements of the supports or predetermined displacements of the leader) in
order to have the system position uniquely determined in space as a function of
these displacements and acting forces.

In view of the assumption that all the mass is placed at the grid nodes, the total
kinetic energy is only a function of the node coordinates yi and their derivatives
ẏi = vi , and is defined as a sum of the kinetic energies of the bodies at the elastic
system nodes T = T0 +T1 +· · ·+Ti +· · ·+Tm. After arranging, the total kinetic
energy of the elastic system is obtained in the form

2T =
m∑

i=0

⎛
⎝ ∞∑

j=1

dmjvj

⎞
⎠ =

m∑
i=0

miδ
2
i +

m∑
i=0

Iiω
2
i

=
m∑

i=0

vT
i Mivi = vT Mv = ẏT LT

v (y)MLv(y)ẏ, (96)

where (see Appendix A)

M = diag(M0,M1, . . . ,Mn) ∈ R(6m+6)×(6m+6),

Mi = diag(mi,mi,mi, Ai, Bi, Ci) ∈ R6×6

v = col(v0, v1, . . . , vm) ∈ R6m+6,

vi = col(δ̇i, ωi(Ai)) = Lvi(yi)ẏi , ωi = Lωi(Ai)Ȧi ∈ R3

Lvi(yi) = diag(I3×3, Lωi
(Ai)) ∈ R6×6,

Lv(y) = diag(Lv0, Lv1 . . . .Lvm) ∈ R(6m+6)×(6m+6) (97)

If the elastic interconnections have dissipative properties, the Rayleigh function
(dissipation energy) can be expressed as

2D = −ẏT Dẏ, D = DT ≥ 0, D ∈ R(6m+6)×(6m+6), (98)

where D ∈ R(6m+6)×(6m+6) is the matrix of damping coefficients by the correspond-
ing velocity.
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Generalized forces Qi are determined by

Qi = col(Q1
i , . . . ,Q

6
i ) = Gi(mig) + Fci, i = 0, 1, . . . , m,

Q
j

i =
m∑

k=0

∂yT
k

∂y
j

i

Qk =
m∑

k=0

∂yT
k

∂y
j

i

(Gk(mkg) + Fck), j = 1, . . . , 6, (99)

where Gi is the weight vector; Fci is the vector of external forces, and
y

j

i , j = 1, . . . , 6 are the individual components of the vector yi =
col(y1

i , y
2
i , y

3
i , y

4
i , y

5
i , y

6
i ) = col(δx

i δ
y

i δ
z
i ψiθiϕi) at the point i.

By introducing (94), (96), (98) and (99) into the Lagrange equations (93) and
uniting all 6m + 6 equations for the elastic system, which, under the action of the
system of external contact forces Fc, performs the motion around the immobile
unloaded state 0, one obtains the general form of the model

W(y)ÿ + w(y, ẏ) = F, (100)

where (see Appendix A)

W(y) = diag(W0(y0), . . . ,Wm(ym)) ∈ R(6m+6)×(6m+6),

W(y) = WT (y), detW(y) 	= 0,

w(y, ẏ) = col(wo(y, ẏ), . . . , wm(y, ẏ)) ∈ R6m+6,

F = col(0, Fc), F0 = 0. (101)

Of the 6m + 6 equations (100) the number of independent equations is exactly
equal to the rank of the stiffness matrix (rank K).

Equation (100) can be presented in such a way that the description of the mo-
tions of elastic interconnections and manipulated object are separated

Wc(yc)ÿc + wc(y, ẏ) = Fc,

W0(y0)ÿ0 + w0(y, ẏ) = 0, (102)

where the subscript c denotes the quantities related to the contact points and the
subscript 0 stands for the quantities related to the manipulated object. At that (see
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Appendix A)

yc = col(y1, y2, . . . , ym) ∈ R6m, yo ∈ R6,

Fc = col(F1, F2, . . . , Fm) ∈ R6m, F0 = 0 ∈ R6,

Wc(yc) = diag(W1(y1), . . . ,Wm(ym)) ∈ R6m×6m,

Wc(yc) = WT
c (yc), detWc(yc) 	= 0,

wc(y, ẏ) = [col(w1(y, ẏ), . . . , wm(y, ẏ))T ∈ R6m, (103)

where yc denotes the expanded vector of positions of contacts in a 6m-dimensional
space and Fc is the expanded vector of contact forces associated with this vector.

It should be noticed that there is no contact force acting directly at the manipu-
lated object MC, so that F0 = 0. Equations (100) and (102) represent the final form
of the equations of motion of the elastic system that under the action of the external
contact forces Fc performs a general motion around the immobile unloaded state 0.

4.6 Model of Elastic System Dynamics for a Mobile Unloaded State

The complete procedure of deriving the model of elastic system dynamics for the
mobile unloaded state is given in Appendix B. In this section we give a brief ac-
count of the derivation results for the case when yij = yD

ij .
Let the unloaded state 0 of the elastic system be mobile. The strain of the

elastic system takes place under the same principle as if the state 0 is at rest. In
other words, the elastic system strain is still considered only with respect to the
state 0, which is now mobile (see (69) and (71)). The absolute coordinates of
elastic system nodes Y are chosen as generalized coordinates (gi = Yi). Kinetic,
potential, and dissipation energies of the elastic system connections are defined
with the aid of the coordinates Y .

The kinetic energy is defined by the absolute velocities as

2Ta =
m∑

i=0

miṙ
2
ia +

m∑
i=0

Iiω
2
ia =

m∑
i=0

vT
iaMivia

= Ẏ T LT
va(Y )MLva(Y )Ẏ = Ẏ T Wa(Y )Ẏm, (104)
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where (see Appendix B) M is the inertial matrix and

Yi = col(ria,Aia) ∈ R6×1, Y = col(Y0, . . . , Ym) ∈ R6m+6

Lva(Y ) = diag(Lv0a, . . . , Lvma) ∈ R(6m+6)×(6m+6),

Lvia = diag(I3×3, Lωia(Aia)) ∈ R6×6,

via = col(ṙia, ωia(Aia)) = Lvia(Yi)Ẏi ∈ R6×1,

ωia = Lωia(Aia)Ȧia ∈ R3×1,

Wa(Y ) = diag(W0a, . . . ,Wma) = LT
va(Y )MLva(Y ) ∈ R(6m+6)×(6m+6). (105)

The overall potential energy due to linear and rotational displacements of the body
is defined by


a =
m∑

i=0

m∑
j=i+1

1

2
yT

ij Kijayij =
m∑

i=0

m∑
j=i+1

1

2
(Yi − Yj)

T πij (Yi − Yj)|yij =yD
ij
, (106)

where (see Appendix B) det πij 	= 0 and

πij = πji = �ij (Yi, Yj ))Kija�ij (Yi, Yj )) (107)

= diag(cx
ij β, c

y

ij β, cz
ij β, c

ψ

ij , c
ζ

ij , c
ϕ

ij ) ∈ R6×6, β =
(

1 − ‖ρij0‖
‖ria − rja‖

)2

.

In combined form, we have

2
a = Y T πa(Y )Y, det πa = 0, rank πa = 6m, (108)

where πa(Y ) is a symmetric matrix, πa(Y ) = πT
a (Y ), defined by

πa(Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=0,k 	=0

π0k −π01 −π02 · · · −π0m

−π01

m∑
k=0,k 	=1

π1k −π12 · · · −π1m

· · · · · · · · · · · · · · ·
−π0m −π1m −π2m · · ·

m∑
k=0,k 	=m

πkm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(6m+6)×(6m+6).

(109)
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The overall dissipation energy exchanged in the course of linear and rotational
displacements of the body is defined by

Da = −
m∑

i=0

m∑
j=i+1

1

2
(Ẏi − Ẏj )

T Dij (Ẏi − Ẏj ) = −1

2
Ẏ T Da(Y )Ẏ , (110)

where

Dij = DT
ij = Dji = diag(Gija(ria, rja)D

δ
ijGija(ria, rja),D

A
ij ) ∈ R6×6,Dδ

ij ,D
A
ij )

is the damping matrix of elastic interconnections between the ith and j th nodes,
and, as Dij = Dji

Da(Y ) = DT
a (Y ) (111)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
k=0,k 	=0

D0k −D01 −D02 · · · −D0m

−D01

n∑
k=0,k 	=1

D1k −D12 · · · −D1m

· · · · · · · · · · · · · · ·
−D0m −D1m −D2m · · ·

n∑
k=0,k 	=m

Dkm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Generalized forces for the individual components Y
j

i of the vector Yi are

Q
j

ia =
m∑

k=0

∂Yk

∂Y
j

i

(Gk(mkg) + Fck)

= G
j

i (mig) + F
j

ci, i = 0, 1, . . . , m, j = 1, . . . , 6. (112)

By introducing (104), (108), (110) and (112) into the Lagrange equations (93)
and after uniting all 6m + 6 equations, the general form of the model of the elastic
system that under the action of the system of external contact forces Fc, performs
a macro motion (the mobile unloaded state 0) will be

Wa(Y )Ÿ + wa(Y, Ẏ ) = F, (113)

where (see Appendix B)

Wa(Y ) = WT
a (Y ) = diag(W0a(Y0), . . . ,Wma(Ym)) ∈ R(6m+6)×(6m+6),

det Wa(Y ) 	= 0,

wa(Y, Ẏ ) = col(w0a(Y, Ẏ ), . . . , wma(Y, Ẏ )) ∈ R6m+6. (114)
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Of the 6m + 6 equations (113), only rank K equations are independent.
Equation (113) can be presented so that the description of the motion of con-

nections and manipulated object are separated

Wca(Yc)Ÿc + wca(Y, Ẏ ) = Fc,

W0a(Y0)Ÿ0 + w0a(Y, Ẏ ) = 0, (115)

where the subscript c denotes the quantities related to the contact points, and the
subscript 0 denotes the quantities related to the manipulated object. At that (see
Appendix B),

Yc = col(Y1, . . . , Ym) ∈ R6m, Y0 ∈ R6×1,

Fc = col(F1, . . . , Fm) ∈ R6m, F0 = 0 ∈ R6,

Wca(Yc) = WT
ca(Yc) = diag(W1a(Y1), . . . ,Wma(Ym)) ∈ R6m×6m,

detWca(Yc) 	= 0,

wca(Y, Ẏ ) = (wT
1a(Y, Ẏ ) . . . wT

ma(Y, Ẏ ))T ∈ R6m×1, (116)

where Yc denotes the expanded vector of contact position in the 6m-dimensional
space and Fc stands for the expanded vector of contact forces acting at the contact
points. It should be noticed that no force is acting at the manipulated object MC,
so that F0 = 0. Equations (113) and (115) represent the final form of equations
describing the behavior of the elastic system that under the action of the system of
external forces Fc, performs a general motion around the unloaded state 0, which
also performs a general motion.

4.7 Properties of the Potential Energy and Elasticity Force of the
Elastic System

Denote by Sy ∈ R(6m+6)×(6m+6) the coordinate frame whose unit vectors coincide
with the unit vectors of the generalized coordinates Y = col(Y0, . . . , Ym), Yi =
col(riaAia) ∈ R6×1, i = 0, . . . , m of the manipulated object, MC position, and
elastic interconnections.

Assume that with respect to the state characterized by the absence of any dis-
placement (yij = 0), a certain displacement of the nodes, defined by (79), takes
place (i.e. yij 	= 0) and, to this new position of elastic system nodes (henceforth,
loaded state) let correspond the coordinates Y . Let this displacement be kept con-
stant. It is necessary to determine the properties of the potential energy and force
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of the elastic system with the change of nodes coordinates in the adopted coordi-
nate frame, i.e. at the translation and rotation of the loaded state without relative
displacements of the nodes.

We will briefly repeat the relations needed for the analysis. According to (108),
for yR

ij = 0, the potential (i.e. deformation) energy of the elastic system at an
arbitrary point Y of the system Sy is

2
a(Y ) = Y T πa(Y )Y ∈ R1, detπa = 0, rank πa = 6m, (117)

where πa(Y ) = πT
a (Y ) is given by

πa(Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
k=0,k 	=0

π0k −π01 −π02 · · · −π0m

−π01

n∑
k=0,k 	=1

π1k −π12 · · · −π1m

· · · · · · · · · · · · · · ·

−π0m −π1m −π2m · · ·
n∑

k=0,k 	=m

πkm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R6(m+1)×6(m+1),

(118)

since

πij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cij (1 − ‖ρij0‖
‖ria−rja‖)

2 0 0 0 0 0

0 cij (1 − ‖ρij0‖
‖ria−rja‖)

2 0 0 0 0

0 0 cij (1 − ‖ρij0‖
‖ria−rja‖)

2 0 0 0

0 0 0 c
ψ

ij 0 0
0 0 0 0 cθ

ij 0
0 0 0 0 c

ϕ

ij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= πij (Yi, Yj ) = πji(Yj , Yi)

= diag

(
cij (1 − ‖ρij0‖

‖ria − rja‖
)2

I3×3, c
ψ

ij , c
θ
ij , c

ϕ

ij ), det πij 	= 0. (119)

The potential energy derivative with respect to the coordinate defines the elasticity
force decomposed along the coordinates Y of the system Sy by

Fe(Y ) = ∂
a(Y )

∂Y
= 1

2

∂

∂Y
(Y T π̄a(Y )Y )
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= 1

2

∂Y T π̄a(Y )Y

∂Y
+ πa(Y )Y = K(Y ) · Y ∈ R(6m+6)×1. (120)

An arbitrary component Fei of the assembled vector Fe is defined by

Fei(Y ) = ∂
a

∂Yi

= 1

2

∂

∂Yi

(Y T π̄a(Y )Y )

= 1

2

∂Y T π̄a(Y )Y

∂Yi

+ πia(Y )Y ∈ R6×1, (121)

where πia(Y ) ∈ R6×(6m+6) are the submatrices composed of the rows starting from
the (6i + 1)th to (6i + 6)th row inclusive, of the matrix πa(Y ), and ∂(Y T π̄aY )/∂Yi

is the vector of the derivative of the quadratic form (scalar) Y T πaY with respect
to the vector Yi , whereby the macron denotes that partial derivation is carried out
over the matrix πa.

It should be noticed that the potential energy of the elastic system is equal to
the sum of the internal forces works. When deriving the expression for poten-
tial energy in the adopted generalized coordinates Y , a linear relationship between
nodes displacements and elasticity force has been implicitly built in. Studies of the
properties of potential energy and elastic system elasticity force in the loaded state
motion will be reduced to the study of the behavior of the displacement vector of
nodes of the elastic system connected to the mobile loaded state in the fixed frame
of adopted coordinates Y .

4.7.1 Properties of potential energy and elasticity force of the elastic system
in the loaded state translation

Let the elastic system be translated from the point Y by the vector η, defined by the
expression

η =
⎡
⎣ η0

· · ·
ηm

⎤
⎦ =

⎡
⎣ η̄

· · ·
η̄

⎤
⎦ ∈ R(6m+6)×1,

η̄ = ηi =

⎡
⎢⎢⎢⎢⎢⎢⎣

η̄1

η̄2

η̄3

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[

η̂

0

]
∈ R6×1, i = 0, . . . , m. (122)

Let us define the potential energy and elastic force at a point

YI = Y + η ∈ R(6m+6)×1,
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YIi =
[

ria

Aia

]
+
[

η̂

0

]
= Yi + ηi = Yi + η̄, i = 0, . . . , m. (123)

The overall potential energy at that point is

2
a(YI ) = 2
a(Y + η) = (Y + η)T · πa(Y + η) · (Y + η), (124)

whence

2
a(YI ) = Y T πa(Y + η)Y + Y T πa(Y + η)η

+ ηT πa(Y + η)Y + ηT πa(Y + η)η. (125)

The product πa(#) · η is

πa(#) · η =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ m∑

k=0,k 	=0

π0k − π01 − . . . − π0m

⎞
⎠ η̄

· · ·⎛
⎝ m∑

k=0,k 	=m

πkm − π0m − . . . − π(m−1)m

⎞
⎠ η̄

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ 0

· · ·
0

⎤
⎦ = 0 ∈ R(6m+6)×1, (126)

so that the quadratic form is (##) · πa(#)η = 0, which gives

2
a(YI ) = Y T πa(Y + η)Y. (127)

The matrix πa(Y + η) is a function of the submatrices πij :

πa(Y + η) = πa(π01(Y0 + η̄, YI + η̄), . . . ,

πij (Yi + η̄, Yj + η̄), . . . , π(m−1)m(Ym−1 + η̄, Ym + η̄) . (128)

Having in mind the expressions for πij (Yi, Yj ), YIi and YIj , the stiffness matrix
πij (YIi, YIj ) between these nodes is

πij (YIi, YIj ) = diag

(
cij

(
1 − ‖ρij0‖

‖ria + η̂ − (rja + η̂)‖
)2

I3×3, c
ψ

ij , c
θ
ij , c

ϕ

ij

)

= diag

(
cij

(
1 − ‖ρij0‖

‖ria − rja‖
)2

I3×3, c
ψ

ij , c
θ
ij , c

ϕ

ij

)

= πij (Yi, Yj ) (129)
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or, in a shorter form,

πij (Yi + η̄, Yj + η̄) = πij (Yi, Yj ), (130)

so that

πa(Y + η) = πa(πij (Yi + η̄, Yj + η̄)) = πa(πij (Yi, Yj )) = πa(Y ), (131)

whereas the overall potential energy is


a(Y + η) = 1

2
Y T πa(Y + η)Y = 1

2
Y T πa(Y )Y = 
a(Y ). (132)

Let us conclude that the overall potential energy does not change in the course
of the parallel displacement of the elastic system, and that this regularity in the
system of selected coordinates is described by (132).

The elasticity force Fe(YI ) at the point YI , analogously to (120), is defined by
the expression

Fe(YI ) = ∂
a(YI )

∂YI

. (133)

Since
∂
a(YI )

∂Y
=
(

∂YI

∂Y T

)T

· ∂
a(YI )

∂YI

= ∂Y T
I

∂Y
· ∂
a(YI )

∂YI

, (134)

then
∂
a(YI )

∂YI

=
(

∂Y T
I

∂Y

)−1

· ∂
a(YI )

∂Y
. (135)

Substituting the last expression into (133), in view of (132) and (120), we obtain

Fe(YI ) =
(

∂Y T
I

∂Y

)−1

· ∂
a(Y )

∂Y
=
(

∂Y T
I

∂Y

)−1

· Fe(Y ). (136)

From expression (123), for YI we have ∂Y T
I /∂Y = (∂Y T

I /∂Y )−1 = I3×3, so that
we can finally conclude that

Fe(Y + η) = Fe(Y ), (137)

i.e. in the parallel displacement of the elastic system by the vector η defined by
(122), elasticity force does not change.
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4.7.2 Properties of potential energy and elasticity force of the elastic system
during its rotation in the loaded state

We seek the form of relations that hold in the system of adopted generalized co-
ordinates Y during the rotation of the loaded elastic system without a change of
relative distances of the nodes.

It is known [31] that every orthogonal transformation of three-dimensional
space coordinates

µ = Rζ, RT R = RRT = I, RT = R−1, (138)

retains

• the vector module,

• the angle between the vectors,

and if also det R = 1, then all basic vectors in the coordinates transformation (138)
preserve their mutual orientation (orientation of coordinate frames, vector product
and mixed vector product) and such a transformation is called a characteristic ro-
tation. For example, to describe rotation in terms of Euler angles, it is possible to
have 12 systems of angles and six variants of the matrix R. For the case of a certain
choice of the angles β1, β2, β3, the matrix R will be obtained as a product of three
matrices that describe three successive rotations by the selected angle

R = R(β1, β2, β3) = R(β1) · R(β2) · R(β3).

Let the loaded state before the rotation be at the point Y of (6m + 6)-dimensional
space. Let the orientation of each body with MCi , i = 0, 1, . . . , m, i.e. of the
overall loaded state, change by the rotation

a = (aψ aθ aϕ)T ∈ R3×1. (139)

The new orientation of an arbitrary body with the MCi will be

AI ia = Aia + a, (140)

but the mutual orientation of the bodies i and j will remain unchanged,

AI ij = AI ia − AIja = Aia + a − (Aja + a) = Aia − Aja = Aij , (141)

i.e. in the orientation subsystem of six-dimensional space, the change of orientation
by a constant vector a means the translation of the coordinates of this subsystem.
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Figure 17. Rotation of the loaded elastic system

Let the loaded state after rotation by the orientation (139) be at the point YI

(Figure 17). Let P be the instantaneous pole of rotation. Since the loaded state
moves as a rigid body, the following relations will hold:

rIja = rja + νj , j = 0, 1, . . . , m. (142)

In view of (138)

ρIrj = ρrj + νj ,

ρIrj = A(a)ρrj , ⇒ νj = ρIrj − ρrj = (A(a) − I3×3)ρrj , (143)

after the substitution, one gets

rIja = rja + (A(a) − I3×3)ρrj = rr + A(a)ρrj (144)

where rr is the vector of the instantaneous position of the rotation pole; ρ�r� is the
position vector of the points of instantaneous rotation pole P whose positions are
not known, and A(a) is the matrix of coordinates transformation in the rotation.
Since ρija = ρri − ρrj = ria − rja , then from

ρIija = rI ia − rIja = ria − rja + (A(a) − I3×3)(ρri − ρrj) = A(a)ρija, (145)
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one gets
rIja = rI ia − A(a)ρija . (146)

If the positions of all the nodes rIja , j = 0, 1, . . . , m, are expressed as a func-
tion of the positions rI ia of the point i and distance ρija of these points from the
point i (ρiia = 0), then, in view of (140) and (141), we obtain

Yi =
[

ria

Aia

]
,

YIj =
[

rIja

AIja

]
=
[

rI ia − A(a)ρija

Aia − Aij + a

]
= YIi −

[
A(a)ρija

Aij

]
. (147)

For the case of the absence of rotation, a = 0, we have A(0) = I and A(a)ρija =
ρija . From (147), we will have

YIj = YIi − Ār (a)Yij (= YIi − Yij |a=0),

Yij =
[

ρija

Aij

]
, Ār = diag(A(a), I3×3) ∈ R6×6. (148)

Therefore, for the known absolute coordinates of a node YIi and vector of relative
positions Yij , in the absence of rotation and for the known value of the change of
orientation a in the rotation space, it is possible to uniquely determine the coordi-
nates of all the nodes of the mobile elastic system in which relative distances of the
nodes do not change (fictitious rigid body). The relations (147) and (148) hold for
an arbitrary position of the instantaneous rotation pole P and, on the basis of the
requirement for, e.g., a manipulated object MC, they will allow the finding of the
nominal motion conditions of the other nodes.

If we consider pure rotation about the instantaneous rotation pole (which may
also be a node) then, by placing the coordinate frame origin at the instantaneous
rotation pole in view of rr = 0, we obtain

Yj =
[

ρrj

Aj

]
, (149)

YIj =
[

ρIrj

AIj

]
=
[

A(a)ρrj

Aj + a

]
= Ār (a)Yj +

[
0
a

]
, j = 0, 1, . . . , m.

After coupling all m + 1 relations for pure rotation, the coordinates in the rotated
state and derivative with respect to the previous coordinates will be

YI = Ar(a)Y + ar (a),
∂YI

∂Y
= Ar(a),
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Ar(a) = diag(Ār (a), . . . , Ār (a))

= diag(A(a), I3×3, . . . , A(a), I3×3) ∈ R(6m+6)×(6m+6),

ar(a) = (0T
1×3 aT . . . 0T

1×3 aT )T ∈ R(6m+6)×1. (150)

In view of (138), the vector yD
ij (Yi, Yj ) (82) in the new deflected position

yD
Iij (YIi, YIj ), will be

yD
Iij (YIi, YIj ) =

[(
1 − ‖ρij0‖

‖ρIri − ρIrj‖)(ρIri − ρIrj

)
AI i − AIj

]
, (151)

and in view of (138), (141) and (143), the norm is

‖ρIri − ρIrj‖ =
√

(ρIri − ρIrj )T (ρIri − ρIrj ) (152)

=
√

(ρri − ρrj)T A(a)T A(a)(ρri − ρrj) = ‖ρri − ρrj‖.
After substituting into the previous relation we get

yD
Iij (YIi, YIj ) =

[(
1 − ‖ρij0‖

‖ρia − ρja‖
)

A(a)(ρri − ρrj)

AI i − AIj

]

= Āry
D
ij (Yi, Yj ). (153)

As, analogously to (106), the partial potential energy in the new position is defined
by the expression

2
ija(YIi, YIj ) = (yD
Iij (YIi, YIj ))

T · Kij · yD
Iij (YIi, YIj ) (154)

by introducing (153) into the previous equation and, in view of (82), we obtain

2
ija(YIi, YIj ) =
([

A(a) 03×3

03×3 I3×3

]
�ij · (Yi − Yj)

)T

× Kij

[
A(a) 03×3

03×3 I3×3

]
�ij · (Yi − Yj), (155)

whereas by introducing �ij from (84) and, after transposition, we have

2
ija(YIi, YIj ) = (Yi − Yj)
T

[(
1 − ‖ρij0‖

‖ria − rja‖
)

I3×3 0

0 I3×3

]

×
[

A(a)T 03×3

03×3 I3×3

] [
cij I3×3 0

0 diag(c
ψ

ij , c
θ
ij , c

ϕ

ij )

]
(156)

×
[

A(a) 03×3

03×3 I3×3

][(
1 − ‖ρij0‖

‖ria − rja‖
)

I3×3 0

0 I3×3

]
(Yi − Yj),
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whereas the rearranging gives

2
ija(YIi, YIj ) = (Yi − Yj)
T (157)

×
⎡
⎣ cij

(
1 − ‖ρij0‖

‖ria − rja‖
)2

I3×3A(a)T A(a) 0

0 diag(c
ψ

ij , c
θ
ij , c

ϕ

ij )

⎤
⎦ (Yi − Yj).

Since A(a)T A(a) = I , in view of (108) and (107), we get

2
ija(YIi, YIj ) = (Yi − Yj)
T (158)

×
⎡
⎣ cij

(
1 − ‖ρij0‖

‖ria − rja‖
)2

I3×3 0

0 diag(c
ψ

ij c
θ
ij c

ϕ

ij )

⎤
⎦ (Yi − Yj) = 2
ija(Yi, Yj )

or, shorter,

ija(YIi, YIj ) = 
ija(Yi, Yj ). (159)

Taking into account (108), along with (150), we conclude that


a(YI ) = 
a[Ar(a)Y + ar(a)] = 
a(Y ), (160)

i.e. the pure rotation of the loaded state did not change the overall deformation
energy.

Using (160), we will find the regularity holding for the elastic force at the
rotation of the loaded elastic system. The elasticity force, decomposed along the
coordinates Y of the system Sy in the new position, analogously to (133) and (135),
will be determined by the expression

Fe(YI ) = ∂
a(YI )

∂YI

= ∂
a[Ar(a)Y + ar(a)]
∂(Ar(a)Y + ar)

=
(

∂[Ar(a)Y + ar (a)]T
∂Y

)−1
∂
a(Y )

∂Y
. (161)

According to (150) and (138)(
∂[Ar(a)Y + ar (a)]T

∂Y

)−1

= Ar(a)−1 = diag(A−1(a) I . . . A−1(a) I ) (162)

= diag(AT (a) I . . . AT (a) I ) = AT
r (a).

By introducing the last expression into (161), and taking (120) into account, we
finally obtain a relation between the elasticity forces before and after the rotation
of the loaded state in the form

Fe(YI ) = Fe[Ar(a)Y + ar(a)] = AT
r (a)Fe(Y ), (163)
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in which, apart from the absolute coordinates of the nodes before and after rotation,
is also figuring the change of the orientation a.

In a general motion composed of one translation and one rotation, the force
established prior to the rotation is according to (137), equal to the force established
at the initial moment of the motion. In other words, if we determine the force in
the initial moment and denote it by Fe(Y ), and bearing in mind (137) and that, for
a = 0, there will be ar(a) = 0 and Ar(a) = I , then relation (163) can be used as
a general expression for determining the force vector at an arbitrary position of the
loaded state whose nodes distances do not change with respect to the initial state.

In cooperative manipulation, the nominal conditions are typically given in one
of the following two ways:

1. The manipulated object is, in the desired way, transferred from the initial to
the final position. During the transfer, the positions of the contact points are
registered. Then, on the basis of the object initial position, it is necessary
to determine the vectors Yij and Fe(Y ). For an arbitrary position, accord-
ing to (148) we determine YIij = YIi − YIj = Ār (a)Yij . If the object is
performing a translatory motion, then YIij = Yij and the contact forces will
be determined according to (137) with respect to the initial state. If these
two vectors are not identical, then, since the matrix Ār (a) has a fixed known
structure dependent exactly on three coordinates of the vector a (139), it is
necessary to form (148) for the arbitrarily selected nodes and solve it with
respect to a and then, using (163), determine the necessary elastic forces in
that position.

2. The trajectory of the manipulated object MC r0 in three-dimensional space
and the change of its orientation A0 are determined first, whereby the rota-
tion is performed about the MC as an instantaneous pole. Then, according
to (148), it is necessary to determine the positions of all the nodes Y for the
initial instant, as well as the vectors Yij and Fe(Y ). For an arbitrary position
on the trajectory, the vector YIi is determined by the MC position vector in
three-dimensional space r0 for that point of the trajectory and orientation of
the manipulated object from the initial moment (as if it were translated to
that position). The value of the vector of the change of orientation is defined
by the required orientation of the object a = A0, so that the positions of
the contact points and the forces there are determined according to (148) and
(163).
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In addition to the source vector Y , with the structure

Y =

⎡
⎢⎢⎣

Y0

Y1

· · ·
Ym

⎤
⎥⎥⎦ =

⎡
⎣ Y0

Yv

Ys

⎤
⎦ =

[
Y0

Yc

]
∈ R(6m+6)×1, Yv = Y1 ∈ R6×1,

Ys =
⎡
⎣ Y2

· · ·
Ym

⎤
⎦ ∈ R(6m−6)×1,

Yc =
⎡
⎣ Y1

· · ·
Ym

⎤
⎦ =

[
Yv

Ys

]
∈ R6m×1, (164)

use is also made of the vector with a transformed structure⎡
⎢⎢⎢⎢⎣

Y1

Y2

· · ·
Ym

Y0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ Yv

Ys

Y0

⎤
⎦ =

[
Yc

Y0

]
∈ R(6m+6)×1. (165)

For both vectors, the transformation matrix Ar(a) and the vectors ar(a) and η from
(150) and (122) are the same, so that all the previous conclusions, derived for the
source vector, also hold for the vector with a transformed structure.

4.8 Model of Manipulator Dynamics

The model of motion of a non-elastic manipulator with six DOFs with non-
compliant joints and with the gripper force in the space of internal coordinates,
is given by [32–36]

Hi(qi)q̈i + hi(qi, q̇i ) = τi + J T
i fci , i = 1, . . . , m, (166)

where Hi(qi) ∈ R6×6 is a positively determined inertia matrix of the ith manipu-
lator; hi(qi, q̇i ) ∈ R6×1 is the vector taking into account the effect of gravitation,
Coriolis acceleration, and friction; τi ∈ R6×1 is the vector of joint drives; Ji ∈ R6×6

is the transformation matrix of the velocity vector of internal coordinates into ve-
locity vector of the manipulator tip, and fci = −Fi ∈ R6×1 is the contact force at
the manipulator tip.

For m manipulators, the model acquires a general form

H(q)q̈ + h(q, q̇) = τ + J T fc (167)
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with the following designations:

H(q) = blockdiag(H1(q1), . . . , Hm(qm)) ∈ R6m×6m,

h(q, q̇) = col(h1(q1, q̇1), . . . , hm(qm, q̇m)) ∈ R6m×1,

τ = col(τ1, . . . , τm) ∈ R6m×1,

J T = blockdiag(J T
1 , . . . , J T

m ) ∈ R6m×6m,

fc = col(fc1, . . . , fcm) = col(−F1, . . . ,−Fm) ∈ R6m×1,

q = col(q1, . . . , qm) ∈ R6m×1,

q̇ = col(q̇1, . . . , q̇m) ∈ R6m×1. (168)

The vector equation (167) determines 6m connections.

4.9 Kinematic Relations

By assumption, the contact of the manipulator and object is stiff and rigid. The
contact position is determined by the position and orientation of the manipulator
gripper tip on the one hand and by the position of the external node of the elastic
system on the other. We assume that the work space is six-dimensional and the ma-
nipulators are non-redundant so a unique mutual kinematic relation is established
through the contact position between the internal coordinates of each manipulator
and the position of its contact with the elastic system described by the external
(absolute) coordinates.

If the kinematic relation of the internal and absolute coordinates Y of contact
points is expressed as

Yi = �i(qi) ∈ R6×1, i = 1, . . . , m, (169)

then the relation between their velocities and accelerations will be [32–34]

Ẏi = ∂�i(qi)

∂qi

· q̇i = Ji(qi)q̇i ∈ R6×1, i = 1, . . . , m, (170)

Ÿi = J̇i (qi)q̇i + Ji(qi)q̈i ∈ R6×1, i = 1, . . . , m, (171)
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or in united form
Yc = �(q) ∈ R6m×1,

Ẏc = J (q)q̇ ∈ R6m×1,

Ÿc = J̇ (q)q̇ + J (q)q̈ ∈ R6m×1, (172)

where Yc = col(Y1, . . . , Ym).
Kinematic relations of the internal coordinates and the coordinates used to de-

scribe the motion around the immobile y and mobile Y unloaded states are of the
same form. Relations (171) are given for the coordinates Y whereas kinematic re-
lations are obtained for the coordinates y by introducing into (171) y instead of Y .
The concrete dependence �(q) is formed for each concrete choice of the coopera-
tive system structure, i.e. the arrangement of the manipulators and their kinematic
characteristics.

4.10 Model of Cooperative System Dynamics for the Immobile
Unloaded State

The equations describing the behavior of the elastic system (100) or (102) and ma-
nipulators (167) and kinematic relations (172) of the internal coordinates q and
elastic system displacements y define the model of cooperative work of m rigid
manipulators with six DOFs, handling a rigid object whose general motion in three-
dimensional space is unconstrained, whereby the connections between the object
and manipulators are elastic and the motion takes place around the immobile un-
loaded state 0.

The number of inputs into the model is 6m, whereas the number of independent
state quantities (positions and velocities) is 2 · (6m + 6), of which 2 · rank K are
dictated by the elastic system and 2 · (6m+6− rank K) are dictated by the leader’s
dynamics.

State quantities can be chosen in different ways. For example, possible choices
are internal coordinates vector q ∈ R6m×1 and position vector of the manipulated
object MC y0 ∈ R6×1 and their derivatives, or the position vector of the MCs of
elastic interconnections yc ∈ R6m×1 and of manipulated object y0 ∈ R6×1 and their
derivatives, or the vector of the leader’s internal coordinates qv ∈ R6×1 and position
vector of the MCs of the remaining elastic interconnections ys ∈ R(6m−6)×1 and
their derivatives, or the corresponding internal coordinates qs ∈ R(6m−6)×1 of the
followers and the MC of the manipulated object y0 ∈ R6×1.

Let the state quantity vector z = col(q, y0) ∈ R6m+6 and its derivatives be
prescribed.
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By introducing kinematic relations between the internal coordinates q and con-
tact points displacements yc defined by (172) into (102), we obtain

Wc(�(q))(J̇ (q)q̇ + J (q)q̈) + wc(�(q), J (q)q̇, y0, ẏ0) = Fc,

W0(y0)ÿ0 + w0(�(q), J (q)q̇, y0, ẏ0) = 0. (173)

As Fc = −fc, by introducing Fc from the last equation in (167), we get

(H(q) + J T (q)Wc(�(q))J (q) )q̈ + h(q, q̇) + J T (q)Wc(�(q))J̇ (q)q̇

+ J T (q)wc(�(q), J (q)q̇, y0, ẏ0) = τ,

W0(y0)ÿ0 + w0(�(q), J (q)q̇, y0, ẏ0) = 0, (174)

i.e. in a shorter form,

N(q)q̈ + n(q, q̇, y0, ẏ0) = τ,

W(y0)ÿ0 + w(q, q̇, y0, ẏ0) = 0, (175)

where

N(q) = H(q) + J T (q)Wc(�(q))J (q) ∈ R6m×6m,

n(q, q̇, y0, ẏ0) = h(q, q̇) + J T (q)Wc(�(q))J̇ (q)q̇

+ J T (q)wc(�(q), J (q)q̇, y0, ẏ0) ∈ R6m×1,

W(y0) = W0(y0),

w(q, q̇, y0, ẏ0) = w0(�(q), J (q)q̇, y0, ẏ0) ∈ R6×1. (176)

By introducing the vector z = col(q, y0) into (175), a general form of the model of
cooperative manipulation is obtained in the form

�(z)z̈ + φ(z, ż) = δτ , det�(z) 	= 0, (177)

where

�(z) =
⎡
⎣ N(q) 0

0 W(y0)

⎤
⎦ ∈ R(6m+6)×(6m+6),

φ(z, ż) =
(

n(q, q̇, y0, ẏ0)

w(q, q̇, y0, ẏ0)

)
∈ R6m+6,

δτ = col(τ, 0, . . . , 0) ∈ R6m+6,

τ ∈ R6m×1. (178)
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4.11 Model of Cooperative System Dynamics for the Mobile
Unloaded State

Equations (113) or (115), (167) and (172) define the model of cooperative work of
m rigid manipulators with six DOFs handling a rigid object whose general motion
in three-dimensional space is unconstrained, whereby the connections between the
object and manipulators are elastic and the unloaded state of the elastic system also
performs general motion.

As in the model of cooperative work for the motion around the immobile un-
loaded state of elastic system, in this example too, the number of model inputs is
6m, whereas the number of state quantities (positions and velocities) is 2 ·(6m+6).

The possible choices of state quantities are the internal coordinates vector q ∈
R6m×1 and position vector of the manipulated object MC Y0 ∈ R6×1 and their
derivatives, or the position vector of the MCs of elastic interconections and of
manipulated object Y ∈ R6m+6 and their derivatives, or the internal coordinates
vector of the leader qv ∈ R6×1 and vector of positions of the MCs of the remaining
elastic interconnections Ys ∈ R(6m−6)×1 and the MC of the manipulated object
Y0 ∈ R6×1 and their derivatives.

The choice of vectors of the absolute coordinates of contact points Yc ∈ R6m×1

for the state quantities requires finding an inverse function for mapping the manip-
ulator tip position into internal coordinates q = �−1(Yc). As this task is not easily
solvable, to derive a general model of cooperative manipulation it is necessary to
adopt the vector of state quantities z = col(q, Y0) ∈ R6m+6 and its derivatives.

Replacing (172) into (115) yields

Wca(�(q))(J̇ (q)q̇ + J (q)q̈) + wca(�(q), J (q)q̇, Y0, Ẏ0) = Fc,

W0a(Y0)Ÿ0 + w0a(�(q), J (q)q̇, Y0, Ẏ0) = 0. (179)

Since Fc = −fc, after introducing Fc from the last equation into (167), we get

(H(q) + J T (q)Wca(�(q))J (q))q̈ + h(q, q̇) + J T (q)Wca(�(q))J̇ (q)q̇

+ J T (q)wca(�(q), J (q)q̇, Y0, Ẏ0) = τ,

W0a(Y0)Ÿ0 + w0a(�(q), J (q)q̇, Y0, Ẏ0) = 0 (180)

or, in a shorter form,

N(q)q̈ + n(q, q̇, Y0, Ẏ0) = τ,

W(Y0)Ÿ0 + w(q, q̇, Y0, Ẏ0) = 0,

P (q)q̈ + p(q, q̇, Y0, Ẏ0) = Fc, (181)
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where

N(q) = H(q) + J T (q)Wca(�(q))J (q) ∈ R6m×6m,

n(q, q̇, Y0, Ẏ0) = h(q, q̇) + J T (q)Wca(�(q))J̇ (q)q̇

+ J T (q)wca(�(q), J (q)q̇, Y0, Ẏ0) ∈ R6m×1,

W(Y0) = W0(Y0),

w(q, q̇, Y0, Ẏ0) = w0a(�(q), J (q)q̇, Y0, Ẏ0) ∈ R6×1,

P (q) = Wc(�(q))J (q) ∈ R6m×6m,

p(q, q̇, Y0, Ẏ0) = Wc(�(q))J̇ (q)q̇ + wc(�(q), J (q)q̇, Y0, Ẏ0) ∈ R6m×1.

(182)
The first two equations in (181) describe the behavior of the cooperative system,
whereas the third equation defines the dependence of the contact forces on inter-
nal coordinates. This dependence is of a differential type and is described by the
model of elastic system dynamics (179). By their structure, the matrices H(q),
J (q), Wc(�(q)) from (181) are diagonal block matrices. Each submatrix from the
diagonals of these matrices is non-singular and is only a function of the internal
coordinates of the manipulator that this submatrix is related to. Hence, the inertia
matrices N(q) and P(q) in (181) are also of block-diagonal form.

If the vector z = col(q, Y0) is introduced into (181), a general form of the
model of cooperative work will be

�(z)z̈ + φ(z, ż) = δτ , det �(z) 	= 0, (183)

where

�(z) =
⎡
⎣ N(q) 0

0 W(Y0)

⎤
⎦ ∈ R(6m+6)×(6m+6),

φ(z, ż) =
(

n(q, q̇, Y0, Ẏ0)

w(q, q̇, Y0, Ẏ0)

)
∈ R6m+6,

δτ = col(τ, 0, . . . , 0) ∈ R6m+6,

τ ∈ R6m×1. (184)
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Figure 18. Block diagram of the cooperative system model

Obviously, the two model forms, (177) and (183), are identical. From this form
of the model we get the essential characteristic of cooperative work that the number
of possible (physical) inputs is smaller than the number of model state quantities
(order of the system).

Therefore, the presented modeling procedure based on Lagrange’s equations
yielded a complete dynamic model of the cooperative work of several manipula-
tors with six DOFs in several mathematical forms for different conditions of co-
operative work. The problem of force uncertainty has been completely resolved,
and the causes of force uncertainty and kinematic uncertainty in cooperative work
have been explained. It was shown that this problem does not physically exist and
a procedure was given to solve the force uncertainty problem in accordance with
physical phenomena. We modeled the general motion of the system of elastically
connected rigid bodies with six DOFs, starting from the assumption that absolute
coordinates of the body MC during the motion and distance from the MC of the
elastic system before deformation are known.

A block diagram of the cooperative work model (183) is given in Figure 18.

4.12 Forms of the Motion Equations of Cooperative System

First, we recapitulate on the mathematical modeling of cooperative manipulation.
The clue to solving force and position redundancy, described in the introduc-

tory Section 3.1 as the problem of cooperative manipulation (as dealt with in the
available literature), is the abandoning of the assumption that the object, manipu-
lators, and contacts are rigid. To present the conceived solution of the model of
cooperative manipulation, we have chosen to analyze the simplest case of contact.
It is the rigid contact of the manipulator tips and object in which no change of con-
tact point on the manipulated object is allowed, whereas the forces and moments
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are possible in all directions, irrespective of whether they are positive or negative.
On the other hand, the manipulator tips and manipulated object form one whole (as
if they were glued), so that the elasticity model introduced holds either for the rigid
manipulator and elastic object, or for a rigid manipulator with an elastic tip and
rigid object, or for an elastic manipulator tip and elastic object. The simplest case
is when the tips of the manipulators are elastic, as then all the model parameters
can be easily determined.

The system manipulators-manipulated object is decomposed into the elastic
system and rigid manipulators. The elastic system is first described approximately
by considering the discontinual structure with 6m + 6 DOFs of motion, which
‘communicates’ with the manipulators via force and position. Practically, an elas-
tic spatial grid is formed with rigid objects at the nodes, which is a relatively rough
picture of reality, but a very practical one for engineering applications and suf-
ficiently correct provided the influential (Maxwell’s) coefficients are constant. If
the grid is elastic there will be a unique relationship between the grid position and
forces acting on the grid. For the selected model of elastic system only the grid
nodes are under the influence of forces equal to the sum of inertial, damping, grav-
itational, and contact forces. The acting forces are balanced by elastic forces both
under the static and dynamic conditions. A description of this property has the
same form when the unloaded state is either at rest or in the state of motion, and is
given by the relations

Fe(y) = ∂
a

∂y
= Ky, K = const ∈ R(6m+6)×(6m+6), rank K ≤ 6m, (185)

Fe(Y ) = ∂
a(Y )

∂Y
= K(Y )Y, K(Y ) ∈ R(6m+6)×(6m+6), rank K(Y ) ≤ 6m.

From the Lagrange equations (93) for the immobile and mobile unloaded state,
we have

∂


∂y
| = | − d

dt

∂T

∂ẏ
+ ∂T

∂y
+ ∂D

∂ẏ
| + Q,

| | |
∂
a

∂Y
| = | − d

dt

∂Ta

∂Ẏ
+ ∂Ta

∂Y
+ ∂Da

∂Ẏ
| + Qa

| | |
⇔ ∂
∗

∂♥ | = | (♣♣♣) · ♥̈ + (♠♠♠♠) · ♥̇ | + G∗ + F∗, ♥ = y, Y, ∗ = −, a,

Fe = Fd̈ + Fḋ + G∗ + F∗. (186)

Evidently, the first and second equations of (185) are of identical form.
If the potential energy (deformation work) is zero, the system of 6m + 6 equa-

tions (185) describes the motion of m + 1 rigid bodies. If m = 0 too, the system
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describes the motion of the rigid manipulated object only. If m = 1, the system
describes the motion of one manipulator in contact with the object.

The first equation in (185), with Fe = G + F , is the subject matter of the
strength of materials, and the theory of construction or aeroelasticity. The stiff-
ness matrix is constant with the rank dictated by the degree of static uncertainty
of the considered construction (for rank K = 6m the construction is statically de-
termined) and is determined with respect to the Cartesian coordinate frame for the
unloaded state (for example, by some of the finite-element methods). It should
be noticed that the stiffness matrix is here determined for the adopted coordinate
frame attached to the unloaded state, and that it is not identical to the stiffness ma-
trices for other coordinate frames, although their properties are the same. The form
of Equation (186) illustrates D’Alembert’s principle of solving dynamic problems
by static methods.

Since, in a mathematical sense, the behavior of all the equations of elastic
system are equivalent, for the purpose of this analysis we assume that ♥ = y.
Let us denote by Fd the sum of dynamic forces Fd = Fd̈ + Fḋ in (186). Taking
into account (20), (100), (102), (113), (115), the last two equations of (186) can
also be presented in the form (matrix A in the subsequent relations differs from
the transformation matrix in the rotation of the loaded elastic system given in the
previous section):

Fec = Fdc + Gc + Fc = Ayc + by0,

Fe0 = Fd0 + G0 + F0 = cyc + dy0, (187)

where the subscripts c and 0 refer to the contact points and manipulated object MC,
respectively, whereby

h̄� =
[

h̄�c

h̄�0

]
∈ R6m+6, h̄�c ∈ R6m×1, h̄�0 ∈ R6×1, h̄ = F,G, y, � = e, d,−

K =
[

A b

c d

]
, rank K = 6m, |d| 	= 0. (188)

If Fd = 0, the equations of behavior describe in full the static conditions of the
elastic system, and the following two cases are possible:

1. First, corresponding to the static conditions of the manipulated object on
the support, the object being under the action of the contact forces Fc and
gravitation forces G, whereby the support reaction is the force F0. The cor-
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responding equations are

Gc + Fc = Ayc + by0,

G0 + F0 = cyc + dy0, Fd = 0, F0 	= 0. (189)

2. Second, corresponding to the static conditions of the manipulated object held
in space by the manipulators and experiencing the contact forces Fc and
gravitation forces G, whereby no other external force is acting at the object
MC (internal node of the grid), i.e. F0 = 0. The corresponding equations
are

Gc + Fc = Ayc + by0,

G0 = cyc + dy0, Fd = 0, F0 = 0. (190)

If the equations also encompass the description of dynamics, the corresponding
term should be different from zero, i.e. Fd 	= 0. Since this term can be split into the
inertial and damping terms, Fd = Fin +Ft , there are a lot of different combinations
of forces that might be taken into consideration. We will give several examples that
are of interest for cooperative manipulation.

1. The first case corresponds to the immobile manipulated object on the sup-
port, experiencing the forces of dynamics Fdc, contact, Fc, and gravitation,
G, whereby the support reaction is the force F0. The corresponding equa-
tions are

Fdc+ Gc + Fc = Ayc + by0,

G0 + F0 = cyc + dy0, Fd0 = 0, F0 	= 0. (191)

This case corresponds to the cooperative work of the manipulators on a ro-
bust object (e.g. car body). If the mutual influence of the manipulators via
elastic properties can be neglected, the case reduces to the independent work
of m manipulators on the same object. In the case of a single manipulator,
the first equation represents the ‘dynamic environment’ of that manipulator,
the subject being treated in [35–39]. Then, the dynamic environment de-
scribes the dynamics of connection from the point of view of cooperative
work (e.g. in grinding, the grinder is immobile so that Fd0 = 0, but the
connection manipulator tip–workpiece has a certain dynamics). The overall
model is obtained by associating equations of environment dynamics with
the equations describing the behavior of the manipulators and kinematic re-
lations between the internal and external coordinates.
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2. The second case corresponds to the mobile manipulated object on the sup-
port, experiencing the forces of dynamics Fdc, contact Fc, and gravitation G,
whereby the support reaction is the force F0 (e.g. in machining with pitch
and depth control without controlling the machining force, in some cases of
assembly on the conveyer). The corresponding equations are

Fdc+ Gc + Fc = Ayc + by0,

Fd0+ G0 + F0 = cyc + dy0, Fd 	= 0, F0 	= 0. (192)

3. The third case refers to the immobile manipulated object in space, experi-
encing the forces of dynamics Fdc, contact Fc, and gravitation G, whereby
no other external force is acting at the object MC, i.e. F0 = 0 (e.g. assembly
involving the fixed casing of the corresponding parts of the assembly block).
The corresponding equations are

Fdc+ Gc + Fc = Ayc + by0,

G0 = cyc + dy0, Fd0 = 0, F0 = 0. (193)

4. The fourth case corresponds to the mobile manipulated object in space, expe-
riencing the forces of dynamics Fdc, contact Fc, and gravitation G, whereby
no other external force is acting at the object MC, i.e. F0 = 0. This case
corresponds to the cooperative manipulation and has been dealt with in Sec-
tions 4.6 and 4.11. The corresponding equations are

Fdc+ Gc + Fc = Ayc + by0,

Fd0+ G0 = cyc + dy0, F0 = 0. (194)

This form of equations also holds in the case when the number of manipu-
lators is m = 1, i.e. when one manipulator is handling an elastic or rigid
object with elastic contact.

For practical applications, the above forms of equations are rather complex,
as they are of a high order and hence require a lot of calculation, using powerful
(i.e. expensive) hardware. Hence, it is often plausible to make simplifications
at the expense of accuracy. The main characteristic of cooperative manipulation
that cannot be neglected is its physical feature. However, it is often possible to
neglect the mass properties of the elastic interconnections with respect to those
of the manipulated object (Fcin = 0), which means a reduction of the system’s
order by 6m. If it is possible then to neglect the damping properties of elastic
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interconnections (Fct = 0), the system’s order is further reduced by 6m, and the
overall model acquires the form

Gc + Fc = Ayc + by0, Fdc = 0,

Fd0+ G0 = cyc + dy0, F0 = 0, (195)

composed of 6m algebraic equations and six second-order differential equa-
tions to describe the dynamics of the manipulated object that cannot be avoided
when its general motion is concerned.

For the overall description of cooperative manipulation, to one of the selected
forms of equations from (189) to (195) one has to associate the equations describ-
ing the manipulator’s dynamics (167) and equations of kinematic relations (172)
between the internal coordinates q and the coordinates y of the coordinate systems
fixed at the corresponding contact points.

It is necessary to notice some more characteristic properties of the forms of
equations describing cooperative manipulation. We will analyze the general form
of equations of the elastic system while taking into account the specific feature of
the cooperative work implicitly built-in into these equations. The previous general
form (187) can be written as

Fec = Ayc + by0,

Fe0 = cyc + dy0, F0 = 0, (196)

where A ∈ R6m×6m, b ∈ R6m×6, c ∈ R6m×6 and d ∈ R6×6 are the submatrices of
the singular stiffness matrix K.

Matrix d ∈ R6×6 represents elastic properties in the directions of manipulated
object DOFs. Hence, it is an irregular matrix, |d| 	= 0, otherwise it would contra-
dict the assumptions about the model. The rank of the matrix K is rank K = 6m

irrespective of which node is selected to define the elastic system (grid) in space,
because equations of external equilibrium of forces and moments must hold for
that point, and each of these equations represent the sum of m corresponding rows
of the rest of the stiffness matrix. If the characterization in space is based on the se-
lected point y0, then a unique relation must exist between yc and the acting forces,
i.e. the matrix A has to be non-singular too, |A| 	= 0.

It is known [40] that for the non-singular matrices, A and d holds

det K = det

[
A b

c d

]
= |A| · |d − cA−1b|

= |A − bd−1c| · |d|, |A| 	= 0, |d| 	= 0. (197)
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and since det K = 0 and |d| 	= 0 then |A − bd−1c| = 0 should be satisfied, i.e. the
matrix A − bd−1c must be singular, and because of |A| 	= 0 is |d − cA−1b| = 0,
so that the matrix d − cA−1b is singular too.

What are the repercussions of this statement to cooperative work?
By solving the first equation of (196) with respect to yc and after rearranging,

we have
yc = A−1Fec − A−1by0,

Fe0 = cA−1Fec + (d − cA−1b)y0, ⇒ d = cA−1b. (198)

By solving the second equation of (196) with respect to y0 and after rearranging,
one gets

Fec = (A − bd−1c)yc + bd−1Fe0, ⇒ A = bd−1c,

y0 = d−1cyc + −d−1Fe0. (199)

The previous equations must be satisfied for all static and dynamic conditions,
including the conditions y0 = 0 and Fe0 = 0, irrespective of how long they last.
Then, the right-hand sides of Equations (198) and (199) acquire a rectangular form,
with the elasticity forces Fec and displacements of the contact points yc as indepen-
dent arguments. Equation (198) can establish a unique correspondence between the
displacements of contact points and forces acting at them yc = yc(Fec, y0). As in
Equation (199) rank [((A − bd−1c)T | (d−1c)

T )T ] < 6m, it is not possible to es-
tablish a unique correspondence Fec = Fec(yc, Fe0). Then it is necessary to seek
the part of the newly-formed matrix whose rank is 6m and establish for it the cor-
respondence between the quantities on the left and right sides of the equality sign.
In that case, the vector on the left-hand side will be composed of the part of the
vector of contact forces and displacements of the manipulated object MC. If y0 and
Fe0 are not equal to zero, they represent independent parameters, and for their con-
cretely selected values, the equations will be fully and uniquely solvable. Thus we
described the system’s physical nature, which cannot be disturbed. These simple
functional relations must be taken into account when introducing control laws, or
more precisely, when setting up correct conditions for the control system’s require-
ments. Namely, there may exist two unique combinations of the quantities on the
right and left sides of the previous equalities ((198) always exists). It is possible to
do two things: either to prescribe the requirements for the independent quantities
and select the dependent ones as input or vice versa (provided that the choice is
realizable). Let us notice that the equations should not be necessarily solved only
with respect to y0 or yc, but this choice is logical for cooperative manipulation (a
possible alternative would be solving with respect to the position of the leader and
follower).
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Figure 19. Elastic system of two springs

The above will be illustrated in a simple example. Let us consider again two
linear springs placed between zero masses at the nodes of which act the forces as
depicted in Figure 19.

The behavior equations are given in the matrix form⎡
⎣Fc1

Fc2

F0

⎤
⎦ =

⎡
⎣ cp 0 −cp

0 ck −ck

−cp −ck cp + ck

⎤
⎦ ·
⎡
⎣ yc1

yc2

y0

⎤
⎦ . (200)

Here A = diag(cp, ck), b = (−cp − ck)
T , c = (−cp − ck) and d = cp + ck. By

introducing these quantities into (198) and (199), we obtain from (198)

yc =
⎡
⎢⎣

1

cp

0

0
1

ck

⎤
⎥⎦Fec +

[
1
1

]
y0,

Fe0 = (−1 − 1)Fec + 0 ⇔∑
F = 0 (201)

and from (199)

Fec = 1

cp + ck

[
cpck cpck

cpck cpck

]
yc +

[
1
1

]
Fe0,

y0 = − 1

cp + ck

(cp ck)yc − 1

cp + ck

Fe0. (202)

Obviously, the relation between Fec(yc, y0) and Fe0(Fec, y0) = Fe0(Fec) is unique
for an arbitrary y0. The same conclusion would also hold if, instead of y0, we chose
the position vector of an arbitrary contact point yci . The relation Fec = Fec(yc, Fe0)

is not unique, but on the left-hand side we have to choose a new vector (Feci y0)
T ,

to establish a unique correspondence with yc and Fe0, which will exist only when
cp 	= ck.

In agreement with the needs of the concrete task in solving the systems of equa-
tions that describe the behavior of the elastic and cooperative system as a whole, it
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is possible to choose known rank K arbitrary quantities. This implies the need for
rearranging the equations of behavior, the corresponding vectors, and matrices, as
well as the introduction of designations for the newly-formed quantities.

To make our discussion easier to follow, we will present in brief the adopted
way of dividing matrices and vectors and of the system of assigning the subscripts.

The source equations of the elastic system behavior are defined for the immo-
bile unloaded state by (100), and for the mobile unloaded state by (113). The
position vector in the (6m + 6)-dimensional space for the immobile unloaded
state is denoted by y, and for the mobile unloaded state by Y . These vectors de-
fine a point in these spaces. Both vectors are composed by the same principle
of (m + 1)-dimensional vectors yi , i.e. Yi , where the subscript takes the values
i = 0, 1, . . . , m. The structure of these vectors is the same and has already been
given by (164) for the vector Y . The first subscript refers to the name of the part
of the system structure for which the values of the coordinates Y or y are given.
The second subscript is added only when we want especially to point to the or-
dinal number of the coordinate of the already indexed vector. The first subscript
‘c’ is associated to the positions of contact points, ‘v’ to the leader and ‘s’ to the
followers, ‘0’ to the manipulated object MC, whereas the ordinal number of the
corresponding manipulator refers to the concrete contact point. For the vector y,
instead of Y, we should write only y, i.e.,

y =

⎡
⎢⎢⎣

y0

y1

· · ·
ym

⎤
⎥⎥⎦ =

⎡
⎣ y0

yv

ys

⎤
⎦ =

[
y0

yc

]
∈ R6m+6, yv = y1 ∈ R6×1,

ys =
⎡
⎣ y2

· · ·
ym

⎤
⎦ ∈ R6(m−1)×1, yc =

⎡
⎣ y1

· · ·
ym

⎤
⎦ =

[
yv

ys

]
∈ R6m×1. (203)

To the position vectors Y and y with such a structure correspond the (6m + 6)-
dimensional force vectors F and the source (6m + 6) × (6m + 6)-dimensional
matrices of stiffness, Ki , and damping Di . These matrices are constant when the
elastic system motion is performed around the immobile unloaded state. The struc-
ture and subscripts of the force vectors are identical to those of the position vectors.
Force vectors may be of different origin. When we want to emphasize this prop-
erty we associate another subscript with the force vectors, which are always put
in the first place. The subscript ‘d’ refers to dynamic forces, ‘e’ to elastic, etc.
For example, the source structure of the vector of the elasticity force is obtained by
putting Fe instead of Y in (164) (or in the preceding expression). Structures of the
matrices of stiffness and damping remain the same. The notations adopted for the
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stiffness matrix are associated as the subscripts to the corresponding submatrices
of the damping matrix. The source structure of the matrix is

Ki =
[

d c

b A

]
∈ R(6m+6)×(6m+6), Di =

[
Dd Dc

Db DA

]
∈ R(6m+6)×(6m+6),

A,DA ∈ R6m×6m, b,Db ∈ R6m×6, c,Dc ∈ R6×6m, d,Dd ∈ R6×6. (204)

Since no force is directly acting at the manipulated object MC, to single out one of
the manipulators (for example, the leader), the source equations of elastic system
behavior (100) and (113) should be rearranged by writing first the equation of
the objects associated with the contact points, starting the enumeration from the
contact point of the leader. Thus, we obtain the equations of behavior for the
immobile unloaded state (102) and for the mobile unloaded state (115). To these
equations correspond the rearranged matrices of stiffness and damping

K =
[

A b

c d

]
∈ R(6m+6)×(6m+6),

D =
[

DA Db

Dc Dd

]
∈ R(6m+6)×(6m+6). (205)

Because of the later application, a more detailed division is performed so that sub-
matrices are obtained which are suitable for multiplying by the rearranged position
vectors and their derivatives. The structure of the stiffness matrix is

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 | A12 · · · A1m | b1

− − − | − − − − − − − − − | − − −
A21 | A22 · · · A2m | b2

· · · | · · · · · · · · · | · · ·
Am1 | Am2 · · · Amm | bm

− − − | − − − − − − − − − | − − −
c1 | c2 · · · cm | d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ uv us u0

Av As A0

cv cs c0

⎤
⎦ ∈ R(6m+6)×(6m+6),

uv = A11 ∈ R6×6, us = (A12 · · · A1m) ∈ R6×(6m−6),

u0 = b1 ∈ R6×6Av =
⎡
⎣ A21

· · ·
Am1

⎤
⎦ , A0 =

⎡
⎣ b2

· · ·
bm

⎤
⎦ ∈ R(6m−6)×6,
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As =
⎡
⎣ A22 · · · A2m

· · · · · · · · ·
Am2 · · · Amm

⎤
⎦ ∈ R(6m−6)×(6m−6)cv = c1 ∈ R6×6,

cs = (c2 · · · cm) ∈ R6×(6m−6), c0 = d ∈ R6×6. (206)

The structure of the damping matrix is

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

DA11 | DA12 · · · DA1m | Db1

− − − | − − − − − − − − − | − − −
DA21 | DA22 · · · DA2m | Db2

· · · | · · · · · · · · · | · · ·
DAm1 | DAm2 · · · DAmm | Dbm

− − − | − − − − − − − − − | − − −
Dc1 | Dc2 · · · Dcm | Dd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ Duv Dus Du0

DAv DAs DA0

Dcv Dcs Dc0

⎤
⎦ ∈ R(6m+6)×(6m+6),

Duv = DA11 ∈ R6×6, Dus = (DA12 · · · DA1m) ∈ R6×(6m−6),

Du0 = Db1 ∈ R6×6,

DAv =
⎡
⎣ DA21

· · ·
DAm1

⎤
⎦ , DA0 =

⎡
⎣ Db2

· · ·
Dbm

⎤
⎦ ∈ R(6m−6)×6,

DAs =
⎡
⎣ DA22 · · · DA2m

· · · · · · · · ·
DAm2 · · · AAmm

⎤
⎦ ∈ R(6m−6)×(6m−6),

Dcv = Dc1 ∈ R6×6, Dcs = (Dc2 · · · Dcm) ∈ R6×(6m−6),

Dc0 = Dd ∈ R6×6. (207)

The structure of the rearranged vectors of positions and forces that correspond to
these matrices is the same as the structure of (165) defined for the position vector
y. For the selected vector, instead of y we should put the designation for that vector
in this expression. For example, to determine the structure of the vector of dynamic

116 Multi-Arm Cooperating Robots



117

forces, it is necessary to put Fd instead of y in (165), so that we obtain⎡
⎢⎢⎢⎢⎣

Fd1

Fd2

· · ·
Fdm

Fd0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ Fdv

Fds

Fd0

⎤
⎦ =

[
Fdc

Fd0

]
∈ R6m+6×1. (208)

When determining the nominal conditions we also use the following structure of
stiffness matrix:

K =
⎡
⎣ uv us u0

Av As A0

cv cs c0

⎤
⎦ =

⎡
⎣ uv us0

Av As0

cv cs0

⎤
⎦

=
[

Auv Aus0

cv cs0

]
∈ R(6m+6)×(6m+6),

us0 = (A12 · · · A1m b1) = (us u0) ∈ R6×6m,

As0 =
⎡
⎣ A22 · · · A2m b2

· · · · · · · · · · · ·
Am2 · · · Amm b3

⎤
⎦ = (As A0) ∈ R(6m−6)×6m,

Auv =
[

uv

Av

]
∈ R6m×6, Aus0 =

[
us u0

As A0

]
=
[

us0

As0

]
∈ R6m×6m,

cs0 = (c2 · · · cm d) = (cs d) ∈ R6×6m. (209)

To this matrix structure corresponds the structure of vectors of displacements and
forces, exemplarily given for the vector y by

y =
⎡
⎣ yv

ys

y0

⎤
⎦ =

[
yv

ys0

]
∈ R(6m+6)×1, ys0 =

[
ys

y0

]
∈ R6m×1. (210)

The enumeration convention will be shown in the model of cooperative manip-
ulation (181): the subscript 1 being for the leader and the subscripts from 2 to m

for the followers. Using this convention, Equations (181) and (179) become

Nv(qv)q̈v + nv(q, q̇, Y0, Ẏ0) = τv,

Ns(qs)q̈s + ns(q, q̇, Y0, Ẏ0) = τs,

W(Y0)Ÿ0 + w(q, q̇, Y0, Ẏ0) = 0,

Pv(qv)q̈v + pv(q, q̇, Y0, Ẏ0) = Fcv,

Ps(qs)q̈s + ps(q, q̇, Y0, Ẏ0) = Fcs. (211)
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The first three equations of (211) are the equations of the cooperative system’s
behavior. The last two differential equations (211) describe the dependence of the
contact forces on the internal coordinates. If the control in cooperative manip-
ulation is realized via contact forces, these equations represent equations of the
output of the cooperative system. Obviously, in that case the output equations are
differential and not algebraic, as is accustomed in theory of control.

By their structure, the matrices H(q), J (q), Wc(�(q)), in (181), i.e. in (211)
are block-diagonal matrices. Hence, the inertia matrices N(q) and P(q) in (181)
and (211) are also of block-diagonal structure. The structures of the matrices are
given by

N(q) = H(q) + J T (q)Wc(�(q))J (q) = diag(N1(q1),N2(q2), . . . , Nm(qm))

= diag(Nv(qv),Ns(qs)) ∈ R6m×6m, |N(q)| 	= 0,

Ni(qi) = Hi(qi) + J T
i (qi)Wci(�i(qi))Ji(qi) ∈ R6×6,

|Ni(qi)| 	= 0, i = 1, . . . , m,

Nv(qv) ∈ R6×6, |Nv(qv)| 	= 0, Ns(qs) ∈ R(6m−6)×(6m−6), |Ns(qs)| 	= 0,

P (q) = Wc(�(q))J (q) = diag(P1(q1), P2(q2), . . . , Pm(qm))

= diag(Pv(qv), Ps(qs)) ∈ R6m×6m, |P(q)| 	= 0,

Pi(qi) = Wci(�i(qi))Ji(qi) ∈ R6×6, |Pi(qi)| 	= 0, i = 1, . . . , m,

Pv(qv) ∈ R6×6, |Pv(qv)| 	= 0, Ps(qs) ∈ R(6m−6)×(6m−6), |Ps(qs)| 	= 0. (212)

A mathematical model of cooperative manipulation in the form (211) is the
basic expression of the model for the analysis and synthesis of nominals and coop-
erative system control laws.

4.13 Stationary and Equilibrium States of the Cooperative System

To make the problems appearing in the synthesis of nominal motion and con-
trol laws more understandable, we will consider the characteristics of the sta-
tionary state and motion of the uncontrolled (without feedback loops) cooperative
system.

The natural state of a cooperative system is the one when it is at rest. For
that state, let the elastic system load G + col(Fc, 0) be known. The state of the
cooperative system at rest is described by the system of differential equations of
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the stationary state (181) and it is determined from the condition q̇ = q̈ = 0
(Ẏc = Ÿc = 0), Ẏ0 = Ÿ0 = 0, by the equations

Fe = K(Y ) · Y = 1

2

∂Y T π̄aY

∂Y
+ πa(Y )Y = G +

[
Fc

0

]

=
[

A b

c d

][
Yc

Y0

]
=
⎡
⎣ uv us u0

Av As A0

cv cs c0

⎤
⎦
⎡
⎣ Yv

Ys

Y0

⎤
⎦ ,

h(q, 0) = τ + J T fc ∈ R6m×1,

Yc = �(q) ∈ R6m×1,

(213)

whereby the partition of the matrix K(Y ) is performed in a way that rank K(Y )

= rank A = 6m, and that the block matrices are congruous for multiplication by
the vector Y = col(Yc, Y0) = col(Yv, Ys, Y0) = col(Yv, Yso), Yc = col(Yv, Ys),
Yso = col(Ys, Y0). The matrix c0 = d ∈ R6×6 represents the elastic properties
in the directions of DOFs of the independent variable positions chosen for the
spatial characterization of the elastic system. Hence, it is a non-singular matrix
|d| 	= 0. If we consider the cooperative system motion only around the stationary
unloaded state of the elastic system and if the model is described by the deviation
coordinates y, then the matrices A,b,c and d are constant, and the y coordinates
define displacements of the elastic structure nodes.

For non-redundant manipulators under stationary conditions, the last two equa-
tions of (213) make the basis for establishing a mutually unique correspondence
between the internal coordinates q and driving torques τ , on the one hand, and
the positions of contact points Yc and loads Gc + Fc acting at them on the other.
Because K ∈ R(6m+6)×(6m+6) and rank K = 6m, from the first equation in (213), it
is not possible to establish a mutually unique correspondence between the known
load G + col(Fc, 0) at the elastic system nodes and its position Y . It is possi-
ble to determine 6m components of the positions of the elastic system nodes as a
function of the known load, and six components of the independent variable po-
sitions chosen for determining the position of the elastic system in space. These
six independently variable positions of the elastic system nodes can be chosen ar-
bitrarily. Here we choose that the independently variable positions determine the
spatial position of one node only, and that is the manipulated object MC position
Y0. If Y0 is defined in advance, then there exists a unique relationship between the
positions and orientations Yc of the contacts and contact forces Fc (the matrix A is
non-singular, |A| 	= 0 and G is known). A unique correspondence exists between
the elastic system stress state and nodes displacements relative to the system’s un-

Mathematical Models of Cooperative Systems



loaded state, or to the forces acting at the nodes [6]. When we define (i.e. select
and control in an ideal way) the position of one node in space and magnitude of
the desired stress state in the elastic system, the value of the load acting at the node
is uniquely determined and, by the same token, so is the stationary state of the
cooperative system.

The point coordinates Y0, selected to determine the elastic system position in
space, are independent variables. Therefore, it can be concluded that the coopera-
tive system stationary state can be the whole three-dimensional space within which
the manipulated object moves, i.e., at least the part of this space that represents the
manipulator work space. In other words, under the stationary conditions, the same
elastic forces Fe (i.e. stress state) of the elastic system can be generated according
to (213) in any part of the space by the same load G + col(Fc, 0), which is fully in
agreement with the statics of the elastic systems [6, 7].

The equilibrium state of the non-linear system described by the second-order
differential equations (181) is determined by the conditions τ = 0, q̇ = q̈ =
0, Ẏ0 = Ÿ0 = 0. In reality, there is no zero driving torque condition, τ = 0,
and therefore there is no reason to determine the equilibrium state. Nevertheless,
it is reasonable to analyze the system of differential equations (181), to derive
conclusions about the stability properties of the equilibrium state, i.e. about the
behavior of the homogeneous part of the solution of these differential equations.

In the case of non-redundant manipulators, there is the mutually unique corre-
spondence (172) between the manipulator internal coordinates and their derivatives
on the one hand, and the state quantities of the objects, with the MCs at contact
points and their derivatives on the other. The features of the homogenous part of
the solution of the differential equations (181) are determined by the properties of
the solution of the non-homogenous differential equations (113), which describe
the dynamic behavior of the elastic system.

Equations (113) describe the force and moment dynamic equilibrium at each
node of the mobile elastic structure, expressed in absolute coordinates. Each equa-
tion for a particular node determines the force or moment equilibrium in the se-
lected direction, and is equal to the sum of all other equations defining the equi-
librium of forces and moments at the remaining nodes in the same direction. As
a consequence, of 6m + 6 equations only 6m are independent, although there are
2 × (6m + 6) independent quantities, necessary and sufficient for the description
of the elastic system motion. The difference between the approach in this work
and the approaches to the problems of elastic structure statics and dynamics in the
available literature is as follows. In [4, 5], the initial assumption is that the elastic
displacements needed for the determination of the position of the elastic system in
space are not independent variables (state quantities), but they are given in advance
as in the case of statics of stationary elastic structures [6, 7]. An implication of this
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a priori assumption is that the position and orientation of the elastic structure’s un-
loaded state are known in advance and the stiffness matrix is non-singular, which
is favorable. For determination in space, any point of the elastic structure can be
selected, even the contact one. A consequence of this would be that the internal
coordinates of the manipulator to which this contact point belongs are given in
advance, i.e. they are not state quantities, which is erroneous. In developing the
mathematical model in [8], and in this work too, all displacements of the elastic
system (i.e. positions of contact points and manipulated object MC) are indepen-
dent variables, i.e. they are state quantities, necessary and sufficient to describe the
cooperative system dynamics.

Further consequences of the singularity of the matrix K(Y ) on the character
of the solution of Equations (113) can be seen if linearization of the system (113)
around the unloaded state of the mobile elastic system is carried out. The position
of the unloaded state of the elastic system during the motion is not known. It is
known that this state moves as a rigid body because all elastic displacements are
zero. The general motion of the elastic system can be considered as a complex
motion that consists of the transfer motion of the mobile unloaded elastic system
and its relative motion around that state due to elastic displacements. Let the rela-
tionship between the elastic system node displacements and its stresses be linear.
The application of the usual linearization procedure [31] to Equations (113) yields
a linear system with 6m + 6 second-order differential equations of the form

W ′ÿk + 2D′ẏk + K ′yk = F ′, (214)

where W ′, D′, K ′ are the constant matrices of the order (6m + 6) × (6m + 6);
F ′ = col(F ′

c, 06×1) is the force vector; yk = col(yk
c , y

k
0 ), ẏk , ÿk are the elastic

displacement vector and its derivatives relative to the instantaneous position and
orientation of the elastic system unloaded state, defined by the vector Y u(t) =
col(Y u

c , Y u
0 ), col(Yc, Y0) = col(Y u

c , Y u
0 ) + col(yk

c , y
k
0 ). The equilibrium state of

this system is determined by the solution of the algebraic equation K ′yk = 0,
rank K ′ = rank A′ = 6m. Therefore, the equilibrium state of the contact points
positions can be expressed as a function of the elastic displacements yk

0 of the ma-
nipulated object MC, yk

cr = −A′−1b′yk
0 . As the vector yk

0 is an independent vari-
able, the equilibrium state of the contact points positions is the whole space of the
manipulated object MC positions, which is a direct consequence of the elastic sys-
tem mobility. The same conclusion also holds for the stationary state of differential
equation (214), determined as the solution of the algebraic equation K ′yk = F ′.

The character of the solution of system (214) is governed by the disposition of
the system characteristic equation roots

|λ2W ′ + 2λD′ + K ′| = 0. (215)
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The sufficient conditions needed to establish the relations between the matrices
W ′, D′ and K ′ and sign definiteness and properties of the roots of the characteristic
equation (215) are known in the mathematical literature [41]. If the matrices W ′,
D′ and K ′ are non-negative definite and if at least one of the matrices W ′ and
K ′ is positive definite, the previous characteristic equation does not possess roots
with positive real parts. If, in addition to that, the matrices W ′ and K ′ are non-
negative definite, and the matrix D′ is positive definite, then the only zero of the
real part is the root λ = 0. The matrix W ′ = diag(Wc(Y

u
c ),W0(Y

u
0 )) represents

the inertia matrix of the elastic system, calculated for its unloaded state, and is
always positive definite W ′ > 0 (det W ′ 	= 0). The damping matrix D′ is the result
of selecting damping features of the elastic contacts. In engineering applications,
elastic contacts are always selected so that this matrix is non-negative definite D′ ≥
0. The definiteness by the sign of the stiffness matrix K ′ is governed by the elastic
properties and disposition of the elastic system nodes. The object grasping can
be always planned in a way that this matrix is non-negative definite, K ′ ≥ 0.
The planning of the object grasping will not be considered here, but it is assumed
that the gripping is performed so that the non-negative definite stiffness matrix is
always obtained. Accordingly, the real parts of the characteristic equation roots
are non-positive, with potential zero real part roots, whose multiplicity has to be
examined.

By introducing the state variables ξ1 = yk and ξ2 = ẏk , Equation (214) is
transformed into

ξ̇ =
(

0 I

−W ′−1K ′ −2W ′−1D′

)
ξ −

(
0

W ′−1

)
F = Aξξ + BξF, (216)

where I and 0 are the unit and square zero-matrix of the order 6m + 6; ξ =
col(ξ1, ξ2), Aξ and Bξ , are the matrices accompanying the vectors ξ and F =
col(06m×1, F

′). As the rank of the matrices K ′ and D′ equals 6m, the matrix Aξ

rank equals rank Aξ = 6m + 6 + 6m = (12m + 12) − 6. Hence, the characteristic
equation Aξ − sI = 0 is of the form s6 · f (s) = 0, where f (s) is the polynomial
with the highest degree 12m + 6, i.e. characteristic equation has six roots with the
zero real part. According to the linear system theory, the consequence of the root
zero real part multiplicity is the unstable character of the solution of the system
(214) describing the relative motion of the elastic system. As the transfer motion
of the mobile unloaded elastic system, being a rigid-body motion, is determined,
the general motion of the uncontrolled elastic system is of an unstable character.
This conclusion can be interpreted in the following manner. Under dynamic con-
ditions, the same system elastic forces K ′yk (i.e. stress state) can be produced in
any part of the elastic displacements yk domain according to (214), by the same
resulting load F ′ − W ′ÿk − 2D′ẏk .
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Figure 20. Initial position of the cooperative system

4.14 Example

The presented modeling procedure is illustrated by an example of the coopera-
tive work of three manipulators with three DOFs, handling an object with the
mass center CM0, while contacts are being established at the mass centers of
the connections CM1, CM2 and CM3. (In Figure 20 the initial position of the
cooperative system is given.) In the example, the state vector is (Y T

0 qT )T =
Y x

0 Y
y

0 Y
ϕ

0 q1
1q2

1q3
1 · · · q1

3q2
3q3

3 )T ∈ R12×1 and the model has the following form (ac-
cording to (181), (172) and (115):

q̈ = N−1(q)(τ − n(q, q̇, Y0, Ẏ0)) [rad/s2] ∈ R9×9,

Ÿ0 = −W−1w(q, q̇, Y0, Ẏ0) [m/s2] ∈ R3×1,

Fc = Wc(J̇ (q)q̇ + J (q)q̈) + wc(q, q̇, Y0, Ẏ0) [N] ∈ R9×1,

where

N(q) = H(q) + J T (q)WcJ (q) ∈ R9×9,

n(q, q̇, Y0, Ẏ0) = h(q, q̇) + J T (q)WcJ̇ (q)q̇ + J T (q)wc(q, q̇, Y0, Ẏ0) ∈ R9×1,

According to (166)

H(q) = blockdiag(H1(q1),H2(q2),H3(q3)) ∈ R9×9,
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Hi(qi) =
⎡
⎣ a11(q

2
i ) a12(q

2
i ) a13

a12(q
2
i ) a22 a23

a13 a23 a33

⎤
⎦

and, in the selected example, the coefficients are

a11(q
2
i ) = I 1

i + (a1
i )

2m1
i + I 2

i + ((L2
i )

2 + (a2
i )

2 + 2L1
i a

2
i cos q2

i )m
2
i

+ I 3
i + ((L1

i )
2 + (L2

i )
2 + +2L1

i L
2
i cos q2

i )m
3
i ,

a12(q
2
i ) = I 2

i + ((a2
i )

2 + L1
i a

2
i cos q2

i )m
2
i + I 3

i + ((L2
i )

2 + L1
i L

2
i cos q2

i )m
3
i ,

a22 = I 2
i + (a2

i )
2m2

i + I 3
i + (L2

i )
2m3

i ,

a13 = a23 = a33 = I 3
i ,

where L
j

i = 1 [m], i = 1, 2, 3, j = 1, 2 are the lengths of manipulators links,
a

j

i = 0.25 [m], i = 1, 2, 3, j = 1, 2, are distances of the links MCs from the
rotation points; mi = (3, 3, 2) [kg], i = 1, 2, 3 and Ii = (0.25, 0.25, 0.01) [kg m2],
i = 1, 2, 3 are the vectors of masses and moments of inertia of the manipulators
links.

Vector components

h(q, q̇) = (hT
1 (q1, q̇1) hT

2 (q2, q̇2 hT
3 (q3, q̇3))

T ∈ R9×1

are given by

hi(qi, q̇i ) =
⎡
⎣−L1

i (a
2
i m

2
i + L2

i m
3
i )q̇

2
i (q̇

2
i + 2q̇1

i )sinq2
i

−L1
i (a

2
i m

2
i + L2

i m
3
i )q̇

1
i (q̇

1
i + 2q̇2

i )sinq2
i

0

⎤
⎦ ∈ R3×1.

Matrices Wc and W are constant diagonal matrices

Wc = diag(m1,m1, A1,m2,m2, A2,m3,m3, A3)

= diag(1, 1, 0.005, 1, 1, 0.005, 1, 1, 0.005) ∈ R9×9,

W = W0 = diag(m0,m0, A0) = diag(5, 5, 0.1) ∈ R3×3,

where m0 = 5 [kg], mi = 1 [kg] and A0 = 0.1 [kg m], Ai = 0.005 [kg m],
i = 1, 2, 3 are the masses and moments of inertia of the body CM0 and of the
elastic interconnections CM1, CM2, and CM3. The relation (169) is defined by

Yi = �i(qi) =
⎡
⎣L1

i cos q1
i + L2

i cos(q1
i + q2

i ) + Xbi

L1
i sin q1

i + L2
i sin(q1

i + q2
i ) + Ybi

q1
i + q2

i + q3
i

⎤
⎦ ∈ R3×1, i = 1, 2, 3,
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where (Xbi, Y bi) = (0, 0), (4, 0) and (1, 3) [m, m] are the coordinates of the ith
manipulator support, so that the corresponding Jacobian matrices and their deriva-
tives are

Ji(qi) =
⎡
⎣−L1

i
sin q1

i
− L2

i
sin(q1

i
+ q2

i
) −L2

i
sin(q1

i
+ q2

i
) 0

L1
i

cos q1
i

+ L2
i

cos(q1
i

+ q2
i
) L2

i
cos(q1

i
+ q2

i
) 0

1 1 1

⎤
⎦ ∈ R3×3, i = 1, 2, 3,

J̇i (qi ) =
⎡
⎣−L1

i q̇
1
i cos q1

i − L2
i (q̇

1
i + q̇2

i ) cos(q1
i + q2

i ) −L2
i (q̇

1
i + q̇2

i ) cos(q1
i + q2

i ) 0
−L1

i
q̇1
i

sin q1
i

− L2
i
(q̇1

i
+ q̇2

i
) sin(q1

i
+ q2

i
) −L2

i
(q̇1

i
+ q̇2

i
) sin(q1

i
+ q2

i
) 0

0 0 0

⎤
⎦ ∈ R3×3.

The generalized Jacobian matrix and its derivative are given by

J (q) =
⎡
⎣ J1(q1) 0 0

0 J1(q1) 0
0 0 J1(q1)

⎤
⎦ ∈ R9×9,

J̇ (q) =
⎡
⎣ J̇1(q1) 0 0

0 J̇1(q1) 0
0 0 J̇1(q1)

⎤
⎦ ∈ R9×9.

The vector wa ∈ R12×1 from (113) is composed of the vectors w ∈ R3×1 and
wc ∈ R9×1

wa =
(

w

wc

)
= DaẎ + πaY + 1

2

∂Y T π̄aY

∂Y
∈ R12×1.

The damping matrices Da, of stiffness πa, and ∂πa/∂Y
j

i have the form

∗a =

⎡
⎢⎢⎣

∗01 + ∗02 + ∗03 −∗01 −∗02 −∗03

−∗01 ∗01 + ∗12 + ∗13 −∗12 −∗13

−∗02 −∗12 ∗02 + ∗12 + ∗23 −∗23

−∗03 −∗13 −∗23 ∗03 + ∗13 + ∗23

⎤
⎥⎥⎦

∈ R12×12,

where ∗ = D, π , ∂π/∂Y
j

i . The damping submatrices are

Dij =
(

Gij D
δ
ijGij 0

0 d
ϕ

ij

)
∈ R3×3, ij = 01, 02, 03, 12, 13, 23,

where ria = (xiayia)
T , i = 1, 2, 3,

Gij = 1

‖ria − rja‖2

(
(xia − xja)

2 (xia − xja)(yia − yja)

(xia − xx
ja)(yia − yja) (yia − yja)

2

)
∈ R2×2,
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whereby the vector norm is ‖ρija‖ = ‖ria −rja‖2 = ((xia −xja)
2 +(yia −yja)

2)0.5.
The constant damping matrix Dij is formed by the damping of the linear mo-

tion, given in the diagonal matrix Dδ
ij = diag(dx

ij , d
y

ij ) ∈ R2×2 and the damping of
the rotational motion d

ϕ

ij . The adopted values are dx
ij = d

y

ij = 20 [N/(m/s)] and
d

ϕ

ij = 15 [Nm/(rad/s)], ij = 01, 02, 03, 12, 13, 23.
Submatrices of the stiffness matrix are defined by

πij =

⎡
⎢⎢⎢⎢⎣

cx
ij

(
1 − ‖ρij0‖

‖ria − rja‖
)2

0 0

0 c
y

ij

(
1 − ‖ρij0‖

‖ria − rja‖
)2

0

ds0 0 c
ϕ

ij

⎤
⎥⎥⎥⎥⎦ ∈ R3×3,

where the coefficients cx
ij = c

y

ij = 1225 [N/m] and c
ϕ

ij = 25 [Nm/rad], ij =
01, 02, 03, 12, 13, 23. The derivatives of the stiffness submatrices are determined
by

∂πij

∂∗ind
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ∗ind 	= xia, xja, yia, yja

2(∗ind − ∗ja)

(
1 − ‖ρij0‖

‖ria − rja‖
) ‖ρij0‖

‖ria − rja‖3
diag(cx

ij , c
y

ij , 0),

∗ = x, y, ind = ia,

−2(∗ia − ∗ind)

(
1 − ‖ρij0‖

‖ria − rja‖
) ‖ρij0‖

‖ria − rja‖3
diag(cx

ij , c
y

ij , 0),

∗ = x, y, ind = ja,

where ‖ρij0‖ = ((xi0 − xj0)
2 + (yi0 − yj0)

2)0.5 and ij = 01, 02, 03, 12, 13, 23.
Simulation results are presented in Figures 21 and 22.
In Figures 21a and 21b simulation results are given for all driving torques equal

to zero. In Figures 22a to 22g the results obtained for the driving torques τ 1
1 = 50

[Nm] and τ 1
2 = −50 [Nm] are presented, while all the other driving torques are

zero (Figure 22g). The components of the realized contact forces at the contact
points CM1 and CM2 (Figure 20) along the x-axis, Fx

1 = −50 [N] and Fx
2 = 50

[N] (Figure 22f) can serve as control quantities.
In all the diagrams, the independent variable (the abscissa) is the simulation

time given in seconds, while the dependent variables are the inputs and simulation
results. Each diagram is supplied with an explanation giving first the independent
variable (T ) and then one or more corresponding dependent variables along with
their dimensions. All symbols are given by capital letters and numbers, the letter
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Figure 21a. Simulation results for τ
j

i = 0, i, j = 1, 2, 3
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Figure 21b. Simulation results for τ
j

i = 0, i, j = 1, 2, 3
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Figure 22a. Simulation results for τ 1
1 = 50 [Nm] and τ 1

2 = −50 [Nm]
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Figure 22b. Simulation results for τ 1
1 = 50 [Nm] and τ 1

2 = −50 [Nm]
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Figure 22c. Simulation results for τ 1
1 = 50 [Nm] and τ 1

2 = −50 [Nm]
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Figure 22d. Simulation results for τ 1
1 = 50 [Nm] and τ 1

2 = −50 [Nm]
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Figure 22e. Simulation results for τ 1
1 = 50 [Nm] and τ 1

2 = −50 [Nm]
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Figure 22f. Simulation results for τ 1
1 = 50 [Nm] and τ 1

2 = −50 [Nm]
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Figure 22g. Simulation results for τ 1
1 = 50 [Nm] and τ 1

2 = −50 [Nm]
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part referring to the physical quantity used in modeling and the number indicat-
ing the ordinal number of the physical quantity vector. Thus, Q13 is the symbol
for the internal coordinate q3

1 , whereas QS13 and SS13 are the symbols for its
first and second derivatives q̇3

1 and q̈3
1 . Diagrams of the dependent variable and its

derivatives are always given one below the other. The symbol T ij , i, j = 1, 2, 3
is associated to the driving moments τ

j

i . The symbols of the quantities at the ma-
nipulated object MC ∗0, ∗0S, ∗SS, ∗ = X, Y, FI and at contact points &i#,
& = Y, FI, F, M, # = X, Y , denote respectively the linear and angular
displacements of the manipulated object MC ∗0, ∗̇0, ∗̈0, ∗ = X, Y, ϕ, linear
and angular displacements of the contact points &#

i , & = Y , # = X, Y and ϕi ,
i = 1, 2, 3, are the forces and moments at the contact points &#

i , & = F , # = X, Y

and Mi , i = 1, 2, 3. For example, Y 1X, Y 1Y and FI1 are the symbols of the dis-
placement components Y x

1 , Y
y

1 and ϕ1 of the first contact point, while F1X, F1Y

and M1 are the symbols of the components of the forces Fx
1 and F

y

1 and moment
M1 in the direction of the displacements Y x

1 , Y
y

1 and ϕ1 of the first contact point.
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5 SYNTHESIS OF NOMINALS

We understand cooperative system trajectory as a line described by the state vector
in the state space during cooperative system motion, or the image of this line in
some other space of the same dimension. From the point of view of mathematics,
the trajectory represents a hodograph of the time-dependent vector, characterized
by the number of coordinates corresponding to the state space dimension. Each
motion of the cooperative system that takes place without external perturbations is
unperturbed motion. The trajectory described in the state space during the unper-
turbed motion is called an unperturbed trajectory. Nominal motion of the coopera-
tive system is any of its unperturbed motions satisfying a certain set of conditions.
The maximum number of independent conditions that can be imposed on the nomi-
nal motion of a cooperative system is equal to the number of its independent inputs.
Constraints can be imposed either on the input or states of the cooperative system.
A nominal trajectory is an unperturbed trajectory that is realized by the coopera-
tive system during its nominal motion. The nominal input is the vector of external
actions under which the nominal motion is performed. The input to a cooperative
system is represented by the vector of the manipulator driving torques. By the nom-
inal of a cooperative system is understood the nominal input and its corresponding
nominal trajectory. From the mathematical point of view, a nominal trajectory is
the solution of the system of differential equations describing the cooperative sys-
tem dynamics which is obtained by the action of the nominal input. The problem of
determining the nominal motion considered in this section is to define a procedure
for the synthesis of the nominal vector, i.e. the vector of the nominal trajectories
and the vector of nominal inputs, so to ensure that the differential equations de-
scribing the cooperative system dynamics are identically satisfied, provided part
of the nominal vector has been given in advance. Such an approach ensures that
the determined nominals are realizable under the condition that the mathematical
model describes well enough the system dynamics.

In this chapter we present a procedure for the synthesis of the cooperative
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system nominals. The procedure comes from the solution of the problem of co-
ordinated motion of an elastic structure, taking into account the specific features
of cooperative manipulation. The procedure has been defined on the basis of the
mathematical model of the dynamics of the cooperative manipulation of the object
by the non-redundant manipulators with six DOFs, in which the problem of force
uncertainty is solved by introducing elastic properties into part of the cooperative
system.

5.1 Introduction – Problem Definition

Part of the cooperative system nominals represent the inputs to its control. Hence,
the first step in solving the task of cooperative system control is to determine its
nominal motion, be it considered as a system of either rigid or elastic bodies.

Generally, the task of the synthesis can be formulated as follows. The cooper-
ative system is primarily used to manipulate objects. The user chooses and defines
the manipulation object and its characteristics (dimensions, shape and maximal al-
lowed gripping intensity). The desired object motion is defined by defining the
trajectory of a chosen point on the object (e.g. the MC or some other reference
point). Starting from the data thus defined, the problem is how to determine the
driving torques that are to be introduced at the manipulator’s joints to ideally real-
ize the preset requirement in the case of the absence of any disturbance. At that,
the stress of the object and manipulator must be within the allowed limits.

When the problem of cooperative system operation is approached from the
point of view of the mechanics of a rigid body, which is the usual procedure in the
available literature, there appears the problem of force uncertainty. The problem of
determining nominals for a rigid cooperative system has not been discussed in the
literature. The problem has been reduced to determining the nominals of driving
torques to drive rigid manipulators. As we know the kinematic relations between
the internal and external coordinates for a known load and tip position of non-
redundant manipulators, the problem is easily solvable. The problem of planning
(optimal) trajectories of the cooperative system in the work space with or without
obstacles has been treated in a number of works [26, 42–46].

As the models used do not faithfully describe the cooperative system’s dy-
namics, the nominal motion of cooperative systems in the available literature has
not been determined as its realizable motion, even when the maximum possible
number of preset requirements (equal to the number of driving torques) has been
ideally realized, irrespective of whether the fulfillment of these conditions results
in its optimal or non-optimal motion.

The problem of force uncertainty is solved by considering the cooperative sys-
tem as an elastic system. In Section 3.3, we showed that the problem of force
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uncertainty in a cooperative system can be solved by introducing the assumption
of the elastic properties of the entire cooperative system or part of it. The cooper-
ative system was approximated by m non-redundant manipulators with six DOFs
of motion in contact with a body that can move in three-dimensional space with-
out any constraint (Figure 1). The manipulators and object are all assumed to be
rigid apart from the neighborhoods of the contact points, whereby the resulting
manipulator-object contact is elastic and the manipulator tip cannot move over the
object surface. The manipulated object and the neighborhood of its contact points
with the manipulators are approximated by an elastic system of m + 1 elastically
interconnected solid rigid bodies. Each body is allowed to have six DOFs. For
the elastic system, gravitational and contact forces are the external forces acting
at the MCs of these bodies. By contact forces is understood the six-dimensional
vector of generalized force formed from the three-dimensional vector of axial force
(dimension [N]) and three-dimensional vector of torques (dimension [Nm]).

The dynamics of a cooperative system thus defined is modeled as a general mo-
tion of an elastic structure. Such expansion yields a complex mathematical model,
but without force uncertainty. This model faithfully describes the dynamics and
statics of the cooperative system. The model of a rigid manipulated object is ex-
panded by equations of elastic connections. This yields a dynamic model of the
separated elastic system, composed of a model of rigid body dynamics and a set
of equations to describe the elastic interconnections. Depending on the introduced
assumptions on the characteristics of elastic connections, these equations are differ-
ential (if neither mass nor damping are neglected) or algebraic (see Section 4.12).
Nominal motion is determined on the basis of the model given by Equations (102)
and (175) for gripping, and by Equations (115) and (181) for the general motion in
the form (211). The model characteristics presented in Sections 4.12 and 4.13 show
that there is a functional dependence between the kinematic configuration and elas-
tic system load. This property makes the problem of the synthesis of nominals of
the elastic cooperative system essentially more complex.

The problem of determining the nominal motion of an elastic cooperative sys-
tem can be interpreted in the following way. In the cooperative system’s motion,
the nominal trajectory and its derivatives of the MC or some other reference point
of the manipulated object (one node of the elastic system), is prescribed. In this
way, six kinematic conditions for describing an elastic system in space are de-
fined. It is assumed that in the course of the cooperative system nominal motion
the prescribed trajectory is realized in an ideal way. The mathematical model of
cooperative manipulation establishes a functional dependence between the kine-
matic configuration and the elastic system load. The model of the elastic system
establishes a relation between 6m active forces and 6m+6 kinematic quantities and
their derivatives. As only six dynamic conditions are defined, the problem is how
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to define the rest 6m + 6m quantities in order to get the desired nominal motion
of the cooperative system. At that, any motion of the cooperative system can be
chosen as the nominal motion, including the one that corresponds to the resonance
states of the elastic system.

From a mathematical point of view, after introducing the desired quantities (as
if they were ideally fulfilled) the mathematical model is transformed into a non-
homogeneous system of differential equations involving differential constraints.
Such a system is solved by taking the left-hand side of the equality being given and
seeking the right-hand one, or vice versa, or by giving additional conditions until
the task becomes closed in a mathematical sense. The problem is how to set out the
conditions that are given in advance and, when these conditions are being fulfilled,
how to find the solution of the obtained system of equations.

In cooperative manipulation, one cannot simultaneously prescribe the arbitrary
trajectories of the object (6 quantities) and manipulator (6m quantities) and seek
active forces (6m quantities), as there can appear excessive contacts and internal
stress of the object and manipulators. On the other hand, active forces (contact
forces or driving torques) in the course of cooperative system’s motion are not
known. However, even if the values of contact forces Fc (6m quantities) are known,
because of the singularity of the elastic system stiffness matrix, it is not possible to
simply give and solve the system of equations and obtain the remaining 6m unique
nominal trajectories. Such an approach does not ensure a unique description of the
cooperative system in space.

A consistent solution of the cooperative system nominals assumes a solution
that ensures its unique position in space and a unique load of the elastic structure
(object), or the values of contact forces in that position.

The problem of determining nominal motion can be solved by introducing ad-
ditional conditions, specific to the cooperative manipulation. Namely, in the case
when the cooperative system’s kinematic configuration represents a copy of some
existing natural kinematic configuration, it is possible to record the nominal trajec-
tories of all the links of the natural cooperative system and, on the basis of these
records, determine the nominal contact forces and check the system stresses. If this
is not possible, it is necessary to determine the contact forces first and then, based
on them as driving torques and known position in space, by solving the differen-
tial equations that describe elastic system dynamics (102) or (115), determine the
nominal trajectories of all the elastic system nodes. After that, the determination of
the nominals of rigid non-redundant manipulators with the aid of (166) is a simple
and uniquely solvable problem.

Several approaches can yield the solution of the values of contact forces ap-
pearing during the motion.
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1. A first approach starts from the a priori definition of the optimal motion,
yielding the extremal values of the acting load [26].

2. The second approach starts from the condition that the vector of contact
forces always remains inside the friction cone and the force intensity en-
sures permanent contact of the manipulators and the manipulated object.
The stress state of the elastic system is determined by its total load, ob-
tained as a resultant of the inertial, damping, contact, and gravitation forces.
Hence, the fulfillment of the condition for contact force does not guarantee
non-violation of the system’s permitted stresses.

3. The third approach starts from the condition required of the elastic system
stress state (equivalent to the elastic force condition), without taking explicit
care of the contact maintaining conditions. Several versions can be distin-
guished in the scope of this approach.

• The first version is based on the requirement that there is a certain rela-
tionship between the ratio and magnitude of the elastic forces and dis-
placement (as with a pilot, see [47]). Because the work phase schedule
in cooperative manipulation is known, the remaining variants are based
on the requirement that the motions of the object and manipulators are
coordinated.

• The second version relies upon the possibility that the coordination is
achieved by presetting the motion conditions either to the MC or to
one contact point of the manipulated object and permitting elastic dis-
placements of the elastic system nodes after the gripping step, due to a
change of dynamic forces, orientation during the motion and, possibly,
the required changes in gripping conditions.

• The third version starts from the assumption that the coordination is
achieved by setting the motion conditions to one contact point and pre-
serving in the motion the shape of the geometric figure formed by the
contact points at the end of the gripping phase.

In this chapter we consider the second and third variants of determining the
nominal coordinated motion of the cooperative system on the basis of the condi-
tions of manipulated object MC and one contact point. In the proposed procedure,
we first analyze the nominal motion of the separated elastic system and then, on the
basis of this analysis, determine the nominal motion of the manipulators. The nom-
inals are determined only for the phases of object gripping and manipulation. The
result is a set of nominal quantities (states and inputs) defining different nominal
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motions of the cooperative system. From this set, the desired inputs to the cooper-
ative system control are selected. Thus, the quantities are selected that are directly
tracked, i.e. the quantities that close the feedback loops of the control system of
the cooperative system.

5.2 Elastic System Nominals

Let the nominal trajectory of one node of the elastic system be given in advance
and let a coordinated motion of the cooperative system be required. Under these
assumptions, we define a procedure for the synthesis of separated elastic system
in the phases of gripping and general motion. We consider two cases: the case of
the object MC trajectory given in advance (the whole col(Y 0

0 , Ẏ 0
0 ) ∈ R12 or only

the position part Y 0
0 ∈ R6), and the case of the prescribed trajectory of one contact

point (contact point of the ‘leader’ col(Y 0
v , Ẏ 0

v ) ∈ R12 or Y 0
v ∈ R6). The proposed

procedure allows the synthesis of the nominal contact force F 0
c and nominal (not

given in advance) trajectories of all the nodes of the elastic system.

5.2.1 Nominal gripping of the elastic system

Let the manipulated object be immobile on its base in the initial moment t0 (Fig-
ure 23). The nominal motion in the instant t0 is defined as the motion of the elastic
system’s immobile unloaded state, determined by the coordinates Y u

c and Y u
0 , with

the manipulator tips at contact points, the contact and gravitational forces being
zero (Fu

ec = 0, Fu
e0 = 0). Let the object orientation at the elastic system nodes

be the same, with the value A0. Due to the acting forces, the cooperative system
will be displaced to a new equilibrium state. Accordingly, the completed nominal
gripping is the cooperative system state in which elastic forces have attained the
desired value F s

e .
Such a description of the gripping phase is consistent because it establishes

a full correspondence between the elastic forces, elastic system’s nodes displace-
ment, and stresses consequently occurring in the system. It is necessary to know
the elasticity forces and displacements of the elastic system’s nodes in order to
determine the conditions for the manipulators, whereas knowing the stresses is
needed to determine the limits of the forces and displacements that will not pro-
duce undesired states on the manipulators and manipulated object (e.g. undesired
deformation of the object or tips of the manipulators).

Completion of the gripping is not necessarily determined by the stationary con-
ditions of the cooperative system, but, after the stress state has been attained, the
motion can be continued without stopping. In order to obtain a better insight into
the features originating from the cooperative system elastic properties, let us as-

142 Multi-Arm Cooperating Robots



143

Figure 23. Nominal trajectory of the object MC

sume that the completion of the gripping phase is determined by the stationary
state. According to this assumption, the stationary conditions (213) have to hold,
and they are expressed by

F s
ec = Gc(y

s
c ) + F s

c = A(ys)ys
c + b(ys)ys

0,

F s
e0 = G0(y

s) + F s
0 = c(ys)ys

c + d(ys)ys
0, (217)

where the superscript ‘s’ denotes the values of the quantities at the end of gripping,
and F s

0 represents the resistance of the manipulated object support.
It is essential to note that the attained elastic force of gripping F s

e , which pro-
vides high-quality conditions for the object under static conditions, is distributed
onto the gravitational vector G and contact forces Fc. Under the dynamic con-
ditions, the elasticity force, apart from the gravitation and contact forces, is also
distributed over dynamic forces.

Since it has been adopted that the initial state is the immobile unloaded state,
the elastic displacements of nodes ys∗ at the end of the gripping phase can be mea-
sured just from that state. In that case, the stiffness matrix K is constant, i.e., the
matrices A, b, c, d, are constant, and can be determined by the finite-element
method [6, 7]. The addition of these displacements to the absolute coordinates at
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the beginning of the gripping yields the absolute coordinates of the cooperative
system at the end of the gripping phase.

Further, it is assumed that the displacement of some of the elastic system nodes
at the end of gripping phase is known. For example, it can be assumed that the
position of the manipulated object MC remains unchanged during the gripping
ys

0 = 0, or that it changes by the preset value ys
0 	= 0 or, that the displacement of

the leader’s contact point (ys
v 	= 0) is known.

Let it be required that ys
0 	= 0. Then, from the first equality of (217), the values

of the necessary contact displacements ys
c that ensure realization of the required

elastic forces F s
ec can be explicitly calculated

ys
c = A−1F s

ec − A−1bys
0 = A−1(Gc + F s

c ) − A−1bys
0. (218)

It is obvious that there exists a mutually unique correspondence F s
c = F s

ec −Gc

between the required elastic force F s
ec and contact force F s

c . In the gripping phase,
ending with static conditions, it is all the same which force is required as the nom-
inal: the elastic F s

ec or the contact F s
c . The second expression in (217) represents

the equilibrium condition of the forces and moments at the manipulated object
MC. Only in the special case of the appropriate choice of F s

ec or F s
c from (217), an

exactly determined value of the reaction force F s
0 of the manipulated object MC

can be obtained, such as F s
e0 = G0(y

s) + F s
0 = cA−1F s

ec +(d − cA−1b)ys
0 =

cA−1(Gc + F s
c )|ys

0=0.
If it is required that some exactly determined force is attained under nominal

conditions at the manipulated object MC, F s
e0 	= 0 (e.g. F s

e0 = G0, F s
0 = 0 for a

hovering object), then the displacement of an arbitrary contact point must be real-
ized as a function of the displacements of the other contact points. To explain this
property, it is assumed, for example, that the leader’s contact point displacement is
a function of the displacements of the other points.

Let the coordinates of that point be denoted by ys
v = ys

1 ∈ R6×1 and the co-
ordinates of other contact points of the followers by ys

s = col(ys
2, y

s
3, . . . , y

s
m) ∈

R(6m−6)×1. Let us introduce the notations c = (cv cs1 . . . cs(m−1)) = (cv cs), where
the submatrices are c∗ ∈ R6×6, ∗ = v, s1, . . . , s(m − 1), cs ∈ R6×(6m−6).

For the known ys
0 	= 0, from the second expression in (217), it follows that

F s
e0 = cvy

s
v + cs1y

s
s1 + . . . cs(m−1)y

s
s(m−1) + dys

0 = cvy
s
v + csy

s
s + dys

0

⇒ ys
v = c−1

v F s
e0 − c−1

v csy
s
s − c−1

v dys
0. (219)

By introducing the matrix A in the form of the block matrix Aij ∈ R6×6 and
elasticity force by F s

ec = col(F s
ev, F

s
es ) ∈ R6m×1, F s

es) ∈ R(6m−6)×1 into the first
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equation of (217), we obtain

Ays
c =

⎡
⎣ A11 A12 · · · A1m

· · · · · · · · · · · ·
Am1 Am2 · · · Amm

⎤
⎦[ c−1

v F s
e0 − c−1

v csy
s
s − c−1

v dys
0

ys
s

]

=
[

F s
ev

F s
es

]
= F s

ec, (220)

from which follows

F s
ev = (−A11c

−1
v cs + (A12 . . . A1m))ys

s − A11c
−1
v dys

0 + A11c
−1
v F s

e0

= ayy
s
s + ay0y

s
0 + af e0F

s
e0,

F s
es =

⎡
⎣ −A21c

−1
v cs + (A22 . . . A2m))

· · · · · ·
−Am1c

−1
v cs + (Am2 . . . Amm))

⎤
⎦ ys

s +
⎡
⎣ A21c

−1
v

· · ·
Am1c

−1
v

⎤
⎦ (F s

e0 − dys
0)

= Ayy
s
s + Af e0(F

s
e0 − dys

0), (221)

where ay = −A11c
−1
v cs + (A12 . . . A1m) ∈ R6×(6m−6), ay0 = −A11c

−1
v d, af e0 =

A11c
−1
v ∈ R6×6, Ay = −[Ai1]i=2...mc−1

v cs + [Aij ]i=2...m,j=2...m ∈ R(6m−6)×(6m−6)

and Af e0 = [Ai1]i=2...mc−1
v ∈ R(6m−6)×6. It is evident that the mathematical form

of these relations is F s
ev = F s

ev(y
s
0, y

s
s , F

s
e0) and F s

es = F s
es(y

s
0, y

s
s , F

s
e0).

By calculating ys
s as a function of F s

es , from the last equation we can to express
the node displacements ys

v and ys
s and forces at the leader’s node F s

ev as a function
of the displacement ys

0 and forces F s
e0 = G0 and F s

es . For example, for the case
ys

0 = 0, these relations are

ys
v = −c−1

v csA
−1
y F s

es + c−1
v (csA

−1
y Af e0 + I6×6)F

s
e0,

ys
s = A−1

y F s
es − A−1

y Afe0F
s
e0,

F s
ev = ayA

−1
y F s

es + (af e0 − ayA
−1
y Af e0)F

s
e0,

F s
es = F s

es . (222)

From the previous relations, it is possible to conclude the following: if the
manipulated object MC displacement ys

0 and an exact force F s
e0 acting at the MC

are selected under the nominal gripping conditions, then the displacement of one
node ys

v and the forces F s
ec at all nodes must be expressed as a function of the

displacements ys
s of the remaining m − 1 contact points. The relations defined in
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Figure 24. Elastic deviations from the nominal trajectory

(219), (221) and (222), expressed as a function of the elasticity forces F s
es at the

contact points ys
s , must also be satisfied.

Let us consider the approaching and gripping phases in which not an exact
but only an approximate position of the manipulated object MC is required. Dur-
ing the approaching, one manipulator comes first and establishes contact with the
object, without changing its position. Further, the other manipulators also form
contacts, and gripping is performed without significant change in the object’s po-
sition. Namely, the position of the tip of one manipulator, that is of one contact
point, will be given. Let it be the coordinates of the first contact point yv = y1.
Using (209), Equation (217) can be written in the form

F s
ec =

[
F s

ev

F s
es

]
=
[

uv us u0

Av As A0

]⎡⎣ yv

ys

y0

⎤
⎦

=
[

uv us0

Av As0

][
yv

ys0

]
= Aus0y

s
s0 + Auvy

s
v,

F s
e0 = csy

s
s + c0y

s
0 + cvy

s
v = cs0y

s
s0 + cvy

s
v, (223)

where Aus0 = ([Aij ]i,j=2...m | b) ∈ R6m×6m, Auv = [Ai1]i=1...m ∈ R6m×6, cs0 =
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([ci]i=2...m | d) ∈ R6×6m and cv = c1 ∈ R6×6. For the given yv and F s
ec, the position

vector of the other nodes ys
s0 is calculated from (223) as

ys
s0 =

[
ys

s

ys
0

]
= A−1

us0F
s
ec − A−1

us0Auvy
s
v (224)

and, consequently, the force at the manipulated object MC at the end of the gripping
phase will be

F s
e0 = cs0A

−1
us0F

s
ec + (cv − cs0A

−1
us0Auv)y

s
v. (225)

It should be noticed that in the case of nominal gripping, it is not necessary to give
the overall vector of elasticity force F s

e , but only the part associated to the contact
points F s

ec , which is equivalent to prescribing the vector of contact forces F s
c . Ex-

pressions (224) and (225) can be interpreted in the following way: to determine all
the characteristics of the elastic system at the end of gripping phase, it suffices to
know the position of one contact point and forces at the other contact points. In
other words, it is not necessary to know the properties of the manipulated object
in order to be able to reach a conclusion about the elastic system position. More-
over, on the basis of knowing the position of one contact point and forces at the
other contact points, it is possible to determine the displacement and forces at the
manipulated object MC. Namely, (224) determines ys0 = (yT

s yT
0 )T . In this way

the object MC y0 is uniquely determined and, by replacing it into (223), one can
calculate the force F s

e0 at the object’s MC.
If, however, exact elasticity force at the object MC F s

e0 (= G0) is required,
then, as in the previous case of nominal gripping, the displacement of another node,
different from the contact point of the leader, must be in agreement with the preset
force requirement, leader’s displacement (generally different from zero) and with
the state at other contact points. Namely, as det K = 0, then according to (197),
det(cv −cs0A

−1
us0Auv) = 0, so that on the basis of the known forces F s

e0 and F s
ec from

(225) one cannot calculate the necessary leader’s displacement ys
v . It is necessary

to first fix the elastic system in space by giving, e.g., the leader’s displacements
ys

v as independent variables and then, on the basis of the requirement for the force
F s

e0 at the manipulated object MC, determine the displacement of one node as a
function of the displacements of the other nodes and required force. Hence, it is
necessary to start from another equation (223), which can be written in the form

csy
s
s + c0y

s
0 =

m−1∑
i=1

csiy
s
si + c0y

s
0 = F s

e0 − cvy
s
v. (226)

The vector F s
e0 − cvy

s
v is a known quantity, so that one of the vectors of the

followers’ displacement ys
si , i = 1,m − 1 or displacement of the object’s MC ys

0
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can be calculated as a function of non-selected vectors of the followers’ displace-
ments and known vector. Let the displacement of the manipulated object MC ys

0 be
calculated. From (226) we get that this displacement can be expressed in the form

ys
0 = −c−1

0 csy
s
s − c−1

0 cvy
s
v + c−1

0 F s
e0 = ys

0(y
s
s , y

s
v, F

s
e0) (227)

as a function of the required force at the manipulated object MC, F s
e0, given the

leader’s displacement ys
v , and the state of the followers’ displacements ys

s . Under
these conditions, the forces acting at contact points

F s
ev = (us − u0c

−1
0 cs)y

s
s + (uv − u0c

−1
0 cv)y

s
v + u0c

−1
0 F s

e0

= F s
ev(y

s
s , y

s
v, F

s
e0),

F s
es = (As − A0c

−1
0 cs)y

s
s + (Av − A0c

−1
0 cv)y

s
v + A0c

−1
0 F s

e0

= F s
es(y

s
s , y

s
v, F

s
e0), (228)

will be calculated for the known displacements of the contact points and known
(required) force at the object’s MC.

Since the matrix As −A0c
−1
0 cs is non-singular, the followers’ displacements ys

s

and displacement of the manipulated object MC ys
0 can be determined as a function

of forces at the followers’ contact points F s
es , displacements of the leader’s contact

points ys
v , and of the sought force at the object’s MC F s

e0 from the expressions

ys
s = (As − A0c

−1
0 cs)

−1F s
es

−(As − A0c
−1
0 cs)

−1(Av − A0c
−1
0 cv)y

s
v

−(As − A0c
−1
0 cs)

−1A0c
−1
0 F s

e0 = ys
s (F

s
es, y

s
v, F

s
e0),

ys
0 = −c−1

0 cs(As − A0c
−1
0 cs)

−1F s
es − (Av − A0c

−1
0 cv)y

s
v

+[c−1
0 cs(As − A0c

−1
0 cs)

−1(Av − A0c
−1
0 cv) − c−1

0 cv]ys
v

+[c−1
0 cs(As − A0c

−1
0 cs)

−1A0c
−1
0 + c−1

0 ]F s
e0

= ys
0(F

s
es, y

s
v, F

s
e0), (229)

whereas the force at the leader’s contact point will be determined by the relation

F s
ev = (us − u0c

−1
0 cs)(As − A0c

−1
0 cs)

−1F s
es

+ [uv−u0c
−1
0 cv − (us −u0c

−1
0 cs)(As−A0c

−1
0 cs)

−1(Av−A0c
−1
0 cv)y

s
v
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+ [u0c
−1
0 − (us − u0c

−1
0 cs)(As − A0c

−1
0 cs)

−1A0c
−1
0 ]F s

e0

= F s
ev(F

s
es, y

s
v, F

s
e0). (230)

The difference between the nominal conditions given via the object’s MC and
the connection’s MC at the contact point is in the number of requirements to be met
by the manipulated object. In the former case, there are two requirements and only
one in the latter. Hence, although one starts from the same expression for the force
at the manipulated object MC, the requirements concerning node displacements
and node force are not the same. By assigning the nominal gripping conditions via
the manipulated object MC, one obtains a functional dependence between the dis-
placement of the leader’s contact point and the displacements of the other contact
points. The assigning of nominal conditions via the contact permits an arbitrary
value of the object MC displacement ys

0, determined by (227) as a function of
ys

0(y
s
s , y

s
v, F

s
e0), or by (229) as a function of ys

0(F
s
es, y

s
v, F

s
e0). As the object must re-

main within the geometric figure determined by the contact points, then, although
the displacements ys

0 are arbitrary, the object’s position after gripping cannot be
essentially changed.

Nominal displacements in the gripping phase can be also considered starting
from the state acquired by the elastic system as a consequence of the previous
action of the contact forces or gravitation forces. In determining the initial position
of the elastic system due to gravitational forces, three cases may appear, viz.

• The object is rigid and the manipulators’ tips are elastic. The position of
the object MC is not a function of elastic properties but is determined as the
rigid body MC, so that the initial displacement of this point is zero y

g

0 =
0. Positions of the manipulators’ tips are functions of the weight of elastic
interconnections y

g
c = A−1Gc, obtained using (217).

• The object is elastic and the manipulators’ tips are rigid. In that case, the
theory of elasticity is applied to calculate the displacements due to the action
of concentrated gravitation forces at the elastic system’s nodes, the supports
position of which is known [6, 7]. Namely, expression (217) is expanded
by the number of support displacements (which are zero if the object lies
on the support surface), whose position in space is known, and is solved
with respect to the sought displacements of the connections and manipulated
object MC.

• Both the object and manipulators’ tips are elastic. Then the initial position
is calculated as for the elastic object, whereby the masses of connections are
equal to the sum of the masses of elastic parts of the manipulators and object
associated with the connections.
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As a result, we obtain the initial position of the elastic system (displacements
of the nodes) due to the gravitational forces. If some contact forces already exist,
then, by an analogous procedure, we can find the displacements of the nodes due
to their action. If the absolute coordinates of the nodes, defining gravitational and
contact loads, are known, then, by subtracting initial displacements from them, we
obtain the absolute coordinates of the unloaded state 0 in which the displacements
of the nodes are zero. Further, it is possible to apply the procedure of nominal
gripping, from the initial state with zero displacements already defined.

Nominal quantities for the beginning and end of gripping, which is ended by
static conditions, are defined by the relations (219) and (221) or (222) when as-
signing nominal conditions to the manipulated object MC and relations (227) and
(228), or by (229) and (230) when assigning the conditions to a selected contact
point. It remains to define the nominal quantities during the motion in the gripping
phase. This practically means that the forces balancing the elastic forces should
be supplemented by dynamic forces, so that the solution of nominal conditions
will not be determined by the solution of the system of algebraic but of differential
equations. All the conditions that are valid for the system of algebraic equations
must be fully satisfied for the solution of the differential equations too. When the
transition process is completed, the solution of the system of differential equations
becomes identical to that of the system of algebraic equations.

The dynamic behavior of the elastic system in the gripping phase can be most
simply described either by (100) or (102), given for the immobile state, to which
the system would return when the action of the introduced forces stopped.

For the nominal gripping defined by the requirements for the manipulated ob-
ject MC it is necessary to put in Equations (100) or (102) y0 = ẏ0 = ÿ0 = 0 and
introduce the driving forces at contacts, Fc. As the gripping is the introductory
step to the motion, it is assumed that the object at the end of gripping is hovering
in space, i.e. F s

e0 = G0.
Forces have to be defined as a 6m-dimensional vector of contact forces defined

for the followers as an independent variable vector, and for the leader as a depen-
dent variable vector. The change of contact forces in time, from an initial to the
end value, may be an arbitrary monotonous (usually linear) function. However,
to the components of each of these forces upon termination of the transition phase
(after a certain period of time, the same for all forces) should be assigned a nominal
value equal to Fc = Fe − G, where the values of Fe are calculated from (222) or
(228). After introducing the adopted nominal conditions into (102), we obtain the
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following system of differential equations:

Wc(yc)ÿc + wc(yc, ẏc) = Fc,

w0(yc, ẏc) = 0. (231)

For the first 6m differential equations the last six equations represent non-
holonomic constraints. The developed form of these equations is

Wc(yc)ÿc + Fbc(yc, ẏc) + DAẏc + Ayc = Gc + Fc,

Dcẏc + cyc = G0, (232)

where Fbc(yc, ẏc) ∈ R6m×6m are the force vectors whose components Fbi =
Ẇi(yi)ẏi− ∂Ti(yi, ẏi )/∂yi, i = 1, . . . , m, DA and Dc are parts of the constant
damping matrix D associated to the vector yc in the same way as the submatrices
A and c of the stiffness matrix K were assigned. After differentiating the equations
of connections and after introducing the subscripts for the leader v (yv = y1) and s

for the followers, and having in mind the notations (206), (207) and (203) for the
structure of matrices and vectors defined at the end of Section 4.12 the last equation
obtains the form

Wv(yv)ÿv + Fbv(yv, ẏv) + Duvsẏc + uvsyc = Gv + Fv,

Ws(ys)ÿs + Fbs(ys, ẏs) + DAvsẏc + Avsyc = Gs + Fs,

Dcvÿv + Dcsÿs + cẏc = 0, (233)

where

Wv(yv) = W1(y1) ∈ R6×6,

Fbv(yv, ẏv) = Fb1(y1, ẏ1) ∈ R6×1,

Duvs = (Duv | Dus) = [D1i]i=1...m ∈ R6×6m,

uvs = (uv | us) = [A1i]i=1...m ∈ R6×6m,

Gv = G1 ∈ R6×1, Fv = Fc1 ∈ R6×1,

Ws(ys) = diag(W2(y2), . . . ,Wm(ym)) ∈ R(6m−6)×(6m−6),

Fbs = col(Fb2(y2), . . . , Fbm(ym)) ∈ R(6m−6)×1,

DAvs = (DAv | DAs) = [Dij ]i=2...m,j=1...m ∈ R(6m−6)×6m,

Avs = (Av | As) = [Aij ]i=2...m,j=1...m ∈ R(6m−6)×6m,

Dcv = Dc1 ∈ R6×6, Dcs = (Dc2 . . . Dcm) ∈ R6×(6m−6). (234)
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From the equation of connection, one can calculate the leader’s acceleration as a
function of the acceleration of the followers. It is obvious that the leader may be
only that manipulator whose contact point velocity is characterized by the non-
singular matrix Dcv (det Dcv 	= 0). By introducing into the first equation of the
found acceleration, we obtain the leader’s contact force, so that all the quantities
sought can be expressed as a function of the acceleration of followers by

ÿv = −D−1
cv Dcsÿs − D−1

cv cẏc,

Fv = −Wv(yv)D
−1
cv Dcsÿs + Fbv(yv, ẏv)

+ (Duvs − Wv(yv)D
−1
cv c)ẏc + uvsyc − Gv,

Fs = Ws(ys)ÿs + Fbs(ys, ẏs) + DAvsẏc + Avsyc − Gs. (235)

As the inertia matrix Ws(ys) is always non-singular, the followers’ accelerations
ÿs are uniquely calculated as a function of the followers’ contact forces, whose
change can be given as the nominal Fs = F s

s (t). Thus, one obtains

ÿv = −D−1
cv DcsWs(ys)

−1F s
s

+ D−1
cv DcsWs(ys)

−1(Fbs(ys, ẏs) + DAvsẏc + Avsyc − Gs) − D−1
cv cẏc,

ÿs = Ws(ys)
−1F s

s − Ws(ys)
−1(Fbs(ys, ẏs ) + DAvsẏc + Avsyc − Gs),

Fv = −Wv(yv)D
−1
cv DcsW

−1
s (ys)F

s
s

+ Wv(yv)D
−1
cv DcsW

−1
s (ys)(Fbs(ys, ẏs ) + DAvsẏc + Avsyc − Gs)

+ Fbv(yv, ẏv) + (Duvs − Wv(yv)D
−1
cv c)ẏc + uvsyc − Gv,

Fs = F s
s . (236)

The expression for the followers’ acceleration ÿs defines the full system of 6m − 6
second-order differential equations, whose solving gives the nominal trajectories
ys

s (t) of the contact points of the followers in the gripping phase. By solving
six second-order equations for the leader’s acceleration ÿv or the last six first-
order equations (232) for the leader’s velocity, the nominal trajectories ys

v(t) of
the leader’s contact points are obtained. The simplest way to obtain such a solution
is the simulation with F s

s (t) as input, whose initial and final values are determined
from static conditions. By introducing the obtained values for the leader’s contact
force Fv into (236), we obtain the nominal value of the leader’s contact force F s

v (t),
whereby all the values of the nominal quantities of gripping under the conditions
y0 = ẏ0 = ÿ0 = 0 and F s

e0 = G0 are determined.
For the nominal gripping determined by the requirements for the leader’s con-

tact point, the conditions (yv , ẏv , ÿv) and gripping forces (elastic and the contact
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one) at all contact points of the leader in the beginning and at the end of gripping
are known. Assuming that the initial state of all the nodes is known, it is neces-
sary to determine the trajectories and forces at the nodes during the gripping phase.
This can be done, as in the previous case, while considering the conditions for the
leader and manipulated object as non-holonomic constraints for the rest of the sys-
tem. More complex expressions would be obtained than by assigning the nominal
requirements for the object MC.

To get a more vivid picture of the initial state of the nominal motion, let us
recapitulate what we said about the object gripping. The gripping phase was ob-
served beginning from the elastic system state Yc0, Y00 to which corresponded a
zero values of all the forces (Fec0 = 0, Fe00 = 0). In that state, the orientations
of the object and connections were the same, A0. Therefore, the gripping to attain
the nominal gripping force F s

e = col(F s
ec, F

s
e0) was performed, and the resulting

displacements of the nodes, ys = col(ys
c , y

s
0) were measured from the initial im-

mobile unloaded state. The final state of the nominal gripping at the moment t s is
the initial state of the nominal motion with the absolute coordinates Y s

c = Y u
c + ys

c ,
Y s

0 = Y u
0 + ys

0 in which the elastic forces F s
ec, F s

e0 are acting (Figures 23 and 24),
realized after the nominal gripping. In the initial state of the nominal motion, the
coordinates of an arbitrary contact point and of the object MC are Y s

ci = col(rs
ci ,A

s
i )

= col(rs
ci ,A0 +Ai) ∈ R6×1 and Y s

0 = col(rs
0,A

s
0) ∈ R6×1, where rs

ci and rs
0 are the

vectors of Cartesian coordinates of the MC and Ai are the vectors of orientation
increments during the gripping.

Further, the contact forces acting during the motion along the required nominal
trajectory are to be determined.

5.2.2 Nominal motion of the elastic system

From the above discussion it is possible either to prescribe the forces and seek the
kinematic quantities or to prescribe the kinematic quantities and seek for the forces
of the elastic system. The problem is how to prescribe some of the mentioned
quantities that yield a coordinated motion in space. The procedure proposed for
gripping provides the initial and final position under static conditions and the forces
corresponding to them. It is implicitly assumed that the elastic system’s unloaded
state does not move. Also, it is proposed that the change of the gripping force
from the initial to end state is a monotonous function. The problem is closed in a
mathematical sense, and the desired coordination of motion in gripping is achieved.
In the case of the motion along a given trajectory, the unloaded state is mobile, and
its position is not known. Even if its position were known, the motion around the
mobile state would not proceed as around the unloaded immobile state. The same
conclusion would also hold for the solution of the coordinated motion. Hence, a
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two-stage procedure is proposed to determine the nominal quantities during the
motion.

In brief, the procedure to calculate the nominals during the motion can be re-
capitulated as follows: It is proposed that during the nominal motion, the problem
of determining the contact forces has to be resolved by setting the requirement
that the motion in the cooperative manipulation is coordinated. By the coordinated
motion of the cooperative system is meant the motion by which the manipulated
object is initially gripped to a definite elastic force, and then it continues to per-
form the general motion, whereby the manipulators move in a way that ensures
the gripping conditions are not essentially violated. It is assumed that the elastic
displacements are not large and that the positions of elastic system’s nodes during
the static displacement and at the end of the motion along the trajectory given for
the manipulated object, cannot essentially change. A two-stage procedure is pro-
posed. In the first stage, during the coordinated quasi-static motion, the contact
forces are calculated as approximate values by applying static methods. From the
initial motion state at the instant t s (end of gripping – the quantities have the super-
script ‘s’) the gripped object is statically transferred to the series of selected points
on the trajectory (the variables correspond to the instants ti and bear the super-
script ‘0s’), keeping the fictitious action of the forces at the end of gripping in the
coordinate system attached to the loaded state, without taking into consideration
the actual loads. After canceling the fictitious action of these forces, the unloaded
state of the elastic system (the variables have the superscript ‘u’) in the transferred
position is obtained (Figure 24). The loaded state of the elastic system in the trans-
ferred position is obtained by the static action of the resultants of the gravitational
forces, rotated contact forces from the end of gripping, and dynamic forces at each
of the elastic system nodes. Dynamic forces are determined by using the acceler-
ations and velocities of the nodes, obtained from the condition that, from the end
of gripping on, the elastic system moves as a rigid body. If, in addition to the ma-
nipulated object motion along the nominal trajectory, a simultaneous change of the
gripping forces is required, then, instead of the rotated contact forces from the end
of the gripping step, the sought contact forces are used to calculate the results. For
the obtained trajectories, the approximate contact forces needed to bring the elastic
system nodes to the calculated positions, are determined. In the second stage, these
contact forces are adopted as the nominal forces in the coordinated motion. It is
proposed that during the motion between the selected points on the trajectory, the
changes of contact forces are monotonous functions. The trajectories that satisfy
the motion equations are determined by numerically solving the full system of dif-
ferential equations that describes the dynamic contacts of the followers, whereby
the nominal forces of the system input are adopted. Nominal conditions at the
leader’s contact point are dependent on the manipulated object nominal conditions
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and on the nominal conditions at the contact points of the manipulators-followers.
Let the nominal trajectory of the manipulated object MC be set as the line

Y 0
0 (t) = col(r0

0 (t),A0
0(t)) ∈ R6×1, to which belongs the point Y s

0 (Figures 23 and
24). Under purely static conditions, to transfer the gripped manipulated object from
the position CMs

0 to the position CM0s
0 on the trajectory Y 0s

0 (ti), it is necessary to
make one translation by the vector r0

0 − rs
0 and one orientation change around

CM0s
0 for A0

0 − As
0 of the gripped object (loaded state of the elastic system after

gripping being completed on the whole). The absolute coordinates of the elastic
system nodes in the transferred position, for the instantaneous rotation pole of the
manipulated object MC, are (see Section 4.7, relations (123) and (150))

Y 0s = η + Ar(A
0
0 − As

0)ρ
s
0 + ar(A

0
0 − As

0). (237)

The forces acting at the nodes are

F 0s
e = AT

r (A0
0 − As

0)F
s
e = AT

r (A0
0 − As

0)(G + col(F s
c , 0)), (238)

where

Ar(a) = diag(A(a), I3×3, . . . A(a), I3×3) ∈ R(6m+6)×(6m+6),

ar(a) = col(01×3, a, . . . 01×3, a) ∈ R(6m+6)×1,

a = A0
0 − As

0,

A(a) is the coordinate transformation matrix at the rotation by the orientation a;
F s

e is the elastic force attained at the end of gripping; ρs
0 = col(ρs

00, ρ
s
01, . . . , ρ

s
0m),

ρs
00 = 0, ρs

00 = 0, is the vector of distance of the nodes from the manipulated
object MC at the end of gripping, and η = col(r0

0 − rs
0 0 r0

0 − rs
0 0 . . . r0

0 − rs
0 0) is

the expanded vector of absolute coordinates, defining the translation of the elastic
system nodes at the end of gripping as if they were rigid body points.

Since gravitational forces do not change the direction of their action, the elastic
forces in the rotated position will differ from the F 0s

e calculated from the expression
(238) by �G = (I − AT

r )G and, in proportion to that force, some additional
displacement of the nodes will take place.

Because of the limited time interval needed for the motion along the trajectory,
the trajectory is preset not only as a function of space but also as a function of time,
Y 0

0 = Y 0
0 (t) ∈ R6×1. A consequence of this is also the appearance of dynamic

forces at the nodes that are equal to the sum of inertial and damping forces. The
elastic forces at the manipulated object MC are balanced by the gravitation force
and produced dynamic force F 0

e0 = G0 + Fd0 = G0 + Fin0 + Ft0. The key issue of
the nominal motion and the later introduction of the control laws is how to realize
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the dynamic force Fd0 on account of the additional displacements of the nodes,
and especially of the contact points through which energy is introduced into the
system. This means that the motion after the gripping phase is not possible without
the additional motion of the elastic system’s nodes.

The above properties can be described in a simplest way in the case when the
elastic system upon gripping, performs only a translatory motion without the action
of any damping force. Then, the motion equations will be

Fd0 + G0 = Fe0,

Fdc1 + G1 +Fc1 = Fec1,

· · · · · · · · ·
Fdcm + Gm +Fcm = Fecm. (239)

If there would be no first equation, then the value of any contact force would change
by the value of the produced dynamic force Fdci = Fini , i = 1, . . . , m and the
motion would take place in the desired nominal manner. In the first equation, the
force Fd0 is a function only of the derivative of the object MC coordinates Y 0

0 , i.e.
Fd0 = Fin0 = Fin0(Ÿ

0
0 , Ẏ 0

0 , Y 0
0 ), whereas the elastic force Fe0 is a function of the

coordinate position of all the nodes Fe0 = Fe0(Y
0), so that this equation can be

written in the form

Fin0(Ÿ
0
0 , Ẏ 0

0 , Y 0
0 ) + G0 = Fe0(Y

0) = F s
e0 + �Fe0(Y

0),

⇒ Fin0(Ÿ
0
0 , Ẏ 0

0 , Y 0
0 ) = �Fe0(Y

0) = �Fe0(Y
0
0 , Y 0

1 , . . . , Y 0
m). (240)

As Y 0
0 (t) is a given function, the quantities Ÿ 0

0 (t), Ẏ 0
0 (t) are also known functions

so that the last relation can be written as

ϕh(Y
0
0 (t), Ẏ 0

0 (t), Ÿ 0
0 (t), Y 0

1 , . . . , Y 0
m) = ϕh(t, Y

0
1 , . . . , Y 0

m) = 0. (241)

This algebraic equation is non-linear by its arguments and it defines a hyper-surface
in the subspace {Y 0

1 , . . . , Y 0
m}, and for the rest m differential equations (239) rep-

resents holonomic constraints. If the damping forces Ft = Ft(Y
0, Ẏ 0), due to the

spatial motion resistance, were also taken into account, then they had to be bal-
anced by the elastic forces

Fin0(Y
0
0 , Ẏ 0

0 , Ÿ 0
0 ) + Ft(Y

0, Ẏ 0) = �Fe0(Y
0
0 , Y 0

1 , . . . , Y 0
m) (242)

or, in a more compact form,

ϕnh(t, Y
0
1 , . . . , Y 0

m, Ẏ 0
1 , . . . , Ẏ 0

m) = 0, (243)

which for the rest m equations (239) represents non-holonomic constraints. Solv-
ing the nominal motion assumes the explicit calculation of the necessary contact
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forces and kinematic quantities of the contact points. If the trajectory Y 0
0 (t) is

given, then there is obviously an infinite number of different ways in which this
can be done. In each of these ways, the conditions attained at the end of gripping
are unavoidably violated.

Approximate values of the contact forces are determined on the basis of at-
taining the elastic system’s coordinated motion. If the motion were only static,
the position Y0s and elastic forces F 0s

e of the elastic system, calculated from (237)
and (238) and corrected for �G, would ensure full coordination of the motion.
To determine the nominal coordinates Y 0 in the presence of dynamic forces too,
it is necessary to determine first the unloaded state position to which correspond
the vectors Y0s and F 0s

e . It will be allowed that the sum of the static and dynamic
forces by their action displace, in a purely static way, the elastic system from the
equilibrium state. The attained state is saved as a function of time.

As the gripping forces F s
c (238) produce the displacement ys , and the dispo-

sition of the forces during the static transfer with respect to the elastic system is
unchanged, then the same displacement measured in the same coordinate system
has to be produced in the new position (Figure 24). In the new static position, the
elastic system is rotated relative to the state attained at the end of gripping by the
orientation A0

0 − As
0. The coordinates of displacement from the unloaded state

are y0s = Ar(A
0
0 − As

0)y
s . The absolute coordinates of that unloaded state are

Y u = Y 0s − y0s , whereas the acting forces are equal to zero. In that state let the
action of the resultant of dynamic and static forces begin (Figure 24).

F̄e = G + AT
r (A0

0 − As
0)col(F s

c , 0) + F 0s
d , (244)

where

F 0s
d = col(F 0s

dc , F
0s
d0),

F 0s
dc = −(Wc(Y

0s
c )Ÿ 0s

c + Fbc(Y
0s
c , Ẏ 0s

c ) + DA(Y 0s)Ẏ 0s
c + Db(Y

0s)Ẏ 0s
0 ),

F 0s
d0 = −(W0(Y

0s
0 )Ÿ 0s

0 + Fb0(Y
0s
0 , Ẏ 0s

0 ) + Dc(Y
0s)Ẏ 0s

c + Dd(Y
0s)Ẏ 0s

0 )

are the dynamic forces; Y 0s, Ẏ 0s and Ÿ 0s are the coordinates of the nodes and their
derivatives, calculated on the basis of the prescribed trajectory of the manipulated
object MC as if they belonged to the rigid body, with the relative distances attained
at the end of gripping phase. Under purely static conditions, the action of the
previous forces will produce the displacement y0, which is calculated from

F̄e = AT
r (A0

0 − As
0)KAr(A

0
0 − As

0)y
0, (245)

yielding the loaded state absolute coordinates

Y 0 = Y 0s − y0s + y0 ∈ R6m×6. (246)
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Due to the different disposition of the gravitational forces with respect to the loaded
elastic system at the end of gripping and at the current position on the trajectory,
the calculated values of the position of the manipulated object MC Y 0

0 ∈ R6 will
differ from the initial ones by −y0s

0 + y0
0 ∈ R6. This can be avoided by as-

suming that y0s
0 = y0

0 when solving Equation (245) (AT
r KAr ∈ R(6m+6)×(6m+6),

rank AT
r KAr = 6m). Since the node coordinates and their derivatives are calcu-

lated as if the elastic system were a rigid body, the damping properties of the elastic
system micro-motion were not taken into account. The repetition of the procedure
for the series of positions on the trajectory (in the series of instants ti), yields the
discrete function Y 0(ti), which is adopted as the temporary nominal trajectory of
the elastic system’s nodes. Differentiating gives their derivatives. Substitution of
the values of the node absolute coordinates and their derivatives into the equations
of motion (217) yields the approximate values of the necessary contact forces as
discrete functions. Such a procedure maximally reduces the error for the values
of displacements and contact forces due to the action of the dynamic forces in the
spatial macro-motion, but still the error remains due to the elastic system’s micro-
motion when the distances between contact points change. Hence, during the nom-
inal motion of the elastic system, the elastic displacements have to be allowed, and
the coordinated nominal trajectories determined by solving (115).

Let us note that if a simultaneous change of the elastic force F 0s
e (gripping

conditions) during the motion along the nominal trajectory is also required, then
this force must be included into calculation instead of the force F 0s

e determined
from (238).

The previous procedure determines the discrete values of the contact forces
in the process of the manipulated object MC passing through a series of selected
points on the prescribed trajectory Y 0

0 . It is proposed that the change of contact
forces between the calculated values is a smooth monotonous function, which also
retains such a character when passing from one trajectory segment to the other,
determined by the selected points. Let us adopt the contact force thus determined
as the nominal contact force and denote it by F 0

c . Further, it remains to determine
for this nominal contact force the nominal trajectories that satisfy the elastic system
equations of motion (115).

The elastic system properties are invariant under static and dynamic conditions.
Only the origin of the forces acting on the elastic system varies. Under static
conditions, the load is a result of the gravitational and contact forces, whereas
for the dynamic conditions dynamic force is added. Therefore, the procedure for
determining nominal trajectories possesses properties similar to the procedure for
solving nominals under static condition. Under dynamic conditions, instead of the
algebraic equations (217) and (218), differential equations should be solved.

Using the indexing system defined in (206), (207) and (203) for the structure
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of matrices and vectors, with the subscript v for the leader (yv = y1) and subscript
s for the followers, to calculate the nominal motion conditions prescribed via the
manipulated object MC equations (115), should be written in the form

Wv(Yv)Ÿv + Fbv(Yv, Ẏv) + Duvs(Y )Ẏc + Du0(Y )Ẏ0

+ uvs(Y )Yc + u0(Y )Y0 = Gv + Fv(Y ),

Ws(Ys)Ÿs + Fbs(Ys, Ẏs) + DAvs(Y )Ẏc + DA0(Y )Ẏ0

+ Avs(Y )Yc + A0(Y )Y0 = Gs + Fs(Y ),

W0(Y0)Ÿ0 + Fb0(Y0, Ẏ0) + Dcv(Y )Ẏv + Dcs(Y )Ẏs + Dd(Y )Ẏ0

+ c(Y )Yc + d(Y )Y0 = G0, (247)

where

Wv(Yv) = W1(Y1) ∈ R6×6,

Fbv(Yv, Ẏv) = Fb1(Y1, Ẏ1) = Ẇ1(Y1)Ẏ1 − ∂T1(Y1, Ẏ1)/∂Y1 ∈ R6×1,

Duvs(Y ) = (Duv(Y ) | Dus(Y )) = [D1i(Y )]i=1...m ∈ R6×6m,

uvs(Y ) = (uv(Y ) | us(Y )) = [A1i(Y )]i=1...m ∈ R6×6m,

Gv = G1 ∈ R6×1, Fv(Y ) = Fc1(Y ) ∈ R6×1,

Ws(Ys) = diag(W2(Y2), . . . ,Wm(Ym)) ∈ R(6m−6)×(6m−6),

Fbs(Ys, Ẏs) = col(Fb2(Y2, Ẏ2), . . . , Fbm(Ym, Ẏm))

= col

(
Ẇ2(Y2)Ẏ2 − ∂T2(Y2, Ẏ2)

∂Y2
, . . . , Ẇm(Ym)Ẏm − ∂Tm(Ym, Ẏm)

∂Ym

)

∈ R(6m−6)×1,

DAvs(Y ) = (DAv(Y ) | DAs(Y )) = [Dij (Y )]i=2...m,j=1...m ∈ R6m−6,

Avs(Y ) = (Av(Y ) | As(Y ) = [Aij (Y )]i=2...m,j=1...m ∈ R(6m−6)×6m,

Dcv(Y ) = Dc1(Y ) ∈ R6×6,

Dcs(Y ) = Dc2(Y ) . . . Dcm(Y )) ∈ R6×(6m−6),

Fb0 = Ẇ0(Y0)Ẏ0 − ∂T0(Y0, Ẏ0)

∂Y0
∈ R6. (248)

For the given nominal conditions of the object MC, the variables Y0(t) = Y 0
0 (t),

Ẏ0(t) = Ẏ 0
0 (t), Ÿ0(t) = Ÿ 0

0 (t) are known, so that the last six equations in (247), de-
scribing the dynamics of the manipulated object, represent a differential constraint
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for the rest of the elastic system. In the case where the damping properties of the
elastic contacts are not taken into account, these constraints become algebraic. The
differentiation of the equation of constraint yields the possible leader’s accelera-
tion as a function of the accelerations of the followers. The leader can be only
that manipulator whose contact point velocity is characterized by the non-singular
matrix Dcv(Y ) (det Dcv(Y ) 	= 0). By introducing the determined potential accel-
eration into the first equation, one obtains the contact force of the leader, so that
all the quantities sought can be expressed as a function of the accelerations of the
followers, i.e.

Ÿv = −D−1
cv (Y )Dcs(Y )Ÿs − D−1

cv (Y )�,

Fv(Y ) = −Wv(Yv)D
−1
cv (Y )Dcs(Y )Ÿs,

−Wv(Yv)D
−1
cv (Y )� + Fbv(Yv, Ẏv)

+Duvs(Y )Ẏc + Du0(Y )Ẏ 0
0 + uvs(Y )Yc + u0(Y )Y 0

0 − Gv,

Fs(Y ) = Ws(Ys)Ÿs + Fbs(Ys, Ẏs) + DAvs(Y )Ẏc + DA0(Y )Ẏ 0
0

+Avs(Y )Yc + A0(Y )Y 0
0 − Gs, (249)

where

� = �(Y 0
0 , Ẏ 0

0 , Ÿ 0
0 ,

...

Y
0
0, Yv, Ẏv, Ys, Ẏs)

= Ẇ0(Y
0
0 )Ÿ 0

0 + W0(Y
0
0 )

...

Y
0
0 + Ḟb0(Y

0
0 , Ẏ 0

0 ) + Ḋcv(Y )Ẏv

+ Ḋcs(Y )Ẏs + Ḋd(Y )Ẏ 0
0 + Dd(Y )Ÿ 0

0

+ ċ(Y )Yc + c(Y )Ẏc + ḋ(Y )Y 0
0 + d(Y )Ẏ 0

0 . (250)

The matrix of inertia Ws(Ys) is always non-singular so that the followers’ accel-
erations Ÿs are uniquely calculated as a function of the followers’ contact forces,
whose change is prescribed as the nominal Fs = F 0

s = F 0
s (Y 0

0 ). One obtains

Ÿv = −D−1
cv (Y )Dcs(Y )W−1

s (Ys)F
0
s (Y 0

0 )

+ D−1
cv (Y )Dcs(Y )W−1

s (Ys)(Fbs(Ys, Ẏs) + DAvs(Y )Ẏc + DA0(Y )Ẏ 0
0

+ Avs(Y )Yc + A0(Y )Y 0
0 − Gs) − D−1

cv (Y )�,

Ÿs = W−1
s (Ys)F

0
s (Y 0

0 ) − W−1
s (Ys)(Fbs(Ys, Ẏs) + DAvs(Y )Ẏc + DA0(Y )Ẏ 0

0

+ Avs(Y )Yc + A0(Y )Y 0
0 − Gs),
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Fv = −Wv(Yv)D
−1
cv DcsW

−1
s (Ys)F

0
s (Y 0

0 )

+ Wv(Yv)D
−1
cv DcsW

−1
s (Ys)(Fbs(Ys, Ẏs) + DAvs(Y )Ẏc + DA0(Y )Ẏ 0

0

+ Avs(Y )Yc + A0(Y )Y 0
0 − Gs),

Fs = F 0
s (Y 0

0 ). (251)

The expression Ÿs for the followers’ accelerations defines the complete set of
6m − 6 second-order differential equations, whose solving gives the nominal tra-
jectories Y 0

s (t) of the followers’ contact points in the nominal motion. Solving six
second-order equations of (251) that describe the leader’s acceleration Ÿv, or the
last six first-order equations of (247) for the nominal trajectories of the leader’s
velocity Ẏ 0

v (t), with the preset parameters of the object MC trajectory included,
gives the nominal trajectory of the leader’s contact points Y 0

v (t). The solution is
most easily obtained by using numerical methods for the input Fs = F 0

s (Y 0
0 ) being

previously determined by the condition of attaining the coordinated motion. By
substituting the obtained values into the expression for the leader’s contact force
Fv in (251), the nominal value of the leader’s contact force, F 0

v (t), is obtained so
that all nominal values of the elastic system are determined.

Let us analyze the setting of the nominal motion. Namely, the question to be
answered is: is it most convenient to prescribe the trajectory of the manipulated ob-
ject MC? In view of the previous discussion, the choice of the nominal trajectory as
the trajectory of the manipulated object MC will inevitably cause that the displace-
ments and forces, at one contact point, become a function of the displacements and
forces at the other nodes. Because of that, the analysis will also be carried out for
differently defined nominal conditions of motion.

Let the trajectory of one contact point be prescribed as the nominal trajectory.
Let us assume that the force and displacement of the object MC adapt to the arising
conditions of motion. Further, the conditions of nominal motion correspond to
such motion of the elastic system in which the geometrical figure formed after
the gripping remains rigid. The positions of the instantaneous pole of rotation of
that figure during the motion can be prescribed separately (for example, as a line
formed by the object MC attached to that figure as a rigid body). To convey the
idea in a simpler manner, it will be assumed that the instantaneous rotation pole is
just at that contact point for which a nominal trajectory is prescribed.

Let the nominal trajectory be given for the contact point i = 1 (= v) (of
the leader) with the mass center CMv. Similar to the previous case, holding for
purely static conditions, for the transfer from the point CMs

v to the point CM0
v ,

it is necessary to do one translation using the vector r0
v − rs

v and one change of
orientation about the instantaneous rotation pole, here adopted CM0

v , by A0
v − As

v

of the gripped object and elastic system after gripping is completed in the whole
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(Figure 25). Then the absolute coordinates of the nodes are (see expression (237))

Y 0s = η + Ar(A
0
v − As

v)ρ
s
vj + ar(A

0
v − As

v), (252)

with the forces acting at them

F 0s
e = AT

r (A0
v − As

v)F
s
e = AT

r (A0
v − As

v)(G + F s) (253)

where Ar and ar are defined by (150) in which, instead of a, one should put
A0

v − As
v; F s

e is the elasticity force attained at the end of gripping; ρs
vj =

col(ρs
10, ρ

s
11, ρ

s
12, . . . , ρ

s
1m), ρs

11 = 0, is the vector of the distance of the nodes
from the node CMv at the end of the gripping phase, and η = col(r0

v − rs
v 0 r0

v − rs
v

0 . . . r0
v −rs

v 0) is the expanded vector of absolute coordinates that defines the trans-
lation of the elastic system nodes at the end of the gripping phase, as if these were
points of a rigid body. In such a displacement, at the object MC and at contact
points, the gravitational and contact forces

Gc + F 0s
c = F 0s

ec ,

G0 + �G0 = F 0s
e0 (254)

act, where F 0s
c and �G0 are the forces that should act together with the gravita-

tional forces at the nodes, to balance the elastic forces F 0s
e .

Let us assume that in the considered position of the CM0
i trajectory, the elastic

system transferred to this position is also under the action of dynamic forces, in
a purely static manner. Since the contact points in the assumed case of nominal
motion are not relatively displaced and if displacement of the manipulated object
CM0 is not allowed, the acting dynamic forces will be equal to those dynamic
forces that would be produced if the elastic system were rigid. These forces can
be explicitly calculated from (115), whereby it is necessary to introduce the nodes
coordinates and their derivatives, determined on the basis of rigid-body kinematics
for the known kinematic quantities at one of its points (of the trajectory Y 0

v (t)). By
introducing only the dynamic forces produced at contact points into the previous
equations, only the contact forces will be altered, whereas the relative positions of
the elastic system’s nodes will not change, and neither will the elastic forces

F 0
dc+ Gc + F 0d

c = F 0s
ec , F 0d

c = F 0s
c − F 0

dc

G0 + �G0 = F 0s
e0 . (255)

Let the static force G0 and dynamic force F 0
d0 displace the object mass center

CM0 to an equilibrium state. Since it is assumed that the positions of contact points
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Figure 25. Nominal trajectory of a contact point

do not change, to satisfy the equilibrium state, the position of the object MC must
change. This will result in a change of elastic forces. If the change is considered
with respect to the state prior to the action of F 0

d0 and G0, all the displacements
will be small so that the relation (95) with the constant stiffness matrix will hold,
whereby only y0

0 	= 0 changes, all other displacements being zero. By changing
y0

0 by the value �y0
0 elastic forces at all nodes change, but only as a function of

�y0
0 , so that the equilibrium conditions (255), once when the action of F 0

d0 and G0

is over, will be given by the expression (Figure 25)

F 0
dc + Gc + F 0

c = F 0s
ec + br�y0

0 ,

F 0
d0 + G0 = F 0s

e0 + dr�y0
0 , (256)

where F 0
c is the force at contact points that should be realized to preserve the dis-

tance between the nodes attained at the end of the gripping phase for such a choice
of the nominal general motion.

Therefore, the contact forces F 0s
c needed to maintain the elastic system in the

gripped state after the static displacement must be changed in the motion along the
prescribed path of the contact point by

�Fc = F 0
c − F 0s

c = �Fsd
c + �Fy0

c = −F 0
dc + br�y0

0 , (257)
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where �Fsd
c = F 0d

c − F 0s
c = −F 0

dc is the increment of contact forces due to the
action of dynamic forces at contact points; �F

y0
c = br�y0

0 is the increment of
contact forces due to the action of dynamic forces at the manipulated object MC,
at the contact points manifested as the support reaction; �y0

0 is the displacement
vector of the object MC calculated from the second equation of (256) and measured
from the state in which the elastic system would have found if it were statically
transferred along trajectory; and br , dr are the submatrices of the stiffness matrix
Kr = AT

r (A0
v − As

v)KAr(A
0
v − As

v) associated to the vector �y0
0 . At that, all the

coordinates of contact points are determined by (252), the only exception being
the coordinates of the manipulated object MC, to which the vector �y0

0 should be
added.

It can be finally concluded that such a choice of nominal motion ensures the
preservation of the geometric conditions of the contact at the end of the gripping
phase, whereas the contact forces, elastic forces, and coordinates of the object’s
MC changed in proportion to the dynamics, are directly dictated by the choice
of nominal trajectory. Despite the existence of the mentioned changes in forces
and positions during the motion, this choice of nominal motion has its essential
advantages:

• All the quantities are relatively easily and exactly calculated.

• For each phase of motion, it suffices to use only the existing theory of me-
chanics. The influence of elastic properties can be fully covered by the theory
of elasticity with one constant stiffness matrix, for both the gripping phase
and motion phase.

• The assessment of nominal motion stability is reduced to the examination
of the MC motion of the manipulated object elastically connected to the
rigid geometric figure formed by the contact points (as a cage). Since the
stiffness matrix is constant and the displacements are small, the nominal
motion stability can be also examined, based on the existing theory of the
stability of linear systems.

• All that was said above, along with the analysis of human motion in the
process of transferring, indicates that such a setting of the nominal motion in
cooperative manipulation is appropriate. This statement is based on the fact
that it suffices to know the position of one contact point and force at all the
other points to derive a conclusion about the displacements and forces at the
manipulated object MC, i.e. to control its motion.

Irrespective of the algorithm chosen, the result of the synthesis of nominal
conditions for the elastic system is the absolute positions Y 0

c , Y 0
0 , velocities Ẏ 0

c ,
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Ẏ 0
0 , accelerations Ÿ 0

c , Ÿ 0
0 , and the forces F 0

c at contact points.

5.3 Nominal Driving Torques

As the manipulators are non-redundant, the relation Yc = �(q) ∈ R6m×1 between
the internal and external coordinates is unique. Without dealing with the complex-
ity of obtaining the inverse transformation of coordinates for the known external
nominal coordinates Y 0

c , the manipulator’s internal nominal coordinates q0 and
their derivatives are uniquely determined from (172) by the expressions

q0 = �−1(Y 0
c ) ∈ R6m×1,

q̇0 = J −1(�−1(Y 0
c ))Ẏ 0

c ∈ R6m×1,

q̈0 = J −1(Ÿ 0
c − J̇ (�−1(Y 0

c ))J −1(�−1(Y 0
c ))Ẏ 0

c ) ∈ R6m×1. (258)

For the known kinematic quantities q0, q̇0, q̈0 and the contact forces F 0
c = −f 0

c ,
the equations (167), defining the model of motion of non-elastic manipulators with
six DOFs with non-compliant joints and with the force at the gripper tip in the
space of internal coordinates, allow us to uniquely calculate the nominal driving
torques τ 0

τ 0 = H(q0)q̈0 + h(q0, q̇0) − J T (q0)f 0
c . (259)

When the manipulator driving torques are being calculated, all nominal quantities
of the cooperative system’s coordinated motion are determined on the basis of the
known trajectory of the manipulated object MC or trajectory of the selected contact
point and contact forces defined by the condition of maintaining the gripped state
at the beginning of the motion.

The proposed algorithm assumes that the gripping phase ends in a stationary
state of the cooperative system. However, in the applications the system of dif-
ferential equations that is numerically solved may be unstable or simplified by
neglecting damping forces. Then, the time of transient process relaxation in the
action of any input quantity on the system will be infinite. This means that, in the
time interval predicted for the gripping, the elastic system will not attain a station-
ary state. Or, more precisely, the sought positions of contact points and required
values of their velocities and accelerations will not be realized simultaneously. The
same will also happen if a small interval is adopted for the motion between the par-
ticular points on the trajectory (e.g. for the duration of the gripping process). When
the time predicted for gripping has ended, the general motion from the initial state
determined by the moment of termination of the gripping process will continue ir-
respective of the realized values of the state quantities. To avoid the occurrence of
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discontinuity in the changes of nominal quantities, using the previously presented
procedure, it is possible to determine the driving torques at the beginning and at
the end of the gripping phase, as well as during the quasi-static displacement. To
the driving torques thus determined, time is associated as an independent variable,
t0 and t s for the beginning and end of gripping, and t0 for the position on the tra-
jectory. In these moments, the driving torques have accurately determined values,
whereas between these moments the function of the change of driving torques may
be an arbitrary monotonously continuous function. As the systems of differential
equations (175) for the description of the cooperative manipulation for the immo-
bile unloaded state and (181) for the description of the cooperative manipulation
dynamics for a mobile unloaded state are unstable, the solutions of these systems
will diverge. If these systems are locally stabilized first, and if the above proce-
dures are used to determine the nominal inputs for the thus stabilized systems, then
the numerical solving of the locally stabilized system will give the nominal trajec-
tories without any discontinuity. Such an approach is very convenient when the
precise position of the manipulated object MC is required.

5.4 Algorithms to Calculate the Nominal Motion in Cooperative
Manipulation

The nominal motion is given for the phases of gripping and of general motion.
For both phases, the nominal conditions are prescribed either for the manipulated
object MC or a selected contact point. The initial conditions of motion are attained
at the end of the gripping phase. The nominal conditions for the gripping and the
motion phases are prescribed independently because it is not important whether the
conditions at the end of gripping are achieved by prescribing the conditions for the
object MC or for the contact point. For example, it is possible to perform gripping
in accordance with the conditions given for the object MC and nominal general
motion according to the conditions for the contact point. Hence the algorithm to
calculate the nominal motion in gripping and nominal general motion is given for
four possible cases. The initial step in calculating the nominal motion for all the
algorithms is defined by the system model.

The independent input parameters to the algorithm to calculate the gripping
nominals are the displacements of the nodes or the gripping force. These para-
meters are determined based on the requirement for the magnitude of the stress
state for each concrete manipulated object. Calculation of the input parameters is
carried out by conventional procedures of the theory of elasticity, and will not be
considered here.

The initial state from which we consider the process of gripping the manipu-
lated object by the manipulators, is determined by the immobile unloaded state 0
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of the elastic system, for which all displacements of nodes are equal to zero.

5.4.1 Algorithm to calculate the nominal motion in gripping for the
conditions given for the manipulated object MC

Step 1.
Equations (217) are formed for the static conditions of the elastic system equilib-
rium. Displacement of the manipulated object MC is known, ys

0 = 0, and if the
necessary displacements of contact points ys

c are known, the forces at all nodes of
the elastic system at the end of gripping F s

ec and F s
eo are calculated from (217).

Step 2.
If the displacements of contact points at the end of the gripping phase are not
known for the condition of the immobile MC of the manipulated object, ys

0 = 0,
displacements of contact points at the end of gripping ys

c are determined from
(218) as a function of the given forces F s

ec = Gc + F s
c as independent variables.

Step 3.
This step exists if the exactly determined force at the manipulated object MC at the
end of the gripping phase is required. Then, it is necessary to do the following:

• To request the force F s
e0 at the manipulated object MC at the end of the

gripping phase (e.g., F s
e0 = G0).

• To determine displacement of the leader’s contact point ys
v from (219) as

a function of the displacements of the contact points of the manipulators
followers ys

s and forces at the manipulated object MC, F s
e0.

• To determine the forces at the contact points of the leader and followers ac-
cording to (221) as a function of the displacements of the contact points of
the followers ys

s and required forces at the MC of the manipulated object,
F s

e0, whereby the quantities ys
s and F s

e0 must be given as independent vari-
ables.

• If, instead of the displacement ys
s , the forces at the contact points of the fol-

lowers, F s
es , are given as independent variables, then all the displacements of

contact points ys
v , ys

s and force at the leader’s contact point, F s
ev , are calcu-

lated from (222) as a function of the forces F s
es and F s

e0, given as independent
variables.

In the first three steps, all the quantities characterizing static conditions at the
end of the gripping phase are determined.
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Step 4.
Equation (217) is used to calculate the contact force at the end of the gripping
phase F s

c = F s
ec − Gc = col(F s

v , F s
s ). It is necessary to select a monotonous

function for the change of the contact forces of the followers with time, F s
s (t),

from the value at the beginning of gripping to its end.

Step 5.
Numerical methods are used to solve the system of differential equations (236) for
the forces F s

s (t) and the nominal trajectories of contact points ys(t) and yv(t) are
determined, as well as their derivatives ẏs(t), ẏv(t) and ÿs(t), ÿv(t) and contact
force at the leader’s contact point F s

v (t) during the gripping phase.

Step 6.
Starting from the assumption that the absolute coordinates of the contact points
of the immobile unloaded state 0 are known, and that they are determined by
the vector Yc0 = const, the absolute coordinates of the contact points during
the gripping are calculated, Y 0

c (t) = Yc0 + yc(t), whereby the trajectories yc(t)

were determined in the preceding step. By introducing the absolute coordinates
of the contact points and their derivatives into (258) the internal coordinates and
derivatives of those internal coordinates to be realized in the nominal gripping are
calculated.

Step 7.
By introducing the calculated internal coordinates and their derivatives into (259)
the nominal driving torques to realize the nominal gripping are determined.

5.4.2 Algorithm to calculate the nominal motion in gripping for the
conditions of a selected contact point

Step 1.
Equations (223) are formed for the static equilibrium conditions of the elastic
system. The displacement of the leader’s contact point ys

v is known, and if the
displacements of the other nodes ys

s0 are also known, the forces at all contact points
of the elastic system at the end of the gripping phase, F s

ec and F s
eo, are calculated

from (223).

Step 2.
If the displacements of the nodes at the end of the gripping phase are not known,
but the forces at contact points, F s

ec, are, then the nodes displacements ys
s0 =

col(ys
s , ys

0) and the force at the MC of the manipulated object at the end of grip-
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ping F s
e0 is determined from (224) and (225) as a function of the displacements,

ys
v , and prescribed forces F s

ec = Gc + F s
c as independent variables.

Step 3.
This step exists if the exactly determined force at the manipulated object MC at the
end of the gripping phase is required. Then, it is necessary:

• To request the force F s
e0 at the manipulated object MC at the end of the

gripping phase (e.g., F s
e0 = G0).

• To determine the displacement of the manipulated object MC, ys
0, from (227)

as a function of the displacements of the contact points of the leader ys
v and

of followers ys
s , and of the force at the manipulated object MC, F s

e0.

• To determine the forces at the contact points of the leader F s
ev and fol-

lowers F s
es from (228) depending on the contact point displacements ys

c =
col(ys

v, ys
s ) and required force at the MC of the manipulated object F s

e0, the
quantities ys

v , ys
s and F s

e0 must be given as independent variables.

• If, instead of the displacements ys
s , the forces at the contact points of the

followers F s
es are prescribed as independent variables, then the displacements

of the contact points of followers ys
s , displacement of the object MC ys

0,
and the force at the leader’s contact point F s

ev are calculated from (229) and
(230) as a function of the displacements ys

v and forces F s
es and F s

e0, given as
independent variables.

For any variant, all independent variables characterizing static conditions at
the end of the gripping phase are prescribed in the first three steps.

Step 4.
Using (217), the contact forces at the end of the gripping phase are calculated,
F s

c = F s
ec − Gc = col(F s

v , F s
s ). It is necessary to choose a monotonous function

of the change of contact forces in time, F s
c (t), from the value at the beginning of

gripping to its end.

Step 5.
Numerical methods are used to solve the system of differential equations (102)
for the force F s

c (t), to determine the nominal trajectories of contact points yc(t)

and of the manipulated object MC y0(t), as well as the derivatives ẏc(t), ẏ0(t) and
ÿc(t), ÿ0(t) during the gripping phase.
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Steps 6 and 7.
These steps are identical to Steps 6 and 7 of the algorithm in Section 5.4.1, to
calculate the nominal motion during the gripping when the conditions for the ma-
nipulated object MC are prescribed.

All the above calculations are carried out on the basis of the unstabilized model
of cooperative manipulation. If the nominal trajectories are to be determined
by numerically solving the system of differential equations (175) for the known
driving torques, then it is convenient to first carry out local stabilization of the
system and replace Steps 4, 5, 6 and 7 by Steps 4a, 5a, 6a and 7a.

Step 4a.
Using (217), the contact forces at the end of the gripping phase are calculated,
F s

c = F s
ec − Gc = col(F s

v , F s
s ). Starting from the assumption that the absolute

coordinates of the contact points of the immobile unloaded state 0 are known and
that they are determined by the vector Yc0 = const , the absolute coordinates at
the end of the gripping process are calculated, Y s

c (t) = Yc0 + ys
c , whereby the

displacements of contact points ys
c are determined in Step 3. Using (172), i.e.

(258), the internal coordinates at the beginning (qs
0) and in the end (qs ) of the

gripping process are calculated.

Step 5a.
Local stabilization of the system (175) is carried out according to the specially
preset requirement. As it has been assumed that the elastic system is immobile at
the beginning and at the end of gripping, the derivatives of internal coordinates
at the beginning and end of gripping are zero. At the end of the gripping
process, it can be realized that the internal coordinate derivatives are not zero,
but their exact and matched values have to be known. By introducing the internal
coordinates qs

0 determined in the preceding step, the values of the derivatives of
internal coordinates and contact forces in the system of equations describing the
locally stabilized system, the driving torques in the beginning of gripping τ s

0 are
calculated. By introducing the internal coordinates qs determined in the preceding
step and the values of the derivatives of the internal coordinates and contact forces
F s

c calculated in Step 4a into the system describing the locally stabilized system,
the driving torques at the end of the gripping phase τ s are calculated.

Step 6a.
The duration of the gripping process, determined by the beginning t0 and the end
t s of the process, is selected. Also, the function of the change of driving moments
with time is selected. For a linear change, the nominal driving torques are calcu-
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lated from the expression

τ(t) = τs − τ s
0

ts − t0
(t − t0) + τ s

0 .

Step 7a.
By numerically solving the locally stabilized system of differential equations
(175) for the input driving torque τ(t), the nominal trajectories q(t) of the leading
links and the nominal values of any quantity existing in the description of the
cooperative system, are determined.

By ending the calculation from Step 7 (7a) in any of the above algorithms, all
the calculations concerning the gripping phase are finished. The calculated dis-
placements, absolute coordinates, and forces at the nodes describe in full the co-
ordinated gripping of the manipulated object in all phases of the gripping process.
The state of the absolute coordinates Y s , their derivatives Ẏ s and Ÿ s and forces
at the elastic system nodes F s

c and F s
0 attained at the end of the gripping process

determine the initial state of the nominal general motion. The known vector of
absolute coordinates Y s at the end of the gripping phase serves as the basis to
determine the vector of distance of the nodes from the manipulated object MC
ρs

0 = col(ρs
00, ρ

s
01, . . . , ρ

s
0m), ρs

00 = 0, and distance vector for the nodes with re-
spect to the leader’s contact point CMv ρs

vj = col(ρs
10, ρ

s
11, ρ

s
12, . . . , ρ

s
1m), ρs

11 = 0.

5.4.3 Algorithm to calculate the nominal general motion for the conditions
given for the manipulated object MC

Step 1.
The nominal trajectory of the manipulated object MC Y 0

0 = col(r0
0 , A0

0) ∈ R6×1

is prescribed as a line in space. On this trajectory, the manipulated object MC is
found at the end of the gripping phase Y s

0 = Y 0
0 (t0) = col(rs

0, As
0).

Step 2.
The trajectory time profile Y 0

0 (t) is selected and its derivatives Ẏ 0
0 (t) and Ÿ 0

0 (t) are
determined.

Step 3.
The trajectory is divided into a finite number of segments. The number of divisions
depends on the form of the trajectory in space and time. For the linear parts of
the trajectory, it suffices to select two points at the beginning and end of the linear
interval. The circular and oscillatory parts of the trajectory should be divided so
that full circumference or oscillation is approximated by not less than 32 points.
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Let Y 0
0 (t) be the point representing the trajectory at the instant t .

Step 4.
The translatory, r0

0 (t) − rs
0 , and angular, A0

0(t) − As
0, static displacements of the

manipulated object MC and of the overall elastic system from the initial to the
current state on the trajectory at the time t is determined. In this algorithm, the
instantaneous rotation pole coincides with the instantaneous position of the object
MC on the given nominal trajectory. The relation (150) serves to determine the
transformation matrix Ar(A

0
0(t) − As

0) = Ar(t) and vector ar(A
0
0(t) − As

0) =
ar (t). Using (237), the absolute coordinates of the elastic system nodes Y 0s(t)

after the static transfer from the initial to the current position on the trajectory are
determined.

Step 5.
The absolute coordinates of the fictitious unloaded state 0 of the elastic system
for the current position on the trajectory are determined by mapping the unloaded
state 0 at the beginning of the gripping phase. Namely, the vector of the node
displacements in gripping ys is mapped into the vector of the fictitious node
displacements ys

00(t) = Ar(t)y
s , and the absolute coordinates of the nodes of

the fictitious unloaded state 0 of the elastic system at the current position on the
trajectory is determined by the expression Y s

00(t) = Y 0s − ys
00(t).

Step 6.
The derivatives of the absolute coordinates Y 0s(t), calculated on the basis of
the given nominal trajectory of the manipulated object MC are determined. By
introducing the current coordinates of nodes Y 0s(t) and their derivatives Ẏ 0s(t),
Ÿ 0s(t) into (244), we obtain the approximate values of the forces F̄ec and F̄e0 that
would act at the nodes in the current position on the given trajectory if the elastic
system moved as a rigid body.

Step 7.
Assuming that (y0

e )0 = (ys
00)0, and using (245), the displacements y0

e from the
current fictitious unloaded state 0 are determined.

Step 8.
From (246), it is necessary to determine the absolute coordinates of elastic system
nodes Y 0(t) after the action of the forces determined in Step 6. The differentiation
gives the derivatives Ẏ 0(t) and Ÿ 0(t).
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Step 9.
By introducing the absolute coordinates and their derivatives determined in the
preceding step into the equations of behavior (115), the contact forces are calcu-
lated. The calculated contact forces at the nodes of the manipulators-followers
can be adopted as the nominal forces F 0

s (Y 0
0 (t)) = F 0

s (t). Such a choice ensures
the realization of the coordinated nominal motion of the manipulated object MC
without additional requirements concerning the accompanying changes in the
gripping. If a simultaneous change in gripping is also required during the motion,
then these forces can be prescribed as independent variables.

Step 10.
For the known nominal trajectory of the manipulated object MC, Y 0

0 (t), and
its derivatives Ẏ 0

0 (t), Ÿ 0
0 (t) and the nominal input force F 0

s (t) from Step 9, the
numerical solving of the system of differential equations (251) gives the nominal
trajectories of all the contact points Y 0

c = col(Y 0
v , Y 0

s ) and the nominal force F 0
v

at the leader’s contact point.

Step 11.
By replacing the absolute coordinates of the nominal trajectories of the contact
points and their derivatives in (258), the internal coordinates and their derivatives
that are to be realized during the nominal general motion are calculated.

Step 12.
By introducing the calculated internal coordinates and their derivatives into (259),
the nominal driving torques to be introduced at the manipulator joints in order to
realize the nominal general motion are determined.

5.4.4 Algorithm to calculate the nominal general motion for the conditions
given for one contact point

Step 1.
The nominal trajectory of one (leader’s) contact point Y 0

v = col(r0
v , A0

v) ∈ R6×1,
is prescribed as a line in space. On that line there is a selected contact point
corresponding to the end of the gripping phase Y s

v = Y 0
v (t0) = col(rs

v , As
v).

Step 2.
The trajectory time profile Y 0

v (t) and its derivatives Ẏ 0
v (t) and Ÿ 0

v (t) are determined.

Step 3.
The trajectory is divided in the same way as in Step 3 of the algorithm in
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Section 5.4.3 to calculate the nominal general motion for the conditions given for
the manipulated object MC. Let Y 0

v (t) be the point that represents the leader’s
contact point at the moment t .

Step 4.
The translatory, r0

v (t) − rs
v , and rotational, A0

v(t) − As
v, static displacements of the

elastic system from the initial state to the current state on the trajectory at time t

is determined. The instantaneous rotation pole is at the instantaneous position of
the leader’s contact point on the trajectory. Relation (150) is used to determine the
transformation matrix Ar(A

0
v(t) − As

v) = Ar(t) and the vector ar (A
0
v(t) − As

v)

= ar(t). Using (252), the absolute coordinates of nodes Y 0s(t) after the static
displacement of the elastic system as a rigid body from the initial to the current
position, are determined. Differentiating gives the derivatives Ẏ 0s(t) and Ÿ 0s(t).

Step 5.
Now, from (253) and (254) it is necessary to determine the elastic
F 0s

e = col(F 0s
ec , F 0s

e0 ) and contact forces F 0s
c that should act at the elastic

system’s nodes in the current position on the trajectory in order that the distances
between the nodes remain unchanged with respect to the distances attained at the
end of the gripping process.

Step 6.
The introduction of the absolute coordinates of nodes Y 0s(t) and their derivatives
Ẏ 0s(t) and Ÿ 0s(t) into (115) allows the determination of the dynamic forces F 0

dc

and Fd0 that would act at the elastic system’s nodes so that it moved along the
prescribed trajectory as a rigid body.

Step 7.
The stiffness matrix Kr = AT

r (A0
v − As

v)KAr(A
0
v − As

v) is determined and the
submatrices br and dr are separated.

Step 8.
The second equation of (256) is used to determine �y0

0 .

Step 9.
After introducing �y0

0 , determined in the previous step, F 0
dc determined in Step

6, and F 0s
ec determined in Step 5 into the first equation of (256), it is necessary

to calculate the contact forces F 0
c that ensure a coordinated motion and can be

adopted as the nominal forces. As in the previous algorithm, if the simultaneous
change in gripping during the motion is required, the contact forces can be given
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as independent variables.

Step 10.
By solving the stabilized system of differential equations (115) for the input force
F 0

c calculated in Step 8, the trajectory coordinates Y 0 = col(Y 0
v , Y 0

s , Y 0
0 ) of all

the nodes of the elastic system are determined. At the same time, the derivatives
Ẏ 0 and Ÿ 0 are also determined. The trajectories thus determined are adopted as
the nominal trajectories.

Steps 11 and 12.
These steps are identical to Steps 11 and 12 in the algorithm in Section 5.4.3 to
calculate the nominal general motion for the conditions given for the manipulated
object MC.

The above calculations were done on the basis of the unstabilized model (181)
for the description of the dynamics of cooperative manipulation for the mobile
unloaded state. Like in the algorithm to calculate the nominal motion in gripping
for the conditions of a selected contact point (Section 5.4.2), whereby the nominal
trajectories are determined by numerically solving the system of differential
equations (181) for the known driving torques, the system can be stabilized first
and then Steps 10, 11 and 12 replaced by Steps 10a, 11a and 12a.

Step 10a.
By introducing the coordinates, velocities, and accelerations of the nodes, deter-
mined in Step 4, and the coordinates of the manipulated object MC Y 0

0 + �y0
0 into

(258), the internal coordinates and their derivatives are calculated.

Step 11a.
Local stabilization of the system (181) is carried out according to a specially given
requirement. The introduction of the coordinates and their derivatives, calculated
in the preceding step, and the contact forces F 0

c , calculated in Step 9, into the
system of equations describing the locally stabilized system, serves to determine
the driving torques τ0 at the selected points on the trajectory. The obtained discrete
time functions of driving torques are approximated by a smooth time function τ(t).

Step 12a.
By numerically solving the locally stabilized system of differential equation for
the input driving torque τ(t), the nominal trajectories q(t) of the leading links
and nominal values of every quantity present in the description of the cooperative
system are determined.
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5.4.5 Example of the algorithm for determining the nominal motion

The algorithms for the synthesis of nominals in the gripping phase and nominal
motion of the cooperative system will be illustrated on the ‘linear’ cooperative
system (Figure 26) considered in Chapter 3 (Figures 8 and 9). It is assumed that
the masses of the object-manipulators’ elastic interconnections are much smaller
than the mass of the manipulated object, so that they are neglected.

The basis for the synthesis of the nominals is the mathematical model of the
cooperative system that describes faithfully enough the statics and dynamics of the
cooperative system.

The motion in the gripping phase can be described using the elastic system
model given with the aid of the coordinates of deviation y from the immobile un-
loaded state 0 given by (42), in which it is necessary to put Ÿ10 = 0 and add the
damping forces of elastic interconnections, thus yielding the model

ÿ2 + (dp + dk)

m
ẏ2 + (cp + ck)

m
y2 = dp

m
ẏ1 + dk

m
ẏ3 + cp

m
y1 + ck

m
y3 − g,

Fe1 = cpy1 − cpy2,

Fe3 = −cky2 + cky3,

Fc1 = dpẏ1 − dpẏ2 + cpy1 − cpy2,

Fc2 = −dkẏ2 + dkẏ3 − cky2 + cky3, (260)

where dp and dk are the coefficients of damping of elastic interconnections; Fei ,
i = 1, 2, 3 are the elasticity forces produced at the nodes, and Fcj , j = 1, 2 are the
contact forces. Equations (260) represent the developed form of Equations (102)
of the model of elastic system dynamics for the immobile unloaded state, given in
Section 4.5. In this example, the masses of elastic interconnections are neglected,
so that Wc(yc) = 03×3, wc1(y, ẏ) = dpẏ1 − dpẏ2 + cpy1 − cpy2, wc2(y, ẏ) =
−dkẏ2 + dkẏ3 − cky2 − cky3, W0(y0) = m, w0(y, ẏ) = −dpẏ1 + (dp + dk)ẏ2 −
dkẏ3 − cpy1 + (cp + ck)y2 − cky3 + mg and Fc = (Fc1, Fc2)

T .
The general motion is described using the elastic system defined by the ab-

solute coordinates Y and given by the expressions (43), which have to be supple-
mented by the damping of elastic interconnections, to obtain the model

Ÿ2 + (dp + dk)

m
Ẏ2+ (cp + ck)

m
Y2 = dp

m
Ẏ1+ dk

m
Ẏ3 + cp

m
Y1+ ck

m
Y3−g+ cp

m
s1 − ck

m
s3,

Fe1 = cpY1 − cpY2 + cps1,
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Figure 26. ‘Linear’ cooperative system

Fe3 = −ckY2 + ckY3 − cks3,

Fc1 = dpẎ1 − dpẎ2 + cpY1 − cpY2 + cps1,

Fc2 = −dkẎ2 + dkẎ3 − ckY2 + ckY3 − cks3. (261)

Although the model has been taken over from (43), it represents a developed form
of Equations (115) for the model of elastic system dynamics for the mobile un-
loaded state given in Section 4.6. The obtained model is relatively simple because
there is no rotation, so that (82) is reduced to yD

ij = ρija − ρij0(ρija/‖ρija‖) =
ρija − ρij0, ρij0 = const. By comparing with (115), it can be concluded that
Wca(Yc) = 03×3, wca1(Y, Ẏ ) = dpẎ1 − dpẎ2 + cpY1 − cpY2 + cps1, wca2(Y, Ẏ ) =
−dkẎ2 + dkẎ3 − ckY2 − ckY3 − cks3, W0a(Y0) = m, w0a(Y, Ẏ ) = −dpẎ1 + (dp +
dk)Ẏ2 − dkẎ3 − cpY1 + (cp + ck)Y2 − ckY3 + mg and Fc = (Fc1, Fc2)

T . Models of
the manipulators are taken in the form

m1q̈1 + m1g = τ1 + fc1, fc1 = −Fc1,

m2q̈2 + m2g = τ2 + fc2, fc2 = −Fc2. (262)

Kinematic relations between the external and internal coordinates are given by the
expressions

q1 = Y1 = Y10 + y1, q2 = Y3 = Y30 + y3,

q̇1 = Ẏ1 = Ẏ10 + ẏ1 = ẏ1|Y10=const, q̇2 = Ẏ3 = Ẏ30 + ẏ3 = ẏ3|Y30=const,

q̈1 = Ÿ1 = Ÿ10 + ÿ1 = ÿ1|Y10=const, q̈2 = Ÿ3 = Ÿ30 + ÿ3 = ÿ3|Y30=const.

(263)
Numerical values of the parameters of the elastic system model (Figure 26) are
s1 = s2 = 0.05 [m], m = 25 [kg], cp = 20 · 103 [N/m], ck = 10 · 103 [N/m],
dp = 500 [N/(m/s)] and dk = 1000 [N/(m/s)]. Numerical values of the model
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parameters of the manipulators are m1 = 12.5 [kg] and m2 = 12.5 [kg]. The initial
position of the cooperative system before the beginning of gripping is determined
by the node coordinates Y10 = 0.150 [m], Y20 = 0.200 [m] and Y30 = 0.250 [m].

In the next example, we give the algorithm to calculate the general nom-
inal motion for the conditions given for the manipulated object MC on the
basis of the unstabilized model of the cooperative system dynamics described
in Section 5.4.3. This algorithm can also be used for the gripping phase if the
required trajectories of the nominal quantities are also given for the gripping phase.

Step 1.
The motion of the manipulated object takes place along a vertical straight line that
is adopted as the Y axis, defining the line in space along which the motion takes
place.

Step 2.
The motion of the manipulated object MC from the beginning of the gripping
process to the moment t is described by the function

Y 0
2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y s
2 , 0 ≤ t ≤ Tks,

Y s
2 + c(t − Tks)

2, Tks < t < Td, c = Y d
2 − Y 0

2

Td − T ks
,

Y d
2 + Ay sin

(
2π

Ty

(t − Td)

)
, Td ≤ t ≤ Tkraj ,

(264)

where Y s
2 [m] is the unchanged position of the manipulated object MC during the

gripping; Y d
2 [m] is the position to which the object is lifted upon gripping, and

about which proceeds the oscillatory motion of the MC; Ay and Ty are the am-
plitude and period of oscillation; Tks , Td and Tkraj are the respective moments at
which gripping, lifting, and motion are terminated. In parameter selecting, it is
requested that the conditions Y s

2 · Y d
2 > 0 and ‖Y s

2 ‖ < ‖Y d
2 ‖ are fulfilled. By com-

bining the parameters, it is possible to obtain different functions. For example, if
Y s

2 = Y d
2 and Ay = 0 are selected, the manipulated object MC remains immobile

in the initial position.
The derivatives of this function are

Ẏ 0
2 =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t ≤ Tks,

2c(t − Tks), Tks < t < Td,

Ay

2π

Ty

cos

(
2π

Ty

(t − Td)

)
, Td ≤ t ≤ Tkraj ,

(265)
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Ÿ 0
2 =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t ≤ Tks,

2c, Tks < t < Td,

−Ay

(
2π

Ty

)2

sin

(
2π

Ty

(t − Td)

)
, Td ≤ t ≤ Tkraj ,

(266)

...

Y2
0=

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t ≤ Tks,

0, Tks < t < Td,

−Ay

(
2π

Ty

)3

cos

(
2π

Ty

(t − Td)

)
, Td ≤ t ≤ Tkraj .

(267)

Step 3.
Since the results of the calculation of nominal quantities are input quantities
to the closed control system, the nominal trajectories are calculated for each
integration step by which the closed control system is simulated. In this example,
the integration step is 0.0005 (s).

Steps 4, 5, 6, 7 and 8.
Masses of elastic interconnections are neglected, so that all further calculations are
algebraic. If the elastic system moves as a rigid body, the contact point coordinates

and their derivatives will be Y 0
1 = Y 0

2 − s1, Y 0
3 = Y 0

2 + s3 and
(k)

Y1

0

=(k)

Y2

0

=(k)

Y3

0

,
k = 1, 2, . . .. In the course of static transfer along a vertical, the gravitation and
contact forces do not change either their direction or orientation. The general
motion produces only the inertial force −mŸ 0

2 at the manipulated object MC.
This force will displace the manipulated object MC. However, in view of the
fact that the nominal trajectories were determined while neglecting the friction
of connections and that the connections are massless, the same displacement will
experience the contact points too.

Step 9.
It is adopted that the contact force Fc2 at node 3 is an independent variable, given
by the function

Fc2 = (268)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F 0
c2(1 + ecf t ), 0 ≤ t ≤ Tks, cf = 1

Tks

ln

(
F s

c2

F 0
c2

− 1

)
> 0,

F s
c2, Tks < t < Td,

F s
c2 + Af sin

(
2π

Tf

(t − Td)

)
, Td ≤ t ≤ Tkraj ,
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whose derivative is

Ḟc2 =

⎧⎪⎪⎨
⎪⎪⎩

cf F 0
c2e

cf t , 0 ≤ t ≤ Tks,

0, Tks < t < Td,

Af

2π

Tf

cos

(
2π

Tf

(t − Td)

)
, Td ≤ t ≤ Tkraj ,

(269)

where F 0
c2, F s

c2 are the respective contact forces at the moment of observation and
at the end of gripping (F 0

c2 ·F s
c2 > 0, ‖F 0

c2‖ < ‖F s
c2‖); Af and Tf are the amplitude

and period of oscillation of the contact force.

Step 10.
Algebraic solving of (261) for the known Y 0

2 and F 0
c2 gives the nominal coordinates

of contact points

Y N
3 = Y 0

2 + 1

ck

F 0
c2 + s3,

Y N
1 = − ck

cp

Y N
3 + 1

cp

f N(t), (270)

where f N(t) = Ÿ 0
2 + (cp + ck)Y

0
2 − cps1 + cks3 + mg.

The nominal contact force at the first node is given by the expression

FN
c1 = cp(Y N

1 − Y 0
2 + s1). (271)

Step 11.
The relation between the internal and external coordinates is given by the expres-
sion (263).

Step 12.
By introducing the calculated values into (262), the driving torques are determined
as

τ1 = m1Ÿ
N
1 + m1g + FN

c1 ,

τ2 = m2Ÿ
N
3 + m2g + F 0

c2. (272)

The results of the calculation of nominal quantities are given in Figures 27 to
32. All nominal quantities for the gripping phase are presented in Figure 27, while
those for the nominal motion are shown in Figure 30. In Figures 28 and 31, the
nominal quantities are given as the desired input values to be tracked by the control
system of cooperative manipulation in the phase of gripping and general motion,
respectively. As the damping and masses are neglected, identical results are also
obtained for the conditions of the manipulated object MC and for the conditions
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Figure 27. Nominals for gripping a manipulated object
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Figure 28. Nominal input to a closed-loop cooperative system for gripping
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Figure 29. Simulation results for gripping (open-loop cooperative system)
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Figure 30. Nominals for manipulated object general motion
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Figure 31. Nominal input to a closed-loop cooperative system for general motion
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Figure 32. Simulation results for motion (open-loop cooperative system)

186 Multi-Arm Cooperating Robots



187

given for one contact point. The simulation responses of the non-controlled un-
stabilized cooperative system under the action of the calculated nominal driving
torques, given for the phases of gripping and nominal motion, are presented in
Figures 29 and 32, respectively. In the general motion of the non-controlled un-
stabilized cooperative system, the action of nominal driving torques produces the
nominal contact forces, but the absolute position of contact points diverge, retain-
ing the prescribed relative distances (Figure 32).
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6 COOPERATIVE SYSTEM CONTROL

In this chapter, the problem of cooperative manipulation of an object by several
non-redundant manipulators with six DOFs is solved as the problem of control-
ling a mobile elastic structure while taking into account all specific features of
cooperative manipulation. We give a classification of control tasks and propose a
procedure to calculate the driving torques to be introduced at the joints of the ma-
nipulators in order to ensure tracking of the nominal trajectory of the manipulated
object MC and nominals of the followers’ contacts. A theoretical analysis of the
behavior of the closed-loop cooperative system is given, with a special reference
to the behavior of non-controlled quantities. The procedure for calculating driving
torques and the behavior of the closed-loop cooperative system are illustrated in a
simple cooperative system consisting of the manipulated object and two one-DOF
manipulators.

6.1 Introduction to the Problem of Cooperative System Control

Generally, the task of control is to provide a set of drives (inputs) that will produce
such a state of the object to satisfy its desired outputs. The control can neither
change nor improve the physical characteristics of the object. Through the control,
on the basis of the instantaneous requirement (desired input) for the object’s be-
havior and instantaneous state of the object, such drive (input) is synthesized that
will force the object to behave in the desired way. At that, it is assumed that the re-
quired object’s behavior is realizable (within its working envelope), i.e. the states
of the object excited by the synthesized drives should be all the time within the
allowed limits. The synthesized drives establish a functional relationship between
the requirements for the object behavior and object state, and they are called control
laws. In the rest of this chapter, the quantities used to guide the system are called
controlled (directly tracked) outputs, and the quantities that are not involved in the
system guiding bear the attribute ‘non-controlled’. Similarly, a cooperative system

189



without feedback loops is ‘non-controlled’, whereas the one involving feedback
loops is a ‘controlled’ cooperative system.

Control laws for a cooperative system are selected on the basis of the model of
its dynamics and they will have sense only if the model describes sufficiently well
the system’s statics and dynamics. The main reason for not finding an adequate
solution to the cooperative system control is the presence of force uncertainty in
the description of its dynamics. A unique solution of this problem was given first in
[8]. It was shown that the problem of force uncertainty, as described in the available
literature, is a consequence of the assumption about the non-elastic properties of
the cooperative system in its part where the force at the manipulated object MC is
decomposed into contact forces.

Numerous propositions of cooperative manipulation control laws based on the
models involving force uncertainty that can be found in the available literature,
cannot be accepted as an appropriate solution to cooperative manipulation control.
There are only a few solutions proposed for the model and control of cooperative
manipulation of elastic objects [1, 3–5]. The model given in [1, 3] correctly de-
scribes the motion about the immobile unloaded state, and was used to derive a
conclusion about the cooperative system general motion. The model presented in
[4, 5] starts from the erroneous implicit assumption that the position of the un-
loaded elastic system during the motion is known. Irrespective of the validity of
the model, the control laws proposed by all these authors rely upon the prescribed
behavior of deviations from the nominal trajectories or nominal forces. Stability of
the closed-loop cooperative system has been proved by simulations or by experi-
ment, but not analytically.

The basic task of cooperative manipulation is the controlled transfer of the
working object in space and time. From the point of view of control theory, the task
is reduced to tracking the nominal trajectory. The nominal trajectory expresses the
explicit or implicit requirement for an ideal motion of the manipulated object MC.
This requirement represents input to the control system. It is given as the hodo-
graph of a time-variable six-dimensional position vector, determining the position
and orientation of the manipulated object. In order to be given, the input has to be
synthesized first. Hence, the first task to be solved is the synthesis of the nominal
motion (nominals). The nominals are synthesized analytically on the basis of the
mathematical model of the controlled object dynamics. The solution of the task of
the synthesis of nominals gives a set of nominal quantities (6m inputs and 6m + 6
states) of the non-controlled cooperative system (Chapter 5 and [10]).

The model of cooperative system dynamics has more equations of motion than
physical inputs (Chapter 4 and [8]). A consequence of this is the number of nom-
inal quantities that exceeds the number of real inputs (driving torques), so that
a prerequisite to control is to select the quantities by which the system will be
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guided. Hence, the control in cooperative manipulation must be hierarchical. The
algorithms defined at a higher hierarchical level select for certain classes of tasks,
the form of nominal motion and nominal quantities as controlled outputs. These
algorithms also define the transient states in the change of guidance and nominals
during the manipulation. However, the higher control level is not of concern to
us. At the lower control level, control laws are defined for the selected class of
controlled outputs.

To answer the question of what can one require from a cooperative system,
i.e. what classes of controlled outputs can be selected, this section offers a special
analysis. Namely, if only six driving torques (inputs) are used to control the motion
along a prescribed trajectory, the question arises as to the remaining 6m−6 driving
torques. In other words, apart from the prescribed trajectory, it is necessary to know
which and how many of the 6m+6m remaining nominal quantities can be adopted
as controlled output quantities.

In this chapter, the synthesis of control laws is performed by the method of
calculating inputs, i.e. driving torques. Driving torques are calculated using the
model of cooperative manipulation and the law of control error, given in advance.
The calculated driving torques ensure that the error of controlled outputs has the
prescribed properties. The quality of the synthesized driving torques is determined
by the quality of the mathematical model (model order and accuracy of the model
parameters). A shortcoming of the obtained control laws is that they involve all the
state quantities and their derivatives. Their advantage is that the driving torques are
exactly determined on the basis of the non-linear model of the cooperative system
dynamics. Also, it is relatively easy to perform theoretical analysis of the behavior
of the controlled cooperative system with the possibility of using the physical laws
that determine its statics and dynamics. This advantage enables us to carry out an
exact theoretical analysis of the behavior of non-controlled quantities and define
the behavior of all the quantities (not only the controlled ones) of the controlled
cooperative system, and derive correct conclusions about the stability of the overall
system.

6.2 Classification of Control Tasks

6.2.1 Basic assumptions

A problem arises as to the determination of the number and properties of the re-
quirements concerning the functioning of the cooperative system. To this end, we
will consider the properties of controllability and observability of the states and
of the system on the basis of which the characteristics and number of possible
requirements will be determined.
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For a linear system of nx ordinary first-order differential equations with the
matrices Ā, B̄, C̄, D̄, states x ∈ Rnx×1, inputs υ ∈ Rnυ×1, and outputs γ ∈ Rnγ ×1

ẋ = Āx + B̄υ,

γ = C̄x + D̄υ, (273)

the condition [48]

rank (C̄T B̄, C̄T ĀB̄, . . . , C̄T Ānx−1B̄, D̄) = nx, (274)

according to the Caley–Hamilton theorem, is a necessary and sufficient condition
that on the basis of the solution

x(t) = eĀtx(0) +
t∫

0

eĀ(t−τ )B̄υ(τ) dτ

γ (t) = C̄ eĀt x(0) +
t∫

0

C̄ eĀ(t−τ )B̄υ(τ) dτ + D̄υ(t), (275)

for x(t) = 0 and for some t 	= 0, from the obtained dependence for an arbitrary
initial state

x(0) = −
t∫

0

e−Āτ B̄υ(τ) dτ, (276)

we can uniquely determine the control that will bring that initial state to the state
x(t) = 0. If the rank of the above matrix is lower than nx , then it is not possible
to find the input that would bring all the states to the state x(t) = 0. This means
that there exist some other inputs (drives) that produce states that are not due to the
inputs υ. Also, the initial state x(0) can be uniquely determined as a function of
the known expression γ (t), for υ(t) = 0, if and only if the columns of the matrix
C̄ exp(Āτ ) are linearly independent. This will be fulfilled if the matrix rank is
equal to the order of the system

rank (C̄T , ĀT C̄T , (ĀT )2C̄T , . . . , (ĀT )n−1C̄T ) = nx. (277)

If, however, the rank of this matrix is lower than nx , then it is not possible to
determine all initial states of the system on the basis of the known output.

In accordance with the above, control theory defines the state controllability,
output controllability, and state observability. The system state x(0) is controllable
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if and only if there exists a defined control υ which brings the system from a state
x(0) to the zero state x(t) = 0 in a finite time t . The system’s output quantity γ (t0),
is controllable if and only if there is a control υ that will bring the system from the
initial state x(t0), to which corresponds the initial value of the output γ (t0), to the
state to which corresponds the output value γ (t) = 0. In order that the linear
system with one input (nυ = 1) and one output (nγ = 1) is output-controllable, it
is necessary that

rank (C̄T B̄, C̄T ĀB̄, . . . , C̄T Ānx−1B̄, Db) = 1. (278)

The system state x(t0) is observable if only if it is uniquely determined by the
output γ (t) and control υ(t) on some limited time interval t ∈ [0, T ]. If all the
system states are controllable, the system is (completely) controllable, and if the
output is completely controllable, the system is fully controllable. If all the system
states are observable, the system is completely observable. Kalman [49] showed
that the linear system with one input and one output is controllable (observable) if
and only if its dual system is observable (controllable).

It has been shown that for a linear stationary time-continuous dynamic sys-
tem, the positive solution of the controllability problem guarantees the existence
of control in the closed system, which will guarantee stability of the overall con-
trol system. Applying intuitively the same logic to non-linear systems, it turns out
that the solution of controllability is also of crucial importance for the existence of
the solution of any task of theory of control such as, for example, the problem of
ensuring the system’s stability.

The criteria of linear systems cannot be directly applied to derive conclusions
about the properties of non-linear systems, but it can be expected that from the part
of the necessary conditions for controllability of the non-linear system, should at
least come the conditions for the number and characteristics of requirements (in
this case, the cooperative manipulation) that can be imposed on it.

Part of the necessary conditions of controllability of a non-linear system can
be obtained on the basis of the following reasoning.

The general solution (275) of the linear system (273) and some non-linear sys-
tem over the same sets of inputs Dυ , states Dx and outputs Dγ is of the same
mathematical form

x(t) = x(x0, t0, t, υ)),

γ (t) = γ (x, υ) = γ (x(x0, t0, t, υ), υ) = γ (t, υ), (279)

whereby the time t0, t and the initial state x0 are parameters. By eliminating the
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Figure 33. Mapping from the domain of inputs to the domain of states
.

parameter t , we obtain the functional relations

x = x(x0, υ),

γ = γ (x, υ) = γ (x(x0, υ), υ), (280)

that define the mapping of the input domain to the state domain and both of them
to the output domain. According to the assumption, the domains of input, state,
and output are subsets of the nυ-, nx- and nγ -dimensional space, respectively. A
physical system whose description contains control as an independent variable, is
an open system. This means that there exists some other source system from which
energy, matter, and/or information are introduced to that system. Part of the output
space of the source system is the input space to the system under consideration.
The system considered can ‘see’ the source system only through its projection into
the input space, so that on the spaces of input and state there exists a ‘picture’ of
an isolated system from the point of view of the system considered. Part of that
space, or the whole space, can be called the natural output space, and it is equal
to the product of the input space and the state space. Hence, the dimension of the
space in which the overall system is ‘seen’ is nυ + nx . At the same time, this is
also the maximal dimension of the natural output space for the considered system
max{nγp} = nυ + nx . All the other output spaces represent the transformation or
mapping of the natural output space. The dimension of the output space can be
smaller than, equal to, or higher than the dimension of the natural output space.

Solutions of (279), (280) define the mappings from one domain to the other.
The function x = x(x0, υ) determines the mapping F υ

x : υ → x by which
the whole input domain is mapped into the whole/part of the state domain Dυ →
Dυ

x ⊆ Dx (Figure 33).
The function y(t) of the outputs (279), (280) can be considered as the image

of the pair (υ, x(υ)). In other words, the function of the controlled outputs γ (t)
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Figure 34. Mapping from the domain of states to the domain of inputs

Figure 35. Mapping from the domain of inputs to the domain of outputs

defines the mapping F υx
γ : (υ, x(x0, υ)) → γ of the whole product of the whole

input domain and part of the state domain (Figure 34) (obtained by mapping from
the input domain) to the domain of controlled outputs, which is part of the output
domain Dυ × Dυ

x → Dυx
γ ⊆ Dυ

γ (Figure 35).
Definitions and theorems of controllability and observability specify the prop-

erties and conditions of mapping between the domains of inputs, states, and out-
puts.

The necessary condition of state controllability (274) defines the condition of
the existence of the inverse mapping F x

υ : x0 → υ. As the initial states of mapping
cover the whole state domain, (274) defines the condition of mapping of the whole
set of states into part of the output set Dx → Dx

υ ⊆ Dυ (Figure 34). However,
the condition (274) is necessary and sufficient, which, from the point of view of
mapping, means that it defines conditions of the existence of mapping of the whole
input domain to the whole state domain.

Definition of observability specifies the mapping of the pair (υ, γ (υ)) into the
state x, i.e. F υγ

x : (υ, γ (υ)) → x. In terms of sets, this can be expressed in the
following way.

Let the set Dυx
γ be obtained by mapping from the part of the state domain Dυ

x
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Figure 36. Mapping from the domain of outputs to the domain of inputs

Figure 37. Mapping through the domain of states

to which is mapped the input domain Dυ . The definition of observability is related
to the mapping of the direct product of the whole input domain and of the part of the
output domain into the part of the state space Dυ ×Dυx

γ ⊆ Dυ ×Dγ → Dυ
x ⊆ Dx

(Figure 36).
The observability condition (277) specifies the conditions for which the sub-

set Dυ
x will be the whole state domain Dυ

x = Dx and the subset Dυx
γ will be

equal to the whole output domain Dυx
γ = Dγ . The above discussion is based on

considering the properties of the function composition γ = γ (x(υ), υ). If the
direct mapping from the input set to the output set (in (275), D̄υ(t) = 0) is not
considered, the function composition acquires the form γ = γ (x(υ)), which is
graphically presented in Figure 37.

Still, it remains to consider the output controllability.
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Figure 38. Mapping of the control system domain

The definition of the output controllability gives precisely the prop-
erties of mapping the input domain Dυ and part of the state domain
Dυ

x to the domain of controlled outputs Dυ
γ . From the condition

rank (C̄T B̄, C̄T ĀB̄, . . . , C̄T Ānx−1B̄, D̄) = 1 and Kalman’s works [49] it comes
out that the dimensions of the input space Dυ and space of controllable outputs
must be the same, dim{Dυ} = dim{Dυ

γ }, and that there must exist the inverse
mapping

γ = γ (x, υ) = γ (x(υ), υ) = γ (υ)

∃γ −1: υ = γ −1(γ ) = υ(γ ), γ = γ (γ −1(γ )) = γ

from the space of controlled inputs, in order that the system can be controllable.
In other words, in order to have an output-controllable system, a prerequisite is
the existence of a one-to-one correspondence between the whole space of inputs
Dυ and the whole space of controlled outputs Dυ

γ . The criteria of controllabil-
ity/observability of the system states express the conditions of mapping of the
whole space of inputs/outputs into the whole space of states.

With dynamic systems, mapping from the set Dυ to the set Dυ
γ must proceed

indirectly via the set Dx . The opposite mapping from the set Dυ
γ to the set Dυ

may be either direct or via some other set Dd , which, if it exists, represents for
the control system, a set of states of the sensors xd(γ ) (Figure 38). With dynamic
systems, mapping from the set Dυ to the set Dυ

γ must proceed indirectly via the
set Dx . The opposite mapping from the set Dυ

γ to the set Dυ may be either direct
or via some other set Dd , which, if it exists, represents for the control system, a set
of states of the sensors xd(γ ) (Figure 38).

The consideration of the mapping from one domain to another is based on the
functional dependence of the solution of the system of differential equations and
controlled outputs. As these relationships are of the same form for both linear and
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non-linear systems, and no special properties of linear systems have been used in
the inference, the conclusions hold for both systems.

It is known [31] that for the continuously differentiable functions γi =
γi(υ1, . . . , υnυ

), i = 1, . . . , nυ in an area of the nυ-dimensional space, provided
the Jacobian is different from zero,

∂(γ1, γ2, . . . , γnυ
)/∂(υ1, υ2, . . . , υnυ

) = det(∂γi/∂υj ) 	= 0 (281)

the mapping γ = γ (υ) from a sufficiently small neighborhood of each selected
point υ of the space Dυ into the uniquely determined neighborhood of the point
γ (υ) of the space Dυ

γ , and vice versa, takes place as a biunique mapping. Obvi-
ously, the necessary condition for the one-to-one mapping is that the dimensions
of the space of inputs Dυ and space of controlled outputs Dυ

γ are the same in order
that the previous Jacobian would exist at all. In this mapping can be set exactly
dim{Dυ} = dim{Dυ

γ } independent variables υ or γ and obtain the same number
of dependent variables γ or υ. Each υ or γ selected as independent variable, may
express one independent control requirement for the system. Independent variables
may be either only the outputs γ , only the inputs υ, or even their combination. In
other words, the control requirements can be set up to the system’s output, to its
input, or even to their combination. The preset requirements must be congruent,
which means that for one independent variable or the variable dependent on it, it is
possible to preset only one independent requirement. It follows that the number of
controlled outputs should be equal to the number of control inputs.

Therefore, it has to be allowed that, on the basis of the known selected con-
trol inputs, it is possible to uniquely determine the controlled quantities. This is
possible to realize if there is a mutually unique relation between the inputs and
the outputs. With dynamic systems, this relationship is differential and it is indi-
rectly established via the system dynamics, whereas with non-dynamic systems,
this relation is algebraic.

In principle, the number of inputs nυ and the number of outputs nγ are not
the same. If nυ > nγ , the problem is easily solvable by canceling the excessive
inputs. This can be achieved by establishing a functional dependence between
nυ −nγ inputs or by applying the hierarchical control, so that for a concrete control
task at higher control level nγ suitable inputs are selected, whereas the rest of the
inputs are kept constant. If the number of really possible outputs nγ (mutually
independent variables) is higher than the number of inputs nυ , nυ < ny then nυ

outputs can be controlled, while nγ − nυ outputs remain non-controlled, and their
behavior is determined only by the dynamics of the controlled object. This ratio of
the number of physical inputs and outputs also exists in cooperative manipulation.
The task of the control is reduced to selecting the set with nγ = nυ outputs that will
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be controlled and such inputs that will result in the acceptable character of change
of the non-controlled quantities. The control system should be hierarchical. The
higher control level is to define a set of nominal motions of the system, select the
control quantities, and define the mode of transition from one set of nominals to
another. The control of selected quantities is realized at the lower control level by
concretely selected control laws.

To determine the control on the basis of the requirements for input and/or out-
put (e.g. trajectory tracking), means finding such a mapping that will map the
domain of inputs exactly to the required subset of the set of outputs. Often, it
happens that the explicit requirement concerning an output quantity has negative
consequences to the other non-controlled output quantities. Correction of the char-
acteristics of non-controlled quantities can be achieved in two ways (Figures 39
and 40). The simplest way is to change the preset requirements without changing
the system’s structure, and select the mapping to that part of the set of outputs in
which all the inputs have satisfactory characteristics. The other way to solve this
problem is to change the values of the independent variables as a function of the
outputs. Namely, in the output function γ = γ (x, υ), independent variables are
the state quantities x ∈ Dx and the inputs υ ∈ Dυ . The input domain Dυ cannot
usually be essentially changed, so that it remains to change the part of the state
space to which the input domain is mapped, and which represents a set of indepen-
dent state variables x for the function of output as an independent quantity. This
change is performed by changing the function x = x(υ) of mapping from the do-
main of inputs to the domain of states. As this function represents the solution of
the system of differential equations in which the input υ is the drive, this means
that it is necessary to modify the differential equations by which the system is de-
scribed. This modification assumes the alteration of the constant parameters and
functional relations in which states and their derivatives exist. In control theory,
this procedure is called synthesis of control laws or synthesis of the control system.
In other words, it is necessary to improve first the system characteristics and, on the
improved system, impose the requirements for the controlled output quantities on
the basis of which the necessary input quantities will be determined in a mutually
unique way.

The synthesized control laws should ensure such object inputs υob that will,
in accordance with the object dynamics ẋ = f (x, υob) only, produce the states
x = x(x0, υ

ob) of the control object such that the obtained outputs γ = g(x)

satisfy the preset requirements (Figure 39). For a control object, physical laws
dictate its domains of inputs Dυ , states Dx and outputs Dγ , as the functions of
mapping between them x = x(x0, υ

ob) and γ = g(x) (Figure 40a, longer bold
dotted line). These physical laws determine the object dynamics and cannot be
changed by any control. The selected control laws can produce only such outputs
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Figure 39. Structure of the control system

γ CL = υob of the control system that, as such, drives to the control object, and that
the mapping g(x) from the domain of states, realized by these drives, to the domain
of outputs, is carried out only in that part of the output function g(x) satisfying the
preset requirements (Figures 39b, c and 40, short bold line).

The control law output γ CL is a function of the preset required object input
υCL; it may also be a function of the object state x and, if the control system is
dynamic, of its state xCL too, so that we finally have γ CL = υob(x, xCL, υCL)

(Figure 40c). Like the object’s physical features determine the mapping functions,
they also condition the requirements to be preset for the object, and which are
expressed as the requirements υCL to the closed system. Also, the nominal regimes
cannot be prescribed arbitrarily but in concordance with the physical laws that
determine the controlled object dynamics. At that, the nominal motion should be
determined only as a realizable object’s motion in concordance with the physical
laws, once the maximal number of preset requirements, equal to the number of the
object physical inputs, is realized. Solution of the problem thus stated is given in
Chapter 5 and in [10].

The analysis of the object’s dynamic behavior represents consideration of the
character of the solution of the system of differential equations describing the sys-
tem’s dynamic behavior for the excitations that are only functions of time for the
non-controlled object and of time and state for the controlled object. For the con-
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Figure 40. Mapping of the control object domain

trolled object, the analysis of dynamic behavior can be carried out based on the
closed-loop model, open-loop model, and based on the object model only, if its
input is fully determined. In this section, the analysis of the behavior of controlled
quantities is carried out on the basis of the closed-loop model. The analysis of
the output quantities that are not controlled is performed on the basis of the object
model only.

It should be pointed out that the elastic part of the cooperative system has an
infinite number of characteristic frequencies and modal forms corresponding to
them. By choosing the cooperative manipulation model in the form (211), it is
possible to encompass 6m characteristic frequencies and modal forms. At that,
the first characteristic frequency is closest to the real one, provided the adopted
approximation of the elastic system is valid. The character of the motion of a
concrete elastic system is dictated by the character of its acting load. In other
words, in the stage of selecting nominals, we can define the character of elastic
system motion (i.e. of the cooperative system). The (quasi)static motion can be
selected as nominal motion, but so can the motion that is far from or close to the
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characteristic modal forms of the elastic structure (resonance states). The analysis
of dynamic behavior of the closed-loop cooperative system should show whether
the system, using the selected vector of controlled outputs and control laws, can
realize the required nominal motion in an asymptotically stable way.

6.2.2 Classification of the tasks

Before making a choice of the cases for which control laws will be sought, we will
give a global classification of the conditions and tasks in cooperative manipulation.

In view of the elastic properties of the manipulated object, there are two possibili-
ties:

• manipulation of a rigid object, and

• manipulation of an elastic object.

Depending on the required accuracy of the description of its physical characteris-
tics, the object elasticity can be presented in different ways, from the description
by partial differential equations to the description by algebraic equations.
In view of the space conditions in which the object manipulation takes place, it is
possible to distinguish that:

• the motions of the object and manipulators proceed without constraints, and

• the motions of the object and manipulators are constrained in respect of the
contact with the obstacles, limited ergonomic characteristics of the manipu-
lators, etc.

In view of the spatial position of the manipulated object, there are three cases:

• The object is on support during the whole gripping and moving phases. In
the state of rest, it is possible that the force at the object MC may be different
from the weight Fe0 = G0 + F0 and Ÿ0 = Ẏ0 = 0.

• The object is held with no motion in space. In the state of rest, Fe0 = G0

and Ÿ0 = Ẏ0 = 0.

• The object moves in space, and then Fe0 = Fd0 + G0, Ÿ 	= 0 and Ẏ0 	= 0.

The manipulators participating in cooperation may be

• in view of elastic properties

– rigid, and
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– elastic;

• in view of their redundancy

– non-redundant, and

– redundant;

• in view of joint compliance

– with non-compliant joints, and

– with compliant joints;

• in view of the DOFs of the object and manipulators

– the manipulators (grippers) and manipulated object have the same num-
ber of DOFs, and

– the manipulators and manipulated object have different numbers of
DOFs;

• in view of the comparative characteristics of the manipulators

– the manipulators in cooperation have the same characteristics (e.g. all
manipulators are rigid with six DOFs), and

– the manipulators in cooperation have different characteristics (e.g. the
manipulators have a different number of DOFs).

In view of the type of contact in the sense of their elasticity, the classification is

• rigid contact, and

• elastic (‘soft’) contact.

In view of the contact in the sense of the mutual mobility of the contacting surfaces
of the manipulator tip areas and the object envelope, the characteristic cases are

• Sliding contact. In this case the contact point of the manipulators’ tips and
object can move on the object envelope in the course of manipulation. A
characteristic of the contact with sliding is that contact forces can be either
zero or oriented so as to press the object.

• Stiff contact. In this case, the contact point of the manipulator tip and object
in the manipulation remain all the time fixed to the object envelope. Within
this case one can distinguish four subcases:
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– Stiff contact. This contact is characterized by the forces that can be
directed both to and from the object, i.e. Fc ≤ 0, Fc ≥ 0, and that
the force vector associated to the contact point can have the number
of components different from zero, that is equal to the number of the
object DOFs, Fci ∈ RDOF×1.

– Stiff half-contact. A characteristic of this contact is that, in some di-
rections, the forces can be directed both towards and from the object,
whereas in some directions they must be pressure forces.

– Contact at holding. The characteristics of this contact are the same as in
the contact with sliding, except for the fact that the manipulator-object
contact point cannot move on the object envelope.

– Contact at half-holding. In contrast to the preceding contact, which
can involve all the components of the force vector at the contact, in this
case some components of the force vector cannot be prescribed at all,
and they are equal to zero during the time of manipulation.

In the cooperative system control, it is possible to consider several sets from
which (or to which) mapping is performed in the sense of input-output (Figure 41).

For the overall cooperative system as a control object, it can be adopted that
the set of all driving torques τ is the set of inputs Dτ = {τ } ∈ R6m. The set of
manipulator states Dq = {q} ∈ R6m can be adopted as a set of the manipulator
outputs. The set of contact forces Fc (elastic system drives) can be adopted as a
set of elastic system inputs DFc = {Fc} ∈ R6m, whereas the set of states Y of
the elastic system DY = {Y } ∈ R6m+6 can be adopted as the set of elastic system
outputs. The set DY can be thought of as the union of the sets DYc = {Yc} ∈ R6m of
states at contact points Yc and the set DY0 = {Y0} ∈ R6 of states of the manipulated
object Y0. Between 6m components Y

j

ci , i = 1, . . . , m, j = 1, . . . , 6 of the vector
Yc, defining in the 6m-dimensional space a point of the set of the elastic system
states DYc = {Yc} ∈ R6m ⊆ DY and 6m components q

j

i , i = 1, . . . , m, j =
1, . . . , 6 of the vector q, defining in the 6m-dimensional space one point of the
set of the states of six-DOF non-redundant manipulators Dq , there is a mutually
unique correspondence according to the law (172), for every state q.

Assuming that, for the known states, their derivatives are also known, and that
the mapping from one set of states covers the mapping from the set of derivatives
too, the cooperative system behavior can be represented by the mapping between
these sets.

The set of manipulator states Dq is obtained by the mapping (τ, Fc) → q of
the pair (τ, Fc) to the state q. The set Dτ of driving torques τ can be obtained
by the mapping (q, Fc) → τ of the pair (q, Fc) to the driving torques τ , and the
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Figure 41. Mapping of the cooperative manipulation domain

set of contact forces DFc can be obtained by the mapping (τ, q) → Fc of the pair
(τ, q) to the contact force Fc. The mapping law is determined by the solution of
the last two equations of (167). The set of elastic system states DY = DYc

∪ DY0

can be obtained by the mapping from the set of contact forces DFc to the set of
elastic system states DY according to the law defined by the solution of the first
three equations of the system of differential equations (100) or (113). As in the
case of manipulators, other combinations of mapping are also possible, and some
of them are presented in Figure 41. The set DFe of elastic forces Fe is obtained
by the mapping Y → Fe of the elastic system state Y to these forces according
to the law Fe = K(Y )Y . It should be noticed that between the set of states (y or
Y ) of the elastic system D# = {#} ∈ R6m+6, # = y, Y or the set of elastic forces
Fe, DFe = {Fe} ∈ R6m+6 and stresses (σ = σ (y), σ = σ (Y ), σ = σ (Fe)) in the
elastic system, there is a unique relation. Definition of that relation, however, is
not the subject of this section.

Since the dimension of the space of the cooperative system inputs (driving
torques) is 6m, then 6m independent congruent requirements can be preset for the
elements of any of the previous sets. This means that, at most, 6m independent con-
gruent requirements can be met by the cooperative system for any of the previous
sets expressed via the properties of the vector of controlled outputs.

Generally, in view of the set of quantities by which requirements are given, the
control in cooperative manipulation can be classified as follows:

• control with the requirements imposed by the driving torques τ ,
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• control with the requirements imposed by the contact forces Fc,

• control with the requirements imposed by the manipulator states q, which is
equivalent to the case when the requirements are imposed on the states at the
contact points Yc,

• control with the requirements imposed by the elasticity forces at contact
points Fec.

However, the main task is the control of the motion of the manipulated object.
For such a task, it is necessary to directly preset six requirements for the state
Y0 ∈ R6×1 or indirectly via the requirement for the coordinates of some other node
of the elastic system Yci ∈ R6×1. The remaining 6m−6 requirements can be preset
for some other elements of the previous sets. Of all the possible cases we will
single out only two:

• Control is imposed directly or indirectly on the manipulated object and the
maintenance of elasticity forces is required, whereby the feedback loops can
be closed

– for one manipulator only on the basis of information about the state of
the quantities,

– for one manipulator on the basis of information about the state of quan-
tities of one of the cooperation participants.

• Control is imposed directly or indirectly on the manipulated object and con-
trol of contact forces is required, whereby, as in the previous case, the feed-
back loops can be closed

– for one manipulator only on the basis of information about the state of
the quantities,

– for one manipulator on the basis of information about the state of quan-
tities of all the cooperation participants.

According to the conditions in the nominal motion, and in view of the requirements
for gripping, cooperative manipulation can be classified as

• Nominal motion whose first phase is characterized by the initial gripping and
the motion of the gripped elastic system is continued with the required con-
tact forces that ensure the coordinated motion of the gripped elastic system.

• Nominal motion in which such change of contact forces is simultaneously re-
quired which, apart from the coordinated motion, will also realize the change
in gripping conditions.
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Each of the mentioned nominal conditions may be solvable with respect to the
states of the MC or the states of any contact point of the manipulated object. In
the previous section we considered the nominal motion in which no change in the
gripping conditions was required.

In view of the function of the leader in the course of cooperative manipulation,
the control can be performed

• without change of the leadership during the motion, or

• with simultaneous change in the leadership during the motion.

By combining the above conditions and tasks, we can obtain a very large num-
ber of tasks that need solving, which can be the subject of future research.

6.3 Choice of Control Tasks in Cooperative Manipulation

In Section 4.6 we modeled the dynamic behavior of a cooperative system consisted
of m non-redundant, rigid, six-DOF manipulators with non-compliant joints, han-
dling a rigid object, whereby the manipulator-object connections are elastic and
the contact is rigid. The elastic interconnections possess the inertia and dissipation
properties. The same model will describe the manipulation of an elastic object by
rigid manipulators if the model can be split into elastically connected parts that
can mimic previously described elastically connected rigid manipulators and rigid
object. For the cooperative system thus defined, in Chapter 5 we adopted such
nominal motion for which, in the first stage of motion, gripping is performed to
the required force, and then the motion of the gripped elastic system is continued
along the prescribed trajectory of the manipulated object MC, or of a contact point
of the leader in cooperation, without requiring additional gripping. Coordinated
motion under nominal conditions was ensured and all quantities were exactly cal-
culated. For the cooperative system thus determined, such control laws should be
selected that will guarantee tracking of the selected nominal quantities in the de-
sired way. For the non-controlled quantities, it is necessary to give an estimate of
their behavior.

It has already been said that for the overall cooperative system, the vector of
driving torques τ ∈ R6m×1 can be adopted as the input with the domain Dτ =
{τ } ∈ R6m. The set of controlled outputs must belong to the space of the same
dimension as the domain of inputs (6m). As the vector of controlled outputs Y u,
for which certain requirements have been predefined, it is possible to choose some
of the following vector types:

• Vector of attitude of parts of the cooperative system
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– Part of the state vector Y = col(Yv, Ys, Y0) = col(Yv, Ys0) =
col(Yc, Y0) ∈ R(6m+6)×1 of the elastic system

Y u = col(Ys1, . . . , Ys(m−1), Y0) = col(Ys, Y0) = Ys0 ∈ R6m×1. (282)

– Part of the state vector Y of the elastic system equal to the position
vector of contact points

Y u = Yc ∈ R6m×1. (283)

– In view of the one-to-one mapping of the internal coordinates q and
position vector of contact points Yc expressed by the relation (172) in
the form Yc = �(q), the choices equivalent to the previous ones are

Y u = col(qs, Y0) ∈ R6m×1, (284)

Y u = q ∈ R6m×1. (285)

• Vector of elasticity forces. Between the vector of elasticity forces Fe =
col(Fev, Fes, Fe0) = col(Fev, Fes0) = col(Fec, Fe0) ∈ R(6m+6)×1 and the
state vector of elastic system Y , there exists the relation (120) given by
Fe(Y ) = K(Y ) · Y ∈ R(6m+6)×1, so that, instead of the part of the state
vector Y of the elastic system, the controlled output can be part of the vector
of elastic forces, that is

– Part of the vector of elasticity forces acting at the contact points of the
followers and manipulated object MC given by

Y u = col(Fes, F0) = Fes0 ∈ R6m×1. (286)

– Part of the vector of elasticity forces equal to the vector of elasticity
forces acting at the contact points

Y u = Fec ∈ R6m×1. (287)

• Vector of contact forces. In principle, the correctness of this choice can
be corroborated in the following way. By solving the differential equa-
tions (115), describing the elastic system dynamics, the solution will be
obtained in the form Y = Y (Fc) ∈ R(6m+6)×1, and having (172) in mind,
the relation (qT , Y T

0 )T = (qT , Y T
0 )T (Fc) ∈ R(6m+6)×1. will be obtained.

By solving the system of differential equations (167) that describe the ma-
nipulator dynamics, we get the solution q = q(τ, Fc) ∈ R6m×1 or, from
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(172), Yc = Yc(τ, Fc) ∈ R6m×1. Elimination of the vector q, i.e. of
the vector Yc, will yield the dependence Fc = Fc(τ, Y0) ∈ R6m×1, which
can be written as a function of the selected input vector τ ∈ R6m×1 as
(F T

c , Y T
0 )T = (F T

c , Y T
0 )T (τ ) ∈ R(6m+6)×1. This means that the response

to the drive τ ∈ R6m×1 is the contact forces Fc ∈ R6m×1 and position of
the manipulated object MC Y0 ∈ R6×1. Thus, we have a total of 6m + 6
quantities. The controlled output can be selected as

– The overall vector of contact forces

Y u = Fc ∈ R6m×1, (288)

whereby it should be borne in mind that in such choice of controlled
output the position of the manipulated object MC in space can be arbi-
trary and, consequently, the position of the whole cooperative system
too.

– Vector of attitude of the manipulated object MC Y0 ∈ R6×1 and part of
the vector of contact forces Fcs = col(Fcs1, . . . , Fcs(m−1)) ∈ R(6(m−1)×1

acting at the contact points of the followers

Y u = col(Y0, Fcs) ∈ R6m×1. (289)

• Part of the position vector of contact points Ȳc, i.e. the corresponding inter-
nal coordinates, q̄, and part of the vector of contact forces F̄c .

Y u = col(Ȳc, F̄c) ∈ R6m×1, (290)

Y u = col(q̄, F̄c) ∈ R6m×1. (291)

In selecting such controlled outputs, care should be taken as to the congru-
ence of the requirements to be fulfilled by the system, and that the dimension
of the space Du

y is dim{Du
y } = 6m, i.e. to select the quantities that are mu-

tually independent. Such a case is possible if the cooperative system can be
decomposed in such a way that the controlled outputs are independent. A
characteristic choice of the vector of controlled output is

Y u = col(Ycv, Fcs) ∈ R6m×1, (292)

Y u = col(qv, Fcs) ∈ R6m×1, (293)

which is structurally analogous to the vector (289), because, instead of the
position of the manipulated object MC Y0, the cooperative system in space
is described in terms of the easily measurable position of one contact point
(of the leader) Ycv or qv .

Cooperative System Control



Above we gave some characteristic cases of choosing the controlled outputs.
The choice of the controlled output implies the selection of external feedback
loops, i.e. the selection of the appropriate sensors for furnishing information about
the controlled outputs. From the point of view of engineering needs, the most suit-
able choice is the internal coordinates q as the output quantities of the actuators,
which already possess sensors to measure them. Manipulators can be used to ma-
nipulate various objects. It is convenient that all the quantities needed for control
are measured by the sensors with which the manipulators are equipped, so that, in
addition to the internal coordinates, it is possible to use as feedback the contact
forces of the manipulator tip and object measured by the sensors placed at the ma-
nipulators tips. For the needs of analysis, at least of a theoretical one, it is necessary
to demonstrate that effective manipulation of the object is possible for the known
current states, so that it is advisable to seek the control law with feedbacks in which
the manipulated object states participate explicitly (as measured quantities).

From the point of view of the analysis, the choices of control laws in cooper-
ative manipulation on the basis of position vectors of the parts of the cooperative
system and vector of elasticity forces are equivalent. The choices of the controlled
output Y u = Yc, Y u = q and Y u = Fec are equivalent, so that it suffices to choose
control laws for one of these cases, e.g. for Y u = q. The choices of controlled
outputs Y u = col(Ys, Y0) = Ys0 and Y u = col(Fes, Fe0) = Fes0 are also equivalent,
so that the choice of control laws can be carried out for Y u = Ys0, only, i.e. along
with (172), for Y u = col(qs, Y0).

Generally, all the above choices can be classified in two groups. One group
consists of the control laws by which requirements are explicitly preset for the
manipulated object MC and contact points of the followers. Controlled inputs are
defined by (282) or (284), (286 ) and (289). To the other group belong the control
laws by which the requirements are preset for the contact points, but without ex-
plicit requirements for the manipulated object MC, and the controlled outputs are
determined by (283) or (285), (287) and (288).

In view of the above, the characteristic control tasks in cooperative manipula-
tion are

• Tracking of the nominal trajectory of one point of the elastic system and
tracking of the nominal trajectories of contact points of the followers, i.e.
the nominal internal coordinates of the followers. Typical variants of such
tracking are:

– Tracking of the nominal trajectory Y 0
0 (t) ∈ R6 of the manipulated

object MC and tracking of the nominal trajectories of contact points
of the followers Y 0

s ∈ R(6m−6), i.e. the nominal internal coordinates
q0

s ∈ R6m−6 of the followers.
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The controlled output of the cooperative system is the 6m-dimensional
vector Y u = col(Ys, Y0), i.e. Y u = col(qs, Y0),

– Tracking of the nominal trajectory of the manipulated object MC with-
out explicit tracking of its trajectory Y 0

0 (t) ∈ R6, but tracking of the
trajectory Y 0

v (t) ∈ R6 of the leader’s contact point and tracking of the
nominal trajectories of contact points of the followers Y 0

s ∈ R(6m−6),
i.e. of the nominal internal coordinates q0

s ∈ R6m−6 of the followers.
This means that direct tracking is performed of the nominal trajectory
of all contact points given by the vector Y 0

c ∈ R6m or by the vector of
internal coordinates q0 ∈ R6m.

The controlled output of the cooperative system is the 6m-dimensional
vector Y u = col(Yv, Ys) = Yc ∈ R6m, i.e. Y u = col(qv, qs) = q ∈
R6m.

The output quantities of the elastic system that are not directly tracked (non-
controlled outputs) are the coordinates of the forces Fc ∈ R6m and position
of one contact point (∈ R6).

• Tracking of the nominal trajectory of one node of the elastic system and
tracking of the nominal contact forces at the contact points of the followers.

Tracking of the nominal trajectory of one node of the elastic system (Y 0
0 (t) ∈

R6 of the manipulated object MC or Y 0
v (t) ∈ R6 of the leader’s contact point)

and tracking of the nominal contact forces F 0
cs ∈ R6m−6 at the contact points

of the followers.

– Tracking of the nominal trajectory Y 0
0 (t) ∈ R6 of the manipulated ob-

ject MC and tracking of the nominal contact forces F 0
cs ∈ R6m−6 at the

contact points of the followers.

The controlled output is the 6m-dimensional vector Y u = col(Fcs, Y0).

– Tracking of the nominal trajectory of the manipulated object MC with-
out explicit tracking of Y 0

0 (t), but with tracking the nominal trajectory
of one (leader’s) contact point Y 0

v (t) ∈ R6 or q0
v ∈ R6 and the nominal

contact forces F 0
cs ∈ R6m−6 at the other contact points.

The controlled output of the cooperative system is the 6m-dimensional
vector Y u = col(Fcs, Yv), i.e. Y u = col(Fcs, qv).

The output quantities of the elastic system that are not directly tracked (non-
controlled outputs) are the positions of m nodes (when tracking Y 0

0 , these are
the positions of the contact points Yc ∈ R6m, whereas in tracking Y 0

v these
are positions of the followers’ contact points and the manipulated object MC,
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i.e. the vector Ys0 = col(Ys, Y0) ∈ R6m or the vector col(qs, Y0) ∈ R6m) and
the contact force Fcv ∈ R6 at the leader’s contact point.

In this chapter, we will describe the synthesis of control laws for direct tracking
of the nominal trajectory of the manipulated object.

6.4 Control Laws

The control laws are synthesized only for the directly tracked nominal trajectories
of the manipulated object MC.

Before selecting the control laws, let us repeat in short the story about the
mathematical model of cooperative manipulation with the emphasis on the proper-
ties that will be used later on.

6.4.1 Mathematical model

As we deal with the general motion, we shall consider the model given in the ab-
solute coordinates. For the model in the coordinates of deviations of the immobile
unloaded state of the elastic system, it is only necessary to introduce y instead of
Y . The cooperative manipulation model for which the control laws will be selected
was presented in Section 4.6 by Equations (113) or (115), (167) and (172). The
combined form of the mathematical model is given by Equations (181) or (211).

Equation (115) represents the dynamic model of the elastic system that, under
the action of the external forces Fc, performs the general motion. The model is of
the form

Wca(Yc)Ÿc + wca(Y, Ẏ ) = Fc,

W0a(Y0)Ÿ0 + w0a(Y, Ẏ ) = 0.

The model of the dynamics of manipulators is given by (167) in the form

H(q)q̈ + h(q, q̇) = τ + J T fc,

whereas the kinematic relations between the manipulator’s internal and external
coordinates are given by (172) in the form

Yc = �(q) ∈ R6m×1,

Ẏc = J (q)q̇ ∈ R6m×1,

Ÿc = J̇ (q)q̇ + J (q)q̈ ∈ R6m×1.
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By introducing the kinematic relations into the first equation, we obtain the de-
scription of the elastic system dynamics in terms of the internal coordinates q in
the form

Wca(�(q))(J̇ (q)q̇ + J (q)q̈) + wca(�(q), J (q)q̇, Y0, Ẏ0) = Fc,

W0a(Y0)Ÿ0 + w0a(�(q), J (q)q̇, Y0, Ẏ0) = 0. (294)

By combining all the above equations, and taking that Fc = −fc, we obtain the de-
scription of the cooperative system dynamics (181). Equations (181), together with
the rearranged first of the above equations given in short form, represent the start-
ing equations that describe the cooperative system’s behavior, needed to introduce
the control laws into the cooperative manipulation. Their form is

N(q)q̈ + n(q, q̇, Y0, Ẏ0) = τ,

W(Y0)Ÿ0 + w(q, q̇, Y0, Ẏ0) = 0,

P (q)q̈ + p(q, q̇, Y0, Ẏ0) = Fc. (295)

The first two equations of (295) are the repeated equations of the cooperative sys-
tem’s behavior (181), whereas the third equation determines the dependence of the
contact forces on the internal coordinates.

Using the convention for the leader and followers, defined in Section 4.12,
Equation (181) (i.e. (295)) was written in the form (211). The result is the mathe-
matical model of the cooperative system dynamics in the form

Nv(qv)q̈v + nv(q, q̇, Y0, Ẏ0) = τv,

Ns(qs)q̈s + ns(q, q̇, Y0, Ẏ0) = τs,

W(Y0)Ÿ0 + w(q, q̇, Y0, Ẏ0) = 0,

Pv(qv)q̈v + pv(q, q̇, Y0, Ẏ0) = Fcv,

Ps(qs)q̈s + ps(q, q̇, Y0, Ẏ0) = Fcs, (296)

which represents the basic form of the model for introducing control into the co-
operative system.

6.4.2 Illustration of the application of the input calculation method

The method of input calculation is a procedure of synthesizing the system input by
solving a system of differential equations that describe the system’s mathematical
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model and the control law error given in advance.
The procedure can be summarized as follows. For the system considered, the

mathematical model is composed in the form (100), (100), (113), (115), (181),
(183), (295) or (296). The quantities to be directly tracked are selected. The devia-
tions of the directly controlled quantities from their nominal values are introduced
and their higher derivatives are determined. The law of the behavior of deviations
of the directly controlled quantities from their nominal values of the closed-loop
system is selected in advance and given by the differential equation. This equation
is solved with respect to the highest derivatives of deviations as a function of the
lower derivatives of deviations as independent variables. The calculated highest
derivatives are introduced into the differentiated equations and values of the high-
est derivatives of the directly tracked quantities are calculated. The values of the
latter should be possessed by the controlled object in order that the deviation of
the actual trajectory from its nominal value would satisfy the required differential
equations of deviations. The calculated derivatives of the directly tracked quanti-
ties are introduced into the mathematical model and the inputs to be introduced are
calculated.

The application of the input calculation method will be illustrated in the ex-
ample of simple mechanical systems in which the number of inputs is equal to the
number of equations of motion. In the equations of motion of mechanical systems,
the highest derivative is the second one (acceleration), so that the simplest way is
to choose that the deviations satisfy second-order differential equations. As an ex-
ample, we consider a mechanical object with no stabilization loops (τob(t) = τ(t),
Figure 42) that can be described by the following second-order differential equa-
tion:

M(y)ÿ + m(y, ẏ) = J (y)τ, y ∈ R1. (297)

Let the nominal y0 ∈ R1, ẏ0 ∈ R1, ÿ0 ∈ R1, τ 0 ∈ R1 to be described by the
object be known. It is required that the object (297) follows the known nominal
in an asymptotically stable manner. This will be realized if the deviations from
the nominal trajectory converge to zero. By analogy to a linear regulation loop,
it can be required that the deviations from the nominal trajectories in the closed-
loop controlled system satisfy the differential equations with exactly determined
properties in respect of stability of the indicators of the quality of behavior of their
solution. One possible choice of differential equation is

�ÿ + 2ζω�ẏ + ω2�y = 0. (298)

By adjusting the damping coefficient ζ and frequency ω, the stability properties
and quality of nominal trajectory tracking, i.e. the properties of the closed-loop
system for which the desired input is a zero deviation (Figure 42), are adjusted.
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Figure 42. Global structure of the closed loop system

From (298) we determine the second derivative of deviations

�ÿ = −2ζω�ẏ − ω2�y, (299)

and since �ÿ = ÿ0 − ÿ, �ẏ = ẏ0 − ẏ and �y = y0 − y, the second derivative to
be possessed by the real object is

ÿ = ÿ0 − �ÿ = ÿ0 + 2ζω(ẏ0 − ẏ) + ω2(y0 − y). (300)

By introducing the necessary second derivative ÿ into the motion equation
(297), we calculate the input to the object to realize that derivative

τ = J −1(y){M(y)[ÿ0 + 2ζω(ẏ0 − ẏ) + ω2(y0 − y)] + m(y, ẏ)}. (301)

The calculated input (301) represents the guiding law to be introduced into the
real control object model in order to realize the asymptotically stable tracking of
the nominal trajectory. Obviously, after introducing the calculated control law into
the object model (297), the prescribed requirement (298) for the behavior of the
deviation will be identically satisfied.

The application of the method of input calculation onto the objects having the
number of inputs that is smaller than the number of motion equations, is more com-
plex. With a cooperative system, the number of inputs (physical drives – driving
torques) is smaller than the number of equations of motion.
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6.4.3 Control laws for tracking the nominal trajectory of the manipulated
object MC and nominal trajectories of contact points of the followers

In this case of tracking, the controlled input is the vector Y u = col(qs, Y0). It
is required that the controlled cooperative system is tracking the selected nominal
trajectory Y 0(t) = col(q0

s (t), Y
0
0 (t)) with a predefined quality, determined by the

procedures given in Chapter 5. The output quantities of the cooperative system that
are not directly tracked (non-controlled outputs) are the contact forces Fc ∈ R6m

and the position of the leader’s contact point, Yv ∈ R6. The character of deviation
of non-controlled quantities in the system from their nominal values should be
examined separately.

The procedure to synthesize the driving moments ensuring the error of con-
trolled outputs has the properties determined in advance consists of the following.

Let
(k)
ηs (t) =

(k)

q0
s (t)− (k)

qs (t), k = 0, 1, 2, . . . ,

�
(k)

Y0 =
(k)

Y 0
0 (t)− (k)

Y0 (t), k = 0, 1, 2, . . . , (302)

be the vectors of deviations and vectors of derivatives of deviations of the actual
controlled trajectory from the nominal trajectory. If ηs(t) and �Y0 are the solutions
of the homogeneous differential equations

χs(
(l)
ηs,

(l−1)
ηs , . . . ,

(0)
ηs) = 0,

(0)
ηs= ηs,

χ0(�
(k)

Y0,�
(k−1)

Y0 , . . . ,�
(0)

Y0) = 0, �
(0)

Y0= �Y0, (303)

obtained as the response to the initial states of deviations ηs(t0) = q0
s (t0) − qs(t0)

and �Y0(t0) = Y 0
0 (t0) − Y0(t0), then a relationship can be established between

the character of change of deviations ηs(t) and realized deviations �Y0 from the
nominal trajectories and the characteristics of the previous differential equations.
It is required that the deviations from the nominal trajectories in the controlled
closed-loop system satisfy differential equations with exactly determined proper-
ties in respect of the stability and indicators of the quality of the behavior of their
solution. By solving the previous differential equations with respect to the highest
derivative, we obtain the functional relationships

(l)
ηs =

(l)

q0
s (t)− (l)

qs (t) = Qs(
(l−1)
ηs ,

(l−2)
ηs , . . . , ηs)),

�
(k)

Y0 =
(k)

Y 0
0 (t)− (k)

Y0 (t) = Q0(�
(k−1)

Y0 ,�
(k−2)

Y0 , . . . ,�Y0), (304)
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between the highest derivatives of deviations on their lower derivatives as indepen-
dent variables. The calculation gives

(l)
qs =

(l)

q0
s (t) − Qs(

(l−1)
ηs ,

(l−2)
ηs , . . . , ηs),

(k)

Y0 (t) =
(k)

Y 0
0 (t) − Q0(�

(k−1)

Y0 ,�
(k−2)

Y0 , . . . ,�Y0), (305)

the values of highest derivatives
(l)
qs (t) and

(k)

Y0 (t) of the controlled quantities to be
possessed by the controlled object in order that the deviation of the real trajectory
from its nominal value would satisfy the sought differential equations. Based on the
requirement for the realization of these derivatives, after introducing the calculated
derivatives into (296), the driving torques τ are calculated. The proposed procedure
represents the expansion into cooperative manipulation of the procedure based on
the requirement that the deviations from the nominals satisfy linear differential
equations, which are usually found in the open literature. This expansion has been
given in [35] for a manipulator in contact with dynamic environment.

In this case of tracking, the calculated value
(k)

Y0 (t) should be introduced into
the third equation of (296). If we choose, for example k = 2, we will obtain the
dependence

W(Y0)(Ÿ
0
0 − Q0(�Ẏ0,�Y0)) + w(q, q̇, Y0, Ẏ0) = 0 (306)

or, written differently,

ϕ0(Ÿ
0
0 , Ẏ 0

0 , Y 0
0 , q̇, q, Ẏ0, Y0) = 0 (307)

which, for the rest of the controlled cooperative system, represents a non-
holonomic relation. This relation defines six conditions and the same number of
conditions is given to the vector of possible accelerations q̈, which has 6m compo-
nents. These conditions may be associated to any component q̈i and, in this case
of tracking, it has been chosen that these are the first six components, i.e. the vec-
tor of the leader’s acceleration. In order to obtain all possible accelerations of the
leader, the above expression for ϕ0 should be differentiated. The result will be the

dependence on
...

Y 0
0 that should be simultaneously determined in the course of con-

trol on the basis of the known (prescribed) Ÿ 0
0 . Because of that, and for an easier

proof of the stability of the closed-loop system, it is more convenient to differen-
tiate the third equation of (296) prior to replacing the highest derivatives, and set
the requirements via the third derivative of deviations (k = 3) of the real trajectory
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from the nominal trajectory of the manipulated object MC. By differentiating the
third equation of (296), we obtain

d

dt
W(Y0)Ÿ0 + d

dt
w(q, q̇, Y0, Ẏ0)

= Ẇ (Y0)Ÿ0 + W(Y0)
...

Y0 +∂w

∂q
q̇ + ∂w

∂q̇
q̈ + ∂w

∂Y0
Ẏ0 + ∂w

∂Ẏ0
Ÿ0 = 0.

(308)

Using the sign convention for the leader and followers, we obtain

∂w

∂q̇
q̈ = ∂wv

∂q̇v

q̈v + ∂ws

∂q̇s

q̈s ,
∂wv

∂q̇v

∈ R6×6,
∂ws

∂q̇s

∈ R6×(6m−6). (309)

If the matrix ∂wv/∂q̇v is non-singular, solving the last equation with respect to q̈v

gives the possible accelerations of the leader as

q̈v = −α(
...

Y0, Ÿ0, Ẏ0, Y0, q̇, q)−β(Ẏ0, Y0, q̇, q)·q̈s ∈ R6×1,

∣∣∣∣∂wv

∂q̇v

∣∣∣∣ 	= 0, (310)

where

α(
...

Y0, Ÿ0, Ẏ0, Y0, q̇, q) =
(

∂wv

∂q̇v

)−1

×
(

Ẇ (Y0)Ÿ0 + W(Y0)
...

Y0 +∂w

∂q
q̇ + ∂w

∂Y0
Ẏ0 + ∂w

∂Ẏ0
Ÿ0

)
∈ R6×1,

β(Ẏ0, Y0, q̇, q) =
(

∂wv

∂q̇v

)−1
∂w

∂q̇s

∈ R6×(6m−6). (311)

The matrix ∂wv/∂q̇v is singular for the conditions of the elastic system passing
through the unloaded state (1 − ‖ρij0‖/‖ρija‖ = 0). It is assumed that the object,
in transferring, is gripped (‖ρij0‖ 	= ‖ρija‖), otherwise it would not be held. If
even then the matrix ∂wv/∂q̇v is singular this means that a wrong choice of the
leader was made, so that it has to be changed because the object dynamics has no
direct influence on the acceleration of the manipulator selected as leader.

Let the differential equation

�
...

Y0= Q0(�Ÿ0,�Ẏ0,�Y0), ⇒ ...

Y0=
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0) (312)

have only the trivial asymptotically stable equilibrium state �Y0 = 0 (i.e. . . Y 0
0 =

Y0). Let this differential equation be chosen in the way that the solution obtained as
the response to the initial deviation, �Y0(t0) = Y 0

0 (t0) − Y0(t0), is asymptotically
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stable with the desired indicators of the quality of dynamic behavior. Replacement
of the calculated third derivative

...

Y0 (t) from (312) to (310) gives the possible
accelerations of the leader as a function of the system state, preset requirement,
and the followers’ acceleration q̈s as

q̈v = −α(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)−β(Ẏ0, Y0, q̇, q) · q̈s . (313)

Introducing this acceleration into the first and fourth equations of (296) gives the
driving torques and contact force of the leader, also as a function of the followers’
acceleration q̈s

τv = Nv(qv)[−α(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

− β(Ẏ0, Y0, q̇, q) · q̈s] + nv(q, q̇, Y0, Ẏ0)

= τv(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q, q̇, q̈s),

Fcv = Pv(qv)[−α(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

− β(Ẏ0, Y0, q̇, q) · q̈s] + pv(q, q̇, Y0, Ẏ0)

= Fcv(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q, q̇, q̈s). (314)

From the above, and in view of (296), it comes out that all driving torques and
contact forces depend on the followers’ acceleration q̈s .

Let the differential equation

η̈s(t) = Qs(η̇s, ηs) ⇒ q̈s(t) = q̈0
s (t) − Qs(η̇s, ηs) (315)

have only the trivial asymptotically stable equilibrium state ηs(t) = 0 (i.e. q0
s (t0) =

qs(t0)). Let this differential equation be chosen in a way that the solution obtained
as the response to the initial deviation, ηs(t0) = q0

s (t0) − qs(t0), is asymptotically
stable with the desired indicators of quality of the dynamic behavior.

By introducing the calculated acceleration of the followers from (315) into
(314) and into the second equation of (296), we can calculate the driving torques

τv = Nv(qv)[−α(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

− β(Ẏ0, Y0, q̇, q) · (q̈0
s (t) − Qs(η̇s, ηs))] + nv(q, q̇, Y0, Ẏ0)

= τv(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q, q̇, q̈0

s − Qs(η̇s, ηs))

= τv(
...

Y 0
0 , Ÿ0, Ẏ0, Y0, q, q̇, q0

s , q̇
0
s , q̈

0
s ),
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τs = Ns(qs)(q̈
0
s (t) − Qs(η̇s, ηs)) + ns(q, q̇, Y0, Ẏ0)

= τs(Ẏ0, Y0, q, q̇, q̈0
s − Qs(η̇s, ηs)) = τs(Ẏ0, Y0, q, q̇, q0

s , q̇
0
s , q̈

0
s ), (316)

that should be introduced at the joints of the manipulators in order to realize track-
ing of the controlled output Y u0 = col(Y 0

0 , q0
s ) with the quality given indirectly by

(312) and (315). The introduction of the driving torques (316) allows the realiza-
tion of the contact forces

Fcv = Pv(qv)[−α(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

− β(Ẏ0, Y0, q̇, q) · (q̈0
s (t) − Qs(η̇s, ηs))] + pv(q, q̇, Y0, Ẏ0)

= Fcv(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q, q̇, q̈0

s − Qs(η̇s, ηs))

= Fcv(
...

Y 0
0 , Ÿ0, Ẏ0, Y0, q, q̇, q0

s , q̇
0
s , q̈

0
s ),

Fcs = Ps(qs)(q̈
0
s (t) − Qs(η̇s, ηs)) + ps(q, q̇, Y0, Ẏ0)

= Fcs(Ẏ0, Y0, q, q̇, q̈0
s − Qs(η̇s, ηs))

= Fcs(Ẏ0, Y0, q, q̇, q0
s , q̇

0
s , q̈

0
s ). (317)

To form the driving torques, it is necessary to have information about all instanta-
neous kinematic quantities Ÿ0, Ẏ0, Y0 of the manipulated object MC, information
about all internal coordinates q and their derivatives q̇, and information about the

nominal outputs
...

Y 0
0 , Ÿ 0

0 , Ẏ 0
0 , Y 0

0 , q0
s , q̇0

s and q̈0
s .

Let us introduce the driving torques (316) as the input to the model of coop-
erative manipulation (296) and let us prove that the preset requirements will be
realized.

Nv(qv)q̈v + nv(q, q̇, Y0, Ẏ0)

= Nv(qv)[−α(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

− β(Ẏ0, Y0, q̇, q) · (q̈0
s (t) − Qs(η̇s, ηs))] + nv(q, q̇, Y0, Ẏ0),

Ns(qs)q̈s + ns(q, q̇, Y0, Ẏ0) = Ns(qs)(q̈
0
s (t) − Qs(η̇s, ηs)) + ns(q, q̇, Y0, Ẏ0),

W(Y0)Ÿ0 + w(q, q̇, Y0, Ẏ0) = 0, (318)

i.e.

Nv(qv)[q̈v + α(
...

Y 0
0 −Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

+ β(Ẏ0, Y0, q̇, q) · (q̈0
s (t) − Qs(η̇s, ηs))] = 0,
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Ns(qs)[q̈0
s (t) − q̈s − Qs(η̇s, ηs)] = 0,

W(Y0)Ÿ0 + w(q, q̇, Y0, Ẏ0) = 0. (319)

Because of the non-singularity of the matrix Ns(qs), it follows from the second
equation that the driving torque τs introduced from (316) realizes

q̈s(t) = q̈0
s (t) − Qs(η̇s, ηs) ⇒ η̈s(t) = Qs(η̇s, ηs), (320)

which is identical to the preset requirement (315). As the matrix Nv(qv) is also
non-singular, then

q̈v + α(
...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

+ β(Ẏ0, Y0, q̇, q) · (q̈0
s (t) − Qs(η̇s, ηs)) = 0. (321)

The leader’s acceleration q̈v must satisfy (310), so that the introduction of that ac-
celeration into the last expression, along with the relation for the realized followers’
acceleration, after rearrangement gives

α(
...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q) − α(

...

Y0, Ÿ0, Ẏ0, Y0, q̇, q) = 0.

(322)
Replacement of the values for α(

...

Y0, Ÿ0, Ẏ0, Y0, q̇, q) according to (311) and re-
arrangement gives

(
∂wv

∂q̇v

)−1

W(Y0) · [ ...

Y
0
0−

...

Y 0 − Q0(�Ÿ0,�Ẏ0,�Y0)] = 0. (323)

As the matrices ∂wv/∂q̇v and W(Y0) are non-singular, it finally comes out that the
driving torques introduced realize

...

Y 0 = ...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0) ⇒ �

...

Y0= Q0(�Ÿ0,�Ẏ0,�Y0), (324)

which is just the starting requirement (312).
It has been shown that the introduction of control laws, represented by the re-

lations for the synthesized driving torques (316), ensure the controlled cooperative
system follows the nominal controlled outputs Y u0 = col(Y 0

0 , q0
s ) in a stable man-

ner and with the prescribed quality requirements, given indirectly by (312) and
(315). As the dependence of deviation of the third and second derivatives �

...

Y0

and η̈s = q̈0
s − q̈s of the controlled outputs, adopted through the control laws, is

realized, the deviation of the lower derivatives and the realized lower derivative of
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the controlled output Y0 will be

�Ÿ0 =
t∫

t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt

⇒ Ÿ0 = Ÿ 0
0 −

t∫
t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt,

�Ẏ0 =
t∫

t0

t∫
t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt dt

⇒ Ẏ0 = Ẏ 0
0 −

t∫
t0

t∫
t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt dt,

�Y0 =
t∫

t0

t∫
t0

t∫
t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt dt dt

⇒ Y0 = Y 0
0 −

t∫
t0

t∫
t0

t∫
t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt dt dt, (325)

whereas the deviation of the lower derivatives and the realized lower derivative of
the controlled output qs will be

η̇s =
t∫

t0

Qs(η̇s, ηs) dt ⇒ q̇s = q̇0
s −

t∫
t0

Qs(η̇s, ηs) dt,

ηs =
t∫

t0

t∫
t0

Qs(η̇s, ηs) dt dt ⇒ qs = q0
s −

t∫
t0

t∫
t0

Qs(η̇s, ηs) dt dt. (326)

The controlled outputs are tracked in an asymptotically stable manner, which im-
plies that, after the initial deviation, they converge in time to their nominal values

lim
t→∞ Ÿ0 = lim

t→∞

⎡
⎣Ÿ 0

0 −
t∫

t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt

⎤
⎦ = Ÿ 0

0 ,
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lim
t→∞ Ẏ0 = lim

t→∞

⎡
⎣Ẏ 0

0 −
t∫

t0

t∫
t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt dt

⎤
⎦ = Ẏ 0

0 ,

lim
t→∞ Y0 = lim

t→∞

⎡
⎣Y 0

0 −
t∫

t0

t∫
t0

t∫
t0

Q0(�Ÿ0,�Ẏ0,�Y0) dt dt dt

⎤
⎦ = Y 0

0 ,

lim
t→∞ q̇s = lim

t→∞

⎡
⎣q̇0

s −
t∫

t0

Qs(η̇s, ηs) dt

⎤
⎦ = q̇0

s ,

lim
t→∞ qs = lim

t→∞

⎡
⎣q0

s −
t∫

t0

t∫
t0

Qs(η̇s, ηs) dt dt

⎤
⎦ = q0

s . (327)

Because of the existence of the functional dependence Yc = �(q) all the expres-
sions related to the internal coordinates q, after the coordinates transformation,
also hold for the coordinates of contact points Yc, which will be used to assess the
behavior of the non-controlled quantities qv , Fcv and Fcs and calculated driving
torques τ .

The conclusion about the behavior of the non-controlled quantities will be de-
rived on the basis of the analysis of the physical laws in the elastic system, at the
moment when the control-realized asymptotic tracking of the controlled quanti-
ties Y0 and qs takes place. The goal is to estimate or determine the deviations of
the non-controlled quantities from their nominal values on the basis of considering
the physical laws in the elastic system. The solution should answer the follow-
ing question: Starting from the known deviations of the controlled quantities from
their nominals, is it possible to exactly determine the deviations of non-controlled
quantities from their nominal values, and what will be their character?

The analysis of the behavior of non-controlled quantities will be performed
using the physical properties of the mobile elastic system.

6.4.4 Behavior of the non-controlled quantities in tracking the manipulated
object MC and nominal trajectories of contact points of the followers

To derive conclusions about the behavior of non-controlled quantities, it is possible
to apply the same reasoning as in defining the coordinated nominal motion, which
will be illustrated first with a simple example.

To illustrate the way of reasoning we will first analyze the motion in the vertical
plane of a simple elastic structure (elastic system), composed of two rigid bodies
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Figure 43. Motion in the plane of the loaded elastic system

with the MCs at the nodes, interconnected by the non-inertial elastic insertions
(Figure 43).

Let some external load Fc = Fc(t) act at one of the nodes. Let us consider
what happens at an arbitrary moment t . Let the nominal trajectories of nodes Y 0

0 =
Y 0

0 (t), Y 0
c = Y 0

c (t) and nominal contact forces F 0
c = F 0

c (t) be determined in
advance. For legibility’s sake, the explanation will be given without mentioning
time dependence, i.e. by assuming that all the quantities refer to the instant t . In
the motion, it is not known where the elastic structure of the unloaded state is. Let
its position be determined by the coordinates Y k

0 and Y k
c . If the nodes move along

the nominal trajectories, the unloaded state displacements will be yk0
0 and yk0

c . If
the trajectories of the nodes deviate from the nominal trajectories by �Y0 and �Yc,
the total displacements of the nodes from the mobile unloaded state will be yk

0 and
yk

c . Hence, the kinematic relations

yk
0 = Y0 − Y k

0 , yk
c = Yc − Y k

c ,

yk0
0 = Y 0

0 − Y k
0 , yk0

c = Y 0
c − Y k

c ,

�Y0 = Y 0
0 − Y0 = yk0

0 − yk
0 , �Yc = Y 0

c − Yc = yk0
c − yk

c (328)

will hold. A consequence of these displacements is the appearance of the elastic
forces acting at the elastic structure nodes. In the real motion, these forces are
Fe = col(Fe0, Fec), and in the nominal motion, they are F 0

e = col(F 0
e0, F

0
ec). The
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elasticity properties are preserved irrespective of the character and origin of the
forces acting at the elastic structure nodes. Hence, if certain masses exist at the
nodes and there act some external forces, and if the non-inertial elastic connection
has damping properties, then, according to (186) to (195), the elastic forces Fe

and F 0
e balance the resultant of the dynamic F #

d∗, gravitational G∗ and contact
F #

c∗, ∗ = 0, c, # = −, 0 forces. To make the picture more intelligible, damping
properties will be omitted from further discussions, so that the dynamic forces
at one point of the elastic structure will depend only on the kinematic quantities
describing the state of this node. For the domain of a linear relationship between
the stress and dilatation for the unperturbed (nominal) and perturbed motions the
following relations hold:

F 0
e =

(
F 0

ec

F 0
e0

)

=
(

F 0
dc + Gc + F 0

c

F 0
d0 + G0

)
=
(

Ak bk

ck dk

)
·
(

yk0
c

yk0
0

)
∈ R6×1,

Fe =
(

Fec

Fe0

)

=
(

Fdc + Gc + Fc

Fd0 + G0

)
=
(

Ak bk

ck dk

)
·
(

yk
c

yk
0

)
∈ R6×1, (329)

where Ak ∈ R3×3, bk ∈ R3×3, ck ∈ R3×3, dk ∈ R3×3 are some constant submatri-
ces of the constant stiffness matrix Kk. If the position of the mobile unloaded state
0 is known and if the known stiffness matrix K has been determined for the immo-
bile unloaded state 0, then, according to (245), the stiffness matrix Kk for the mo-
ment t can be obtained from the expression Kk = AT

r (Ak
i − Ai0)KAr(A

k
i − Ai0).

The matrix Ar(A
k
i −Ai0) is defined by the expression (150) for the change of orien-

tation a(t) = Ak
i (t)−Ai0, which is determined by the difference of the orientation

Ak
i (t) of the mobile unloaded state 0 at the moment t and the orientation Ai0 of the

immobile unloaded state 0. Although the position of the mobile unloaded state 0 is
not known and, consequently, neither is the orientation Ak

i (t) of some of its nodes,
it is essential in further inference that, for each moment t , there exists a constant
matrix Kk .

Subtracting the second equation from the first one gives

�Fe = F 0
e − Fe =

(
�F 0

ec

�F 0
e0

)

=
(

�Fdc + �Fc

�Fd0

)
=
(

Ak bk

ck dk

)
·
(

yk0
c − yk

c

yk0
0 − yk

0

)
∈ R6×1, (330)
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where Fd∗ = F 0
d∗ − �Fd∗, ∗ = c, 0 and Fc = F 0

c − �Fc are the deviations of
dynamic and contact forces from their nominal values. Having in mind (328), the
last equation can be formulated with respect to the deviations from the nominal
trajectory by the expression(

�Fdc + �Fc

�Fd0

)
=
(

Ak bk

ck dk

)
·
(

�Yc

�Y0

)
∈ R6×1 (331)

or, in scalar form,

�Fdc + �Fc = Ak · �Yc + bk · �Y0,

�Fd0 = ck · �Yc + dk · �Y0. (332)

Equations (332) describe the additional load of the elastic structure, but they
can also be treated as the equilibrium equations of a fictitious space grid loaded at
the nodes by the forces �Fdc+�Fc and �Fd0 that produce the node displacements
�Yc i �Y0. Let us adopt a point with the coordinates Y0 as the support of the
fictitious space grid. In that case, the displacement �Y0 determines the support
displacement, whereas �Fd0 determines the support reaction.

If the trajectories Y 0
0 and Y0 are known (i.e. the character of their displacement

�Y0 = Y 0
0 − Y0), then it is possible to explicitly determine the character of the

forces F 0
d0, Fd0, �Fd0. From the second equation of (332), we can determine the

displacement �Yc of the other node that must be realized in order that the support
displacement �Y0 would produce the support reaction �Fd0. For the known Yc

and �Yc, the values of Y 0
c are determined and, on the basis of them, F 0

dc, Fdc and
�Fdc, so that from the first equation of (332), it is easy to determine �Fc. Hence,
on the basis of the known �Y0, it is possible to exactly determine �Yc, and on the
basis of this, also �Fc.

On the basis of the considered displacements from the unknown mobile un-
loaded state, it is possible to form, for each moment, the equations of the fictitious
space grid at the nodes of which act the deviations of dynamic and contact forces
from their nominal values, causing displacements equal to the displacement of the
elastic system nodes from the nominal trajectories. To derive conclusions about
what is possible to calculate, one can rely upon the methodology used in statics.

For the elastic system, on the basis of Equations (247), from which damping
forces have been omitted, for the nominal conditions at the instant t and using the
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sign conventions (206), (209), (203) and (164), we get the relations

F 0
dv + Gv + F 0

cv = uk
vY

0
v + uk

sY
0
s + uk

0Y
0
0 ,

F 0
ds + Gs + F 0

cs = Ak
vY

0
v + Ak

sY
0
s + Ak

0Y
0
0 ,

F 0
d0 + G0 = ck

vY
0
v + ck

s Y
0
s + ck

0Y
0
0 , (333)

where the superscript ‘0’ denotes the nominal quantities and where F 0
d∗ =

−W∗(Y 0∗ )Ÿ 0∗ − Fb∗(Y 0∗ , Ẏ 0∗ ), ∗ = v, s, 0.
For the perturbed motion of the elastic system, it holds that

Fdv + Gv + Fcv = uk
vYv + uk

s Ys + uk
0Y0,

Fds + Gs + Fcs = Ak
vYv + Ak

sYs + Ak
0Y0,

Fd0 + G0 = ck
vYv + ck

s Ys + ck
0Y0, (334)

where Fd∗ = −W∗(Y∗)Ÿ∗ − Fb∗(Y∗, Ẏ∗), ∗ = v, s, 0.
Subtracting (334) from (333) gives the equations

�Fdv + �Fcv = uk
v�Yv + uk

s�Ys + uk
0�Y0,

�Fds + �Fcs = Ak
v�Yv + Ak

s�Ys + Ak
0�Y0,

�Fd0 = ck
v�Yv + ck

s �Ys + ck
0�Y0, (335)

that describe equilibrium of the fictitious space grid loaded at the nodes by the
forces �Fdv +�Fcv , �Fds +�Fcs and �Fd0 that produce the node displacements
�Yv, �Ys and �Y0.

Bearing in mind that the physical features of the elastic system impose the
dependence (335), conclusion should be derived as to the behavior of the displace-
ments from the nominal quantities that are not directly controlled, i.e. the contact
forces Fc ∈ R6m and position of the leader’s contact points, Yv ∈ R6.

In the preceding section, the control laws were chosen for the 6m-dimensional
vector of controlled outputs Y u(t) = col(qs(t), Y0(t)). For that choice of control
laws, the vector of finite nominal positions of the nodes Y 0

s0 = col(Y 0
s (t), Y 0

0 (t))

and vectors of its derivatives are known. In the course of motion, the vector of the
realized positions of the nodes Ys0 = col(Ys(t), Y0(t)) and vectors of its derivatives
are also known. On the basis of them, �Fds0 = col (�Fds, �Fd0), so that the vector
�Fds0 can be considered as a known quantity.
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The control laws synthesized in the preceding section ensure the vector of in-
crements �Ys0 = col(�Ys,�Y0) and its derivatives have an exponentially de-
scending character. Because of the character of the change of �Ys0 and its deriva-
tives, the vector �Fds0 also has an exponentially descending character, converging
to a zero value.

For the non-singular matrix ck
v , the value �Yv is calculated from the last equa-

tion of (335). Because of a linear dependence on the quantities �Fd0, �Ys and
�Y0, the deviation �Yv will also have an exponentially descending character, con-
verging to zero. Because of that, the non-controlled output quantity Yv will asymp-
totically converge to the nominal trajectory of the leader’s contact point Y 0

v . By an
analogous procedure, on the basis of the second equation of (335), it can be con-
cluded that the increments of the contact forces of the followers �Fcs have also an
exponentially descending character, converging to the zero values, i.e. the contact
forces of the followers converge asymptotically to their nominal values F 0

cs .
Thus, we have proved the asymptotic tracking of all the non-controlled quan-

tities of the elastic system in the case of tracking the nominal trajectories of the
manipulated object MC and nominal trajectories of the followers’ contact points.
Exactly the same conclusion could be derived if the trajectories of the other m

nodes were selected as nominals, e.g. the nominal trajectories of the contact points
Y 0

c = col(Y 0
v (t), Y 0

s (t)), only, when selecting the vector of controlled outputs
Y u = q.

Estimation of the driving torques constraints. Constraints on the driving
torques can be estimated by norming some expression by an expression of the
cooperative system dynamics in which they are explicitly contained (316), (295),
(296), or by norming the expression for the description of the manipulator dynam-
ics (167). The simplest way is to norm (167)

‖τ‖ ≤ ‖H(q)‖‖q̈‖ + ‖h(q, q̇)‖ + ‖J T (q)‖‖fc‖.
Since, in the course of time, after the initial deviation, q0

s is realized and since qv

and fc = −Fc = −col(Fv, Fs) are constrained, then for the constrained arguments,
all the expressions on the right-hand side are constrained so that the driving torques
are also constrained.

Let us conclude that the introduction of the control laws defined by the expres-
sions (316) for the driving torques that are to be realized at the manipulators’ joints
ensures tracking of the nominal controlled outputs Y u = col(Y 0

0 , q0
s ) in the required

way, indirectly given by (312) and (315), whereby the non-controlled quantities
(kinematic quantities of the leader, contact forces and driving torques) will not be
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unconstrained after the transient process caused by the initial deviation of the con-
trolled outputs from their nominal values, but they will asymptotically converge to
their nominal values.

6.4.5 Control laws to track the nominal trajectory of the manipulated object
MC and nominal contact forces of the followers

In this case of tracking, the controlled output is the vector Y u = col(Fcs, Y0) ∈
R6m, composed of the nominal contact forces of the followers F 0

cs ∈ R6m−6 and the
nominal trajectory Y 0

0 (t) ∈ R6 of the manipulated object MC. The output quantities
of the cooperative system that are not directly tracked (non-controlled outputs) are
the positions of m contact points Yc ∈ R6m and the contact force Fcv ∈ R6 at the
leader’s contact point.

The task of the control law synthesis is to determine the driving torques that
are to be introduced at the manipulators’ joints in order that the cooperative system
would follow the output Y u = col(Fcs, Y0) with the indicators of the quality of
dynamic behavior given in advance. The behavior of the deviations of the quan-
tities that are not directly tracked from their nominal values should be estimated
separately.

Let the requirement for the character of tracking the manipulated object MC
be given by the relation (312). Then, on the basis of (310), we obtain the depen-
dence (314) for the driving torques τv of the leader and the contact force Fcv at
the leader’s contact point. From (314) and (296), it can be concluded that all the
driving torques and all contact forces depend on the followers’ accelerations q̈s . In
the case of tracking the controlled outputs Y u = col(qs, Y0), the required character
for tracking nominal trajectories of the followers’ internal coordinates is given by
(315), from which the necessary accelerations of the followers in the real motion
are determined. On the basis of the necessary accelerations of the followers, the
driving torques to be introduced to the manipulators’ joints are calculated from
(310).

The followers’ accelerations q̈s can be also determined from the last equality
in (296) depending on the contact forces Fcs at the contact points of the followers.
Hence, the requirement for the quality of tracking can be given by the contact
forces Fcs .

Let

(k)
µs (t) =

(k)

F 0
cs (t)− (k)

Fcs (t), i = 0, 1, . . . ,
(0)
µs (t) = µs(t), (336)

be the vectors of deviations and vectors of derivatives of the deviation of the re-
alized controlled contact forces from their nominal values. Let µs(t) = F 0

cs (t) −
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Fcs(t) be the solution of the homogeneous differential equation

χs(
(k)
µs,

(k−1)
µs , . . . ,

(0)
µs) = 0,

(0)
µs= µs, (337)

obtained as the response to the initial deviation µs(t0) = F 0
cs (t0) − Fcs(t0). Let

µs(t) = 0 (which is equivalent to F 0
cs(t) = Fcs(t)) be the equilibrium state of

the above differential equation. Let the highest derivative be one (k = 1) and
let the differential equation be chosen in the way that each solution, obtained as
the response to the initial deviation µs(t0) = F 0

cs(t0) − Fcs(t0), be asymptotically
stable with the desired indicators of the quality of dynamic behavior, which is
mathematically described by the expression

µ̇s(t) = S(µs(t)) ⇒ Ḟ 0
cs(t) = Ḟcs(t) − S(µs(t)), (338)

whose integration gives the values of contact forces Fcs(t) that should be realized
at the moment t in order that the above law (338) be fulfilled.

Fcs(t) = F 0
cs(t) −

t∫
t0

S(µs) dt. (339)

After introducing this value of contact force into the last equation of (296), the
followers’ accelerations are obtained as

q̈s = P −1
s (qs)

⎡
⎣F 0

cs(t) −
t∫

t0

S(µs)dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦ , (340)

since the inertia matrix Ps(qs) is non-singular. The driving torques τv at the leader’s
joints are found by introducing the followers’ accelerations q̈s from (340) into
(314), whereas the driving torques at the followers joints are obtained by intro-
ducing the accelerations q̈s from (340) into the second equality of (296). Thus, we
obtain

τv = Nv(qv)[−α(
...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)]

− β(Ẏ0, Y0, q̇, q)P −1
s (qs)

⎡
⎣F 0

cs(t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦

+ nv(q, q̇, Y0, Ẏ0)

= τv

⎛
⎝ ...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q, q̇, F 0

cs(t) −
t∫

t0

S(µs) dt

⎞
⎠
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= τv(
...

Y
0
0, Ÿ0, Ẏ0, Y0, q, q̇, Fcs , F

0
cs),

τs = Ns(qs)P
−1
s (qs)

⎡
⎣F 0

cs(t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦

+ ns(q, q̇, Y0, Ẏ0)

= τs

⎛
⎝Ẏ0, Y0, q, q̇, F 0

cs (t) −
t∫

t0

S(µs) dt

⎞
⎠

= τs(Ẏ0, Y0, q, q̇, Fcs , F
0
cs). (341)

The calculated driving torques should be introduced at the manipulators’ joints
in order to realize the tracking of the controlled output Y u = col(Y 0

0 , F 0
cs) with

the quality of dynamic behavior given indirectly in advance by (312) and (338).
To determine the driving torques, it is necessary to have information about all
instantaneous kinematic quantities Ÿ0, Ẏ0 and Y0 of the manipulated object MC,
information about the instantaneous values of the internal coordinates q and their
derivatives q̇, information about the nominal output Y 0

0 and its derivatives Ẏ 0
0 , Ÿ 0

0 ,
...

Y
0
0, and information about the real Fcs and nominal F 0

cs contact forces at the contact
points of the followers.

The introduction of driving torques into (341) ensures the realization of the
contact force.

Fcv = Pv(qv)[−α(
...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)]

− β(Ẏ0, Y0, q̇, q)P −1
s (qs)

⎡
⎣F 0

cs (t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦

+ pv(q, q̇, Y0, Ẏ0)

= Fcv

⎛
⎝ ...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q, q̇, F 0

cs(t) −
t∫

t0

S(µs) dt

⎞
⎠

= Fcv(
...

Y
0
0, Ÿ0, Ẏ0, Y0, q, q̇, Fcs , F

0
cs),

Fcs = F 0
cs (t) −

t∫
t0

S(µs) dt. (342)

Let us introduce the calculated driving torques (341) into the model of coopera-
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tive manipulation (296) and let us prove that the prescribed requirements will be
fulfilled:

Nv(qv)q̈v + nv(q, q̇, Y0, Ẏ0)

= Nv(qv)[−α(
...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)]

− β(Ẏ0, Y0, q̇, q)P −1
s (qs)

⎡
⎣F 0

cs (t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦

+ nv(q, q̇, Y0, Ẏ0),

Ns(qs)q̈s + ns(q, q̇, Y0, Ẏ0)

= Ns(qs)P
−1
s (qs)

⎡
⎣F 0

cs(t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦

+ ns(q, q̇, Y0, Ẏ0),

W(Y0)Ÿ0 + w(q, q̇, Y0, Ẏ0) = 0, (343)

i.e. after rearranging

Nv(qv)

{
q̈v + α(

...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

+ β(Ẏ0, Y0, q̇, q)P −1
s (qs)

⎡
⎣F 0

cs(t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦} = 0,

Ns(qs)

⎧⎨
⎩q̈s − P −1

s (qs)

⎡
⎣F 0

cs(t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦
⎫⎬
⎭ = 0,

W(Y0)Ÿ0 + w(q, q̇, Y0, Ẏ0) = 0. (344)

The inertia matrices Nv(qv) and Ns(qs) are non-singular, and the last equation after
differentiation is transformed into (310). Hence,

q̈v + α(
...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

+ β(Ẏ0, Y0, q̇, q)P −1
s (qs)

⎡
⎣F 0

cs(t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦ = 0,

232 Multi-Arm Cooperating Robots



233

q̈s − P −1
s (qs)

⎡
⎣F 0

cs (t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦ = 0. (345)

By calculating the accelerations from the last equation of (296) and introducing it
into the second equality of (345), it follows that

P −1
s (qs)

[
Fcs(t) − ps(q, q̇, Y0, Ẏ0) + F 0

cs (t)

−
t∫

t0

S(µs) dt + ps(q, q̇, Y0, Ẏ0)

]
= 0. (346)

Since the inertia matrix Ps(qs) is non-singular, the following relation is realized:

Fcs(t) − F 0
cs (t) −

t∫
t0

S(µs) dt = 0, (347)

which is identical to the relation (339) resulting from the integration for the preset
requirements (338) for tracking the followers’ contact forces.

By introducing q̈v from (310) to the first equality of (345), we get

−α(
...

Y 0, Ÿ0, Ẏ0, Y0, q̇, q) + α(
...

Y
0
0 − Q0(�Ÿ0,�Ẏ0,�Y0), Ÿ0, Ẏ0, Y0, q̇, q)

− β(Ẏ0, Y0, q̇, q)

⎧⎨
⎩q̈s − P −1

s (qs)

⎡
⎣F 0

cs(t) −
t∫

t0

S(µs) dt − ps(q, q̇, Y0, Ẏ0)

⎤
⎦
⎫⎬
⎭

= 0. (348)

Having in mind the second equality of (345), the last equality becomes identical to
the equality (322) from which, according to (311), follow the equalities (323) and
(324), which demonstrate the realization of the initially prescribed requirements
(312). Thus, it has been shown that the introduction of the control laws presented
by the relations for the calculated driving torques (341) allows the controlled coop-
erative system (296) to follow the nominal controlled outputs Y u0 = col(F 0

cs, Y
0
0 )

in a stable manner and with the quality requirements indirectly prescribed by (312)
and (338).

Since the required laws of deviation of the derivatives �
...

Y 0 and µ̇s = Ḟ 0
cs−Ḟcs

of the controlled outputs Y0 and Fcs adopted by the control laws (341) are realized,
then, according to (325), the deviation of the lower derivatives of the controlled
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output Y0 will be realized too, whereas the followers’ contact force will be realized
according to (339). The controlled outputs are tracked in an asymptotically stable
manner so that, in the course of time, the relation (327) will be fulfilled for the
controlled output Y0 and

lim
t→∞ Fcs = lim

t→∞

⎛
⎝F 0

cs −
t∫

t0

S(µs) dt

⎞
⎠ = F 0

cs (349)

for the controlled output Fcs .

6.4.6 Behavior of the non-controlled quantities in tracking the trajectory of
the manipulated object MC and nominal contact forces of the followers

The discussion concerning the behavior of the mobile elastic structure given in
Section 6.4.4 will be used to examine the properties of the non-controlled quantities
Fcv , q, q̇, q̈ (i.e. Yc, Ẏc, Ÿc) and calculated driving torques τ in considering the
elastic system with controlled trajectories of contact points and controlled contact
forces.

The starting equations for the analysis are (335), written as

�Fdv + �Fcv = uk
v�Yv + uk

s�Ys + uk
0�Y0,

�Fds + �Fcs = Ak
v�Yv + Ak

s�Ys + Ak
0�Y0,

�Fd0 = ck
v�Yv + ck

s �Ys + ck
0�Y0, (350)

to describe the equilibrium of a fictitious space grid loaded at the nodes by the
forces �Fdv +�Fcv , �Fds +�Fcs and �Fd0 that produce the node displacements
�Yv, �Ys and �Y0.

In the previous section, the choice of control laws was made for the 6m-
dimensional vector of the controlled outputs Y u = col(Fcs, Y0). For such a choice
of control laws, the known quantities are the nominal trajectory of the manipulated
object MC, Y 0

0 , nominal contact forces of the followers F 0
cs and derivative of the

nominal quantities. During the motion, the known quantities are the vector of the
realized position of the object MC, Y0, vector of the realized contact force of the
follower Fcs , and the derivatives of the realized outputs. Hence, the corresponding
vectors of deviations �Y0 and �Fcs , and their derivatives are also known. The
value �Fd0 is determined on the basis of the known nominal and realized trajec-
tory, so that the increment of dynamic force �Fd0 in (350) can be considered as
being known. All other quantities in (350) are unknown. The equation of equilib-
rium (350) of the fictitious space grid is defined by 6m+6 conditions, of which 6m
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are independent. To find the instantaneous configuration of acting forces and grid
displacement in the course of control (motion), there are at our disposal six compo-
nents of the vector �Y0, 6m−1 components of the vector �Fcs and six components
of the vector �Fd0. The unknowns are �Fdv, �Fds , �Fcv , �Yv and �Ys , i.e. in to-
tal 6+(6m−6)+6+6+(6m−6) = 12m+6 unknown quantities. Obviously, there
exist an infinite number of combinations of the unknown quantities that, together
with the known quantities, determine the configuration of the fictitious space grid.
Equilibrium equations can be satisfied for arbitrary values of the unknown quan-
tities from the set of real numbers, and thus for the unconstrained values. This is
straightforward for the case of zero values of the increments �Y0 = 0, �Fcs = 0
and �Fd0 that appear in the ideally realized nominal conditions. In that case, the
equilibrium conditions (350) reduce to

�Fdv + �Fcv = uk
v�Yv + uk

s�Ys,

�Fds = Ak
v�Yv + Ak

s�Ys,

0 = ck
v�Yv + ck

s �Ys. (351)

If the matrix ck
v is non-singular, from the third equality, we can determine the devi-

ation �Yv as a function of the deviation �Ys . Replacing the determined deviation
into the first two equation yields

�Fdv + �Fcv = [−uk
v(c

k
v)

−1ck
s + uk

s ]�Ys,

�Fds = [−Ak
v(c

k
v)

−1ck
s + Ak

s ]�Ys,

�Yv = −(ck
v)

−1ck
s �Ys. (352)

For an arbitrarily chosen value of the realized deviation �Ys from the nominal
trajectory of the followers’ contact points, it is possible to determine the corre-
sponding deviation �Yv of the realized trajectory from the nominal trajectory of
the leader’s contact points and the necessary deviation of the nominal force �Fcv

at the leader’s contact point that will balance the increments of the elastic and dy-
namic forces.

In other words, even when the control satisfies the preset requirements in re-
spect of the input quantities, the deviations of the non-controlled nominal values
can be unconstrained. Hence, the realized non-controlled quantities can be, but not
necessarily, unconstrained.

By introducing into the equation of elastic behavior (247) the realized control
behaviors (327) and (349) of the controlled outputs, we obtain

Fdv(Yv, Ẏv, Ÿv) + Duvs(Yc, Y
0
0 )Ẏc + Du0(Yc, Y

0
0 )Ẏ 0

0
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+ uvs(Yc, Y
0
0 )Yc + u0(Yc, Y

0
0 )Y 0

0 = Gv + Fcv(Y ),

Fds(Ys, Ẏs, Ÿs) + DAvs(Yc, Y
0
0 )Ẏc + DA0(Yc, Y

0
0 )Ẏ 0

0

+ Avs(Yc, Y
0
0 )Yc + A0(Yc, Y

0
0 )Y 0

0 = Gs + F 0
cs(Y ),

Fd0(Y
0
0 , Ẏ 0

0 , Ÿ 0
0 ) + Dc(Yc, Y

0
0 )Ẏv + Dd(Yc, Y

0
0 )Ẏ 0

0

+ c(Yc, Y
0
0 )Yc + d(Yc, Y

0
0 )Y 0

0 = G0, (353)

where Fd∗ = W∗(Y∗)Ÿ∗ + Fb∗(Y∗, Ẏ∗), ∗ = v, s, 0. These non-linear differential
equations describe the elastic system motion along the trajectory Y 0

0 with the con-
trolled excitation F 0

cs during the motion. Properties of the solutions of Equations
(353) as a function of the system parameters and character of the drives, are subject
to the theory of oscillations and dynamics of constructions [6, 7, 23] in the frame
of the analysis of forced oscillations with an arbitrary finite number of DOFs.

From the point of view of cooperative manipulation and practical application,
it can be concluded that the control laws (341) follow in an asymptotically stable
manner, the nominal trajectory of the manipulated object MC and nominal trajec-
tories of the followers’ contact forces. The elastic system will behave as a mobile
elastic structure excited in a controlled manner. The response of such a structure
depends on the characteristics of the elastic structure and character of the nomi-
nal (required) contact forces. The excited elastic structure can assume any state,
including the resonant one.

6.5 Examples of Selected Control Laws

The synthesis of the control laws for the phase of gripping and general motion of
the cooperative system will be illustrated on the example of the ‘linear’ coopera-
tive system (Figure 26), considered in Chapter 3 (Figures 8 and 9). The synthesis
of control laws will be illustrated for guiding along the nominal trajectories the
‘linear’ cooperative system (Figure 26), by which is approximated the cooperative
manipulation of the object by two manipulators along a vertical straight line. The
model of the non-controlled system is given in Chapter 5 by the relations (260),
(261), (262) and (263). It is assumed that the masses of the connections of the ob-
ject and manipulators are smaller than the mass of the manipulated object, so that
they can be neglected.

Control laws are introduced on the basis of the dynamic model of coopera-
tive manipulation for the mobile loaded state given in the form of (296). For this
example, this form is obtained by uniting the relations (261), (262) and (263)

m1Ÿ1 + dpmẎ1 − dpẎ2 + dpsẎ3 + cpmY1 − cpY2 + cpsY3 + m1g + cps1 = τ1,
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m2Ÿ3 − dksẎ1 − dkẎ2 + dkmẎ3 + cksY1 − ckY2 + ckmY3 + m2g − cks3 = τ2,

mŸ2 − dpẎ1 + (dp + dk)Ẏ2 − dkẎ3

− cpY1 + (cp + ck)Y2 − ckY3 + mg − cps1 + cks3 = 0,

dpẎ1 − dpẎ2 + cpY1 − cpY2 + cps1 = Fc1,

−dkẎ2 + dkẎ3 − ckY2 + ckY3 − cks3 = Fc2. (354)

Values of the damping coefficients dpm = dp + d1, dps , dkm = dk + d2, dks and
stiffness coefficients cpm = cp + c1, cps , ckm = ck + c2, cks are adjusted within
the local stabilization of the cooperative system. For example, if d1 	= 0, dps = 0,
d2 	= 0, dks = 0, c1 	= 0, cps = 0, c2 	= 0, cks = 0, the local stabilization is
performed individually for each manipulator based on the information from the
given manipulator only. For this example, the control laws will be selected for
the non-stabilized cooperative system with the coefficients having the following
values: dpm = dp + d1 = dp, dps = 0, dkm = dk + d2 = dk , dks = 0, cpm =
cp + c1 = cp , cps = 0, ckm = ck + c2 = ck and cks = 0.

Having in mind the kinematic relations (263) and adopting the first manipulator
as a leader, a comparison of (354) with (296) yields the conclusions that

qv = q1 = Y1, qs = q2 = Y3, Y0 = Y2, τv = τ1, τs = τ2,

Nv(qv) = m1, Ns(qs) = m2, W(Y0) = m, Pv(qv) = 0, Ps(qs) = 0,

nv(q, q̇, Y0, Ẏ0) = dpmẎ1 − dpẎ2 + dpsẎ3

+ cpmY1 − cpY2 + cpsY3 + m1g + cps1,

ns(q, q̇, Y0, Ẏ0) = −dks Ẏ1 − dkmẎ2 + dkẎ3

+ cksY1 − ckY2 + ckmY3 + m2g − cks3,

w(q, q̇, Y0, Ẏ0) = −dpẎ1 + (dp + dk)Ẏ2 − dkẎ3

− cpY1 + (cp + ck)Y2 − ckY3 + mg − cps1 + cks3,

pv(q, q̇, Y0, Ẏ0) = dpẎ1 − dpẎ2 + cpY1 − cpY2 + cps1,

ps(q, q̇, Y0, Ẏ0) = −dkẎ2 + dkẎ3 − ckY2 + ckY3 − cks3. (355)

The selected control laws will track the nominal trajectories of the manipulated
object MC and nominal trajectories of the followers’ contact points, considered in
Section 6.4.3, or the nominal trajectories of the manipulated object MC and the
followers’ nominal contact forces, considered in Section 6.4.5.
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In choosing the control laws for tracking nominal trajectories of the manipu-
lated object MC and nominal trajectories of the followers’ contact forces, a con-
crete form of differential equations should be selected for the law of deviation of
the realized trajectory from the nominal trajectory of the manipulated object MC
(312) and the law of deviations of the realized trajectories from the nominal tra-
jectories of the followers’ contact points (315). These equations are taken in the
linear forms

�
...

Y 2 + b2�Ÿ2 + b1�Ẏ2 + b0�Y2 = ky2uy2|uy2=0 = 0, �Y2 = Y 0
2 − Y2,

η̈s + a1η̇s + b0ηs = kηuη|uη=0 = 0, ηs = Y 0
3 − Y3. (356)

By comparing these equations with (312) and (315) it can be concluded that
Q0(�Ÿ2,�Ẏ2,�Y2) = −b2�Ÿ2 − b1�Ẏ2 − b0�Y2 + ky2uy2|uy2=0 and Qs(η̇s, ηs)

= −a1η̇s + b0ηs + kηuη|uη=0. The selected numerical values of the coefficients
are b0 = 7106.118 [s−3], b1 = 8883.0936 [s−2], b2 = 46.38938 [s−1], a0 =
355.3059 [s−2] and a1 = 26.38938 [s−1]. The leader’s acceleration is determined
from the relation (310), after determining from (311) the auxiliary expressions

α = − 1

dp

[m ...

Y 2 + (dp + dk)Ÿ2 − cpẎ1 + (cp + ck)Ẏ2 − ckẎ3],

β = dk

dp

, (357)

into which has already been introduced ∂wv/∂q̇v = ∂w/∂Ẏ1 = −dp and
∂ws/∂q̇s = ∂w/∂Ẏ3 = −dk . The control laws are determined from (316) by
the expressions

τv = Nv[−α − β(q̈0
s − Qs)] + nv ⇒ τ1 = m1[−α0 − β(Ÿ 0

3 − Q0
s )] + nv,

τs = Ns[q̈0
s − Qs] + ns ⇒ τ1 = m2[Ÿ 0

3 − Q0
s ] + ns, (358)

where Nv, Ns , nv and ns are shortened notations for the functions (355) (without
designating independent variables), whereas the new notations with the superscript
0 determine the developed expressions with the same basic notation, i.e.

α0 = − 1

dp

[m(
...

Y 2 − Q0
0) + (dp + dk)Ÿ2 − cpẎ1 + (cp + ck)Ẏ2 − ckẎ3],

Q0
0 = −b2(Ÿ

0
2 − Ÿ2) − b1(Ẏ

0
2 − Ẏ2) − b0(Y

0
2 − Y2),

Q0
s = −a1(Ẏ

0
3 − Ẏ3) − b0(Y

0
3 − Y3), (359)
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where Y 0
2 , Ẏ 0

2 , Ÿ 0
2 and

...

Y
0
2 represent the nominal trajectory of the manipulated

object MC and its derivatives, and Y 0
3 , Ẏ 0

3 , Ÿ 0
3 are the nominal trajectory of the

followers’ contact points and its derivatives, which are in this example identical to
the followers’ internal coordinates and derivatives.

For the control law to track the nominal trajectory of the manipulated object
MC and nominal contact forces of the followers, a concrete form of differential
equations should be selected for the law of deviations of the realized trajectory
of the object MC from its nominal value (312) and for the law of deviations of
the realized contact forces of the followers from their nominal values (338). For
tracking the nominal trajectory of the object MC and nominal contact forces of the
followers the law of deviations of the realized trajectory of the object MC from
its nominal is defined by (356). The law of deviations of the realized followers’
contact forces from their nominals selected in the linear form, i.e.

µ̇s = −σµs, µs = F 0
c2 − Fc2. (360)

By comparing this with (338), it is obvious that S(µs) = −σµs . The selected
numerical value is σ = 20 [s−1].

Since the elastic interconnections have no masses, the acceleration of the fol-
lowers’ contact points, instead from (340), is obtained by differentiating the last
equation of (354)

Ÿ3 = 1

dk

Ḟc2 + Ÿ2 + ck

dk

Ẏ2 − ck

dk

Ẏ3. (361)

By introducing into this equation the derivative of the followers’ contact force Ḟc2

= Ḟ 0
c2 − σ (F 0

c2 − Fc2) needed to satisfy the law (360), we obtain

Ÿ3 = 1

dk

[Ḟ 0
c2 − σ (F 0

c2 − Fc2)] + Ÿ2 + ck

dk

Ẏ2 − ck

dk

Ẏ3. (362)

The control laws are determined, according to (341), by the expressions

τv = Nv[−α − βq̈s] + nv

⇒ τ1 = m1

[
− α0 − β

1

dk

[Ḟ 0
c2 − σ (F 0

c2 − Fc2) + dkŸ2 + ckẎ2 − ckẎ3]
]

+ nv,

τs = Nsq̈s + ns

⇒ τ1 = m2
1

dk

[Ḟ 0
c2 − σ (F 0

c2 − Fc2) + dkŸ2 + ckẎ2 − ckẎ3] + ns, (363)
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Figure 44. Block diagram of the closed-loop cooperative system

where F 0
c2 and Ḟ 0

c2 are the followers’ nominal contact forces and derivatives.
By comparing the control laws (358) for tracking the nominal trajectory of

the manipulated object MC and nominal trajectory of the followers’ contact points
with the control laws (363) for tracking the nominal trajectory of the manipulated
object MC and the followers’ nominal contact forces, it can be concluded that the
difference is only in the determination of the necessary acceleration of the fol-
lowers. This gives the possibility of representing both control laws by one block
diagram (Figure 44) and realizing them by one program. Hence, to the input of the
controlled system the necessary input data for tracking both the nominal trajectory
of contact point (Ÿ 0

3 , Ẏ 0
3 and Y 0

3 ) and nominal contact forces (Ḟ 0
c3 and F 0

c3) of the
followers are introduced simultaneously. The switches F and q in the main branch
and feedback branch are switched on simultaneously and they show what the quan-
tities are to be used for the selected control law from the main branch and feedback
branch.

The selected control laws have been tested on the example of tracking nominal
trajectories in the case of the existence of the initial deviation of the real trajectories
from their nominals. The nominal trajectories along which the system is guided,
were determined for the same example as in Chapter 5 and are given in Figure 28
for the gripping phase and in Figure 31 for the general motion. The results of
simulation of the controlled cooperative system are presented in Figures 45–48.
The results of the simulated work of the cooperative system with the control laws
for tracking the nominal trajectory of the object MC and nominal trajectory of the
followers’ contact points are given under the title ‘NPZU_Q’. The corresponding
results are presented graphically in Figures 45a and 45b for the gripping phase and
in Figures 47a and 47b for the general motion. Results of the simulated work of the
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Figure 45a. Gripping – tracking Y 0
2 and Y 0

3
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Figure 45b. Gripping – tracking Y 0
2 and Y 0

3
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Figure 46a. Gripping – tracking Y 0
2 and F 0

c2
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Figure 46b. Gripping – tracking Y 0
2 and F 0

c2
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Figure 47a. General motion – tracking Y 0
2 and Y 0

3
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Figure 47b. General motion – tracking Y 0
2 and Y 0

3
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Figure 48a. General motion – tracking Y 0
2 and F 0

c2
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Figure 48b. General motion – tracking Y 0
2 and F 0

c2
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cooperative system controlled by applying the control laws for tracking the nominal
trajectory of the manipulated object MC and the followers’ nominal contact force
are given under the title ‘NPZU_F’ and presented graphically in Figures 46a and
46b for the gripping phase and in Figures 48a and 48b for the general motion.
In the diagrams, the required and realized trajectories are superimposed. It can
be concluded that both control laws ensured high-quality tracking of the nominal
trajectories.

Cooperative System Control



7 CONCLUSION: LOOKING BACK ON THE
PRESENTED RESULTS

7.1 An Overview of the Introductory Considerations

In the introductory chapters of this monograph (Chapters 1, 2 and 3), we have
shown that kinematic uncertainty is not essentially a problem of cooperative ma-
nipulation, whereas the problem of determining the real distribution of the contact
forces that arise as a consequence of the action of the weight and dynamic forces of
the manipulated object, known in the literature as force uncertainty, is practically
the basic problem of cooperative manipulation.

By analyzing the cooperative system’s properties in the state of rest, it was
concluded that the cooperative system at rest can be considered as a statically un-
determined spatial grid. Distribution of forces in such a grid cannot be solved if its
elastic properties are neglected.

The impossibility of finding the real load distribution from the object onto con-
tact forces is a consequence of neglecting the elastic properties of the cooperative
system in the part where this distribution is realized [8]. None of the proposed
criteria for solving force uncertainty in rigid [12–17, 19, 20] or elastic [1, 3–5, 18]
cooperative systems could yield the solution of the real distribution of the loads
involved.

It should be noticed that kinematic uncertainty and contact force uncertainty do
not exist as a problem if the manipulated object position and force are determined
on the basis of the positions of contacts and contact forces. Hence, the uncertainty
problems are not essentially problems of cooperative manipulation any more, but
it is the cooperative system control. Control schemes ‘leader/follower control’
and ‘master/slave control’ [14, 50], ‘motion/force control’ [51, 52], ‘coordinated
control’ [15, 53, 54], are synthesized for the mathematical model of cooperative
system dynamics with the problem of force uncertainty unresolved, so that they
are of no practical importance. Besides, the control scheme ‘hybrid position/force
control’ [12, 54, 55], based on [56, 57], involved inadequate realization of control
decoupling with respect to position and force [35, 37–39].
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The procedure for solving the problem of load distribution was presented for a
cooperative system consisting of two fingers (manipulators) handling an object that
is translated along a vertical straight line. From the cooperative system, we single
out the part between the manipulators tips where the load distribution should be
carried out. That part is approximated by three elastically interconnected concen-
trated masses placed at the contact points and at the object MC. The procedure of
modeling dynamics of the elastic system for the case of its general motion using
Lagrange equations, was consistently applied. It was shown that, in an attempt
to separate the macro and micro motions of the elastic system, i.e. to separate
the transfer and relative motion represented by elastic displacements [1, 3–5], the
number of independent quantities exceeded the number of state quantities needed
and was sufficient for a description of the elastic system’s dynamics. This prob-
lem does not appear when the elastic system’s dynamics is described by using the
absolute coordinates of the nodes and information about the mutual positions of
the nodes prior to the beginning of deformation, while the elastic system was still
immobile.

Let us point out once more that by abandoning the assumption of the rigid co-
operative system in the contact surroundings system enables us to uniquely solve
the problem of load distribution, i.e. the problem of force uncertainty in coopera-
tive manipulation.

The overall model of dynamics of the above cooperative system was obtained
by uniting the kinematic relations between the internal and absolute coordinates of
the contact, model of the elastic system dynamics, and the model of the manipula-
tors’ dynamics.

7.2 On Mathematical Modeling

The mathematical model was derived for an arbitrary system of cooperative ma-
nipulation of an object, involving an arbitrary number of manipulators (m). The
model was derived for the case of complex motion of the object, i.e. when the
object performs translation and rotation.

To make understanding the properties of the cooperative system easier, certain
assumptions were introduced to significantly simplify the problem of modeling.
The cooperative system was split into its ‘rigid’ (manipulators) and ‘elastic’ (the
object and elastic contacts) parts. Namely, it is adopted that the manipulators are
rigid, whereas the connections of the object and manipulators are elastic. The
manipulated object is either rigid or can be divided into a rigid part and an elastic
part, the latter being characteristic of the contact surroundings.

In modeling, the elastic part of the object is considered as part of the elastic
interconnections of the object and manipulators. The object and elastic intercon-
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nections make the elastic system, which is approximated by a spatial grid having
m external nodes and one internal node, connected by non-inertial elastic con-
nections. At each node is placed a fictitious rigid body to represent the inertial
properties of the elastic system in the surroundings of that node, i.e. inertial prop-
erties of the elastic interconnection of the rigid part of the object and manipulators.
The bodies are placed in such a way that their MCs coincide with the grid nodes,
so that the external loads (vectors of forces and moments) act at the MCs of these
bodies. The manipulated object is placed at the internal node. Each node has six
DOFs so that the total number of DOFs of the elastic system motion is equal to
6m + 6. Elastic displacements of the nodes are equivalent to the displacements of
the bodies placed at the grid nodes. Gravitational, dissipative, and contact forces
are adopted as external loads of the elastic system.

In the modeling of elastic system dynamics, two case of motion can be distin-
guished.

In the first case, the unloaded state of the elastic system is immobile throughout
the duration of the cooperative work, and the results of the theory of elasticity
related to finding the acting load as a function of elastic displacements are directly
applied, whereby it should be noted that all elastic displacements of nodes are
treated as independent variables.

In the second case, the unloaded state of elastic system is mobile throughout
the duration of the cooperative work. The general motion of the elastic system is
described in terms of absolute coordinates of the loaded elastic system nodes. To
form the motion equations, it is necessary to express deformation work as a func-
tion of absolute coordinates. As an expansion of the method of finite elements it
was proposed to express elastic displacements as a function of the absolute coor-
dinates of the nodes of the loaded elastic system and modules of the difference of
absolute coordinates of the nodes of the unloaded elastic system that existed in the
beginning of the gripping phase (before deformation of the elastic system), when
the elastic system was in the state of rest. The determination of the dependence of
elastic displacements on absolute coordinates is thus avoided, as the dependence
of the forces at the nodes on the position vectors of the loaded elastic system nodes
is achieved by expressing deformation work as a sum of the products of internal
forces and mutual displacements of the nodes.

As a consequence of the choice that all node displacements are independent
variables, the stiffness matrix in the models of elastic system is singular irrespec-
tive of whether the unloaded state is mobile or immobile. Because of the singularity
of the stiffness matrix, the elastic system model must also contain the modes of mo-
tion of the elastic system as a rigid body. In the general case, it is necessary to know
at least six independent position quantities (positions and orientations) in order to
define the elastic system’s position in space. These quantities can be arbitrarily
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selected, but if they are selected so as to describe the position of only one contact
point (as was done in this monograph), then the manipulator that forms this contact
is the leader, the other manipulators being followers. The quantities selected to de-
fine the elastic system’s position in space can be changed simultaneously, without
any discontinuity of forces or positions. In this way, a solution is also given for a
simultaneous exchange of the leader’s role in cooperative manipulation.

Using the same procedure as for deriving the model of the cooperative system
in the introductory chapter, two complete models of cooperative system dynam-
ics were derived, whereby the dynamic model of non-redundant manipulators and
kinematic relations between internal coordinates and absolute coordinates of con-
tacts were taken from the available literature [32]. The first model describes the
dynamics of cooperative manipulation in which the elastic system unloaded state
is immobile all the time of duration of the cooperative work. other model of cooper-
ative manipulation dynamics covers the general case of motion of the manipulated
object. This model is described via the absolute coordinates of the contact points
and manipulated object MC, whereby it is supposed that the mutual position of the
manipulators’ tips at the moment of forming contact (at the beginning of gripping)
between the manipulators and object is known.

The derived mathematical models give a sufficiently exact description of the
cooperative system under static and dynamic conditions. It is concluded that the
number of state quantities of the cooperative system must be greater than the num-
ber of driving torques. The results obtained in model testing on selected examples
showed that our approach to the modeling of cooperative manipulation is consistent
and the conclusions derived are correct.

7.3 Cooperative System Nominals

The preset requirement is that the nominal motion in cooperative manipulation
must be coordinated and realizable.

Coordinated motion of a cooperative system is the motion in which the object
gripping is carried out first, and then the manipulated object motion is continued.
In the course of coordinated motion of the cooperative system, the manipulators
perform such motion that ensures that the gripping conditions are not essentially
disturbed, i.e. the geometric configuration of the elastic system nodes established
at the end of the gripping phase is essentially preserved.

The nominals were synthesized for two cases. In the first case, the starting
point was the assumption that contact forces were independent variables. This
means that during the motion the distribution and absolute values of the contact
forces realized at the end of the gripping phase change with respect to the object
only as a consequence of the change of object orientation on its path and additional
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dynamic forces, and/or due to the additional changes of contact forces required at
the contact points of the followers. The other approach starts from the assumption
that there is no change in the geometric configuration of contact points that was
established at the end of the gripping phase.

Using the proposed procedures, the elastic system nominals are synthesized
first. It is assumed that the elastic displacements are not large and that the position
of the elastic system nodes in the ‘static’ displacement (neglecting dynamic forces)
and in the general motion along the trajectory given for the manipulated object,
cannot essentially change. The procedure used is a quasi-static one.

The gripped object is being statically transferred to a series of selected points
on the trajectory. Thereby, it is assumed that there are no changes in the direction
and load intensity with respect to the loaded elastic system realized at the end of the
gripping phase, that is, no real loads are considered. In the transferred positions,
the load intensity realized at the end of gripping is reduced to zero. As a result, the
current unloaded the states of the elastic system at selected points on the obtained
trajectory. The current loaded state of the elastic system is obtained by the static
action of the node load from the previously defined current unloaded state.

The node load is assumed to be the result of the real gravitational forces, ro-
tated contact forces at the end of gripping, and dynamic forces. Dynamic forces are
determined by using velocities and accelerations of nodes obtained from the condi-
tion that the elastic system at the end of the gripping phase moves as a rigid body.
If, in addition to the motion of the manipulated object along the nominal trajec-
tory, simultaneous changes of gripping conditions are required, then the resulting
node loads are calculated using the required contact forces instead of rotated con-
tact forces existing at the end of the gripping phase. The approximate values of
the contact forces are determined from the condition that the nodes in the elastic
system motion are on the calculated trajectories and that the motion equations from
which dissipative forces of elastic interconnections are omitted, are satisfied. These
contact forces are adopted as the coordinated motion nominals. It is assumed that,
at the end of the motion between selected points on the trajectory, the change of
contact forces can be described by a monotonous function.

The realizable trajectories are determined by numerically solving the system
of differential equations describing the dynamics of the elastic interconnections of
the followers, whereby the system is excited by the synthesized nominal contact
forces for the coordinated motion. The nominals of elastic interconnection of the
leader are determined as functions of the nominals for the manipulated object and
elastic interconnections of the followers.

The nominals obtained for the elastic system external nodes (contacts with the
manipulators) are the nominals of the manipulators’ tips and, based on them, the
nominals for the manipulators in cooperation are synthesized.
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The proposed procedure of nominals synthesis ensures a realizable coordinated
motion of the cooperative system. The obtained nominals are input quantities to
the controlled cooperative system.

7.4 Cooperative System Control Laws

The dynamic model of cooperative manipulation with the force uncertainty re-
solved, serves as the basis for the synthesis of cooperative system control laws.

First, it is necessary to analyze the number and nature of the requirements from
the cooperative system and then consider the laws which should be introduced to
realize a coordinated motion of the cooperative system.

The analysis of definitions and criteria for assessing the controllability and
observability of linear systems showed that these definitions and criteria determine
the conditions of direct and inverse mapping between the domains of inputs, states,
and outputs of the system (the control object). The results of this analysis are
then applied to non-linear systems. The following conclusions are essential for
cooperative manipulation.

First, the number of independently controlled output quantities (directly
tracked quantities, quantities closing feedback loops) cannot be larger than the
number of independent input variables.

Second, the natural space of the system output is the union of the space of
inputs and space of states. The controlled output can be any quantity from the
natural space of system outputs or the ‘image’ of the selected controlled output
from the natural space in another space. This means that the controlled output
may be either state (or the real output as the ‘image’ of the state in the output
space) or input to the system and/or even a combination of both. The natural space
of cooperative system outputs considered in this monograph is the union of the
space of driving torques, space of manipulated object MC position, and space of
positions of contact points, or, instead of them, the space of internal coordinates.
Total dimension of this space is 6m+ 6m+ 6. Of interest are also the spaces of the
contact forces and space of elastic forces, which are obtained by the mapping from
the natural space of outputs.

Third, the consistent approach to modeling cooperative system dynamics auto-
matically resolves the problem of its controllability.

As the cooperative system is excited by 6m independent inputs (driving
torques), it is possible to select 6m independent controlled outputs from its nat-
ural space of outputs.

An analysis is carried out of the possible choices of controlled outputs of the co-
operative system. To have a controlled motion of the cooperative system in space,
the vector of controlled outputs should contain at least such a number of indepen-
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dent position coordinates that is equal to the dimension of the space in which the
cooperative system moves. In this monograph, this role is assigned to the position
vector of one node of the elastic system. This node is either the manipulated ob-
ject MC or the leader’s contact point. It was demonstrated that for the remaining
6m − 6 controlled outputs there are only two qualitatively different choices. One
is the choice of the position vectors of the contact positions of the followers, and
the other is the choice of the vector of the contact forces at the followers’ contacts.
Control laws were selected for both of the controlled outputs. It was shown that the
cooperative system that is controlled using the selected laws follows the controlled
outputs in an asymptotically stable manner.

The analysis of the behavior of non-controlled quantities proved that the choice
of position vectors of the contact points of the followers as controlled outputs en-
sures the stability of all the system’s quantities. For the choice of the vector of
contact forces at the followers’ contact points, it was proved that, even when the
control ensures the realization of all the required nominal output quantities, the de-
viations of non-controlled quantities from their nominal values can be, but not nec-
essarily, unconstrained. The elastic system will behave as a mobile elastic structure
excited by the controlled external loads.

7.5 General Conclusions about the Study of Cooperative
Manipulation

On the basis of the properties of the controlled cooperative system, it can be con-
cluded that

• it is not suitable to control contact forces in cooperative manipulation, but the
control should be exclusively concerned with the manipulators’ positions,
i.e. positions of the manipulator-object contact points, and

• manipulators can control contact forces irrespective of the instantaneous po-
sitions of contact points of the manipulators and object, and this can be used
to examine the dynamics of mobile elastic structures using controlled loads.

It should be noted that the derived model of cooperative manipulation is modu-
lar. Thus, the methodology and results of this monograph can also be used to con-
trol elastic structures in which executive organs are not manipulators but isolated
one-DOF actuators. The models of elastic system and cooperative manipulation,
synthesized nominals, along with the selected control laws and conclusions about
the properties of the controlled cooperative system, can easily be expanded and
adapted to control arbitrary mobile elastic structures.

Conclusion



7.6 Possible Directions of Further Research

The results obtained in this monograph could, in a certain way, determine the di-
rection of future research concerning cooperative manipulation and contact tasks
in general.

In cooperative manipulation, the problem of force uncertainty cannot be re-
solved without introducing elastic elements between the object and manipulators.
Hence, it would be necessary to equip the grippers by elastic elements. For such el-
ements, it would be possible to determine in advance their individual characteristic
stiffness matrices. The gripper’s elastic tips themselves (without the manipulated
object) can be adopted as an elastic system. Using the direct stiffness method,
mathematical modeling of an elastic system can be simplified and automated. The
outcome would be the usable information about elastic displacements and elastic
forces at the grippers’s elastic tips. During the motion in cooperative manipula-
tion, the geometric configuration of manipulator tips, i.e. their mutual geometrical
arrangement, should be such that, in any instant, are realized desired elastic dis-
placement and/or desired elastic forces, which is equivalent to the existence of the
external load produced by the object. At that, it is not necessary to join the object
itself to the elastic system, so that it is not necessary to know its characteristics.

The methodology presented in this monograph solves, in an exact way, the
problem of force uncertainty in cooperative manipulation and determines the ap-
propriate laws to control cooperative manipulation. This methodology is a result of
the awareness of the necessity of considering cooperative system elasticity, at least
in the part where force uncertainty arises, which allows an exact (to a desired limit)
calculation of loads in all parts of the cooperative system for all its motions. These
loads are the necessary input data to calculate the solidity of the cooperative system
and input parameters for defining servoactuators. An important conclusion is that
it is necessary to control the position of the manipulators if the goal is to realize a
stable motion and load of the cooperative system. The application of the proposed
methodology requires a comprehensive knowledge of the user in several theoretical
areas, and can induce some problems in practical realizations. The application of
this methodology also requires an exact model of the cooperative system, simulta-
neous consideration of ‘fast’ and ‘slow’ dynamics (of all characteristic oscillation
modes) of the cooperative system, and the use of force servoactuators to control
the driving torques at the manipulators joints during the motion. The bandwidth
of such servoactuators should be larger than the characteristic frequency of the
cooperative (i.e. elastic) system.

The conclusion that one should control manipulator positions implies that it
is possible to form a new model of cooperative manipulation that will also take
into account the dynamics of the actuators in which feedback involves velocity
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and/or position, and not force or moment. The external load of the actuators whose
feedback is velocity and/or position, is its natural local feedback. The dynamics of
manipulators and cooperative systems as a whole can be considered as a local feed-
back of the actuators, which, being low-bandwidth filters, filtrate out the real ‘fast’
dynamics of the cooperative system, leaving the possibility to control its ‘slow’
dynamics. This means that for the purpose of the synthesis of cooperative system
control, it is useful to reduce the complex and exact model of the elastic system,
so that it contains only its characteristic oscillation modes within the bandwidth
of the servoactutors. Such an approach to solving the task of cooperative system
control is suitable for engineering practice and opens up some new possibilities to
modeling and selecting appropriate control laws.

Conclusion



APPENDIX A: ELASTIC SYSTEM MODEL
FOR THE IMMOBILE UNLOADED STATE

Here we give the entire procedure for deriving the mathematical model of dynamics
of an elastic system as a part of a cooperative system composed of m six-DOF
rigid manipulators, handling an object whose motion in three-dimensional space
proceeds without any constraint (Figure 12).

It is assumed that the connections of the object and manipulators are elastic
and the object is either rigid or elastic. For both cases, we assume that each con-
nection or part of the manipulated object in the neighborhood of the contact point,
can be represented by a rigid body at the MC where the forces of contact, gravita-
tion, damping, and elasticity act. The object with the connections forms an elastic
system of m + 1 elastically interconnected rigid bodies (Figure 12). It is assumed
that elastic properties are such that a linear relationship can be established between
each relative displacement of any part of the elastic system. Each body is allowed
to have six DOFs of motion. Gravitational and contact forces are considered as a
system of the external forces acting at the MC.

The coordinates of the MC displacements with respect to the unloaded state yi

defined by (69), are adopted as generalized coordinates.
Potential energy 
 of the elastic system is equal to the deformation work

2
 = yT Ky = (δT AT )K

(
δ

A

)
,

K = KT ∈ R(6m+6)×(6m+6), rank K ≤ 6m, (364)

so that the derivative with respect to the coordinate is equal to elastic force and is
given by

Fe = ∂


∂y
= Ky ∈ R6m+6, (365)
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∂


∂y
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂


∂yo· · ·
∂


∂yi· · ·
∂


∂ym

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

K0y

· · ·
Kiy

· · ·
Kmy

⎤
⎥⎥⎥⎦ ⇒ ∂


∂yi

= Kiy ∈ R6, Ki ∈ R6×(6m+6),

where Ki are the submatrices composed of 6i + 1 to 6i + 6 rows of the matrix K.
Relations between the angular velocity ωi = col(pi, qi, ri) measured along

the body i main inertia axes and the derivatives of orientation given by Ȧi =
col(ψ̇, θ̇ , ϕ̇) are⎡
⎣pi

qi

ri

⎤
⎦ =

⎡
⎣ ψ̇ sin θi sin ϕi + θ̇i cos ϕi

ψ̇ sin θi cos ϕi − θ̇i sin ϕi

ψ̇ cos θi + ϕ̇i

⎤
⎦ =

⎡
⎣ sin θi sin ϕi cos ϕi 0

sin θi cos ϕi − sin ϕi 0
cos θi 0 1

⎤
⎦
⎡
⎣ ψ̇

θ̇i

ϕ̇i

⎤
⎦ ,

ωi = col(pi, qi, ri) = Lω(Ai) · Ȧi .

Motion velocity in expanded form is

via =

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋi

ẏi

żi

ṗi

q̇i

ṙi

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[

ṙia

ωia

]
=
[

I3×3 03×3

03×3 Lω(Ai)

]
·
[

δ̇i

Ȧi

]
= Lv(Ai)ẏi = Lv(yi)ẏi ,

i.e.

vi =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 sin θi sin ϕi cos ϕi 0
0 0 0 sin θi cos ϕi − sin ϕi 0
0 0 0 cos θi 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋi

ẏi

żi

ψ̇

θ̇i

ϕ̇i

⎤
⎥⎥⎥⎥⎥⎥⎦

= Lv(yi)ẏi .

The total kinetic energy is defined by

T = T0 + T1 + · · · + Ti + · · · + Tm,

while the kinetic energy of the ith part is

2Ti = miδ̇
T
i δ̇i + ωT

i Iiωi = miδ̇
x
i

2 + miδ̇
y

i

2 + miδ̇
z
i

2 + Aṗ2
i + Bq̇2

i + Cṙ2
i ,
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where mi is the mass and Ai , Bi , Ci are the ith object’s main moments of inertia.
By substituting the angular velocity, we obtain

2Ti = miδ̇
T
i δ̇i + ȦT

i LT
ω(Ai)IiLω(Ai)Ȧi

or together with

2Ti = ẏT
i LT

v (yi)MiLv(yi)ẏi = ẏiWi(yi)ẏi ,

Wi(yi) = LT
v (yi)MiLv(yi) ∈ R6×6, Wi(yi) = WT

i (yi), det Wi(yi) 	= 0,

where Ii = diag(Ai, Bi, Ci) and Mi = diag(mi,mi,mi, Ai, Bi, Ci). In an ex-
panded form Wi(yi) is given by

Wi(yi ) =⎡
⎢⎢⎢⎢⎢⎢⎣

mi 0 0 0 0 0
0 mi 0 0 0 0
0 0 mi 0 0 0
0 0 0 sin2 θi(Ai sin2 ϕi + Bi cos2 ϕi) + Ci cos2 θi

1
2 (Ai − Bi) sin θi sin 2ϕi Ci cos θi

0 0 0 1
2 (Ai − Bi) sin θi sin 2ϕi Ai cos2 ϕi + Bi sin2 ϕi 0

0 0 0 Ci cos θi 0 Ci

⎤
⎥⎥⎥⎥⎥⎥⎦

or, in scalar form,

2Ti = miδ̇
x
i

2 + miδ̇
y

i

2 + miδ̇
z
i

2

+ψ̇2
i (sin2 θi(Ai sin2 ϕi + Bi cos2 ϕi) + Ci cos2 θi)

+ψ̇i θ̇i(Ai − Bi) sin θi sin 2ϕi + +2ψ̇i ϕ̇iCi cos θi

+θ̇2
i (Ai cos2 ϕi + Bi sin2 ϕi) + Ciϕ̇

2
i .

Derivatives of kinetic energy with respect to velocity are defined by

∂Ti

∂ẏi

= LT
v (yi)MiLv(yi)ẏi = Wi(yi)ẏi ,

d

dt

∂Ti

∂ẏi

= Ẇi(yi)ẏi + Wi(yi)ÿi .

The member Ẇi(yi)ẏi is defined in the following way:

Ẇi(yi)ẏi =
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

{ψ̇i θ̇i sin 2θi(Ai sin2 ϕi + Bi cos2 ϕi − Ci) + ψ̇i ϕ̇i(Ai − Bi) sin2 θi sin 2ϕi

+θ̇i ϕ̇i sin θi((Ai − Bi) cos 2ϕi − Ci) + 1
2 θ̇

2
i (Ai − Bi) cos θi sin 2ϕi}

1
2 ψ̇i θ̇i(Ai − Bi) cos θi sin 2ϕi + ψ̇iϕ̇i (Ai − Bi) sin θi cos 2ϕi

−θ̇i ϕ̇i(Ai − Bi) sin 2ϕi − ψ̇i θ̇iCi sin θi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The partial derivative of kinetic energy with respect to the coordinate is the
function of that coordinate and its derivative, and is given by

∂Ti

∂yi

(yi, ẏi ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

1
2ψ̇

2
i sin 2θi(Ai sin2 ϕi + Bi cos2 ϕi − Ci)

+ 1
2 ψ̇i θ̇i(Ai − Bi) cos θi sin 2ϕi − ψ̇iϕ̇iCi sin θi

1
2ψ̇

2
i (Ai − Bi) sin2 θi sin 2ϕi + ψ̇i θ̇i(Ai − Bi) sin θi cos 2ϕi

− 1
2 θ̇2

i (Ai − Bi) sin 2ϕi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The preceding equations for kinetic energy can be given concisely as

2T =
m∑

i=0

⎛
⎝ ∞∑

j=1

dmjvj

⎞
⎠ =

m∑
i=0

⎛
⎝ ∞∑

j=1

dmj

d

dt
(yi + bj )

⎞
⎠ ,

2T =
m∑

i=0

miδ
2
i +

m∑
i=0

Iiω
2
i

=
m∑

i=0

vT
i Mivi = vT Mv = ẏT LT

v (y)MLv(y)ẏ, (366)

where

M = diag(M0,M1, . . . ,Mn) ∈ R(6m+6)×(6m+6),

Mi = diag(mi,mi,mi, Ai, Bi, Ci) ∈ R6×6,

v = col(v0, v1, . . . , vm) ∈ R(6m+6)×1,

vi = col(δ̇i, ωi(Ai)) = Lvi(yi)ẏi ∈ R6×1,

ωi = Lωi(Ai)Ȧi ∈ R3×1,

Lvi(yi) = diag(I3×3, Lωi
(Ai)) ∈ R6×6,

Lv(y) = diag(Lv0, Lv1 . . . .Lvm) ∈ R(6m+6)×(6m+6). (367)
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If the connections have dissipative properties, the dissipation energy can be
expressed as

2D = −ẏT Dẏ, D = DT ≥ 0, D ∈ R(6m+6)×(6m+6), (368)

where D ∈ R6(m+1)×6(m+1) is the matrix with damping coefficients corresponding
to velocities. The derivative of the dissipation energy with respect to velocity is
given by

∂D

∂ẏ
= −Dẏ,

∂D

∂ẏ
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂D

∂ẏo· · ·
∂D

∂ẏi· · ·
∂D

∂ẏm

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

D0ẏ

· · ·
Diẏ

· · ·
Dmẏ

⎤
⎥⎥⎥⎦⇒ ∂D

∂ẏi

= −Diẏ, Di ∈ R6×(6m+6),

where Di are the submatrices composed of the rows atarting from 6i + 1 to 6i + 6
inclusive of the matrix D.

By substituting these expressions into the Langrange equations we obtain

d

dt

∂T

∂ẏi

− ∂T

∂yi

− ∂D

∂ẏi

+ ∂


∂yi

= Qi, i = 0, 1, . . . , m, (369)

where

Qi = col(Q1
i , . . . ,Q

6
i ) = Gi(mig) + Fi,

Q
j

i =
m∑

k=0

∂yk

∂y
j

i

Qk =
m∑

k=0

∂yk

∂y
j

i

(Gk(mkg) + Fk), i = 0, 1, . . . , m, j = 1, . . . , 6,

Q
j

i =
m∑

k=0

(
Fx

ku

∂δx
k

∂y
j

i

+ F
y

ku

∂δ
y

k

∂y
j

i

+ Fz
ku

∂δz
k

∂y
j

i

+ F
ψ

ku

∂ψk

∂y
j

i

+ Fθ
ku

∂θk

∂y
j

i

+ F
ϕ

ku

∂ϕk

∂y
j

i

)

= F
j

iu

⇒ Fiu = Gi(mig) + Fi = col(F 1
iu, . . . , F

6
iu) ∈ R6×1, j = x, y, z, ψi, θi, ϕi,

and y
j

i , j = 1, . . . , 6 are the individual components of the vector yi =
col(y1

i , y
2
i , y

3
i , y

4
i , y

5
i , y

6
i ) = col(δx

i , δ
y

i , δ
z
i , ψi, θi, ϕi).

For the elastic system performing general motion about the immobile unloaded
state 0 under the action of the external forces F , a general form of the model is
obtained as

Wi(yi)ÿi +Ẇi(yi)ẏi − ∂Ti

∂yi

(yi, ẏi )+Diẏ+Kiy = Gi(mig)+Fi, i = 0, 1, . . . , m
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or, in short form,

Wi(yi)ÿi + wi(y, ẏ) = Fi, i = 0, 1, . . . , m,

where

wi(y, ẏ) = Ẇi(yi)ẏi − ∂Ti

∂yi

(yi, ẏi )

+ Diẏ + Kiy − Gi(mig) ∈ R6×1, i = 0, 1, . . . , m.

Taking into account that Gi(mig) = (0, 0,−mig, 0, 0, 0)T , the member wi(y, ẏ)
has the expanded form

wi(y, ẏ) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑m
j=0 D(6i+1)j ẏ +∑m

j=0 K(6i+1)j y

· · · · · · · · · · · · · · ·∑m
j=0 D(6i+2)j ẏ +∑m

j=0 K(6i+2)j y

· · · · · · · · · · · · · · ·∑m
j=0 D(6i+3)j ẏ +∑m

j=0 K(6i+3)jy + mig

· · · · · · · · · · · · · · ·
ψ̇i θ̇i sin 2θi (Ai sin2 ϕi + Bi cos2 ϕi − Ci) + ψ̇i ϕ̇i (Ai − Bi) sin2 θi sin 2ϕi+

θ̇i ϕ̇i sin θi((Ai − Bi) cos 2ϕi − Ci) + 1
2 θ̇2

i
(Ai − Bi) cos θi sin 2ϕi

+∑m
j=0 D(6i+4)j ẏ +∑m

j=0 K(6i+4)jy

· · · · · · · · · · · · · · ·
− 1

2 ψ̇2
i

sin 2θi(Ai sin2 ϕi + Bi cos2 ϕiCi) + ψ̇i ϕ̇i sin θi ((Ai − Bi) cos 2ϕi + Ci)

−θ̇i ϕ̇i (Ai − Bi) sin 2ϕi +∑m
j=0 D(6i+5)j ẏ +∑m

j=0 K(6i+5)j y

· · · · · · · · · · · · · · ·
− 1

2 ψ̇2
i
(Ai − Bi) sin2 θi sin 2ϕi − ψ̇i θ̇i sin θi ((Ai − Bi) cos 2ϕi + Ci)

+ 1
2 θ̇2

i (Ai − Bi) sin 2ϕi +∑m
j=0 D6(i+1)j ẏ +∑m

j=0 K6(i+1)j y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By uniting all 6m + 6 equations, we obtain

W(y)ÿ + w(y, ẏ) = F, (370)

where

W(y) = diag(W0(y0)W1(y1) . . . Wm(ym)) ∈ R(6m+6)×(6m+6), W(y) = WT (y),

det W(y) 	= 0, w(y, ẏ) = col(wo(y, ẏ), . . . , wm(y, ẏ)) ∈ R(6m+6)×1.

From 6m+6 equations (370), the number of independent equations is exactly equal
to the stiffness matrix rank (rank K).

Equation (370) can be presented in such a way that the descriptions of connec-
tions motion and manipulation object are separated

Wc(yc)ÿc + wc(y, ẏ) = Fc,

W0(y0)ÿ0 + w0(y, ẏ) = 0, (371)
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where the subscript c designates the quantities related to the contact points, and the
subscript 0 designates the quantities related to the manipulated object. Hereby

yc = col(y1, y2, . . . , ym) ∈ R6m×1, yo ∈ R6×1,

Fc = col(F1, F2, . . . ., Fm) ∈ R6m×1, F0 = 0 ∈ R6×1,

Wc(yc) = diag(W1(y1) . . . Wm(ym)) ∈ R6m×6m,

Wc(yc) = WT
c (yc), det Wc(yc) 	= 0,

wc(y, ẏ) = col(w1(y, ẏ), . . . , wm(y, ẏ)) ∈ R6m×1,

where yc denotes the expanded contact position vector in the 6m-dimensional space
and Fc is the expanded vector of the contact forces, adjoint to that vector. Let us
mention that at the manipulated object MC, no contact force acts directly, hence
F0 = 0. Equations (370) and (371) represent the final form of equations of the elas-
tic system behavior which, under the action of external contact forces Fc, performs
the general motion about the immobile unloaded state 0.

The result would be also obtained by using the d’Alembert principle by replac-
ing the components of inertial, damping and gravitational forces on the left-hand
side of Equation (365).
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APPENDIX B: ELASTIC SYSTEM MODEL
FOR THE MOBILE UNLOADED STATE

Let the geometrical figure move from the state 0. Stress of the elastic system
takes place in the same way as when the state 0 is at rest. In other words, the
elastic system stress is still regarded only with respect to the mobile state 0, while
this motion of state 0 influences only the members which do not reflect the elastic
properties of the elastic system. Simply, the potential energy and dissipation energy
of the elastic system connections are determined by displacement of the system
relative to the mobile unloaded state, while the other quantities are defined for the
elastic system absolute coordinates.

Kinetic energy is defined by the absolute velocities as

2Ta =
m∑

i=0

⎛
⎝ ∞∑

j=1

dmjvj

⎞
⎠ =

m∑
i=0

⎛
⎝ ∞∑

j=1

dmj

d

dt
(ria + bj )

⎞
⎠ ,

2Ta =
m∑

i=0

miṙ
2
ia +

m∑
i=0

Iiω
2
ia

=
m∑

i=0

vT
iaMivia = vT

a Mva = Ẏ T LT
va(Y )MLva(Y )Ẏ ,

2Ta = Ẏ T Wa(Y )Ẏ , (372)

where

Yi = col(ria,Aia) ∈ R6×1, Y = col(Y0, Y1, . . . , Ym) ∈ R(6m+6)×1,

via = col(ṙia, ωia(Aia)) = Lvia(Yi)Ẏi ∈ R6×1,

ωia = Lωia(Aia)Ȧia ∈ R3×1,

269



va = col(v0a, v1a, . . . , vma) ∈ R(6m+6)×1,

Lvia(Yi) = diag(I3×3, Lωia(Aia)) ∈ R6×6,

Lva(Y ) = diag(Lv0a, Lv1a . . . , Lvma) ∈ R(6m+6)×(6m+6),

Wa(Y ) = diag(W0a,W1a, . . . ,Wma)

= LT
va(Y )MLva(Y ) ∈ R(6m+6)×(6m+6). (373)

The mathematical form of Wia is identical to the mathematical form of Wi , whereby
instead of the subscript i, the subscript ia is used as the designation of absolute
coordinates. Hence, the derivatives of the kinetic energy

∂Tia

∂Ẏi

= Wia(Yi)Ẏi,
d

dt

∂Tia

∂Ẏi

= Ẇia(Yi)Ẏi + Wia(Yi)Ÿi,
∂Tia

∂Yi

(Yi, Ẏi),

are also identical to the expressions obtained in Appendix A, in which the sub-
scripts should be changed, i.e. instead of the displacement coordinates marked by
i, the absolute coordinates with the subscript ia should be used.

It has already been mentioned that the elastic system potential energy is equal
to the elastic system deformation work.

Total potential energy due to the linear and rotational displacement of the body
i relative to the body j , i, j = 0, 1, . . . , m is defined by


a = 
01a + 
02a + 
03a + · · · + 
0ma+

+
12a + 
13a + · · · + 
1ma+

+
23a + · · · + 
2ma+

· · · · · ·

+
(m−1)m.

The arbitrary member 
ija of this sum for yij = yD
ij is defined by

2
ija = (yD
ij )T Kijay

D
ij = (Yi − Yj)

T �ij (Yi, Yj )Kija�ij (Yi, Yj )(Yi − Yj),

2
ija = (Yi − Yj)
T πij (Yi − Yj) = Y T

i πijYi − 2Y T
i πijYj + Y T

j πijYj ,

where πij = �ij (Yi, Yj )Kija�ij ,
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πij = πji

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cx
ij

(
1 − ‖ρij0‖

‖ria−rja‖
)2

0 0 0 0 0

0 c
y
ij

(
1 − ‖ρij0‖

‖ria−rja‖
)2

0 0 0 0

0 0 cz
ij

(
1 − ‖ρij0‖

‖ria−rja‖
)2

0 0 0

0 0 0 c
ψ
ij

0 0

0 0 0 0 cθ
ij

0

0 0 0 0 0 c
ϕ
ij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, after substitution, the total potential energy is

2
a = Y T
0 (π01 + π02 + · · · + π0m)Y0 − Y T

0 π01Y1 − Y T
0 π02Y2 − · · ·

− Y T
0 π0mYm − Y T

1 π10Y0 + Y T
1 (π10 + π12 + · · · + π1m)Y1

− Y T
1 π12Y2 − · · · − Y T

1 π1mYm

· · · · · · · · · · · · · · ·
− Y T

mπm0Y0 − Y T
m πm1Y1 − · · · + Y T

m (πm0 + πm1 + · · · + πm(m−1))Ym

or, in comprised form,
2
a = Y T πa(Y )Y, (374)

where, due to πij = πji ,

πa(Y ) = πT
a (Y )

=
⎡
⎢⎣
∑n

k=0,k 	=0 π0k −π01 −π02 · · · −π0m

−π01
∑n

k=0,k 	=1 π1k −π12 · · · −π1m

· · · · · · · · · · · · · · ·
−π0m −π1m −π2m · · · ∑n

k=0,k 	=m πkm

⎤
⎥⎦ .

From this, the derivative of potential energy with respect to the coordinate is

∂
a

∂Y
= 1

2

∂Y T π̄aY

∂Y
+ πa(Y )Y,

∂
a

∂Y
=

⎡
⎢⎢⎢⎢⎢⎣

∂
a

∂Y0· · ·
∂
a

∂Yi· · ·
∂
a

∂Ym

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

2

∂Y T π̄aY

∂Y0
+ π0a(Y )Y

· · ·
1

2

∂Y T π̄aY

∂Yi

+ πia(Y )Y

· · ·
1

2

∂Y T π̄aY

∂Ym

+ πma(Y )Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⇒ ∂
a

∂Yi

= 1

2

∂Y T π̄aY

∂Yi

+ πia(Y )Y ∈ R6,
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where πia(Y ) ∈ R6×(6m+6) are the submatrices composed of the rows starting from
6i + 1 to 6i + 6 inclusive of the matrix πa(Y ), and ∂(Y T π̄aY )/∂Yi is the vector of
the quadratic form (scalar) derivative Y T πaY with respect to the vector Yi , whereby
the macron designates that partial derivation is carried out over the matrix πa . In
expanded form, this vector is

∂Y T π̄aY

∂Yi

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Y T π̄aY

∂Y 1
i

∂Y T π̄aY

∂Y 2
i· · ·

∂Y T π̄aY

∂Y 6
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Y T ∂πa

∂Y 1
i

Y

Y T ∂πa

∂Y 2
i

Y

· · ·
Y T ∂πa

∂Y 6
i

Y

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Total dissipation energy consumed in the course of linear and rotational displace-
ment of the body i relative to the body j , i, j = 0, 1, . . . , m is defined by

Da = D01a + D02a + D03a + · · · + D0ma+

+D12a + D13a + · · · + D1ma+

+D23a + · · · + D2ma+

· · · · · ·

+D(m−1)m.

An arbitrary member Dija of that sum is given by

−2Dija = (δ̇D
ij )T Dδ

ij δ̇
D
ij + (Ȧia − Ȧja)

T DA
ij (Ȧia − Ȧja)

= (ṙia − ṙja)
T Gija(ria, rja)D

δ
ijGija(ria, rja)(ṙia − ṙja)

+ (Ȧia − Ȧja)
T DA

ij (Ȧia − Ȧja)

= ((ṙia − ṙja)
T | (Ȧia − Ȧja)

T )

×
[

Gija(ria, rja)D
δ
ijGija(ria, rja) 03×3

03×3 DA
ij

] [
ṙia − ṙja

Ȧia − Ȧja

]

= (Ẏi − Ẏj )
T Dij (Ẏi − Ẏj )

= Ẏ T
i Dij Ẏi − 2Ẏ T

i Dij Ẏj + Ẏ T
j Dij Ẏj ,

where

Dij = DT
ij = Dji = diag(Gija(ria, rja)D

δ
ijGija(ria, rja),D

A
ij ) ∈ R6×6,
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wherefrom, after substitution, the total dissipation energy is determined by

−2Da = Ẏ T
0 (D01 + D02 + · · · + D0m)Ẏ0 − Ẏ T

0 D01Ẏ1 − · · · − Ẏ T
0 D0mẎm

−Ẏ T
1 D10Ẏ0 + Ẏ T

1 (D10 + D12 + · · · + D1m)Ẏ1 − · · · − Ẏ T
1 D1mẎm

· · · · · · · · · · · · · · ·

−Ẏ T
m Dm0Ẏ0 − Ẏ T

m Dm1Ẏ1 − · · · + Ẏ T
m (Dm0 + Dm1 + · · · + Dm(m−1))Ẏm.

In united quadratic form with respect to the absolute coordinates derivatives, the
dissipation energy is given by

2Da = −Ẏ T Da(Y )Ẏ , (375)

where, because of Dij = Dji

Da(Y ) = DT
a (Y )

=
⎡
⎢⎣
∑n

k=0,k 	=0 D0k −D01 −D02 · · · −D0m

−D01
∑n

k=0,k 	=1 D1k −D12 · · · −D1m

· · · · · · · · · · · · · · ·
−D0m −D1m −D2m · · · ∑n

k=0,k 	=m Dkm

⎤
⎥⎦ .

From this, the derivative with respect to velocity is defined by

∂Da

∂Ẏ
= −Da(Y )Ẏ ,

∂Da

∂Ẏ
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Da

∂Ẏo· · ·
∂Da

∂Ẏi· · ·
∂Da

∂Ẏm

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

D0a(Y )Ẏ

· · ·
Dia(Y )Ẏ

· · ·
Dma(Y )Ẏ

⎤
⎥⎥⎥⎦ ⇒ ∂Da

∂Ẏi

= −Dia(Y )Ẏ ∈ R6×1,

where Dia(Y ) ∈ R6×6(m+1) are the submatrices composed of the rows starting from
6i + 1 to 6i + 6 inclusive of the matrix Da(Y ).

Substituting the obtained expressions into Langrange’s equations

d

dt

∂Ta

∂Ẏ
j

i

− ∂Ta

∂Y
j

i

− ∂Da

∂Ẏ
j

i

+ ∂
a

∂Y
j

i

= Q
j

ia, i = 0, 1, . . . , m, j = 1, . . . , 6, (376)
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where the generalized forces for the individual components Y
j

i of the vector Yi are
given by

Q
j

ia =
m∑

k=0

∂Yk

∂Y
j

i

(Gk(mkg) + Fk)

= G
j

i (mig) + F
j

i , i = 0, 1, . . . , m, j = 1, . . . , 6,

for the elastic system performing general motion under the action of a system of
external forces about the mobile unloaded state 0, which is also performing general
motion, the general form is obtained as

Wia(Yi)Ÿi + Ẇia(Yi)Ẏi − ∂Tia

∂Yi

(Yi, Ẏi) + DiaẎ

+ 1

2

∂Y T π̄aY

∂Yi

+ πia(Y )Y = Gi(mig) + Fi,

for i = 0, 1, . . . , m or, in short form,

Wia(Yi)Ÿi + wia(Y, Ẏ ) = Fi, i = 0, 1, . . . , m,

where

wia(Y, Ẏ ) = Ẇia(Yi)Ẏi − ∂Tia

∂Yi

(Yi, Ẏi) + DiaẎ

+ 1

2

∂Y T π̄aY

∂Yi

+ πia(Y )Y − Gi(mig) ∈ R6×1,

for i = 0, 1, . . . , m. By putting together all 6m + 6 equations, we obtain

Wa(Y )Ÿ + wa(Y, Ẏ ) = F, (377)

where

Wa(Y ) = diag(W0a(Y0),W1a(Y1), . . . ,Wma(Ym)) ∈ R(6m+6)×(6m+6),

Wa(Y ) = WT
a (Y ), det Wa(Y ) 	= 0,

wa(Y, Ẏ ) = col(w0a(Y, Ẏ ), . . . , wma(Y, Ẏ )) ∈ R(6m+6)×1.

From 6m + 6 equations (377), only rank K equations are independent.
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Equation (377) can be presented in such way that the descriptions of connec-
tions and manipulated object motion are divided:

Wca(Yc)Ÿc + wca(Y, Ẏ ) = Fca,

W0a(Y0)Ÿ0 + w0a(Y, Ẏ ) = 0, (378)

where the subscript c designates the quantities related to the contact points, and the
subscript 0 quantities related to the manipulated object. Here

Yca = col(Y1a, Y2a, . . . ., Yma) ∈ R6m×1, Y0a ∈ R6×1,

Fca = col(F1a, F2a, . . . ., Fma) ∈ R6m×1, F0a = 0 ∈ R6×1,

Wca(Yca) = diag(W1a(Y1) . . . Wma(Ym)) ∈ R6m×6m,

Wca(Yc) = WT
ca(Yc), det Wca(Yc) 	= 0,

wca(Y, Ẏ ) = col(w1a(Y, Ẏ ), . . . , wma(Y, Ẏ )) ∈ R6m×1,

where the expanded position vector of the contact position in the 6m-dimensional
space is denoted by Yca and the expanded vector of the contact forces acting at the
contact point in that space is denoted by Fca . It should be noted that no contact
force acts directly at the manipulated object MC, hence F0a = 0. Equations (377)
and (378) represent the final form of the equations of elastic system behavior under
the action of external forces Fca , while the system performs general motion about
the unloaded state 0, which also performs general motion.

The general motion of elastic system motion is described by (377), i.e. 6m + 6
relations are defined, of which rank K are independent. This means that for the
unique definition of elastic system position during the motion, it is necessary to
prescribe 6m + 6 − rank K absolute generalized coordinates and their derivatives.

Appendix B
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transferred load, 4
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trajectory, 137
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criterion, 28
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output, 256
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elastic displacement, 73
elastic environment, 65
elastic force, 35, 39, 47, 55, 83, 98, 141, 142,
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elastic interconnections, 7, 37, 41, 59, 62, 65,

74, 139, 252
elastic structure, 7
elastic system, 7
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deformation energy, 45, 46
deformation work, 71
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dissipation energy, 49, 84, 88, 265, 272
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properties, 89
internal forces, 45
kinetic energy, 43, 84, 86, 263, 269
kinetic potential, 48
loaded, 77
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properties, 89
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space, 11
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state vector, 16
unloaded state
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elasticity force, 65
equilibrium, 30
exchange of the leader’s, 254
external force, 32, 41, 85
external load, 62

feedback loop, 256
feedback loops, 118, 142, 190
finite-element method, 67
follower, 29, 112, 114
followers’ acceleration, 152, 160

force uncertainty, 22, 24, 30, 31, 251

general motion, 63–65, 89
generalized forces, 47, 85, 88
generalized stiffnesses, 45
geometric configuration, 34, 254
global coordinate, 68
grasping, 2
gravitation force, 65
grid, 34, 61, 251

displacements, 34
position, 34
statically undetermined, 31, 251

gripper, 31
gripping, 2
gripping phase, 142, 254

holonomic constraints, 156

individual stiffness, 68
influence numbers, 33
internal force, 24, 28, 41
internal forces, 73

kinematic chain, 7
kinematic instability, 41
kinematic relations, 101
kinematic uncertainty, 19, 24, 251

due to contact, 21
due to manipulator redundancy, 19

kinematically indeterminate, 69
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kinematically stable, 41
kinematically unstable, 39
kinetic energy, 32, 43, 84, 86, 263, 269

Lagrange equations, 49, 82, 252
leader, 29, 40, 112, 114
leader’s acceleration, 152, 160, 161
leadership principle, 40
lifting, 3
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manipulated object
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on the support, 109
manipulation systems, 1
manipulator tip, 31, 255
mapping, 256
mapping domain, 194, 197

cooperative manipulation, 205
input, 194
output, 194
state, 194

mapping one-to-one, 198
Maxwell’s coefficient, 33, 107
method of deformation work, 32
method of direct stiffness, 68
modes of rigid body, 39, 253
motion equations, 109, 156

natural output space, 194, 256
node, 7, 34, 62, 73

external, 61, 255
internal, 61

nominal, 137, 254
synthesis, 137

nominal gripping, 142
preset ys

0, 144
conditions, 145

preset yv = y1, 146
conditions, 149

nominal input, 137
nominal motion, 137, 153

brief procedure, 154
driving torques, 165
initial state, 153
nominal trajectory

manipulated object MC, 155
one contact point, 161

superscript
‘0s’, 154
‘s’, 154
‘u’, 154

nominal trajectory, 137
non-holonomic constraint, 151, 153
non-holonomic constraints, 156

observability, 192, 256
output

controlled, 189, 211, 256
directly tracked, 189, 211, 216
natural space, 256
nominal, 220, 231, 257

non-controlled, 190, 211, 216, 257

potential energy, 32, 45, 46, 83, 87, 90, 92,
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principle of minimal, 32

quantity designations, 16
quasi-static, 255

realizable, 255
trajectories, 255

realizable nominals, 137
relative displacements, 73

angular, 76
releasing, 2, 4
resultant force, 24
rigid body, 7, 65, 253
rigid manipulator, 65
rigid structure, 7

servoactuator, 258
singularity, 41
six DOFs, 65
slave manipulator, 28
state 0, 12, 82

immobile, 70
unloaded, 70

statically indeterminate, 69
statically transferred, 255
stiffness matrix, 41
stiffness matrix, 39, 253

assembled, 70, 72
disassembled, 68
generalized, 72

structure
damping matrix, 116
stiffness matrix, 115, 117
vector

displacement, 117
force, 117

structure envelope, 7
structures of the matrices, 114
submatrices, 115
subscript, 8, 39, 114, 270

’0’, 8
’c’, 39
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‘0’, 114
‘c’, 114
‘d’, 114
‘e’, 114
‘s’, 114
‘v’, 114

symbol convention, 16

task space, 10
transferred positions, 255

transferring, 3

unload, 34
unloaded state, 62, 253
unperturbed motion, 137
unperturbed trajectory, 137
unpowered joints, 7

weighting matrix, 28
withdrawing, 2, 4
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