Jones ™ TIVAR - Je

PIPPE U] Py TISAIU0D JOG0) UD UDIFULIOHIU WLIM Mipuadde
ue pue ‘pajepdn pu pasal uaaq asey sadipuadde ay)

Ty
P

ubisap 0qQJ NOGE ANADE PUR DISUNAY

sonousb yaieasal pue
fEuawwod Aq sionpousd pue spalosd yoqou jo sapdwexa
1ouuepp, By a0y spalosd Bunbebua jo saquinu e .
Buimogjog sy
24P UDILPa PUODas ayl o1 suciuppe ayl Buowy s30q0J |PUD|L
uny Ayny 184 sajsuadxau pue Juaiayip om] Buipnisua) jo
swadoud dajs-Ag-days ayl ybnouy) sapeas ayl sapink spogoy
GOy INE) IAGPULOJU PUR SUOIIBIISNI|| .mcﬁu_maunzu Buisny

e

NOLLIG3 ONOJ3S

SISRISNYIUS 10G0J 10} Saipae pue swelboud sapnpu)
pue siuawdojanap exnbojouydal sayal uoIIpa mau ay |
ijoqoy jo piay buipuedxa Hpide. pue Buimoib-1ana ay)

Yum aoed daay SJ04INe 3yl 'UOIpa puolas ayl jo uoengnd
3yl YUAA uoiejuawayduy o) uoijendsu) sJOQoy ajiqow Jo
uoyEgnd 15y gyl 30Ul sdea) wniuenb apew ey 211000y

NOILI03 ONOYIS uonyRjuawaldw) 0) uopesdsu|

510804 1T140W

13b13€ "y dnig - vuhj{ ‘W RJuy - sauof) ydasof

uolye)uawa|duil
0} uonesdsu|

10804 11140W

MOBIHEROBOTS ==

Contents

Preface to the Second Edition
uuw.mmwnm

1 Introduction
1.1 References .

2 TuteBot

2.1 A Tutorial Robot .

2.2 TuteBot Behaviors

2.3 Building TuteBot .

2.4 Electronic components .
2.5 Electronic Construction
2.6 Operation
2.7 Exercises for the Reader
2.8 References .

3 Computational Hardware
3.1 Rug Warrior’s Design Strategy
3.2 Microprocessors
3.3 The Canonical Compute

13
13
15
18
25
29
34
41
41

43
44
48
49

CONTENTS

7.2 How a DC Motor Works

viii
3.4 Expansion . 56
3.5 Data Buffer 59
3.6 Rug Warrior Logic 61
3.7 Hardware-Software Interface . 65
3.8 Real-Time Control 81
3.9 Loading a Program . 89
3.10 Getting Started . . . 92
3.11 References . 93
4 Designing and Prototyping 95
4.1 Practical Problems . 95
4.2 Connectors C e . 102
4.3 Printed Circuit Boards . . 105
4.4 Debugging 109
5 Sensors 111
5.1 Achieving Perception . 111
‘5.2 Interfacing Sensors . 114
5.3 Light Sensors . 120
5.4 Force Sensors . 137
5.5 Sound Sensors . . . 142
5.6 Position and Orientation . . 150
9.7 Proprioceptive Sensors . . 164
5.8 Exercise . 166
5.9 References . . 168
6 Mechanics 169
6.1 Locomotion e . 169
6.2 Adapting Mobile Platforms . 179
6.3 Legged Locomotion . . 183
6.4 Construction Systems . 183
6.5 Custom Construction . . 184
6.6 Exercise . 191
6.7 References . . 191
7 Motors 193
7.1 Variety Abounds . 193

. 199

CONTENTS ix
7.3 Sizing a DC Motor . 203
7.4 Gears C . 211
7.5 Motor Data Sheets . 213
7.6 Motors for Rug Warrior . 218
7.7 Interfacing Motors . 226
7.8 Software for Driving Motors . . 249
7.9 References . . 263

8 Power 265
8.1 Batteries . . 265
8.2 Recharging . 272
8.3 Power Regulation . . 273
8.4 [Isolation . . 278
8.5 References . . 281

9 Robot Programming B 283
9.1 The Traditional Approach 284
9.2 Behavior Control . . . 288
9.3 Rug Warrior’s Program . 292
9.4 Implementing Behavior Control . . 294
9.5 Behavior Control in IC 302
9.6 What Did We Do? . 272309
9.7 References . 31

10 Robot Projects 313
10.1 Projects for Individual Robots . 313
10.2 Multi-Robot Projects . . 324
10.3 References . . 335

11 Robot Applications 337
11.1 Down and Dirty . 338
11.2 Making the Rounds . . 342
11.3 In Harm’s Way . 344
11.4 Summary . 353
11.5 References . . 353

X CONTENTS
12 Robot Design Principles 355
12.1 Complexity Kills - 15151
12.2 Holistic Robotics356
12.3 Code versus Reality co 356
12.4 Computer Program # Robot Program357
12.5 Magician’s Bag e 357
12.6 Avoiding “Usually”358
12.7 Design Steps358
13 Unsolved Problems 361
13.1 Navigation. R 362
13.2 Recognition ceoe .. 362
133 Learning L 363
13.4 Gnat Robots e e e .. .363
13.5 Cooperation e364
13.6 Thoughts 364
13.7 Exercise 365
13.8 References, . 366
A Schematics 367
B Rug Warrior Programs 377
Bl Bugle 379
B.2 Theremin e e e e e 380
B3 Yo-Yo R 123
B4 Wimp 383
B5 Follow385
B6 Echo 386
B.7 Sonic Commander 389
B8 Auxilary Code 392
B.9 Velocity Control Code393
C Yellow Pages 397
C.1 Suppliers 398
C2 Products. 419
D Trade Magazines 421
E Data Books 425

CONTENTS Xi
F Robot Contests 437
G Color and ASCII Codes 441
Bibliography 443
Index 451

B s AR S . o

Preface to the
Second Edition

Welcome to the second edition of Mobile Robots: Inspiration to Im-
plementation. In the five years since the original publication of our
book we have witnessed a transformation in mobile robotics. Once
an arcane craft practiced only in a rarefied set of university research
labs, mobile robotics is now gaining an expanding following. Robots
are regularly featured in TV shows and magazines, Emﬁ,cﬁuos in
robotics is available at numerous high schools and colleges; &ONmSm of
robot contests are held annually around the world, robot clubs have

sprung up m<9.%€59.¢ and thousands of web pages are devoted to’

robots.

As we had hoped and expected, the pace of robotic development
has quickened- and the achievements of mobile robots have become
ever more impressive. Thus, we felt it was high time to update,
revise, and expand Mobile Robots to reflect this progress.

To the many readers of our first edition; we offer our heart-felt
thanks and appreciation. The success of Mobile Robots: Inspiration
to Implementation has both surprised and gratified us. The book has
been reprinted a dozen times and has been translated into Japanese,
German, and French. Enthusiasts new to robotics and vetern roboti-

Xiv Preface to the Second mo_:_.o:

Preface to the Second Edition XV

cists alike have responded to our text more positively than we ever
imagined. Our goal was to widely disseminate knowledge of how to
design and build robots. The achievement of this goal has outpaced
our dreams. ,

Changes

This new edition has several expanded and updated chapters as well
as three completely new chapters.

Chapter 2 has been completely revised using Fischer-Technik
~ parts to build the TuteBot. These parts are easier to acquire in
single quantities than LEGO components ai‘:ow were used for the
original TuteBot.

Chapter 3 has been expanded. It now includes a full explanation
of how to add memory-mapped devices to your robot.

The chapter on sensors, Chapter 5, includes new devices and
more driver code. Revisions to other chapters have been made as
well.

To answer the oft asked question “But what can you do with a
robot?” we have added a new chapter, Chapter 10. Here a number
of engaging projects suitable for Rug Warrior, the robot presented
in the book, are described. Some projects even include crucial code
segments.

Examples are key to understanding. And there can be few more
pertinent examples in robotics than attempts by commercial and
research interests to build “real” robots. A second new chapter,
Chapter 11, contains examples of this kind.

In the course of our continuing experience in robotics we have
seen many examples of less than optimal robot design. A third new
chapter, Chapter 12, contains heuristics and advice we hope will be
helpful in this regard. Here we list principles that have guided us
toward the successful completion of robot projects.

Appendix B has been completely revised. In the first edition, this
appendix contained a single all-encompassing, but perhaps confusing
program. The revised appendix contains numerous simpler and more
easily understood programs for Rug Warrior.

The World Wide Web offers to the robot builder informational re-
sources vastly greater than the ones with which we originally worked.
The Yellow Pages, Appendices C-E, one of the most applauded fea-
tures of the first edition, have been updated and revised and now
include web references wherever possible.

Finally, a new appendix, Appenndix F details the large and grow-
ing list of robot contests.

We have included the preface to the first edition of Mobile Robots
for completeness. The reader should note that the chapter references
there reflect the original chapter numbering which has changed for
this new edition. Also, the Motorola MC68HC811A0 microprocessor
which was indicated at the time to be out of production is in fact
still available.

Opening the Black Box

Modern technology sometimes succeeds too well at hiding the details
of its functionality. In years past, a child could gain an understanding
of mechanics by disassembling a wind-up clock. A child of today will
find inside the black box of a digital clock only more black boxes.
The function of these boxes (integrated circuit chips) is Ta&ms at a
level impenetrable to eyes of the curious.

Robots are at a stage of development where they can Udbm back
some of this lost “discoverability.” You can still take off the top
of the robot, poke around inside, change some things mba see what
happens. This is a key goal for us: to open the black box and 3/6@_ :
what is inside. And it is for this reason that we strongly encourage
you to work with a robot of your own. A deep understanding of the
technology can be-attained not by reading, but only by doing.

Rug Warrior and Rug Warrior Pro

For the first edition of Mobile Robots: Inspiration to Implementation
we developed a robot called Rug Warrior. Rug Warrior was a con-

_ venient vehicle for us as it gave us a consistent platform on which

to hang our examples. We imagined that readers would acquire
the components for Rug Warrior and build their own robots from

Xvi Preface to the Second Edition

scratch. Toward that end we included in the first edition detailed
information about how specific components could be purchased.

Unfortunately, building a robot from scratch is a daunting task
especially if you do not have access to a fully-supplied stock room.
Many readers who tried to construct a robot in this way found that
they learned much more about ordering from vendors, fulfilling min-
imum purchase requirements, and tracking down scarce components
than they learned about robot building. It was the vocal distress of
such readers that led our publisher to offer Rug Warrior in kit form.

Recently, a new version of the robot called Rug Warrior Pro™
was developed. Rug Warrior Pro™ is fully compatible with the
original version but has increased functionality. The original Rug
. Warrior, however, is highly embedded in the text. This led to a
dilemma in regard to updating the book. Should we simply ignore
the advances of Rug Warrior ProT™? Or should we redo every ex-
ample to conform to the new robot even when the changes are not
material to the point under discussion?

We resolved the problem by adopting a two-robot policy. Rug
Warrior continues in its original roll as our primary example robot
for describing sensor and actuator attachment. Information about
Rug Warrior’s circuit board and components is provided for those
stalwarts who wish to build from scratch. Significant new features
implemented in Rug Warrior Pro™ are described separately. These
new features need not be lost to builders of Rug Warrior—an inex-
pensive upgrade module that effectively converts Rug Warrior into
Rug Warrior Pro™ is available from the publisher.

Acknowledgments

Many people have read early drafts of this book and offered helpful com-
ments. We would like to thank Colin Angle, Rodney Brooks, Roger Chen,
Jill Crisman, CDR H.R. Everett, Dorothy Flynn, Kathleen Flynn, Richard
Flynn, Douglas Gage, Mattew Good, Ken Good, Tina Kapur, Ken Liv-
ingston, Fred Martin, James McLurkin, Michael Noakes, Lynne Parker,
Alison Reid, John Richardson, Rick Shafer, Wendy Taylor, William Wells,
Masaki Yamamoto, and Holly Yanco. :

We appreciate the interest of Bruce Seiger and Don McAleer and their
students at Wellesley High School, who beta-tested the material in the

Preface to the Second Edition Xvii

first edition of this book. We would also like to acknowledge and thank
Randy Sargent and Fred Martin of the MIT Media Laboratory, who were
instrumental in making this book possible, both through their efforts in
creating new robot software development tools and in contributing to the
actual manuscript. We were fortunate to have the help and encouragement
of our publishers, Alice and Klaus Peters, who pushed this book to aim for
as wide an audience as possible. We are grateful for the patience, love, and
support of Sue, Kate, and Emily during the many days that Daddy was off
playing with robots.

The second edition benefited from the comments and suggestions of
Phil Veatch, Jim Maddox, and Mark Chiappetta who offered insights into
the development of commercial robots. ,

Finally, thanks to all those Robot Olympians whose enthusiasm and
participation in the Robot Olympics inspired and instigated this book.

Preface

The design and construction of mobile robots is as much an art as a
science. The intent of Mobile Robots: Inspiration to Implementation
is to explain the skills involved in a manner amenable to as. broad
an audience as possible. Our aim is to teach you, the reader, how to
build a robot. With the recent wide availability ‘of home computers
and the tremendous reductions in costs for microelectronics, building
mobile robots with an assortment of sensors and actuators is within
the reach of nearly everyone. e .

This book is designed to appeal to readers on a variety of levels.
First, for novices and those eager to jump in and get their hands
dirty, there are basic lessons on the tools of the trade and the craft
of building things and long appendices of suppliers and distributors
of interesting robot parts. Chapter 2 plunges right in and leads
the reader through a tutorial design example of possibly the world’s
simplest robot, but nevertheless a complete system. This is TuteBot
(for, Tutorial Robot), an obstacle-avoiding robot comprised solely
of two motors, two wheels, two bump switches, and a few discrete
-electronic components. The TuteBot exercise should conjure up a
plethora of questions and incite the imagination for many ways to
make the robot better and act more intelligently.

XX Preface

With TuteBot as a warmup, we then introduce a more sophisti-
cated robot based on software control, Rug Warrior. The remaining
chapters after TuteBot are designed to convey basic knowledge about
the building-block technologies that make up a robot: sensors, actu-
ators, a power supply, and an intelligence system. The progression of
Chapters 3 through 8 instructs you on how to put together the hard-
ware subsystems of Rug Warrior: microprocessor-controlled sensors
and actuators, the mechanics of a locomotion system, and a capable
battery supply. Rug Warrior has enough sensors and actuators to
enable a richer class of behaviors than TuteBot (such as chasing peo-
ple, avoiding obstacles, moving towards noises, hiding in the dark,
and playing music).

; Our purpose is not to publish a cookbook but rather to put to-
gether an exposé on enough basic skills so that a generation of en-
thusiasts will not only widen their imaginations but also have the
requisite tools to implement those dreams. This is, to us, the real
excitement of robotics.

Chapter 9 of the book is directed at just that issue: How can
we put all the pieces together to build truly intelligent systems? As
we add more sensors, more actuators, and more software, how do
we manage complexity? How do we coerce interesting behaviors
to emerge? And in the end, how can such machines solve useful
problems for us? We conclude our book in Chapter 10, with some
discussion of new directions in artificial intelligence and arising tech-
nologies that may take these ideas to the next step.

Although this book is intended to be an exposition on build-
ing mobile robots rather than a literature review of the field, we
have included some annotated references at the end of each chap-
ter, pointing to sources of further reading or background of concepts
mentioned. There is a full bibliography at the end of the book.

Mobile Robots has grown out of research at the MIT Artificial

. Intelligence (AI) Laboratory under Rodney Brooks and his mobile

robot group. The half dozen years that the “mobot” lab has been in

existence have seen the birth of a wide variety of artificial creatures:
some avoid obstacles, some collect things, a few wander and build
maps, several walk and climb over rough terrain and a tiny one
hides in dark corners. While the research has focused on the issue of
how to organize the “insect-level” intelligence of these mobile robots,

Preface xxi

we have found that we have also had to do extensive engineering
throughout several generations of newly available technology.

In 1989, we staged a Robot Talent Show, transferring much of
this technology to the Al Lab as a whole, Students were given kits
of parts and computers and were encouraged to pick their own prob-
lems and solve them. Vacuum cleaners, laser tag-playing robots, au-
tonomous blimps, and cross-country skiers were a few of the resulting
mechanical participants in the talent show. Photographs from that
night are included at the end of this section. We put together a robot
builder’s manual before the event, outlining the basics of building au-
tonomous creatures, and handed it out to all the students. The idea
for this book sprang directly from that first manual.

Our expectations and experiences in building mobile robots over
the years have not always matched, but the lessons learned have been
invaluable and we hope to share these with you. Our method is to
give general background in each chapter on how different robot sub-
systems work and then to ground the discourse in specific examples
with a robot we have designed solely for this book as a teaching aid.
In this way, specific circuits and bits of code are sprinkled through-
out, and readers who follow along can implement their own robots
and see them evolve step by step. The complete system is laid out
in one place in the appendices at the end of the book. A ‘gives the
schematic for Rug Warrior’s brain along with all the interface elec-
tronics to drive its sensors and actuators and B lists a program that
defines Rug Warrior’s behaviors. The entire robot has been reduced
to eight chips and six connectors, a very EmEBm:mﬁ;mxmBEo of a
mobile robot. .

Getting started in robotics involves not only learning how to
build things but knowing where to get materials. The remaining
appendices contain a compendium of parts, suppliers, and informa-
tion that we have found helpful. Appendix C lists a yellow pages of
over 150 suppliers and distributors for robot parts, such as motors,
sensors, prototyping equipment, electronic components, and power
supplies. Hopefully, this collection will help you overcome the iner-
tia of getting started, whether it be in a basement workshop or in a
university laboratory. -

Technology changes rapidly, and while a book such as this can
provide a general foundation, it cannot be dynamic enough to pro-

XXii Preface

vide up-to-date information on new product announcements. Stay-
ing abreast of technology is crucial in making design decisions. We
have discovered that systems we engineered in house one day would
often become commercially available the next, or that components
we relied on for years would suddenly become discontinued, so in
Appendix D, we have listed a number of magazines, trade jour-
nals, and electronic bulletin boards that we have found invaluable
for staying current. (In fact, just as this book is going to press,
the microprocessor that we chose for Rug Warrior has gone out of
production. Fortunately, however, the Motorola MC68HC811A0 mi-
croprocessor mentioned throughout is upward compatible with the
"Motorola MC68HC11A1, so simply substitute that part into Rug
Warrior.) :

Semiconductor manufacturers’ data books are another source of
current technology; we have annotated our collection in E. G adds
a few more tables that are handy to have in one place, such as the
resistor color code and the ASCII code for alphanumeric symbols.

As technology marches on, a book that emphasizes specific hard-
ware will quickly become outdated. But the art and the means and
the basic concepts survive, and these we hope to share with you.

Cambridge, MA Anita M. Flynn
April, 1993 Joseph L. Jones

Introduction

The rise in popularity of the single-chip microcomputer and the dras-
tic reductions in size and cost of integrated circuits in recent years
have opened up huge new arenas for creating wsdoywwabﬂ systems.
Building a robot, however, requires more muauowﬁmo than simple pro-
gramming. A roboticist must be a generalist. The robot designer
must own a compendium of basic skills from fields such as mechanical
engineering, electrical engineering, computer scienice, and .artificial
intelligence (AI). Unfortunately, few people have the opportunity to
study so broadly. In this book, we attempt to outline.a few basic
ideas from each of those areas and, more importantly, to suggest
strategies for putting the pieces together. Hopefully, with a little
creativity, you will be able to later use this toolbox of techniques to
design far more intriguing machines than those outlined in this book.

Robotics is about building systems. Locomotion actuators, ma-
nipulators, control systems, sensor suites, efficient power supplies,
well-engineered software—all of these subsystems have to be de-
signed to fit together into an appropriate package suitable for carry-
ing out the robot’s task. Where do we start?

We think of a robot as an intelligent connection of perception to
action. The implementation of that goal might take on a variety

2 1. Introduction

Figure 1.1. TuteBot is a very simple robot, yet it can exhibit two distinct
behaviors. It will follow a wall and when it bumps into something, it will backup
and turn. TuteBot’s brain is an analog computer, which is programmed only by
adjusting potentiometers.

of “costumes,” from mechanical logic to microprocessor control to
networks of neuron-like gates. Our approach is to create abstrac-
tion barriers in terms of thinking about the intelligent capabilities
our robot might possess and then to gradually break them down by
explaining the specific hardware details that we might employ to cre-
ate those competences. The theme throughout is to build systems
early and build systems often—to start with very simple systems
that connect perception to action and to gradually move to more
sophisticated machines.

We start with a tutorial in the next chapter that describes how
to build a robot, TuteBot, that is able to wander around a room and
avoid obstacles. This example robot, pictured in Figure 1.1, is im-
plemented without recourse to a microprocessor. TuteBot is merely
an agglomeration of switches, relays, motors, and discrete electronic
components, all of which can be assembled rather easily. You will be
able to adjust TuteBot’s reflexes by tweaking two potentiometers.

From this very simple example of a robot, we introduce the mi-
croprocessor and the advantages of using software to manage the
complexity of large numbers of sensors and actuators. The view-

Introduction 3

point from this moment on is to build systems with the intent of
getting to software as soon as possible. To keep parts count, size,
and costs down for our readers, we describe minimalist ways to inter-
face sensors, motors, and power supplies in another example robot,
Rug Warrior. The microprocessor becomes the heart of Rug War-
rior, and the following chapters describe the workings of mechanical
and electrical components and the interface circuitry that enables
them to be driven from a microprocessor. Software-primitive oper-
ations are threaded throughout the book as each new perception or
locomotion system is introduced.)

Although this book describes the details involved in actually
building robots, we' hope also to raise some deeper points about
models of intelligence. What is intelligence? Is it the contemplative
thought involved in playing chess? Is it the reflexive action that oc-
curs as you try to keep the gnats out of your eyes while walking down
the street on a hot, muggy summer night? Or is it the common-sense
reasoning used in deciding what to make for breakfast? We will stick
with the notion that intelligence is the foundation for how people act
most of the time. It will be interesting to keep some of these ques-
tions in mind as we investigate the sorts of Bm,ormamgm.. we can use
to endow our example robots with low-level behaviors.

Other features of intelligence have to do with the role the mbi-
ronment plays in our view of cleverness. How connected are sensing
and actuation to intelligence? How much of what we acknowledge
as complex behavior is merely a reflection of simple behaviors off of
a complex environment? For instance, if we observe ‘the behayior -
of ants scurrying around their anthills, we might begiti“to wonder
whether their complex paths result from careful planning and deep
contemplation, or perhaps merely from simple rules of behavior acted
out in an environment full of uneven terrain, obstacles to climb over
and other ants. ;

TuteBot and Rug Warrior will not answer many of these ques-
tions pertaining to the structure of intelligence, but we hope that
they can be the platforms for an inexpensive, easily attainable Al
input/output device—a collection of sensors and actuators that pro-
vide a little bit of input, a little bit of output, and a little bit of

computation to readers interested in experimenting with some of

these issues.

4 1. Introduction

Many of the modern theories in artificial intelligence grew from
work in a number of other fields. Cybernetics, in the 1940s and
1950s, was a field of research that tried to understand intelligence
through the study of the control of machines. Cybernetics developed
in parallel with classical control theory. Its model of computation
was analog, and it tried also to understand intelligence in animals by
modeling them as machines. Our example of TuteBot is very much
in the same spirit as the early work in cybernetics.

For instance, Figure 1.2 illustrates the extent of TuteBot’s tal-
ents. The long dashed lines at the bottom of the figure exemplify
one initial behavior, where TuteBot moves forward in a straight line
until it hits an obstacle. It then backs up, turning left for some
period, and then proceeds forward again in a straight-line motion.

A number of mechanisms could be imagined necessary to achieve
this behavior. We could suggest contemplative recognition of chair
legs and walls and TuteBot making explicit decisions concerning

when to back up and how far to turn, but TuteBot has no such

model of the world. Instead, TuteBot has a simple analog electri-
cal circuit for a control system, which directs TuteBot’s two wheels
to move it forward until a bump sensor on the front detects a colli-
sion. The signal from the bump sensor directs both motors to reverse
direction, and TuteBot then backs up. What makes it turn is an el-
ement of state, or timing, in the system that is implemented with a
resistor-capacitor (RC) circuit, one for each wheel. If the RC circuit
on each wheel is set differently, one wheel will back up for a longer
period of time than the other wheel, causing TuteBot to turn. When
TuteBot resumes forward motion, it no longer has the same heading
and so avoids ramming the obstacle it first bumped.

A second behavior can be added to TuteBot using a similar strat-
egy. If, during the forward motion, one wheel is allowed to turn faster
than the other (for instance, by adding a resistor in series with one
motor) TuteBot will move in an arc. The short dashed lines at the
top of Figure 1.2 illustrate this behavior. As TuteBot moves for-
ward, arcing to the left, it tends to bump into obstacles. When this
happens, the initial obstacle-avoiding behavior just described is trig-
gered and TuteBot backs up, turns toward the right, and proceeds
forward in a new direction. However, the bias between the wheels
causes the robot to veer off to the left again. The result of these two

Introduction 5

"Figure 1.2. Two TuteBots each displaying a different behavior. Dashed'lines in-

dicate the paths they have traveled. In one behavior (long dashed lines) TuteBot
moves along a straight path until it encounters an obstacle. It then backs up,
turns left to change its heading, and proceeds forward again, performing straight-
line navigation. In the second behavior (short dashed lines), the robot’s forward
motion forms an arc to the left. When it bumps into an obstacle, the robot backs
up and turns right; then it arcs to the left once again as it moves forward. With
this strategy, TuteBot demonstrates a wall-following behavior.

SRR e

e

6 1. Introduction

behaviors is that TuteBot tends to follow along the edges of clutter.
We call this behavior wall following.

In the 1960s after cybernetics, and with the rise of the digital
computer, the field of artificial intelligence was born, and with it
came computational models of intelligence. The contributions of
AT to the understanding of intelligence were the notions of repre-
sentation, search, and modularity. Information could be explicitly
represented in data structures inside a computer, which could then
be searched for the desired answer. Representations could be more
easily formulated, as the model of computation was no longer time-
varying analog signals, but bits and numbers. This capability en-
abled modularity and led to increasingly sophisticated information-
.processing systems. Chess-playing programs, expert systems, nat-
ural language interpreters, and problem solvers were some of the
demonstrations developed in this era of traditional Al.

Unfortunately, some of the ideas involved with representation led
to problems when intelligence systems were designed for machines
that interacted with the dynamically changing real world. Tradi-
tional Al had formulated the problem of robot intelligence as sensing,
building a world-model representation from the fusing of sensor data
and then planning actions based upon that model. Computational
bottlenecks, noisy sensors, and the complexity of reality led some
researchers to look for new models of intelligence that would be ro-
bust and would work in real time. These new ideas have collectively
come to be known as Nouvelle Al or behavior-based robotics. Rod-
ney Brooks at the MIT Mobile Robot Lab proposed the subsumption
architecture which is a way of organizing the intelligence system by

means of layering task-achieving behaviors without recourse to world

models or sensor fusion. This book grew directly from that research,
and Rug Warrior is our example robot that illustrates many of the
ideas in a subsumption architecture.!

The word subsumption is used to describe the mechanism of arbi-
tration between the layers of task-achieving behaviors. Arbitration is
the process of deciding which behavior should take precedence when
many conflicting behaviors are triggered. In a subsumption architec-
ture, the designer of the intelligence system lays out the behaviors in

'Subsumption architecture is an example of what is now more commonly
referred to as behavior-based robotics or behavior control.

Introduction 7

such a way that higher-level behaviors subsume lower-level behaviors
when the higher-level behaviors are triggered.

For instance, if the lowest-level behavior enables a wandering
action and the highest-level behavior initiates following light, then
normally, the robot will wander around, moving along randomly cho-
sen headings. However, should someone point a flashlight at Rug
Warrior, the highest-level behavior would trigger, suppressing wan-
dering for the duration of time that the flashlight is directed at the
robot. Instead of random headings, Rug Warrior’s wheels would be
commanded to turn toward the point of highest light intensity and

"move forward in that direction. If the flashlight were turned off, the

follow-light behavior would no longer be activated and would cease
subsuming the wandering behavior. Random wandering would then
resume.

In order to experiment with a richer set of behaviors than mere
wandering and following of lights, we have designed Rug Warrior
to have as many different kinds of sensors as possible, within the
constraints of trying to keep it as simple, and inexpensive as we
could. We have built several versions of Rug Warrior, each very
different from the other. T'wo are shown in Figure 1.3. We think of
Rug Warriors as a class of robots rather than an instance. Basically,
we will refer to a Rug Warrior as any robot that incorporates our
electronics (illustrated in Appendix A) but where vehicle Bmowwéom
and software behaviors may vary widely.

The Rug Warrior on the left in Figure 1.3 has two 9.:8 s.?mm_m
which enable the robot to spin around its center point, mb& m passive
caster for three-point stability. The Plexiglas ring around the robot
is a bump skirt, which is mounted on three switches; this feature tells
the robot it has bumped into an obstacle. The motors used in this
robot came from a surplus dealer; and the chassis was made from
Plexiglas that was cut, drilled, and punched in a machine shop.

The Rug Warrior on the right in the figure, running over this
book, is a tank-drive robot made from LEGO bricks, gears, axles,
and treads. The two motors used in this version of Rug Warrior are
model airplane servo motors, ordered through a hobbyist catalog.

- While the robots look and act rather differently, their electronics
are the same. The board we have designed (which you can prototype
yourself using Speedwire or Scotchflex prototyping technology, as

8 1. Introduction

Figure 1.3. Rug Warriors I and II, wandering around their environment, bump-
ing into chairs and driving over books.

discussed in Chapter 4.) is 3.4” x 4.5” in size and contains a Motorola .

MC68HC11A0 microprocessor, 32K bytes of memory, a serial port,
two motor drivers, a piezoelectric buzzer, and a number of sensors.
Three bump sensors detect collisions, two near-infrared proximity
detectors notice obstacles up to one foot away, two photoresistors
sense light level, a microphone listens for noises, and a pyroelectric
sensor detects moving sources of heat (such as humans, cats, and,
oops, sometimes even fireplaces).

Figure 1.4 illustrates a day in the life of these Rug Warriors.
Rug Warrior I, the wheeled version, moves across the room in a
straight line until it bumps into the television set. As it turns left
to a new heading, the microphone detects a loud noise from the TV,
which triggers a behavior to play “Bicycle Built for Two” on the
piezo buzzer. As it wanders on, near-infrared proximity detectors
see an imminent collision and a wall-following behavior becomes ac-
tive. Wall following times out after a few moments, and straight-line
motion resumes. A low-lyirig (but very interesting) book on mobile

robots is in the path, but the near-infrared proximity detectors are

pointed upward and miss it. Rug Warrior I then drives into the
book, but the bump skirt detects the collision, causing the robot
to back up and turn away to a new heading. It catches a peak of
light intensity coming from the doorway, and a follow-light behavior
becomes activated. Rug Warrior I then leaves the room.

Introduction 9

NG ” \ !

! Wall-following ! i
behavior is enabled ,

\ by infrared sensors ,

l
!
, A
/ \ .a)
\ \
~ Lt -
IIX\\\ llll\\\ N
Sound from TV triggers
microphone circuit -
piezo buzzer begins to
play "Bicycle Built for Two"

N /
i N Wall- ?:”S:_a
i) i
1 Switch from wall-following . e T~ behavior d
_— _;.a._m 1o straightline x._m Warrior switches / N
motion to light following : N Sy
\ behavior—heads for door / AN
\ P Sy N
\ e < IR
N I S~ /7 e
\ e P e N\
AN s - S~ - A
\ -7 - Lo TemeeT *
\ Pte -
\ - —
Infrared sensors /(P 7 .. .
Hm__ to detect ﬂoor" / Rug Warrior executes -) j
orce-sensing bumper person-following behavior- :

_registers collision | mistaking space heater

for person

._.;n_s._ﬁig &/ \

Rug Warrior rolls ~\\
over book /

~
b

Rug Warrior switches
to hiding behavior;
looks for dark spot

Figure 1.4. Two versions of Rug Warrior, wandering around their environment.
Subsumption networks for the intelligence systems prescribe a layering of be-
haviors that become active upon the proper triggers. Behaviors such as wall
following, straight-line motion, obstacle avoidance, noticing sounds, playing mu-
sic, homing in on light sources, and hiding in the dark are all possible with the
sensors available on Rug Warriors.

10 1. Introduction

In the meantime, Rug Warrior II, the tank, has been following
walls outside the room and now comes maneuvering down the hall-
way. As it nears the open door, the wall-following behavior causes
the robot to turn to the right, as if the wall were still there. As
it does this, the cone of detection of the pyroelectric sensor sweeps
past the space heater, mistakingly triggering a people-following be-
havior. Rug Warrior IT does not see its favorite book lying in the
way and drives right over it. As it nears the space heater, the people-
following behavior happens to time out and a hide-in-dark-corners
behavior activates. This directs Rug Warrior II to veer off on a new
heading, wandering around until it lands in a shadow, where it sits
and hides under a chair.

These illustrations are meant to give a flavor of a subsumption
architecture intelligence system. The main idea is that there are
no explicit geometric representations of the world from which the
robot plans its actions. Instead, there are a number of control loops
granting a very tight coupling of perception to action, and from
the interaction of many simple behaviors, complex activity seems to
emerge. The following chapters will expand on these ideas and reveal
the details involved in making things work.

1.1 References

A long history of research predates nouvelle AI. Some of the early
ideas from cybernetics can be found in Norbert Wiener’s works
(1948, 1961). Grey Walter (1950, 1951) built several vacuum tube-
based robots that could home in on goals and exhibit learning be-
haviors. Many years later, Valentino Braitenberg’s work (1984) with
imaginary vehicles containing simple connections between sensors
and actuators nicely illustrated many of these ideas.

Marvin Minsky (1986) proposed the notion of multiagent intelli-
gence systems in which parallel processes interact to produce emer-
gent behavior. The first work on subsumption architectures, in-
corporating the modularity of layered behaviors was presented in
Brooks (1986). One influence during this time was work in the field
of ethology, the study of animals in their environments. Ridiger
Wehner (1987) underscored the fact that, in animals, many sensors

1.1 References 11

are specifically matched to their environments. A paper by Brooks
(1991b) gives a more thorough exposition on the prior work and con-
tributing ideas that gave birth to behavior-based robotics. Brooks’
forthcoming book (Brooks 1998) spells out his approach in great de-
tail. We will return again to this subject toward the end of this book.

But enough of history and philosophy. Let’s get started!

10 1. Introduction

In the meantime, Rug Warrior II, the tank, has been following
walls outside the room and now comes maneuvering down the hall-
way. As it nears the open door, the wall-following behavior causes
the robot to turn to the right, as if the wall were still there. As
it does this, the cone of detection of the pyroelectric sensor sweeps
past the space heater, mistakingly triggering a people-following be-
havior. Rug Warrior IT does not see its favorite book lying in the
way and drives right over it. As it nears the space heater, the people-
following behavior happens to time out and a hide-in-dark-corners
behavior activates. This directs Rug Warrior II to veer off on a new
heading, wandering around until it lands in a shadow, where it sits
and hides under a chair.

These illustrations are meant to give a flavor of a subsumption
architecture intelligence system. The main idea is that there are
no explicit geometric representations of the world from which the
robot plans its actions. Instead, there are a number of control loops
granting a very tight coupling of perception to action, and from
the interaction of many simple behaviors, complex activity seems to
emerge. The following chapters will expand on these ideas and reveal
the details involved in making things work.

1.1 References

A long history of research predates nouvelle Al. Some of the early
ideas from cybernetics can be found in Norbert Wiener’s works
(1948, 1961). Grey Walter (1950, 1951) built several vacuum tube-
based robots that could home in on goals and exhibit learning be-
haviors. Many years later, Valentino Braitenberg’s work (1984) with
imaginary vehicles containing simple connections between sensors
and actuators nicely illustrated many of these ideas.

Marvin Minsky (1986) proposed the notion of multiagent intelli-
gence systems in which parallel processes interact to produce emer-
gent behavior. The first work on subsumption architectures, in-
corporating the modularity of layered behaviors was presented in
Brooks (1986). One influence during this time was work in the field
of ethology, the study of animals in their environments. Riidiger
Wehner (1987) underscored the fact that, in animals, many sensors

1.1 References 11

are specifically matched to their environments. A paper by Brooks
(1991b) gives a more thorough exposition on the prior work and con-
tributing ideas that gave birth to behavior-based robotics. Brooks’
forthcoming book (Brooks 1998) spells out his approach in great de-
tail. We will return again to this subject toward the end of this book.

But enough of history and philosophy. Let’s get started!

._.ﬁmwﬁ

2.1 A Tutorial Robot

Building a robot can be a lot of work. All the more so, if the first plan
is unnecessarily complex. This chapter is intended to ‘help get you
started with building robots while also illustrating some key points
about designing a robot’s intelligence system without becoming too
encumbered in the myriad of details involved in nmmmibm a more
sophisticated creature. We will show just how simple a H,oAcoﬁ can be
and launch you on your way to building one.

Before proceeding to the more sophisticated W:m Warrior de-
scribed in the next several chapters, we will begin here by construct-
ing TuteBot—a robot which is simple yet complete. Do not under-
“estimate the elegance of simplicity, however. It is often the simplest
solution which takes the longest to comprehend, and yet it is also
often the simplest solution which illustrates the main lessons with
the most clarity. Experienced designers of robotics and automation
systems agree that the first way they design something is usually the
most complex way. Difficulty usually arises when trying to simplify
the system.

TuteBot will exemplify how a robot-as a system, a collection of
sensors, actuators and computational elements, can be organized in

14 2. TuteBot

Figure 2.1. TuteBot is a robot that can explore its surroundings, escape from
collisions with obstacles, and be programmed to follow walls.

such a way that intelligent actions result in response to certain stim-
uli. TuteBot will consist of a circuit, a chassis, a sensor, a battery,
and two motors. It can be programmed by adjusting two poten-
tiometers. The entire robot will be built from Fischer-Technik parts
and a few electronic components which are readily available from
Radio Shack and other electronic stores.

What will the TuteBot be able to do? Its repertoire of behaviors
will endow it with the capabilities to explore its world, escape from
objects with which it collides, and follow along walls that it detects
with its bumper.

A completed TuteBot is shown in Figure 2.1. The front bumper
acts as a sensor and detects collisions with obstacles in its path. A
trailing caster wheel maintains stability. Above the chassis is the
battery case and mounted on top of the batteries is the breadboard
containing TuteBot’s electronic circuitry.

All the mechanical components used here are Fischer-Technik
parts: motors, gears, axles, wheels, switches and connectors. Fischer-
Technik is an excellent source of parts for building robots as the
designer can prototype mechanisms quickly without recourse to a
machine shop. The Fischer-Technik parts and pieces are available in
multiple quantities. Catalogs are available and should be requested.

2.2 TuteBot Behaviors 15

N1
\-]
N
I/\
A “v \ N1
N1
N
Adjustable Motor Left Motor N
Timer Driver
N1
N
N
. g
. @ 5
N
Bump Sensor Adjustable Motor Right Motor N
P Timer Driver

Figure 2.2. The essence of TuteBot. Two motors, two wheels, a bump sensor,
two potentiometers for programming, and two motor drivers are enough to create
a concrete example of a simple robot—an intelligent connection of perception to
action.

An address and phone number for Fischer-Technik is listed in Ap-
pendix C. Other types of mechanical building block kits are also
quite usable and widely available, EO_E&DW LEGO, bMQO Technik
and Meccano.

TuteBot’s brain is entirely @Sm&om o:.o&?%. Zo integrated cir-
cuits are required and almost all of the components, including the
breadboard, can be found at a Radio Shack store. The only tools
required to put TuteBot together are wire cutters, wire strippers,
and possibly a soldering iron for making connectors. An oscilloscope
is not necessary although having one always makes &m,cﬁmm:um easier.
A multimeter should suffice for debugging TuteBot . v

A block diagram of TuteBot, shown in Figure 2.2, illustrates how
the bump sensor is connected to the actuators. The signal created
when the bump sensor detects contact is sent to the motor-driver

~circuitry for each wheel, signaling the robot to back up. Adjustable

timers associated. with each motor driver determine for how long
each wheel should reverse.

2.2 TuteBot Behaviors

With a minimal amount of hardware, obstacle avoidance can be im-

plemented on TuteBot. Figure 2.3 depicts the sequence of actions

16 2. TuteBot

==

A L
1

Forward Backward

Turning
in place

Figure 2.3. TuteBot’s basic operation. When TuteBot is powered up, the robot
moves forward until it encounters an obstacle. TuteBot then backs up, turns in
place, and resumes its forward motion. The time spent backing up and turning
in place is programmed by the user.

that occur when TuteBot strikes an obstacle. The robot is initially
moving directly forward toward the shoe. As it strikes the shoe,
both motors are switched to reverse and the robot backs straight
up. However, one motor stays in reverse longer than the other and
the robot begins to turn; in this case, the right motor reverses for a
longer time period, causing TuteBot to turn to the right. At some
point, the right motor stops reversing and both motors go forward,
leading TuteBot off in a new direction, hopefully with a wide enough
berth to avoid the shoe. If not, the TuteBot bumps into the shoe
again and the process repeats until TuteBot turns far enough to the
right to finally avoid the shoe.

A timing diagram which graphs this sequence of events is shown
in Figure 2.4. The top graph depicts the signal generated by the
front bumper’s bump sensor. The bottom two graphs Ecmﬂamﬁo go
signals sent to the right and left drive motors.

Initially, both motors receive signals which direct them to go
forward. If a collision occurs, the bumper sends a binary signal to
the adjustable timers—low for no-contact, high when an obstacle is
struck. The timers, in turn, provide a binary signal to the motor

2.2 TuteBot Behaviors 17
Signal from
bump sensor
Collision
detected
Forward

Command to

right motor
Reverse 1 | . !
Robot moving 1 Robot I Robot turning 1 Robot moving
forward | backingup I right | forward
Forward ! ! !
Command to
left motor
Reverse H
time

Figure 2.4. The timing sequence generating TuteBot’s backup behavior. Both
motors normally move in the forward direction as shown in the bottom two
graphs. When the bump sensor is activated, both motors reverse. The right
motor continues in reverse longer than the left, causing TuteBot to turn to the
right. When both motors resume forward motion, TuteBot moves on in a new
direction.

drivers—high for forward rotation, low for reverse rotation. Once
activated, each timer continues to supply the low signal:for a char-
acteristic time. The motor drivers interpret this high or low signal
by providing forward or reverse current to the motots respectively.

Assume that the timers are set for delays of ¢, m,@o,owmm. and ¢
seconds for the right and left motors and that ¢, > ;" After encoun-
tering an obstacle, the robot will backup for a time % It will then
turn to the right ?Wo left motor turns forward, the right motor stays
in reverse) for a time t, — ¢;. It will then resume moving forward
in a different direction, thus avoiding the obstacle or repeating the
sequence until it does avoid the obstacle.

An additional behavior can be made to emerge from the robot.
If we bias the motors so that, when going forward, one motor turns
faster than the other, the robot will move in an arc. This slowdown
in speed can be implemented by adding a resistor in series with one

. motor. If, for instance, the left motor is forced to turn significantly

more slowly than the right, the robot will arc to the left. By com-
bining this forward arcing behavior with the earlier back-and-turn

18 2. TuteBot

behavior, TuteBot can be coerced to follow a wall as was illustrated
in Figure 1.2.

To demonstrate this, one would place the robot with a wall to its
left, and adjust the timers so that, after encountering a bump, the
robot backs and turns a bit to the right. Now when going forward,
the robot arcs to the left until it hits the wall; then it backs up,
turns right, and then heads forward in an arc until it bumps the
wall again. For suitable settings of the parameters, it should be able
to turn through a doorway and negotiate either inside or outside
corners.

It is an important point here, that nowhere in TuteBot’s simple
brain does it have knowledge of what a wall is or what is required
to follow a wall. Rather, the superposition of a simple set of re-
flex actions allows a more complex behavior to emerge. This idea
of seemingly complex behaviors emerging from a collection of simple
rules is the underlying notion of behavior control, which we intro-
duced earlier. We will see more complex examples when we get to
the microprocessor-controlled Rug Warrior.

2.3 Building TuteBot

TuteBot senses the world through a front bumper. It steers by in-
dividually changing the direction of its drive wheels, while a trailing
caster wheel supports the robot. A simple relay, transistor, and ca-
pacitor circuit provide all the computational power TuteBot needs.

Figure 2.5 lists the parts needed to construct TuteBot. Most of
the parts are available from Fischer-Technik. The remaining parts
are easily obtained at Radio Shack or another electronics store.
We will begin describing the construction of TuteBot by stepping
through the mechanical layout of how to mount the motors and at-
tach the wheels.

Motors for TuteBot

The Fischer-Technik motors have an attached worm gear, transfer
box and large axle-mounted gear. Direct current (DC) motors usu-
ally spin too fast and have too little torque to drive the loads of the
wheels. “Gearing down” a motor causes a motor to spin more slowly

2.3 Building TuteBot

DESCRIPTION

BOTTOM HALF OF HINGE
TOP HALF OF HINGE

4W 4P/F

2W 2P/F

F/T PART NO.
31426
31436
38464
38242

CASTER WHEEL PIVOTHOLDER 32321

CASTER WHEEL PIVOT

31124

CASTER WHEEL WHEELBLOCK 32085

CASTER WHEEL AXLE
CASTER WHEEL TIRE
1W P/C

1W2L P/C 4C

1W1L P/5C

LEFT AND RIGHT MOTOR
LEFT AND RIGHT GEARBOX
1WiL P/P +4C

2W C/P

1W P/P

POWERBLOCK TOP
POWERBLOCK BOTTOM
WIREHOLDER

ANGLE C/P

SWITCH

GEARHUB
GEARHOLDER

GEAR

BIGWHEEL HUB HOLDER
BIGWHEEL HUB

1W2L 5C

60 mm SHAFT (METAL)
TIRES

ELECTRIC PLUG (GREEN)
ELECTRIC PLUG (RED)
WIRE

31690
36573
37237
32879
32881

32293
31078
32882
35049
37238
35986
36165
35969
38423
37783
35031
35033
31021
31058
32883
32880
31032
32913
31336
31337
31360

W = WIDE; L =LONG; P =PIP; C= CHANNEL; F = FLAT

NMABRNNODODNMNOONON =N = =N AN

QUANTITY

BN oo DN

AREA USED

BUMPER

BUMPER

BUMPER

BUMPER

CASTER WHEEL

CASTER WHEEL

CASTER WHEEL

CASTER WHEEL

CASTER WHEEL)

FRONT END ASSEMBL

FRONT END ASSEMBLY

FRONT END ASSEMBLY(2)
AND WHEELS(2)

MOTOR

MOTOR

MOTOR

POWERBLOCK

POWERBLOCK

" POWERBLOCK

POWERBLOCK
POWERBLOCK
SWITCH
SWITCH
WHEELS
WHEELS
WHEELS

' WHEELS

WHEELS
WHEELS ~
WHEELS |,
WHEELS
WIRING-

¢« Figure 2.5. TuteBot can be constructed from these or similar parts.

20 2. TuteBot

Figure 2.6. Assembly of the motor, transfer box and wheel gear.

but with more torque at the output of the gear stage. Thus, the
wheel can push against the floor with more force.

This worm gear, transfer box and axle-mounted gear which are
unique to Fischer Technik give the TuteBot a total speed reduction
of about 30:1 and wheel revolutions of about one per second. A speed
reduction of between 20:1 and 30:1 is an appropriate goal when using
Fischer-Technik or other motors and gears. Gears and motors are
explained in more detail in the later chapter on motors.

The first step is to build the left-side motor, transfer box, and
wheel and gear assembly as shown in Figure 2.6. (Follow the same
steps for building the right-side motor assembly.) The left and right
sides are the same except that one of the transfer boxes is upside

down so that both 10-tooth gears are facing inward.

The two motor-sides are joined by a connector block as shown
in Figure 2.7(a). Notice that this connector block is actually made
from three Fischer-Technik pieces (2.7(b)).

The caster wheel which is the rear wheel for the TuteBot is as-
sembled from five Fischer-Technik pieces. They are shown in Figure
2.8 both apart and assembled. This caster wheel assembly fits in
the back of the chassis between the two motors. It should slide in
between them and allow the chassis to stand on three wheels.

2.3 Building TuteBot 21

Figure 2.7. Joining the motors with a connector block.

Figure 2.8. Assembling the caster wheel.

22 - 2. TuteBot

The TuteBot chassis can be constructed by following the sequence
of steps outlined in Figure 2.9.

Front-end assembly

The front end of the TuteBot is made from four black pieces and two
red pieces. Slide one of the black double-long blocks into the other
and slide two black single blocks onto either end, half the distance
of each block. Then, holding the joined blocks with the two single
blocks facing up, slide the two red pieces onto the same side of the
joined double blocks, as shown in Figure 2.9(a). This side is now the
back of the front-end assembly.

Switch assembly

The switch slides into two red L-pieces; this switch-assembly slides
onto the front side of the front-end assembly just constructed. (See
Figure 2.9 (b).)

Bumper assembly

The actual bumper is composed of seven pieces, shown in Figure
2.9 (¢).

The completed bumper assembly slides onto the front side of the
two single blocks on the top of the front-end assembly.

To complete the chassis slide this entire unit onto the front of
the wheel gear-motor assembly.

Connecting power to the chassis

Now we will connect the power block (battery pack) to the TuteBot
chassis. The power block requires six AA alkaline batteries. Attach
the wire-holder connector to the front right-hand side of the power
block. (The power holes are on the back side). Using one short and
one long red piece each (see Figure 2.10(a)) construct two “legs” and
attach them to the rear of the power block. Slide the power-block
assembly onto the motors at the rear of the chassis. The front of
the power block should simply rest on the front-end assembly (see
Figure 2.10(b)).

2.3 Building TuteBot 23

TRy

Figure 2.9. Step-by-step instructions for building the TuteBot chassis. (a) Front-
end assembly. (b) switch assembly (c) bumper assembly (d) connection of bumper -
assembly to front-end assembly.

24 2. TuteBot

Figure 2.10. (a) Constructing “legs” for the power block. (b) Attaching the
power-block assembly to the motors.

Wire Connectors

Next, we will make connectors for the motors and bump switch. Two
Fischer-Technik connectors should make all four required connectors
for TuteBot. Fischer-Technik provides connectors that fit with their
motors and switches. However, the other ends of these cables must
be modified so that they can be plugged into TuteBot’s breadboard.
Cut a Fischer-Technik connector in half and connect two inches of
red 22-gauge wire to the red wire of the connector and black 22-
gauge wire to the green wire of the connector. Make three such
connectors. For the fourth connector connect a two-inch green 22-
gauge wire to each of the red and green wires. These connections
should be protected with electrical tape. Although color makes no
difference electrically, you can avoid confusion by using a green 22-
gauge wire to connect to the switch.

Plug the wire connector with the attached green wires in the holes
labeled 1 and 3 on the switch. This sets the switch up as normally
open (NO). It is this switch that will cause the TuteBot to back up
when it collides with an obstacle.

Plug two of the three remaining connectors into the left and right
motors at the rear of the chassis.

2.4 Electronic components 25

Figure 2.11. The TuteBot is now assembled. All that is left is to mount the
breadboard to the top of the battery pack.- :

Plug the remaining connector (red-to +, green to -) into the
corresponding holes at the back of the power block. .,

‘Now your TuteBot should look similar to that in Figure 2.11. The
final step is to mount the breadboard to the top of the battery pack.

In the next section, we will discuss building the eléctronic cir-
cuitry for TuteBot’s brain. Once this has been assembled, mounting
it on top of the constructed TuteBot mwosa,vwoacom.,m robot resem-
bling that in Figure 2.1, shown at the beginning ‘ow,,\mEm chapter.

2.4 Electronic components

Before we get into the specifics of the control system for TuteBot,
we take a moment here to describe the basics of a few common
electronic components such .as relays, transistors, capacitors, diodes,
etc. - Figure 2.12 illustrates the relationship between the physical
components we will use on TuteBot and their schematic symbols.
First, the relay shown in the upper left-hand corner of Figure
2.12 is a type of electrically controllable switch. TuteBot uses relays
to switch the polarity of the voltage applied to its motors and thus
reverse their direction. The idea behind a relay is that a small cur-

26 . 2. TuteBot

rent flowing in the relay’s coil can allow much larger currents to flow
through its contacts. The way a relay works is that, when different
voltages are applied to the two lines marked coil, the resulting cur-
rent creates a magnetic field inside the device. This field attracts a
metal lever to which the internal switch contacts are attached. Ac-
tivation of the lever in turn disconnects one circuit and connects the
other. With no voltage applied, the line marked com or common, is
connected to nc , the normally closed pin. When a voltage is applied
across the coil, com is disconnected from nc and connected to no, the
normally open pin.

‘Next come bipolar transistors. Bipolar transistors have three
terminals: a base, b, a collector, ¢, and an emitter, e. For a particular
transistor case design, the correspondence between these symbols
and the physical leads can be found in the manufacturer’s data book.
Transistors can be used as amplifiers or switches. TuteBot employs
transistors to supply a current sufficient to activate the relay. There
are a great variety of transistors. Two of the important parameters
that differentiate among them are amplification factor and maximum
power-handling ability.

A diode is a device which allows current to flow in one direction
but not the other. If the “4” end of a diode, the anode, is connected
to the “+” terminal of a battery and the “-” end of the diode, the
cathode, is connected to the “-” terminal of the battery, a large cur-
rent will flow through the diode, enough to damage the diode or
battery. Usually a resistor is placed in series with a diode to limit
current to a safe level. If the connection is reversed, no current flows.
Diodes are rated according to the amount of current they can handle
without damage and the maximum reverse voltage they can sustain.
A band on the diode usually marks the “” end. The triangle on
the diode’s schematic points in the direction current is allowed to
flow. TuteBot uses diodes to isolate parts of the circuit and short
out induced voltages of the wrong polarity.

A single-pole, single-throw (SPST) switch is shown at the left of
the second row in Figure 2.12. Switches are characterized both by
the number of connections that can be made or broken by moving the
switch lever and by the number of different lever positions that make
contact. A single pole, single throw (SPST) switch is the simplest
type of switch. With the switch lever in one position, connection

2.4 Electronic components 27

between its two leads is broken. In the other position, connection is
made. An SPST switch might serve as the power switch for TuteBot,
if desired.

To detect collisions, TuteBot uses a momentary contact switch.
These types of switches have an internal spring that endeavors to
keep the switch in one state. As long as the switch lever or push
button is pressed, the switch circuit is closed. When the lever is
released, the circuit opens. Momentary contact switches with the
opposite sense (open when pressed, closed when not pressed) are
also available.

‘Resistors impede the flow of current. Their ability to do this is
measured in ohms, §2; kilohms, KQ; or megohms, M). The current,
I, that will flow through a resistor with resistance, R, given an ap-
plied voltage, V, is I = V/R. This is known as Ohm’s Law. When
current flows through a resistor, it must dissipate power. A resistor’s
capacity for dissipating power is measured in watts. In general, a
resistor with a higher wattage rating will be physically larger than
one with a smaller wattage rating.

To block direct current but allow the.passage of alternating cur-
rent, one uses a capacitor. Once connected to a voltage source, such
as a battery, current flows into the capacitor until it has accepted
as much charge as it can. This ability to accept charge is usually
measured in units of micro- or picofarads (uF or pF). If the voltage
supply is removed from the capacitor, the stored charge keeps the
voltage across the capacitor constant. Shorting the leads together
causes a current to flow until the charge is depleted and the voltage
across the capacitor goes to zero.- TuteBot uses capacitors as mem-
ory cells. The presence or absence of stored charge represents the
robot’s recent history, or state.

There are many different capacitor technologies. Most capacitors
can be connected into a circuit without regard for polarity. One
type for which polarity is important is the electrolytic capacitor.
The leads on these capacitors are marked “+” and “” so that it is
clear which way they should be inserted into the circuit. Electrolytic
capacitors can generally store more charge in a smaller volume than
other types of capacitors. The maximum voltage that can be applied
to a correctly connected capacitor before damage occurs is listed as
the WVDC (Working Voltage, Direct Current).

28 2. TuteBot

18m eomm 0o anode cathode
Rl ROy —(G-

X .

t

]

. + |
coll com no ne T 1 c |v_|

DPDT Relay Diode
e
Transistors
(npn)
IIV\ -
g 0
L N A
_ —
. Momentary Resistor
SPST Switch contact switch Capacitors
~
Battery Motor Potentiometer

noooo--ooooo—oo oo o—ooeao

Two color
LED

Breadboard (showing connections)

Figure 2.12. The relationships between schematic symbols and the physical
components they represent. All of these components are used in TuteBot’s brain.
No other components are necessary, and the entire circuit will fit in a 6-inch-long
breadboard mounted on top of TuteBot’s chassis.

2.5 Electronic Construction 29

A potentiometer is simply a resistor whose resistance is adjustable.
As with fixed resistors, there are a large number of resistances and
maximum power ratings from which to choose. A potentiometer al-
lows the user to manually alter some parameter of a circuit. We will
use potentiometers in TuteBot to control its response to collisions—
how long it backs up and how long it turns in place before proceeding
forward again.

The first item found in the third row of Figure 2.12 is a battery.
Batteries supply currents required at some characteristic voltage.
The nominal voltage rating of a battery is normally stamped on its
case. TuteBot, for instance, uses six 1.5 volt (V) alkaline batter-

~ies. Many toys and portable appliances use nickel cadmium (NiCd)

batteries which come in 1.2 volt cells.

Motors convert electrical energy to mechanical energy. Fischer-
Technik motors were chosen for TuteBot because they are easy to
integrate into the chassis and they happen to Eoﬁmm m&moﬂmbﬁ power
for this application.

The last component in Figure 2. 12 is an electronic breadboard.
Internal connections among its sockets are shown. A breadboard
allows us to quickly connect components into a circuit and to make
changes easily. Vertical columns are connected together, as are the
top and bottom horizontal rows. Typically, one would connect these
rows to power, the positive side of the battery pack in this case,
and ground, the negative side of the battery vmow The space be-
tween the columns in the center is the correct width to ‘accommodate
standard integrated circuit chips. The relays mwm dWm mmb width as
standard chips. .

Later on in this book when we &_mocmm Rug Warrior, we will intro-
duce a number of other components such as power MOSFET tran-
sistors, crystals, operational amplifiers, photoresistors, light emitting
diodes, logic gates, microprocessors, memories, etc.

2.5 Electronic Construction

‘With those device descriptions as background, now let us look at

the circuit for TuteBot’s brain. Figure 2.13 gives the schematic. A
schematic illustrates the topology of how all the electronic compo-
nents are connected into a circuit.

30

2. TuteBot

Vo
D1 Jsw1
o—rt
+

L

~C1

3
R1

Q1

R4

Mt
LED6

Right motol

R7

=C2

SRS

m

Q2

r circuit

R9
(adjustable)

Left motor circuit

Figure 2.13. Schematic for TuteBot’s brain.

2.5 Electronic Construction 31

In the circuit for a robot’s brain, there are typically transducers
connected on either side. For instance, on the input side, batteries
and sensors act as input transducers. A battery converts chemical
energy into electrical energy, and a sensor converts a physical phe-
nomena from a mechanical form (say, the force acting on a bump
switch) to an electrical form. On the output side, motors, speak-
ers, lights, etc., act as output transducers. The motors on TuteBot
convert electrical energy into mechanical energy. In between the in-
put and the output transducers is the electrical circuit, which does
the information processing. The time variation in the signals, the
voltages and currents in the circuit, provides information transfer.

In describing a circuit’s behavior, one usually speaks of voltage
across a device and current through it. Omne bit of confusion can
arise due to a verbal shorthand of speaking of such things as “the
voltage at point A”. What is meant and what would be more precise
would be to speak of “the voltage across the network between points
A and ground.” The verbal shorthand comes about because ground
is usually taken to be the reference, 0 volts.

The basic idea of TuteBot’s circuit is that the front bumper
switch (SW1 in Figure 2.13) generates a signal that tells the robot
to back up. This bump signal is sent to each half of the circuit.
The diodes D2 and D3 act to separate the circuit driving the left
motor from the circuit driving the right motor so that they can in-
dependently have specifiable time constants for how long each wheel
should back up. The time constants are ﬂavumnﬂmam& with resistor-
capacitor (RC) circuits that hold a voltage for a given: amount of
time, depending on the values of the resistor and" om%mn;oﬂ., The
timing signals from these RC networks then direct the motors to
reverse direction for the specified amount of time. Some driver cir-
cuitry to condition the signal to provide enough current to drive the
motor has to be added at this point. This motor-driver circuitry is
implemented with transistors and relays. A bank of resistors may be

added in series with one motor to regulate its speed in comparison
~ to the other motor.

There are two ways to proceed at this point. One is to go ahead
and just build the circuit and not worry about understanding how
it works. Simply build it, mount it on TuteBot’s chassis, plug in
the connectors and start playing with various behaviors by tweaking

32 2. TuteBot

Electronics:

1 Breadboard - Experimentor 350, Radio Shack 276-175

2 Kit, K2 DPDT 5 volt relays - Omron G5V-2-H-DC5 (DigiKey Z770-ND)

2 Q1,Q2 Transistors - 2N2222A

2 C1,C2 2200 uF Capacitors, electrolytic, 10 WVDC, radial lead - Digikey P6219-ND
[Physical size of cap is important, substitute must not be bigger than above
but may be smaller e.g. 1000 uF]

2 C3,C4 01 uF Capacitors, 50 WVDC, radial leads - Radio Shack 272-109
Substitutions OK, but try to keep as small as possible]

2 R1,R5 1 K potentiometers, Bourns 3352T, DigiKey 3352T-102ND
[Must be finger adjustabie]

5 D1, D2, D3, D4, D5 Diodes, 1N914

2 R8, R9 33 Ohm Resistors, 1/2 watt

2 R2, R6 82 Ohm Resistors, 1/4 watt

2 R3, R7 270 Ohm Resistors, 1/4 watt

2 R4, R10 220 Ohm Resistors, 1/4 watt

2 LEDS, LED7 Dual-color LEDs, Radio Shack 276-012
[Substitution may require adjusting the 220 Ohm resisitor]

3 12" lengths 22 AWG solid conductor wire: Red, Black, Yellow

Figure 2.14. Use these parts to construct TuteBot’s brain. A good understand-
ing of how the circuit functions will allow the builder to make substitutions.
Radio Shack part numbers are given in parentheses. Where no part number is
given, any component with the listed parameters can be used. .

potentiometers and adding resistors in series with the motors. The
other way is to convince yourself you understand every last detail of
the circuit configuration before you start stripping wire.

We recommend a quick skimming of the circuit description and
then directly putting the circuit together. The parts list for the cir-
cuit is given in Figure 2.14, and because the purpose of this chapter
is designed to overcome the inertia of getting started, an exact lay-
out on a Radio Shack breadboard is shown in Figure 2.15. Build the
circuit just like this one and TuteBot should work. One can then
go back through the circuit observing voltage signals across various
portions of the network with an oscilloscope to compare-traces to
graphs for a better understanding.

A photograph of a finished breadboard is shown in Figure 2.16.
One detail to note in assembling this circuit is that all the parts and
pieces must make firm connection in the breadboard. Relays may be
too short to make good contact when inserted into the breadboard
and may need to be plugged into a dual inline pin (DIP) socket before
being plugged into the breadboard. A 16 pin DIP socket ought to be
sufficient. Use care when installing the diodes and the electrolytic

2.5 Electronic Construction

33

Figure 2.16. Details of the breadboard.

34 2. TuteBot

capacitors. These devices are polarized. If they are installed the
wrong way they may be damaged.

It is a good idea to test the circuit as you go. Build only half of it
first and check to see that it drives the motors as desired. With power
applied and the motor not connected, check to see that pressing the
bumper switch activates the relays. If operating properly, a click will
be heard. The bias resistors, R3 and R7, may need to be adjusted
if relays or transistors other than the ones specified are used. If the
relay does not operate, choose smaller resistors until it does (but
don’t go below about 100 2.)

In general, it pays to be neat when breadboarding a circuit. Any
time saved in quickly throwing together a sloppy circuit is usually

more than wasted in debugging time. Cut and strip wires to appro-

priate lengths so they lie flat on the breadboard. Buy lots of different
colors of hookup wire and stick to conventions for power and ground.
If you use red for +9 volts and black for ground, then it becomes
easy to visually check your breadboard, because all wires connected
to the top horizontal row should be red and all the wires connected
to the bottom horizontal row should be black.

Another important tip before connecting power is to always “ohm
out” power and ground—that is, check with an chmmeter that power
and ground have not been inadvertently connected together on your
breadboard. This prevents smoke from streaming out of your circuit.
Never remove components with the power on. Power down first. If
the circuit does not work, first check with a voltmeter that all points
in the circuit that should be connected to power are actually at +9
volts, and that all points which should be at ground actually read 0
V. While this all sounds rather obvious, you would be surprised at
how many problems are caught by these few simply steps.

2.6 Operation

For a more detailed exposition of the TuteBot circuit of Figure 2.13,
we break the system into modules and explain each piece. The circuit
is divided into two nearly identical halves. For simplicity, we describe
only one half, the half which controls the right motor.

As soon as power is applied by plugging in the black (green) wire
to the negative battery socket after having plugged in the red wire to

2.6 Operation 35

the positive battery socket, both motors begin to turn forward and
TuteBot is able to move straight ahead. If we look at the portion of
the schematic showing the right motor’s connection to its relays, we
see that there is a lever arm that can switch between normally open
and normally closed connections. This type of relay is a double pole,
double throw (DPDT) relay. It is the only electronic component
not available from Radio Shack in a 9-volt variety. We can see for
the right motor that the normally closed connection applies 9 volts
across the motor. If the motor moves in the reverse direction, switch
the leads going to the motor and it will then move forward. This is
true for the left motor also. Notice the light emitting diode (LED)
is green when it is going forward and red when going in reverse.

Again, looking at the right motor-portion of the circuit, if Tute-
Bot strikes an obstacle and the bumper switch is closed, a current
flows through diode D2 charging capacitor C1. Simultaneously, cur-
rent flows through resistor R3 into the base of transistor Q1. The
base current causes Q1 to conduct—pulling current through the coil
of the DPDT relay. When the current is provided to the relay, it
switches from the normally closed state to the normally open state.
The motor terminal previously connected to +9 volts is now con-
nected to ground, and the other terminal which was previously con-
nected to ground is now connected to +9 volts. This causes current
to pass in the opposite direction through the motor, making it spin
in reverse. The LED should be red while motors are in reverse.

As the reversing motors cause TuteBot to back up; its bumper
is no longer pressed against the obstacle and ﬁrm,mﬂﬁvﬁ.mé#ow,
SW1, is no longer closed. With the switches open, thé RC circuit
is no longer connected to +9 volts. However capacitor C1 continues
to supply current for a while to the base of the transistor and the
motor continues its reverse rotation. The capacitor discharges at a
rate controlled by the resistors. At some point, Q1 ceases conducting,
the relay opens and the motor resumes its forward rotation. Diodes
D2 and D3 isolate the circuits so that the capacitor can discharge
at the desired rate (so that current cannot drain off C1 and begin
charging the left motor’s RC circuit).

Figure 2.17 illustrates how the voltage across the right motor’s
RC network changes with time. With the switch closed, the battery
charges the RC circuit (this voltage is taken as between point A

36 2. TuteBot

and ground) up to V,. When TuteBot backs away from the obstacle
and the switch is opened, the voltage across the capacitor falls at
a rate determined by the values of the resistor and the capacitor.
To be more precise, this relationship is V = Ve ¥/FC | where V, is
the power supply voltage. Figure 2.17(b) illustrates the RC network
connected to the left motor. The smaller resistance in (a) causes the
current to drain away more quickly, keeping the robot’s right wheel
in reverse for a shorter time period than the left wheel. This causes
the robot to turn to the left. .

The right motor turns in reverse for a period of time, which is
determined by the following factors:

e The size of capacitor, C1.

e the value of bias resistor, R3.

The amplification factor of transistor, Q1.
e The resistance of the potentiometer, R1.
e The current level needed to activate relay K1.

A very brief motor reversal may be selected by setting the po-
tentiometer to its smallest value. A reversal longer than the one
available in the circuit is most easily achieved by increasing the value
of C1, as it is actually the product of R and C which sets the time
constant. You can see this time lag as the duration during which the
two LEDs (6,7) are different colors (one red, the other green).

We can see how the changing currents set up by the RC network
are able to activate and deactivate the transistor Q1 by referring to
Figure 2.18. Depending on the characteristics of the particular tran-
sistors and associated circuit components, a transistor can be used
as either an amplifying device or as a switch. The TuteBot circuit
requires the transistor to act as a switch as shown in Figure 2.18(a).
When base current is supplied, the switch closes and the load draws
current because it is connected between power and ground (see Fig-
ure 2.18(b)). Our very simple model of how a transistor switch works
shows that as long as the current flowing into the base of transistor
Q1 is greater than or equal to g4, the switch is on and current

2.6 Operation 37
Vo o

L) ¥ £
Switch Switch Time Switch Switch Time
pressed released pressed released

v, Vo

T 4 A T 8

L * L *
R, R '

'S mall C Large

— (a) _ (b)

Figure 2.17. As long as the momentary contact switch is pressed, the voltage
between point A and ground or point B and ground will be equal to V,. When
the switch is released, charge begins to drain from the capacitor through the
resistor. The small resistance in (a) drains the capacitor more quickly than the
large resistance in (b).

Current ¢,

Thsatf

Time®

Current ¢, |

Tesa

c.Cutoff T

Switch Switch Time
pressed released

(a) (b)) {c)

Figure 2.18. (a) A transistor is modeled as an ideal switch. (b) In reality the
base current is set by the base resistor’s value for a given voltage applied to
terminal A. (c) The base current must be large enough to put the transistor into

* saturation (turning it fully on).

R
G

38 2. TuteBot

flows through the load. When the transistor’s base current falls be-
low iy gqt, the transistor switches off and no current flows through
the load. A small base current is able to control whether or not a
large load current is allowed to flow. In Figure 2.18(b), we see that
a base resistor is needed to set the base current for the transistor
switch. The timing signals of the current flowing through the base
resistor are shown in Figure 2.18(c). For the duration of time that
TuteBot is in contact with the obstacle and the RC circuit is charged
up to V,, the base current is large enough that the transistor is com-
pletely on and saturated—that is, the collector current has reached
its maximum possible level, i sq1.

As TuteBot backs up from the obstacle, the bumper switch opens
and the voltage drains off the RC network, the current through the
base becomes smaller. Eventually, it falls to iy sq¢, Where the tran-
sistor begins to come out of saturation. The collector current falls
to 0 and the load becomes open circuited. Actually, a small amount
of current does continue to flow for a while even when the transistor
is “off”. The transition from “on” to “off” is not quite as sharp as
in a real switch.

When the transistor switches on, it draws current, ¢, through the
coil of the relay as shown in Figure 2.19(a). Current through the
coil creates a magnetic field which forces the relay lever to move.
The relay lever then switches the common connection (attached to
one terminal of the motor) from normally closed to the normally
open pin. This happens in the relay associated with each motor,
reversing the polarity of the voltages applied across them. For all
the time that Q1 is on, current is pulled through the relay causing
the motor to switch from forward motion to reverse motion. The
LED subsequently switches from green to red.

The essential difference between the left and right motors is the
relative times at which they turn off their reversing behaviors. In
Figure 2.19(b), we can see the timing diagrams of the current through
the relay and the resulting voltage applied between one motor ter-
minal and ground. ,

First, as the transistor Q1 turns off, it causes load current to
stop flowing. This takes some amount of time after the bump switch
is released due to the time delay set up by the RC circuit. When
the current through the relay falls to a level which can no longer

2.6 Operation 39

Current .;

Minimum relay | _ _ _
activation current

Common '
Time
Voltage
at common

6
6

16

Relay 1

,:/ -||1 %
= =
o o

Extra
reverse
time

L
Switch Switch Time
pressed released

(a) , (b)

Figure 2.19. (a) The amount of current, ir, flowing through the coil of the relay
determines whether its common terminal is connected to its n¢, normally closed,
or its no, normally open terminal. When ig falls below minimum activation
current the state of the relay changes. (b) The “Extra reverse time” is the extra
amount of time the motors run in reverse after the bumper switch has been
released. , f

sustain the necessary magnetic field to keep the _m,\.mw attracted to
the normally open pin, the relay switches back to its normally closed
configuration. This occurs to the relay attached to the right motor.

The lower graph in Figure 2.19 (b) shows the resulting voltage
change over time for one of the right motor’s terminals.” The other
motor terminal, normally at 0 volts, switches to 9 volts when the
bump switch hits an obstacle and reverts to 0 volts again (after the
time lag set up by the RC network) after the bumper is released.

A similar mechanism is implemented on the left motor except
that its potentiometer, R5, is tuned to give a different time delay
than for the right motor. The robot can thus be programmed to
turn more or less sharply by adjusting the potentiometer settings for
each wheel. :

Four other points are worth mentioning concerning the right mo-
tor circuit of Figure 2.13. The first is the appearance of diode D4
across the DPDT relay. The reason for adding this device to the
relay is that the diode protects the circuit from the large voltages
that are induced by collapsing magnetic fields in the relay coils when

40 2. TuteBot

the transistor turns off. If diode D4 were not there, the inductance
of the coil would try to force the current flowing through it to keep
flowing down through transistor Q1. Because Q1 has been opened,
current through the coil results in an increase in voltage at the col-
lector of Q1. If this voltage exceeds the maximum rating that the
cutoff transistor can withstand, it becomes damaged or blows up.
The diode alleviates this problem by providing a return path for the
coil current when the transistor turns off.

The second point to note in the final circuit is that the capacitor
(3 has been placed across the terminals of the motor. This capacitor
attenuates the voltage spikes produced by the motor. Typically,
these capacitors are soldered directly to the motor terminals rather
than placed back at the circuit board.

Third, note that the directional LED turns green when the Tute-
Bot is going forward and turns red when the TuteBot is going back-
ward. Likewise note that when TuteBot is turning, one LED is red
and the other green. The LED is parallel to the motor in the TuteBot
circuit.

Finally, note that a “resistor bank” could be connected in series
between the relay and the right motor. This bank is for matching
the speeds between the two motors. Which motor should be con-
nected to the resistor bank is something which must be determined
by experiment. Although the motors and geartrains are supposed to

" be identical, in reality they are not.

These differences manifest themselves as mismatches in the speed
at which the wheels turn. To make the adjustment, power-up the
TuteBot and allow it to roll across the floor. It will make a long arc
in one direction or the other. If it turns to the left, then the right
motor is turning faster; attach the right motor to the resistor bank
in series. Otherwise, attach the left motor. With n resistors wired
in parallel, the total resistance Ry, of the resistor bank increases as
each resistor, R, is removed: Ry = (1/n)R. The more resistance
we place in series with the motor, the less current will flow and
the slower the motor will turn. Add or remove resistors until both
motors rotate at the same speed.

TuteBot is now complete and ready to go. Try running it in a
few different environments. Try adding the wall-following behavior
discussed earlier to bias the motor speeds so the TuteBot travels

2.7 Exercises for the Reader 41

forward in an arc by inserting a resistor bank. If TuteBot goes too
fast and falls apart when it crashes into things, electric tape, double
sticky tape, Velcro™ | and glue work wonders with breadboards and
with Fischer-Technik components.

Have fun!

2.7 Exercises for the Reader

With the wall-following behavior implemented as described above,
the robot will simply turn in circles if it is set in motion far from a
wall. As an exercise, try to devise an additional behavior (possibly
requiring another component or two) which will cause the robot to
go straight until it encounters a wall and then begins to follow the
wall.

Think about all the different ways you might add one or more
photoresistors (response to light) to the TuteBot circuit. How about
a thermistor (response to temperature)? What behaviors are pro-
duced in each case? Can you make a TuteBot that follows a light
such as a flashlight?

2.8 References

While the TuteBot exercises in this chapter were ammmmzmm to be sim-
ple examples to get started, it might be the case that many people
feel more at home with a computer-controlled robot, than-with the
analog electronics of TuteBot. If so, proceed to thé next chapter
describing Rug Warrior’s microcontroller brain. However for back-
ground in electronics, the bibles for robot builders are Horowitz and
Hill (1989) and the associated student manual (Hayes and Horowitz
1989), which give extensive practical information on analog electron-
ics in very readable presentations. The ARRL Handbook for the Ra-
dio Amateur (Kleinschmidt 1990) is another very good source for the
beginner new to electronics. For articles and reports on simple robots
and how to build things, a few pieces have trickled out of the MIT
Mobile Robot Lab over the years. Jonathan Connell (1988) describes
Photovore, shown in Figure 2.20, a light-eating, dark-avoiding, relay-
driven robot using three photoresistors and a Radio Shack toy car

42 2. TuteBot

Figure 2.20. This MIT robot, known as Photovore, performs an interesting set
of light seeking behaviors. It uses only analog circuitry to achieve its behaviors.

base. Photovore is -also described in The Olympic Robot Building
Manual, (Flynn et al 1988), from which this book grew. A picture
book of the resulting talent show robots is contained in Flynn (1989).
Another minimalist mobile robot is described in the August 1991 is-
sue of Popular Electronics, (Connell 1991). Kits and printed circuit
boards for building your own version of Photovore can be purchased
from Johuco, Ltd. See Appendix C for addresses and phone numbers
in the list of manufacturers. Also, please note that kits are available
from A K Peters, Ltd. for TuteBot and Rug Warrior.

Computational Hardware

The elementary circuit that controls TuteBot serves its purpose well.
Using only relays, potentiometers, bump switches, and some discrete
components, TuteBot is able to avoid obstacles and.follow walls.
Adding a few more sensors and continuing in the same vein of using
hard-wired logic for the intelligence system, many other interesting
behaviors can also be designed. Rather than pursue this route, how-
ever, we now introduce a more sophisticated o.oawoeowmbp\obﬁ the
microprocessor. It has a number of advantages over hard-wired logic
in terms of versatility, power consumption, size, and“ease of use.
Most importantly, however, the microprocessor introduces a sig-
nificant new tool-in solving the robot control problem: software. To
change the behavior of robots of TuteBot’s nature, we must adjust

' potentiometers, rewire circuits, and add or alter components. The

behavior of a software-based robot, in contrast, can be changed by
typing at a keyboard. ;

I

Hardware determines a robot’s ultimate potential, but realizing
that potential is the job of software. There is an intimate relationship
between these two elements which we will try to make clear as we
proceed. Organizing the software in the proper way is also important
for simulating intelligent behaviors. The low-level interface between

44 3. Computational Hardware

hardware and software will be the subject of this chapter; this dis-
cussion will continue in Chapters 5 and 7 pertaining to sensors and
motors. The organization of higher-level software and intelligence
will be addressed in Chapter 9 on robot programming.

3.1 Rug Warrior’s Design Strategy

We designed Rug Warrior as a teaching aid for this book in order to
support generic discussions of subsystems with real examples of com-
puter hardware, software, sensors, and actuators that fit together.
Rug Warrior has many more subsystems than TuteBot, and com-
plexity could easily have gotten out of hand. To avoid this, our
approach has been to create a robot that was as simple as possible
while still portraying the breadth of technologies we deemed impor-
tant to understand.

Our design strategy toward this end has been to choose one
of the cheapest yet most versatile microcontrollers available (the
MC68HC11A0 from Motorola) and to essentially “max it out.” By
this, we mean using every pin of the chip to attach as many sen-
sors and actuators as possible. Furthermore, we have endeavored to
use all of the built-in hardware features of the MC68HC11AQ, such
as the timer-counter system and the analog-to-digital converters, to
minimize any external interface circuitry to sensors and motors. In
effect, our goal has been to strive for a single-board robot.

Figure 3.1 illustrates the microprocessor board we put together
for Rug Warrior II, sitting atop Rug Warrior’s tank-tread base. This
board contains all the computer hardware, peripheral circuitry, and
sensors that we used for Rug Warrior. Rug Warrior has not quite
reached the goal of being a single-board robot, but we have managed
to incorporate most of the computer electronics, interface circuitry,
and sensors on this board, which keeps the number of connectors
and cables manageably small. ‘

The point of this book, though, is not just to describe how to
build Rug Warrior but to convey general knowledge about what it
takes to build a robot so that our readers can go on to build big-
ger (or maybe smaller) and better machines. Consequently, in this
chapter, we discuss microcontrollers: what’s inside them, how they
work, what features they have for handling peripherals, and how to

3.1 Rug Warrior’s Design Strategy 45

Em:_‘mw._.>ﬂov<mo€%w=mé§10b .&mgmvmnm;mnoatcamwmb&mmbmo%“
which we will discuss in the next few chapters. .

program them. While we use the specific example of the Motorola
MC68HC11A0 throughout, the text is generally applicable o other
microprocessors because while the instruction setsand particular
hardware attributes for other microprocessors may be different, the
underlying principles are the same as those described here.

The specific example that we will explain in this chapter is il-
lustrated in Figure 3.2. This circuit is the computational heart
of Rug Warrior. When building Rug Warrior mﬂ.wa‘.m‘ow&wo? the
reader should acquire copies of the Motorola Hmmmnoﬁw @. ;Emdcm_m for
the MC68HC11AQ, as these are the final source for documentation
and are obviously more detailed than our discussion here. Motorola
data books can be ordered from the Motorola sales office. The phone
number is given in Appendix E. The complete schematic for Rug
Warrior, which includes the sensors and actuators in addition to the
microprocessor circuitry shown in Figure 3.2, is given in Appendix A.

3.1.1 Interactive C

. In addition to choosing a specific piece of hardware for the micropro-

cessor, we also had to pick some specific pieces of software in order
to produce our examples, which are threaded throughout the book.

46 3. Computational Hardware

Vee hmA
. A{DS
P | Motor Supply LI ,_,_%XNONN . AT
Sumper DS1233M Lyco Gnd G1-F A
Vi Battery low m_a mW+U »
indicafor <“+ é ow Jﬁx
(Red) V. Go.] [
W\ - irwrusi pAZ¢
20 12 PD{10 @\H
10 R =
T arfchear voo_m mm
” c 15V Vi he
/RESET) a P
Phone jack Serial communications ASS

Expansion
ADDR-HI Vee @ Mode Microprocessor
(Green) 47K UTRST e <3I4 Vee
reen MODB Vil
) RUN/DL MODA PE7
=] = B
g LCD 1OM —
m:ﬂﬂ%m_‘ Static RAM @BATT contrast m\qF_’H mﬁ)r wmm m
HM62256 - Vce Crystal XTAL" PE] a
AS, RW o Gnd >y Voc| sss0k 8000MHZ —Jpco” PE4
+{/CE & Vs S0 of—réi PE0
—9 /CE + Ve] f——pG2 PBO
ST AL A0 A9 S—o of—pc3 pai =
BCTin7 Q7 - z PC3 pBl .
PGEIDs Q6 A8 Al e — |3 af— z
et A5 A2 PA4 g 2f—pés PB3 &
ZTIETRCHITN A3 D7IBEZ pcos—— |F 2 G8 PB4 g
oD SATA A4 D6ESRYIPCT S 13 a PG7 __PB5 2
te A5 D5 P2 —— Vee 9 4.9k —V/RESET PB6
pC11D2 Q2 [ATY A6 D4 PC3 >— Wﬁ\x_mo PB7
(PCOIB) &) AN A7 D3 PG4 >—— /IRQ PAD
——A8 D2 PC5 >\ 4. 7K] uww W»W
74HC573 —]a9 D1[ECH] |pceS— a DI PAZ
——1A10 DO PC75—— s D2 pas—
- S PD4 PAS| 3
A12 16 x 2 LCD o PD4 PASI—t
NS vad___ par[—J9
Ala S I o
1 Veco MCe8HC11A0
or
DATADDR-LO MC68HC11A1

*As part of the battery backup-circuit power is supplied
to the 74HC10 and _,Rz_omwmm directly from the battery.

Figure 3.2. The schematic for Rug Warrior’s computational hardware. The
MC68HC11A0 is attached to 32K bytes of memory through a 74HC573 latch. The
MAX233 chip does the level conversion for the serial port, and the DS1233M low-
voltage inhibit circuit prevents problems by resetting the MC68HC11A0 when
battery voltage gets too low.

3.1 Rug Warrior’s Design Strategy 47

Building a robot usually involves both some assembly language
programming and some higher-level language programming. Assem-
bly language programming consists of writing code in the machine-
specific instruction set designed for the microprocessor you choose.
Typically, the programmer writes code using a set of mnemonics
for the machine instructions and then runs a program, called an
assembler, which creates the bit-level sequences that can be down-
loaded to the microprocessor. Although higher-level language pro-
gramming is convenient for many tasks, assembly language is often
necessary when building a robot in order to direct the microproces-
sor to read the robot’s sensors or drive its motors. Because we have
chosen the MC68HC11A0 microprocessor for Rug Warrior, we use
the MC68HC11 family’s assembly language in our examples.

For creating robot behaviors, a higher-level language such as C
or Lisp is often used. The user programs a higher-level language
in its syntax, which is usually more concise than that of assembly
language, and then translates that code to the assembly language
for a specific machine using a program called a compiler.

In the research laboratory, we often use Lisp, but for this book
and. for Rug Warrior, we have chosen to use C, as more readers
will likely be familiar with its syntax. Specifically, the version of
C we have chosen to use for creating code that will run on the
MC68HC11AO0 is Interactive C (or simply IC). IC was developed by
Randy Sargent and Fred Martin of the MIT Media Laboratory for
an MIT undergraduate design course. IC runs on several versions
of the MC68HC11 microprocessors and includes such-useful features
as the ability to initiate and terminate processes’and to execute
C statements immediately—without the need to first compile, link, -
and load. The interactive nature of IC is extremely useful when
debugging a robot program.

IC runs on PCs, Macintoshes, and Unix machines. This develop-
ment has helped make Mobile Robots tractable for a wide audience.
We write examples throughout the book in both assembly language
and C, and readers are free to acquire their own copies of IC. If you
have access to the Internet, this involves logging in anonymously to

_ the MIT Media Laboratory server (Internet Address 18.85.0.47 or

cherupakha.media.mit.edu) and using the FTP file transfer protocol
to download the IC compiler. An updated, expanded, and supported

48 3. Computational Hardware

version of IC is also available for a modest fee from Newton Research
Labs. Visit the website www.newtonlabs.com for more information.

Other C compilers are also available for the MC68HCI11.
Motorola (among others) maintains a library of freeware for the
MC68HC11 including C compilers. Follow the links from Motorola’s
site: www.mcu.motsps.com/freeweb/areas.amcu.html A number of
commercial products also exist. Dunfield Development Systems
(www.dunfield.com), sells a C compiler for the MC68HC11 that is
likely to be more stable and better supported than the freeware soft-
ware available over the web.

Now let us turn our attention to a general discussion of micro-
processors and everything you ever wanted to know about ooB@Cﬁmwm
that might be helpful in designing your own robot.

3.2 Microprocessors

Programming an inexpensive, bare-bones microprocessor, such as

the one we use in Rug Warrior, differs in some important ways from
programming more familiar personal computers, workstations, and
mainframe computers. The differences generally relate to the mi-
croprocessor’s limited computational resources. Typically, such a
microprocessor can utilize only a small amount of memory, has no
mass storage, and runs at a slower cycle time than its more capable
counterparts. .

On a large computer, several layers of abstraction (such as the
operating system, a high-level programming language and an ap-
plication program) stand between the user and the underlying ma-
chine. These layers are useful because they obviate the need for
the programmer to understand the details of the particular proces-
sor implementation and its low-level interaction with the peripheral
hardware. Unfortunately, the computational overhead required to
maintain such abstraction barriers is usually unacceptable for the
simplest microprocessors. In most cases, it is necessary for the pro-
grammer to fully understand the bit-level interaction between the
processor and the devices it controls. The only abstractions avail-
able will be those constructed by the programmer. _

Recently, an important subclass of microprocessor has become
available, the highly integrated microcontroller. A microcontroller

3.3 The Canonical Computer 49
; Processor Memory Port 1 Port 2
A A A A
_ Y Y Y Y
A Bus v

Figure 3.3. The essential elements of a computer are its processor, memory,
input/output ports, and bus. The bus provides a communication pathway by
which the processor can access and control the peripherals.

combines the small size, low power consumption, and computational
abilities of an inexpensive microprocessor with the signal-processing
proficiency of discrete circuits. In particular, microcontrollers com-
monly include such built-in amenities as a serial line (for communi-
cating directly with a terminal or host computer), analog-to-digital
converters, timers (for capturing events or activating hardware), and
pulse counters. These features greatly simplify system design. Be-
fore the advent of the microcontroller, to achieve the sensing and
actuation requirements of a robot, it was necessary to construct a
system consisting of numerous printed circuit boards connected to-
gether. One or more cards were devoted to the processor and the
memory; separate cards were required for each sensing and actua-
tion function. Today, the size, complexity, power consumption, and
cost of such a system can be reduced by using a Eﬂowooosﬁozmw to
perform all the processing tasks in one chip.

In spite of a myriad of variations, computers aré vmm_omz% sim-
ilar. Figure 3.3 shows the block diagram of a genefic computer,

reduced to its essential components. A computer consists of a pro- -

cessor which executes instructions; memory, which stores instruc-
tions and data; ports which interface the computer to its peripherals
(“the outside world”); and a bus which provides the communication
pathway among processor, memory, and ports.

3.3 The Canonical Computer

It will be instructive as we go along to compare this abstract view
of a computer (Figure 3.3) with two other illustrations. The first is
the block diagram of the MC68HC11, shown in Figure 3.4, and the

50 3. Computational Hardware

second is the schematic of Rug Warrior’s logic board, shown earlier
in Figure 3.2.

Most microprocessors come in families, and family members are
designated with a similar numbering pattern. The MC68HC11 fam-
ily of microprocessors all come with the same basic features that
make them convenient processors for controlling things. Individual
members of a family may differ slightly in how much memory or what
types of memory they have on the chip. All members would have
the same instruction set and use the same assembly language. For
instance, the MC68HC11A0 and the MC68HC11E2! are two mem-
bers of the MC68HC11 family. The MC68HC11A0, which we have
chosen for Rug Warrior, is at the low end of the line. Individual
members of a family also have suffix designations that differentiate
the package types available. The suffix FN on the MC68HC11A0FN

designates a 52-pin square version. This is the square chip situated.

in the center of Rug Warrior’s board, illustrated in Figure 3.1.

3.3.1 The Processor

The processor, or central processing unit (CPU), is the controlling
element of the computer. Its function is to execute instructions, one
after another. The execution of an instruction effects some change
in the state of the microprocessor. This may be reflected as an
alteration of the value of a memory cell, the contents of an internal
register, or the voltage on a line connected to a port.

Instruction execution occurs at a rate fixed by and synchronized
with the system clock. This internal clock is driven by an external
circuit that includes a high-precision crystal oscillator. In the case
of the MC68HC11A0, the output of an 8.000 megahertz (MHz) crys-
tal, connected to lines XTAL and EXTAL (as shown in Figure 3.2),
is divided by 4 to produce a clock frequency of 2 MHz. The chip
outputs this synchronizing signal on its E line to be used by exter-
nal circuitry. The number of clock cycles required for an instruction
to be completed is a characteristic of the particular instruction, but
all MC68HC11 instructions require at least two cycles. Thus, each
instruction takes a minimum of 1 microsecond. The longest instruc-

1In Motorola’s labeling scheme the 8 following the HC in MC68HC811E2
indicates that the chip posses on-chip EEPROM memory.

3.3 The Canonical Computer 51
(@R (Vstay)
MODA MODB XTAL EXTAL E _.md. RESET

oot 1l

INTERRUPT
LOGIC

MODE CONTROL

CLOCK LOGIC _

cop

l

RAM 256 BYTES

CPU CORE

PERIODIC INTERRUPT

m _ SERIAL SERIAL »'. N
3 (L e I e | e T s
RIBAAI ADDRES / =2 s INTERFACE s
% Wistily $3EEENEY 11 s =
3 [PO STROBE AND HANDSHAKE m m % ol RN
*ge888088 _ PARALLEL 1/0 ﬂﬂ_ 1238528 VR
A JYYYY 00000000 13 00 A-D CONVERTER
YYVYY YYYYYYYY conTROL CoNTROL EEEREEE
[porta PORT B PORT ¢ PORT D PORT E |

WA WA AR H T

[

‘STRAJAS d—P»—

STRB/R/W ~—

Figure 3.4. We saw how the MC68HC11A0’s external pins were connected to
the rest of Rug Warrior’s circuits. This is the block diagram for the internals of
the MC68HC11AO chip itself. It only comes with 256 bytes of Em.,EoH& -‘but has
eight analog-to-digital converters attached to port E and a timer-counter system
associated with port A. Copyright of Motorola, used by permission. (1989)

tions (which do division) take 20.5 microseconds. I d&mw to execute
an instruction, the microprocessor must first fetch’the instruction
and any required data over the bus from its memory. .

3.3.2 The Bus

A binary value stored at a particular location in memory is accessed

when the CPU places the address of the location on the bus. The
range of addresses available, known as the address space, is fixed by
the width of the bus. In this case, width refers to the number of bits
(usually carried by parallel wires) in the address.

The MC68HCI1 has a 16-bit-wide address bus and is thus able
to select any one of 216, or 65,536, different locations (also known
as 64K). At each of these locations an 8-bit (=1 byte) data value

52 3. Computational Hardware
Address Value
0 eee 0 0 1 1101 00 0 1
0 01 0 01 000 10 1
Control 0 0-1 1 0 01 1 1 0 0 O
Logic 0 1.0 0 01 00 0 1 0 1

-
-
.

P11 JILTTT

@93_ lines Address lines (16) Data lines (8) \\

Bus

Figure 3.5. of memory. Depending on control signals, a value will be read from
or written to the memory location whose address matches the signals on the
address lines. The value read or written to that location will be the value that
is presented on the data lines. The MC68HC11 has 16 address lines and 8 data
lines. (Eight of the address lines are reused as the 8 data lines.)

is stored. The MC68HC11A0 multiplexes data and address signals.
When it wishes to read or write a value to memory, it must first
assert the address on all 16 address lines; it must then write data to
or read data from the 8 lines that previously corresponded to the low
8 bits of the address. Whether address or data is present on these
lines is specified by the state of control signals on other lines. Figure
3.5 illustrates how the address lines, data lines and control lines are
organized on the bus in order to enable the reading or writing of
values to memory.

Elements other than memory locations can be accessed via the
bus. A port, which allows interaction between the microprocessor
and external devices, may be present. Depending on its nature, the
port appears to the microprocessor as a memory location that can
be read from and/or written to. To the outside, the port consists of
a set of lines to which a voltage can be applied and/or from which a
voltage can be generated.

3.3.3 Memory

Computer memory is divided into classes based on whether or not
the contents of the memory can be altered, and if so, and how that

3.3 The Canonical Computer 53

alteration occurs. The major classes of memory are:
o random access memory (RAM),
e read-only memory (ROM), and
e programmable read-only memory (PROM).

The desirable characteristic of RAM is that it may be read or writ-
ten at will; such operations are very fast. The contents of RAM,
unfortunately, are usually volatile. That is, whatever data is stored
vanishes when the power goes off. It is also possible to buy non-
volatile RAM which is simply normal RAM encased in a package
that contains a battery. ROM, on the other hand, is nonvolatile but
once encoded at the factory cannot be changed.:

Finally, PROM memory is nonvolatile and possesses a mechanism
that allows the user to program it at least once and possibly to
erase it. An important subclass of PROM is EEPROM (electrically
erasable programmable read-only memory). EEPROM allows both
read and write operations but with some restrictions. The memory
may fail if altered more than a specified (large) number of times,
and writing may take much longer than with RAM Agmrmmoonmm as
opposed to nanoseconds). :

A more common type of erasable PROM, called- mHqug
(erasable programmable read-only memory) can be clesred using ul-
traviolet light. Such chips have small windows built in so that the
physical memory cells can be exposed to an ultraviolet light source.

An important feature of the MC68HC11 family of microproces-
sors is that versigns are available with all three types of memory on
the chip. This makes it possible to design applications that need
almost no components other than the microprocessor chip itself.

In particular, the MC68HC11A0 chip employed by Rug Warrior
has 256 bytes of on-chip RAM but no general purpose EEPROM
or ROM. The MC68HC811E2 version has 256 bytes of RAM, 2K of

. EEPROM, and no ROM. And the MC68HC11E9 has 12K of ROM,

512 bytes of EEPROM, and 512 bytes of RAM.

54 3. Computational Hardware

3.3.4 Ports

A port is the microcontroller’s connection to the outside world. A
computer for which a port is just a memory location is said to have
memory-mapped input/output, (I/O). Other architectures are possi-
ble. One commonly encountered architecture uses special lines and
instructions for accessing peripherals. The venerable Z80 micropro-
cessor uses such a scheme.

Figure 3.6 illustrates how the memory-mapped I/0O is arranged
for the MC68HC11A0 used on Rug Warrior. The MC68HC11A0
has five ports, labeled A through E. Typically, a microprocessor,
as opposed to a microcontroller, has either no ports or ports that

support only digital inputs or outputs. Ports-on the MC68HC11,.

however, perform a rich variety of functions.

Port A has eight lines, three of which are dedicated to input,
four to output, and one to either function. (Please refer to Figure
3.4 throughout this discussion of ports) A timer-counter system is
associated with port A. The input lines, PAO through PA2, can be
used to capture events. When the line changes state, the time of
that occurrence is automatically latched into an internal counter.
The output lines, PA4 through PA7, can initiate external events.

When the current time matches a preset time, the state of the line
can automatically change. One port A line, PA7, can be configured
as a pulse accumulator. Each time an externally applied voltage
changes state (from high to low or low to high), an internal counter
is incremented. These operations, handled by the hardware of the
microcontroller, are truly automatic. Once the hardware has been
set up in the proper way, no instructions need be executed to perform
these functions.

The MC68HC11 has four modes of operation. The actions of
some ports depend on which mode has been selected. In the ex-
panded multiplexed mode, the microcontroller uses ports B and C
as a part of the bus. In single-chip mode on the other hand, the mi-
crocontroller assumes that no external memory is available, so the
operation of an external bus is not supported. In this case, port
B operates as a digital output port, where each line is a dedicated
binary output, and port C operates as a digital I/O port, where
each line may be individually configured as input or output. The

3.3 The Canonical Computer 55

$FFFF \

32K External
memory

$8000
unused
64 Byt
$1000 register block
unused 256 Bytes of
$0000 h on nsw_“ W>.“s

.+~ Figure 3.6. A memory map describes the amr#woum?v ameng addresses and the
17 functions associated with each address. Shown here is the map used by Rug

Warrior. The $ indicates that the address is given in hexidecimal (base 16)

- format.

Custom
] circuitry
Device to be)
monitored

Address Control -Data
decoding Select logic buffer -

AT~ FF W

Address lines from bus Control and data lines from bus

_u_m:”:‘m 3.7. It is possible to build ports as desired to enhance the capabilities of
a microprocessor. This is dene by adding some discrete logic (integrated circuit
chips) for address decoding.

remaining two operating modes are special bootstrap mode, used
for loading programs into the microprocessor and special test mode,
used mostly for factory testing.

56 , 3. Computational Imaim_‘m

Port D has six lines. Each may be configured as either a bi-
nary input or output. The lines of this port serve two other im-
portant functions, as well. The low-order lines, PDO and PDI,
are part of the communication system. Using these two lines, it is
possible to connect the chip to a terminal or host computer. The
high-order lines, PD2 through PD5, form a high-speed synchronous
data-exchange facility that can be used to network a number of
MC68HCl11s.

Finally, port E can be used either as a general purpose 8-bit dig-
ital input port or as an 8-channel analog-to-digital (A/D) converter.
Each channel has 8 bits of resolution. When the A/D converter fea-
ture is activated, voltages in the range of 0.0 to 5.02 are converted to
binary numbers in the range of 0 to 255. Applying, say, 2.5 V to pin
PEO and reading the associated A/D result register would return a
value of 128.

If the microprocessor of choice does not have enough ports or if
the existing ports have the wrong functions for a particular appli-
cation, it is possible to build a port of any desired type. We will
describe this in detail later, see Section 3.4, in the meantime Fig-
ure 3.7 shows how we would go about adding, in this case, an input
port. First, design custom circuitry to perform the required inter-
face to the sensor or actuator. Next, build a circuit to decode an
address. Chips such as the MC74HC688, which can compare two
sets of 8 lines, simplify construction address decoders. Choose an
address not currently mapped to any other device. Finally, build a
data buffer that will output its contents in response to signals on the
select line and the control lines of the bus.

3.4 Expansion

In Section 3.3.4 we noted that it is possible to construct additional
memory-mapped ports. In this section we will elaborate on one
simple method for accomplishing this expansion. Port expansion
circuitry is divided into two components: address decoding and data
buffering. The method we describe simplifies the problem by per-
forming only partial address decoding.

2In fact, the range depends on the reference voltages at pins VRL and VRH.
Most commonly these are set to 0.0 V and 5.0 V respectively.

3.4 Expansion 57

—< PE7
— PE8
—< PE5
—< PA1

ADDR-HI —<PA2
74HC138 '.A PA3

A YO Osel0o

Y1 Osell

Y2 Osel2

1Y3 Osel3
G2A Ya— < Isel0
G2B Y6 Isel
Y5o——(Isel2
Y7o———<lIsei3

Figure 3.8. Address decoding circuitry is implemented on Rug Warrior mvw,ods
and on Rug Warrior’'s RugUp™ upgrade board. Four address lines plus the

W\ﬁ\ line are decoded to produce four input select lines and four output select
ines.

3.4.1 Address Decoding -

Port expansion circuitry connects to the microprocessor’s address
and data bus. It is the responsibility of the expansion circuit to read
data from the bus or write data to the bus. These o,vmumﬁoa must
happen only when a preselected address is referenced and then during
Jjust the proper portion of the clock cycle when the microprocessor
is ready to send or receive the data. We begin by o,OSmEoEuw the
address decoding portion of the circuit (see Figure wwv

To map a byte of data from an I/O port into a vmwﬁoi,wa spot in
the microprocessor’s memory space of 65536 total Uﬁam 16 address
bits must be specified. This mapping feat requires a circuit to com-
pare two 16 bit quantities—the address currently on the bus and the
address of the data port. When the addresses match, the address
decoder activates a select line. The second part of the expansion
circuit, the data buffer, reads data from the bus or writes data to
the bus during the short time when the select line is in the proper
state.

Typically, address decoding is accomplished using at least two
18 or 20 pin chips. There is, however, a way to get by with a much
simpler one chip circuit if we can accept a partially specified address.
That is, our circuit will examine (decode) only some of the address
bits and ignore others.

58 3. Computational Hardware

In our example, (see Figure 3.8), expansion circuit address de-
coding is done using a 74HC138 chip. This chip is called a 1-of-8
decoder because a three digit binary code applied to the chip’s A, B,
and C inputs will select (cause to go low) exactly one of the chip’s 8
outputs. For example, if the inputs A, B, and C all have the value
0, then output YO will be low and all others will be high. For inputs
0, 0, and 1, respectively, output Y1 is low and all others high, and
S0 on.

Three other control signals are also required to activate the
74HC138’s outputs. Inputs G1 must be high and G2A and G2B
must be low. If we connect the MC68HC11’s A15 address line to
G2B then any time A15 is high, outputs from the 74HC138 chip will
be disabled. This is the behavior that we require, because when A15
is high the microprocessor is addressing high memory (addresses of
$8000 and higher). (See Figure 3.6.) This is where external memory
is located and peripheral devices must not respond to addresses in
that range.

Also, we do not want peripheral devices to collide with bytes in
the lowest part of memory, $0000 to $00FF or $1000 to $103F, be-
cause those are the addresses of the microprocessor’s on-chip RAM
and the control and status registers, respectively. By requiring A14
to be high, we will avoid that part of memory. We do this by invert-
ing A14 and connecting it to G2A. According to the manufacturer’s
literature, only during the high part of the clock cycle should pe-
ripheral devices read or write to the bus—this can be ensured by
connecting the clock signal, E to input G1.

Now we can use A12, A13, and R/W to further select a peripheral
device. Using the R/W signal makes certain that an input and an
output device will never try to access the bus at the same time. Four
outputs of the 74HC138 chip select output devices and four others
select input devices.

Putting this all together and representing the binary value of A13
by A and the value of A12 by B we see that one of the outputs of
the 74HC138 chip will be active any time the microprocessor selects
an address of the form %01A Bxxxxxxxxxxxx. Where x represents

“don’t care,” and % indicates a binary number.

For example, if the microprocessor writes a value to the binary
address: %0100000000000000 (that is $4000 hex) then the signal

3.5 Data Buffer 59

Address Range Inputs Outputs

0x4000 - Ox4FFF 1IselO OselO
0x5000 - OxX5FFF Isell Osell
0x6000 - Ox6FFF 1Isel?2 Osel2
0x7000 - OX7FFF Isel3 0Osel3

Figure 3.9. Relation between addresses and active signals for the address decoder
portion of the expansion circuit.

Osel0 will become active for a portion of the bus cycle. The data
(one byte) that the microprocessor writes can be read by a peripheral
device if that device latches (loads and saves) the data present on the
data bus at that time. Or, if the microprocessor reads the address
$4000, a peripheral device should write its data to the data bus
while the signal Isel0 is low. In fact, since only the highest four bits
of the address are decoded, Isel0 and Osel0 will become active for
any address in the range $4000 to $4FFF.. .

Any peripheral input device must place its data on the bus when
one of Isel0 to Isel3 is low (the device must choose one). Any output
device must latch data from the bus only when one of Osel0 to Osel3
is low (again the device must pick one of the mﬁb&mv. . .

3.5 Data Buffer

The data buffer circuitry must respond in a vmwanc_mﬁ way when the

‘address decoder decides that the microprocessor wishes to access

the expansion port. Please refer to Figure 3.10. The circuit shown
is that of the RuglO™ Stackable Expansion Module, SEM.3
Consider first an input operation. We wish to interpret voltages
appearing on the INO - IN7 lines of connector J4 as eight bits of data
to Um input into the robot. INO - IN7 are connected to the inputs of

3 . e .
RuglO™ adds eight additional inputs and eight additional outputs to the

-Rug Warrior Pro™ robot. RuglO™ attaches directly to Rug Warrior Pro™

but to m,oEDmQ RuglO™ to Rug Warrior™ | a RugUp™ board is required. Both
RuglO™ and RugUp™ are supplied by A K Peters.

60 3. Computational Hardware

8 Digital Outputs + Power and Ground

vee 4 ¢ J3
SHEBEEEE
wl cololololololo ouTPuUT

.= J5

WIZ;._ RN1.H RN1.G MIZA. RN1.E ZRN1D RN1.C RN1.B RN1.A .|—
2P B P P By S B
| W LED8 rmowmﬂrm_um | LED5S m LED4 ~|LED3 - |LED2 = |LED1
3 3L 3 3 3 3 3l outpuT

&
=2
s
J1 ExpSocA <Mn J2 ExpSocB
Vee Vee
_uOoV.IJ 74HC573 74HC244 =5
PC1 u2 C1 u3 H
PC2)———\ C H :m<nn L
PC3)——\ —=40¢ = _z< A1V voﬂ
pca>——] pcr ouT? in6_hasKd1v2| Pce
D7 Q7 A
oy 1 cloute) | Fins hasdivalpes Y | o (V1A —< A3
~=221D6 Q \ VT o] N | & < Osel0
rcey——J pcs OUT5 IN4 haskdava] PCa 4 = <
2 I wm o L et V| 3L H—<osen
JFCa 4
Resed— [pcalps q3[QUTS] IN3 loasdovi|PC3 | 97 PlJ.UA Osel2
NRQ>— Vecl out2 IN2 | PC2 < Osel3
JPC2lpy Q2 |QUIZ o
ve>—2Y po1 D1 Qi fouT IN1 paskd ovalPCt Y | B = < Iselo
and>—=trcolpo aolouta) o badlpvalpoa] 2, H—rser
Mpwi>— - 1) rev 5 ﬂl &a | o J8 _||I||A_mm_m
vond— |E L els I i — Isel3
i 5 = ze = %
D o =

l

J6
U1i.B @ _
1 W RN2.H RN2.G RN2.F RN2.E RN2.D RN2.C RN2. RN2.A 1
U1.C =
— o Rl Ay | A | A | M | P | P | P L P
Ui.D
UiE W LED16 M LED15 M LED14 M LED13 m LED12 M LED11 W LED10 M LED9
Vee INPUT

8 Digital Inputs + Power and Ground

o]

Figure 3.10. The schematic diagram of RuglO™ illustrates memory mapped
input and output circuitry. Each of the 16 I/O bits is monitored by an LED.
Knowing the state of each line aids in debugging attached circuits.

3.6 Rug Warrior Logic 61

the 74HC244 buffer chip. Normally, the outputs of the 74HC244 are
driven neither high nor low. As long as pins 1G and 2G are high,
the 74HC244’s outputs are in a high impedance state. This is a vital
feature of any chip connected to the data bus as is the 74HC244. If
the 74HC244 tried to impose a voltage on the bus at times when it
did not have control, signals from the 74HC244 would conflict with
what ever other signals were on the bus at that time. This condition
is known as bus contention.

At the moment when the microprocessor is ready to read data
from a particular memory location, the select line on jumper block J8
corresponding to that location, goes low. One of these lines, chosen
by the user, is jumpered to INSEL (the dashed line in Figure 3.10
indicates that Isel0 has been chosen). When INSEL goes low the
enable lines (1G and 2G) of U3 go low forcing the chip’s 8-outputs
to leave their high impedance states. In the low impedance state,
‘the logical values present at U3’s inputs appears at U3’s outputs.

Thus, the microprocessor reads whatever values are imposed on INO
through IN7.

‘Memory-mapped output is handled in a way similar to memory-
mapped input. When OUTSEL goes low, the inverter Ul.A causes
U2 line C (the latch enable line) to go high. This latches Fﬁo U2’s
outputs whatever signals are present at U2’s inputs at that moment.
Thus, a value written by the microprocessor appears on the QUTOQ
through OUTY7 lines. Builders who wish to construct this circuit
should note that standard LEDs drawing 20 mA of-current each can-
not be used. These levels exceed the maximum currént.output speci-
fications of the buffer and latch chips. High efficiency LEDs drawing .

2 mA or less are required. (Use an HLMP-4700, for example.)

3.6 Rug Warrior Logic

Now that some of the inner mysteries of the MC68HC11 have been
divulged, we can present more details of the logic components that
run Rug Warrior (see Figure 3.2).

62 3. Computational Hardware

3.6.1 Power

The power switch on Rug Warrior turns on or off power to the micro-
controller and sensor circuits while separately controlling the power
going to the motor driver chip. It also selects run mode versus down-
load mode. Power is supplied to the MC68HC11A0 through its VDD
pin. Ground is connected to VSS.

A three-pole, three-position switch controls power to the circuit.
The center position is off. In the down position, programs may be
downloaded to the microprocessor from a host. In the up position,
all circuit components receive power and a previously stored program
will run.

3.6.2 The Clock

An 8.000 MHz crystal provides an accurate and stable time base for
Rug Warrior. Such a circuit is critical to the proper functioning of
any microprocessor because every operation is synchronized by the
clock.

3.6.3 Reset

Pressing the reset button pulls the RESET line low. (A signal name
written with an overbar means that the signal is asserted when low.)
When this happens, the microprocessor halts—it stops executing in-
structions. After the button is released and the RESET line goes
high again, the microprocessor restarts its program from the begin-
ning.

3.6.4 Mode Selection

As stated above, the MC68HC11 has four operating modes: single-
chip mode, expanded multiplexed mode, special bootstrap mode, and
special test mode. Of these, only the special bootstrap and expanded
multiplexed modes are of interest to us.

A particular mode is selected according to the voltages placed
on the MODA and MODB lines. When the power switch is in the
Download position, MODA and MODB are both low. This places
the chip in the special bootstrap mode, where it is possible to load a

3.6 Rug Warrior Logic 63

program via the serial line into the microcontroller’s memory. With
the power switch set to Run, the program just loaded will begin to
execute (after a reset).

3.6.5 Low-Voltage Inhibit

The MC68HC11 is designed to operate at voltages no lower than
4.5 V. However, when the power is switched off, the voltage falls
below this level through an illegal range before reaching 0.0 V. In
this nether region between 4.5 and 0.0 V, the MC68HC11 exhibits
some unmannerly behavior; namely, it may write random values into
memory locations. The chip can be inhibited from doing this if the
RESET line is held low as power is switched off. This is the purpose
of the DS1233M low-voltage inhibit chip.

3.6.6 The Serial Line

In order to program a microcontroller, we must communicate with
it in some way. The MC68HCI11 facilitates this with a built- in se-
rial line. On a host computer, programs can be typed, edited, and
assembled to a form understandable to the microprocéssor. Then
the machine language form of the program is .Qoéiom&m& to the

- MC68HC11 through its serial line. Unfortunately, there is an in-

compatibility between the most common communication mw@bamwa
RS232, and the microcontroller’s format. RS232 specifies that 0’s
and 1’s are represented by voltage swings of —15 to +15 < while the
MC68HC11, a CMOS (complementary metal oxide sem ODQSQOS
device, represents binary digits using 0.0 and 5.0 V. m,ogczmﬁo_uo this -
common problem has a ready solution: Several clever circuits will
perform the interface function. We have chosen to use a MAX233
chip for this purpose because it allows full- duplex operation (it can
transmit and receive at the same time) and no components Ummamm
the chip itself are needed.

3.6.7 External Memory
The HM62256LP-12 RAM chip holds Rug Warrior’s 32K-byte exter-

.nal memory. This is exactly half the total memory that a MC68HC11

can directly address. The 32K block fills the upper half of memory,

64 3. Computational Hardware

the address space from the addresses $3000 to $FFFF, as illustrated
in Figure 3.6.

In single-chip mode, the MC68HC11 assumes that no external
memory is available and so it is free to configure ports B and C as
general purpose I/O ports. In the expanded multiplexed mode that
we use for Rug Warrior, however, the MC68HC11 must use ports
B and C to implement the address and data lines needed to access
external memory. In this case, these ports cannot be used for I/0.
This is the design choice made for Rug Warrior. There is, however,
a special chip called a port replacement unit, the MC68HC24. When
added to the circuit, this chip makes ports B and C available even
while operating in the expanded multiplexed mode.

Each byte of the 32K memory space can be addressed by using
only 15 address lines. Together, ports B and C provide 16 lines, so
one line, PB7, is left over. This line is used to select the memory
chip itself.

The high part of the 15-bit address is formed using port B lines
PBO through PB6. Port C lines PCO through PC7 form the low
part. Line PB7 selects the HM62256LP-12 memory chip. Any ad-
dress of $8000 or above has the highest-order line asserted; that is,
PBY7 outputs a 1. Thus, the memory chip is selected and will re-
spond only when the microcontroller asserts an address of $8000 or
more. Addresses below this number are ignored. The signals from
PB7, the low-voltage inhibit chip, and the E pin of the MC68HC11
are combined in a triple-input NAND gate whose output goes to the
memory chip’s CE (chip enable) line. (The output.of a NAND gate
is low, if, and only if, all its inputs are high.) The RAM chip is
selected only when there is sufficient voltage to operate, when the
system clock is in the proper part of its cycle, and when an address
of $8000 or higher is specified. If we wished to expand Rug Warrior’s
memory by filling in the addresses below $8000, we could wire in a
second 32K RAM chip. This chip would be selected by inverting the
sense of PB7 and connecting it to the new RAM chip’s CE line. The
new chip would be selected only when PB7 output a 0. This would
deselect the first memory chip.

At the beginning of a memory read or write cycle, port C outputs
the low part of the address (bits 0 through 7) and port B, the high
part (bits 8 through 15). Control signals then cause the low part

3.7 Hardware-Software Interface 65

of the address to be latched by the 74HC573 chip. After latching
has been enabled, the 74HC573 chip will continue to output to the
memory chip the signal first sent to it by port C, even when data on
port C later changes. Thus, during the second part of the read/write
cycle, the lines of port C are free to be used as data lines either to
write data to or read data from the memory chip. (The AS and RW
lines from the microprocessor determine this.) This dual use of the

port C lines is known as multiplezing.

3.6.8 Battery Backup

As the contents of the external memory chip are volatile, some ex-
tra mechanism is required if we wish for the robot to remember its
program after the power is turned off. We have chosen a scheme of
battery backup for the RAM chip. A very helpful property of chips
using CMOS technology is that they require only tiny amounts of
current to maintain their state. E .
Thus, we have routed power from the battery directly to the
supply pin, VDD, of the memory chip (bypassing the power switch).

‘This chip continues to be powered, even when the switch is off. This

choice has essentially no impact on how long the batteries will last,
however, as the current required to maintain the contents of the
RAM is only about one microamp. The 74HC10 triple NAND gate
is part of the enabling circuitry for the memory chip. By always
providing power to the NAND chip, we can make sure fthat-RAM is
disabled whenever the power in the main circuit is swit

Another alternative is just to buy a nonvolatile RAM chip which

~ is a normal RAM that has a small lithium battery in the case. A

nonvolatile RAM chip is only a few dollars more expensive than a
normal one. Dallas Semiconductor and Greenwich Instruments sell
nonvolatile RAMs.

3.7 Hardware-Software Interface

Software controls hardware and hardware supports software. The na-

- ture of this relationship is the topic of this section. In what follows,

we will assume the reader has some familiarity with programming in

66 3. Computational Hardware

a higher-level language. After an aside concerning number format-
ting, we will begin with an example of what actually goes on when
a program runs.

3.7.1 Representing Numbers

When programming a microprocessor at the lowest level, it is useful
to be able to easily refer to numbers in bases 2, 10, and 16 (known,
respectively, as binary, decimal, and hexadecimal, or hex). Unfor-
tunately, every programming language establishes its own standard
for specifying the base. Unless the base is clear from the context,
we will use the convention shown in the following table for repre-
senting numbers in assembly language programs and in C language
programs. The decimal number 123 is used as an example.

_ Assembly language _ IC language
Base | Prefix Example | Prefix Example
2 % %01111011 - Ob 0b01111011
10 123 123
16 3 $7B 1 Ox 0x7B

The base 2 representation for the decimal number 123 is 01111011.
The syntax of our assembler requires us to specify this as %01111011
so that it understands that we mean the binary number 01111011
and not the decimal number 1,111,011. The syntax for IC would
have us write 123 in binary form as 0b01111011. Similarly, hex
numbers are specified using the $ prefix for our assembler and a 0x
prefix for IC. The prefix Ob for representing binary numbers is part
of IC but is not included in standard C.

3.7.2 An Example

The details of writing a workable program and loading it into the
microcontroller will be explained later. For the moment, we will
agssume that a simple three-instruction program has already been
loaded. We will watch what happens as the program runs.

Figure 3.11 illustrates the changes that take place in two of the
microprocessor’s internal registers and an output port when the fol-
lowing fragment of a program runs:

3.7 Hardware-Software Interface 67

Program Memory Internal registers Port D
‘ 86
LDAA #7 8000 ¢ < 8000 JpPc 7 acc A 1008 73
ADDA #13 8002 Imqml
STAA $1008 8004 wq Step 1
0
8006 08

LDAA #7 8000 [86 ¢|_|_ 8002 "JPC [7 Jacca 1008 7 1]

ADDA #13 8002 8B |

D
STAA $1008 8004 _Hw‘ Step 2
8006 [0)
- LDAA #7 56
LD. 8000 = [8004 PC |_14 " JaccA 1008 I
ADDA #13 8002 | 8B |
D
STAA $1008 8004 _me Step 3
8006 08
1008 (18]

Figure 3.11. The program counter (PC) keeps track of which instruction the

CPU will execute next. As each instruction is Eoom.mmm&, the address of the next

instruction is placed in the PC. The contents of internal Hmmmmnmam and memory

cells are altered as a result of instruction éxecution. Here, three steps in a program .
are shown. The final contents of address $1008 is $14 (hex) or 20 AMmQEP—v.

LDAA #7 s;Load 7 into accumulator A, # means immediate “
ADDA #13 ;Add 13 to accumulator 4 T
STAA $1008 ;Store contents of A to port D

The left column of Figure 3.11 (labeled Program) mﬁo./%w ‘mrm ,o@&m

‘written by a programmer. In this case, the program consists only of

the names of instructions and arguments for those instructions.-

The second column, Memory, displays the contents of memory
"(in hexadecimal) after the program has been loaded. To translate the
code supplied by a programmer into the internal representation (the
machine code) used by the microprocessor, another program called
an assembler is required. The LDAA instruction has been converted
mto its machine language code, which happens to be the number
$86. This LDAA instruction is stored at memory location $8000. The
numbers into which the instruction mnemonics are converted are also
known as opcodes. Following $86 in memory is 7, the argument that
will be used by this instruction.

68 3. Computational Hardware

The third column reports the state of two special registers in-
ternal to the microprocessor. The program counter, or PC, is the
microprocessor’s way of keeping track of where it is; the value stored
in the PC is the address in memory of the instruction the micropro-
cessor is about to execute or the argument it is about to fetch. Note
that the box representing the PC is twice as wide as those represent-
ing memory locations and other registers. This indicates that the
PC holds a 16-bit address while the others hold 8-bit data values.

The MC68HC11, like many other microprocessors, requires nearly
all computations to be performed in a special register called the accu-
mulator. For example, it is not possible to directly add the contents
of one memory cell to that of another. Rather, one value must be
loaded into the accumulator and then the next must be added to the
contents of the accumulator. The MC68HC11’s accumulator A, one
of its two 8-bit accumulators, is shown beside the program counter
Figure 3.11.

Finally, port D, which resides at location $1008 in the memory
map is shown in the last column. The purpose of the program is
to change the value stored at memory location $1008 and thus the
voltages on the lines connected to port D.4

Step 1 of Figure 3.11 shows the state of the microprocessor before
any computation has taken place: The program has been loaded, the
program counter is pointing to the first instruction, and the contents
of accumulator A are arbitrary and unknown. When the program
begins execution, the microprocessor uses the address stored in the
PC to get the first instruction opcode, $86.

It then increments the PC. Interpreting this instruction tells the
microprocessor two things: how to find the instruction’s operand
and what to do with the operand. In this case, the value fetched
from the memory location pointed to by the PC, location $8001, is
the operand, 7. (An operand is a data value that is processed by an
instruction in some way.) LDAA further instructs the microprocessor
to place this value into accumulator A. '

By the beginning of Step 2, accumulator A holds 7 and the PC
points at the next instruction, ADDA #13. Again, we use the PC to

*To simplify the example we assume that register DDRD, the data direction
register for port D, has already been set correctly, enabling the lines of port D
as outputs.

3.7 Hardware-Software Interface 69

fetch the operand, 13, but the ADDA instruction causes its operand to
be added to the contents of accumulator A. Step 3 shows the result:
7+ 13 = 20 decimal or $14 hex.

The last statement, STAA $1008, finally effects a change in the
world outside the microprocessor. This command causes the con-
tents of accumulator A to be transferred to port D. The argument of
STAA is the address where the data is to be stored. The binary rep-
resentation of $14 is %010100. This is interpreted by the hardware
of port D as a set of voltages to be output. In particular, pins PDO,
PD1, PD3, and PD5 are set to 0 V, while pins PD2 and PD4 are
set to 5 V. From the schematic of Rug Warrior’s sensors and actua-
tors (see Appendix A), we observe that this will make LEDs (light
emitting diodes) 1 and 3 glow.?

3.7.3 CPU Registers

The MC68HCI1 has several registers internal to its CPU, besides
the two introduced in the preceding example. Figure 3.12 offers a
graphical representation of the register set we will describe more fully
later. :

Accumulator A and its twin, accumulator B, are both 8-bit regis-
ters used for performing arithmetic computations. Some instructions
treat these registers as if they were a single 16-bit accumulator. In
this case, accumulators A and B are referred to oo:ond:\&u\ as the
double accumulator, accumulator D. o

The register known as the stack pointer (SP) is. ,m.m to boE a
16-bit address. The operation of this register will be explained later
in the context of the stack (see Section 3.7.9).

Registers that hold 16-bit values IX and IY are known as index
registers. They are used by the indexed-addressing mode to access
instruction operands. Additionally, register IX is used by the division
instructions.

The condition code register (CC) is an 8-bit register that holds
information about recent CPU operations. Each bit of this register

®The LEDs described in the example are present on Rug Warrior but were
eliminated from Rug Warrior Pro™. Rug Warrior Pro™’s LCD made separate
debugging LEDs superfluous. Running the example code on Rug Warrior Pro™
will activate the left IR emitter and select positive rotation for the left motor.

70 3. Computational Hardware

7 (1] 0
I TF11 1|]Accumutator A Ebﬁn:i:_m»oq B

~ ~ - rd
- -
o ~o -

DR i)

j_____________:>§=_=_m85
[(TTTTITTITITITI1]PC- Program counter
COETTTITTTITIITTT1]SP - Stack pointer
CELTTTITTTITTTT LT)X - Index register X
CITTTTTTTTITITTTTIY - index register Y

s]x|HjtNlz]vic] CC - Condition code register

Figure 3.12. The internal registers of the MC68HC11 describe the processor’s
state.

has a special purpose (described in the MC68HC11 documentation).
For example, when the STAA instruction stores a 0 value to memory,
the Z bit of the condition code register is set to 1. If any number
other than 0 is stored, the Z bit is 0. If two numbers are summed to
zero by, say, the ADDD instruction, the effect on the condition code
register is the same.

Other bits signify other conditions. If the most recently processed
instruction produced a negative number, then the N bit is set. The
occurrence of an arithmetic carry causes the C bit to be set.

An arithmetic overflow affects the V bit. Branch instructions,
which are discussed later, (see Section 3.7.7), examine the state of
the bits in the condition code register to determine whether or not
to transfer control to another part of the program.

We can think of these bits as flags. When some condition is
met, the corresponding flag is raised—the bit is set to 1. When the
condition is not met, the flag is lowered—the bit is cleared to 0.

None of the MC68HC11’s registers appear in the memory map.
This means that the only way to access these registers is through
the use of special instructions. Certain microprocessors do, however,
map their internal registers to memory.

3.7 Hardware-Software Interface 71

3.7.4 Instructions and Operands

The instruction set of a microprocessor is the set of primitive op-
erations that it can carry out. Figure 3.13 lists a majority of the
instructions in the MC68HC11 family’s instructions set. Most in-
structions require one or more operands. In the above example, the
operand of the LDAA instruction was 7. The instruction stored that
number in accumulator A. The operand of the ADDA instruction was
13. Executing ADDA added this number to accumulator A.

An instruction can locate its operand in several ways. In the ex-
ample; LDAA and ADDA both used a form called immediate addressing.
With this method, the operand itself is stored in memory following
the instruction code. Figure 3.14 illustrates an example of immediate
addressing.

In an assembly program, the programmer specifies how the oper-
and is to be found by the way the instruction’s argument is written.
The # sign in front of the numbers 7 and 13 in the program in Figure
3.11 indicates to the assembler program that these numbers should
be referenced using immediate addressing. The following list sum-
marizes the operand-addressing schemes used by the MC68HC11.

Immediate: The operand itself follows the instruction code in the
program stream. The argument is prefixed by. #. Ezample:
ADDA #$2F means that the hex value $2F should _uo m&.&oa im-
mediately to the value of accumulator A.

Extended: The argument is the address of the operand. Two bytes
are required to form the address (given the 64K address space
of the MC68HC11). The argument has no @wmmx Ezample:
JSR mﬁ.cHH oo.

Direct: Direct addressing is similar to extended addressing except
that it takes one less byte to specify the operand. The first
256 bytes of the address space are sometimes called the zero
page. Because the high-order byte is always 0, this portion of
the memory (which corresponds to the MC68HC11’s on-chip
RAM) can be addressed with only 1 byte. The argument again
requires no prefix. Fzample: LDAA variable_1.

72 3. Computational Hardware

Mnemonic | Operation performed

ADDA Add argument to acc A

ADDD Add double; add argument to acc D

BCLR Bit clear; clear specified bits of memory location
BEQ Branch if result = 0

BGT Branch if result is > 0 (signed)

BHI Branch if higher (unsigned)

BLO Branch if lower (unsigned)

BLT Branch if result is < 0 (signed)

BNE Branch if result # 0

BRA Always branch

BRCLR Branch if specified bits are clear

BRSET Branch if specified bits are set

BSET Bit set; set specified bits of memory location
CLI Clear I flag of CC register, enable interrupts
COMA Complement; bitwise negation of acc A, $FF — argument
DIV Divide one 16-bit integer by another

JMP Jump to an absolute address

JSR Jump to subroutine

LDAA Load a value into acc A

LDAB Load a value into acc B

LDD Load double; load argument into acc D

MUL Multiply two 8-bit numbers, return 16-bit number
NEG Two’s complement argument, 0 — argument
NOP No operation; this instruction makes no changes
PSHA Push contents of acc A onto stack

PULA Load acc A with value at top of stack

RTI Return from interrupt

RTS Return from subroutine

SEI Set I flag of CC register; disable interrupts
STAA Store acc A to memory

STAB Store acc B to memory

STD Store double; store acc D to memory

SUBA Subtract argument from acc A

SUBD Subtract double; subtract argument from acc D
TSTA Test acc A; set condition codes accordingly
TSX Transfer Stack pointer to IX register

Figure 3.13. Selected instructions from the MC68HC11 instruction set. Code
written using this instruction set, typed in and edited on a host computer, would
be assembled into machine code and then downloaded to the robot via a serial
cable.

. other than integers. This is no coincidence. Unless the

N

3.7 Hardware-Software Interface 73

Indexed: The argument is added to the contents of the IX or IY
register to compute the address of the operand. This address-
ing scheme is useful for accessing items within blocks of data.
If, for example, the address of the oth element of an array of
values is loaded into the IX register, then any other element
can be found by giving an instruction only the index of the
‘desired element. FErample: Suppose that the number $9000
has been loaded into the IX register. The instruction LDAA
3,X will then place the value stored at location $9003 into ac-
cumulator A.

Relative: The argument is added to the program counter to compute
the operand. This is the scheme used by branch instructions
to pass control forward or backward in the program. The ar-
gument requires no prefix or other indicator. Ezample: BRA

label_1.

Inherent: No explicit operand is required for instructions using in-
herent addressing. Ezample: The TSX instruction takes no
argument. It transfers the contents of the stack wouﬂamw to the
IX register.

3.7.5 Arithmetic

In the discussion so far, you may have noticed the mvwmboo of :Eb_omwm

sor comes equipped with special hardware for dealing /Sdm floating-
point numbers or numbers containing exponents, integer arithmetic
is all the microprocessor is able to do. If floating point computa-
tions are required, the programmer must write routines that imple-
ment such computations entirely from the Edm,mm.?v@mma instructions
native to the microprocessor. Floating-point operations typically
require much more time and storage space than integer operations.

An integer represented by a binary value can be interpreted in

“one of two common ways. An 8-bit byte, for example, can be seen

as an unsigned integer in the range of [0, 255| or as a signed integer

in the range [~128, 127]. Sixteen-bit quantities can also be regarded

as either signed or unsigned.

74 3. Computational Hardware

Immediate Extended $FFFF
[Instruction |
Op d
$FF
Operand
Direct - Operand |
$00 $0000
Zero page memory Memory
Operand
Indexed X or Y
Mnstruction] 1X or 1Y register $0000
[Offser |—> + [T] Memory

Figure 3.14. A graphic representation of several addressing schemes. Immediate
addressing finds the operand itself stored following its instruction in memory.
The extended and direct addressing schemes have the address of their operands
stored in the memory location following the instruction. The operands are found
by fetching from these locations. Indexed addressing computes the address of
the operand by adding the number following the instruction to the contents of a
special CPU register. The operand can be fetched once this calculation has been
performed.

The unsigned representation, in which each bit of the byte cor-
responds to a power of 2, is straightforward. If the bits of byte B
are designated b,, where n ranges from 0 to 7, then the integer
represented by byte B is:

7
I=Y b,2"
=0

For example, %00001011 = 2% + 2! + 20 = 11 decimal.

Negative numbers are represented in 2’s complement form. Sup-
pose we wish to construct a byte that holds the 2’s complement of,
say, —5. First, take the 8-bit representation for 5, %00000101, and
complement it, obtaining %11111010. The 2’s complement opera-
tion replaces every 0 bit with a 1 and every 1 with a 0 and then adds
1 to get %11111011. This representation has the correct arithmetic
property: If we add —5 and +5, we know we should get 0, and,
properly, %11111011 + %00000101 = %00000000. (This operation
sets the carry bit, C, in the condition code register.)

3.7 Hardware-Software interface 75

The value stored in a memory location is just a string of 1’s and
0’s. Whether %11111011 is to be interpreted as —5 or +251 is left to
the programmer. Different instructions of the MC68HC11 are used
to select one interpretation or the other. It is also necessary to use
different instructions depending on whether we want to manipulate
8-bit or 16-bit quantities.

3.7.6 Control and Status Registers

As stated earlier, several of the MC68HC11’s ports have multiple
functions. How does the microprocessor select one function as op-
posed to another? The answer is that special memory-mapped reg-
isters (not to be confused with the CPU’s internal registers) control
these functions. A

In the example program in Figure 3.11, we used port D to control
some external devices, four LEDs. The instructions listed in that
program will not have the desired effect. That is, they will not turn
on the LEDs unless we first configure the pins of port D as outputs.
To effect this change, we must use the DDRD register.

DDRD Bit 7 . N Bit 0
'$10090 [-] - | D5 | D& | D3 [D2 [DI [D0 |
1 1 1 i 0. 0

H.gmwmﬁmaUUWUéw:oosd&bnwm/&_:mwroébmm.éo mwmnmxoocﬁm
these instructions: .

LDAA #%111100 - ;S8et PD2,3,4,5 for output, wU.QL. .Ho,%.ma.uﬁn

STAA $1009 ;Store data to SNSoﬂﬁwsaw%mmm, ,.‘w..w.wm,i DDRD

The MC68HC11A0 has a total of nearly 50 control mmmwm\mmwmq sta-

tus registers, and ports. The purpose of each bit of each register and
the default state of each bit (that is, whether the bit is a one or a zero
after a system reset has occurred) is specified in the MC68HC11A0
documentation.

3.7.7 Jumps and Branches

Flow control in a microprocessor is implemented by branch and jump
instructions. Consider the following program. Its purpose is to com-
pute the absolute value of the 8-bit signed integer that has previously
been loaded into accumulator A.

76 3. Computational Hardware
ABS ;ABS is the label of this section of code
TSTA ;Test value in acc A (maybe set CC register N flag)

BLT ABS-NEG ;If walue ts less than O branch to label ABS-NEG
BRA ABS-END ;If the above branch was not taken then go to ABS-END

ABS-NEG ;The dash is not a minus sign, just a part of the name
NEGA ;Negate the quantity in acc 4
ABS-END

ABS, ABS-NEG, and ABS-END are not instructions but rather sym-
bolic labels created for the convenience of the programmer. Such la-
bels make it easy to refer to specific points in the instruction stream.

The first instruction, TSTA, examines the contents of accumulator
A. It sets the condition code bits appropriately. In particular, if the
number in accumulator A is negative, TSTA will set the N bit of the
condition code register. The next instruction, BLT, is the “Branch
if Less Than Zero” instruction. If the N bit of the condition code
register is set, then this instruction will cause control to be passed
to the instruction following the label ABS-NEG. If the N bit is clear,
then control passes to the instruction following BLT. That is, control
flow will pass to the BRA instruction.

The BRA, or “BRanch Always,” instruction, is an unconditional
branch. It always forces program control to jump to the address
specified by its argument. The effect of these branches is that if
the contents of accumulator A is positive, then flow control jumps to
the end, leaving accumulator A unchanged. If accumulator A holds a
negative number, the NEGA instruction following the ABS-NEG label is
executed, negating the contents of accumulator A. The MC68HC11
offers many additional branch instructions for testing other arith-
metic conditions.

There is one subtlety to be aware of when using branches.. The
operand of each branch instruction is only 1 byte long. This means
the instruction cannot specify the absolute address of the location to
which it will pass control. Rather, a branch causes a jump forward
or back in the instruction stream. The 1-byte operand can specify
a displacement of 127 locations forward or 128 locations backward
from the memory location in which the branch instruction is stored.
To go further than that, we must use a JMP, or “JuMP,” instruction.
This instruction takes a 2-byte operand and can pass control to any
location in the MC68HC11’s memory space.

3.7 Hardware-Software Interface 77

w.w.m Subroutines

The previous example illustrated how we might implement an abso-
lute value function by writing it directly into the instruction stream
of the program. If an absolute value were needed at another point
in the program, the same code could be repeated. The labels ABS,
ABS-NEG, and ABS-END would have to be changed (perhaps by calling
them ABS-1, ABS-2, etc.) to eliminate ambiguity.
We can make more efficient use of the available memory if we
implement, as a subroutine any piece of code that is used repeatedly.
. This is also true with higher-level language programs. By adding one
instruction to the previous example, we can turn the code fragment
into a subroutine.

ABS ;Subroutine named ABS

TSTA ;Test value in acc A (set CC register flag)
BLT ABS-NEG ;If value is less than O branch to ABS-NEG
BRA ABS-END ;If the above branch was not taken go to ABS-END
. ABS-NEG : '
NEGA ;Negate the quantity in acc 4
i~ ABS-END
‘RTS ;Return to the place where the. subroutine was called

- The essential difference between this subroutine and the in-line code
. (code in the main body of the program) in the previous example
is the inclusion of the RTS, “ReTurn from Subroutine,” instruction.
This instruction causes control to switch back to the @oEa &mmirmﬂm
in the program where the subroutine was called. :
Subroutine ABS assumes that the argument ?Wm n:msﬁ@ éwo%
absolute value is to be computed) has been stored in accumulator A.
It also returns the result in accumulator A. To call ABS, we could say:

LDAA Value ;Load acc A with some value
JSR ABS ;Jump to subroutine ABS
STAA Value ;Store the result

- The assembler program replaces the label ABS with the address
of the first instruction in the subroutine. This allows JSR, the “Jump
to SubRoutine” instruction, to determine where to transfer program
_control. But how does the microprocessor find its way back to the
“instruction following the JSR ABS after the subroutine has been com-
pleted? The answer is that, before transferring control to subroutine

78 . 3. Computational Hardware

H »Imh_..m_‘ addresses

Datay [Bottom of stack

Data,, |Top of stack
Stack _momsﬂmq —_— Free
. @ Lower addresses

Figure 3.15. A value is added to the stack by storing it at the location
pointed to by the stack pointer and then decrementing the pointer. A value
is retrieved from the stack by incrementing the pointer and returning the
item at that memory location. The stack illustrated here grows by inserting
values at decreasing memory addresses. However, stacks that grow toward
increasing addresses are also often implemented. In either case, the location
indicated by the stack pointer is still considered the “top.”

ABS, the JSR instruction pushes the address of the next instruction,
STAA Value, onto the stack.

3.7.9 The Stack

Modern computers make use of a stack to transfer control to and from
subroutines, to pass information, and to store local variables. Figure
3.15 illustrates implementation of a stack. A stack is implemented
as a contiguous set of addresses in RAM memory. The stack pointer,
or SP, (usually an internal register of the microprocessor) holds the
address of the next free location. When a valuée is “pushed” onto
the stack, that value is written to an address specified by the stack
pointer. The stack pointer is then decremented. To “pop” a value
from the stack, the stack pointer is incremented. The value of the
stack pointer is then used as the address of the operand to be fetched.

The sequence shown in Figure 3.16 illustrates how the stack is
used to transfer control between in-line code and a subroutine. When
the JSR. instruction is executed, the 2-byte address of the next in-
struction in the instruction stream, STAA Value, is placed on the
stack. After ABS has finished, the RTS instruction loads the program

3.7 Hardware-Software interface 79

m data data
90 sP—> 00
$8FFD LDAA Vaiue 03 03
$9000 JSR ABS SP—»{ free free
$9003 STAA Value -
M Stack before jump Stack during sub- Stack after return
. to subroutine routine execution from subroutine

Figure 3.16. This sequence of steps shows how the stack is used to pass
control to and from a subroutine. The values placed on the stack, the return
address bytes, remain after subroutine ABS has been completed. However,
the next number written to the stack will overwrite these values.

counter with the top 2 bytes on the stack. Control is thus returned
“to the instruction following the JSR instruction.

Nothing prevents a programmer from “nesting” subroutines, that
is, having one subroutine call another. Although there is no advan-
tage to doing so in the simple example given here, it is even possible
for a subroutine to call itself. This very powerful concept of subrou-
tines calling themselves is known as recursion.

3.7.10 Passing Arguments

A key issue in using subroutines is determining how to pass argu-
ments and results between the calling code and the subroutine.- In
the preceding example, this posed no problem. Since both the single
argument and the result were only 1 byte long, each fit neatly into
accumulator A. . SRR

One common way to pass large chunks of data t6 a subroutine
is to send the address rather than the data itself. " If'the data to
‘be processed are stored at a block of successive memory locations
starting at DATA-ADR, we can enable the subroutine PROC-DATA to
access them by:

LDX #DATA-ADR ;Load the address .of the data into the IX register
JSR PROC-DATA ;Jump to the data-processing subroutine

The same subroutine can now be used to process any number of
different blocks of data. The subroutine can, for example, look at
the first item in a block by saying LDAA 0,X. It could acquire the
third with LDAA 2,X.

80 3. Computational Hardware

Stack »IE:Q addresses
Value-1

Value-2

Return address
(high byte)
Return address

(low byte)

(free) Top

Stack _.uo::mq 1y
X register —>

&_.osaq addresses

Figure 3.17. Data can be passed to a subroutine via the stack. VALUE-1
and VALUE-2 are pushed onto the stack and a Jump to SubRoutine (JSR)
instruction is performed. One result of the JSR instruction is to leave the
return address on the stack.

This procedure is adequate if it is possible to allocate storage for
all data in advance and keep such storage space around indefinitely.
There is, however, another more clever way to create a block of data
“on the fly” and reclaim the memory space used when the data are
no longer needed. We can create local variables by storing temporary
data on the stack. Suppose; for example, we wish to pass two 8-bit
values, Value-1 and Value-2, to a subroutine. The calling code
might say:

LDAA Value-1 ;Get the first value

PSHA ;Push that value onto the stack

LDAA Value-2 ;Get the second wvalue

PSHA ;Push it onto the stack

JSR SUBRTN ;Jump to the data-processing subroutine

Figure 3.17 shows the situation after the jump to the subroutine
has occurred. Notice that jumping to the subroutine has placed ad-
ditional data on the stack. The two bytes that comprise the return
address appear following the data of interest. In order for the sub-
routine to access the stored values, all it must do is point the IX
register to the same address as the stack pointer (the TSX, Trans-
fer SP to IX instruction will accomplish this) and bypass the return
address bytes to access the data. To get Value-1, we can say LDAA
4.,X; Value-2 is accessed with LDAA 3,X.

3.8 Real-Time Control 81

Values can be passed back to the calling code by storing them
on the stack, as well. If it is important not to overwrite the calling
data already on the stack, then the calling code should push extra
dummy values onto the stack so that the subroutine has space to
store its results.

Use great care when manipulating the stack in this way. If the
return address stored there is accidentally overwritten, the micropro-
cessor will-almost certainly crash when the return from subroutine
instruction is executed.

3.8 Real-Time Control

To this point, we have reviewed the fundamental components of mi-
croprocessor software and described how they are supported by the

. hardware. Next, we discuss how to assemble these building blocks

into strategies for real time control. v
There are three strategies for writing software that can respond

_to external events in real time. Polling is a method where the soft-
- ware loops, continuously checking an input pin. Polling ties up the

processor, keeping it busy even when no external events are happen-

~ ing. Interrupt-driven software is more efficient. In this method, the

external event creates a signal that directs the processor to postpone
whatever it is doing and respond to that event immediately. The
third strategy, input capture, can be used if the processor has special
hardware, known as input capture registers. By taking advantage
of this special purpose hardware, the processor is néver interrupted.
Instead, event handling is taken care of in the background. We will
expand on these concepts with some examples.

3.8.1 Polling

Suppose that we wish to monitor an input closely in order to take
action immediately after some event of interest has occurred. We
might, for example, wish to measure the time of flight of a sonar
pulse. Figure 3.18 illustrates an example of sonar ranging. It is
important to measure precisely the difference between the time the
pulse was sent out and the time it returns. In the following example,

82 3. Computational Hardware

Sound
intensity

MC68HC11A0

—
time

Received signal | . E

1 at |

_ Transmited signal >

PAO] #

Amplifier Receiver In

Figure 3.18. The time of flight of a sonar echo can be measured using
polling, interrupts, or input capture.

we assume that the output of the ultrasonic receiver is connected to
PAO. This line goes high when an echo is detected.

The following subroutine will measure the time difference be-
tween initiation of the sonar ping and detection of the returning
echo, with an accuracy of a few microseconds. This subroutine must
be called immediately after the ping starts. It will store the mea-
sured time in Sonar-tof. The timer-counter system associated with
port A is used to measure the time of flight of the sonar pulse.
The timer counter is a 16-bit register called TCNT, which is a free-
running timer. With every clock cycle, the hardware automatically
adds 1 to the contents of a 16-bit register called TCNT. The following
TIME-SONAR code uses this feature to advantage:

TIME-SONAR
LDD TCNT
STD Sonar-tof
WAIT-FOR-ECHO
BRCLR PORTA, %00000001, WAIT-FOR-ECHO ;Keep checking PAO

;Measure the time of flight of a somar echo
;Get the starting time from the system timer
;Save start time

LDD TCNT ;Echo detected so get current time

SUBD Sonar-tof ;Ace D now holds current time -— start time
STD Sonar-tof ;Store the 16-bit time to location Sonar-tof
RTS ;Return to the calling code

TIME-SONAR begins by loading the value of TCNT into accumulator
D. Next, it executes the BRCLR PORTA, %00000001, WAIT-FOR-ECHO
instruction. This instruction tests the state of the lowest-order bit of
port A—the bit corresponding to line PAO. If the value of this bit is
0, a branch is made to WAIT-FOR-ECHO; that is, the same instruction

3.8 Real-Time Control 83

is executed again. Program control thus stays in a tight loop, repeat-
edly testing the state of PAO. When an echo finally returns and PAO
goes high, control passes to the next instruction. This instruction,
LDD TCNT, and the one following it, SUBD Sonar-tof, compute the
difference between the time the WAIT-FOR-ECHO routine started and
the time the echo returned. Finally, this time-of-flight value is stored
in the variable Sonar-tof. The main code that calls and responds
to the TIME-SONAR subroutine could be written:

JSR Turn-on-sonar ;This subroutine initiates the sonar ping
JSR TIME-SONAR ;Jump to the exzample code
JSR Compute-distance ;Use the measured time to compute distance

This strategy of repeatedly checking for a condition is known as
polling. For the sake of simplicity, an important safeguard has been
left out of this example. If it happens that the sonar ping fails to
return, then control will never advance beyond the tight loop. The
program will be stuck indefinitely. A robust program would include
within the loop some sort of time-out feature to. exit the routine
should the echo take too long.

3.8.2 Interrupts

Polling offers an effective way to respond quickly to real-time events.
‘The problem is that this method can use up all the microprocessor’s
resources, waiting for just one event. While the Bﬂnmcvmooommou. waits,
it cannot do anything else. Much more efficient use’could be made
.of the microprocessor’s ng if there were some automatic way of
responding to an event. The microprocessor should only have to
‘take action (execute instructions) when the event actually occurs.
Such a mechanism exists and is called an interrupt. .

An interrupt is an event that triggers an automatic response in
the microprocessor. The code that responds to that event is called
the interrupt service routine. Interrupt service routines are quite
similar to subroutines except that they are called U% the occurrence
of an event rather than by a JSR instruction.

Interrupts are asynchronous; the microprocessor cannot antic-
‘ipate when an interrupt will occur. Thus, when an interrupt does

84 3. Computational Hardware

happen, the microprocessor will be executing some piece-of unrelated
code. To respond to the interrupt, it will first have to stop executing
the current code and save the state of the ongoing computation on
the stack. Then it must locate the proper interrupt service routine
and transfer control there. After servicing the interrupt, the micro-
processor must be able to restore its pre-interrupt state and return
control to the code that was running originally, before the interrupt.

We will now rewrite the sonar-ranging example from the previous
section, demonstrating event handling using of an interrupt service
routine:

TIME-SONAR-ISR ;Sonar timer interrupt service routine

LDD TCNT ;Get the time at which the interrupt occurs
SUBD Sonar-tof ;Difference is echo time of flight

STD Sonar-tof ;Save difference

LDAA #1 ;Clear interrupt flag by

STAA TFLG1 ; by writing 1 to register

RTI s;Return control to the interrupted code

This code assumes that, at the time the sonar ping was initiated,
the current time was stored into Sonar—tof. When the returning
echo triggers the interrupt, the difference between the time the ping
was initiated and the time it returned will be stored in Sonar-tof.

Writing the interrupt service routine is only one of the things we
must do to make the interrupt happen. There are two others.

The ultrasonic receiver is connected to pin PAO. This pin is as-
sociated with 1C3, the MC68HC11’s input capture register number
3. Several registers must be initialized to have I1C3 generate an in-
terrupt when a signal appears on PAO. To enable 1C3 to generate
an interrupt, we must set a mask register. (Mask registers enable
certain microprocessor operations.) Setting the lowest order bit of
TMSK1 enables the IC3 interrupt:

TMSK1 Bit 7 Bit 0
$1022 _ OCI1I _ 0C21I _ 0OC3I _ OC4lI _ OCsI _ I1C1I _ 1C21 _ 1C3 _
X b'd b d X X X X 1

We want the interrupt action to occur when the state of pin PAO
changes from 0 to 1. Following the MC68HC11 documentation, this
choice is realized by setting the lowest-order bits of register TCTL2
to %01:

3.8 Real-Time Control 85

TCTL2 Bit7 = Bit 0

1021 [- | - [EDGIBEDGIAEDG2BEDG2AEDG3BEDG3A]
X X X b'd X X 0 1

After an interrupt has been generated, a flag will be set in the
TFLGI register. This flag must be cleared, once the interrupt service
routine has been entered, or else, when action returns to the main
code, it will think another interrupt is pending and service it again.
The processor will do that forever if the flag is not cleared. To clear
the flag, we must write a 1 to the corresponding bit, IC3F, in the
TFLGI register:

TFLG1 Bit7 Bit 0
$1023 _OOE.u _ OOmm,_OOwHu _ OCAF | OQmm,_ IC1F _ IC2F | IC3F _
b'e b d X b'd X X b'd 0

The following code implements these choices, enabling the interrupt
to occur when PAO goes high:

LDAA #701 ;Setup IC3 to gemerate an interrupt

STAA TCTL2 ; on rising edge

LDAA #1 ;Clear IC3 flag

STAA TFLG1 ;Clear the bits of the register by writing 1’s
LDAA #1 ;Enable the IC3 interrupt)

STAA TMSK1 - :

CLI ;Global intrpt enable, inirpt system now ready
JSR Turn-on-sonar ;Initiate sonar ping ’ :

LDD TCNT ;Get the time the sonar was turned on

STD Sonar-tof ;Save turn on time ’ -

: ;The microprocessor is \1mm for other uses
JSR Compute-distance ;At some later time compite the.distance

One more operation must be performed before the interrupt can
be successfully initiated. The microprocessor must be told how to
find the interrupt service routine code. For each interrupt facility
that the MC68HC11A0 provides (there are 21) a location is specified
in memory where the address of the associated interrupt service rou-
tine is stored. For the IC3 interrupt, this address is $FFEA. When
the program is loaded, it must fill this location with the address of
TIME-SONAR-ISR.) ‘

Setting up an interrupt is clearly much more complicated than
setting up a simple polling operation. But the increased efficiency of

86 3. Computational Hardware

.

. data

data

[free | SP—>»{ CC Register
$8FFD LDAA Value SP ee I
$9000 ADDA 3,Y Stack before
$9003 STAA Value interrupt

.
.

Interrupt occurs
during execution
of this instruction

SP—2»

Stack during Stack after
interrupt interrupt

Figure 3.19. When an interrupt occurs, the instruction currently underway
continues to completion. The state of the microprocessor is then saved.
Preserving the state requires saving all of the CPU registers on the stack
as well as the address of the next instruction to be executed following
the interrupted instruction. After the interrupt service routine completes,
the preinterrupt state is restored. Using the data saved on the stack, all
CPU registers are reloaded with the values they had before the interrupt
occurred.

an interrupt usually more than makes up for the increased complex-
ity. Figure 3.19 shows how the microprocessor saves and restores the
state of ongoing computations. The interrupt service routine is free
to use whatever CPU registers it needs. The values stored in these
registers are automatically restored when the routine exits.

3.8.3 Input Capture

To illustrate the point in the previous section on interrupts, we actu-
ally did more work than was necessary. The input capture facility of
the MC68HC11 allows us to compute the time of flight of the sonar
pulse without resorting to an interrupt routine.

‘When properly set up, the timer-counter hardware can capture
the time when PAO goes high. We must make use of one more
built-in 16-bit register, TIC3:

TIC3 BI15 B0

swoie |] | [[T T P T T [T T [T [[]

Now when input capture 1C3 occurs, the time of that event (the
instantaneous value of TCNT) will automatically be latched into reg-

3.8 Real-Time Control 87

ister TIC3. To set up this feature, the following code would be re-
quired:

Setup-IC3 ;Code to activale input capture
LDAA #%01 s;Trigger IC3 capture on rising edge.Each such
STAA TCTL2 ; capture latches the time into register TIC3

At any later time, when a sonar ping is initiated, the time of that
event will be saved in Sonar-start:

JSR' Turn-on-sonar s;Initiate sonar ping
" LDD TCNT ;Get the time at which the sonar was w.:a.:m& on
STD Sonar-start ;Save turn on time

At any point after the sonar echo has returned, the distance can be
computed from the elapsed time:

LDD TIC3 ;Get the time the echo returned
SUBD Sonar-start ;Subtract the time ping started
STD Sonar-tof ;Store difference for distance computation

JSR Compute-distance ;Compute the distance

Built-in features like input capture and Sm oocbﬁonvmﬁ output
83@9@ add greatly to the power of the 55&000530:9. See 5.5.3
mOa a worked out sonar example.

3.8.4 Traps

What if something goes wrong? Perhaps an unexpected condition
causes an attempt to divide by 0, or maybe a memory cell is acci-
dently overwritten, causing the microprocessor to try to execute an
opcode that doesn’t exist. What will happen?

The trap facility gives a computer an opportunity to recover from
events that would otherwise cause a crash or an arbitrary response
to an unexpected condition. A trap strongly résembles an interrupt.
The user writes a trap service routine and stores its address as an in-
terrupt vector. When the microprocessor detects the error condition,
it jumps to the trap code. ‘

High-powered microprocessors and computers provide many dif-
ferent traps. The MC68HC11AO has just one, the illegal opcode trap.

88 3. Computational Hardware

Memory locations

Free | Top of buffer
Input pointer ——»| Free |
Data-3
Data-2
Output pointer —»f Data-1

Free

Bottom of buffer

Figure 3.20. Values are added to the buffer by inserting at the place pointed
to by the input pointer, then incrementing the input pointer. Values are
removed from the point indicated by the output pointer. This pointer is
then incremented. When input and output pointers point to the same
location, output stops. When a pointer reaches the buffer’s top, the next
increment sends it to the bottom.

It does however, have another feature that can help it recover from
a crash, the computer operating properly or COP, facility. When the
COP feature is enabled, the user must provide a piece of code that
causes a special location to be written to every so often. If this op-
eration fails to happen (presumably, because a crash has occurred
or the program is hung), then the system automatically jumps to
the address specified by the COP failure interrupt vector. The user
should supply (at the chosen address) code that will restart the sys-
tem.

3.8.5 1/0 Buffers

Frequently, it is more advantageous to move data through a buffer
rather than directly from its source to destination. As an example,
consider the problem of writing data to a serial line. Suppose a pro-
gram must send a string of characters to a terminal. Ideally, the
characters should be output as quickly as the microprocessor can
move them from memory to the output port. However, terminals
(or rather serial lines) typically operate much more slowly than the
microprocessor itself. To accommodate a direct transfer, the micro-
processor would be forced to output a character and then wait for an
acknowledgment signal telling it that the terminal is ready for the
next character. This would be slow.

3.9 Loading a Program 89

The solution is to send the characters using an interrupt routine.
To do so, the function that wishes to output characters must move
the string to a buffer and activate the interrupt routine. Moving the

“individual characters out the serial port is then handled automati-

cally.
Figure 3.20 illustrates a buffer structure. In an empty buffer, the
input and output pointers both point to the same location. To add

-characters to the buffer, write a character to the location indicated
* by the input pointer and then increment this pointer. (If the pointer
“reaches the top, the next character must move it to the bottom.)

Whenever the serial line is ready for another character, it initiates

~an interrupt. The code that handles this interrupt then takes the

character designated by the output pointer and moves it to the serial
line. The output pointer is then incremented. As soon as the input
and output pointers both point to the same value in the buffer, all
characters have been sent and output can stop..

3.9 Loading a Program

So far, we have seen only fragments of mmmmnﬂvq _wum,ﬁ.NMm programs.
What do we have to do in order to write a complete @3@55 and
run it on the microprocessor?

wb 1 The Assembly Program

The first step in writing an effective program does not 5<o_<m the
microprocessor at all. The first step is to work out. wro Qod@:m of
the algorithm on which the program will be based. Code is used

- to implement an algorithm, but the algorithm itself, the method

used to solve the problem, is independent of the particular code that
supports it.

In the following examples, we will MOOmoJ\ mo:oé the syntax of
the Motorola assembler, called AS11. This assembler allows the
programmer to create symbolic labels such as the following:

PORTA EQU $1000

Here, the symbol PORTA has been assigned the value $1000. In
any subsequent code, we may refer symbolically to port A rather

90 3. Computational Hardware

than having to remember and write out its address. Symbelic labels
make code easier to understand and debug. Use them liberally.

‘We should point out that, in the examples in this book, we have
used labels of arbitrary length. Some assemblers however, restrict
the number of characters a label is allowed to have. We have also
used the symbol “~” as a normal character when embedded in a la-
bel. Many assemblers treat the “—” as a special character, indicating
that subtraction is to be performed.

We have learned that Rug Warrior’s memory space extends from
$8000 to $FFFF and that programs are stored in memory. How
does the microprocessor decide where, within this space, to put a
particular instruction opcode or other data? The Motorola assembler
uses the ORG directive to determine where instructions will be placed.
Suppose our program begins:

ORG $8000
LDAA #my-value

This construction will put the opcode for LDAA at location $8000 in
memory. Subsequent opcodes and data values will follow.

One important assembly function remains. After the code has
been loaded into memory, how does the microprocessor know where
to begin? When power has been turned off and then back on or the
reset switch has been pressed, which address should be loaded into
the program counter to begin program execution? In the MC68HC11,
the last two locations in memory, $FFFE and $FFFF, hold the reset
vector. Whenever the microprocessor is restarted (by turning. the
power on or hitting the reset button), the address stored in the re-
set vector is loaded into the program counter. If the code fragment
shown above is to be the beginning of our program, then, at some
point in the instruction stream, we must say:

ORG $FFFE
FDB $8000

;Next data will be stored in the reset wvector
;8tore location of start of program

FDB, like ORG, is not an instruction but rather a directive. FDB in-
structs the assembler to use the next 2-bytes of memory to store
the given number. That is, the reset vector at address $SFFFE now

3.9 Loading a Program 91

has the number $8000 stored in it. Whenever the reset button is
pushed, the program counter will point to address $8000 and start
executing the code that begins there. Depending on the sophistica-
tion of the assenibler, many other useful directives and features may
be available to aid in preparing an assembly language program.
After the program code has been written, run the assembler to
convert the code into machine language instructions. The next step
is to get these instructions from a file on the host computer into the
memory space of the microprocessor. This is- done using a down-
loader, a program that takes the assembled file, the output of the
assembler, and sends it to the microprocessor. In the case of the
MC68HC11, assembled code is usually loaded via the serial port.
Somehow, the microprocessor must intercept the machine code
instructions being sent to it over the serial line and store them in
the right locations. Servicing the serial line and moving data into
memory locations sounds like a job for an assembly language pro-
gram. But how is the microprocessor able to accomplish this before

- the first program has been loaded into it? How can it load a program

unless it already has a program to tell it how-to do this?

3.9.2 A Bootstrap Loader

The answer to these questions is to first load a bootstrap loader vwo-
gram. Loading this initial program is assisted by a spécial mode of

* operation of the MC68HC11. The MC68HC11 has four modes of op-

eration selected by the two lines, MODA and MODB. If both MODA

~and MODB are low, the microprocessor enters a state 6f‘monitoring

the serial line. In this state, the first 256 bytes sent over the serial

‘line are intercepted and stored in internal RAM (addresses $0000 to

$00FF). After receiving the last byte, control jumps to the beginning
of RAM, $0000, and execution of the program just received begins.
All of these operations are controlled by special factory-installed code
in the MC68HC11’s ROM.

Thus, one way to execute the user’s program would be to load it
in the way just described. If the program takes less than 256 bytes,
the remainder can be filled with null operations (NOPs). However,

~this is not a very useful method for loading a program, since the

length is severely limited and each time the microcontroller is reset

92 3. Computational Hardware

or switched off, the program will be lost. More typically, we use this
feature to load a loader program into internal RAM. The only func-
tion of the loader program then is to load into memory the program
that comes after it. When the loader program begins execution, it
loads the user’s program—the next set of instructions and data that
come over the serial line. This code is presumably stored into on-
chip EEPROM or external RAM. After switching the MC68HC11
back to single-chip or expanded mode, this new program will begin
executing as soon as a reset occurs.

The simplest way to program the MC68HC11 is to use a commer-
cial or public domain development system that solves the problems of
assembly and downloading for the user. So, rather than plunge into
the peripheral issues of how to write assemblers, downloaders, and
loaders, we will assume that the user has acquired the appropriate
software.

3.10 Getting Started

In the years since the first edition of Mobile Robots was published,
a great number of microprocessors, single-board computers, and mi-
croprocessor-based robot kits have been introduced. These devices
make life much easier for today’s beginning robot builder. We can
mention here only a few of the products that can help you get started.

Rug Warrior began life as a built-from-scratch robot board. In
response to reader inquiries, A K Peters, the publishers of Mobile
Robots: Inspiration to Implementation offered a Rug Warrior kit.
Rug Warrior Pro,™ a second-generation robot providing improved
functionality, is now available from A K Peters. You will find either
commercial version of Rug Warrior highly compatible with this text.

There is now little need to build your own robot board from
scratch. A number of commercially available single-board computers
are suitable for use in robots. New Micros manufactures a line of
single-board computers based on the MC68HC11 microcontroller.
Boards come complete with a built-in programming language burned
into on-chip ROM. Thus, all that is necessary to program such a
board is a host computer of modest power.

Two excellent boards designed by Fred Martin of the MIT Media
Lab are available from various sources. The Mini Board board uses

3.11 References 93

an MC68HC811E2 and is compatible with the Dunfield C compiler.
The design, which includes onboard motor-driver chips, is distributed
free of charge. Plans for constructing the board are available over

‘the Internet via anonymous file transfer protocol (FTP) from cheru-

pakha.media.mit.edu.

The more powerful single-board computer, the Handy board, is
available fully assembled and in kit form from several vendors (see
the Gleason Research site, www.gleasonresearch.com). The Handy
board has 32 Kb of on-board static RAM and is compatible with the
IC programming language.

The Basic Stamp,. a tiny single-board computer based on Mi-
rochip’s PIC microcontroller, has become very popular. The Basic
Stamp (programmable in Basic as the name implies) offers a good
combination of price and functionality and the size is hard to beat
(see www.parallaxinc.com).

LEGO has recently introduced a product called Mindstorms.

‘Mindstorms is an outgrowth of work originally done at the MIT

Media Lab where the concept device was called the Programmable
Brick. The Mindstorms’ brick contains a microcontroller and is pro-

grammed via a host computer using a visual programming system.

This processor brick can be combined with other LEGO elements
to construct simple autonomous robots. Mindstorms is an introduc-
tory product for younger robot builders. More advanced builders
may chafe at Mindstorms’ small number of inputs and oﬁvcﬁm and
the limited expressiveness of the programming system. -

The workings of a microprocessor are sufficiently noBme that
you cannot hope to get a full understanding of the subject by reading
a chapter from a book. Each device has its own set of special abilities "
and idiosyncrasies. As with most things, the only effective way to
learn is to do. Hook up a microprocessor, and try to program it!

3.11 References

This chapter has given a very brief description of microprocessor
basics along with some particulars of the Motorola MC68HC11A0

- which we use in Rug Warrior. We chose the MC68HC11A0, because

it was the lowest-end member of the MC68HC11 family of 8-bit

94 3. Computational Hardware

microcontrollers. Even so, it allowed us to put the entire circuitry for
Rug Warrior’s brain (including 10 sensors, 2 motor drivers, a music
maker, and a serial port) on a 3.4” X 4.5” board. All the details of the
numerous capabilities of this chip cannot possibly be explained in a
book of this scope, so we strongly recommend that, to follow along
in the construction of Rug Warrior, the reader acquire the Motorola
MC68HC11 data books (Motorola 1988, Motorola 1991) listed in
the bibliography at the end of this book. The first of these data
books, Microprocessor, Microcontroller and Peripheral Data, gives
detailed hardware descriptions and specifications for all Motorola
microcontrollers. The MC68HC11A0 takes up just two dozen or
so pages of this set. The second data book, Motorola M6SHC11
Reference Manual, is easier reading, goes into extended examples,
and gives much more information on programming the MC68HC11.

For readers looking for a more gentle introduction to micropro-
cessors in general, Horowitz and Hill (1989) give a clear exposition
on the subject. Textbooks on computer architecture, such as Ward
and Halstead (1990) cover the complete field in great depth. For
lighter fare and for additional expositions on digital circuits, glue
logic, and support circuitry, Lancaster (1977) and Zaks (1986) are
helpful. If you wish to delve seriously. into computer architecture,
consult the classic Hennessy and Patterson (1996).

Another useful reference for the novice robot builder is The 6.270
Robot Builder’s Guide (Martin 1992). This book has been used in an
undergraduate MIT LEGO Robot Design course developed by Fred
Martin, Randy Sargent and Pankaj Oberoi. The course provided kits
of LEGO parts, a microprocessor circuit board, motor drivers, and
a collection of sensors. The 6.270 Robot Builder’s Guide describes
interfacing bend sensors, infrared proximity sensors, touch sensors,
and the like to the MC68HC11 board through software drivers pro-
vided with IC.

Finally, Fred Martin’s latest book (Martin 1998) is a true tour de
force for robot enthusiasts. This book contains a wealth of detailed
information on robot control, sensors, actuators, LEGO construc-
tion, and much more.

Designing and Prototyping

4.1 Practical 1qo_o_m.3m

To turn a schematic into an actual circuit that can be mounted on
your robot, a few basic pieces of prototyping equipment are required.
There are a variety of routes to choose for constructing a ¢ircuit, but
for a small mobile robot, it is important to use a technolegy that is
light and compact, yet flexible enough to accept changes. -

There are several choices for prototyping: breadboards, wire
wrap, Scotchflex, Speedwire, and printed circuit’ beards to name
a few. Breadboards (see Figure 4.1), are commonly used by engi-
neers for testing new designs and have the advantages that they are
relatively inexpensive and easily changed. Debugging is simplified
because wires and components are on the same side of the board.

Breadboarding has several serious disadvantages, however, par-
ticularly if the breadboard will be permanently incorporated into the
robot. The component density is necessarily low, and the resulting
package is bulky. Stray capacitance between rows can also degrade
the performance of high-frequency circuits. Probably the least ob-
vious aspect, though, is that the wiring sockets in breadboards are
easily sprung, leading to intermittent connections.

96 4. Designing and Prototyping

Figure 4.1. Breadboarding can be useful for initial testing. The 5 pins of each
vertical row are connected together, as are each of the horizontal rows at the
bottom.- Discrete components and 22-gauge solid hookup wire can be pushed
into the holes.

The problem is that the sockets are typically made to fit one size
of solid wire (usually 22-gauge solid hook-up wire), and invariably,
a prior user has jammed the next larger size wire into the hole,
stretching the socket. Then when a subsequent designer attempts to
prototype a circuit using correct-sized wire, the wire intermittently
makes contact.

4.1.1 Attention to Detail

Intermittent connections are the most frustrating to debug. The way

" to avoid this problem is to build your circuit neatly and carefully
the first time. When soldering, do not use globs of solder. Use heat-
shrink tubing to cover exposed wires. Use connectors liberally for
quick disassembly. Add strain reliefs to cable harnesses. Wire things
carefully the first time. Keep in mind that a little quality goes a long
way.

4.1.2 Wire-Wrap

Another widely used technology for prototyping circuits is wire-wrap.
This method involves stripping 30 gauge solid wire-wrap wire, insert-
ing one end into a hand tool called a wire-wrap gun, and placing the
tip of the gun over a long pin of a wire-wrap socket. Triggering

4.1 Practical Problems 97

Figure 4.2. Wire-wrap pins stick up a fair distance from the back of the board.
The stripped end of 30-gauge wire-wrap wire is curled around a pin with a wire-
wrap gun.

the gun wraps the wire around the pin. A mE@: wire- “Wrap board is
shown in Figure 4. 2.

The final board is thick due to the _mdmﬂr of the pins. . Also,
connecting one signal (say, ground) from pin to pin to pin (this is
called daisychaining) is impossible. Wire-wrap is strictly a point-to-

_ point technology, since each portion of wire must be cut and stripped
¥ to fit into the wire-wrap gun. Also, it is rather inconvenient to

make changes, as you have to uncurl the wires. Thif"is especially
inconvenient when the wire you want to change is below another
wire, which is frequently the case since the wiring is point to point.

4.1.3 Scotchflex

The 3M company sells a connector line called Scotchflex which is
convenient for quick prototyping. There are three components—
sockets, plug strips, and the wiring tool. You will also need perfboard

_to mount the sockets. These components are shown in Figure 4.3.

Gerber sells a glass-epoxy board with appropriately sized holes. See

‘Appendix C for all suppliers mentioned in this section.

98 4. Designing and Prototyping

Figure 4.3. Scotchflex sockets (top) and plug strips (left) are mated through the
holes in glass-epoxy perfboard shown at center. The top end of the wiring tool
is'used for mating the plug strips into the sockets and the other end is used for
pushing wires into plug strips on the backside of the board.

Scotchflex sockets come in a variety of shapes corresponding to
most integrated circuit dual-in-line packages (DIPs), such as 8-pin,
14-pin, 16-pin, and so forth. The plugs come in long strips and are
broken off according to the number of pins that correspond to one
line of the socket’s receptacles. The socket is placed on the top side
of the perfboard, and the plug strips are pushed into the sockets from
the bottom side through the holes in the perfboard. The wiring tool
is double ended, with one end shaped for pushing the plug strips
into the sockets and the other end shaped for pushing wires into
the plug strips. Wiring is very simple, as it orly requires laying
30-gauge insulated solid wire-wrap wire over a plug and then using
the tool to push it between the two prongs of the plug’s pin. The
prongs slice through just the insulation, making contact with the
wire. Daisychaining is then very convenient, as you just continue
laying wires across prongs and pushing the wires onto them with
the wiring tool. At most, two wires can fit into the prongs of any
plug, as the pins are fairly short. (You never need more than 2 wires
per pin anyway, because of daisychaining.) Consequently, the final
boards are thin and can be stacked close together, if necessary. Also,
making a change merely involves pulling the wire out and laying in
a new one.

4.1 Practical Problems 99

If you need to mount discrete components such as resistors and
capacitors, make headers by using 8-pin, 14-pin, or 16-pin component
carriers and solder the discretes into them. Then just insert the
component carriers into the matching sockets and wire in the same
manner as for DIPs.

Scotchflex is a very useful technology for quick prototyping. It
is portable and compact, as you can cut the perfboard to any shape
you want or punch holes in it for other connectors. Do not use a
band saw or a drill press on glass-epoxy materials. These materials
will damage the cutting edges of the tools. Also, the dust produced
by sawing or drilling may be harmful to breathe. Use a punch or
a shear instead, and remember to leave room and extra holes for
prototyping space on your board for future circuit additions.

The disadvantages of Scotchflex are twofold. Scotchflex does not
make sockets for all shapes of chips. In particular, there is no 52-
pin-grid array socket of the type needed for an MC68HC11. Another
problem involves intermittent connections stemming from the way
Scotchflex sockets are mated to their plugs through the perfboard.
If chips must be frequently removed from their sockets (for instance,
in debugging or reburning EPROMs), the sockets’ have a tendency
to pull away from the plug strips. Eventually, they become loose
and do not maintain good contact. For quick prototyping, Scotch-
flex is useful; for permanent circuits, other methods may be more
appropriate. . .

4.1.4 Speedwire

The Vero Electronics company markets wiring tools and equipment
known as Speedwire. Speedwire has but two components: Speedwire
pins and the Speedwire wiring tool, pictured in Figure 4.4. Again,
perfboard provides the substrate, but with Speedwire, individual
pins are pressed through the holes so that the top portion of the pin
sticks through to the top of the perfboard and the bottom portion
of the pin sticks through the back. To make a 14-pin DIP socket, for
example, seven pins are inserted along one row of perfboard holes

~and seven pins are inserted along a parallel row three columns over.

Speedwire involves more work than Scotchflex, but the advan-
tages offset the disadvantages of Scotchflex: It is possible to make

100 4. Designing and Prototyping

Figure 4.4. Speedwire pins come in reels of one thousand (bottom left) and are
broken off and inserted in perfboard (center). The wiring tool is used to push 30
gauge wire-wrap wire through the backside prongs of the pins.

a.pattern for any arbitrary pin-grid array, and there are no mating
connectors vulnerable to loosening when removing DIPs. Addition-
ally, if discrete components are required, they can be pushed directly
into Speedwire pins, without the need for component carriers. Thus,
the final boards can be made relatively thin.

Wiring is accomplished in the same manner as with Scotchflex.
With Speedwire, you should take care to orient the pins uniformly
at 45° to facilitate laying wires diagonally to the rows and columns
of perfboard holes. This alleviates the problem of having the end of
a wire sticking directly into a pin of a neighboring hole (leading to
intermittent shorting problems). The technique is outlined in detail
in the instructions that come with the Speedwire wiring pins.

For pushing pins, we have found that first reaming out the holes
slightly with an X-ACTO knife makes things easier. Using a large
Allen wrench that fits well in the palm of your hand is sufficient
to push the pins. Just prop something underneath the perfboard
(such as a slab of aluminum), and work at the edge of it to simplify
inserting the pins. Another effective technique is to use long-nose
pliers to hold the pin by its breakaway tab while pressing the pin into
the perfboard. Figure 4.5 diagrams both Scotchflex and Speedwire
technologies.

4.1 Practical Problems 101

O OO SD

“@@mm 3
ol W o

Baa™

Figure 4.5. (a) Scotchflex technology uses sockets and plug strips that press in
through the board and into the sockets. (b) Speedwire technology does not use
sockets but rather individual pins that are pressed into the perfboard: Chips and
discrete components fit into holes on the top side, and wiring is done on the back.

@ WU

Figure 4.6. This board shows Scotchflex technology on the left and Speedwire
technology on the right.

Figure 4.6 shows a board that was prototyped using both Scotch-
flex and speedwire technologies. On the left are Scotchflex sockets
holding a 14-pin DIP and three 14-pin component carriers in which
resistors have been soldered. Two empty sockets are shown above
the Scotchflex label. Wiring is done on the backside. To the right are
discrete or odd-sized components mounted in Speedwire pins (poten-
tiometers, capacitors, and 4-pin DIPs). An empty row of Speedwire
pins is shown below the Speedwire label.

102 4. Designing and Prototyping

Figure 4.7. Terminal plug strips are shown on the left and terminal socket strips,
on the right. The plug strips can fit into these socket strips or into Speedwire
pins. Socket strips would be soldered into printed circuit boards, and Speedwire
pin sockets would be used for perfboard prototype boards.

Remember that the more components you incorporate into your
design, the more time you have to spend prototyping, wiring, and
debugging connectors. This is why we focus on using a microproces-
sor controller, keeping parts count down, and getting to software as
soon as possible.

4.2 Connectors

Connecting sensors, motors, and power supplies to your electronics
board usually requires making cabling harnesses. Connectors are a
problem. It is not uncommon to design a sophisticated, compact,
and elegant processor board yet have the connectors take up most
of the space on the board. To avoid this result, we put most of the
sensors for Rug Warrior directly on the board.

One connector technology that we have found useful for proto-
typing uses terminal plug strips and terminal socket strips, as shown
in Figure 4.7. They come in long lengths and can be broken off for
the number of pins necessary for the corresponding number of wires
needed. The pins on the terminal plug strips fit into Speedwire pins,
also.

A convenient way to use these terminal strips is to assemble them
in a fashion that we call mobot connectors, for want of a better name.
A mobot connector is shown in the lower part of Figure 4.8. The

4.2 Connectors 103

Figure 4.8. A mobot connector made from two 3-pin-long terminal strips glued
together is shown in the lower portion of this photograph. The top-side pins are
trimmed slightly and wires are soldered on. Ribbon cable plug connectors from
Samtec are also convenient; one is shown on the right.

idea is to glue two terminal plug strips together and slightly trim
the top-side pins. Then tin each pin with solder. Strip each: piece
of wire and tin it. Always use stranded wire for cables, as stranded
wire is less likely to break. Do not strip the insulation very far back.
Solder each wire onto the pin so that the insulation Ho@owmm bmmi%
to the top. Figure 4.9 diagrams a mobot connector.

These types of connectors work well with mvmm%ﬁam dmowdo_omwg
as the pins on the terminal plug strips fit into Speedwire pins. Since
you push the pins and you make the mobot connectors; the mﬁ.mnmm%
grants flexibility. That is, you can make connectors’ wow cables with

" any number wires without having to stockpile a vast assortment

of different-sized connectors in your laboratory. Another very nice
feature of this technique is that the connectors are fairly low profile,
which help in keeping things small and elegant.

It is good practice to always key all connectors that you make.
Keying is a way of making sure that you cannot put the connector
in backwards. Having one extra terminal on the mobot connector
facilitates keying, as is shown in Figure 4.9. The strategy is to snip
off the pin on the unused terminal and drop solder in the mating
Speedwire pin. This prevents the connector from fitting into the
Speedwire pins in any other way except the correct one.

104 4. Designing and 308223@

Figure 4.9. On the right is mb,mwou&?m_wmm perfboard prototyping board with four
Speedwire pins inserted. On the left is a mobot connector. Two 2-pin lengths
of terminal plug strips have been glued together to create a 3-wire connector.

The connector is keyed by snipping off one of the four pins and filling the mating
Speedwire pin with solder.

Another possibility for making low-profile, compact connectors
is to use cable plug assemblies, such as the one shown above the
mobot connector in Figure 4.8. Cable plug assemblies come ready-
made with multicolored ribbon cable and also fit into Speedwire
pins. Samtec sells both terminal plugs and sockets and also cable
plug assemblies.

In Chapter 3 we learned how to design a microprocessor circuit.
It is easy to prototype your own microprocessor circuit using the
prototyping techniques we have described here. Figure 4.10 shows
an early prototype of Rug Warrior’s processor board using Speedwire
technology. Speedwire pins were pushed into the perfboard (after the
holes were reamed out slightly with an X-ACTO knife), the backside
was wired up with an assortment of colored 30-gauge wire-wrap wire,
and integrated circuits and discretes were inserted into the topside
Speedwire pins. The board needs both a power connector and a
serial cable for downloading code to the processor. Both of these
can be made by pushing Speedwire pins into the perfboard and then
making matching mobot connectors. Of course, then you also have
to make the connectors on the other ends of the cables. For the

4.3 Printed Circuit Boards 105

Figure 4.10. An early prototype of Rug Warrior’s board. Fifty-two Speedwire
pins were inserted in perfboard to match the footprint of the MC68HCI11AQ pin-
grid array socket. The board was cut on a shear, and a large hole for the reset
switch was made with a punch. Integrated circuits and discrete components fit
directly into the Speedwire pins.

,, downloader cable, it will probably be necessary to buy a connector

that fits into the back of your host computer.

4.3 Printed Circuit Boards

.. For stable, reliable hardware that will allow repeated programming

of your robot over the long term, there is no better choice for circuit
construction than printed circuit board technology. The ﬁ@&mu.om is
cost for reliability. :

-4.3.1 In-House Fabrication

- A typical printed circuit board factory consists of large process lines

of etching and plating baths. For designers and people who proto-
type constantly, it would be helpful to have a machine in house for
prototyping printed circuit boards. No companies have solved this
problem quite yet, but it would certainly be useful if you could send
your layout to a special printer, from which would emerge an actual
flexible printed circuit-board. ‘

A few companies provide partial solutions; these are rather se-
rious investments. T-Tech rakes a circuit board routing machine

106 4. Designing and Prototyping

Figure 4.11. On the right is the backside of a Speedwire board. A T-Tech board
is on the left. The traces are isolated from each other on the copper sheet.

that utilizes a desktop numerically controlled X-Y milling machine
along with isolation software to mechanically carve your circuit from
stock copper-clad fiberboard (see Figure 4.11). The advantage of
such a machine is that it enables prototyping with chips that come
in surface-mount packages. This is nice when you want a small com-
pact board or if you want to use a chip in your design that is avail-
able only in a surface-mount package. The disadvantage is that this
machine cannot make plated-through holes, narrow lines, or solder
masks. Sockets have to be soldered on both the front and back of
the board, and connecting traces from one side of the board to the
other requires inserting and soldering pins.

Other companies are starting to market even more sophisticated
machines. Direct Imaging offers an in-house machine that patterns
conductive ink on a flexible substrate for multilayer and flexible
printed circuit boards. This is movement in the right direction, but
at the moment, these machines are expensive.

Finally, we should mention that it is possible to buy solid copper
clad circuit boards and etching chemicals for the truly do-it-yourself
approach. The technique involves transferring a printed represen-
tation of your layout to a chemically coated board. The chemicals

4.3 Printed Circuit Boards 107

Figure 4.12. Commercial products, such as this circuit board from inside a

* Canon camera lens, use printed circuit board technology with surface-mount

components. The outer diameter is 6 cm.

remove the copper that is not part of the layout leaving only the
connections you desire. You must then drill all through holes by
hand. This approach is messy and time consuming but remains in
common practice. ;

4.3.2 Mail-Order Solutions

Prototyping with printed circuit boards has become easier and less

. expensive in recent years. Having a board fabricated by+a commercial

manufacturer is now a viable alternative for even budget-minded

. ‘hobbyists.

To achieve rapid turn around and low cost, the least expensive
vendors require that your design meet certain constraints. Multilayer
boards, that is boards with one or more layers of traces buried inside,
are not allowed. Rather, boards can have traces on only the bottom
or both top and bottom. Boards must be rectangular (but you can
cut the finished product to any desired shape yourself). Holes in
your board cannot be of arbitrary diameter, you must select from a
limited number of standard drill sizes. There can be no solder mask
or silk screen.

108 4. Designing and Prototyping

The payoff for living within these restrictions is high. For exam-
ple, as of this writing, it is possible to have two boards similar in
size and complexity to the Rug Warrior board manufactured to your
specifications and delivered to your door within three business days
for well under $100.

Two companies, both located in Canada, who supply such a pro-
totyping service are AP Circuits, (www.apcircuits.com) and EP Cir-
cuits (www.uniserve.com/epcircuits).

There are several steps to perform if you follow this route. As-
suming you have access to the proper CAD (computer-aided ‘design)
software, you must first create a schematic of your circuit. This is
called schematic capture. Second, in the layout phase, you specify
the positioning of components and mounting holes. Third, you must
specify the interconnection of all components. This step, called rout-
ing is tedious if done manually but requires an expensive program if
done by computer.

Schematic capture/layout/routing programs are available at a
very wide range of prices. Simple programs can be obtained for less
than $100; the most capable programs can exceed $100,000. The
effectiveness of the routing program is often the most significant
determinant of the total price.

The fourth step in the process of having a circuit board made is
to convert your design from the internal format of your program to
a standard format readable by the board fabrication house. Gerber
format is a commonly accepted standard. A conversion facility is
often present in the CAD package or available as an option.

mmﬂw:vn send your design via FTP to the board fabrication house
of your choice.

If you end up sending your circuit out to have your design im-
plemented by a commercial fabrication house, it is not necessary
to use through-board DIP packages for chips. It is fine to use the
smaller surface-mount packages. Figure 4.12 shows how dense con-
sumer products can be, using surface-mount technology. The pho-
tograph is of a circuit board mounted on the inside of the lens of
a Canon camera. The electronics include a DC-DC converter and
motor-drive electronics to drive a piezoelectric ultrasonic motor used
for autofocusing the lens.

4.4 Debugging 109

Figure 4.13. The wiring on this MIT robot has not been finished. Connector

“soup!

,A.k_ Debugging

. Nothing ever works right the first time. Thus, debugging is one skill
* worth mastering. o

You can perhaps avoid errors if you enforce certain disciplines

~ when wiring up your board. For instance, attach stick-um labels to
- the back of the perfboard that name the chip and mark the position
-of pin 1. This alleviates having to juxtapose front to back in your

head. Another trick is to make a copy of your circuit.diagram and

~ highlight each signal with a marker after adding each wire. Finally,
‘buy lots of different colors of wire, use them liberally, and stick with a
~-convention for power and ground. Pacer Electronics sells multitudes

of different colors of wire.

Once you have finished constructing your circuit (but before in-
serting chips in the sockets or applying power!), check with an ohm-
meter if +5 V is shorted to ground. If it is okay, test that all points
that should receive power are connected together and that all points

) that should be grounded are similarly connected.

Next, insert chips and discrete components. Check +5 V and
ground once more before pressing the “on” button.

110 4. Designing and 308205@

What happens if your circuit does not behave properly? The best
way to proceed is to go back to square one and find something that
does work. See if power is getting to all your chips. The batteries
could need recharging or possibly an IC’s pin was bent and missed
mating with a hole in a socket. Check the power supply on an
oscilloscope to make sure it is not corrupted with noise. It is good
practice to add capacitors across the supply and across the power
and ground pins of digital ICs.

If you are debugging a MC68HC11 circuit, start by checking the
clock. Pin 5, called E, should be a square wave at a frequency of one-
fourth the crystal frequency. Next, check the reset pulse on pin 17 as
you depress the reset button. It should rise cleanly without glitches.
Check the interrupt pins to make sure that they are normally high.
If they are left unconnected, they may float and initiate random
interrupts. Check that the processor is set up in the correct mode
by observing the signals on pins 2 and 3, MODA and MODB, while
you press the reset button. These signals are valid and read by the
processor for just a few cycles after reset.

If other parts of your circuit are misbehaving, try the technique
of “divide and conquer.” Remove any load from the pin and check
again. Be systematic and thorough; always start by finding a point
in your circuit that is behaving as designed and gradually debug
subsequent portions of the circuit.

Finally, think about connectors. The more subsystems you add
to your robot, the more interconnecting is required. Complexity can
increase quickly if many sensors and actuators are geographically
scattered around the perimeter of the robot, as can be seen in Figure
4.13. (This is a photograph of work in progress on a vacuum cleaner
robot built by Masaki Yamamoto at the MIT Mobile Robot Lab.)
Make your first robot simple, and key your connectors so they cannot
accidentally be inserted backward. One of the most common sources
of problems are loose or flakey connections. Be neat, and build
reliable connectors!

Sensors

5.1 Achieving Perception

‘As humans, we often take for granted our amazing perceptual sys-
tems. We see a cup sitting on a table, automatically reach out to pick
it up and think nothing of it. At least, we are not aware ‘of think-
ing much of it. In fact, accomplishing the simple task of drinking
from a cup requires a complex interplay of sensing, interpretation,
cognition, and coordination, which we understand only EWEB&G.
Thus, instilling human-level performance in a robot has turned
out to be tremendously difficult. A computer program has now beat
the reigning world champion at chess but a program that reliably
recognizes, say, a chair in an arbitrary scene still does not exist. The
parallel computer inside each of our heads devotes large chunks of
grey matter to the problems of perception and manipulation.

5.1.1 Transducing versus
Understanding

While we would like our robot to understand and be aware of its

. environment, in actuality, a robot is limited by the sensors we give it

and the software we write for it. Sensing is not perceiving. Sensors

112 5. Sensors

are merely transducers that convert some physical phenomena into
electrical signals that the microprocessor can read. This might be
done by using an analog-to-digital (A/D) converter onboard the mi-
croprocessor, by loading a value from an input/output (I/O) port,
or by using an external interrupt. Typically, there needs to be some
interface electronics between the sensor and the microprocessor to
condition or amplify the signal.

5.1.2 Levels of Abstraction

With software, we can create different levels of abstraction, or ab-
straction barriers, to help us as programmers think about sensor
data in different ways. At the highest level, the intelligence system,
in order to seem clever, needs to have some variables to juggle: Is it
dark in this room? Did a person just walk in? Is there a wall to the
left?

However, the only questions the robot is able to ask are ones
such as: Did the resistance fall in the photosensor? Did the voltage
from the pyroelectric sensor connected to the fourth A/D channel
go above threshold? Did the output of the near-infrared proximity
detector change from low to high?

Nevertheless, it is possible to instill many capabilities in a mobile
robot. Figure 5.1 shows a five-foot-tall mobile sentry robot called
Robart II, built at the Naval Ocean Systems Center. Robart II
serves as a mobile sentry robot (patrolling a building, avoiding ob-
stacles, watching for intruders) and is able to find its recharging
station and plug itself in. This robot contains a very large num-
ber of sensors, such as near-infrared proximity detectors for obstacle
avoidance, sonar rangefinders for localization, microwave sensors for
motion sensing, pyroelectric sensors for detecting intruders and tem-
perature, and earthquake and flood sensors for disaster identification.

Another mobile robot covered with sensors is Attila, shown in
Figure 5.2. Attila is a shoebox-sized, six-legged robot designed as a
rough-terrain explorer. Sensors on the legs are used for detecting ob-
stacles and stepping over them. There are strain gauge force sensors
along the shins for detecting collisions, potentiometers on the joint
motors for position calibration, and contact sensors on the feet for
ascertaining stable footholds. A number of sensors are also mounted

5.1 Achieving Perception 113

Figure 5.1. Robart II, from the Naval Ocean Systems Center, is a five-foot-tall
mobile sentry robot laden with sensors—sonar sensors, infrared sensors, bump
sensors, microwave motion sensors, burglar alarms, a surveillance camera, even

“ earthquake and flood sensors! i

Figure 5.2. Attila, an MIT robot, is a six-legged rough-terrain explorer robot
with over 60 sensors, 23 motors and 11 computers, Sensors up and down the legs
include force sensors, touch sensors, color sensors, and potentiometers for meas-
uring motor position. Other sensors are mounted on the chassis, such as a force-

sensing whisker, a gyroscope, a pitch-and-roll sensor; a near-infrared rangefinder,
and a small camera. ‘

114 5. Sensors

on the chassis. Whiskers protrude from the front for collision detec-
tion, a long-range, near-infrared sensor measures clear space, and a
small camera gathers images.

5.2 Interfacing Sensors

In this chapter, we will focus on many types of simple sensors and
how to interface them to a microprocessor. Threaded throughout
the chapter are various examples of sensor-interface electronics and
sensor-driver routines. A variety of sensors (such as photosensors,
bump switches, microphones, pyroelectric people sensors, near-
infrared proximity sensors, sonar rangefinders, bend sensors, gyro-
scopes, accelerometers, force sensors, compasses, and cameras) can
be inexpensively acquired and interfaced to a small mobile robot.

By the end of this chapter, you will be able to understand most
of the second half of Rug Warrior’s “brain,” which is illustrated
in Figure 5.3. This brain constitutes the sensors and their interface
electronics that fit (along with the computer described in Chapter 3)
onto Rug Warrior’s 3.4” x 4.5” board. Part of Figure 5.3, the motor-
driver circuitry, will be discussed later in the chapter on motors.

Throughout this chapter, as each type of sensor is explained, par-
tial schematics are given that assume the basic MC68HC11AQ circuit
is already built. The interface electronics are shown connected to a
specific MC68HC11A0 I/O pin, analog-to-digital port, or counter-
timer pin, and software fragments illustrate how to convert sensor
readings into internal variables. If you would like to see the entire
Rug Warrior schematic all in one place, refer to Appendix A.

Most of Rug Warrior’s sensors are mounted directly onto the -

circuit board, which is left exposed. This is to circumvent the need to
make connectors and wiring harnesses to any outer cover of the robot.
Many of the sensors can be seen in Figure 5.4. The pyroelectric
sensor, with' a cone-shaped holder for its plastic fresnel lens, points
upward in the center of the board. The square aluminum package
just in front of it is a Sharp near-infrared detector. Two near-infrared
LED emitters are mounted on either side of the Sharp detector. Just
to the outside of both LEDs are cadmium sulfide photoresistors for
light detection.

5.2 Interfacing Sensors 115 .

IR emitters wo IR detector .n__.m
GP1U52X

fe>— <
=

(e

PD2

100K

40 KHz osc PA3
PD3
100f2 Piezo
Buzzer _
Shaft encoders ’ -
+5 m
6.8K
=
==
+5 m
6.8K
=
PA7
[—

Motor driver
Dir PWM

Out2 Outd

1/3
74HC1 2« M3
PWM

Dir
Motor Supply v Enz E _la

i

LEDs are HLMP-1700QT

~ Figure 5.3. 1In this chapter we will discuss the sensors illustrated on this

schematic of Rug Warrior’s sensors and actuators: the near-infrared proximity
sensors at top left, the three bumper sensors at top right and the shaft encoders,

. microphone, photoresistors and pyroelectric sensor shown in the center.

116 5. Sensors

Figure 5.4. A front view of Rug Warrior, which shows a number of the sensors.
The extra board space in the front with holes in it is spare prototyping room.

T AR

Figure 5.5. A few of the sensors incorporated in Rug Warrior. Left to right
are shown a microphone, two microswitches, a mercury tilt switch sensor, and a
photocell.

5.2 Interfacing Sensors 117

A few of Rug Warrior’s sensors can be seen more clearly in Figure
5.5. The microphone on the left is available at Radio Shack. The
microswitches in the center are of the type used on a bump skirt to
detect collisions. Just to the right of the microswitches is a mer-
cury tilt switch, which is not actually used on Rug Warrior. If the
bulb is tilted, the mercury flows to cover two contacts, thus acting
as a switch. Such a sensor is useful for detecting if your robot is
climbing a ramp. At the far right is a Radio Shack cadmium sulfide
photoresistor.

5.2.1 Software Drivers

Once a set of sensors has been selected and the proper interface cir-
cuitry has been designed to connect your sensors to a microprocessor,
the microprocessor has to be programmed to read the sensors. These
pieces of code are often written in assembly language and are known
as software drivers. o ‘

Software drivers are pieces of code that. provide a well-defined
interface between a hardware device and a program that needs to
use the device. We will describe here several examples of driver code
that make the hardware simple to use. Where-it is instructive to
do so, we will implement our examples of software drivers in both
assembly language and the C language. The syntax we use for our
sample assembly language programs closely follows Motorola’s AS11
assembly language. One notable exception is that, in our. syntax

“w_»

unless set off by spaces, we use “~” as a normal charactér rather

)

‘than the subtraction operator.

Software drivers deal with the hardware-software interface. These
routines might constantly poll an A/D pin, waiting for the trigger
from a pyroelectric sensor, or they might be implemented as inter-
rupt handlers that are only called when the return signal from, say, a
near-infrared proximity sensor goes high. Sensor-driver code might
take this data and store it in a memory location. Used in this way,
the output from the sensor can be thought of as the value of a vari-
able or as a flag. This data then becomes fodder for a higher-level
abstraction. For instance, another part of the intelligence system
might use such a flag or variable to trigger a behavior or perhaps
combine it first with other information into a type of virtual sensor.

i
]
i
£

118 5. Sensors

Keep in mind the different levels of abstraction, as sensors seldom
reach the degree of perfection we would like.

5.2.2 Sensitivity and Range

Two important concepts to understand when analyzing any sensor
are sensitivity and range. Sensitivity is a measure of the degree to
which the output signal changes as the measured quantity changes.
Let’s call the sensor output r and the measured physical quantity
z. For example, a photodetector might output a voltage of say, 0.87
volts (r) when it is struck by 2.3 x 10'® photons per second (x). The
sensitivity of the sensor is defined by:

Ar mw

T T
Here, a small change in the measured quantity, Az, is related to a
small change in the sensor response, Ar, by the sensitivity, .S.

A sensing device reacts to varying levels of some physical stimulus
by outputting a characteristic voltage (or current, frequency, etc.).
Typically, the circuitry associated with the sensor then amplifies
or otherwise transforms this voltage and feeds it into an analog-to-
digital converter connected to a microprocessor. The A/D converter
is sensitive only to a limited range of voltages, often 0 to 5 V. In
the case of the 8-bit A/D converter built into the MC68HC11, this
voltage is then converted into one of 256 discrete levels. This, then, is
the microprocessor’s window on the world. No matter how complex
and subtle, all phenomena are collapsed into a number, or set of
numbers, with values between 0 and 255.

It is, therefore, important to consider carefully how a physical
quantity is transformed into a digital value accessible to the micro-
processor. Figures 5.6 and 5.7 illustrate two options—both linear
and logarithmic mappings of voltages to numbers.

Suppose the motion of a robot arm is restricted to a well-defined
range, 0 to 90 degrees. We wish to know the position of the arm
with equal sensitivity over all portions of its range. Under these
circumstances, a linear mapping of joint angles to A/D readings, as
provided by the simple potentiometer circuit shown in Figure 5.6(a),
is appropriate. Figure 5.7(a) shows the mapping.

5.2 Interfacing Sensors 119

Logarithmic
Amplifier

Figure 5.6. The potentiometer in (a) is connected to the joint of a robot arm.
The voltage across the network between point A and ground has a linear rela-
tionship to the angle to which the joint is set. The photodiode in (b) produces a
linear response to a very wide range of illumination levels. After the signal from
the diode has been amplified by the logarithmic amplifier however, the voltage
at B is proportional to the logarithm of the illumination.

0.0° 225° 450° 67.5° 90.0°
1 I l l]
(a) _// _/, m _ _ _umﬁ
Sa ~ 1 ’ -
} f t ¢ i .
0 64 128 102 255 .
S VR S P
A—UV T T _\. 1 h“.\. P T T -

=]
o
B
-
g I
<

Figure 5.7. It is always necessary to consider how the quantity measured by a
sensor will be mapped into the range of digital values available to the micropro-
cessor. (a) The linear mapping illustrated here would map an arm joint angle of
0° from the vertical to the number 0 and an angle of 90° to 255. (b) A linear
mapping of illumination units to numbers would map 250 illumination units to
the number 64 and 1,000 illumination units to 255. (c) A logarithmic mapping
. gives a larger dynamic range, from 0.1 illumination units to 1,000 illumination
units for an 8-bit (0 to 255) A/D converter.

120 5. Sensors

The situation for the photodiode is more complicated. The level
of illumination provided by sunlight is several orders of magnitude
greater than that typically produced by artificial lighting. Still,
we would like for our robot to be able to sense varying light lev-
els whether it is in a bright room or a dark room. The graph in
Figure 5.7(b) illustrates the problem that occurs if we try to use
a straightforward linear mapping from photodiode output to A/D
levels.

On a scale of arbitrary illumination units, suppose that illumina-
tion in a typical bright room varies from, say, 10 up to 1,000 units,
while in a dark room, illumination takes on values from 10 down to
0.1 units. If we choose components for our sensor circuit such that
illumination levels in the range 0.1 to 1,000 are mapped linearly into
A/D values 0 to 255, then the robot has good sensitivity in a bright
room, as illustrated in Figure 5.7(b). However, any illumination level
below about 2 units is mapped into 0 A/D units. Thus, the robot is
practically unable to detect any differences between light levels in a
dimly lit room.

One way to fix this problem is with the circuit shown in Figure
5.6(b). Here, a logarithmic amplifier produces a voltage proportional
to the logarithm of the photodiode’s output. This circuit has the
effect of increasing the sensitivity to small changes in light intensity
when the robot is in a dark room and decreasing the sensitivity in
a bright room. The robot is then able to operate over a much wider
range of illumination levels, as sketched in Figure 5.7(c).

In general, the output of a sensor will be neither linear nor loga-
rithmic in any strict sense. This usually presents no problem, how-
ever, as long as the robot builder has a clear understanding of the
sensor’s response and the conditions under which the robot must
operate.

5.3 Light Sensors

Visible light sensors and infrared sensors span a broad spectrum
of complexity. Photocells are among the easiest of all sensors to
interface to a microprocessor, and the interpretation of a photocell’s
output is straightforward. Video cameras, on the other hand, require

5.3 Light Sensors 121

+5 +5
Ww Ww
PE1 Left Right
PEG + D v, +
v v
McesHc11A0] | Vi v
PE1 —N_- —NZ PEO

Figure 5.8. Radio Shack 276-1657) are shown in a voltage divider configuration
connected to port E, bits 0 and 1. Port E is used here in analog-to-digital
converter mode.

VRH—
llﬂ

a good deal of specialized circuitry to make their outputs compatible
with a microprocessor, and the complex images cameras record are
anything but easy to interpret.

5.3.1 Photoresistors

Light sensors can enable robot behaviors such as hiding in the dark,
playing tag with a flashlight, and moving toward a beacon. ‘Simple
light sensors can be purchased as photoresistors, - photodiodes, or
phototransistors. A photoresistor (or photocell) is easy to interface
to a microprocessor. As shown in Figure 5.8, only one external

~component is needed. Photoresistors are simply variable Tesistors

in many ways similar to potentiometers, except that-tlie Tésistance
change is caused by a change in light level rather than by turning a
knob.

Phototransistors provide greater sensitivity to light than do pho-
toresistors. A phototransistor is almost as easy to interface to a
microprocessor as a photoresistor. Figure 5.9 illustrates a simple
configuration using a phototransistor.

Photodiodes possess great sensitivity, produce a linear signal over
a very wide range of light levels, and respond rapidly to changes in
illymination. This makes them useful in communication systems
for detecting modulated light; the remote control receiver in almost
every TV, stereo, and compact disk (CD) player on the market makes

122 mv. Sensors

174

Figure 5.9. A common phototransistor circuit.

use of a photodiode. The output of a photodiode does, however,
require amplification before it can be used by a microprocessor.

Because the photoresistor is so useful and easy to incorporate,
we will further analyze a practical circuit for connecting one to a mi-
croprocessor. Consider the circuit for the left photoresistor in Figure
5.8. Here, two resistances form what is called a voltage divider. The
total resistance in this circuit, Ry, is the sum of the individual re-
sistances: R+ = R + Ry. According to Ohm’s law, the current, I,
through the circuit is 7 = V/Rp. In order for the A/D converter
in the microcontroller to measure a voltage, some current must flow
into pin PE1. However, because the MC68HC11 has high-impedance
inputs, the amount of current required is negligible compared to the
currents in the rest of the circuit. In this case, the connection to
PE1 can be ignored while analyzing the voltage divider. Thus, the
voltage present on PE1 is:

The resistance of the photoresistor falls as the light level in-
creases. This means that the voltage at PE1 decreases. Substituting
for I, we get:

VpE1 = mi“?a\

The 8-bit A/D converter in the MC68HC11 maps the variable
voltage, Vpg1, into the range 0 to 255. Although the mapping pro-
vided by the simple voltage-divider circuit is not logarithmic, as was

5.3 Light Sensors 123

recommended for light sensors in Subsection 5.2.2, a useful output
can nevertheless be extracted. A good compromise between sensitiv-
ity and range will be achieved if the resistance, R, is set to the same
value as the resistance exhibited by the photoresistor when exposed
to the light level in the middle of the range of light levels in which
the robot must operate.

Typically, photoresistors are made from cadmium sulfide (CdS).
Hamamatsu, Clairex, and EG&G manufacture CdS photoresistors;
often, photoresistors can be purchased at electronic stores. In addi-
tion, most of the semiconductor manufacturers have optoelectronic
divisions that fabricate silicon photodiodes and phototransistors.
Try Hewlett-Packard, Motorola, Texas Instruments, National Semi-
conductor, NEC, Siemens and Sharp. Ask for the optoelectronics
data book for each company. Texas Instruments sells a TSL250
photodiode with integrated on-chip amplifier. Assemblies of LEDs
and photodetectors for encoders or optical switches can be obtained
from Omron, Optek, HEI, and Digi-Key. Some companies, such as
Hamamatsu and Centronic, also sell photosensor array chips and im-
agers, although these can be somewhat more expensive. The Texas
Instruments TSL214 is a low-cost, 64-element photodiode array.

A Software Driver for _u:owo_\mmmmﬂoqm

‘Here, we take a moment to explain in some detail Jhow to configure

the analog-to-digital converter and program a software driver for
photoresistors. These tasks encompass both the o@bwgrﬂom of the
hardware and the responsibilities of the programmer,

As was mentioned in Chapter 3, port-E of the gOmme: can
be configured as either an 8-bit input port or an 8-channel analog-
to-digital converter. Internally, there is only one A/D circuit for the
entire port and only four registers to store results from the eight
channels. Thus, to achieve the full potential of the >\U port, a
certain software protocol must be enforced.

First, the voltage reference pins on the MC68HC11 (VRH and
VRL) must be set to calibrate the hardware. If these pins are set to
+5 V and GND, respectively, then A/D result values of 255 and 0
will correspond to those limits, respectively. Voltages between the
limits are proportionately scaled. Two control registers, ADCTL and
OPTION, are used to configure the mode of conversion. Reference

124 5. Sensors

should be made to the MC68HC11 Programmer’s Manual to see
which bits in these registers should be set to turn on the A/D and to
select its various modes. Conversion sequences can be chosen that
repeat on a single channel four times or on four channels, once each.
In this latter mode, the eight pins of port E can be converted in
two banks of four: PEO-PE3 and PE4-PE7. The high bit of the
ADCTL mode should be polled periodically because it denotes the
conversion complete flag (CCF). Conversions are complete 34-clock
cycles after the ADCTL register is written. After each conversion,
results are. posted in the internal result registers: ADRI1, ADR2,
ADR3, and ADR4. The converter can also be set up in either mode
to convert continuously or just once.

ADCTL Bit 7 Bit 0
$1030 [OCF | -~ [SCAN|MULI] CD | CC | CB [CA |
0 0 0 1 0 0 0 0

Bits 4 and 5 of register ADCTL are MULT and SCAN, respec-
tively. When SCAN = 0, four conversions are performed, once each,
to fill the four result registers. When SCAN = 1, conversions con-
tinue in a round-robin fashion. When MULT = 0, four conversions
are repeated on a single channel of port E. The selected channel is
set by the lower four bits of ADCTL: CD, CC, CB, and CA. When
MULT = 1, one bank of four channels is converted. The bank is
specified by bits 2 and 3 of ADCTL. If bits 2 and 3 are set to 0,
channels PEO-PE3 are converted. If bits 2 and 3 are set to 1, chan-
nels PE4-PET are converted.

In the following example, written in both assembly language and
C code, we create a very simple software driver for acquiring a read-
ing from the photocells. The assembly code version might be written:

ph-right equ $10 ;Create wvariable for right photocell
ph-left equ $11 ;Create variable for left photocell
option equ $1039 ;Address of OPTION register

adctl equ $1030 ;Address of ADCTL register

adrl equ $1031 ;Result register for A/D channel 1
adr2 equ $1032 ;Result register for A/D channel 2

update-photo
bset option #%10000000
bset adctl #,00010000

;Enable A/D system
;Begin A/D conversion

5.3 Light Sensors 125

check-result
brclr adctl #%10000000 check-result;Wait in tight loop

ldaa adril ;Get value from rt photocell
staa ph-right ;Save right wvalue

ldaa adr2 ;Get value from lf photocell
staa ph-left ;Save left value

rts sReturn to calling code

- The C version of the photocell code is somewhat simpler:

int ph.right = 0;
int ph_left = 0;

/* Variable for right photocell data */
/% Variable for left photocell data */

void update_photo ()

{ poke(option,0b10000000); /* Enable A/D system */
poke (adctl,0b00010000); /* Begin conversion */
while((peek(adctl) & 0b10000000) == 0)

{} /* Wait until conversion finished */
ph-left=peek(adril); /* Get and store A/D channel 1 */
ph_right=peek(adr2);} /* Get and store A/D channel 2 */

In both versions, we first designate locations where the results
of the A/D conversions will be stored: ph-right, ph-left for the
assembly version and ph_right, ph_left for the C version. We en-
able the A/D system by writing the proper value to-the OPTION
register; then we begin a conversion by writing to the ADCTEL reg-
ister. The next part of both programs polls the oo=<ommmou..noaw~m8
bit of the ADCTL register, remaining in a tight loop uatil the con-
Version flag is set by the internal hardware of the A/D. Finally, the

Tesults of the conversion are moved from the result registers, ADR1

and ADR2, to the designated locations.
To learn the details of which registers and which bits control
the various functions of the A/D converter and the microprocessor’s

other systems, you should really consult the documentation for the
MC68HC11A0.

5.3.2 Near-Infrared Proximity Detectors

Following behaviors are easy to implement on a mobile robot. Using
a sonar rangefinder to measure range to a person and then staying

126 5. Sensors

T 77777

Figure 5.10. The robot can be made to follow a wall using two detect/no-detect
infrared sensors, A and B. When neither sensor detects an obstacle, the robot
arcs to the right, searching for a wall. When only sensor B detects something,
the robot moves forward. When sensor A detects an obstacle, either alone or
with sensor B, the robot turns left.

within some tag-along distance is one approach. A simpler strategy
is to use a near-infrared proximity detectors. Although these sensors
typically do not return actual distance to an object, they do signify
whether or not something is present within the cone of detection.
These types of sensors usually have much narrower beam widths
than sonar rangefinders. Following along walls using two detectors
(one pointed directly at the wall and one pointed 45 degrees more
forward) is a common strategy, as sketched in Figure 5.10. It is
even possible to follow a wall using only one detector by tacking as
a sailboat does. In this case, the robot must arc away from the wall
when its sensor detects something and arc toward the wall when
nothing is detected.

Near-infrared proximity detectors are often called IRs for short,
but this term can be misleading. These detectors are insensitive
to the long infrared wavelengths detected by pyroelectric sensors;
rather, they are sensitive in the range just below visible light, often
around 880 nanometers (nm) wavelength. In fact, although the hu-
man eye cannot see this light, charge coupled device (CCD) imagers
are sensitive to it, and if you ever take a video of your robot using a
camcorder, it will look lit up like a Christmas tree. Indicator cards
are available from Edmund Scientific and Radio Shack that fluoresce
when exposed to radiation from an infrared LED. This can facilitate
debugging.

5.3 Light Sensors 127

igure 5.11. A near-infrared proximity sensor can be built from a Sharp detector
(bottom) and a near-infrared LED (top).

An infrared emitter and detector pair are illustrated in Figure
’5.11. The emitter (top) is an LED made from gallium arsenide,
which emits near-infrared energy at 880 nm. - Both emitters and
near-infrared detectors (photodiodes and phototransistors) can be
purchased from nearly any semiconductor company that has an op-
toelectronics division (Siemens, Motorola, Hewlett-Packard, etc.).
Radio Shack also carries both near-infrared LEDs and near-infrared
phototransistors. More conveniently, Sharp sells two detector pack-
ages the GP1U52X and the newer IS1U60, that contain Emo.mwwﬁmm
amplifiers, filters, and a limiter. The GP1U52X unit igdistributed
by Radio Shack, Sterling Electronics and a number of others.

The Sharp detector responds to a modulated carrier put out by
- the near-infrared LED. This means that the programmer is responsi-
ble for blinking the LED in a certain pattern such that the detector
will respond. This modulated carrier protocol increases the signal-
to-noise ratio. A minimalist circuit (only one IC is needed, a 74HC04
inverter), which achieves an interface of such a proximity sensor to
a MC68HC11, is shown in Figure 5.12.

- The Sharp detector responds to a carrier ?m@ﬂmﬂo%‘ of 40 kHz. A
- 40 kHz frequency means the LED is blinked on and off with a period
of 25 microseconds (us). According to the device specification, this

128 5. mmeoqm

A

PD2!
PD3

MC68HC11

N

40 KHz osc

27002

N ¥

AR R

IR detector .w_m
GP1US2X

NN

q
=

Figure 5.12. A Sharp G1U52X near-infrared proximity detector (Radio Shack
276-137) detects reflected power emitted from 5@@75@3@@. LEDs, such as a

Siemens SFH 484 LED.
%E%EE%EE%IE
[

Signal from LED emitter

IEE=E~==—=E===E—E—====E—AQ :

600 microseconds . 600 microseconds

m_m:m_ from detector

Figure 5.13. The obstacle-detecting infrared beam has a 40 kilohertz (kHz)
carrier modulated at 1667 Hertz (Hz). Note that the transmitted signal must be
broadcast for several cycles before being acknowledged by the detector. Likewise,
when transmission ceases, a few microseconds pass before the detector changes
state. Both these delay times can depend on the signal strength.

signal should then be modulated at a lower frequency. The blinking
should be on for 600us and then off for 600us. Figure 5.13 gives the
timing diagram and protocol for this emitter-detector pair.

The 40 kHz oscillator portion of the infrared emitter circuit in
Figure 5.12 is implemented using two inverters, a capacitor, a re-
sistor, and a potentiometer. This 40 kHz oscillator runs constantly
while Rug Warrior is on, but the LEDs blink only when pins PD2

5.3 Light Sensors 129

and PD3 of port D are asserted. Thus, the programmer is responsi-
ble for turning these on and off for 600us each. The Sharp detector
outputs a low signal when it detects reflected energy and a high
signal when it detects nothing. Figure 5.13 shows the low signal
asserted by the Sharp detector when an object reflects energy from
the emitter back to the detector. The output of the Sharp detector
is a digital signal, either 0 or 5 V. Consequently, pin PE4 of the
MC68HC11 can be used in the normal digital input mode. The A/D
converter capability is not necessary here.

The circuit that controls the emitters is a rather odd one. It
is uncommon to have the outputs of inverters connected together.
Normally, an AND gate would be used to allow signals PD2 and
PD3 to modulate the oscillator output. (An AND gate outputs
a high signal only when both inputs are high.) We chose instead
the circuit shown here for practical reasons: It provides the same
functionality as an AND gate, and it does not Hm@c:,m adding another
chip to the circuit.

The geometrical layout of the sensors W@m the detector mounted
at the center-front of the robot and pointed straight ahead. The
emitters are set one to each side and aimed slightly outward to the
left and right. This saves having two detectors. Rug Warrior can
get by with just one and yet still see to both left- and right.

An obstacle-detection program can be writtén very mmm&\ in C
using the sleep function, as the following code fragment shows. PD2
is asserted and a sleep period begins. After 600us, PEA4is Hvozmm and
its state is saved in the variable val_on. Then PD2 is ‘deasserted
and the program waits another 600us. Next, we poll PE4 again and
store its value in val_off. An obstacle is detected if the detector
output is low when the emitter is on and high when the emitter is
off. The function ir_detect() should be called as often as necessary

“to keep the variable ir_status Eu&mama A similar loop is repeated

for the other LED.

int ir_status = 0; /* Global var for IR detection status */

void ir_detect()

{ int val_off, val_on; /* Intermediate vars for IR detection */
bit_set(port.D,0b00000100); /* Turn on one emitter */
sleep(0.000600) ; /* Wait for 600us */

130 5. mm:m,oJ

val_on = peek(port.E); /* Get walue of detector */
bit_clear (port_D,0b00000100); /* Turn emitter off */
sleep(0.000600) ; /* Wait for 600u */
val off = peek(port E); /* Get value of detector */
if ((val_off & “val_on & 0b00000100) == 0b00000100)
ir_status = 1; /#* (Obstacle detected */
else
ir_status = 0; /% No obstacle detected */

Common fluorescent lights put out a great deal of noise, to which
the IR detector is sensitive. Using the turn-on, test, turn-off, test
strategy just outlined will help to eliminate spurious obstacle detec-
tions due to noise.

Hamamatsu makes some very convenient-to-use optical sensors,
ranging from photocells and near-infrared emitters and detectors
to position-sensitive devices, photodiode arrays, and triangulation-
based near-infrared rangefinders. One very simple implementation of
a near-infrared proximity detector uses the Hamamatsu S3599 light-
modulation photo IC. This detector contains an on-chip oscillator
to drive an accompanying LED and also an integrated correlating
receiver. This means the entire system can be built in a very small
package. (The discrete-component 40kHz oscillator of the previous
example is extraneous here.) Figure 5.14 illustrates a sample circuit.

There is a trick you can play to squeeze a little more information
out of an IR proximity sensor. The detector responds to the IR
power it receives by activating if the incoming power is high enough
and not activating if the power is too low. If the power output by
the emitters can be varied then it is possible to determine whether
a detected reflection comes from a nearer or more distant object.
To estimate range, start by setting the output power at some high
level, then check for a reflection. If a reflection is detected, reduce
the power and check again. Continue in this way until no reflection
is detected. The output power level at which the reflection becomes
undetectable is related to the distance of the object.

The effective power seen by the detector can be varied in sev-
eral ways. The brute force method is to build a digitally-controlled
analog circuit where the output power is set by some number of
input bits. A second method is to tune the oscillator frequency

5.3 Light Sensors 131

Hama-

matsu
MC68HC11] $3599 Target

Out

+5 ﬁun Pwr
=

N

3Gnd

LED
Drive

mmmoﬂ
IR LED

TIP 125

™

Figure 5.14. A Hamamatsu S3599 near-infrared receiver contains an on-chip
frequency generator, which drives a near-infrared LED for correlated detection.

away from the nominal 40 kHz preferred by the detector. The more
the frequency differes from 40 kHz, the shorter the range at which
the detector will respond to obstacles. A third method is generally
most convenient for a fully-digital implementation; simply change

. the duty factor of the oscillator. The detector delivers ovﬁgcg re-

sponse when the duty factor, the fraction of the oscillator period

“when the signal is high, is approximately 50%. A‘HEm is the duty fac-

tor of the circuit in Figure 5.12.) Building an oscillator circuit with a
digitally-controllable duty factor allows estimation of the obstacle’s
range. This is the scheme used by some commercial research robots.

5.3.3 Near-Infrared Range Sensor

The GP1U52X IR detector discussed in the previous section is a
popular, inexpensive, and easy to use proximity sensor. However, a
sophisticated new sensor, able to accurately determine the range to
a nearby object, has recently been made available by Sharp. The
GP2D02 consists of an IR emitter and position sensitive detector,
PSD, in a single package (see Figure 5.15). Unlike IR proximity

“detectors, the GP2D02 computes an actual range to an object based

on triangulation. This means that (also unlike proximity detectors)

132 5. Sensors

Figure 5.15. The Sharp GP2D02 ranging sensor measures the distance to nearby
objects using triangulation.

the GP2D02 is relatively insensitive to the color and texture of the
object at which it is pointed.

Figure 5.16 shows how the detector works. The emitter, the lower
element in the rectangular package, illuminates a small spot on an
obstacle with modulated IR light. A lens forms an image of the spot
on the active element at the back of the detector. The output of the
detector element is a function of the position on which the image
falls. In Figure 5.16(b), the image forms at the center of the active
element. When the device is farther from the obstacle as in a the
image is closer to the bottom. And in Figure 5.16(c), with the device
close to the obstacle, the image of the projected spot forms near the
top of the active portion of the detector element.

As is suggested by the drawing, when the distance between the
detector and the obstacle reaches some minimum, about three inches,
the image misses the active portion of the detector element entirely.
Thus, the GP2D02 cannot detect obstacles that are too close. Also,
at some large distance, the reflected energy is too weak to activate
the detector. The maximum distance at which the GP2D02 can
detect an obstacle depends on the color and surface properties of
the obstacle. From about three to about 15 inches, the output is
almost linear with distance, and objects of almost any color can be
detected.

5.3 Light Sensors

Detector

Emitter

"Figure 5.16. The image of a projected spot of modulated IR light forms at
different positions on the active portion of the detector element &mvwsmam on
the distance between the Quuwbow and the obstacle.

Unfortunately, the interface of the GP2D02 is not nearly as
friendly as that of the IR proximity detectors described earlier. The
GP2D02 mates with a miniature 4-position connector that, outside
of Japan, is very difficult to acquire. No matter, you can solder wires
directly to the pins of the connector:.

The next problem is getting data out of the device. The GP2D02
returns range as an eight bit value. Since there is only one output
pin, you must actively clock an input pin to get the GP2D02 to
output data. Start with the*V;, high then hold it low for 70 ms
or longer. The detector makes its measurement during this period.
Then send 8 pulses whose positive half lasts for 200 us or less. On

134 5. Sensors

the positive going part of each pulse, read V,y;. The most significant
bit of the range measurement comes first, the least significant last.
Higher numbers in the result correspond to shorter ranges. Consult
the manufacturer’s literature for more details of the procedure.

There is one last confusing part to the interface. If you simply
connect a digital output line from your microprocessor to the V;,
input line of the GP2D02, it won’t work! The GP2D02 uses a curious
“open drain” input circuit. Your output line can pull this circuit low,
but must never pull it high. That means you should connect a diode
between your output line and V;,, the anode of the diode goes to
Vin.-

If you can put up with its idiosyncracies, the GP2D02 makes an
excellent short-distance range sensor. It even performs well in bright
light.

5.3.4 Pyroelectric Sensors

One of the most useful sensors for endowing your robot with a means
of interacting with humans is a pyroelectric sensor. A pyroelec-
tric sensor is the essential component in certain types of motion-
detecting burglar alarms. The output of a pyroelectric sensor changes
when small changes in the temperature of the sensor occur over time.
The active element in such a sensor is typically a lithium tantalate
crystal. Charge is induced as the crystal is heated. Inexpensive py-
roelectric sensors are optimized to detect radiation in the 8-10 um
range (the range of infrared energy emitted by humans) and require
no cooling to produce a useful signal. This makes them suitable for
use in motion sensors and security alarms.

Pyroelectric sensors are sold by a number of companies. Figure
5.17 depicts a dual-element sensor with integrated amplifier, the 442-
3, sold by Eltec. The package is shown in the can with the window
at the left. To the right is a construction-paper cone for holding
a plastic fresnel lens (made by Fresnel Technologies) at the focal
distance from the window.

Other companies (Watlow, Mikron Instrument, Detection Sys-
tems, Microwatt Applications, Hunter Products, Linear, Spiricon,
etc.) make pyroelectric sensors. Nippon Ceramic makes a low-cost
version of the pyroelectric sensor shown in Figure 5.17 but without

5.3 Light Sensors 135

Figure 5.17. Eltec sells a pyroelectric sensor. The 442-3 dual-element sensor is
shown at the left. A fresnel lens with a paper-mounting cone that fits over the
sensor is shown at the right.

the integrated amplifier. Acroname, Inc.” offers a pyrosensor comp-
lete with Fresnel lens designed for compatibility with Rug Warrior.

Figure 5.18 illustrates the interface between the MC68HC11 and
a pyroelectric sensor. The Eltec 442-3 sensor shown incorporates two
lithium tantalate crystals. The amplified difference of the voltage
across the crystals is the output of the sensor. In the case that both
crystals are at the same temperature, the sensor produces an output

_signal that remains steady at about 2.5 V (assuming a 5 V. power

supply). If a person walks in front of the sensor moving from left to
right, the signal will rise above 2.5 V by about one volt arid then fall
below it, finally returning to the steady-state value. Should a person
walk in front of the sensor moving from right to left, the reverse will
happen. The signal will first fall, then rise, and then settle at 2.5
V. Figure 5.19 illustrates the time-varying output signal of the Eltec
sensor.

By taking advantage of the MC68HC11’s A/D port, we can im-
plement the interface with a minimum of components. The same
“flavor” software driver as used in the photocell routines can gather
pyroelectric data. A program to notice when the readings go above
or below a preset threshold can trigger some robot behavior. More
sophisticated software could look for trends and try to determine

136 5. Sensors

MC68HC11

Figure 5.18. An Eltec 442-3 differential pyroelectric sensor with built-in ampli-
fier needs no external components.

1/

50|V

17

Y

0.0

Figure 5.19. A typical signal from a pyroelectric sensor as a heat source passes.

which way the person is moving and attempt to follow.

It is worth pointing out here that most mobile robot building
materials are opaque to the long-wavelength infrared radiation that
the pyroelectric sensor detects. In particular, if you mount a pyro-

electric sensor behind the clear acrylic body shell of your robot, the ;

sensor will remain blissfully ignorant of any passing heat sources you
might like it to detect.

5.3.5 Ultraviolet Sensors

On the opposite end of the spectrum from pyroelectric sensors, Hama-
matsu offers a line of ultraviolet sensors called the UVtron series.
These devices are sensitive to radiation in the 185 to 260 nanometer
(nm) range but are very insensitive to light in the visible range. In
most environments the only source of UV light is a flame. Hama-
matsu UVtron sensors have been used with good results by con-
testants in the Robot Home Firefighting Contest (see Appendix
F) held each Spring at Trinity College in Hartford, Connecticut.
For information on the UVtron visit Hamamatsu’s website at: op-
tics.org/hamamatsu/hps_home.html

5.4 Force Sensors : 137

R G@e R ¢ T

_u.mc.wm 5.20. This small inexpensive camera is sold by Chinon.

'5.3.6 Cameras

Video camera technology continues to become more compact and
more inexpensive everyday. Small cameras from security systems
are a good buy, as illustrated by the Chinon camera in m;mcam 5.20.
Sony also sells small Watchcam cameras.

While onboard vision computations with a zOmmmO: vwovmd_%
are not feasible (especially given all the other sensors-connected to
Rug Warrior’s processor), transmitting to an offboard workstation
can be viable. A cable may be used for this application, although a
television transmitter is preferable. Some inexpensive and amazingly

small (postage stamp sized!) video transmitters are now available.
. These transmitters operate on the experimental TV (ham radio)

frequencies and require a license from the Federal Communications
Commission. Contact Supercircuits for information.

5.4 Force Sensors

- In general, force sensors have proven the most reliable, exhibit the

lowest noise, and produce the most easily interpreted signal of all

138 5. mm:moqm

oo

Skirt

Chassis ~— Music wire

Microswitches Chassis

Side view

Top view

Figure 5.21. How a full-coverage, force-detecting bumper can be implemented
on a cylindrical robot. Three microswitches are arranged symmetrically around
~ the perimeter of the chassis so that the activating levers contact the skirt (Top
" view). The skirt “floats” relative to the chassis, held in place by three or more
lengths of stiff steel wire (Side view). This wire, available at hobby shops, is
sometimes called music wire or piano wire.

sensors. Force sensors can be used to determine when the robot is
in contact with another object and where that object is in relation
to the robot. Such information allows the robot to maneuver away
from collisions.

5.4.1

Microswitches, such as the two shown in Figure 5.5 (page 116), are
small, momentary switches that can be attached to bumpers to signal
when the robot has run into an obstacle. Such switches can be
purchased from a number of suppliers, such as Gerber or Digi-Key.

Figure 5.21 illustrates one method for using microswitches to de-
tect collisions between the robot and various obstacles. The switches
are mounted in such a way that, when the robot contacts an object,
one or two switches will close, thus revealing the relative positions
of robot and object.

Figure 5.22 show two ways to interface the bump switches to
the microprocessor. The circuit in Figure 5.22(a) is straightforward:
One pin of port E is used for each switch. When the robot collides
with an obstacle, one or two switches close, changing the state of the
corresponding bit(s) from 0 to 1. This approach has the advantage

Microswitches

R S T R

e S

5.4 Force Sensors 139

(@) =

Figure 5.22. Two approaches to force detection. In (a), each switch goes to a
separate pin of port E. A digital read of port E reveals the state of the bumper.
Circuit (b) channels all bump switches to one pin of port E. Here, we must use
the analog-to-digital converter to determine which set of switches is closed.

of being easy to understand and implement, g; it uses up three. of

. the MC68HC11’s input lines.

There is another way to achieve the same mcboaosm:.@\. that uses
only one MC68HC11 input pin. This second approach is shown

. in Figure 5.4.1(b), where a network of resistors is used to create

different voltages at the MC68HC11 input pin, depending on which
switch is closed. (The A/D mode for port E must be used.) The

- bump switch software driver must read pin PE3, do a conversion,

and then set one of eight flags. The correct flag signifies whith switch

- or set of switches is closed; this is determined by in which of eight

ranges the measured voltage falls.

A careful analysis will show that the circuit in Figure 5.4.1(b) is
essentially a voltage adder. As long as the current flowing from the
+5 V supply through the single 2.2 kilohm (K2) resistor and two
1.2K resistors to ground is large compared to the current flowing
through any other part of the circuit, this approximation will hold.
If, as shown, the powering voltage divider has taps at 1/4, 1/2, and
1 times the supply voltage, then the voltage sum will be 1/3 x (A +
B + C) (where each of points A, B, and C is connected either to its
corresponding tap or to ground). Since the A/D converter produces

140 5. Sensors

Figure 5.23. A bend sensor is a variable resistor that can be used for bump
detection. Depending on the amount of bending, conductive ink between two
electrodes creates a larger or smaller resistance.

digital values between 0 and 255, the set of voltages it reads will
be 1/3 of 255 times the sum of the voltages from the switches. For
example, when only switch A is closed (connected to ground), the
A/D output will be 1/3x 255 % (0+1/2+1/4) = 64. When switches
B and C are closed, the output will be 85.

Microswitches can be attached in a number of ways to enhance
their applicability. They can be connected to one or more whiskers
extending from the robot; deflecting the whisker causes switch clo-
sure. For grippers and hands, too, BHQ.o%Sﬁorom make very simple
but effective touch sensors.

5.4.2 Bend Sensors

Another sensor useful in the domain of contact detection is the bend
sensor. An example bend sensor, illustrated in Figure 5.23, is dis-
tributed by Images Company and by Jameco. This device uses a
conductive ink deposited between two electrodes to give a variable
resistance, depending upon the degree of bending. This variable re-
sistor can be interfaced to a MC68HCL11 in much the same way as
a photoresistor, that is, by using a voltage divider with the output
signal connected to an A/D channel. Total resistance changes by

5.4 Force Sensors . 141

Figure 5.24. The Rubbery Ruler provides a unique way to measure ammoHEwﬂo:m

and relative positions.

. a factor of about 3 to 5 as the bend sensor mo,om from straight to

maximum bend.

5.4.3 Force-Sensing Resistors

' Interlink Electronics manufactures a line of force-sénsing resistors
“that, like bend sensors, are based on conductive ink technology. The
resistance of a force-sensing resistor can change by several orders of
magnitude as force is applied. (This is a much greater owmbmm than
:the bend sensor exhibits.)

Force-sensing products come in a variety of mrm%mm mb& sizes,

“from 0.2 inch diameter circles to strips 24 inches long. A linear
‘potentiometer is also available, which can determine the position of
~a contact anywhere along its length.

5.4.4 Rubbery Ruler

An interesting, yet quite simple mmdmoﬁ was recently developed at
the University of Melbourne. Called the Rubbery Ruler, this sen-

-80r can accurately measures changes in its own length (see Figure

5.24). Such a device might be used in the bumper of a robot to
detect deformations or displacement or could be used to determine

142 5. Sensors

the position of an arm or gripper.

A Rubbery Ruler is formed by winding two unconnected wires
side-by-side in a single layer inside a stretchy tube. The wires effec-
tively form the plates of a capacitor. When the tube is stretched, the
distance between the wires increases and the capacitance decreases.
The capacitance changes is such a way that if a Rubbery Ruler is
used as the capacitor in a simple oscillator circuit, the output fre-
quency is linear in the elongation of the sensor. For more information
visit the site: www.ph.unimelb.edu.au/inventions/rubberyruler.

5.5 Sound Sensors

Sensors for sound in the audible range can allow the robot to interact
with its operator. Ultrasonic transducers help the robot detect and
avoid obstacles.

5.5.1 Microphones

A microphone can easily be interfaced to a microprocessor. Typ-
ical behaviors instigated on a robot are: moving toward or away
from noise, listening for a specific pattern of sounds, and localizing
a sound’s position within a room. The microphone shown in Fig-
ure 5.5, (page 116) came from Radio Shack, but Digi-Key also sells
microphones, as do a number of surplus stores.

The signal from the microphone typically must be amplified be-
fore being read by the microprocessor. Figure 5.25 shows one ap-
proach, using an LM386 op-amp. Again, the output of the amplifier
is connected to an A/D pin of port E and software driver routines
similar to the previous examples can be used to read the data.

One significant problem with using a microphone is the need to
sample the signal very frequently. Figure 5.26 illustrates the type of
signal output from a microphone. If the robot is trying to detect a
hand clap or a whistle, for example, it must sample the signal from
the microphone often enough so that is does not miss the event.
(Instantaneously, the reading from the microphone is just a voltage
between 0 V and 5 V.) The signal produced by a hand clap may
last only a millisecond or so. This means that the microprocessor

5.5 Sound Sensors 143

+5

MC68HC11

Figure 5.25. A microphone circuit with simple amplifier uses an LM386 op-amp.

must check the output of the microphone at least that often.! Thus,
looking for very brief or high frequency signals can require all of the
microprocessor’s time. It may be necessary to dedicate a micropro-
cessor or other custom hardware solely to the gmw of monitoring the
microphone. .

Another important problem is that a microphone mounted on
a robot is most likely to detect the sound made by the robot’s own
motors. It will usually be necessary to shield the ﬁzowovrosmw in some
way to guard against this. .

More sophisticated acoustic sensors are mﬁE@Em arma can Em-
itize and record voices for later playback. Other systems do rudi-
mentary (usually speaker-dependent) voice recognition. Still, these
systems see continuous improvement and lower prices as time goes
on. Speech-synthesis boards are also available from wﬁ@ﬁ:m% ‘such

. as RC Systems. Writing data strings to various registers'signals the

device to output an assortment of phonemes. The programmer can

then create a number of sentences to give the robot simple language
facilities.

5.5.2 Piezoelectric Film Sensors

Piezoelectric film is a remarkably versatile and inexpensive sensor
material. Properly configured, the same material can be used to
%&82 vibrations, changes in applied force, changes in temperature,

! According to the well-known Nyquist theorem, the microprocessor must sam-
Ple at twice the highest frequency present in the input.

144 5. mm:.moqm

Output from
microphone

] 1 1 1 _ >

Figure 5.26. The robot is to take some action when it detects a loud sound,
that is, when the signal from the microphone goes above the upper dashed line
or below the lower dashed line. Each vertical bar represents a sample, the mo-
ment when the microprocessor reads the A /D converter channel connected to the
microphone. Unless samples are taken at very frequent intervals, the sound of
interest can easily be missed. .

and even far-infrared radiation. In each case, the sensing operation
consists of measuring the voltage imposed on a pair of electrodes on
opposite sides of a polyvinylidene fluoride film. Piezoelectric film
sensors produce a voltage only when subjected to changes in the
sensed quantity. For example, when used as a collision detector,
the piezoelectric sensor will generate a voltage spike at the moment
the robot bumped into an object but will produce no signal while
the robot is pressed against the object. Piezoelectric film allows the
robot builder to construct highly customized sensors. Piezoelectric
film, evaluation kits, and sensor components are available from AMP
(www.amp.com/sensors/sensors.html).

5.5.3 Sonar

While the most common near-infrared detectors deliver only prox-
imity information (something is or is not there), a sonar transducer
can actually provide distance information because it is possible to
measure the time of flight between the initiation of a ping and the
return of its echo. By measuring the time of flight and knowing the
speed of sound in air, it is possible to calculate distance covered by
the round-trip of the ping.

Figure 5.27 shows the Polaroid sonar rangefinding system, which
is one of the most commonly used sensors on mobile robots. These

‘RugBat™, a sonar ranging unit designed to plug into arm Rug Warrior Pro

5.5 Sound Sensors 145

Figure 5.27. The Polaroid 6500 ranging module mated with a 600 series ul-
trasonic transducer is a popular combination when building a sonar range mea-

suring sensor for a mobile robot. These two Polaroid units are components of
™

robot. RugBat™ is available from A K Peters.

rangefinders were developed as autofocus mechanisms for cameras,
but the units can be purchased separately. The driver board has a
very simple protocol for interfacing to a mMiCroprocessor. m;mcnm m 28
illustrates the necessary interface electronics.

To measure the distance to an object, the Hmﬁmam board ,Ummaw
by sending a brief 400 volt signal to the transducer. _HFm. creates
an ultrasonic chirp. After transmitting the chirp, the ranging board
monitors the transducer for a returning echo. The board. automati-
cally increases its gain with time to better detect the fainter echoes
returning from more distant objects. When an echo is detected, the
ranging board asserts (sets to high) its output line. By measuring
the time between initiation of the chirp and return of the echo, the
robot’s microprocessor can determine the distance to the object re-
sponsible for the echo.

In the example circuit we use two input capture registers to
record the time when the sonar ping begins its flight and the time
when the echo is detected. The input lines associated with the timers
are designated PA1 and PA2. These lines are unassigned and thus

" available to the sonar module. However, in Rug Warrior’s standard

configuration, all of the MC68HC11’s outputs are dedicated to built-

146 5. Sensors

Series 600
Ultrasonic Transducer

Gnd
.Im Bink

Init

Osc
Echo

X
=™

47K
HCo8 v+
g (o 3 o 1

Polaroid 6500
Ranging Module

Figure 5.28. Setting the Init line of the Polaroid 6500 ranging module initiates
a sonar ping and causes the state of the microprocessor’s internal free running
timer to be captured in the register associated with line PA2. When an echo is
detected the Echo line goes high storing the current value of the same timer to
PA1’s associated register. The difference between the two registers is the sonar
ping’s round trip time of flight.

in features.2 To control a sonar module a creative addition must be
made to Rug Warrior’s circuit board to provide a new output.

Rug Warrior uses outputs PD2 and PD3 to control its infrared
(IR) emitters. Alternatively the left, then the right IR is turned on.
When a reflected signal activates the IR detector, the presence of
an obstacle on the left or right, respectively, is indicated. In normal
operation, Rug Warrior never turns on both emitters at once. We
can take advantage of this fact by using the logical AND of the
signals from PD2 and PD3 to initiate a sonar ping. We have used a
quad AND gate, a 74HCO8 chip.

When PD2 and PD3 are asserted, INIT and PA2 are forced high;
the former initiates a sonar ping. Upon detection of a returning
echo, the ranging board asserts Echo, driving PA1 high. One of the
gates of the AND chip is also connected to Echo; this gate acts as
a buffer to drive the LED. When Echo goes high, the LED lights,
giving a visual indication that an echo has been detected. The 2.2K
resistor limits the current to the high efficiency LED. According to
the specifications of the sonar ranging board, a 4.7K resistor must
be used to pull the Echo line high.

2],ine PA4 can be used to control the sonar if the LCD screen is eliminated.

}

5.5 Sound Sensors 147

When the sonar pulse occurs, the ranging board draws 2 amperes
of current for a fraction of a millisecond. Such a large current can be
a challenge for the robot’s power supply; you will get better results
if you install a capacitor of about 500 uF from power to ground near
the ranging board. It is also useful to wire a second capacitor of
around 1 pF directly to the backside of the ranging module between
the V+ and Gnd pins. The ranging board is a sensitive, high-gain
device and without this second capacitor, noise on the V+ line can
cause the Echo line to go high as soon as the sonar pulse terminates.

Figure 5.28 shows the Blnk and Binh signals connected to ground
and no connection to the Osc line. Advanced features can be enabled
by using these lines in different ways. Consult the manufacturer’s
documentation for more information. A technical manual and appli-
cation notes are supplied with Polaroid’s Developers Kit, Designers
Kit, and OEM Kit.

A software driver of surprising simplicity can calculate the range,

given the circuit in Figure 5.28. The following three functions are
all that is needed. g

/% Enable input capture on rising edge on lines PAl and PA2 */
void init_sonar() . : ;
{ bit_set(tctl2,0b010100); /* Use bit_set and bit_clear HWﬁUmH, */
bit_clear(tctl2,0b101000); /* than poke to avoid changing */ ,
/* other tctl2 bits */ - :

/* Initiate a sonar ping */ .

void ping() e o

{ poke(tflgl,0b10); /* Writing a 1 bit clears echo received flag */
“bit_set(portd,0b001100); /* Turn on PD2 and -PD3 => Start ping */
sleep(0.030); /* Wait 30 milliseconds for an echo */
bit_clear(portd,0b001100); /% Clear echo line */

¥

.

/* Determine if an echo was received, if so compute the range */
float range()

{ if ((peek(tflgl) & O0b10) == 0) -

return -1.0; /% IC2 didn’t capture echo */
else
return /% Echo detected, compute time and convert to feet */

((float) ((peekword(tic2) - peekword(ticl)) >> 1) * 0.000569);

148 5. mm:mo_.m

It is possible to determine the time-of-flight using only one input
capture line. To do this, the robot must store to a variable the time
when it commanded the ping. After the echo is received this vari-
able is subtracted from TIC1. The only problem with this approach
is latency. Because the microprocessor can be interrupted at any
instant, there is no top-level way to be sure that the sonar ping was
sent immediately after the time was recorded.

As described above, the INIT and ECHO lines of the ranging
board are wired to the MC68HC11’s PA1 and PA2 inputs. PAl
and PA2 are associated with internal input capture systems IC2 and
IC1, respectively, sic. The input capture system allows the current
time to be captured (written to an associated register) the moment
the signal on an input capture line goes from low to high. The
time-storage registers associated with IC1 and IC2 are TIC1 and
TIC2, respectively. Time is measured in units of ticks; a tick is 0.5
microseconds long.

Whenever the signal on an input capture line does go high, an-
other internal register (called TFLG1) records the fact by automati-
cally setting a bit corresponding to the particular input capture line
that went high. We can use this feature to determine if the sonar
board received an echo. v

The IC1 and IC2 timers must be initialized so that they be-
have as described. This is accomplished by the init_sonar () func-
tion. From the MC68HC11 documentation we know that the regis-
ter TCTL2 controls IC1 and IC2. Rising edge capture is enabled by
writing binary %00010100 to TCTL2. The command init_sonar ()
must be executed before sonar ranging is attempted.

All we need do to initiate a sonar chirp is turn PD2 and PD3 on
together. This is accomplished by ping(). After starting the sonar
pulse, ping () waits 30 ms, then turns off PD2 and PD3, turning off
the Init line. We need not wait much longer than 30 ms, for an echo.
Echoes taking longer than 30 ms to return are generally so faint that
they will not be detected by the ranging board. Another reason for
the 30 ms cutoff is that the registers that count and capture the time
are only 16-bits long—after about 32 ms, the registers overflow and
would give meaningless results.

Finally, range() is called after ping() to compute the time of
flight and convert to units of length. First range() checks the bit

5.5 Sound Sensors - 149

in the TFLG1 register that tells whether IC2 has actually captured
a time. If it has not, then no echo was réceived; range() returns
-1.0 to indicate the absence of good range data. If an echo has
been received range () subtracts the time captured by IC1, the ping
initiation time, from the time captured by IC2, the time at which
the echo returned. This difference is the time of flight in units of 1/2
microseconds. range() multiplies this number by a constant that
converts to units of feet. The speed of sound at normal temperature
and pressure is 1138 feet per second, one tick is 0.5 x 10~° seconds, so
the ratio is: 1138 / 0.5 x 10~ = 0.000569 feet per tick. Multiplying
this number by the difference computed above would give the total
distance the echo travels. However, since the echo travels both out
and back, the distance from robot to obstacle is actually half this.
We thus divide 0.000569 by 2.0 to get 0.0002845. Multiplying ticks
by this number gives the distance to the obstacle in feet.

A careful examination of the range() function in the listing
above reveals that this is not exactly what is done. As often happens
in robotics, there is an additional complication. The IC program-
ming language stores signed integers using only 16 bits. This means
that integers are restricted to the range -32768 to 32767. Integers
larger than 32767 are interpreted as negative numbers. Subtracting
the contents of TIC1 from that of TIC2 may result in a‘ number
larger than 32767. This is the reason for the shift right bit o@mgﬂ.os
(>>1) in the range() function. The number produced by this shift
(effectively dividing by 2) cannot be larger than 32767. This solves
the sign problem but we must correct for dividing by 2 by multi-
plying the final constant by 2.0, thus 0.0002845 becomes 0.000569
again. .

One caveat should be mentioned. A single transducer is used here
to both transmit and receive the sonar ping. After transmitting a
ping, the transducer continues to oscillate for a brief time. While
these oscillations decay, the ranging board must not attempt to de-
tect an echo because it has no way to distinguish a legitimate echo
from residual ringing of the transducer. The sonar unit automat-
ically handles this by blanking detection of an echo until 2.38 ms
after the ping begins. The effect of this is that in normal operation

. the sonar unit cannot detect objects closer than about 16 inches.

150 5. Sensors

Sonar ranging is useful for obstacle detection, corridor following,
localization, and map building. However sophisticated the final be-
havior, this underlying primitive operation of calculating the range
of a ping is the same in all cases.

5.6 Position and Orientation

For a robot to find its way about in the world, it often needs to make
certain measurements. For example, it may be helpful for the robot
to know the direction of gravity, the local compass heading, or how
far it has moved or turned since it was in some known position. In
this section, we review sensors that can provide such information.

5.6.1 Shaft Encoders

A shaft encoder is a sensor that measures the position or rotation rate
of a shaft. Typically, a shaft encoder is mounted on the output shaft
of a drive motor or on an axle. The signal delivered by this sensor
can be either a code that corresponds to a particular orientation of
the shaft (such shaft encoders are called absolute encoders) or it may
be a pulse train. Shaft encoders that produce a pulse train are called
incremental encoders. Each time the shaft turns by a small amount,
the state of its output changes from high to low or vice versa. Thus,
the rate at which pulses are produced corresponds to the rate at
which the shaft turns.

A potentiometer can be used as an absolute position encoder.
Each position of the shaft produces a unique resistance. Absolute
encoders are commonly used for determining the positions of robot
arms.

One way for the robot to get feedback on how far its wheels
have turned or on synchronizing two wheels’ velocity is to connect
an encoder to each motor shaft. Shaft encoders can be purchased
as.enclosed units or built in as an integral part of a motor. Some
incremental shaft encoders contain a spinning disk that has slots cut
in it. The disk attaches to the motor shaft and spins with it. A
near-infrared LED is placed on one side of the disk’s slots and a
phototransistor on the other. As the disk spins, the light passing

5.6 Position and Orientation 151

Figure 5.29. One very simple way of building a shaft encoder. Only two parts
“are needed: a striped pattern glued to a wheel, which is attached to the motor
shaft, and a photoreflector. For Rug Warrior, we use the Hamamatsu P5587
_photoreflector, shown taped to the motor and mounted so as to be only a few
“millimeters from the rotating striped pattern on'the wheel éwmc the wheel is
‘mounted on the motor shaft.

through the disk is interrupted by the moving slots, and a signal in
. the form of a pulse train is produced at the output of the phototran-
_sistor. By using a microprocessor to count these pulses, the robot
can tell how far its wheels have rotated. The combination of such an
infrared LED emitter and a photodetector, packaged fof' the purpose
~of being mounted on either side of a mrmwn encoder’s disk, is called a
photointerrupter.

Another implementation of a shaft encoder is a photoreflector,
which shines light from an infrared LED onto a striped wheel, which
“then reflects the light back to a phototransistor. A palette of ra-
dially alternating black and white stripes will alternately reflect or
not reflect light to the phototransistor, yielding a similar pulse-train
output. The photoreflector used by Rug Warrior is packaged with
the two devices next to each other in a very compact unit. Figure
5.29 illustrates one of these small devices, attached to the side of
a servo motor in such a way as to be within a few millimeters of

152 5. Sensors

Figure 5.30. A close-up of the Hamamatsu P5587 photoreflector, double-sticky
taped to the top of a servo motor. The servo motor’s shaft is shown at the left,
with the small, white pinion gear attached to it.

and facing the striped pattern on the wheel. A closer view of the
mounting scheme is shown in Figure 5.30.

Because the near-infrared energy emitted by the LED can-pen-
etrate thin, white paper, it is important to take into consideration
what is behind the striped paper pattern. Two pieces of plain, white
paper discs backing the striped wheel should be enough to make the
white segments adequately opaque so that the beam will be reflected
back to the detector. Figure 5.31 illustrates 32-, 48-, and 64-count
encoder patterns. You can photocopy these patterns and use them
to construct your own reflective shaft encoders.

The photoreflectors we have chosen for Rug Warrior are the
Hamamatsu P5587s (these devices replace an earlier P306201 part).
We have chosen these devices because they have circuitry integrated
in the package to amplify and condition the output of the phototran-
sistor. The only interface components required for connecting to the
MC68HC11AQ are two resistors: one for pulling up the phototransis-
tor’s open-collector output and one for limiting the current through
the LED. For reading the shaft-encoder data into Rug Warrior’s con-
trol system, we have chosen to take advantage of the timer-counter
hardware connected to the MC68HC11A0’s port A. Port A’s 8 pins
have various input capture and output compare registers associated

5.6 Position and Orientation 153

_../v V=
32 segments \\\7,// 54 Segments

48 segments

I_l

\\
WV
ZIN

l

Figure 5.31. Alternating white and black stripes make reflecting and non-
reflecting surfaces, respectively, for light emitted from a photoreflector’s LED.
More stripes give greater resolution to the output measurements, but the stripes
cannot be narrower than the field of view of the photoreflector.

with them, which are able either to mark the time that events hap-

“pen on those pins or to initiate events at preprogrammed times. We

use PA7 and PAO as the port A pins to accept the input from the
left and right shaft encoders, respectively, as shown in Figure 5.32.

A pulse accumulator function is associated with PA7 making it
easy to count the pulses produced by the left shaft encoder in soft-
ware. It would have been convenient if the MC68HC11A0Q designers
had included two of these features on their chip (more advanced
versions of the MC68HC11 do have more mm@ﬁcammwow teading shaft
encoders and for pulse width modulating motors), but since we do -
not have that luxury, we connect the right shaft encoder to the PAO
pin and use its input capture function to count the pulses.

Figure 5.33-illustrates a simple open-loop control scheme, where
a motor is given a speed command and the shaft encoders are used
simply to monitor its velocity. Later, in Chapter 7, we will use other
portions of port A’s timer system, output pins PA5 and PASG, to
drive the motors, and we will also discuss how to use shaft-encoder
feedback data to implement in software a velocity controller. In this

- section, however, we concentrate on describing how to get the shaft-

encoder sensor data into the microprocessor.

154 5. mm:.mo_d

ZZZZ2) \eft Wheel

Pulse Accumulator 1
PA1 —o

€3 Port A
6811

Figure 5.32. The interface between Hamamatsu photoreflectors for Rug War-
rior’s shaft encoders and the MC68HC11AQ port A pins PA7 and PAO. Shaft-
encoder data from the left wheel are counted by the pulse accumulator hardware
associated with PA7. For the right wheel, interrupts are triggered by the input
capture hardware (IC3) connected to PAO. Shaft-encoder pulses are counted in
software in-an interrupt-handler routine.

Shaft .
Encoder Velocity

getwelocity() [
Encod.

clicks (Software module)

Open loop
velocity command

—>

Motor

Figure 5.33. In an open loop control scheme, a command is given to the motor
to make it turn at a certain speed. Depending on the load, the motor might not
actually go at that speed. Shaft encoders can be used to monitor the motor’s
true speed.

5.6 Position and Orientation 155

Reading Shaft Encoders

In order to use the shaft-encoder sensors in some sort of velocity
control scheme for Rug Warrior, we must first interface the photore-
flectors to the microprocessor and store the ensuing counts for each
wheel in two variables. One shaft encoder is fed into the pulse accu-
mulator on port A pin PA7, and the other shaft encoder is fed into
PAO with its associated input capture three (IC3) register. Refer-
ence should be made to the Motorola MC68HC11 data books for
more complete descriptions of the timer-counter system than those
undertaken here.

The Pulse Accumulator

The pulse accumulator is an 8-bit counter register, WPO.Z_H, asso-
ciated with port A pin PA7, that makes it very easy to count the
number of rising or falling edges input to that pin. This register will
overflow after 28, or 256, counts: : .

PACNT Bit 7 . . Bit0

5

s02r - [- [- [- [-~ -] -1 -]

In order to configure the system for our needs, we first have
to assign pin PA7 as an input. This can be done by setting the
data-direction bit for pin PA7 (which is in the pulse-accumulator
control register, PACTL) to O for configuration as in input pin. Three

other bits in the PACTL register must also be assigned. The @.Emm-
‘accumulator enable bit, PAEN, must be set to 1 to enablethe pulse

accumulator; the mode-select bit, PAMOD, must be gt to 0 for
event counting; and the edge-select bit, PEDGE, must be set to 1
or 0, depending on whether it is desired to choose rising (PEDGE =
1) or falling (PEDGE = 0) edges of the shaft encoder’s output. We
will arbitrarily select to count rising edges and so set the PEDGE
bit to 1: .

PACTL Bit7 Bit 0
$1026 [DDRATPAEN[PAMODPEDGH 0 | 0 [RTR1|RTRO|
0 1 0 1 X b'd X X

Once the PACTL register has been configured, the pulse accu-
mulator will start counting the number of stripes passing in front of

156 5. mm:moﬂm

the photoreflector. The main program running on Rug Warrior then
simply needs to poll the PACNT register at certain intervals to see
how fast the wheel is turning.

Shaft-Encoder Pulse-Accumulator Software Driver

Following is C code that initializes the pulse-accumulator system
and returns the number of pulses since the last reading. To acti-
vate the pulse-counter system, call init_velocity() during system
initialization. Velocity of the left wheel can be found by calling
get_left_vel() at regular intervals. Velocity is in units of encoder
clicks per time interval (where the time interval is the time between
two successive calls to get_left_vel()).

int PACTL
int PACNT

0x1026; /* Pulse accumulator control, 8-bit reg */
0x1027; /* Pulse accumulator counter, 8-bit reg */

void init_velocity() /* Initialize hardware for vel monitoring */
{ poke(PACTL, 0b01010000); /* PA7 input, enable pulse acc, */
/* rising edge */
poke (PACNT,0); } /* Start with O measured velocity #/

float get_left.vel() /* Left vel from PA7 using pulse counter */
{ float vel;

vel = (float) peek(PACNT);

poke (PACNT,0) ; /* Reset for next call */

return(vel); }

Once the pulse accumulator hardware has been initialized, it will
run in the background, automatically incrementing the count every
time a stripe on the encoder wheel moves past the photoreflector.
The robot’s main program does not have to keep track of this activity
but is free to ‘attend to other sensors and actuators. When it needs
to know the encoder count, the main program calls' the function
get_ left_vel(). v

Although an assembly language routine to start the pulse accu-
mulator would also be very simple, we use an example of C code
here for a particular reason: Namely, later, in Chapter 7, we will
describe how to use shaft-encoder data as the feedback in a veloc-
ity controller for Rug Warrior’s two motors. As that algorithm will

5.6 Position and Orientation 157

require some multiplication and a fair amount of bookkeeping, it is
easier to describe control algorithms by sticking solely to C.

Input Capture Registers

For the encoder wheel connected to port A pin PAO, more software
complexity is in store. Because the MC68HC11A0 has only one pulse
accumulator, we must use an interrupt to count encoder clicks from
the right wheel. We will use the IC3 register associated with PAO
to generate an interrupt on every rising edge. The interrupt-handler
routine, which automatically runs whenever a rising edge is detected,
-must increment a counter, clear the interrupt flag, and return from
the interrupt.

To configure IC3 for this operation, a few associated registers
‘must be initialized in a way similar to setting up the pulse accumu-
‘lator. In this case, we will be generating interrupts and writing an
assembly language interrupt-handler routine that keeps track of the
count. E ,

The TMSK1 register contains the bits that must be set to enable
interrupts associated with events on any input capture pin. We will
set the bit associated with IC3I, enabling interrupts:

'TMSK1 Bit 7 Bit 0
'$1022 [OCII [OC2I [OC3I [OCAT [OCSBI [ICII [IC2I | 13l |-
X x X b'd b'q b'd X 1

The TFLG1 register contains a flag bit, IC3F, which is set ,.Swws.
ever the interrupt condition is met. If IC3F is set while global
interrupts are enabled (the I bit of the condition code fegister is
clear), then the hardware will automatically initiate an interrupt-—
the user’s interrupt-service routine is called. Code in the interrupt-
‘service routine must clear the IC3F flag; otherwise, when an attempt
is made to return from the interrupt, the hardware will think the IC3
interrupt is pending and immediately service it again. Clearing the
interrupt flag is accomplished by writing a 1 to the bit in the TFLG1
register that corresponds to that interrupt’s flag. We will write the
binary number %00000001 to TFLG1 to clear the IC3F flag.

TFLG1 Bit 7 ; Bit 0
$1023 [OCIF [OC2F]| OC3F | OC4F | OC5F] ICIF | IC2F | IC3F |

X X X X X X X 1

158 5. mm.:mo_,m

DGxB EDGxA Configuration

0 0 Capture Disabled

0 1 Capture on Rising Edge
1 | 0 Capture on Falling Edge
1 1 Capture on Any Edge

Figure 5.34. The four actions possible by any input capture pin are to never
capture, to capture on rising edges, to capture on falling edges, or to capture on
any edges. Two bits in the TCTL2 register (the most significant bit, EDGXB,
and the least significant bit, EDGXA) set the desired response for any successful
input-event detection.

Another matter to take care of is assigning on which type of
edge the input capture interrupt will trigger. Figure 5.34 gives the
possibilities and the associated 2-bit code for assigning the desired
trigger. We will trigger on rising edges, since that was the arbitrary
choice made for the encoder connected to PA7.

These bits must be written to the TCTL2 register to configure it
for rising edge-triggered interrupts. Storing %00000001 to TCTL2
will assign this properly:

TCTL2 Bit 7 Bit 0
$1021 [0 [0 [EDGIBEDGIAEDG2BEDG2AEDG3BEDG34]
1

X X X X X X

After these interrupts are configured, the main program loop
must enable interrupts globally with the CLI instruction. Until this
instruction is executed no interrupts can occur. Once this is done,
any rising edge arriving on pin PAO will trigger an interrupt. The
vector address for the IC3 interrupt is $FFEA. The two byte address
stored at this location is the address at which the user’s interrupt
handler code must begin.

Shaft-Encoder Input Capture Software Driver

The Interactive C compiler used on Rug Warrior, IC, has a means
of interfacing to MC68HC11A0 assembly language routines. (It does
this by following certain naming conventions for routines and vari-
ables and by using certain file-loading protocols.) We use these fea-

5.6 Position and Orientation 159

tures here to write an interrupt-handler routine for input capture
register IC3, which counts the shaft-encoder pulses and stores the
running sum in right_clicks, a global variable accessible by the
main C program.

TFLG1 EQU $1023
ORG MAIN_START

;Timer Flag 1, 8-bit reg
;0rigin for assembly module

subroutine_initialize_module: ;This module runs on reset
1dd #IC3_interrupt_handler ;16-bit addr of intrpt handlér
std $FFEA ;Store in IC3 intrpt wvector
cli ;Enable interrupts generally
rts ;Return from subroutine

variable.right_clicks: ;Create a C wariable, right_clicks
_fdb O ;Fill double byte, 16 bits.right_clicks = 0

.IC3.interrupt_handler:

1dd variable_right_clicks .

addd #1 ;Add one more encoder count

std variable right_clicks

ldaa #%00000001 ;Clear the IC3 \f«m by writing a one
staa TFLG1 ;Store in TFLG1 to clear IC3 flag
rti s;Return from interrupt

These code fragments accomplish several goals. A code initializer
module, subroutine_initialize.module, is created, whose purpose
is to store the address of the interrupt handler in the correct location.
The IC system calls subroutine_initialize module mmow time the
reset button is pushed. A variable, <NHHw,ch|HHmw -_clicks, for
storing the encoder counts from the right shaft encoder is .&mo cre-
ated. (C routines will reference this variable using the variable name
right._clicks.) Finally, IC3_interrupt_handler, an interrupt-
handler, is written, which increments the right-encoder counts vari-
able each time the reflective photosensor sees the stripe it is looking
at change from black to white. .

If we compare this example with the code for the other shaft
encoder connected to PA7, the contrast is clear. The pulse accu-
mulator provided us with special purpose hardware to relieve the
main program of the duty of incrementing a counter every time an
event occurred. Here, the programmer must specifically set up an
interrupt-handler routine to attend to this chore.

160 5. mm:.moﬂm

Now we add a function, get_right_vel (), to our existing C code,
which returns the value of right.clicks (then resets it) whenever
it is called. Our supervising C program must now also include the
commands to initialize the appropriate registers for using the I1C3
input capture interrupt.

For instance, our C program might look EAm the following:

int TCTL2 = 0x1021; /* Timer Control 2,8-bit reg,interrupt edge */
int TMSK1 = 0x1022; /#* Timer Interrupt Masks, 8-bit reg */

int TFLG1 = 0x1023; /* Timer Flags, 8-bit reg */

int PACTL = 0x1026; /# Pulse accumulator control, 8-bit reg */
int PACNT = 0x1027; /* Pulse accumulator counter, 8-bit reg */

void init_velocity()) /* Call to begin vel monitoring */

{ poke(PACTL, 0b01010000); /% PA7 in, ena pls acc, rising edg */
poke (PACNT,0) ; /* Start with 0 measured velocity */
bit_clear (TCTL2,0b00000010) ;/* IC3 interrupts on rising edges */
bit_set (TCTL2,0b00000001); /* IC3 interrupts on rising edges */
bit_set (TMSK1,0b00000001); } /# Enable only IC3 interrupts */

float get.left_vel()

{ float vel;
vel = (float) peek(PACNT);
poke (PACNT,0) ;
return(vel); }

/* Left wel from PA7, pulse ctr */
/* Reset for next call */

float get_right.vel()

{ float vel;
vel = (float) right_clicks;
right_clicks = 0;
return (vel); }

/% Right vel PAO using interrupt */

/% Reset for next call */

The functions get-left_vel() and get_right_vel() provide a
uniform way to acquire each motor’s shaft encoder data. This is the
essence of an abstraction barrier. Even though the hardware inter-
face to each shaft encoder is implemented differently, the program-
mer simply relies on the function get.left_vel() and the function
get_right_vel(). The programmer need not worry about how these
functions interface to the hardware.

Later, we will use these primitive operators to Qmmﬁa a higher-
level program, a velocity controller, which will cause the two motors

5.6 Position and Orientation 161

Figure 5.35. Futaba makes a small, rate gyro for model airplanes. The input
is a pulse-width-modulated signal, and the output is an increased or decreased
pulse width, depending on the rate of rotation.

to always go at the same speed, enabling the robot to maintain a
constant heading.

5.6.2 Gyros

Another sensor that is useful in monitoring how the robot moves is
a rate gyroscope. Mechanical gyroscopes use the principle of con-
servation of angular momentum to keep one or more w\;mwﬁ& axes
pointed in the same direction as the exterior of the WJEOmoovw the gy-
roscope case, translates and rotates. Thus, a gyrosocp maﬁmnwom to
a robot makes it possible to determine either how rapidly the robot
is rotating or how far it has rotated, relative to a fixed coordinated
system. :

Humphrey, Columbia, and Murata sell small gyroscopes, as does
Futaba. The inexpensive model from Futaba, shown in Figure 5.35,
is a single-axis rate gyro made for model helicopters. A rate gyro
produces a signal proportional to the rate of rotation about an axis
perpendicular to the axis of the gyro, but it does not provide abso-
lute orientation information. The Futaba gyro takes a pulse-width-
modulated signal provided by the MC68HC11 and modifies it (in-
creasing or decreasing the pulse width) based on the rate of rotation
of the gyroscope case.

162 5. mm:moqm

Y

(@)
: (b)

Figure 5.36. Sensor (a) is a mercury switch. When this sensor is tilted, the drop
of mercury closes the contact between the two electrodes. In an electrolytic-tilt
sensor (b), the amount of conduction between the center electrode and each of
the outer electrodes is determined by the degree to which the outer electrode is
immersed in the electrolytic fluid.

5.6.3 Tilt Sensors

Determining whether your robot is level or tilted can mean the dif-
ference between negotiating rough train smoothly or tumbling over.
Many types of sensors can provide information about the relative an-
gle between the robot body and the gravity vector. The simplest and
generally least expensive tilt sensor is the mercury switch, such as
the one illustrated in Figure 5.36(a). This sensor consists of a small,
glass bulb containing two or more contacts and a drop of mercury.
Depending on which way the bulb is tilted, the bead of mercury will
close or open the circuit.

Such a sensor is easy to interface in a microcontroller. When
mounted properly, it provides a digital signal, alerting the micro-
processor that the robot has tilted too far in one direction. Several
mercury switches fixed at different orientations can provide informa-
tion about the degree and direction of tilt. Software conditioning of
the signal from a mercury switch is almost always required, however.
As the robot starts, stops, and bounces about, the bead of mercury
frequently makes contact, even when the robot is not dangerously
tilted. ,

The electrolytic-tilt sensor, a type of inclinometer, offers an im-
provement over the mercury switch in many applications. Figure

5.6 Position and Orientation 163

5.36(b) diagrams an inclinometer. This sensor has two or more elec-
trodes immersed in a conductive fluid. The conduction between the
electrodes is a function of the orientation of the sensor relative to
gravity. The electrolytic-tilt sensor produces an analog signal pro-
portional to the degree of tilt. Such sensors are typically much
more expensive than mercury switches. Spectron offers a full line
of electrolytic-tilt sensors.

An exciting recent- development in sensor technology is the mi-
cromachined accelerometer. This device is a chip with a tiny sus-
pended mass machined into the silicon. Piezoresistors embedded in
the structure are used to sense minute changes in position of the
.mass as the chip undergoes acceleration. Such devices can also be
‘used to detect the direction of gravity. Micromachined accelerome-
ters offer an accurate, rugged, and reliable means for determining the
‘direction of tilt of a mobile robot. IC Sensors and Lucas Novasensor
‘are good sources for these sensors. .

5.6.4 Compasses

A compass provides a way for your robot to acquire absolute infor-
‘mation about its orientation. This can be very helpful when writing
“a navigation algorithm. In open areas, compasses are .<mJ~ reliable,
“and once calibrated to local magnetic north, they are also ‘.m‘oocvamew.
If your robot is to be used indoors, however, the serviceability of a
ompass becomes more problematic. Magnetic fields from electrical
wiring, structural steel in buildings, and even the metal components
-of the robot itself can all produce large errors in the compass reading.
“As long as errors of, say, +45 degrees can be tolerated, the compass
.is a viable option. Certain electronic compasses intended for use in
automobiles can, with sufficient modification, be employed by your
robot. ETAK manufactures digital compasses. Precision Navigation,
Inc. whose compasses are distributed by Jameco, has several useful
models. Some models from Precision Navigation contain automatic
tilt compensation. The Fetch robot described in Section 11.3.2 uses
such a compass.

164 5. Sensors

== ENETaE

R2 MC68HC11 MC68HC11 MCG8HC11

PEO PEO PEO

(a) I.._lul (b) ‘ 1N1148 @

R1

i ———

Figure 5.37. Circuit (a) shows one way to construct a battery level monitor if the
microprocessor is operated from a regulated supply. When using an unregulated
supply, circuit (b), although tempting, will not work. Circuit (¢) corrects the
deficiency of (b) by using the diode voltage drop to provide a reference voltage.

5.7 Proprioceptive Sensors

A proprioceptive sensor is any sensor used to measure the internal
state of the robot. Monitoring these sorts of sensors can tell the robot
when it is time to recharge its batteries, when a motor is overheating,
or when a component has malfunctioned.

5.7.1 Battery-Level Sensing

By sensing its battery voltage, a robot can determine when it is time
to return to the charging station or curtail power-draining opera-
tions. Designing a battery-level indicator is a simple matter when
the microprocessor operates from a regulated supply, as in Figure
5.37(a). As shown, only a voltage divider is needed.

In the circuit of Figure 5.37(a), when VRH has been connected to
the regulated output voltage from an LM7805, VRI will go to ground.
We wish to determine Vp, the battery voltage. The voltage supplied
by the batteries must always be higher than the regulated voltage
in order to achieve good regulation. In this case, suppose that the
batteries are effectively exhausted when their voltage reaches 7.0 V.

5.7 Proprioceptive Sensors 165

If we simply connected one of the A/D channels, say, PEO, to the
positive battery terminal, it would not be possible to determine the
battery voltage. Since the voltage at PEO would always be greater
than that at VRL, the A/D converter would always report a value
of 255 to the ADRI result register.

We must engineer a circuit that will deliver a maximum of 5.0 V
to PEO when the batteries are fully charged and a smaller voltage as
the batteries discharge. This is the purpose of the voltage divider.
We will choose resistors R1 and R2, such that the voltage at PEOQ
begins at 5.0V and decreases as the batteries discharge. Suppose
that, when fresh, the batteries supply a maximum voltage of VB max-
With the voltage divider connected as shown in mmmcnm 5.37(a), the
maximum voltage that can be present at PEO, Vo = &7+ = VE max.
To compute R1 and R2 we choose Vj to be 5.0 V, since higher volt-
ages cannot be measured. Given that we also know Vg max, we can
now solve for R1 and R2 if we arbitrarily choose the sum Rl - R2.
This sum should be high enough so that the drain on the battery
due to the voltage divider is Emmmammmﬁe compared to that of the

‘rest of the electronics; at the same time, the sum should be small

compared to the internal impedance of the A/D converter.

* To complete the example, assume that R1+R2 = 4700 and that
power is supplied by eight NiCd cells whose fresh voltage is 9.6 V.
Now we have R1 = 29 x 4700 = 2447Q, R2 ='2252Q. By measuring
the voltage at PEO, we can determine Vg: Vg = wwmw x Vo

There is a complication if the microprocessor. mEuE% does not
include a regulator, as in Figure 5.37(b) and (c).. As we have seen,
the A/D converter works by comparing the voltage at PEO with
the reference voltages at VRH and VRL. If connected as shown in
(b), the ratio of these voltages remains constant as battery voltage
declines. Thus, the A/D converter always reports that the battery
voltage equals VRH, and the result of the conversion is always 255.

In Figure 5.37(c), we make use of the diode voltage drop to
produce a reference to which we can compare the battery volt-
age. Whenever current through a diode exceeds a certain minimum,
a characteristic voltage (usually about 0.6 V) develops across the
diode. In the circuit in Figure 5.37(c), the A/D converter will com-
pare the constant 3 X 0.6 = 1.8 V at pin PEO with the changing
voltage at VRH. If the battery pack is fully charged at, say, 7.0 V

166 5. mm:w.oqm

and &mwymﬁm& at 4.5 V, then iﬁ result from the A/D converter will
be 255 x .N o = 66 and 255 x 3 = 102, respectively.

5.7.2 Stall Current Sensing

One reliable way to determine if a robot is stuck is to monitor the
current being used to drive the motors. If all other sensors fail to
detect an imminent collision, the robot will, in short order, come
to rest against the obstacle. In this situation, the wheels will stop
rotating while current to the motors will go to a maximum. Thus,
motor current serves as a collision detector of last resort. One way
to detect motor current is to put a small resistance in series with the
motor (typically, a fraction of an ohm), amplify the voltage across
the resistor, and measure the voltage with one of the A/D chan-
nels. Some motor-driver chips have built-in circuitry to simplify this
measurement. The L293E and IR8200 motor-driver chips have such
features.

The software that monitors motor current in order to detect a
collision should not respond too quickly. Each time the robot acceler-
ates from a dead stop, motor current will typically go to a maximum,
then decrease as the robot speeds up.

5.7.3 Temperature

It is often a good idea to monitor certain temperatures within the
robot. If the electronics get too warm, the microprocessor may crash.
High temperatures can also shorten the lives of motors, and NiCd
batteries may be damaged by heat if high current charging continues
after the batteries are already fully charged. Certain motor-driver
chips, the IR8200 for example, have built-in, over-temperature sen-
sors. For other applications, many companies manufacture discrete
temperature sensors including Murata, EDO Corporation, and RCD
Components.

5.8 EXxercise

To this point, we have seen how to take a large number of simple
sensors and interface them to a microprocessor. In Chapter 9, we will

5.8 Exercise 167

Figure 5.38. A photograph of Rug Warrior about to fall over the edge of a
step. What kinds of sensors could be used to detect a drop-off? Whiskers?

- Microswitches? Bend sensors? Two near-infrared beams separated a few inches
- and aimed to cross at the level of the floor? Sonar? Invent your own!

. see how to arrange higher-level programs, using behavior control, to

enable the robot to act in response to its sensor readings to create
seemingly intelligent behaviors. As we have seen, sensors merely

- deliver voltages to the microprocessor. What the robot mewmmm to

achieve with these signals depends upon how clever ﬁrm nom.nmaaoﬁ
can be with software. .

- Many times, however, the programmer just &omum not have enough
variables in her or his environment to juggle. The problem often dic-
tates going back to hardware and inventing a new sensor for the job.
For instance, in Figure 5.38, Rug Warrior is about to tumble off the
edge of a step. All its sensors point upward and all its code implicitly
assumes that it will always travel on level surfaces. Try to invent a
sensor that will detect a step. Mount it on your Rug Warrior’s chas-
sis, and interface it using connectors we discussed earlier in some
Spare prototyping space you left open on your board for expansion
features. Try programming a software driver, and see how it works!

168 5. mm:.mo_‘m

5.9 References

Whole volumes have been written about sensors for mobile robots,
but here we have had the opportunity to touch only briefly on a
few simple sensors that can be incorporated inexpensively into Rug
Warrior. For the definitive reference on sensors for mobile robots
consult (Everett 95). This book gives in depth coverage of a wide
variety of sensors.

More sophisticated robots, such as Robart II, from the Naval
Ocean Systems Center shown in Figure 5.1 (Everett, Gilbreath, and
Tran 1990), and Attila from the MIT Mobile Robot Lab, shown in
Figure 5.2 (Angle and Brooks 1990) take advantage of redundant
sensors to endow themselves with increased awareness of their sur-
roundings. ‘

Robart II predated and influenced much of the hardware design
later undertaken at the Mobile Robot Lab, especially in the realm
of sensors. Everett and Stitz (1992) gives a complete exposition on
the workings and wonders of a wide variety of sensors applicable to
mobile robots. .

Angle (1991) describes how the six-legged Attila was designed to
use its legs as sensors as the robot moved through its environment,

and how various sensors of increasing reliability were situated to-

trigger the lowest-level behaviors in a layered control system. Ferrell
(1992) expands on that theme and discusses the notion of creating
virtual sensors from combinations of concrete physical sensors to
make Attila more reliable.

For books on sensors and interfacing electronics, Beckwith and
Marangoni (1990) detail making mechanical measurements from po-
sition sensors, force sensors, accelerometers, and the like, while Jung
(1986) presents a “cookbook” of useful op-amp designs for amplify-
ing and conditioning small sensor signals. Seipple (1983) is another
useful sensor text.

Mechanics

6.1 Locomotion

From slithering to hopping, there are a great variety of ways to
move across a solid surface. Among robots, the three most.common
systems use wheels, tracks, and legs. .

Wheeled vehicles are by far the most popular for several prac-
tical reasons. Wheeled robots are mechanically simple and .m.m.ﬂm% to
construct. The payload weight-to-mechanism ratio is also"favorable.
Both legged and tracked systems mmsmwmz%,wm@:ma ‘miére complex
and heavier hardware than wheeled systems designed for carrying
the same payload. Additionally, a wide variety of wheeled devices,
such as toys, can be modified for robot use.

The principal disadvantage of wheels is that, on uneven terrain,
they may perform poorly. As a rule, a wheeled vehicle has trouble
if the height of the object it must surmount approaches the radius
of the wheels. One solution is simply to use wheels that are large
compared to all likely obstructions. In many instances, however, this
is impractical.

For robots that must operate in a natural environment, tracks
are an appealing option because tank treads allow the robot to nego-

170 6. Mechanics

6.1 Locomotion 171

Figure 6.1. Some clever arrangements of wheels can provide functionality similar
to that of tracks. By mounting the wheels on pivoting outriggers, Sojourner,
developed by NASA’s Jet Propulsion Laboratory, was able to climb Martian rocks
three wheel radii high. Amoh.ozgmaq,; Mars Rover™ and spacecraft design and
images, copyright 1996-97, California Institute of Technology. All rights reserved.
Further reproduction prohibited.)

tiate relatively larger obstacles and are less susceptible than wheels
to environmental hazards, such as loose soil and rocks. The major
disadvantage of tracks, however, is inefficiency. Friction within the
tracks themselves dissipates power, and energy is wasted whenever
the vehicle turns because the treads must slip against the ground.
The dead-reckoning ability of tracked vehicles suffers for the same
reason. If the robot computes its position by counting the number
of times the track-driving wheels have rotated, then the error in the
robot’s estimate of where it is grows whenever the vehicle turns. In
fact, to a greater or lesser degree, the dead-reckoning ability of all
robots suffers from this problem of wheel, track, or leg slippage. One
wheeled robot that dramatically demonstrated its ability to maneu-
ver through rough terrain is the Sojourner robot. Sojourner, pictured
in Figure 6.1 successfully explored a small portion of Mars in 1997.
For more information on Sojourner please refer to Section 11.3.1.

1Rocky III, a predecessor of Sojourner, was pictured in the first edition of
Mobile Robots.

Figure 6.2. Genghis, built at MIT, is a shoebox-sized six-legged walking robot.
Genghis is now on display at the Smithsonian Air and Space Museum, in Wash-
ington, D.C. :)

Walking robots can potentially overcome more of the problems
of rugged terrain than either wheeled or tracked robots. Figure 6.2
shows Genghis, a six-legged robot built at the MIT Mobile Robot
Lab. While there is great interest in the development of:practical
systems, legged robots face a number of challenges. Many of these
challenges stem from the large number of degrees of freedom required
by legged systems. Since each leg must have at least two .“Boﬁo.am“ the
cost of building the robot is higher relative to thes S#W wheels
or tracks; the walking mechanism is also more complex and thus
more prone to failure. Furthermore, control algorithms become more
involved, as there are more motions to coordinate. Optimal control
of walking and running machines is still an active area of research.

6.1.1 Wheel >2m:mm3m,3m

For a wheeled robot, the designer may choose among several signifi-
cantly different arrangements of driven and steerable wheels. Among
these arrangements, as illustrated in Figure 6.3, are differential drive,
synchro drive, tricycle drive, and car drive (also known as Ackerman
steering).

172 6. z_mn_._m:._nm

RRKKL

KKK

&
e
& &

(b)

R R &g
R L &

() (@

Figure 6.3. Bottom views of several wheel arrangements. (a) Differential drive
uses one or possibly two caster wheels. (b) Synchro drive rotates all the wheels
together. The drive/steer wheels are shown in two different orientations. (c)
Tricycle drive has the steering motor on one wheel and the driving motor on the
back pair of wheels. (d) Car-type drive rotates the front two wheels together.

Differential Drive

From both programming and construction standpoints, differential
drive can be one of the least complicated locomotion systems. The
TuteBot employs this type of drive, as does the robot illustrated in
Figure 6.4. The differential scheme consists of two wheels on a com-
mon axis, each wheel driven independently. Such an arrangement
gives the robot the ability to drive straight, to turn in place, and to
move in an arc.

An important design problem for a differential drive robot is how
to ensure balance. Some additional support, besides the two drive
wheels, must be provided to prevent the robot from tipping over.
Usually, this is done by adding one or two caster wheels, arranged
in a triangle or diamond pattern. Depending on the robot’s weight
distribution and the strength of its motors, a triangle pattern may
still leave the robot vulnerable to tipping. If the robot shown in
Figure 6.3(a) without the optional caster, moves forward (to the
right) rapidly and then suddenly stops, it will tip in the direction of
motion unless its center of gravity is well to the left.

6.1 Locomotion 173

Figure 6.4. A differential drive robot (such as this floor-cleaning prototype, from
the Robot Talent Show) can pivot about its center.

rigidly mounted caster wheels illustrates how undulations in the terrain can break

the contact between drive wheels and ground, thus leaving the robot unable to
move. .

A diamond pattern solves this problem but may introduce an-
other problem, as is illustrated in Figure 6.5. If the caster wheels
are attached rigidly to the robot body, then small undulations in
terrain can leave the robot supported only by the casters. The drive
wheels lose contact with the surface and become unable to move the
robot. Mounting the caster wheels in such a diamond pattern thus

‘requires some sort of suspension system so that the casters can move

up and down relative to the drive wheels.

174 6. Mechanics

Another design consideration for differentially driven robots is
how to make the robot go straight. As we saw with the TuteBot,
even when the same voltage is applied to the two motors, they will
turn at different speeds and the robot will veer to one side or the
other. To make the robot go straight, we must ensure that the wheels
turn at the same velocity.

When the motors encounter different loads (e.g., one wheel is on
carpet and the other, on a hard floor) motor speeds will vary and
the robot will turn even if it was initially adjusted to go straight.
This means that motor velocity must be controlled dynamically—
there must be a means to monitor and change motor speed while the
robot is underway. One type of control scheme is discussed later in
section 7.8.2 (page 257). The simplicity of differential drive is thus
somewhat offset by the increased complexity of the system required
to control it. However, decreasing mechanical complexity in favor
of increasing electronic and software complexity is often the most
reliable and cost-effective trade-off.

Synchro Drive

A mechanism known as synchro drive is illustrated in Figure 6.3(b).
A photograph of the bottom of a synchro drive base is shown in
Figure 6.6. With the synchro drive mechanism, all wheels (usually
three) both steer and drive. The wheels are linked in such a way
that all point in the same direction at all times. In order to change
direction, the robot simultaneously rotates all wheels about a vertical
axis, as shown in Figure 6.3(b). Thus, the robot’s direction of motion
changes but the chassis continues to point in the same direction.
If the robot is to have a front (presumably where the sensors are
concentrated), additional linkages must be provided to keep its body
pointed in the same direction as its wheels. The synchro scheme
overcomes many of the problems of differential, tricycle, and car-
type drives at a cost of greater mechanical complexity.

Car and Tricycle Drives

Car-type drive (Ackerman steering), with its four points of suspen-
sion, provides good stability. Tricycle drive has a similar feature,
with the advantage of being mechanically simpler, since car drive

,, 6.1.2 Robot Kinematics

‘ Robot kinematics addresses how robots move. Given that steering

6.1 Locomotion 175

Figure 6.6. This Real World Interface base uses a synchro drive, which steers
all three wheels together at the same time.

‘requires some sort of link between the two steerable wheels. In gen-

eral, for both tricycle drive and car drive, the two fixed wheels will
be connected to a drive motor and the steerable wheel(s) will not be
driven. On some robots, however, the steering wheels are also driven.

* With car and tricycle drive, it is not necessary to monitor éwa.m._ ve-
“locity in order to make the robot go straight. Simply positioning the

steerable wheel at its neutral position is sufficient. This simplicity,

 however, comes at a price, as we will see in the next section.'

is set to such and such an angle and that each wheel turns so many

“times, where will the robot end up and which way will it be pointed??

Differential ahd synchro drive robots have a subtle advantage
over car and tricycle drive types. The difference is their kinematics.
Consider the robot shown in Figure 6.7, which has three degrees of
freedom when moving on a flat surface. Precisely what we mean

2In robotics, the inverse problem is usually more interesting (and more diffi-
cult). Given that we want the robot to arrive at some position, pointed in some
particular direction, the problem of inverse kinematics is to compute the set of
robot operations which will achieve the goal.

176 6. Mechanics

|

| .

i : z-axis
T

>

w

~ Figure 6.7. The kinematics of a tricycle drive mobile robot. A wheeled robot
has three degrees of freedom in the plane but only two controllable parameters.

by this is the following: Relative to some global coordinate system
(labeled W in the figure), the robot can be at any position specified
by two coordinates, z and y, and pointed in any direction specified by
a third coordinate, angle 6. These three degrees of freedom (z,y,)
give us the distance to and the angle between the global frame, W,
and a local reference frame, R, on the robot.. (We could have put
frame R anywhere on the robot but because the robot’s center of
rotation is the point midway between its two drive wheels, we chose
that point.)

We would like the ability to position and orient our robot any-
where on the plane. That is, regardless of where it starts out, if we
give it z,y, and 6 coordinates, the robot should be able to move to
that location. There is a problem, however. To achieve these three
degrees of freedom the robot has only two parameters that it can
control: the steering angle, a, and the total distance it travels, S.
This means that the robot’s orientation and its position are coupled:
In order to turn, it must move forward or backward. The robot can-
not go directly from one position and/or orientation to another, even
if nothing is in the way. In order to achieve a desired position and
orientation simultaneously, the robot must follow some path, pos-
sibly complex. The details of such a path are greatly complicated
by the presence of obstacles. This is the reason parallel parking is

6.1 Locomotion 177

Figure 6.8. A comparison of differential drive and car drive kinematics is made
vivid by this parallel parking example. To achieve the desired goal of being
positioned between the two rectangles and facing to the right, the differential
drive robot (a) moves to position and rotates in place. The position of the caster
wheel reveals the rotation that has just occurred. No similarly simple path will
achieve this goal for the car drive robot (b).

b G e L L

difficult. However, a robot based on differential or m%bomwo drive
‘can, by turning in place, effectively decouple its position from its
orientation. , . -

These ideas are illustrated in Figure 6.8. In Uo».r parts of the
gure, the goal is the same: for the robot to position itself dmdémmﬁ
the two rectangles and to point to the right. The &mowmsﬁ&..aag
robot in (a) achieves this easily; it drives to position and then turns. .
in place to attain the desired orientation. But for the car drive robot .
in (b), no simple procedure will yield the same results. Although it |
likely can achieve the goal, a long series of turns and forward and
back motions will be required. Deciding exactly which motions are
to take place can be 4 difficult problem.

. 6.1.3 Robot Shape

A robot’s shape can have a strong impact on how robustly it per-
- forms. A noncylindrical robot runs a greater risk of being trapped
by ‘an unfavorable arrangement of obstacles or of failing to find its
way through a narrow or cluttered space.

178 6. Mechanics

=N

(a) by |

Figure 6.9. Robots of the same width but different shapes encounter a narrow
- passage. A simple turn-while-in-contact algorithm allows the round robot (a) to
negotiate the passage. Success for the square robot (b) is problematic.

In Figure 6.9, a cylindrical robot (a) and a square robot (b) of
identical width encounter a narrow passage while moving to the right.
A simple algorithm will allow the cylindrical robot to find its way
through the passage. The robot will drive until its bumper detects a
collision; then it will stop. Since the collision is on its right side, the
robot will turn to the left until it is able to go forward again. It will
then proceed through the passage. This scheme is simple because
the robot is able to rotate while in contact with an obstacle.

The square robot, by contrast, must both back up and rotate if
it wishes to use the same tactic.. However, it is not clear how far
the robot should backup and what it should do if it suffers another
collision while escaping from the first. Thus, an algorithm designed
to navigate a square robot through a narrow passage requires more
complexity than one for a cylindrical robot. To understand the rea-
son for this, we must appeal to an advanced concept in robotics called
configuration space (see Section 6.7). Configuration space analysis
allows us to find a path for a robot of arbitrary shape in an arbitrary
environment. The configuration space for the robot in Figure 6.9(a)
collapses to a two-dimensional channel. A path through this chan-
nel can be easily found using only local methods. The configuration
space of the situation shown in Figure 6.9(b), however, is a complex,
three-dimensional mathematical construct. Such an arrangement is
necessarily more difficult to search.

6.2 Adapting Mobile Platforms 179

6.2 Adapting Mobile Platforms

An abundance of inexpensive and readily available mobile platforms
are adaptable for use as mobile robot bases. These include radio-
controlled cars, wire-guided (tethered) vehicles, and other battery-
powered toys. Most drive types except synchro are well represented
in the toy store. ,

A number of strong reasons recommend choosing the drive and
suspension system of a toy as the base of a mobile robot. Less design
and construction are required, as a major portion of the robot has al-
ready been built and the problems of mechanical power transmission
and component placement have largely been solved by the manufac-
turer. Also, it is often much less expensive to adapt a mass-produced -
toy than to purchase similar component parts separately.

' The robot designer, however, should be aware of some typical
problems with this approach. Such a base is usually optimized for
use as a particular toy, not as a robot. The motors in toys typically
require high current and provide low efficiency, which means that the
design of the drive electronics will be more complicated mﬁm robot
inning time will be reduced.

In general, the motors and gearing used by toys are &mmwmdm& to
make the toys fast. Thus, control problems are often encountered
hen the robot is required to move slowly in order to respond to sen-
rs. Also, shaft encoders for measuring distance and MBEo?mmasm
velocity-control system are usually not present and can be ncm,_o::
add.. Figure 6.10 illustrates one type of drive train ﬁum& oms _ow,
acquired from toys used as radio-controlled cars and sold at stores
| such as Radio Shack. This particular drive train came from an old
odel toy, no longer sold, called a Red Fox Racer. The interesting
teature of the Red Fox Racer drive train was that it came equipped
with separate drive motors for left and right wheels, which meant it
could be fairly easily adapted for the locomotion system for a mobile
robot.

6.2.1

The least expensive mobile toys have only one motor and maneuver
using a sequence of forward and back-and-turn motions. When the

Identifying the Drive Type

180 6. Mechanics

Figure 6.10. The differential steering mechanism from an inexpensive Radio
Shack wire guided car. Two motors connected to gear trains drive the left and
right wheels separately.

motor spins in one direction, the toy moves straight forward. When
the motor reverses, a simple clutch built into the back axle causes
one wheel to slip and the robot to turn. That is, the toy turns only
when backing up. It is possible to design a robot that operates in
this simple manner (such as Squirt, illustrated in Figure 6.11), but
it may become stuck in situations where backing up is not possible.
It is easy to recognize a toy with a back-and-turn mechanism, as
its remote control will usually have only one button. When the toy
is switched on it begins moving forward. When the remote control
button is pressed, the toy backs up and turns.

More generally useful toys have either differentially driven wheels
or tracks or a separate drive motor and steering motor. In the latter
case, the steering motor may often be a simple solenoid that allows
the toy to steer in only a small number of preselected directions.

One way to determine which type of drive mechanism a toy pos-
sesses is to switch it on and observe its behavior. If the drive wheels
change velocity relative to each other as the remote steering mech-
anism is manipulated, then the toy is probably a differential drive
type. If the toy has steerable wheels that flip between only two or

6.2 Adapting Mobile Platforms 181

Figure 6.11. Squirt (right) built at MIT, is slightly larger than 1 cubic inch and
;goes forward or backs-and-turns using one motor and a clutch in the rear axle.
‘Goliath (left), another MIT robot, which once claimed the title of the world’s
smallest autonomous robot, with two motors, six sensors, two batteries, and an
onboard computer in just over 1 cubic inch of volume. Goliath uses tank-drive
ifferential steering.

three different positions, it most likely uses a steering solenoid. If
he steerable wheels change direction smoothly as the remote steéring
mechanism is moved, then steering is most vwoggu\ mhoon%rmwmm
ézr a servo motor.

2.2 Electrical Modifications

he point of modifying a toy is to make microprocessor control pos-
ible. Often motors, servos, and gear trains can. be used in situ
while the toy’s original electromechanical controls must be discarded.
| Thus, it will be necessary to design new drive &anﬁﬁ% to replace
the old manually controlled system. Before this can be done, how-
ever, information must be obtained about the characteristics of the
motors. Some of this information can be acquired most easily by
temporarily leaving the toy’s motors and servos connected to the
original circuitry while measurements are made.

-The first step, then, is to disassemble the toy to the point that
the motors and steering actuators are exposed. Identify the drive

182 6. Zmn:m:m.nm

motor or motors, which will be connected to the toy’s drive wheels
via a gear train. The voltage the motors and servos are designed to
accept is most probably equal to the voltage supplied by the toy’s
batteries.

For example, if the toy is powered by four 1.5 volt (V) alkaline
batteries, then the motors probably are designed to run on 6.0 V.
Sometimes, however, a split power supply is employed, which directs
half the battery voltage to each motor. This split power supply setup
is often seen because it is simpler to design a motor-reversing circuit
if different power supplies are used for forward and reverse. If the
supply type cannot be determined from an analysis of the original
wiring, turn on the toy and measure the voltage across each motor
- while it is running.

The drive motors in virtually all toys are connected to the rest of
the circuit by only two wires. But often a capacitor will be soldered
directly across the leads of the drive motors.

The capacitor suppresses voltage spikes produced by the motors
and should be left in place. Disconnect the motors from the toy’s
drive electronics, and attach a wire to each motor lead. Ultimately,
these two wires will be connected to the microprocessor-controlled
motor-drive circuitry you will design.

Measure the resistance across the terminals of the motor with the
rotor in several different positions. Often, the measured resistance
will change as the brushes contact different parts of the commutator.
The maximum current that the motor-driving circuitry must provide
is the supply voltage divided by the average resistance. See Chapter
7 for a thorough description of how to design motor-driver circuitry.

Solenoids are generally two-state devices with two electrical ter-
minals. When voltage is applied, the movable core of the solenoid
moves to its activated position. When voltage is removed, the core
returns to its normal position. The core is attached via a linkage to
the steerable wheels of the toy. Some solenoids can assume either
of two activated positions, depending on the polarity of the applied
voltage.

Servo motors used for steering adhere to some more or less general

control standards. See Section 7.6.4 (page 225) for a description of
how servo motors are used in-velocity-control feedback systems.

6.3 Legged Locomotion 183

Body of robot

Servo 1{ Servo 2

.0 N

i Figure 6.12. A simple two-degree-of-freedom leg can be constructed using a pair
“of model airplane servo motors. The servo motors are attached to each other,
¢ ‘with their axes of rotation 90 degrees apart.

6.3 Legged Locomotion

1In general, legged locomotion systems are quite complicated. There
are however, a few simple variations. An insect-like leg can be con-
structed using only two model airplane servos, as shown in m,wmg.m,
6.12. This is the same construction used on the Omw_m.E,m robot pic-
‘tured in Figure 6.2 (page 171). . e

- To take a step, servo 1 first swings the leg outward, away . from
‘the body. This is designed to raise the leg over any obstruction.
Next, servo 2 rotates the servo pair so as to move the leg forward.
Servo 1 then rotates the leg downward until it makes contact with the
ground. Finally, servo 2 rotates back, pushing the robot forward. A
coordinated motion of six such legs allows the robot to move forward
or backward or to turn.

6.4 Construction ,m<mﬁm3m

"There are also a number of readily available construction systems
that may be adapted to mobile robots. Such systems have inter-
,Hooﬁbm motors, gear trains, and other mechanical parts; some even

184 6. Zmn:mamm 6.5 Custom Construction) 185

include simple sensors and switches. LEGO, Fischer-Technik, Mec-
cano, Capsella, Erector Set, and others offer products of this sort.
LEGO, in particular, is the construction medium used in a popular
mobile robot design course at MIT. These building sets make robot
construction simple and quick because all mechanical components
are available from a single source and all are guaranteed to interface
easily with each other.

The primary disadvantage of such systems is the constraint on
component placement: You must put L&m&mm where they will fit rather
than where you want them. Anothef problem is the unfavorable
strength-to-weight ratio typical of plastic components. This can
make such systems unusable for the construction of large robots or

. robots that must carry heavy loads. Nevertheless, Fischer-Technik
and the other sets are good choices for prototyping new robots. Rug
Warrior II, the tank, used LEGO parts for the mechanical structure
of its base.

ure 6.13. Rug Warrior I uses two motors to drive the left and right wheels
in a differential manner. A nylon caster mounted on a fixed axle slips on the
round when the robot turns in place. :)

6.5 Custom Construction

If the requirements of a proposed robot cannot be met by adapting
an existing toy vehicle or by using a building set, it may be neces-
sary to construct the robot base from scratch. Rug Warrior I, the
cylindrical version of Rug Warrior shown in Figure 6.13, uses a dif-
ferential drive mechanism that was constructed from scratch, using
tools and materials from a workshop.

, .,ommq B
Motor nead M

Belt

6.5.1 Wheel Mounting

‘When building your own robot base from scratch, one thing to con-
sider is the attachment of the wheels to the motors. Rug Warrior
I has wheels mounted directly on the shaft coming from the gear-
box. This configuration is diagrammed in Figure 6.14(a). Although
simple and straightforward, there are potential problems with this
design. The gearbox of the motor is required to support the entire
weight of the robot. If the robot weighs too much or bounces too
violently as it moves over uneven terrain, the acceptable side load
(force perpendicular to the output shaft) of the gearbox can easily
be exceeded. The manufacturer typically specifies the acceptable

Gear ’ N
Motor head H Wheel]

Mounting Ny
block) nE Wheel

@) RCE

AN

Figure 6.14. Two common wheel-mounting systems are direct attachment and
belt-and-pulley systems. (a) A wheel can be directly attached to a gearbox shaft.
AE Gears can also be isolated from shock and wheel load by a belt.

186 6. _,_mn_,_m:ﬁm

) Trail K (a) (b)

Figure 6.15. A caster wheel invokes a number of design considerations. (a)
It should spin freely, so that the robot can turn easily, and be large enough to
surmount obstacles. (b) A simpler solution is the caster used by Rug Warrior I,
which is simply a nylon ball mounted on an axle. When the robot turns, the ball
slides.

side load for a motor or gear output shaft in the motor data sheet.
You should check carefully the gear specifications before making this
design choice. If the side load is exceeded, the life of the motor or
gearbox will be shortened.

There are several ways to avoid this problem. A rugged, more
expensive gearbox can be used, or the wheel can be supported at two
points by running the gearshaft through the wheel and attaching the
shaft to a mount on the other side. Another alternative is shown in
Figure 6.14(b), where the motor and gearbox can be isolated from
the side loads and shocks using a belt-and-pulley system.

As mentioned earlier, in order to be balanced, a differentially
driven robot must have at least one supporting wheel in addition to
its two drive wheels. Ideally this would be a caster—a wheel free
to rotate and to swing. But there are several conflicting constraints
on the design of this wheel, which is depicted in Figure 6.15. The
caster must have a large diameter so that it can ride over obstacles
as large as the drive wheels can surmount. It also must have a large
trail so that it can swing freely when a side force is applied, and it
must fit entirely beneath the force-sensing skirt so that it does not
collide undetectably with obstacles.

In order to simplify the mechanics, a compromise was made on
Rug Warrior I in the design of the supporting wheel. The wheel is
not a true caster at all; it is a ball with a fixed axle running through

6.5 Custom Construction 187

gure 6.16. A shear machine is used for cutting sheet metal. This machine is
perated with a foot pedal; when the pedal is pressed, a large knife edge moves
own and slices the piece of aluminum placed underneath.

he center. As such, the wheel must slide sideways when the robot
urns in place. This is easily accomplished, however, because the
heel is spherical and made of nylon so that it slides easily. Also,
he robot is balanced in such a way as to minimize weight on the
ear wheel.

.5.2 Sheet Metal

ne of the simplest yet most effective ways to build a H,ovoﬁ is no
esign a body made of formed sheet metal, in particular, alu BEEB
here are different kinds of aluminum. Some are designed to be
ent, while others are hard and brittle and will break rather than
end. Aluminum is easy to work with and can produce a lightweight,
ugged chassis. Metal-working tools found in a machine shop, such
a shear and a brake, are convenient for forming aluminum pieces.
A shear is a tool that slices off strips of metal; see Figure 6.16. ‘A
rake is a machine for bending metal; see Figure 6.17.)

An effective way to work with sheet metal is to lay out cuts,
ends, and holes on a piece of paper (perhaps using a computer
drawing program) and then tack this template directly to the alu-
‘minum sheet with rubber cement. This trick, illustrated in Figure
,.ah@ will save a great deal of work over transferring your markings

188 6. Mechanics

Figure 6.17. Sheet metal can be bent into a wide variety of shapes using a brake.
The brake has one arm that can clamp the aluminum onto the base table of the
brake. The table can then be rotated up, which makes the aluminum fold.

Figure 6.18. A template produced by a pen plotter has been glued to an alu-
minum piece. Markings indicate all cuts, holes, and bends to be made.

6.5 Custom Construction 189

to the metal.. One caveat is in order here. Except for small parts,
- templates should be made with pen plotters rather than laser or ink
_jet printers. Because of the uncertainties in the way paper feeds
through such printers, the aspect ratio cannot be guaranteed and so,
in general, a vertical inch will not equal a horizontal inch.

A punch is the fastest, most effective, and safest way to cut holes
or other shapes in sheet metal. Although drills are commonly used
for this purpose, they can be quite dangerous unless the metal is
clamped or otherwise held in place. If the drill bit binds while a hole
is being cut, the entire work piece may begin to spin. This can be
almost as dangerous as using a circular saw from which the guard
has been removed.

_m.m.w Acrylic

n addition to aluminum, another popular choice for robot body
‘material is acrylic. Like aluminum, acrylic forms a strong lightweight
ody and can be worked with readily available tools; it also bends
asily with the application of heat. Rug Warrior H was built. @og an
crylic chassis.

The body of Rug Warrior I was constructed by first using a _omdm,
aw to cut out the acrylic chassis and skirt pieces. A band saw is .
hown in Figure 6.19. The chassis was drawn using & computer draw--
ng program, and the drawing was printed out and then attached to
‘a piece of acrylic. The template of the mechanical base ow,W:m..ﬁ\.@T
ior I is shown in Figure 6.20. Mounting holes were then drilled in
he 1/16-inch thick acrylic sheet of the skirt and the 1/8-inch thick
hassis pieces. To form the skirt, we heated the acrylic sheet in an
ven at approximately 300 degrees Fahrenheit for several minutes.
Then, using oven mitts, we wrapped the sheet around a cylindrical
bject with a diameter close to that of the robot and held the acrylic
_in place until it cooled.

" Readers who attempt a similar procedure should use great cau-
‘tion. Acrylic may catch fire if it comes into contact with hot electrical
L clements or flame. Touching the hot acrylic can also cause painful
burns. As always, it is best to practice a new procedure with some
scrap material.

190 6. Mechanics

Figure 6.19. A band saw is a useful tool for forming acrylic. Cuts can be made
with accuracy and speed.

Circuit board

Whee!

Acrylic
chassis

Figure 6.20. The chassis of Rug Warrior I is essentially a disk of acrylic with
notches cut to accommodate the wheels. Holes are drilled at the locations marked
to mount the microswitches, circuit board, caster ball, and motors.

6.6 Exercise 191

6.6 Exercise

- Try building your own platform for a Rug Warrior. Fischer-Technik
or a toy car might be an easy starting point. Perhaps if you have
access to a machine shop, you can create a more sophisticated base
than the ones shown here. Because the Rug Warrior board is so
small, your base will not have to carry much payload weight. Lots
of interesting mechanisms can be created from Fischer-Technik and
other construction kits. Don’t hesitate to use double-sticky tape,
glue, and Velcro. Try lots of ideas. Build a walking machine!

.7 References

any of the photographs illustrating the variety of possible mechan-
al platforms in this chapter were robots built at the MIT Mobile
Robot Lab. A few were built at other research laboratories.
Sojourner, the Mars rover, was built at the-Jet Propulsion Lab-
ratory. Visit the web site mpFwww.jpl.nasa.gov for more infor-
ation. Experimental results from Rocky III, one of Sojourner’s
redecessors, are reported in (Miller et al. 1992). Genghis, the six-
egged robot of Figure 6.2 was designed in a bachelor’s thesis (Angle
989) at the Mobile Robot Lab by Colin Angle and programmed by -
odney Brooks (1989). The floor-cleaning robot in Figure 6.4 was a
roduct of the Robot Talent Show and built by Joe Jones. HE@. syn-
hro drive base pictured in Figure 6.6 was a EOQCQ of Womp SOZQ; ,

Once the world’s smallest robot, Goliath (left in m;mcﬁm @.:v

was an undergraduate project at the Mobile Robot Lab designed by
James McLurkin. Squirt (right in Figure 6.11), which previously held
the “tiny” title, was built in 1988 by Anita Flynn, Rodney Brooks,
illiam Wells, and David Barrett (Flynn et. al. 1989). ,

. The section on robot kinematics and configuration space stemmed
. argely from the work of Tomés Lozano-Pérez. More in-depth dis-
| cussion can be found in Lozano-Pérez, Jones, Mazer, and O’Donnell

Motors

7.1 Variety Abounds

A few years ago, a computer was the largest and most expensive com-
ponent of a robot, while motors and batteries consumed only. mnow:
percentages of the budget. These days, while motors and batteries
have changed little, the relationship has flipped. Microelectronics.
have shrunk in size and cost so drastically that, for the. types of
mobile robots we describe in this book, the motors and-gears will
typically be the most costly items. L e,

An electric motor converts electrical energy to mechanical en-
ergy. Motors come in all manner of shapes and sizes. There are
electromagnetic direct current (DC) motors and electromagnetic al-
ternating current (AC) motors and a number of variations of each.
AC motors are typically used for large machinery (such as machine
tools, washers, dryers, and the like) and are powered from an AC
power line. You might run across AC motors with titles such as
single-phase, split-phase, capacitor start, permanent split-capacitor,
shaded-pole and three-phase motors. AC motors are seldom used in

mobile robots because a mobile robot’s power supply is typically a
DC battery.

194 7. Motors

We will focus on DC motors in this book. DC motors are com-
monly used for smaller jobs and will suit our purposes well. They also
appear in a large variety of shapes and sizes: permanent magnet iron
core, permanent magnet ironless rotor, permanent magnet brushless,
wound field series connected, wound field shunt connected, wound
field compound connected, variable reluctance stepper, permanent
magnet stepper, and hybrid stepper motors.

For a robot’s needs, a DC motor usually runs at too high a speed
and too low a torque. In order to swap these characteristics, a DC
motor must be geared down. Connecting the shaft of a motor to a
geartrain causes the output shaft from the geartrain to rotate much
more slowly and to deliver significantly more torque than the input

“shaft. A geartrain can be assembled discretely and attached to the
motor shaft, or a DC motor can be purchased with the geartrain
already prepackaged inside the motor housing.

These compact motors are termed DC gearhead motors and will
be most useful in putting together a small robot. DC gearhead mo-
tors are normally based on permanent magnet ironless rotor motors
in order to be as lightweight as possible. They can also be purchased
with position encoders integrally connected. Figure 7.1 illustrates
two conventional DC gearhead motors.

Most DC motors have two electrical terminals. Applying a volt-
age across these two terminals will cause the motor to spin in one
direction, while a reverse polarity voltage will cause the motor to
spin in the other direction. The polarity of the voltage determines
motor direction, while the amplitude of the voltage determines motor
speed.

However, some DC motors, such as stepper motors, have more
than two electrical terminals, often up to six or eight. Signals are
applied to these wires, which energize different coils inside the motor
sequentially. The rotor is subsequently attracted to each portion
and “stepped around” in a continuous fashion. Thus, the timing
of these signals determines the motor speed, the phase between the
signals determines the motor direction, and the number of commands
determines the motor position.

Another type of DC motor with more than two electrical termi-
nals is an assembly known as a servo motor. Although the term servo
motor is used in a variety of contexts, what we are talking about here

7.1 Variety Abounds 195

Figure 7.1. These DC gearhead motors manufactured by Escap are permanent
magnet ironless rotor models with 54:1 and 27:1 geartrain ratios. The motor
on the left has an attached printed circuit board, which interfaces to a position
encoder encapsulated in the motor housing. ,

is the three-wire DC servo motor that is often used for a‘control sur-
face on a model airplane or for a steering motor on a radio-controlled
car. This type of assembly incorporates a DC motor, a geartrain,
limit stops beyond which the shaft cannot turn, a potentiometer for
position feedback, and an integrated circuit for position control, -Of
the three wires protruding from the motor casing, one is mo\w.boémﬁ
one is for ground, and one is a control input where a pulse-width
signals to what position the motor should servo. When we speak
about a motor servoing to a position, we mean that an electrical
circuit directs the motor to rotate to the commanded position and
keeps it there. If you try to grab the motor shaft while the servo
loop is running, and forcibly rotate the shaft to a different position,
the electrical circuit will read the angle of the potentiometer, realize
that the shaft is no longer at its commanded position, and increase
the current to the motor. This will increase the torque the motor
puts out and the motor will push back against the torque you are
applying with your hanid. The servo motor will continue to do this

‘until the shaft has rotated back to its commanded position. A servo

motor then is an assembly which consists of a DC gearhead motor,

196 7. Motors

Figure 7.2. Shown on the left is a Futaba seryo motor and on the right, a stepper
motor. Note the three-wire lead on the servo motor and the six wires protruding
from the stepper motor.

a position sensor on the shaft, and an integrated circuit for control,
all packaged into the casing of the servo motor.

The flaps and control surfaces on model airplanes do not have to
rotate continuously, so limit stops are added to these motors and a
single-turn potentiometer then suffices to provide position informa-
tion back to the integrated circuit that controls the motor position.
Servo motors can be extremely compact and easy to control, and
because they are mass produced for the toy industry, they are of-
ten cheaper than other DC gearhead motors. Although they rotate
less than 360 degrees and hence are not suitable for wheeled robot
propulsion, these model airplane servo motors often find their way
into robot grippers, arms, and legs. Figure 7.2 shows both a servo
motor and a stepper motor.

If you want to skip ahead to building Rug Warrior’s locomotion
system, we will tell you right now that our choice was to take Royal
Titan Maxi Servos, available from Tower Hobbies, strip out the con-
troller chips and potentiometers and remove the limit stops, and
use these motors as continuously revolvable DC gearhead motors to

7.1 Variety Abounds’ 197

drive Rug Warrior’s wheels. This is the cheapest, simplest solution
we could find for this book’s example robot.

DC motors are also characterized another way: as either brush-
type or brushless motors. These designations refer to the manner of
commutation used that converts direct current from the battery into
the alternating current required to generate motor action. If the DC
current is commutated mechanically with brushes, the commutator
segments at the ends of the rotating rotor coil physically slide against
the stationary brushes that are connected to the motor’s terminals
on the outside of the case. If the DC current is converted into AC
current in the rotor electronically, with position sensors and a micro-
processor controller, then no brushes are needed. Brush-type motors
are more common and cheaper. Brushless DC motors have an ad-
vantage over brush-type motors in that friction is reduced, leading
to longer life and finer control for the motor. Also, brushless mo-
tors can produce less radio frequency interference. The trade-off is
that brushless DC motors require more extensive control circuitry in
order to do the commutation electronically. ,

In addition to electromagnetic DC and AC motors, there are a
few other types of motors that are not electromagnetic. Piezoelectric
ultrasonic motors, which can be found in autofocus lenses in some
Japanese cameras, work on the principle of mechanical bending of
a piezoelectric ceramic, using frictional coupling to a rotor. The
Japanese have also introduced these motors into headrest actuators
in new luxury cars, paper pushing mechanisms in copiers, and in
tinier versions in wristwatches for use as silent ?Fw&mﬁ@ ,mpmﬁ..gw.
Ultrasonic motors, in contrast to conventional electromagnetic mo-

tors, spin at lower speeds and with higher torques, alleviating the .

need for geardown. This means they can be compact and lightweight,
but the frictional coupling between rotor and stator results in prob-
lems of wear. A small piezoelectric ultrasonic motor is shown in
Figure 7.3.

Also, in research labs around the world, electrostatic motors are
being micromachined out of silicon in dimensions on the scale of a
human hair. Electrostatic motors work on the principle of charge
attraction, where a force is created as two charged plates slide past

each other. At small scales, electrostatic forces can be relatively

strong, but for large motors, electromagnetic forces are more effec-

198 7. _soﬁo_.,m

Figure 7.3. This 8 millimeter (mm) diameter piezoelectric ultrasonic motor,
built at the MIT Mobile Robot Lab, is composed of two pieces: the stator and
the rotor. The stator, shown on the left, is a steel ring with piezoceramics bonded
onto the bottom that causes a wave to travel around the ring. The top piece, the
rotor, is made of brass and, when pressed against the stator, is dragged along
and spins. The stator with a rotor on top is illustrated on the right.

tive. Although micromotors have not reached the stage of practical
use, they are intriguing.

Shape memory alloys can also be used for robot actuation. A
shape memory metal such as Nitinol changes shape reversibly on be-
ing heated and cooled. Mondo-tronics, Inc., sells a small, six-legged
robot (shown in Figure 7.4) that is actuated by these materials.
When the wire is heated by passing current through it, the wire
changes shape and shrinks, causing a leg to lift. When the wire is
cooled (i.e., when no current is passing through it) the wire changes

back to its original longer shape and the leg goes back down. The

wires are attached to the legs in such a way that, while three legs
lift the others push backward. Alternating this pattern between the
two sets of three legs causes the robot to propel itself forward. Plans
and instructions for building a similar microrobot called Stiquito
are available to the public. If you have access to the Internet, you
may acquire this information via anonymous FTP. Connect to site
cs.indiana.edu, and look in the pub directory.

Even more esoteric is a new class of actuators that are start-
ing to a ppear in research laboratories around the world. These are
cotton-like fibers that act similarly to artificial muscles. With the
alternating addition of acidic and basic solutions, these actuators
can shrink and expand up to 1,000 times their original volume with
strength and speed equal to those of human muscle. While still a lab-

7.2 How a DC Motor Works 199

Figure 7.4. This 10 centimeter (cm) robot from Mondo-tronics weighs 50 grams
(g) and is actuated by shape memory wires which are wrapped around various
screws mounted on the legs and body. Passing 200 milliamperes (mA) of current
through a sequence of wires causes alternating legs to lift up and move forward.

oratory curiosity, these polymer gels may prove to be the technology
of the future. : :

7.2 How a DC Motor Works

For the project at hand, let us focus on how @mmgmbmnﬁnammbg DC

gearhead motors work. Understanding the mechanism behind the
production of torque is helpful when trying to read a motor specifica-
tion sheet for choosing the correct-sized motor. Such understanding
will be helpful again later, when designing the power electronics for
controlling the motor from a microprocessor..

Electromagnetic forces in DC motors come about when current-
carrying conductors are placed in magnetic fields, as illustrated in
Figure 7.5. Magnetic fields can be generated by permanent magnets.
Flux lines across an air gap flow from one magnet’s north pole to
another magnet’s south pole. The Lorentz force law states that
current-carrying conductors placed in magnetic fields create forces.
The force, F, created is perpendicular to both the direction of the

200 7. Motors

motion
I
~

N B

Figure 7.5. A magnetic flux field, B, is set up by the permanent magnets in
the direction from north pole to south pole. A current-carrying conductor placed
in such a field experiences a force acting on it. The resultant force is directed
downward.

current, I, and the direction of the flux field, B. The direction of F’
is determined by the right-hand rule, where the fingers curl from the
direction of the current toward the direction of the flux field and the
thumb points in the direction in which the resultant force is created.
In the case of Figure 7.5, the force produced is in the downward
direction.

Rotary motion requires a loop of wire. Figure 7.6(a) shows a
loop of wire mounted on an axis of rotation and situated in the flux
field set up by the permanent magnets. Figure 7.6(b) illustrates the

resulting forces. Because forces are created in a direction perpendicu- .

lar to both the current’s direction and the magnetic field’s direction,
current going into the loop along the top generates, according to
the right-hand rule, a force acting downward. Current coming out
along the bottom portion of the loop creates a force acting upward.
The force disparity, acting at a distance from the center of rotation,
causes the loop to experience a torque. The loop will rotate until a
force disparity no longer exists. That point would be reached when
the plane of the loop is vertical and the forces on the top and bottom

7.2 How a DC Motor Works 201

Figure 7.6. (a) This loop of wire has current flowing into the page on the left
side and out of the page on the right. (b) The resulting oppositely directed forces,
acting at a distance from the center of rotation, cause the loop to rotate until it
is vertical.

portions of the loop would both act through the center of rotation,
resulting in zero torque. , B

Continuous rotary motion can be achieved by reversing the di-
rection of the current just as this point is about to be reached. The
process of deriving this necessary alternating current from a DC bat-
tery is called commutation. Mechanical commutation requires a set
of brushes that allow the ends of the loop of wire to mmm,‘.@nmomm the
contacts of the battery. The commutator setup is shown in Figure
7.7. ' .

A disassembled DC gearhead motor is shown in Figure 7.8. A
large number of loops of wire are -usually incorporated in order to
increase the torque of the motor. These loops are wrapped around
an armature that can contain an iron core for increased flux or be
ironless for lighter weight. Two half cylindrically shaped permanent
magnets are housed along the inside of a steel casing, which provides
a flux return path. The wound armature is fitted between the mag-
nets, leaving a small air gap. As the current through the armature
alternates, a force is created, causing the armature and the shaft to
rotate.

202 7. Motors

Figure 7.7. A commutation system using brushes is one way to make a DC
motor. The commutator segments are attached to the loop of wire and rotate
with it, while the brushes remain stationary as the commutator segments slide
past.

Figure 7.8. A permanent magnet DC gearhead motor shown here has been
removed from its housing. Windings of the armature around a central core with
ends connected to commutator segments can be seen at the right, while the
geartrain is mounted on the shaft at the left. A cylindrical housing (not shown)
fits around the armature and holds two permanent magnets along its inner shell.

7.3 Sizing a DC Motor 203

7.3 Sizing a DC Motor

Selecting an appropriate motor for your robot involves both under-
standing the loads that the robot will impose on the motor and the
performance that the motor can deliver, as detailed in the manu-
facturer’s data sheets. Some manufacturers present the pertinent
characteristics in the form of a graph, while others list the specifi-
cations in table format. Sometimes, if the motor is obtained from a
surplus dealer or extracted from a toy, it is not possible to obtain
data sheets, in which case simple experiments can be performed to
measure the pertinent characteristics. Whatever the case may be, it
is useful to have a clear understanding of the motor language and to
brush up on the conversions between various units of measurement.

7.3.1 Torque, Speed, Power, and Energy

Torque is the angular force that a motor can deliver at a certain
distance from the shaft. For instance, 5 oz.-in. of torque means that,
at a distance of 1 inch away from the shaft of a motor, the motor
is strong enough to pull up a weight of 5 ounces through a pulley
(see Figure 7.9). In metric units, motor torques are often specified
in Newton-meters (Nm). (When you try to imagine how much force
a Newton is, think of the weight of an apple. A force of 1 Newton
is about equal to the force that gravity exerts on one apple’s mass.)
Alternatively, metric units for torque can also be found.specified
in terms of gram-force-centimeters (gf-cm), where a.gram-force is
meant to signify the force that gravity exerts on 1 gram:of mass. We
will stick to metric units in this book, but some conversions to keep -
handy are: :

1N=1XE1 — 0.2251b
1kg=2.211b (mass) and 1in=2.54 cm

Also, when we begin to talk about electrical power being con-
verted to mechanical power in a motor, it is useful to keep straight
the relationships involving power (in watts) and energy (in joules).

. Power is the rate at which you are using up energy. The relationship

between power and energy is expressed as:

204 7. _sono.qm

Joul
1 Watt=1 =€

Figure 7.9 illustrates the electrical to mechanical power conver-
sion of a DC motor. The electrical power supplied to the motor,
P., equals the voltage, V, across the motor’s terminals times.the
current, I, through the motor. The current, measured in units of
amperes, is the amount of charge, in coulombs, passing through any
cross-section of a conductor per second:

P.=VI

1 Ampere = 1 OOM%EU

1 Watt = 1Volt - Ampere = 1 Vols - Coulomb

Mechanical power, P, equals the torque, T, output by the shaft
times its angular speed, w, where the torque is taken in Newton-
meters and the angular speed is measured in units of radians per
second:

P,=Tw
arrad _1tev
Sec sec
Nm
1 Watt = 125 Sec

Since power is energy per unit time, this tells us that one joule
of energy can be expressed in two ways: either as 1 Newton-meter
or as 1 coulomb-volt:

1J=1Nm and 1J=1CV

This is just reaffirming the fact that energy is energy, whether it
comes from a mechanical origin or an electrical origin. A motor is
just a transducer transforming energy from one form to another.

7.3 Sizing a DC Motor 205

Figure 7.9. A simple model of a DC motor is an equivalent circuit that models
the motor windings as having a resistance,” R, and generating (when running)
a back-emf voltage, e. The electrical power input to the motor is the product
P. = VI, and the mechanical power output is the E.o&:ow of torque and rotational
speed, P, = Tw.

7.3.2 A Motor Model

‘These relationships, describing the conversion of electrical power to

mechanical power in a permanent magnet DC motor, can be Qm@l%
seen by the equivalent circuit model shown in Figure 7.9. The me-
chanical output power (due to losses from friction, windage, heating
in the coils, and so on) will be some fraction of the m_mgzo.& _Bucn
power. This percentage is given as the ommgobo.ﬁ A Srmnm

P =nPe

The rotor coil that we saw in Figure 7.6 is essentially an inductor
with a resistance R. When the rotor is turning, the commutator
segments sliding past the brushes create an @mebmﬁsm current in
the armature windings. A changing current, &“ through an inductor
induces a voltage across it:

- [&
|N\&n

where L is the proportionality constant called the inductance. Asthe
motor turns, this voltage is induced and opposes the applied driving

206 7. Motors

voltage. The faster the motor turns, the more often the current
switches direction, and so the larger the induced voltage becomes.
Since this voltage opposes the applied drive voltage, as it increases, it
tends to limit the current through the resistance, R. As the current
falls, less flux is created around the conductor and the torque also
falls. In summary, as the speed goes up, the torque goes down.

The rotating motor then can simply be modeled by the induced
voltage, e, called the -back-emf (emf stands for electromotive force)
and the winding resistance, R. The applied voltage is related to the
back-emf and the current through the motor by:

V=IR+e

Note that, when the motor is not rotating, e is 0 V and the
current through the motor is just equal to the applied drive voltage
divided by the resistance. This is the current required to start the
motor from zero speed, called the starting current or stall current,

Is:
Is=%

When the rotor is rotating, e increases proportionally with the
speed of the armature:

e = kew

where k. is called the back-emf constant. The applied voltage is then
related to the current and the armature speed by:

V=IR+ kew

The negative feedback provided by the back-emf causes the motor
to settle to a steady-state operating point of speed and torque, as
determined by the load and the applied voltage. The torque that
the motor produces is dependent on the flux field around the loop of
the conductor, and that flux is controlled only by the current. The
torque increases linearly with current with a proportionality constant
k¢, known as the torque constant:

T =kl

7.3 Sizing a DC Motor 207

Solving for I and plugging it into the equation above, we get:
V=2E4kw

It turns out that k: is actually equal to k.. We can see this from
the fact that the mechanical power output by the shaft will be the
electrical power input, minus the I?R losses due to heating in the
resistor:

P, =P.—I’R

Tw=VI-I’R
Plugging in for T and V,
kdw = (IR + kew)I — IR
gives
ki =ke=k

The applied voltage is then related to the torque pﬁ@.m.v.wom by
the constant k: o s

V=2E ko

Rearranging, we find that the speed-torque relationship is linear
with a negative slope:

w=-&T+¥

These relationships can be more clearly seen when plotted along
with the motor performance curves.

208 7. _,_oﬁoq.m

T T

Figure 7.10. For a given voltage, a DC motor has the typical drooping character-
_istics of speed, N, decreasing linearly torque, T'. As the current, I, is increased,
the torque is increased, also linearly. Power output, P, is the product of torque
and speed and has a quadratic characteristic. Maximum efficiency, maz, occurs
at a lower torque than the maximum power output torque.

7.3.3 Speed-Torque Curves

The speed and torque characteristics for a DC motor depend on a
variety of parameters that have to do with the geometry of the motor,
the materials involved, the number of windings, and the voltage at
which the motor is driven. Typically, a manufacturer provides a
data sheet showing the pertinent characteristics. These are usually
illustrated in a speed-torque graph for a given applied drive voltage.
Efficiency, current, and power output are often plotted along with
speed on the vertical axis against torque on the horizontal axis, as
shown in Figure 7.10.

We can see in Figure 7.10 that the speed-torque curve is linear,
with a negative slope as we derived, and has a y-intercept dependent
upon the applied voltage. Also, the current increases linearly with
torque and is independent of applied voltage, as we showed earlier.
The power curve has a negative quadratic form which is understood
by remembering that:

P =Tw

and plugging in our equation for w:

7.3 Sizing a DC Motor 209

Pp=—(£)T?+¥T

where we see the negative quadratic dependence of power on torque.

You will find it useful to check a few points of interest on a motor
data sheet in choosing the most appropriate motor for your robot.
The no-load speed, marked N, in Figure 7.10, is the speed, at a given

voltage, at which the torque is 0. (N usually refers to the angular

speed in units of rpm. Remember to convert to H%mﬁwm when plugging

into these equations for w.) This is the speed of the motor with
nothing attached to the shaft. That is, the no-load speed, the valu
of w for T' =0, is just ,

=<

Wmaz =

The current in this no-load condition, I,, is called the no-load
current and is that required to overcome motor friction and windage.

At the other end of the scale, the torque that the motor can
deliver just as it stalls and can no longer rotate is known as the stall
torque, Ts. The current at this condition, Ig, is the stall current.
Since the motor is not moving when stalled, the vmhw,.oa.a is 0 and
the maximum current, Ig, is just the applied voltage divided by the
coil resistance, as mentioned earlier. Torque being proportional to
I, the maximum torque is: ‘ :

KV
Is="x

At any given point of operation of torque and speed, the mechan-
ical power output is the product of the two. The torque at which
the maximum power occurs can be found by taking the derivative of
the power with respect to the torque, setting the result equal to 0,
and solving for T':

dPm _(_ _2RT | V
a=0=—5F+ 7
_ kv
T=73g
or

T= WHS@&

210 7. _so”o.qm

Thus, the point of maximum power output is attained at half the
stall torque. The corresponding speed at this operating point is then
found to be:

R <
w=-—3r T

=<

_V
-2

o

r
_ 1
W = 5Wmaz
The maximum power then is simply:
i
Py, = NE.:E&HJSQG

The ratio of mechanical power output to electrical power input is
the efficiency, 1. Note that maximum efficiency cannot be achieved
at maximum power output. In fact, the point of maximum efficiency,
where you would like to drive your motor, is a low-torque, high-speed
operating point. Consequently, we typically select an oversized mo-
tor so that it can run at an efficient operating point while supplying
enough torque.

It turns out that the maximum efficiency, for reasons we will not
go into here, can be calculated from the measurements of the no-load
current, I,, and the stall current, Ig:

Mmaz = G. Y/ .Mh.m..vw

This can be useful for characterizing a motor for which you do not
have data sheets. .

The data shown in Figure 7.10 are for one given value of applied
voltage. If the motor is run at a lower voltage, the speed-torque
line shifts downward as shown in Figure 7.11(a). As the voltage is
decreased, the speed and the torque are both decreased. Changing
the voltage changes the speed of the motor. Another way to change
the speed without having such an adverse effect on the torque (in
fact, a method that has an advantageous effect on the torque) is
to use a geardown. As shown in Figure 7.11(b), gearing down the
motor by, say, a factor of 2, cuts the no-load speed in half while dou-
bling the stall torque. Thus, power is maintained constant through

: Hﬁpmﬂmgwmopﬁn in OOB@@EMOS

7.4 Gears 211

Geardown=G

Figure 7.11. (a) Running the motor at a lower voltage causes it to slow down
for all values of torque output. (b) Gearing down the motor reduces the speed
by the gear ratio, G, and increases the torque by the same factor, G.

a lossless (frictionless) geartrain. Typically though, there are losses
both through the motor and again through the geartrain. Good mo-
tors these days might have efficiencies of 90% or better, but cheap
toy motors (like the ones we will use in the Rug Warrior prototype)
might be only 50% efficient, or less. Adding these losses to those
through the geartrain and then taking into account the Ho.m,mmm ‘be-
tween wheels and the ground (from friction, slippage, etc.) results
in a system that is not very efficient. For Rug Warrior, most of
the energy from its battery pack goes into the H.uwoﬁﬁmmow system.
Powering Rug Warrior’s computers and sensors will be, @w@oﬁn@ﬁ%

7.4 Gears

Geartrains and transmission systems come in a variety of forms,
such as spur gears, planetary gears, rack-and-pinion systems, worm
gears, lead screws and belt-and-pulley drives. Figure 7.12 illustrates
a number of these mechanisms. High-quality geartrains are zmcm:%
metal, but plastic gears are often found in toys.

-The DC gearhead motor shown earlier in Figure 7.8 had a spur
gear set on the output shaft. Spur gears are the most common forms
of gears found in DC gearhead motors. A schematic of a two-level

212 7. Motors

Figure 7.12. (a) Spur gears mesh pairs of gears with different numbers of teeth
to achieve speed reduction. (b) Planetary gears have several gears meshed in an
outer ring for large reduction. (¢) Worm gears produce rotary motion at right
angles to the shaft. (d) A lead screw and nut can create linear motion as can (e)
rack-and-pinion systems and (f) belt-and-pulley drives.

spur geartrain is shown in Figure 7.12(a). The small gear, mounted
directly on the motor shaft, is called a pinion and has to rotate many
times to turn the gear it is meshed to once. Thus, even though the
pinion may spin very quickly, the gear it is attached to spins very
slowly. If A, B, C, and D denote the number of teeth on each
corresponding gear in the figure, then the speed of the output shaft
is related to the speed of the input shaft by:

AC

Wout = F pWin

where the final speed has been decreased by the geardown ratio.

Planetary gears are similar to spur gears but are less common
in low-end gearhead motors and are slightly more expensive. The
difference between planetary gears and spur gears is that planetary
gears, as shown in Figure 7.12(b), fit a number of gears concentrically
inside a toothed ring. This configuration produces greater efficiency
and higher output torques in a smaller package. Planetary geartrains
are sometimes found in portable battery-powered screwdrivers and
drills.

7.5 Motor Data Sheets 213

Worm gears are another means for achieving large geardown in a
small space. Worm gears, shown in Figure 7.12(c), instead of having
teeth, are threaded and match to a lead screw attached to the shaft
of the motor. In this way, the output motion is turned to right angles
from the motor shaft.

For linear motion, a lead screw and threaded nut can be used.
Figure 7.12(d) illustrates how the motor shaft turns the lead screw
and a threaded nut moves linearly down the shaft, depending on the
number of threads per inch on the lead screw. Lead screws can give
very large geardown but are not very efficient.

Rack-and-pinion systems, Figure 7.12(e), also turn rotary motion
into linear motion. In this case, a small pinion gear on the motor
shaft rotates against a straight length of rack having matching teeth,
propelling the rack linearly back and forth.

Another linear motion mechanism is the belt-and-pulley system,
shown in Figure 7.12(f). This is the mechanism used to drive a tank-
treaded vehicle, such as we will describe later for Rug Warrior II.

7.5 Motor Data Sheets

While it is possible to buy a plain DC motor and attach any.number
of gear-reduction mechanisms for propelling your robot, we will focus
on DC gearhead motors here for Rug Warrior (typically with spur
gears) because it makes life easier when geartrain and motor are
packaged together. There is no need to find a machine shop-and
spend time making gearboxes. h B

Picking an appropriate motor involves understanding a manu-
facturer’s data sheets. A data sheet is usually given for the motor
alone, and then another data sheet is supplied for the type of gear-
box (with an assortment of reduction ratios) that will fit that motor.
The gearbox specification can place constraints on the motor, such as
for maximum allowable input speed or maximum deliverable output
torque. .

Actual data sheets for the small Escap motors (shown in Figure
7.1 of this chapter) are given in Figure 7.13 and Figure 7.14. The

- data are given here in tabular form instead of graph form, but the

reader can reconstruct the graphs that were discussed earlier, (as

214) 7. Motors

D.C. motor
escap®16 M1
Standard types available from stock -210 -208 -207 -205
M voltage v - 6 7.5 9 15
No-load speed rpm 8400 7800 8300 8200
Stall torque mNm 3 2.5 2.3 2.4
oz-in 042 0.35 0.33 0.34
Power output w Q.7 0.5 0.5 0.5
Av. no-ioad current mA 7 5 4 25
Typical starting voltage \ 0.06 0.1 0.1 Q.2
Max. continuous current A 0.4 0.28 0.24 0.14
Max. recommended speed rpm 12000 12000 12000 12000
Max. angular ion 10° rad/s? 96 114 120 102
Back-EMF constant V/1000rpm 0.7 0.94 11 1.8
Rotor i mH 0.5 Q0.8 1 3
Motor regulation R/k? 10%/Nms 300 330 380 350
Terminal resistance ohm 134 27 39.5 105
Torque constant mNm/A 6.7 9 10.2 17
0z-in/A 0.949 1.28 1.44 2.41
" Rotor inertia kgm?-107 0.7 0.56 0.5 0.6
Mechanical time constant ms 20 18 19 21
Thermal time constant rotor s 6 5 4 4
stator s 380 380 380 380
Thermal resistance rotor-body °C/W 10 10 10 10
body-ambient °C/W 35 35 35 35

Figure 7.13. The Escap model 16M11-210 DC motor is a 6 volt (V) motor with
a no-load speed of 8,400 revolutions per minute (rpm) and a stall torque of 3
milli-Newton-meters (mNm). (By courtesy Portescap, Inc.)

illustrated in Figure 7.10), since the major features, such as no-load
speed, stall current and stall torque are given in these tables. The
torque constant given in the table can be used to find the slope of the
I-T curve, and the back-emf constant can be used to determine the
slope of the w-T curve. (Note that, if these constants are converted
to the same units, they are equal.)

For instance, Figure 7.13 describes the performance of the motor
by itself without a gearhead. Four models of this motor are available,
each with a different winding and therefore intended to be run at a
different voltage. The voltage for which the specifications are given
is called the measuring voltage or sometimes the rated voltage. Thus,
the 16M11-210 motor, when run at 6 V, will have a no-load speed of
8,400rpm, a stall torque of 3 x 1073 Nm, and a maximum possible
output power of 0.7W.

If the 16M11 motor is purchased with an attached gearhead, the
part number for the gearmotor is M1616M11; its specifications, as
shown in Figure 7.14, recommend that the -210 winding version be
run at 5V so that the no-load speed of the motor stays within the

"~ and the stall torque will be:

7.5 Motor Data Sheets 215

D.C. mmm::oﬁoq
escap® M1616 M11

Standard types available from stock Mis16 M N
Max. recom. dynamic output torque mim {oz-in} 50(7.1)at 20rpm
: 30 (4.2) at 150 rpm
Max. recom. static output torque mNm (0z-in) 250 (35.4)
Max. recom input speed pm 7500
Available reduction ratios 9 27 64 243 486 2190
81 729
Average efficiency 0.8 0.7 0.65 0.6 0.55 0.5
Nr. of geartrains / direction of _.onm:oz 2/= 3/# 4/= 5/# 6/= /¢
Length L mm 37.1 38.6 40.1 41.6 43.1 44.6
Mass g 28 29 29 30 31 32
Motor specifications -210 -207
Measuring voltage® Vv 5 8
No-load speed pm 7000 7200
Stall torque mNm (oz-in) 2.5 (0.354) 2.1(0.297)
Terminal resistance ohm 134 39.5
TJorque constant) mNm/A (o0z-in/A) 6.7 {0.949) 10.2 {1.44}
Other motor characteristics see page 17 17
Gearmotor specifications
Av. no-toad eurrent mA 10 8
Typical starting voltage v 0.1 0.3
Mechanicat time constant ms 21 19

Figure 7.14. The Escap model gHmHmZHH-wHo.mmmnrmma motor should be driven
at 5V (instead of 6 V) in order to keep the no-load speed of the motor within the
maximum allowable input speed of the gearbox. (By courtesy of Portescap, Inc.)

allowable input speed of the gearbox. The gearmotor éﬁw the 54:1
reduction will weigh 29 g, be 40 mm long, be 16 mm in diameter, mb&
have an efficiency of 65%. The no-load speed will be:

= T000TP™ — 130 rpm

Ts = (54)(2.5mNm)(0.65) = 88 mNm
Earlier, we showed that the maximum possible output power was:
Prmar = WE‘SQHNJSQ»N

We can calculate this maximum power by converting the no-load
speed and the stall torque to the appropriate units. If we want to
know how many radians per second are equal to 130 revolutions per

‘minute, the easiest way to keep all the conversions straight is to set

up the question this way:

216 7. Motors

wwmmm — 1301Iev

sec min

Since multiplying the righthand side by 1 does not change the equal-
ity, we can multiply 130rpm by -identity relationships, converting
revolutions to radians and minutes to seconds in such a way that the
old units cancel out:

orads _ rev . 2mrads . lmin _ rads
Psec = 130 1 - v - osec — 13-6%56c

This gives:

ﬁ.s,gps = Wﬂsauagsga = Mﬁmw x 1073 ZBVAHWQH%%NMVHONQ

Escap motors are fairly high quality, and like many DC gearhead
motors, can cost over $100 each. Escap (actually, Portescap is the
name of the company) sells old-inventory motors (catalog motors but
ones that have sat on the shelves for too long to be sold as new) for
a fraction of their original cost. Although the selection is limited,
this source can be useful for hobbyists. Maxon, Micro Mo, Pittman,
Inland, Globe, Canon, Copal, and Namiki are a few of the other
numerous manufacturers that sell DC motors and have readily avail-
able catalogs with specification sheets. Surplus dealers often buy
out remains of original equipment manufacturers’ (OEMs) unused
motors and sell them at significantly reduced costs. Dealers such as
Burden’s Surplus Center, Herbach and Rademan, America’s Hobby
Center, Edmund Scientific, Sheldon’s Hobbies, Stock Drive Prod-
ucts, and Tower Hobbies sell wide assortments of smaller, cheaper
DC gearhead motors.

Most of the low-cost permanent magnet DC motors, such as those
found in toys, are made by one company-Mabuchi. Mabuchi pro-
duces over 3 million motors a day and sells them in lots of 5,000 or
more. They make strictly stand-alone motors, not gearhead motors,
but sell them to OEM manufacturers who then incorporate motors
into toys, model airplanes, and the like. Typically, a toy manufac-
turer will use the molding of the toy itself to be the gearbox for the
plastic geartrain they add to the motor so it is not always convenient
to extract the motor and build it into your robot.

Model airplane servo motors, on the other hand, are very mod-
ular and convenient for this purpose. While most model airplane

7.5 Motor Data Sheets 217

servos continue to be high-priced, mass production of the most com-
mon models has led to lower prices for servo motors. Futaba, Royal
Products Corporation and Airtronics are a few of the manufacturers
of these servo motors. Catalogs from hobby stores, such as Tower
Hobbies and Sheldon’s Hobbies, list a wide range of models. Higher-
quality servos with metal gears and ball bearings are available, also.

Servo motor data sheets (which are typically printed on the backs
of the packages) look different from the data sheets for DC gearhead
motors. Servo motors usually run from a 5V supply. For instance,
for the Royal Titan Maxi Servo, the specifications are described this
way:

Royal Titan Maxi Servo

Weight 3.7 oz.
Output Torque : 112 oz.-in.
Current Drain ’ SmA
Transit Time 3 o,mmm%omo

A transit time (in M%v is given instead of a no-load speed (in

rpm) because the integrated circuit servos the motor to a specified
position and it never spins all the way around. However, if the servo
is stripped down to being just a DC gearhead motor (potentiome-
ter, limit stops, and integrated circuit removed), this transit time is
equivalent to the no-load speed. The output torque listed ,.mvo<o is
simply the stall torque. Converting to proper units ﬁ.m;mmm power
output: e ,

orads _ _60° 2rrads _ 4 grads .

‘"sec — Do2sec ~ ~ 360° sec. —46rpm
?Nm = 112 oz.-in. - 7 1N _ 254cm "_1m_ _ g 79Nm

160z. 022511b. 1in. 100Cm

The maximum possible power then is:

NU.S:.:EH = WHSQSE.SDH = WAO.N@ ZBV A#.mwmgmv =0.95W

sec

-which is 3.2 times as large as the earlier Escap motor — but then,
this is a larger motor. To compare weights, we convert to grams:

218 7. Motors

mgsing

Figure 7.15. This free-body diagram of a tracked-drive Rug Warrior illustrates
the forces acting on the vehicle as it climbs a hill. Use of this diagram helps
to determine the maximum torques that the robot’s motors will be required to
deliver.

7g=3.7 oz. .wNmu =104¢g
The Royal Titan servo motor then is about 3.6 times heavier than the
29g Escap DC gearhead motor discussed previously. It turns out,
however, that the Royal Titan with the potentiometer and circuit
board removed, leaving essentially a comparable DC gearhead motor,
weighs only 78 g. This seems to make sense, as the Royal Titan gears
are plastic and the Escap gears are metal.

7.6 Motors for Rug Warrior

7.6.1 A Vehicle Model

In order to get a rough idea of how much power the motors for Rug
Warrior must be able to deliver, we can sketch the scenario illustrated
in Figure 7.15. Assume that Rug Warrior uses a differential drive
mechanism (two motors) and needs to climb a ramp of angle 8 at
constant velocity, v. The free-body diagram makes explicit the forces
acting on the vehicle.

7.6 Motors for Rug Warrior 219

Because the vehicle moves at constant velocity, there must be no
net force on the car. That is, since:

F =ma

and the acceleration, a, is 0 (the car moves at constant velocity),
the net force F' must be 0. This means that the applied force, Fypyp,
from the wheels acting in the direction up the hill must balance the
forces down the hill resisting that force. These resisting forces are
the friction force and the force that is the component of the vehicle’s
weight acting in the direction down the hill. Thus:

Fopp = Fy + Fw

where Fy is equal to the coefficient of friction, y, times the normal
force, F:

Fp = pFn = pmgcos 9

and Fw is mgsin@ (where mg, mass times the acceleration due to
gravity, is just the weight of the robot). This leaves:

Fopp = pmgcos @ + mg sin

The power required from the motors is the product of the force
that needs to be applied by the wheels times the velocity, v, the

robot travels up the hill:

m = Fappv

where each motor must supply half that power, as Rug Warrior has
two motors.

The torque and speed requirements of each motor can be calcu-
lated from: -

P

—=Tw and w= v
2 i r
where 7 is the radius of the wheel.

The range and the running time of the robot are dependent upon

" the battery pack, since power is the rate of energy usage. If the

battery has E joules of energy, then the battery lifetime, ¢, will be:

220 7. Motors

o~
I
Tl

The range of distance, DD, the robot can travel will be: constrained
by

D =ut

Typically, battery capacity is not given in joules but in units of
ampere-hours. To find the energy contained in a battery pack, we
must multiply the capacity rating in ampere-hours by the nominal
voltage rating of the battery. (Recall that 1 joule equals 1 coulomb-
volt and 1 ampere equals 1 coulomb per second.) For instance, sup-
pose a 3V battery has a 1,300 milli-ampere-hours (mAh) capacity.
How many joules does it contain?

C
?2J=3V-1300 x 103 Ah - mWn . %omrh = 14,040 CV =14,040J

7.6.2 Selecting a Motor

The model we just described for Rug Warrior is hardly realistic.
We certainly do not expect that our robot will be climbing up a
ramp forever. Rather, because reality is so complicated (e.g., uneven
terrain, stop-and-go crises, unknown coeflicients of friction, accidents
with chair legs, etc.), we use this model simply to attempt to size
the peak power requirements.

Let’s say that our goal is for Rug Warrior to weigh under 1.5
pounds, which is roughly 650 g. Furthermore, assume that we would
like our robot to climb a 30 degree grade at a steady half foot per
second, which is omwoB. We will use two motors and a tank-drive
locomotion system. Picking a value for p is a way of trying to account
for slippage and friction from the treads and the like. It is not
clear what this coeflicient of friction will be, but we can make some
assumption and pad our result by oversizing the motors at the end.
Let’s pick i to be 0.3. The power required then is:

P = Fappv = mg(pcos 8 + sin 6)v

P = (0.65kg - 9.85027)(0.3 cos 30° + sin 30°)(0.1555¢) =0.73 W

7.6 Motors for Rug Warrior 221

Figure 7.16. Thc casiest way to build a Rug Warrior is to start with model
airplane servo motors; add LEGO parts for bearings, axles, and treads; and then
place the batteries, electronics, and sensors on top.

We want to oversize our motors quite a bit, both because there
are so many unknowns and because the maximum efficiency point
is at a much lower torque than the maximum power point. If we
multiply our power requirement by a whopping factor of 3, that
would give:

Pp=2.1W or Loz W

7.6.3 Converting Servo Motors

What we have chosen, as we mentioned earlier, is to use model air-
plane servo motors. We recommend these motors for the Rug War-
rior project of this book because they are fairly inexpensive and
easy enough to modify. Although servo motors are not as cheap as
toy motors, the fact that they come with gearboxes already built in
means that we need not bother with machining a custom gearbox.
Figure 7.16 illustrates the tank-tread version of Rug Warrior that
we built using two Royal Titan Maxi Servos, which cost $25 each,
LEGO gears for wheels, LEGO tracks for tank treads, and LEGO
axles and blocks for bearings and chassis. The PC board on top is

222 7. Motors

Figure 7.17. The underside of Rug Warrior contains two servo motors taped to

the chassis, and LEGO gears mounted on the motor shafts for wheels. LEGO -

tracks are then used to make tank treads.

3.4” x4.5” and contains an MC68HC11A0, with the 10 sensors and
the accompanying control electronics.

The tank drive is made up of two motors, connected to the back
wheels in a differential fashion. The front wheels are passive, each
having its own axle and bearing. The tank treads are wrapped
around from back wheels to front wheels, so the robot can pivot
in place.

Figure 7.17 is a view of Rug Warrior from the underside. The
two black boxes are the servos. Attached to each is a LEGO gear for
a wheel. The gear acts to mesh easily with tracks also supplied by
LEGO. It is possible to build a sturdier and lighter-weight chassis,
perhaps something made from aluminum sheet metal using a sheet
metal bender and a punch for forming sides and placing holes. Real
ball bearings and ground shafts could be used for the front wheels
(obtainable from suppliers such as Berg, Small Parts Inc., etc.), but
it turns out that ball bearings can cost as much as the MC68HC11A0
computer chip! Instead, we elected to use the LEGO building sys-
tem, not just for gears and tracks but to continue with it for front
wheel axles and bearings, as the axles that come with LEGO are
made from hard plastic and spin nicely in the holes in the LEGO

7.6 Motors for Rug Warrior 223

Figure 7.18. Some servo motors are easier to convert to continuous rotation
than others. The gearhead of a Royal Titan Maxi Servo is shown here. - The
leftmost gear is above the potentiometer, and the ball bearing ring is mounted
on its top for support of the output shaft. A ‘plastic limit m&ov is molded onto
the gear just below and to the left of the ball Ummdzm

bricks that we use for the chassis. We used double-sticky tape or
black electrical tape to hold the chassis together.

To build this propulsion system for Rug Warrior, mmmﬁ 509@
the servos so that they can spin all the way around. m;mcwm 7.18
shows the gearhead portion of the Maxi Servo; it has four stages of
reduction for a 143:1 geardown. The motor shaft is at the Em_pﬁ the
potentiometer shaft is at the left (the motor and potentiometer are

~ below, inside the case), and the third shaft is in the miiddle. The

output power is taken off at the potentiometer shaft. A plastic nib,
molded onto the gear there, prevents the shaft from turning multiple
revolutions. Above that nib is a metal ring, é?nﬁ is the ball bearing
that supports the.load.

Next, cut that plastic nib off. A pair of dikes (i.e., diagonal
wire cutters) will work fine for the job. Then take that gear off and
remove a plastic inset from its underside, which the potentiometer
shaft’s flat is held against. Not all servo motors have this feature
of the removable inset. Some have the inset molded into the gear

-and have the gear turn directly on the potentiometer’s shaft, which

means it is not possible to easily make it continuously revolvable.

224 7. Motors

Figure 7.19. A bottom view of the servo in the previous picture shows a Mabuchi
motor is in the righthand portion of the casing. The lefthand portion holds the
potentiometer and a small circuit board containing an integrated circuit for servo
control.

The Royal Titan servos have the removable inset and also have the
gear resting on a bushing around the pot’s shaft, which means you
can actually remove the potentiometer completely. This brings us to
the next step; removing the potentiometer.

Figure 7.19 is a view from the underside of the servo motor, with
the cover removed and the potentiometer and servo circuit pulled
out. Clip the wires for your motor, removing the circuit board.
Take out the potentiometer by removing the screw holding it in
place. Note the motor on the right. It is a Mabuchi motor and
comes equipped with a capacitor across its leads and two resistors
to ground to suppress noise spikes from the motor. Desolder the
remains of the wires from the servo circuit, and solder on two new
wires to the two terminals of the motor. Replace the cover over
the gears, making sure the shafts sit properly in their holes. Try
hooking a power supply or a battery pack up to two motor leads.
The motor should spin continuously. Reversing the polarity of the
applied voltage should reverse the direction of spin. :

Adding wheels to a servo motor is convenient because servo mo-
tors come with an assortment of attachments (plates, levers, star-
shaped mounting brackets, etc.) that are designed to fit snuggly

7.6 Motors for Rug Warrior 225

onto the output shaft. Figure 7.20 illustrates a servo motor with
the lever attachment. A simple way to mount the LEGO gear is to
use the circular plate attachment (instead of the lever attachment),
which is roughly the same size as the gear; sand off any small ridges
on the plate and/or the gear and glue them together.

It may seem odd to actually throw away a few components from
a servo motor and still wind up with the lowest-cost route to a DC
gearhead motor. Such are the benefits of mass markets. We will use
a MC68HC11A0 and some power electronics (in a form known as
an H-bridge) to drive the motors for steering Rug Warrior’s treads.
However, first let us digress a moment to explain how and where an
unmodified servo motor would normally be used.

7.6.4 Unmodified Servo Motors

Typically, a radio-controlled model airplane servo motor is used to
adjust a control surface on a wing of a model airplane to a certain
position. The integrated circuit and potentiometer are used to im-
plement a closed-loop position control system. The radio sends what
is known as a pulse-code modulated signal to a receiver on the model
plane. As stated earlier, of the three wires emanating from the servo
motor, one is for power, one is for ground, and one is connécted- to
this pulse-code modulated signal. Figure 7.20 illustrates awm @380&
for commanding the servo to a given position.

Basically, a servo motor expects a train of pulses 0m <@J~5m
widths. These pulses are repeated at a given period, @UEME% set

‘to 20 ms. The width of the pulse is the code that signifies to what

position the shaft should turn. The center position is usually at-
tained with 1.3 ms wide pulses, while pulse widths varying from 0.7
milliseconds (ms) to 1.7 ms will command positions all the way to
the right and all the way to the left, respectively.

These position servo motors can be very useful for robot acces-
sories (such as fingers, grippers, legs, and squirt guns) where the
range of motion does not require continuous revolution. For contin-
uous motion, we described how to modify the servo and reduce it to
asimple DC gearhead motor by throwing away the control circuit

‘and power electronics that come with it and adding our own. How-

ever, there is a way to use these motors as continuous revolution DC

226 7. Motors

0.7ms

—» 1.7m9

20ms

x

Figure 7.20. An unmodified servo is a three-wire device that takes power,
ground, and a pulse-code modulated signal, such as the one shown above. Wider
or thinner pulses tell the servo to move to a designated position, either clockwise
or counterclockwise from center.

gearhead motors without having to add our own H-bridges and con-
trol electronics. The trick is to remove the inset in the plastic gear
as before, which affixes itself to the flat of the potentiometer’s shaft,
but do not actually remove the potentiometer. Set the potentiome-
ter to its central position. Now the gears will turn continuously but
the potentiometer will never move. With this configuration, if we
send the motor a pulse-code modulated signal to move all the way
to the right, the motor will try to comply, never get any feedback,
and never stop. Similarly, a pulse-code modulated signal to move
to a position to the left will cause continuous rotation all the way
to the left. This is an elegant trick (hack, to use the proper term)
but we do not pursue it any further for Rug Warrior, because we
want to explain how to attack the more common problem of driving
a regular DC motor in general, and how to implement a servo loop.

7.7 Interfacing Motors

A microprocessor cannot drive a motor directly, since it cannot sup-
ply enough current. Instead, there must be some interface circuitry
so that the motor power is supplied from another power source and

7.7 Interfacing Motors 227

H-bridge
S1 S3
+ + Vv -
Supply
voltage 6
S2 S4

Figure 7.21. A circuit topology known as an H-bridge is used to control a motor.
Four switches are controlled by a microprocessor and determine the direction in
which current is allowed to pass through the motor. Changing the direction of
the current changes the direction of the motor rotation. ,

only the control signals derive from the microprocessor._This inter-
face circuitry can be implemented in a variety of technologies, such
as relays, bipolar transistors, power MOSFETs (metal oxide semi-
conductor field effect transistors), and motor-driver integrated cir-
cuits. In all technologies, however, the basic topology of the circuit
is usually the same. This circuit is known as an H-bridge and merely
consists of four switches connected in the topology of an H, ,.g.\r,oam

- the motor terminals form the crossbar of the H, as showirin Figure
'7.21. You can imagine the abstraction of each switch as being imple- -

mented by either relays or transistors, where the power is supplied
by the battery and the control signals by the microprocessor.

7.7.1 H-Bridges

In an H-bridge, the switches are opened and closed in a manner so as
to put a voltage of one polarity across the motor. for current to flow
through it in one direction (setting up magnetic fields and causing

-it to turn) or a voltage of the opposite polarity, causing current to

flow through the motor in the opposite direction for reverse rotation.

228 7. Motors

€t on —

t Pulse Width Modulation

period

" Figure 7.22. Pulse-width modulation of the voltage, by turning switches in the
H-bridges on and off for various lengths of time, creates a different average voltage
across the motor. Solid lines represent voltages applied when the switches are
closed. Dotted lines represent the resulting average voltage applied across the
motor.

For example, if switches S1 and S4 in Figure 7.21 are closed while
switches S2 and S3 are open, current will flow from left to right in
the motor. When switches S2 and S3 are closed and switches S1
and S4 are open, current will flow from right to left, reversing the
motor. If the terminals are floating, the motor will freewheel, and if
the terminals are shorted, the motor will brake.

To control the speed of the motor, the switches are opened and
closed at different rates in order to apply different average voltages
across the motor. This technique, called pulse-width modulation, is
illustrated in Figure 7.22, where V is the voltage across the motor
and ¢ is time. For instance, if switches S1 and S4 are used for pulse-
width modulation while switches S2 and S3 are left open, the voltage
across the motor (as defined in Figure 7.21) will be equal to and of
the same polarity as the supply voltage when S1 and S4 are closed
and 0 V when they are open. The speed of a DC motor can be
adjusted by changing the pulse-width ratio:

Pulse-Width Ratio = |§|

ﬁmﬂfu&

of the voltage applied across its terminals.

7.7 Interfacing Motors 229

Note that what we are describing here is different from pulse-
code modulation for servo motors, discussed earlier. There, some
“intelligence” was added so that the pulse width was a code signifying
to what position the servo should move. Here, we are merely using
varying pulse widths to create different average voltages across the
motor to change its speed.

We mentioned before that the abstractions of switches in Figure.
7.21 can be implemented in a number of ways. Relays can be used to
turn motors on and off and reverse their directions as we saw in the
TuteBot example, but relays are seldom used in pulse-width modu-
lation speed controllers because they typically cannot switch quickly
enough. Relays also tend to wear out. Solid-state switches, such
as power bipolar transistors and power MOSFETS, are more conve-
nient for pulse-width modulation schemes, and we will concentrate
on these implementations here.

It is possible to design your own solid-state H-bridge controller,
but there are also a number of single-chip solutions on the market.
We chose one of these for Rug Warrior, and the anxious reader can
skip ahead to the section on motor-driver power integrated circuits
(see Section 7.7.4). However, if your particular project-has require-
ments not available in a commercial H-bridge chip or if you are sim-
ply curious, the following sections give a bit of background on Ssmn
is inside a motor-driver integrated circuit. v

7.7.2 Switching Inductive _.omam.

Whether using solid-state switches or relays, problems.arise when
switching inductive loads such as motors, as illustrated in Figure
7.23. We know that the voltage induced across an inductor is pro-
portional to the rate of change of current through it:

—
v=L%

If the current through an inductor has reached a steady state
and is not changing, the voltage across it is 0 V and the inductor
behaves like a straight piece of wire. Figure 7.23(a) shows what
happens if that steady-state current is upset by the opening of a

- switch. Namely, SS current cannot instantaneously go to 0 A so

a voltage, v = L% £ is induced in a direction opposing the flow of

230 7. Motors

+Vec +Vee +Vee

) ‘_Pg . Diode
\v\
M <
o

1

(@) (b) (©)

Figure 7.23. (a) The steady-state current through an inductor, I,., cannot
immediately go to 0 A when the switch is opened. The changing current induces
a voltage across the inductor, making the potential at A greater than at B, causing
the switch or relay to arc over. (b) Flyback diodes protect switches from blowing
up. (c) Transistor switches must be protected in the same manner.

current. That is, the point marked A will be at a potential positive
with respect to point B (which is at V..). Although the current
does not change instantaneously when the switch is opened, it does
change very quickly, and the faster the rate of change, the larger
the induced voltage spike. Depending on the size of the inductor,
the magnitude of the current, and how quickly the switch is opened,
these voltage spikes can temporarily reach several hundred volts or
more, enough to cause the switch to arc over and blow up.

The solution to this problem is to put what is known as a fly-
back diode in the reverse direction across the inductive load (Figure
7.23([b]) so that the voltage spike will forward bias the diode, creat-
ing a return path for the current. In this way, the power will “fy
back” to the power supply.

Solid-state switches are just as susceptible to voltage spike de-
struction as mechanical switches, which is why transistor circuits
switching inductive loads are usually shown with appropriate fly-
back diodes, as illustrated in Figure 7.23(c).

7.7 Interfacing Motors 231

7.7.3 Power Electronics

As we discuss controlling motors from a microprocessor and the
power electronics needed for the interface, we will talk about tran-
sistors used as switches. In Chapter 5 on sensors, we saw transistors,
or collections of transistors in the form of op-amps, used as linear
amplifiers to add gain to a circuit for amplifying small signals from
sensors into larger signals understood by a microprocessor. The mi-
crophone circuit and the sonar circuit were examples. In addition
to transistors used as linear amplifiers, we have also seen transistors
used in another way: as CMOS (complementary metal oxide semi-
conductor) logic-gate switches. All the circuitry making up the in-
ternals of the 6811, its associated RAM and various discrete NAND
gates and inverters, are simply composed of low-power, n-channel
and p-channel MOSFET transistors used as switches. MOSFETs
are similar to bipolar junction transistors in some sense, yet differ-
ent in many ways. We will give some oosvmamobm and contrasts
between MOSFETSs and transistors in a moment. .

First, however, transistors can be classified another way, either as
signal-level devices or as power devices. Transistors used for linear
amplification of sensor signals or for logical manipulation of bits
are concerned with processing information and are generally low-
power devices. Power transistors, on the other hand, are capable of
handling larger currents and voltages. They might be used as linear
amplifiers in output stages of high-fidelity audio systems: to. drive
speakers or they might be used as switches in ma_uEQWWm to -pulse-
width modulate motors requiring large currents. Power devices are
typically larger than signal-level devices, as they require more silicon
area for higher current-handling capability and larger packages for
heat dissipation.

Semiconductors and Charge Carriers

Solid-state switches and power electronics are semiconductor devices.
What is a semiconductor exactly, and why is silicon the material of
choice for the semiconductor industry?

In a normal conductor, for instance, a metal such as aluminum,
free electrons act as charge carriers and move in a direction toward a

232 7. Motors
(G- Forward Bias Reverse Bias
anode -_ cathode + __ — - _ +
holes electrons Ip—> Ip=0
° o> _ _ <o ol .
-lO o [] - +| .O 4n|v. - -0 .IV'IT
°Colee o |0 <o o .
P N P N P N

(a) (b) (c)

Figure 7.24. (a) A diode is simply a PN junction, where the p-type region is the
anode and the n-type region is the cathode. (b) When forward biased, holes and
electrons cross the junction, causing current to flow. (c) When reverse biased, no
~ current flows. :

positive potential. (Recall that positive current flows in the direction
opposite to that of electron flow-so positive current moves away from
a positive potential.) An insulator such as glass is the complement of
a conductor, has no free charge carriers, and does not conduct cur-
rent. A semiconductor on the other hand, lies somewhere in between.
It is neither a perfect insulator nor a perfect conductor.

Because silicon has four valence electrons in its outer ring, it
loves to bond covalently with other silicon atoms and create a perfect
crystal lattice, much like diamond. Silicon is a semiconductor, and
by adding various levels of impurity atoms, such as phosphorus or
boron, silicon can become increasingly conductive. The reason that
silicon is the material of choice for the semiconductor industry is that
it is the only semiconductor that grows a native oxide layer. That is,
when exposed to air, the silicon at the surface combines with oxygen
to form a thin layer of silicon dioxide, essentially, a glass. Thus, in
silicon processing, it is very convenient to create both conductors
and insulators, a feature useful for patterning devices.

Another important characteristic of a semiconductor such as sil-
icon is that two types of charge carriers are available to conduct cur-
rent. Not only are electrons available to conduct current, but charge
carriers called holes can also be developed. When impurity atoms
of phosphorus are implanted in silicon, the five valence electrons in
phosphorus’s: outer ring cause phosphorus atoms to bond into the

| Bipolar Transistors

7.7 Interfacing Motors 233

crystal silicon lattice, giving up one free electron as a charge carrier.
Since electrons carry negative charges, regions of silicon doped with
phosphorus are called n-type regions.

When impurity atoms of boron are added to single-crystal sili-
con, the three valence electrons of boron’s outer ring cause boron
atoms to bond into the silicon lattice, leaving a vacancy or hole. If
electrons from other covalent bonds leave and fill these holes, the
holes have essentially moved, creating a passage of positive charge
carriers. Regions of silicon doped with boron are then termed p-type
TegLons.

All the interesting behavior in silicon devices comes about at
junctions of n-type and p-type regions. In fact, a diode is nothing
more than a mmsmﬂm PN junction, a junction of p-type and n-type
material. Figure 7.24 illustrates how a diode works. When for-
ward biased, holes and electrons each cross over the PN junction,
attracted to the far terminals. They then mix and recombine, be-
coming neutral. New charge carriers are supplied by the terminals,
and a continuous flow of both types of charge carriers is maintained,
resulting in a steady-state current. When the PN junction is reverse
biased, holes and electrons are each attracted to their-nearby ter-
minals and absorbed by them. The charge carriers move away from
the junction, and the device becomes depleted of charge carriers.
Thus, no current flows. This ability to allow current to flow or not
flow, depending on the polarity of applied voltage, is the essential
characteristic of a diode. « B,

We saw that a diode is a single PN junction. A bipolar junction
transistor is simply two PN junctions, back to back. There are two
possible combinations of two PN junctions, npn or pnp, as shown in
Figure 7.25. v

Although simply having two PN junctions instead of one would
seem only a minor addition at first glance, the realization and im-
plementation of this technology has changed the world, for the third
terminal on this dual-charge-carrier device allows the current to be

. controlled. The current can be either amplified when used in an

analog fashion or switched when used in a digital manner.

234 7. Motors

C &_n
+

npn bipolar transistor pnp bipolar transistor

(a) (b)

Figure 7.25. Bipolar junction transistors are made up of two PN junctions, back
to back. (a) In an npn bipolar transistor, the collector and emitter are n-type
while the base is p-type. (b) In'a pnp bipolar transistor, the collector and emitter
are p-type while the base is n-type.

‘We mentioned before that transistors can be either signal-level
devices or power devices. It turns out that, while these two types
of transistors arise from the same semiconductor physics, they are
fabricated differently. Figure 7.26 illustrates silicon cross-sections
through a signal-level npn bipolar junction transistor and a power
npn bipolar junction transistor. Plus signs on the n and p regions
designate heavily doped areas (very conductive). A minus sign would
denote lightly doped areas (slightly conductive).

"In a signal-level bipolar device, all the terminals are patterned
from the top side of the silicon wafer and the voltage between the
base and emitter controls the flow of current from the collector to
the emitter. For instance, in an npn device, when the base-emitter
diode is forward biased, negative charge carriers “emitted” by the n-
type emitter region travel toward the base but then are swept across
into the collector region (before having a chance to get caught and
recombine with any holes in the p-type base region) when a larger
positive voltage is applied to the collector. Some small current must
be supplied by the base to replenish any holes that did recombine
with passing electrons, but this base current is much smaller than
the collector current (which is why a bipolar transistor is a current
amplifier). For signal-level devices, base, emitter, and collector all
lie along the top surface of the silicon wafer and the backside is not

7.7 Interfacing Motors 235
e S
T

w\ p nt n % nt
+
n P
n

b Tt _)
C

signal-level npn bipolar transistor —~ power npn bipolar transistor

(a) (b)

Figure 7.26. (a) In a signal-level device, all electrical terminals are on the top
side of the silicon wafer and current flows along the surface, from collector to
emitter. (b) In a power transistor, the backside is used for one of the electrical
terminals and current flows vertically through the chip.

connected to anything. By having all wmwamdm._m on the top side, it is
easy to fabricate many different signal-level devices and interconnect
them, allowing for very-large-scale EﬁomwmﬁES A<bmHv for complex
information-processing systems.

In a power device, on the other hand, the vmnwmpao of the silicon
wafer is used for one of the electrical terminals (the collector) and
current flows vertically through nvm chip. Since power devices must
handle more current and more heat, they are typically larger, often
use backside connections and seldom integrate large numbers of dif-
ferent devices. More often, the tendency is to mmuca caté hundreds
or thousands of vertical power transistors in UE.@:& on one chip,
creating in effect one very big transistor.

The cross-sections shown in Figure 7.26 are for npn bipolar tran-
sistors. The pnp bipolar transistors would have similar topologies
but p regions would be replaced by n regions and vice versa. Since
turning on a bipolar transistor requires forward biasing the base-
emitter diode, turning on an npn version requires that the base be
more positive than the emitter (at least 0.6 V more positive to be
precise, as that is a diode’s turn-on threshold). Conversely then,

“turning on a pnp version of a bipolar transistor requires that the

base be 0.6 V more negative than the emitter.

236 7. Motors

drain e_c

|— +
body V
gate £ v bs
Ves

source
n-channel signal-level MOSFETs
(a)

channel

f

body

drain @_U

I\, +
body V,
gate Y bs
+
Vs _

source

channel

'

body

p-channel signal-level MOSFETs
(b)

Figure 7.27. Signal-level MOSFETS also have all electrical terminals on the top
side of the silicon wafer. (a) In an n-channel MOSFET, when the gate is positive
with respect to the source, holes in the p-type body region move away from under
the gate, leaving an n-type channel and allowing electron current to flow from
drain to source. (b) In a p-channel MOSFET, when the gate is negative with
respect to the source, electrons in the n-type body region move away from under
the gate, leaving a p-type channel and allowing hole current to flow.

MOSFETs

Bipolar junction transistors rely on having two PN junctions in the
main current path, which is why they are called bipolar devices. In
contrast; a MOSFET has no PN junctions in the current path and
is a monopolar device. Figure 7.27 illustrates symbols and cross-
sections for n-channel and p-channel signal-level MOSFETS.

In the monopolar device, MOSFET junctions are fabricated to
maintain separate regions of charge carriers when the device is off,
but when an electric field is applied to the gate to turn on the device,
the channel region separating two regions of like charge carriers is
inverted making it the same “flavor” of charge carrier.

To be precise, we are speaking of enhancement-mode MOSFETs
here (as opposed to depletion-mode MOSFETSs) where, when the
gate-source voltage is 0V, the device is off. In this way, the entire
current path is a region of the same type of majority carriers.

The two types of MOSFETSs are then called n-channel and p-
channel MOSFETSs, and the three electrical terminals that corre-

7.7 Interfacing Motors 237

spond in many ways to the base, emitter, and collector of bipolar
transistors are called the gate, source, and drain, respectively.

Notice that signal-level MOSFETSs are similar to signal-level bipo-
lar transistors in that the backside again is not used for any of the
three electrical terminals. However, in the schematic symbol for a
MOSFET, the body terminal is explicitly drawn in, whereas in the
bipolar schematic, it is omitted.

One reason for this is that the body forms a PN junction with the
channel when the MOSFET is on. The arrow on the body terminal
connection is pointed in the direction that a diode’s arrow points
(from p to n), signifying the direction of the PN junction between
the inverted channel and the body when the MOSFET is on.

Because of the formation of.a diode when the channel is inverted,
the body must be held at a voltage that will not allow it to conduct.
The body can be tied to the source (as is done in a power MOS-
FET) or to a more negative voltage in the circuit for an n-channel
MOSFET. (For a p-channel MOSFET, the body can be tied to a
voltage more positive than the source.) Sometimes, schematics leave
the body connection out and we must assume that it is tied to a volt-
age that will keep the body-channel diode from. conducting. Note,
however, that the arrow on the body terminal is the. only way to
distinguish whether the MOSFET is n-channel or p-channel, .

The gate terminal in the schematic is drawn with 4 ,.voi,moa,m;
line extending from the source end of the gate. This is wo,., clarify
which end of the device is intended to act as the source and which

" end is intended to act as the drain. Actually, a signal-level MOSFET

is symmetric and can be used reversibly (and often is used this way
in analog multiplexors and pass transistors for memories). For this
reason, some schematics use a symmetrical gate connection, where
the gate terminal is midway between the drain and the source.

Another reason the body terminal is drawn explicitly is that,
if a power device is fabricated instead of a signal-level device, the
backside connection is used as the drain. The central body region
is then connected to the source, and this connection creates another
device, a source-drain diode. A power MOSFET then is not symmet-

‘ric. Symbols and cross-sections for n-channel and p-channel power

MOSFETS are illustrated in Figure 7.28.

238 7. Motors

source

(2) n-channel power MOSFETs

Body S

source I

gate J_mw W Jrﬁtl»

drain BE

{b) p-channel power MOSFETs D

Figure 7.28. Power MOSFETSs use the backside of the wafer as the drain. (a)
When an n-channel power MOSFET is turned on, the p-type body region is
inverted under the gate leaving a channel for electron current to flow vertically
through the chip. (b) When a p-channel power MOSFET is turned on, hole
current flows vertically through the chip.

Comparisons and Contrasts

Bipolar transistors and MOSFETs are similar in many respects, but
a number of differences are worthy of note. First, though, let’s take
a moment to point out the general differences between n-type and
p-type devices.

It turns out that the two types of charge carriers, holes and elec-
trons, are not completely symmetric. Holes are not as mobile as
electrons, and p-type devices, whether pnp bipolar transistors or p-
channel MOSFETS, are never quite as good as n-type devices. In a
bipolar transistor, a pnp device’s high-frequency operation is poorer
than a npn transistor’s operation. In a MOSFET, a p-channel device
does not exhibit as low on-resistance as an n-channel device. In fact,
in the early days of MOSFETS, processes typically only gave the de-
signer the option of having n-channel MOSFETs (often abbreviated
as NMOS transistors). Later, when p-channel MOSFETS, or PMOS
transistors, were introduced into the same process, the process be-
came known as CMOS (complementary metal oxide semiconductor),
since complementary n-type and p-type devices were then both avail-
able. Because p-type devices are poorer than n-type devices, this
lack of performance has repercussions in the design of H-bridges for
driving motors.

7.7 Interfacing Motors 239

One of the main differences between a MOSFET and a bipolar
transistor is that a MOSFET is essentially a voltage-controlled device
while a bipolar transistor is a current-controlled device. In a MOS-
FET, the gate oxide creates a capacitor between the gate and the
source, 8o the steady-state gate current is 0 (although some charging
and discharging currents flow when turning-on and turning-off the
device). Since very little gate current is required, MOSFETSs are
fairly easily driven from microprocessors or CMOS logic gates.

In contrast, bipolar transistors are current-controlled devices. In-
stead of having a capacitor between the gate and source, as in a
MOSFET, the bipolar transistor has a diode between the base and
emitter. Once the base-emitter diode is forward biased, the collec-
tor current is controlled by the base current. The ratio of collector
current to base current is the current gain, 3

_Ig
B =1

For signal-level bipolar transistors, the current gain might be 100
or 200, but for power bipolar transistors carrying large numbers of
amps, current gains are typically much lower, possibly on the order
of 20 or 50. E -

Data sheets for devices under consideration should be checked for
more specific numbers, but even so, current gains can differ widely
from piece to piece (for the same part number of transistor) due to
process variations between manufacturers. In general, ﬁwoF@F power
bipolar transistors require significant amounts of base current. Since
these magnitudes of base current cannot be delivered directly from
microprocessors or logic gates, another level of interface circuitry
is often needed to drive the H-bridges that are driving the motors.
In addition to the added complexity involved in the bias network,
the base current through the base resistor dissipates power (not to
mention the power dissipated by the additional layer of interface
circuitry).

In order to compare the efficiencies of bipolar power transistors
and power MOSFETsSs for driving motors, return once again to the
illustration of the H-bridge in Figure 7.21. For the ideal switches in

-that diagram, the voltage across the motor is always equal to the

full magnitude of the supply voltage when opposite sets of switches

7.7 Interfacing Motors 241

240 7. Motors

(51 and S4, or S2 and S3) are closed. That is, there is no voltage
drop across an ideal switch.

Real solid-state switches, however, do have finite voltage drops.
The voltage drops associated with bipolar power transistors and
power MOSFETSs come about in different ways, however. In a power
MOSFET, there are no PN junctions in the main current path from
drain to source once the device has been turned on. Consequently,
the only thing holding back charge carriers are factors such as their
mobility, the width of the channel, and the like. These factors can be
characterized as an effective resistance from drain to source. When
the device is turned on as hard as possible, the channel becomes
as wide as possible, giving the smallest on-resistance. This leads
. to the lowest voltage drop across the device, so this is the region
where power MOSFET's should be run when switching motors. Fig-
ure 7.29(a) shows the Ip vs. Vpg characteristics for an n-channel
power MOSFET.

The area to the left of the dotted line, where Ip increases with
Vps, is known as the constant-resistance or linear region. Typical
MOSFETSs have a threshold voltage on the order of 3.0 V-5.0V, be-
low which the MOSFET is cut off. To the right of the dotted line,
for larger drain-source voltages and depending on Vg, the channel
becomes maximally opened and the current, Ip, reaches a satura-
tion condition, where it remains constant even as Vpg is increased.
If the gate voltage is high enough, usually around 10.0 V, the drain
current stays in the constant-resistance region and the voltage drop
from drain to source is minimal, as shown in the figure. This is the
region in which a power MOSFET is run when switched to the “on”
state, as the voltage drop, Vpg, across the switch is minimized.

The inverse of the slope of an Ip-Vpg curve in this linear region
is the on-resistance (me = m.Umv of a power MOSFET. The proper
gate-to-source voltage should be chosen given the drain-source volt-
age and the desired current, so as to maintain the device biased in
the constant-resistance region for the most efficient utilization of the
power MOSFET.

The voltage drop across a turned-on bipolar power transistor
comes about for a different reason. Whereas a turned-on power
MOSFET has a continuous region of like charge carriers from drain
to source, a bipolar transistor has two PN junctions in the current

Forward Active
Constant Resistance Saturation or
or Region Linear Region
Linear Region Saturation Region e $
|

I k8<\ $ c “_
! !

oV

90mA
70mA

50mA
! 8V

w Vv sma g

v 10mA

5V

_a<< Y]

DS CE
n-channel MOSFET npn bipolar transistor

(a) (b)

Figure 7.29. (a) An n-channel MOSFET shows these typical Ip-Vps character-
istics. When biased in the constant-resistance region, a MOSFET can be modeled
as a resistor, where Ip varies linearly with Vpg. (b) An npn bipolar transistor is
controlled by the value of the base current rather than the voltage as in case of
a MOSFET.)

path from collector to emitter, as was shown in Figure 7.25. In a
turned-on bipolar transistor, the base-emitter diode is forward bi-
ased and the collector-emitter diode is reversed biased (at least, in
the usual case of linear region operation). However, if the bipolar
transistor is completely on, the collector potential mwocﬁdm,ﬁo.mm to
that of the emitter potential (approaching the case of aii-ideal switch
where there would be 0 V between collector and emitter): The clos-
est a bipolar transistor can come is to have the collector-base diode
no longer reverse biased but forward biased. With the base-emitter
diode forward biased (transistor turned on) and the collector-base
junction also forward biased, the bipolar transistor is in what is
known as the saturation region of operation, where Vop is almost
constant and very small (Vog = Vog(sar)) for any value of base
current. Figure 7.29(b) illustrates the I versus Vg characteristics
for an npn bipolar transistor.

This saturation region is to the left of the dotted line in Figure

- 7.29(b) and is the region where a bipolar power transistor should

be run when switched to the “on” state in order to provide the

242 7. Motors

minimum voltage drop across the switch. The region to the right of
the dotted line is known as the bipolar transistor’s forward active
region. The forward active or linear region is the region in which a
bipolar transistor is used as a linear amplifier.

In comparing the graphs in Figure 7.29(a) and (b), note that the
MOSFET is a voltage-controlled device, where Ip is determined by
the value of Vg, and the bipolar transistor is a current-controlled
device, where Ic is determined by the value of Ig. Note, too, that
the MOSFET"s saturation region looks like what is called the linear
region for a bipolar transistor, and the MOSFET"s linear region looks
like what is called the saturatior region for the bipolar transistor.
Again, this has to do with the MOSFET being a voltage-controlled
. device and the bipolar transistor being a current-controlled device
and what parameter in each is actually being saturated.

Nevertheless, the point to be made is this: when transistors are
used as switches, they should be biased in the regions to the left of
the dotted lines in the figures so that they approach the function of
ideal switches as closely as possible. That is, when an ideal switch
is closed, it should have 0V dropped across it. Solid-state switches
cannot completely meet this goal, but when turned on hard enough,
they can come as close as possible.

Any voltage drop appearing across a closed solid-state switch
contributes to wasted power. For instance (referring again to Figure
7.21), if switches S1 and S4 are on and are implemented with bipo-
lar transistors each having 0.3V saturation voltage drop and if the
supply voltage is 5.0V, then only 4.4V appears across the motor.
Additionally, if the motors draws 500 milliamps (mA), then 2.2 W
is delivered to the motor while 300 milliwatts (mW) is dissipated as
heat in switches S1 and S4. .

Deciding whether to choose power MOSFETSs or power bipolar
transistors when designing an H-bridge depends largely on which
type of device will yield the most efficient solution. The answer de-
pends on the power required by the motors and the choice of devices
available. If MOSFET devices can be found that have low enough
on-resistances and if, for the required current, they produce voltage
drops less than saturation voltages of comparable bipolar devices,
then power MOSFETs may be the right choice for designing an H-
bridge.

7.7 Interfacing Motors 243

When comparing and contrasting bipolar transistors and MOS-
FETs, another characteristic to take into consideration is how each
type of transistor responds to temperature increases, as running large
amounts of current through a transistor causes it to heat up.

Bipolar transistors are subject to a condition known as thermal
runoway. When current flows through the device, it gets warmer
and the temperature rise affects the bipolar transistor in such a way
that more current flows. With additional flow of current, the de-
vice gets even warmer and the problem escalates. Thermal runaway
means that bipolar transistors cannot share current when configured
in parallel. If one bipolar transistor has slightly more current run-
ning through it, it will heat up, allowing more current to flow; it will
eventually hog all the current, resulting in thermal runaway. .

In contrast, MOSFETSs do not suffer from thermal runaway and
lend themselves nicely to parallel configurations. The on-resistance
of a MOSFET increases with temperature, providing a negative feed-
back effect. As more current flows through a MOSFET, its resistance
increases and the current through the device decreases until a stable
operating point is reached. Consequently, MOSFETSs do not suffer
from current hogging.

This feature is often taken advantage of in motor drives for elec-
tric vehicles and solar cars. Instead of purchasing one very large
power MOSFET to switch current from an electric vehicle’s battery
to its engine, designers often buy the most economical v.oémﬂ.zOm-
FETs and place them in parallel. Up to 150 &mowon.m,&nﬁomw are
often paralleled in this way. gl

For a small mobile robot, however, where space is a primary
concern, power MOSFETs do have some disadvantages. Because
typical power MOSFETSs need 8V to 10V for full-on gate drive, it
may be inconvenient to drive a power MOSFET from a battery-
powered robot using a single battery pack. Alkaline batteries come
in 1.5V cells and nickel-cadmium batteries come in 1.2V cells; many
of the design decisions for a small mobile robot revolve around the
issues of battery pack selection, motors, and motor drivers, as the
weight-of the robot is primarily composed of these elements. If four
alkaline cells are used as a 6 V power supply for the electronics, either

-more batteries or a charge pump must be provided to create the 8V

gate drive.

244 7. Zoﬁo,\m

+Vee |

I
T -
Bias Network
E
Bias Network

i
i

b

_—
~—

(@)

Figure 7.30. (a) A MOSFET implementation of an H-bridge, with p-channel
devices on top and n-channel devices on bottom is shown here. (b) A bipolar
transistor implementation of an H-bridge, with pnp devices on top and npn de-
vices on bottom, requires more complex biasing circuitry to provide level shifting
and base currents for the bipolar transistors.

One way around this problem is to use special low-threshold
MOSFETs. These devices use very thin gate oxides to bring the
turn-on voltages down to ranges from 1V to 2V. With threshold
voltages that low, full-on gate drives can usually be achieved at 5V.
Such devices are called logic-level MOSFETs. Supertex makes a
wide line of low-threshold MOSFETs. Motorola and International
Rectifier also carry a variety of MOSFET devices.

H-Bridge Implementations

Whether MOSFETSs or bipolar transistors are chosen to implement
the H-bridge, the topologies are very similar. One convenient way to
set up an H-bridge is to use p-type devices for the high-side switches
and n-type devices for the low-side switches. ‘

Figure 7.30 illustrates H-bridges in both bipolar and MOSFET
technologies. If the gating signal on the left in each schematic is
pulled low, the left-side bottom switches will be off and the left-side
top switches will be on. If, at the same time, the right-side gat-
ing signals for each H-bridge are pulled high, the right-side bottom

7.7 Interfacing Motors 245

+Vee

i

Ve + 10V l_ |

LOAD

Figure 7.31. An n-channel MOSFET used as a high-side switch must have its
gate voltage pulled higher than that of the positive supply in order to be on hard
enough that the voltage drop between drain and source approaches 0V.

switches will be on and the right-side top switches will be off. This
configuration is exactly the scenario described in Figure 7.21 when
switches S1 and $4 were on and switches S2 and S3 were off, allowing
current to flow from left to right through the motor. Note that, in
a MOSFET version of an H-bridge, flyback diodes do. not have to
be added discretely, as the built-in source-drain diodes provide the
flyback function.

However, because p-type devices have higher on-resistances than
n-type devices, it is possible to design more efficient H-bridges: if
n-type devices are also used for the high-side switches. ‘The only
problem with this design decision is that, if an n-type device is-used
for the high-side switch, the gating voltage to turn on the high-side

switch must be pulled higher than that of the positive rail. For

instance, in a MOSFET (see Figure 7.31), if an n-channel MOSFET
is switching a load between the source and ground, the voltage at
the source when the switch is on, should be very close to that of
the positive supply rail. Since the gate turn-on voltage must be
approximately 10V higher than the source, the gate voltage must be
Voo + 10V. Even if low-threshold devices are used, the gate voltage
must be Voo + 5V, still requiring a separate power supply.

One solution to this problem is to add additional circuitry to the

- gate-drive network in the form of a charge pump. Charge pumps

use switched capacitors to create voltages higher than the supply

246 7. Motors

voltage. This type of design adds extra complexity to the input of
the MOSFET implementation of an H-bridge, but fortunately, many
manufacturers solve this problem by integrating all the required sub-
systems on a single motor-driver chip.

7.7.4 Motor-Driver-Power Integrated Circuits

Motor-driver-power integrated circuits (ICs) make it very conve-
nient to interface motors to microprocessors. Typically motor-driver-
power ICs also have circuitry that provides current-limiting and over-
voltage protection. One single-chip solution is the MPC1710A motor
driver from Motorola. This chip, whose block diagram is shown in
Figure 7.32, uses an H-bridge composed of four n-channel MOSFETs.
A level shifter and charge pump circuit are included on the chip to
drive the high-side switches.

Three capacitors and an inverter are the only external
components required to interface an MPC1710A to Rug Warrior’s
MC68HC11A0. We could use port D pin PD5 to set the forward or
reverse direction of the motor and port A pin A5 to pulse-width mod-
ulate the enable input for speed control. The Motorola MPC1710A
can deliver up to 1A of current with a 0.4 on-resistance when
sourcing current and 0.2 2 on-resistance when sinking current.

For the two motors on Rug Warrior, two MPC1710A chips would
be needed, one for each motor. One motor could be controlled by
pins PD5 and PA5 and the other motor by pins PD4 and PAS.
The MPC1710A comes in a small 16-pin surface-mount package,
which makes it very compact when used in a printed circuit board
design but rather difficult to use when prototyping with Speedwire
or Scotchflex wiring technologies. For this reason, on Rug Warrior,
we chose to use a chip that would be more amenable for our readers,
the SGS Thompson L293D.

The L293D was chosen because it comes in a normal 16-pin dual-
inline package (DIP). This selection, which has two H-bridges on
board, minimizes the parts count and delivers enough power for Rug
Warrior’s motors. The L293D, shown in Figure 7.33, uses a bipolar

H-bridge instead of a MOSFET H-bridge. Again, all switches are -

made from n-type devices and a step-up circuit is incorporated on
chip to drive the high-side switches. Flyback diodes are integrated

7.7 Interfacing Motors 247
v
0.01 uF ﬂ.m
— T_ﬁ_l:.q. Y I MPCI710A
001 _.m.%._u = - ._.aw_Hc_._.Iﬁo
Ty Charge Vbat

4
5| _ cin Pump _ W g
0.01 uf. e -
3] — ciL ! ‘
_ B

1

D5 6|~ FWD |
: REV '
_ll_VO.N.DI Level |

1

1

1

1

7 11
nRes | Logic i '
U>m 8 Shifter l_ _I"
NTIN '
oo | [, 4
PWR GND
DGTL GND _ _ 10 ohms _. 12

9
A - sapl

Figure 7.32. Two Motorola MPC1710As can be used to drive Rug Warrior’s
two motors. One MPC1710A is needed for the left motor and one MPC1710A
is needed for the right. This surface-mount integrated circuit motor driver chip
uses an. H-bridge made from n-channel power MOSFETS. ,

Outl S Out2

- v

in1 ' ._.+Uo| % x v\é 1 20,

EnableA =

Figure 7.33. One motor-driver-power IC is an SGS Thompson L293D. This
power IC incorporates a motor driver using an H-bridge made from bipolar tran-
sistors. While this illustration only shows one H-bridge, two full H-bridges are
actually incorporated in an L293D.

248 7. Motors

oc1

PA0— iC3 Port A
6811

Right
Shaft
Encoder

Figure 7.34. A single L293D chip is used to drive both of Rug Warrior’s motors.
The MC68HC11’s port D pins PD4 and PD5 select forward and reverse for the
left and right motors, respectively, while port A pins PA6 and PA5 pulse-width
modulate the left and right enable pins. Note that OC1 here is used to also
control OC2 and OC3.

on chip in this circuit. The L293D can deliver 600 mA to the motor,
with a saturation voltage drop of 1.4V when sourcing current and
1.2V when sinking current.

Figure 7.34 illustrates how we have interfaced the L293D to Rug
Warrior’s 6811. The L293D has some on-chip logic that provides
an Enable signal. In this way, the Inputs to the H-bridge can be
used to set the direction of the motor and the Enable signal can be
used for pulse-width modulation. We use port D pin PD5 to set the
direction for the right motor. An inverter is used to set one side of
the H-bridge to the opposite polarity voltage of the gating signal of
the other side. This ensures that if switches S1 and S4, for instance,
are on, then switches S2 and S3 will be off and vice versa. Note that
this means that the motor is never actively braked. The H-bridge
is pulse-width modulated by tying the right motor driver’s Enable
pin to port A pin PA5. The output compare function of PAS5 is
used to facilitate timing. One advantage of the L.293D is that two
full H-bridges are incorporated on chip, which means that only one
L.293D is needed to drive both of Rug Warrior’s wheels. Port D pin

7.8 Software for Driving Motors 249

PD4 is used to set the direction of the left motor, and port A pin
PAS6 is tied to the Enable signal for pulse-width modulation.

Many other motor-driver-power integrated circuits are available.
As mentioned in E, the place to begin searching is the IC Master.
The IC Master lists integrated circuits both by part number and
by function. Listings under “Motor Drivers” include a number of
suppliers, such as Unitrode, Siemens, Motorola and International
Rectifier, among others.

Another avenue to pursue is to purchase motor controllers for
radio-controlled cars. These are often called speed controllers, which
is a bit of a misnomer, since it is only the human who provides the
speed control. However speed controllers do incorporate the power
MOSFETsS or power bipolar transistors in discrete H-bridges for driv-
ing larger motors. They are sold by Futaba, Tower Hobbies, and
Sheldon’s Hobbies, and are often mm?.maﬁmoa in radio-control hobby-
ist magazines.

7.8 Software for Driving Motors

The software for controlling Rug Warrior’s motors must do two
things. First, the software needs to control the speed of the robot
in the manner desired by the programmer. For instance, a higher
pulse-width ratio of voltage across the motor is needed to keep the
robot moving up a ramp at one foot per second than would be re-
quired to make it move along a flat tile floor at one mooﬂ per second.
To maintain a desired speed, regardless of terrain, means that the
robot needs to count the number of pulses from one of the shaft en-
coders to see how fast the wheels are turning and then update the
pulse width accordingly.

The second function that the software Bmm&m to perform is to
make the two wheels actually revolve at the same speed so that the
robot will move in a straight line. Recall that, in TuteBot, innate
differences between the two motors caused TuteBot to move in an
arc, even when the same voltage was applied to both motors. In
that case, we simply added resistors in series with one motor until

" both motors went at the same speed. That analog solution was fine

for TuteBot, but here, we implement a digital solution, since Rug

250 7. Motors

Warrior has a microprocessor right at hand. In this way, the solution
is general, and if many Rug Warriors are manufactured, they do not
all have to be individually tweaked with resistor trials. Again, the
solution is to read the shaft encoders from each wheel and increase
or decrease the speed of the right motor, say, to match its speed with
that of the left motor. .

7.8.1 Pulse-Width Modulation

The software we have configured for controlling Rug Warrior’s mo-
tors takes advantage of timer-counter hardware associated with the
MC68HC11AQ’s port A and succeeds in implementing a pulse-width
~ modulation scheme without recourse to either polling or interrupts.
Port A’s eight pins have various output compare and input capture
registers, as shown in Figure 7.34. Refer to the Motorola data books
on the MC68HC11 for a more complete discussion than we will at-
tempt here.

An output compare register can be set by the programmer so
that, for instance, when the timer-counter’s value matches the output
compare register’s value, a pin can be set high or an interrupt can
be initiated. An input capture register has the opposite function.
When a signal on a pin goes low for instance, the input capture
register can store the value of the timer-counter register at the time
that the event happened or initiate an interrupt.

Output Compare Registers

For pulse-width modulation, we will take advantage of the output
compare registers associated with port A pins PA3-PA7, as shown
in Figure 7.34. Pin PA7 happens to hold a dual role as either a pulse
accumulator or as output compare register 1 (OC1). For Rug War-
rior’s right wheel, we have chosen to use PA5, which is associated
with output compare register 3 (OC3) and for the left wheel, PA6,
which is associated with output compare register 2 (OC2). We also
take advantage of OC1 because it is a special output compare reg-
ister in that it can control a given selection of the four other output
compare registers. The closed connections between OC1 and OC2
and between OC1 and OC3 in Figure 7.34 illustrate how we intend
to use the timer-counter capabilities to drive Rug Warrior’s motors.

7.8 Software for Driving Motors 251
\
Right PAS
Motor 25% duty
cycle
] >!
ocCt 0C3 0ocC1
32.77ms
A
Left PA6)
Motor 50% duty
cycle
] >t
ocC1 0C2 0ocC1
’ 32.77ms

Figure 7.35. Pulse-width modulation can be conveniently accomplished using
the MC68HC11AQ’s port A output compare registers. Here, we use three different
output compare registers, where output compare register OC1 directs pins PA5
and PAG6 to both go high at the beginning of each period. Output compare
registers OC3 and OC2 each tell pins PA5 and PA6 when to go low, giving a
programmable duty cycle for each motor.)

Figure 7.35 illustrates the timing sequences for our mymoﬁﬁws‘&rﬁ
will be generated on PA5 and PA6 to implement pulse-width mod-
ulation. . C
The timer-counter itself is a 16-bit register, TCNT; where .the
high byte is at hex address $100E and the low byte is at %Hoom,

TCNT BI5
swooE [| [I [[T T [[T 1

The timer-counter runs at a rate dependent upon Rug Warrior’s
crystal oscillator (and therefore the MC6S8HC11A0’s E clock, which
is on pin 5 of the MC68HC11A0 and can be checked with an oscil-
loscope). The E clock has a period of one-fourth that of the crystal
oscillator frequency. TCNT is a free-running counter that starts at
0 when the MC68HC11AO0 is reset and counts up to 2!%, which is
65,536 counts. The counter then overflows and starts again from O.

-We use an 8 megahertz (MHz) crystal for Rug Warrior, giving the

E clock a frequency of 2 MHz and a period of 0.5 microseconds (us).

252 7. _<_ono.3

By default, the timer-counter counts at the same period as the E
clock, but there is a way to prescale the timer-counter rate, which
involves setting two bits in another register, TMSK2. The lowest
two bits in the TMSK2 register, PR1 and PRO, are used to divide
down the E clock for changing the rate at which the timer-counter
runs.

TMSK2 Bit 7 Bit 0
$1024 [TOI | RII [PAOVI[PAIL| 0 | 0 | PRI | PRO |

For our purposes, we will let the timer-counter run at its default
setting and not bother with changing any values in TMSK2. This
means that, after 2'6 counts at 0.5 s per count, 32.77 milliseconds
- (ms) will have passed. We will use this standard overflow time as the
period for pulse-width modulation, ¢period, as was illustrated earlier
in Figure 7.22.

Our plan is to create the pulse-width modulated signals for the
left and right motors using waveforms generated by OC2 and OC3
associated with pins PA6 and PA5, as shown in Figure 7.35. In this
case, we will use OC1 to set the bits high on both PA6 and PA5 when
the timer-counter is at 0. We will use the OC2 and OC3 registers to
clear the bits on both PA6 and PA5 when the value reached by the
timer-counter matches the values stored in their 16-bit timer output
compare registers, TOC2 and TOC3. So, for instance, if we want
PAS5 to have a 25% duty cycle, then we store 65,536 + 4 = 16,348 in
TOC3. If we want PA6 to have a 50% duty cycle, we store 65,536
<+ 2 = 32,768 in TOC2:

TOC2 B15 BO

swoa8 | | [[T T T T T T T T I T T T T

T 00 000000000000 0
TOC3 BI5 BO
swaa | | [[T T T T T T T T T T [11

60 011111111011 1 0O

To specify what action should be taken on PA5 and PA6 when
the corresponding output compare registers match the timer-counter,
we must set some values in another register, TCTL1. The appropri-
ate bit sequences are shown in Figure 7.36. For the way we designed

7.8 Software for Driving Motors 253

OMx OLx Configuration
0 | 0 [OCx Does Not Affect Pin

0 | 1 | Toggle OCx Pin
1 0 | Clear OCx Pin
1 1 [Set OCx Pin

Figure 7.36. The four actions possible by any output compare pin are to not
change, to toggle, to go low, or to go high. Two bits in the TCTL1 register, the
most significant bit (OMX) and the least significant bit (OLX), set the desired
response for any successful output compare.

our algorithm in Figure 7.35, we want PA5 and PAG6 to be set to
0 when OC3 and OC2 have successful output comparisons. To set
this up, we store the two bits, %10 (which will make the pin go low),
in TCTL1 in the locations associated with OC3 and OC2:

TCTL1 Bit7 . Bit 0
$1020 [OM2] OL2 [OM3 | OL3 | OMZ | OLZ [OM5 | OL5 |

1 0 1 0 X x xH X

The X’s in any bit position represent don’t care’s. With the falling
edge of the pulse configured (the signal transitioning from high to
low), now we just need to set up the OCI rising-edge event (the
transition of the signal from low to high). This is done by wdoibm the
value of time equal to 0 in TOC1, the 16-bit timer ozn :ﬁ ooEﬁmHm
1 register:

TOCL Bl15 v BO

st [T T T [T T T T T T T T T 1T 1]

0 0 00 000 0 0 0 00 O0O0 OO

To configure the hardware so that OC1 will control PA5 and
PAG6, we set values in some auxiliary registers that control OC1.
The output compare 1 mask (OC1M) register signifies which of the
other four output compare registers OC1 will control. The high
five bits in OC1M cortespond bit for bit with a port A output pin.

- Therefore, we store the binary number %01100000 in OC1M to set

up OCI1 to control PA5 and PAG6:

254 7. Motors

OCIM Bit 7 Bit 0
$100C [OCIMAOCIMBOCIMBOCIMADCIME - | - | -]

b'd 1 1 X X X X X

Once we have selected which pins will be active, we can pro-
gram the action that we want to result when the timer-counter value
matches the value of 0 in TOC1 by setting some values in the output
compare 1 data (OC1D) register. By setting the bits corresponding
to PA5 and PA6 to 1, whenever the timer-counter overflows and
returns to the value 0, the PA5 and PA6 pins will be set to 1, which
forms the rising edge of each pulse.

oo:uww: w;o
$100D [OCID7OCIDEOCIDEOCIDAOCIDY - | - [-

X 1 1 b4 X X b'd X

By using these built-in hardware features of the 6811, no inter-
rupts or polling sequences are required to implement pulse-width
modulation. We simply write to some registers in the timer-counter
system and all actions on pins PA5 and PAG6 take place in the back-
ground of other programs being run on the robot. The programmer
merely writes new values to TOC2 and TOC3 when the speed has
to be changed.

PWM Software Driver

The program below illustrates the IC code that implements this
scenario of a 25% duty cycle signal asserted by pin PA5 and a 50%
duty cycle signal asserted by pin PA6. This sequence will make one
wheel rotate at half the speed of the other, causing Rug Warrior to
move in an arc towards one side or the other.

int DDRD = 0x1009; /* Port D data direction */

int OCiM = 0x100C; /* Output Compare 1 Mask */

int OC1D = 0x100D; /* Output Compare 1 Data */

int TOC1 = 0x1016; /* Output Compare Timer 1, 16-bit reg */

int TOC2 = 0x1018; /¥ Out Cmp Tmr 2, 16-bit reg (left motor) */
int TOC3 = O0x101A; /+* Out Cmp Tmr 3, 16-bit reg (right motor) */
int TCTL1 = 0x1020; /* Timer Control 1, 8-bit reg */

7.8 Software for Driving Motors 255

/* motor_indexz: O => Left motor, 1 => Right motor */

int TOCx[2] = {TOC2,TOC3}; /* Index for timer register */
int sign[2] = {1,1}; /* Sign of rotation of motor */
int dir_mask[2] = {0b010000, 0b100000};/* Port D direction bit */

/* Utility functions */
float abs(arg) /* Absolute value function */
{ if (arg < 0.0)

return (- arg); else return arg; }

int get_sign(float val)
{ if (val > 0.0)
return 1; else return -1; w

/* Find sign of argument */

/* Limit range of wal */
float limit_range(float val, float low, float high)
{ if (val < low) return low;

else if (val > high) return high;

else return val; }

void init_pwm() /% Initialize Pulse-Width Modulation */
{ poke(DDRD,0b110010); /# D dir: OUT 5,4,1; IN 3,2,0 %/
poke (0C1M,0b01100000) ; /* Out Cmp 1 affects PA5 and PA6 */
poke (0C1D,0b01100000) ; /# Successful OC1 turns on PA5, PA6 */
bit_set (TCTL1,0b10100000); /* OC3 turns off PA5, 0C2: PA6 */

pokeword(T0OC1,0); /* When TCNT = 0, OC1 fires */
pokeword (TOC2,1) ; /% Minimum on time for. 0C2 */
pokeword(T0C3,1); } /% Minimum on time for 0C3 */ . |

/* The sign is handled in a special way because */
/% we have only a 1 channel encoder */
void pwmmotor(float vel, int motor_index)
{ if (sign[motor_index] > 0) /* Choose the direction of rotation */
bit.set (port.d, dir_mask[motor_index]);
else
bit_clear(port_d, dir_mask[motor_index]);
vel = limit_range(vel, 1.0, 99.0); /* 1 < duty fctr < 99 */

pokeword (TOCx [motor_index], (int) (655.36 * vel)); }

/% Top-level open-loop PWM command */

" void move(float 1l.vel, float r_vel) /# Vel range [-100.0, 100.0] */

{ sign[0] = get.sign(l.vel); /* Desired direction of rotation */

256 7. Motors

signl[1] = get_sign(r_vel);
pwm.motor (abs(l_vel), 0); /* Set pulse-width modulation cnst */
pwm.motor (abs(r_vel), 1); }

Now let’s walk through this program. First, all the necessary reg-
isters are assigned and three data structures are created. The arrays
TOCx[], sign[], and dir_mask[] are all two-element arrays. TOCX]
] is an array whose first element is the address TOC2, where left-
motor velocities are stored, and whose second element is the address
TOC3, where right-motor velocities are stored. The array sign|]
is an array whose elements are bits representing which direction the
left and right motors are commanded to go. The array dir_mask][] is

- an array whose first element holds the mask for Port D, required to
select the left motor, and whose second element holds the mask for
Port D, required to select the right motor. .

The next three functions also just lay the groundwork for the
main part of this program. The functions abs(), getsign() and
limit_range() are functions that C does not happen to supply: abs()
simply returns the absolute value of its argument; get_sign() returns
the sign of its argument; and limit_range() returns a maximum or
minimum value for its argument if it is out of range.

The actual pulse-width modulation of the motors is accomplished
by the functions init_pwm(), pwm_motor(), and move(). The timer-
counter hardware is set up and started by init_pwm(). The three
pokeword() commands set an initial (small) pulse width.

To change the duty cycle, the calling routine uses the pwm_motor()
function, which takes two arguments: a velocity command and a mo-
tor index. pwm_motor() then pokes the new velocity into the address,
either TOC2 or TOC3, as specified by motor_index.

The function move() is the interface the programmer has for di-
recting the robot. move() takes two arguments, a velocity for the left
motor and a velocity for the right motor. These velocities should be
given in the form of percentages of full speed. That is, they should
be in the range [-100.0, 100.0]. A move(25.0, 50.0) command would
make the left motor move at 25% of full speed and make the right
motor move at 50% of full speed, causing the robot to arc to the left.

Setting up the pulse-width modulation scheme for each motor
then merely means writing some values to a few registers. Once

7.8 Software for Driving Motors 257

this has been done, the hardware associated with the timer-counter
system will run by itself - always setting pins PA5 and PA6 high
when the timer-counter reaches zero, always setting PA5 low when
the timer-counter reaches 16348, and always setting PA6 low when
the timer-counter reaches 32768. The central processing unit of the
MC68HC11AO0 then is free to attend to other tasks, perhaps reading
a sensor or calculating a new speed at which the robot should run.
To change the speed, Rug Warrior’s main program merely has to
store new values in " TOC2 and TOCS3.

7.8.2 Feedback-Control Loops

The strategy we have just described for pulse-width modulating mo-
tors is known as an open-loop control scheme. In open-loop control,
there is no feedback from the motors, telling the robot’s program how
fast the wheels are turning or how far the robot has gone. Rather,
the motors are just given different commanded voltages. But de-
pending on terrain, surface obstacles, slippage in wheel contacts, or
load on the robot, the commanded voltages do not ﬁmoommmﬁq Eﬁg
particular speeds.

To implement a true velocity- or position-control @_moiga“ the
robot needs sensors on the wheels, such as the shaft encoders men-
tioned earlier. Such feedback enables what are known as closed-loop
control algorithms. Figure 7.37 illustrates the simple o.owﬂ.oH loop
we will use on Rug Warrior, called a P-I controller, for %3@0183&1
integral controller.

The basic idea of a control loop is to take the Qmmim& S&OQJ\

command (such as one created in the way just described for our

pulse width modulation scheme), send that command to the motors,
see how fast the motors actually spin, and then measure that speed

- and compare it to the commanded speed. The difference is called

the error signal and it can be either positive or negative. There are
three error signals (marked e, ez, and e3) in the P-I control loop of
Figure 7.37.

What makes a control loop a proportional controller or an inte-
gral controller depends on what computation the loop performs on

‘the error signal. For instance, if the loop multiplies the error by

some constant to produce a new command, then the controller is a

7. Motors

258
Desired 4t >
Velocity 4 [TocC2] i el
— K_prof— Alter_Power Left
1 Velocity
Motor Encoder
+
Y
. mw + Bias
-« K_integral | Integrate IAUAI
A
Y >
4 €y [Tocs] Ll
IK_pro[—{ Alter_Power Right
Velocity
- Motor Encoder

Figure 7.37. A simple proportional-integral control loop can be added in soft-
ware to control the speed of the robot and to synchronize Rug Warrior’s two
wheels so that the robot will travel in a straight line.

proportional controller. In the controller shown in Figure 7.37, there
are actually three separate feedback loops.

Imagine for a moment that the central feedback path is not there.
The top loop, producing the error signal e; from the left motor, is
identical in form to the bottom loop, producing the error signal e
from the right motor. Each of these loops is a proportional con-
troller because the difference between the desired speed and the ac-
tual speed is multiplied by a constant, K_pro, and fed back to the
motor to adjust the motor speed. If the actual speed is less than
the desired speed, the difference is positive (as defined by the assign-
ment of plus and minus signs on the feedback arrows), and if K_pro
is also positive, a larger desired velocity is next sent to the motor. If
the actual speed is greater than the desired speed, the error signal
is negative and a smaller command is sent to the motor, slowing it
down. This loop repeats until the error signal is small enough so
that the motor is considered controlled at its desired speed.

‘We mentioned earlier that the software controlling Rug Warrior’s
motors should implement two things. The first was that Rug War-
rior should be able to maintain a desired velocity (whether climbing

7.8 Software for Driving Motors 259

a ramp or traversing a flat space, for instance). The two separate
proportional controllers just described for each motor essentially ful-
fill that requirement. We said that the second responsibility of the
software would be to oversee that the two wheels would be slaved
to each other. That is, if the robot were commanded to go straight,
the velocities of the two wheels would be synchronized so that the
robot really would go straight. This feature is implemented via the
central feedback path of Figure 7.37, the integral controller.

The integral controller looks at the actual speeds of both motors
and compares them. The difference between the two actual speeds is
the error es, as can be seen at the right in Figure 7.37 where e3 = left
velocity — right velocity + bias. The bias term is used for inputting
the turn command. While the bias is 0, the error signal only changes
over time if the robot is not going straight but swerving one way or
the other. An integral controller integrates, or sums, the error signal
over time, multiplies this sum by a constant, K.integral; and feeds
that new command back into the proportional-control loops for each
motor. In this way, one motor is sped up while the other is slowed
down until they each reach speeds sufficiently close together.

In Figure 7.38, we focus on just the upper third of the P-I con-
troller diagram, the proportional-control loop for the left motor. We
can implement the computation that this illustration conveys with a
few simple IC routines. First, the data structure we will rely on for
the input desired velocity is the function move() described earlier,
which we constructed for our open-loop PWM controller. If ‘the de-
sired velocity was commanded by calling move(25.0, 50.0), this piece

" of the control system would try to servo the left motor such that

every time get_left_vel() was called, it would return 25 counts.

To assist in the computations necessary to control the motor, we
will create a variable, K_pro, and the function. alter_power(). The
input to alter_power is computed by left_error() which is the product
of the difference between the desired velocity and the actual velocity
(both in units of clicks per interval) and some constant, K_pro. al-
ter_power() just calls pwm_motor() with this new velocity command.
The main program then waits for a time interval, calls get_left_vel()
again, and repeats the adjustment continuously. In this way, if the

-robot is servoing along a flat floor at one speed but then approaches

a ramp and begins to climb, more power will be supplied to the mo-

260 7. Motors

Velocities are in units of
encoder clicks per interval

G roca T
K_pro —{ Alter_Power Actual
) Velocity
Motor [PACNT]

Figure 7.38. We focus on the top path of the P-I controller, which is the
proportional-feedback control loop for the left wheel. The sequence of computa-
tions illustrated by this diagram are encoded in a few simple IC routines.

tor so as to keep the robot moving up the ramp at the same speed
- at which it was moving across the floor.
The IC program below illustrates both the proportional-control
computation and the integral-control loop slaving the two wheels
together:

float control_interval = 0.250; /* Run servo loop this often */
float des_vel_clicks = 0.0; /* Desired vel, clicks/interval #*/
float des_bias_clicks = 0.0; /% Desired bias, clicks/interval */
float power[2] = {0.0,0.0}; /% Power command to motor */

float integral = 0.0; /* Integral of velocity difference */
float k_integral = 0.10; /% Integral error gain */

float k.pro = 1.0; /#* Proportional gain */

/% Set and remember power level */
void alter_power(float error, int motor_index)
{ power [motor_index] = limit_range (power[motor.index]
+ error, 0.0, 100.0);
pwm.motor (power [motor_index], motor_index); }

float integrate(float left_vel, float right.vel, float bias)
{ integral = integral + left_vel + bias - right.vel;
return integral; } ‘

void speed_control()
{ float left_vel, right_vel, integral.error,
left_error, right_error;
while (1)
{ left_vel = get_leftwel(); /* Get current vel */
right_vel = get_right vel();

7.8 Software for Driving Motors 261

integral_error =

k_integral *

integrate(left.vel, right_vel, des_bias_clicks);
left_error =

k. pro * (des.vel_clicks - left_vel - integral_error);
right_error =

k_pro * (des_vel.clicks - right_vel + integral_error);
alter.power(left_error, 0);)
alter_power(right.error, 1);
sleep(control_interval); /# Run speed_control periodically */

3
void set_velocity(float vel, float bias) /* v,b: [-100.0, 100.0] */
{ des_vel_clicks = k_clicks * vel; /* Convert from vel as % */

des_bias_clicks = k.clicks * bias; /* to vel as clicks/interval */
sign[0] = get_sign(vel - bias); /% Sign of left wvel */
sign[1] = get_sign(vel + bias); } /* Sign of right vel */

float k_clicks = 8.0 / 100.0;

void start_speed._control()

{ init_velocity();
init_pwm();
start_process(speed.control()); }

The integral controller works by representing the commanded
robot velocity as two separate pieces of information, a WQEEosl
mode desired velocity and a differential-bias velocity. That is,"the
desired velocity is the translational component and the bias velocity
is the rotational component. Said another way, if the robot were
commanded to go straight at 50% of full speed, its desired velocity
would be [50.0, 50.0] and its bias velocity would be [0.0, 0.0]. This
would coerce Rug-Warrior to maintain a constant velocity of 50% of
maximum speed, even as terrain or load on its wheels changed, as
shown in Figure 7.39.

If the robot were commanded to spin in place about its right
wheel at 35% of full speed, its desired velocity would be [0.0, 0.0]
and its bias velocity would be [35.0, 0.0]. A command to arc forward

-and to the right would have both a desired velocity, say, [50.0, 50.0],

and a bias velocity, say, [35.0, 0.0].

262 7. Motors

Figure 7.39. Rug Warrior is climbing up a ramp. Implementing a proportional-
integral feedback controller keeps both wheels turning at the same speed and
delivers more power to the motors as Rug Warrior begins to climb the ramp.

With this data structure for input, the integral-control loop adds
the left velocity and the bias and subtracts the right velocity from
that sum to calculate the error signal, e3. The function integrate()
accumulates this error over time, adding the new error to itself on
each iteration. This running sum is multiplied by some constant,
K_integral, and added into each motor’s proportional controller. In
this way, the new commanded velocity to each motor takes into
account not only its own shaft-encoder’s error signal but also the
error signal between the two motors as it changes over time.

It becomes interesting now to play with the robot. Grab one
wheel while the P-I controller is running, and try to keep it from
spinning. The proportional control will try to raise the power level,
and you will feel an increase in the torque output by the motor. If
you hold the wheel tightly though, after a few moments, the other
wheel will stop! This is because the program was not able to speed
up the motor you were holding, and so the only way it could keep
the two motors running at the same speed was to slow the other one
down.

7.9 References 263

Try playing with the program in different ways. Change the
values of the constants K_pro and K_integral. If these constants are
made larger, the reaction time of the control loop will increase, but if
you make them too large the system might become unstable and the
motor will hunt, slowing down and speeding up but never converging
on a steadily controlled speed.

Play with the time interval, too. The function speed_control is
implemented as a process in IC that runs at a frequency specified by
the variable control_interval. Changing the control interval modifies
Rug Warrior’s reaction time, also.

What we have implemented here on Rug Warrior, with a very
minimal amount of hardware and an elegantly few lines of code, is
a classical feedback-control system. These types of techniques have
been well studied and are useful for a large number of problems. In
Chapter 9, we will look at a different kind of control paradigm, a
subsumption-style control system, which focuses on the problem of
deciding which behaviors to select, given that many may be triggered
from a large set of noisy and possible conflicting sensors.

7.9 References

A number of books which motor design and performance in great
depth. Flectric Machinery, by Fitzgerald, Kingsley and Umans
(1990) gives a thorough treatment of the electromechanics of’ a wide
variety of AC and DC motors. The three-volume set by Woodsen and

‘Melcher (1985) Electromechanical Dynamics, delves into ‘the physics

behind the generation of electromechanical forces.

A comparative analysis of actuator technologies, spanning the
range from electromagnetic motors to piezoelectrics and human mus-
cle, can be found in the work of Hollerbach, Hunter, and Ballantyne
(1991). They compare these alternatives from the point of view of
applicability to robotics.

Our discussion of piezoelectric ultrasonic motors was rather brief.
The piezoelectric ultrasonic motor of Figure 7.3 was made at the MIT
Mobile Robot Lab by Anita Flynn. Further reading can be acquired

in literature from a number of countries. Piezoelectric ultrasonic

motors were invented by the Russians in the sixties (Ragulskis et

264 7. Motors

al. 1988) and later commercialized by the Japanese (Sashida 1982).
Recently, these motors have appeared in Japanese autofocus lens
actuators (Hosoe 1989), paper-pushing actuators in copiers (Ohnishi
et al. 1989) and as silent alarms in wristwatches (Kasuga et al. 1992).

Shape memory metals and artificial muscles are somewhat new
to mobile robots. An informative booklet describing how to work
with shape memory metals for small robots can be obtained from
Mondo-tronics (1991). Artificial muscles also hold great promise for
compact robotic actuators. Much of the pioneering work was done
by Tanaka. Nice overviews can be found in Tanaka (1981) and Brock
(1991).

For those interested in micromechanics, a review on silicon elec-
trostatic microactuators can be found in the article by Howe, Muller,
Gabriel, and Trimmer (1990). Progress in microfabricating ultra-
sonic motors and pumps can be found in papers by Moroney, White,
and Howe (1989, 1990), Flynn et al. (1992) and Udayakumar et al.
(1991).

Literature on power electronics, power MOSFETSs, and motor-
driver integrated circuits is available in application notes and data
books of manufacturers such as Motorola, Supertex, Siliconix, and
International Rectifier. The texts Power MOSFETs, by Grant and
Gowar (1989) and Power Electronics for the Microprocessor Age, by
Kenjo (1990) give excellent background on driving motors. For a
practical guide to servo loops and interrupts, see Foster (1982).

Power

A mobile robot requires a power system that can meet several goals

simultaneously. The power source must store energy.sufficient to

allow the robot to perform a useful amount of work.” To ensure
proper operation of the onboard electronic circuits, power ‘must be
provided at a constant voltage. Noise and power -glitches produced
by one circuit component must not be allowed to interfere with any
other component. e

| 8.1 Batteries

Batteries are by far the most common solution employed by mobile
robots for the problem of energy storage. A battery converts chem-
ical energy into electrical energy on demand. From the chemical
nature of batteries stems a complex variety of properties. We begin
with a synopsis of those properties and subsequently delve further
into selected properties.

‘Rechargeability A battery that cannot be recharged is a primary

cell. One that can be is a secondary or storage battery.

N

266 8. Power

Energy density The maximum amount of energy per unit mass a
particular battery technology is able to store is known as energy
density. Energy density is usually measured in units of Watt-
hours/kilogram (Wh/kg). Alternately, energy density can be
measured in units of energy per unit volume.

Capacity Battery capacity is the energy stored in a cell. Capacity is
usually reported in practical units of amp-hours or milliamp-

hours. Capacity is the product of energy density and the mass
of the battery. .

Voltage The voltage produced by a single cell is characteristic of the
particular chemical reaction occurring in the battery. Voltage
also depends on the state of charge of the cell.

Internal resistance When short circuited, the current supplied by
a battery is limited by its internal resistance. The internal
resistance increases as the battery discharges.

Discharge rate This is the rate (in units of current) at which a bat-
tery is discharged. Maximum discharge rate is limited by the
internal resistance of the battery.

Shelf life Batteries lose charge even when no external load is ap-
plied. Shelf life is a measure of how quickly this occurs.

Temperature dependence Most battery properties, in particular,
available capacity and shelf life are affected by temperature.

An ideal battery would have very high energy density, maintain
a constant voltage during discharge, have a low internal resistance,
and therefore be capable of rapid discharge. It should also withstand
temperature extremes, exhibit an unlimited shelf life, be recharge-
able, and sell for a low unit cost. Unfortunately, no single battery
technology exhibits all these characteristics. Thus, in practice, it is
necessary to make trade-offs among these qualities, depending on the
requirements of the task. The information in Figure 8.1 may serve
as a guide when choosing the proper trade-off for your application.

8.1 Batteries 267

=]
> L
=
3 s g = 3
=3 =
= - . o s c
= - > b
5y - .= - - -
> = ‘@ e - 2T 2
< I = 2% > = o S
] > [my = P]
£) © - o @ 28 =
= = > R S 0= °
= 2 & @ E g 2= -
= o) L g =
= S = - 20w 3
15 © =@ - E = =i
£ = T O < O = REN W
@ £ o =& < 0="75 2
= E s =7 c g s B
HE 2 32 L2 °.2 £a3% =
o 2 =5 = w2 s® 0 g .
El = S < S > »
73 =9 9 = - - D =" 80 X 5
El S 82 ¢5 2T 392 o8 |2
S| = <5 dE 3z a3 TES £ | &
© 5
@ =1 2
e = . £2
Rl ® 2 -
Exg - N 2 e g S =
m%.m 1= 0 =] -~ < 5
Ex =] : 2F
= : w5
=) coo 29 o o
288 <« 288 g 8828 8¢ & S | B2
s 0 e O DO - OO W - m °3
2 - S & - o -F - e
5= - - - 58
L es ' = pe Sy
S o< = M = i
= o~ =] M M/ C] al=2
FOS va - <CUAa v (Sl - U . 5S¢
2z
& w0 : o E
&l =) = Mo~ o © = | g
wn.w - ~ Pe) - e - - - -~ ulwmv
(P 8s
— G
[&°
W.,om.ﬂ o o o o o I~ o o o 2
=S8 E=El & =4 S IR) 1y A = 288
mmW - 132 i - ® g
o -3
-
% 25
5l o 3] ° s 8 3 S =2 o | 82
g | 2 > = =z > > =z = = | g5
o =9
<5
ol 28
s | £<
> ~ n @
= g > = 7_n. 2z
paol g < £ 5 < s | S
o = I E] T = v H
LE| = = = o e b = @
S8l 8 5 = T O = 2 £ 5| =€
oo | < 3 3 = =2 = n N O |23

Figure 8.1. Comparison of characteristics for selected batteries and sizes.

268 8. woé.m«

8.1.1 Chemistry

Choosing among the various battery chemistries may seem a daunt-
ing challenge. However, practical considerations dictate that most
applications will use either alkaline cells, if primary batteries are
required, or nickel-cadmium cells (NiCds) if rechargeables must be
used.

Carbon-zinc batteries have been around for over 100 years, and
although they have the lowest unit cost of all the batteries listed, they
also have the lowest primary-cell energy density. Voltage changes by
a large amount as these batteries discharge, internal resistance is
high and performance at low temperatures is poor.

Alkaline manganese cells, commonly called alkalines, have higher
energy density than carbon-zinc batteries. Internal resistance is also
much lower. The cost of alkaline batteries is moderate, and they are
widely available. They do, however, have a sloping discharge curve.
(The discharge curve relates battery voltage to time as the battery
discharges.)

The energy density of mercury and silver batteries is quite good,
and they have other desirable properties as well. For example, they
have very flat discharge curves. Their drawbacks are their generally
higher prices and the fact that they are most readily available only
in button or coin-sized cells.

Lithium batteries have by far the highest energy density of com-
monly available batteries—this alone makes them indispensable for
certain applications. Lithiums also have a flat discharge curve and
great shelf life—as much as 10 years. Lithiums power many au-
towinding camera$ and have become easy to obtain; most photo
stores carry them. These batteries do, however, have a higher inter-
nal resistance than alkalines and are much more expensive.

Sealed lead-acid cells are available in a variety of rectangular
sizes. (Digi-Key has a good selection.) They are relatively inexpen-
sive, have very low internal resistance, and can be recharged. Energy
density is poor, however. Lead-acid cells have even less energy den-
sity than carbon-zinc cells.

Nickel-cadmium, or NiCd, cells are available in common AA, C,
D and so-called 9 volt sizes. As such, they can be directly substi-
tuted for alkaline cells in most portable equipment. Cell voltage is

8.1 Batteries 269

less, however. A 9 V NiCd typically supplies only 7.2 V. NiCds
have very low internal resistance, but energy density is comparable
to that of lead-acid batteries. The operational constraints that must
be observed when using NiCds are probably more severe than with
other batteries. If a battery pack containing several NiCds is deeply
discharged, the polarity of the weakest cells may reverse. NiCds also
suffer from “memory” effect. If a NiCd is repeatedly discharged by,
say, 50% of its rated capacity and then recharged, it will eventually
begin to act as if it has only 50% of its original capacity. This con-
dition can sometimes be fixed by discharging the battery completely
(perhaps more than once) and then recharging it. ,

Driven in part by the demands of mobile computing, two new
rechargeable technologies have recently become available. They are
nickel-metal-hydride (NiMH) and Lithium-ion. NiMH batteries have
many characteristics in common with NiCd cells. Although NiMH
cells cannot supply surge currents quite as high as NiCd cells, the
energy density of NIMH batteries is greater than that of NiCds. Un-
like NiCd batteries, NIMH batteries show no memory effect. Also,
NiMH cells, because they do not contain cadmium, pose less envi-
ronmental risk when they are disposed than do NiCds.- NiMH cells
are more costly than NiCds but can withstand fewer recharge cy-
cles than NiCds. Although voltage and charging orwgodoﬁmﬁomlpam
similar to those of NiCds, NiMH batteries will not necessarily work
“with battery chargers designed for NiCds. Lithium-ion. cells have
the highest energy density of rechargeable batteries and exhibit' no
memory effect. Lithium-ion batteries are also the newest and most
expensive rechargeable batteries. Neither NIMH nor" Eithium-ion
batteries have yet seen widespread use in mobile robots.

8.1.2 Energy Density

The crucial @w‘wmﬁmﬁmndm any battery technology is energy density.
Figure 8.2 graphs the energy density at room temperature of sev-
eral commonly used batteries. To keep these figures in perspective,
battery energy density is also compared with that of gasoline! and

"IThe comparison is Emnwmbm:% more favorable to batteries than it appears.
Gasoline and nuclear fission both require a heat cycle to produce electricity—a
process that is typically no more than 20% efficient.

270 8. Power

Nickle-Cadmium

P g
1 /4 _.mm“z_->m_m\“ \. “ \ | &"N_:??q
0

| } 4 n L N L L “
0 100 } 200 30!
Lithium Gasoline Fission of 235U

I “K; f “I““\:: ——+H——+H "\“I"

102 10° 10* 10° 10° 107 108

Figure 8.2. comparison of the energy densities of several storage technologies
(at room temperature). Units are Watt-hours/kilogram.

the fission of 2*Uranium. This graph demonstrates the degree to
which batteries are at a disadvantage compared to combustible fu-
els and nuclear energy storage techniques. It is also the case that
the cost per kWh of energy delivered by batteries is much higher
than that of other chemical storage mechanisms. Electrical energy
supplied by a battery can easily cost 1,000 times as much as the
same energy from your local electric utility. The redeeming feature
of batteries is that they are highly mobile and provide the energy
in the desired form: electricity. Other energy storage techniques
require mechanical means (for example engines and generators) to
produce electricity. Thus, batteries can be cost effective despite the
high absolute costs of the energy they supply.

8.1.3 Voltage

Although it is desirable for a battery under load to maintain a con-
stant voltage, typically, that voltage changes with the state of charge.
How the voltage varies with charge is a property of the particular
technology involved. Figure 8.3 presents a detailed, although still
approximate comparison of the discharge characteristics of the four
most common battery technologies. For example, as a one-cell, lead-
acid battery discharges, its output goes from 2.1 V when freshly
charged down to about 1.8 V when its capacity is effectively used
up. A lithium battery, on the other hand, maintains a nearly con-
stant voltage during discharge. The graph is normalized to the per-
formance of the lithium battery. That is, if the lithium cell takes 1.0

8.1 Batteries 271

Cell voltage
Lithium
3.0

2.0 Lead-Acid e

15 ~ _ Alkaline

1.0 NN
N, N
AN . R
0.2 0.4 0.6 0.8 o0 Time Units
ad | | I | |
O——T [T T 1 T T T 1)
0 20% 40% 60% 80% 100% Capacity

Figure 8.3. The discharge characteristics of the most common battery technolo-
gies are compared in two ways with those of a lithium battery. . The mmcH.m assumes
batteries of a similar size discharged at the same rate. The &@mro& lines show
output voltage versus battery capacity consumed. The solid lines .mroé <o:.mmo
versus time. Time units are arbitrary, as we assume mw,ow, Umgowu\,%mowmammm into

the same load.

time units to exhaust its total capacity, the lead-acid battery is used
up in about 0.1 time units. The dashed lines show more-clearly how
battery voltage changes as capacity is used up. S

8.1.4 Capacity

Battery capacity, usually listed as some number of QS@.Q%WSQ:E
(informally, amp-hours) or milliamp-hours, can be misleading. Note
that amp-hours is a practical term, not a proper unit of energy.
(Amp-hours are equivalent to coulombs, the unit for charge.) To mwﬁ
" energy, multiply the amp-hour rating by the voltage of the cell. This
gives Watt-hours, which is a unit of energy:

(1Watt = 1 Joule)

272 . 8. Power

A| 1w

Figure 8.4. A battery may be modeled as an ideal battery, one able to supply
any current at constant voltage, in series with an internal resistance, R;.

In general, the amount of energy that can be extracted from a
battery depends on the rate at which the battery is discharged. At
higher rates, the effective capacity will be reduced. The capacity
published by the manufacturer assumes a favorable discharge rate—
not necessarily a reasonable number for your project. Consult a
. battery data sheet for full information.

8.1.5 Internal Resistance

If the positive and negative terminals of a battery are shorted to-
gether, the current that flows is limited only by the internal resis-
tance of the battery. A useful model of a real battery is a series
circuit consisting of an ideal battery and a resistance, as shown in
Figure 8.4. While the exact value of this resistance depends on a
number of factors (such as battery age, charge, capacity, and tem-
perature), different battery technologies have characteristic internal
resistances. A small fresh alkaline cell, for example, may exhibit a
resistance 10 times that of a similar-sized NiCd. Despite its lower
energy density, this can make the NiCd more suitable for applica-
tions that require high surge currents. It can also make the NiCd
more hazardous to use. The current produced by a short-
circuited NiCd may be enough to melt insulation and cause
a fire.

8.2 Recharging

Secondary cells are of particular importance to robots. A recharging
circuit built into your robot can make it truly autonomous. All it
needs to do when the power is low is to find an outlet and plug
itself in. NiCd batteries offer advantages in this regard because of
the simplicity of the circuits required to charge them. Figure 8.5

8.3 Power Regulation 273

BE [

Figure 8.5.. This figure shows a very simple charging circuit for a NiCd battery.
Such a circuit is suitable for trickle charging.

shows such an example. This circuit may be safely used to charge a
NiCd battery at a very slow rate; this is called trickle charging. If
the capacity of the battery in amp-hours is C, then choose a resistor
such that the current flowing into the battery is limited to C/20.
Even if it is left connected to the charger indefinitely, the battery
cannot become overcharged. Exactly this scheme is employed by
many inexpensive rechargeable appliances.

A significant disadvantage of trickle charging is that it takes a
very long time (several hours) for the battery to regain a full charge.
More sophisticated battery chargers charge batteries at much higher
rates. Battery manufacturers often include detailed instructions for
designing charging circuits in their technical literature. A few com-
panies manufacture integrated circuit chips that supervise ﬁwmwowwam.
ing process; this makes battery-charger design very easy. Benchmarq
Microelectronics and Integrated Circuit Systems produce such chips:

Stores and mail order companies that carry nmamo-n@nﬂnoﬂwmm
model cars and airplanes are a good source of both, rechargeable

‘battery packs and battery-charging equipment. Because of the mass

market, prices are often lower for these items than for comparable
generic batteries and chargers.

8.3 Power Regulation

As we saw in the previous section, the voltage supplied by a battery
can change, sometimes by a large amount, as the battery discharges.
One goal of any regulation scheme is to provide a constant output
voltage, even if the input voltage varies over a wide range. Another
goal of the regulator is to maintain a constant output voltage as the

§
]
%
)

274 8. Power

load changes. When motors and other actuators start up or reverse
direction, they place a large transient demand for current on the
power supply. The voltage supplied to the logic circuits must remain
stable under these conditions. The requirements of the circuit may
be such that several different voltages are necessary. It is generally
desirable to supply all voltages from a single battery pack.

8.3.1 Avoiding Regulation

The regulation method employed by Rug Warrior is the simplest
possible: it uses only circuit components that can operate satisfac-
torily over a wide range of voltages.? High-speed CMOS chips (the

. T4HC series of integrated circuits) are especially good in this regard.
Such chips operate correctly when the positive voltage supply, Voc,
is between 2 V and 6 V. Many analog chips, such as Rug Warrior’s
LM386 microphone amplifier, can also accept a range of supply volt-
ages. However, the operating characteristics of all chips (response
times, for example) do vary with the voltage supply. Despite the
choice made for Rug Warrior, it is good practice to include some
form of voltage regulation in any circuit you design.

8.3.2 Linear Regulators

Because of its simplicity and low cost, the linear regulator is one
of the most commonly used voltage regulators. A linear regulator,
shown in Figure 8.6, is typically a three-terminal device: power-
in, ground, and power-out. As long as the input voltage is higher
than the required output voltage by a certain amount, called the
dropout voltage, the output voltage will be constant as the supply
voltage changes. For example, the LM7805 is a 5.0 V linear regulator
capable of supplying 1.0 A of current. It has a dropout voltage of 2.0
V. As long as the input voltage is between a minimum of 7.0 V and
a maximum of 35.0 V, the output will be a constant 5.0 V.

The relatively high dropout voltage of the LM7805 can cause a
problem. Suppose we wish to power our robot using, say, five alkaline

2The new Rug Warrior Pro™ robot uses voltage regulation. Regulation is

provided by a MAX603 low dropout regulator.

8.3 Power Regulation 275

Battery

voltage
»o#

. 5 volts
in out
LM7805 ——O

gnd Regulated

output

7 — 35 volts

time

=
|

N

" Figure 8.6. As long as the supply voltage is greater than the required output

voltage by a characteristic amount, the linear regulator provides a simple solution’
to the problem of power regulation.

cells. The total voltage when the cells are fresh is 7.5 V. When
exhausted, the voltage is about 5.0 V. However, when the LM7805’s
input falls below 7.0 V, it will no longer provide a regulated output.
“This occurs when only a small portion of battery 86@9@ has been
used up.

To solve this problem, we could simply use seven alkaline cells
rather than five. Such an arrangement would give the LM7805 the
input voltage it requires all the way to cell exhaustion.. This, roé.
ever, brings up another problem of the simple linear wmmc_weow, Uoémw
loss.

If the supply voltage is Vj,, the output <o§mmm Vout> md& the cur-
rent output 7, then the power, P, dissipated by the rbmmw Hmmc_@ﬁow.
itself is P = NQ\OE — Vin)- .

In our example, the seven alkaline cells, when fresh, H&.oﬁmm 10.5
V to the linear regulator. The regulator supplies 5.0 V to the robot’s
circuits, and 5.5 V is dropped by the regulator. If the current drawn
by the robot’s circuits is I, then the power consumed by these circuits
is 5.01, and the power dissipated by the regulator is 5. 5I. This means
that more than half of the power taken from the batteries is simply
thrown away by the regulator.

Such waste poses no problem for a fixed installation, in which
power comes from a cord plugged into a wall socket. But when bat-
teries are used, we must take care to avoid wasting power whenever
possible.

ceiebimstamn b AR

276 8. Power

One improvement we could make would be to use a linear reg-
ulator with a smaller dropout. A standard LM2940CT-5.0, for ex-
ample, provides good regulation when the input voltage is between
5.5V and 26.0V. The newer MAX603 offers an even lower dropout
voltage and minuscule quiescent current. Either device allows us to
minimize the difference between the voltage supplied by the batter-
ies and the voltage required by the robot’s circuits, thus reducing
power waste. Low-dropout regulators are somewhat more expensive
than the standard ones.

Power waste notwithstanding, a simple linear regulator is a good
choice if the power requirement of the regulated circuit is only a
small fraction of the total power the robot consumes. For example,
if a 12.0 V battery supplies, say, 1 Ampere of unregulated current
to the motors and maybe 50 mA at 5.0 volts to the microprocessor,
the fact that 0.050 x (12 — 5) = 0.35 watts of power is wasted in the
regulator will scarcely be noticed when compared to the power (12
watts) consumed by the motors.

8.3.3 DC-DC Converters

Linear regulators are capable only of supplying constant voltages
that fall between 0.0 V and the battery supply voltage (less dropout).
If a voltage higher than the battery voltage or a voltage with a
polarity opposite that of the battery is required, another device must
be used. Typically, this means a DC-DC converter.

Two distinct technologies are used to construct DC-DC convert-
ers. The flying capacitor, or charge pump-type converter, produces
a voltage higher than or inverted with respect to the input voltage.

It does this by charging capacitors in parallel and then discharg-

ing them in series to achieve a higher voltage or by connecting the
charged capacitor with the polarity inverted to produce a negative
voltage from a positive supply. Charge pump converters can thus
produce an output voltage that is an integer multiple of the input
voltage. The charge pump, however, only converts the voltage to a
different value. Actual regulation may still require a linear regulator.

When current flowing through an inductor is interrupted, the col-
lapsing magnetic field can induce a voltage much higher than that
originally used to produce the steady-state current. With appro-

8.3 Power Regulation 277

a70pH

LX vOouT
2-5 s_.mI_HI\dqu‘ MAX631

LBl GND VFB

m volts

L.
L

Usll

Figure 8.7. Maxim supplies a series of chips useful in building a simple DC-DC
converter circuit.

priate switching and filtering, this transient voltage can be mea to
produce a constant output at a wide range of voltages either higher
or lower than the battery voltage. This method is used in the other
type of DC-DC converter, the switching regulator. By adjusting the
switching parameters (how long current flows in the inductor ver-
sus how long the current is Eamﬁcvdo&v.gm output voltage can be
precisely regulated.)

Switching regulators offer much better mmmﬁmbo% (often over 80%)
than linear regulators, even when the input voltage differs greatly
from the output voltage. The principle drawback of the switching
regulator is cost. Although low-power devices (say, 20 to 100 mA) are
comparable in price to low-dropout linear regulators, higher powered
converters capable of delivering an Amp or more can easily cost over
10 times as much. Also, switching regulators can wnoacom 59,@
electrical radio frequency noise than linear regulators. "™ ,

There are two common ways to buy switching wmm:wmﬁoa ‘as
discrete components or prepackaged units. Maxim produces a variety
of integrated circuits that can simplify the construction of a switching
regulator. The MAX631, for example, requires only two external
components, an inductor and a capacitor, to produce a 40 mA, 5.0
V regulated output from an unregulated 3.0 V input, as illustrated
in Figure 8.7.

The second approach to switching regulators is to purchase a
unit with the switching circuit, inductor, and capacitor mounted in
a-convenient encased package. Such units are available from Digi-
-Key, Pico, and many other sources, as well. This format offers the
same simplicity of design as is provided by a simple linear regulator

278 8. Power

Figure 8.8. This photograph illustrates a number of types of regulators. On the
left is an LM7805 5V linear regulator. To its right is a Pico 5V to 9V DC-DC
converter. Next is a Power Trends downconverting LMSX 7805 DC-DC switching
“regulator. To the far right is a Pico IRE28D, a dual 5V to 28V DC-DC converter.

(although at a much higher cost). A number of different types of
regulators and DC-DC converters are shown in Figure 8.8.

8.4 Isolation

Power supplies can often become noisy. For instance, when digital
chips change state, they place a very brief demand for large amounts
of current on the power supply. Similarly, each time the brush of
a motor slides past a section of the commutator, a voltage spike
is generated, which can find its way into the power supply circuitry.
Often times, robots operate in an environment of electrical noise and
changing magnetic fields (generated either internally or by external
equipment).

All of these noise sources challenge the proper operation of the
robot. The final goal of the power supply and distribution circuitry
is, therefore, to isolate each component wired into the power supply
from the interférence produced by other components.

To combat the transient drain posed by state changes in digital
chips, designers often connect small capacitors, say, 0.1uF, across
the power and ground connections of each chip. It is generally more
important to do this for high-speed memory chips. Figure 8.9 illus-
trates some different types of capacitors.

8.4 Isolation 279

Figure 8.9. A 0.1 uF ceramic disc capacitor is at left. In the middle is a 10 uF
tantalum capacitor, and at right is a 10 uF electrolytic capacitor. Tantalum and
electrolytic capacitors are polarized and can be inserted into the circuit in only
one direction.

Device

Figure 8.10. The layout of the power distribution circuitry should’ not contain
ground loops. i :

The threat posed by stray magnetic fields can be oot.ﬁmama by
using what is called a single-point ground. Power distribution wires
or printed circuit board traces must be laid out in such 929% a?me.ﬁo
ground loops are formed, as shown in Figure 8.10. Changing mag-
netic fields induce a voltage in any wire loop they encounter. This
can mean that components connected to different parts of a ground
loop will not see a common reference voltage. That is, the “ground”
of one component may actually have an instantaneous voltage higher
or lower than that of some other component.

It is good practice to see that the power source separates the
motor and logic components, as shown on the right side of Figure
8.10. This prevents any voltage drop in the distribution wires, caused
by -the high current demands of the motors, from affecting the logic
components. Note also that, generally, it is not necessary to regulate
the power going to the motors. To maintain a constant velocity from

280 8. Power

Figure 8.11. Some possible power supply configurations. (a) Logic power
can be buffered from motor transients by a large capacitor. (b) The ad-
dition of a diode protects the logic against brief voltage dips when the
motors demand high surge currents. (c¢) Having completely separate power
supplies makes the robot bulkier but alleviates noise problems.

the motors when the input voltage falls, the pulse-width modulation
circuit controlling the motors will simply remain on longer.

Much more difficult to solve than problems caused by switching
digital chips and stray magnetic fields are the power glitches, voltage
spikes, and voltage dips caused by motors. Motors act as virtual
short circuits when they are first switched on. They try to feed
power of the wrong polarity back into the circuit when their direction
is reversed, and they can produce voltage spikes many times larger
than the supply voltage each time a brush slides past a commutator
section. Unless well isolated from the logic and sensor circuits, these
effects will cause unreliable behavior. In general, the cheaper the
motor, the more difficult the isolation problem.

Several resolutions are illustrated in Figure 8.11. In Figure 8.11(a)
a capacitor protects the other circuits from motor spikes. This will
work with high quality motors that produce little electrical noise.
Figure 8.11(b) shows one possible way to guard against the voltage
dips caused by a reversing motor. Even if the battery is unable to
maintain a constant voltage under transient high-load conditions,
the voltage seen by the logic remains high. The diode prevents the
capacitor, in parallel with the logic circuits, from being discharged
by the motors. This scheme may be helpful if the batteries in your
robot have high internal resistance. If necessary, total isolation can

8.5 References 281
Optoisolator —I\/\/\/\/ _
Logic
Components lz\/\/\/\ nﬂnuwﬂo. Mot
_ otor —
Controller —
- h 4 W -
- Mot
%, S
= = . L\ \Lﬂ 7777

Figure 8.12. An optoisolator can provide complete electrical isolation
among different parts of a circuit. Here, the output computed _uu.\ the
logic components is sent to a light-emitting diode (LED) embedded in an
optoisolator package. The emitted light from the LED is amﬂm.oﬁmm .U% the
optoisolator’s phototransistor. The signal from the phototransistor is cmma
to activate the motor-control electronics. There is no electrical connection
between logic and motor power supplies.

be achieved by using separate power supplies for motors and logic,
as shown in Figure 8.11(c).

For especially difficult isolation ﬁno_o_mgm e?@ o%gsm&@ﬁoﬁ offers
an effective solution by making possible complete mmvmﬁmﬁos of the
motor and logic power supplies. The optoisolator allows logic control

‘circuits to be kept electrically isolated from the actuation circuits.

Figure 8.12 illustrates the setup. The only connection Umicmmb Hom:u
and power circuits is made by photons. e ,

Clearly, in designing a power system for a U@io&? m,umﬁom.a,:o'
bile robot, we must consider carefully the capabilities of the available
battery technologies, the need for high-efficiency circuits and com-
ponents, and the problems of isolating electrically noisy motors from
sensitive logic components.

8.5 References

Information on the types of batteries available, along with details
pertaining to recharging circuits, discharge rates, and the like, are

. usually found in manufacturers’ catalogs. Check Appendix C for

listings of suppliers.

282 8. Power

Many of the power problems associated with mobile robots share
the technology base with electric cars. Pratt (1992) gives an overview
of issues and state-of-the-art electric vehicle design. Power supply
and DC-DC converter design is covered extensively in the text by
Kassakian, Schlect, and Verghese (1991). In a special issue of Spec-
trum, Riezenman (1992) discusses electrical vehicle efficiency and the
shortcomings of battery technology.

Robot Programming

Advances on two fronts have brought mobile robots to the verge
of what we believe will be a period of explosive growth, The first
advance is in hardware. Progress in microcontroller and m@BmoH tech-
nology has given us the hardware components we need to _9.:5 useful
and affordable robots. The second advance is in software. A new
behavior-based approach to robot programming, called behavior con-
trol, is the subject of this chapter. i

Behavior control allows us to tie together into a coherent éro_m all
the elements of robot control we have discussed so far. A’ interesting
side effect of this paradigm is that this method of integrating sensing
and actuation can be accomplished using only modest computational
resources.

The reason for this unforeseen benefit has to do with the way be-
havior control deals with sensors. The traditional approach to robot
programming handles data in a manner known as sensor fusion,
which is computationally intensive. - A behavior control approach
does not resort to sensor fusion but rather utilizes the notion of be-
havior fusion. In order to make these distinctions more clear, let us
compare and contrast the two approaches. We begin with a historical
perspective, the traditional approach to robot programming.

284 9. Robot 30@333_:@

Inputs from sensors —» > Outputs to actuators

Planning
Execution

Sensor Interpretation
World Modeling

Figure 9.1. A robot program employing the modeling/planning paradigm is
composed of a sequence of steps. These functional units transform a snapshot of
sensory data into a series of actions intended to achieve a specified goal.

9.1 The Traditional Approach

A paradigm employed from the earliest days of robotics, and one that
remains an active topic of research, is based on the ideas of world
modeling and planning. This approach decomposes a robot program
into an ordered sequence of functional components as illustrated in
Figure 9.1.

First, data are collected from all sensors. Noise and conflicts
in the data are resolved in such a manner that a consistent model
of the world can be constructed. The world model must include
the geometric details of all objects in the robot’s world and their
positions and orientations. Given a goal, usually provided by the
programmer, the robot uses its model of the world to plan a series
of actions that will achieve the goal. Finally, the plan formulated
is executed by sending appropriate commands to the actuators. A
sophisticated planner might even include sensory tests in the robot
program it constructs. For example, “move gripper along the z-axis
until a three oz. force is detected.”

We will illustrate the world-model approach with a brief exam-
ple using a modeling/planning system called HANDEY, which was
dveloped at the MIT Artificial Intelligence Laboratory. HANDEY is
a task-level planning system for manipulator-type robots that can
solve the pick-and-place problem. The pick-and-place problem takes
as inputs a model of the world, a part at some location and orienta-
tion, and the desired final location and orientation for that part. The
pick-and-place problem then is solved if the program can compute

9.1 The Traditional Approach 285

Figure 9.2. This is a world model used by the HANDEY task-level E@bﬁsm
system. In this complex modeled environment (generated at the Jet Hunovﬁmwob
Laboratory), three manipulator-type robots cooperate to perform an operation
on a satellite mock-up. ’ :

a detailed set of robot motions (and gripper openings and closings)
that will move the part from its origin to its destination: Thus, the
robot should be able to pick up the correct part and place it-in its
proper destination in some assembly. . .
; Figure 9.2 illustrates a screen output from the HANDEY system
as it directs two robot arms to geometrically reason about a pick-
and-place problem. The real robot system first uses a laser scanner
to identify the position and orientation of the part to be moved.
It then incorporates this information into a geometric model of the
world, provided by the programmer. The programmer also specifies
the desired final position and orientation of the part. IIANDEY then
uses several sophisticated planners, first to plan how to grasp the
part, and then to plan gross motions of the robot arm to move it
into the vicinity close to the part.)

It may be the case that no initial grasp of the part exists that is
compatible with the geometrical and kinematic constraints at both

286 9. Robot 30@333,_:@

the pickup point and the putdown point. For instance, it could be
that the only available initial set of grasps would have the jaws of
the two-fingered hand bump into another piece of the assembly when
placing the part at its destination. If this condition is discovered,
HANDEY plans a sequence of placements and regrasping operations.
HANDEY directs the robot arm, first to put the part down on a
clear part of the work table and then, to pick up the part in a more
amenable position. The HANDEY system then generates another
plan to direct the manipulator to finish the placement. HANDEY can
also coordinate the motions of two robots using the same workspace.

Finally, after all plans have been formulated and all constraints
satisfied, HANDEY executes the plan by sending a long series of com-
mands to the robot. These commands specify precisely each small
motion the robot must make and when to open and close the gripper.

This modeling/planning approach has strong appeal, principally
because of the guarantees and optimizations it makes possible. There
are planning strategies that, in a finite amount of time, will compute
a sequence of motions guaranteed to accomplish the task or prove
that the proposed task is impossible. In addition, a successful plan
can be optimized before the robot makes any motions.

Such guarantees would also have appeal in the mobile robot do-
main. For instance, a mobile robot that used such global information
about its world to formulate a plan would never fall into the trap
of following a path to a dead end and then having to backtrack.
Instead, it would always choose the most direct route from start to
goal.

Unfortunately, the modeling/planning approach has some disad-
vantages. As the following sections will explain, these problems are

accentuated for mobile robots that operate in natural or changing
environments.

9.1.1 Computation

One drawback to world-model schemes is that they require large
amounts of data storage and intense computation. This drawback is
not necessarily a concern for a manipulator-type robot, but it can be
for a mobile robot, which must carry its computational resources on
its back. The HANDEY program is composed of over 100 high-level

9.1 The Traditional Approach 287

Lisp files and requires a powerful computer with several Eom&u%dmm
of RAM to perform satisfactorily. Because the natural world is enor-
mously rich in detail, schemes to represent it simply require a large
number of bits. All world-model systems therefore simplify the world
to make storage and manipulation of the model practical. HANDEY
is restricted to dealing with polyhedra. Any curved surfaces in the
world must be approximated by collections of flat surfaces.

9.1.2 Modeling

Many of the advantages of the modeling /planning approach come
from its ability to use global information. A program that takes into
account all relevant information can be expected to produce better
results than one that makes all decisions based on local (i.e., only
some) information. .

It is the internal representation of the world that makes possible
the use of global information—but problems occur-in the construc-
tion of this model. For a plan to be reliable, the model on which
it is based must be highly accurate. This requires high-precision
sensors and careful calibration, both of which are mv@,ms.m?m. Even
the best available sensors suffer from several difficulties. Sensor m.mg
are unavoidably noisy. Sensors are subject to systematic errors, and
different sensor technologies often produce conflicting results when
measuring the same quantity. For example, sonar and infrared rang-
ing systems may give different distance readings due to the m,c.&mnm
properties of the objects at which they are mmEm.&. B

Typically, a modeling/planning algorithm must devéte-consider-
able resources to figuring out the most likely interpretation when
presented with inconsistent data from a single-sensor mbm .oosm:od-
ing data from multiple sensors. This general idea of combining ama.w
from multiple sensors into one data structure, the world model, is
known as sensor fusion. :

Some planning programs (HANDEY, for example) rely on the pro-
grammer rather than sensors for building most or all of the world
model. Synthesizing a world model can reduce the vcamw n.vm
inferpreting sensor data, but unfortunately doing so can also _5.5@
the robot’s ability to respond autonomously to changes in its
environment.

s

s

288 9. Robot 30.@5335@

9.2 Behavior Control 289

9.1.3 Time

The modeling/planning paradigm is by nature sequential. The ap-
proach first takes a snapshot of the world, then processes the ac-
quired information, and then acts. If the world happens to change
between snapshot and action, the plan may fail.

Trying to make the actions of such a program more intelligent
may produce undesired results. The more time the program devotes
to resolving conflicting sensor data, to refining its model of the world,
and to optimizing its plan, the longer will be the delay between
sensing and acting. This delay increases the chance that a significant
change will occur in the world, thus invalidating the plan.

9.2 Behavior Control

As a result of work by Professor Rodney Brooks and the Mobile
Robot Group at the MIT Artificial Intelligence Laboratory; a promis-
ing alternative to the modeling/planning paradigm has gained wide
acceptance in recent years. Brooks’ subsumption architecture pro-
vides a way of combining distributed real-time control with sensor-
triggered behaviors. Subsumption architecture, instead of making
explicit judgments about sensor validity, uses a strategy in which
sensors are dealt with only implicitly in that they initiate behaviors.
(Brooks labeled his approach subsumption architecture but this style
of programming is now more commonly refered to as behavior control
or behavior programming.)

Behaviors are simply layers of control systems that all run in par-
allel whenever appropriate sensors fire. The problem of conflicting
sensor data then is handed off to the problem of conflicting behav-
iors. Fusion consequently is performed at the output of behaviors
(behavior fusion) rather than the output of sensors. A prioritized
mw_u;npﬁow scheme is used to resolve the dominant behavior for a
given scenario.

Note that nowhere in this scheme is there a notion of one behav-
ior calling another behavior as a subroutine. Instead, all behaviors
actually run in parallel, but higher-level behaviors have the power to
temporarily suppress lower-level behaviors. When the higher-level
behaviors are no longer triggered by a given sensor condition, how-

E‘I\Iy, Avoid Motors

Figure 9.3. A block diagram of a simple behavior control program. Rounded
boxes represent both the physical sensors or actuators and the software drivers
that directly control them. The square-cornered box contains code that performs
computations that transform sensor readings into actuator commands. Arrows
can be thought of as wires that allow the components to communicate.

ever, they cease suppressing the lower-level behaviors and the lower
level behaviors resume control. Thus, the architecture is inherently
parallel and sensors interject themselves throughout all layers of be-
haviors. There is no unified data structure or geometric world model.

In order to understand these ideas more vividly, let us imagine
some behaviors we could create on a mobile robot with a sensor and
actuator suite similar to a suite we might implement on Rug Warrior.

9.2.1 Behavior Networks

Let’s say our robot is equipped with a ring of sonar sehisors, a top-
mounted infrared detection system, and a low-powered microproces-
sor with a small amount of RAM. Let’s also say that, at a minimum,
we would like Rug Warrior to be able to avoid _ucw\%mﬁm into things.
To achieve this goal we could create a behavior control Eomgg that
consists of three parts as shown in Figure 9.3. s

In the figure, Sonar is a software driver that o@o@&om&w@ sonar
sensors, continuously keeping track of the distance each measures.
Motors is a software driver that sends the proper current to the
motors in response to commands it receives. In between is a module
called Avoid, which, based on the sonar data, constantly computes
commands and sends them to Motors.

The Avoid module contains code that implements a simple re-
flexive behavior. If the reading from the front-pointing sonar is too
short, Avoid stops the robot’s forward motion. If a sonar other than
the rear one measures the shortest distance, Avoid turns the robot
until the rear sonar points in the direction of the shortest reading.

" When the rear sonar does measure the smallest distance, the motors

——————

290 9. Robot Programming

are commanded to move forward. If all sonar readings are larger
than some threshold, Avoid does nothing. It sends no commands to
the motors.

These operations are simple enough that a processor no more
powerful than an MC68HC11A0 can execute all the code in this
structure many times each second. The behavior that emerges is one
in which the robot tends to maintain a minimum distance between
itself and all objects visible to its sonar sensors. With this tight
coupling of sensing to actuation, Rug Warrior can respond quickly
to changes in the world. If someone walks up to Rug Warrior, it will
turn and move away.

Avoid is an example of a task-achieving behavior. Useful in and
of itself, it provides the minimum level of competence we want Rug
Warrior to exhibit. Next, we will illustrate how more sophisticated
behaviors can be added on top without redesigning lower-level be-
haviors already in place.

Suppose we write a second Uoﬁ@ig called Dock, whose purpose
is to drive the robot into its charging stand when the batteries are
low. In this case, Dock takes input from the robot’s sonar sensors,
infrared detector, and battery-level indicator.

Let’s assume that the charging stand is identified by a coded
IR beacon placed on its top. When active, Dock computes motor
commands that will steer the robot toward the charger, ultimately
docking with it, while avoiding obstacles other than the charger.

We now have two task-achieving behaviors, Avoid and Dock,
which, under some circumstances, will contend with each other for
control of the motors. Figure 9.4 shows one way to resolve this con-
flict. 'We have broken the wire connecting Avoid with Motors and
inserted a' suppressor node, which is represented by the “S” in the
circle.

A suppressor node allows messages from the original wire to pass
through to the output, unless a message arrives at the same time
from the new connection, the arrowhead. Figure 9.5 shows the se-
ries of messages that might be produced by Dock and Avoid as Rug
Warrior first moves about its space and then approaches and docks
with the charging stand. Note that messages sent to the inferior con-
nection that are suppressed are not saved up and transmitted later.
They are simply lost.

9.2 Behavior Control 291

Battery Level

IR Detector Dock

i _ Sonar _7 > Avoid S Motors

Figure 9.4. Dock is a program that looks for an IR beacon located atop a
charging stand and drives the robot toward it. Additionally, Dock monitors the
sonar sensors and suppresses the obstacle-avoidance behavior when close to the
charger.

With Avoid and Dock connected, as shown, Rug Warrior behaves
in the desired way. As long as the batteries are fully charged, the
robot will avoid collisions with all obstacles as it moves about its
environment. When the charge falls, Dock will become active. It
will direct Rug Warrior toward its charging stand, responding to
some sonar measurements but suppressing Avoid’s attempts to turn
away from the charger. Thus, Dock subsumes the ?doﬁod of Avoid
in order to produce a higher-level of competence.

This style of robot programming, where the robot’s no&ﬁ.& Sys-
tem is decomposed into a network of task-achieving Ummeon is the
essence of behavior control.

Behavior control has a number of significant ESubomﬁoHHm for’ @H.?
gramming robots. The tight coupling of sensing to actuation means

. that most behavior modules can be thought of as simple reflexes.

This is important because such a system needs no world model. Be-~
cause there is no world model, the robot needs very little memory.
Most computations are uncomplicated and can be performed by sim-
ple microprocessors. :

Another powerful feature of a behavior programming-style orga-
nization of a robot’s intelligence system is that it can be improved
incrementally. New layers of competence, in the form of additional
behaviors, can be written and then simply wired into the existing
structure. Basic capabilities are never lost as new ones are added.

Finally, the robot need not get slower as it gets smarter. Be-
cause the behavior control paradigm has all behaviors run in paral-

292 9. Robot Programming

el T e = =
Ez255.5.58 a2

22235323838

EOlRFF.LFLFS

bock R I B B |
.m = 2 E o aa o

£ ¢ 3 i) 25222

- o x o »n unu un v

Avoid 11 _ T T I I
= o = T - o

g = 8§z 58 ._8 .5

5% 2 5 $533s:s:é8

Motors L1 TR T T O T T I I

. Figure 9.5. Behaviors Dock and Avoid produce a stream of messages that join
at a suppressor node. Messages entering through the dominant connection (the
-arrowhead) suppress messages from the inferior connection. That is, only the
dominant messages appear at the output. When no messages are present at the
dominant connection, those from the inferior connection pass through.

lel, increased computational requirements of an improved behavior
program can always be met by adding more processors to carry the
load. The performance of the existing system need not be degraded.
The robot designer is free to implement the behavior controller in
several ways: as a number of behaviors in a single computer, as a
single processor devoted to each behavior, or perhaps as a network
of very large-scale integration (VLSI) gates.

9.3 Rug Warrior’s Program

We will expand on the principles of behavior control further by using
another example of how Rug Warrior might be endowed with a set
of interesting behaviors. This time, let us assume that Rug Warrior
has the set of sensors available on Rug Warrior Pro™: three bump
sensors on a surrounding bump skirt, two near-infrared proximity
sensors, two photocells, and a microphone. Figure 9.6 illustrates a
number of behaviors we could program into Rug Warrior.

As implied by the diagram, the behaviors operate in parallel.
Each module continuously examines its input and computes an out-
put. The simplest module is Cruise, whose purpose is to make sure
the robot always does something interesting. That is, Rug Warrior

9.3 Rug Warrior's Program) 293

Detect-sound-pattern ,é

Escape

mz_:nav:o:a

Bumper

'S

IR detector Avoid S

o
TITT

Photocells Follow S

'S

Cruise S S Motors

Figure 9.6. A possible behavior control program for Rug Warrior begins with a
behavior called Cruise which merely causes Rug Warrior to move forward. Follow
is triggered by photocells to move Rug Warrior towards light. Avoid suppresses
Follow and Cruise when the near-infrared sensors detect an imminent collision
and Escape also helps avoid obstacles if the near-infrared sensors were blind to
an obstacle. The highest-level behavior, Detect-sound-pattern causes Rug Warrior
to trigger on specific patterns of hand claps and then play a tune. ,

should always move. All that Cruise does is- meQ Emmmmm.mm to the
motors, commanding them to go forward. .

The Follow behavior is a higher-level behavior that EOd;on the
output of a pair of forward-pointing photocells. “When Follow de-
tects a difference in intensity between the two photocells, it will
send commands to the motors to turn Rug Warrior in ES &895:

" of the brighter side.

Commands from Follow fuse with those from n::mm vig nrm QOE:
inant connection to a suppressor node. This means that, whenever
Follow sends a command, it will take precedence over commands sent
by Cruise. The behavior that will emerge from only this much net-
work is that Rug Warrior will move forward until it senses a light
and then will home in on the source of illumination.

The next behavior we add is Avoid which looks at the osavcﬁ
of the near-infrared obstacle-detection system. When Avoid senses
an obstruction to the left of the robot, it will command a turn to
the right. When the obstacle is to the right, Avoid will turn Rug

. Warrior to the left. An obstacle straight ahead will cause Avoid to

issue commands that will stop Rug Warrior, then turn it 90 degrees

294 9. Robot 30@3335@

either to the right or the left. Again, commands from Avoid suppress
commands from the behaviors below it. With only these three lay-
ers implemented, Rug Warrior will follow a light until it detects an
obstacle in its path. Rug Warrior will then turn away.

If the infrared detectors fail, as they will for some objects, we
add the Escape behavior. The Escape behavior will become activated
when the bump skirt detects a collision. Escape reacts to collisions
between obstacles and the robot’s force-sensing skirt by command-
ing motions that will move Rug Warrior away from the obstacle.
Messages from the Escape behavior are of the most immediate im-
portance to Rug Warrior. The architecture of the behavior control
system thus allows Escape to suppress commands from Avoid, Follow,

~and Cruise.

Lastly, we could implement a behavior that listens through the
microphone. The Detect-sound-pattern behavior is programmed to
detect specific sequences of hand claps and pauses. When Detect-
sound-pattern notices such a sequence, it will send a command to the
piezoelectric buzzer to play a particular tune. Detect-sound-pattern
will also send a message to the motors, directing them to stop.

The overall effect of these five behaviors is that Rug Warrior will
first speed forward, searching for the brightest source of illumination.
As Rug Warrior heads toward the light, it will tend to avoid obstacles
in its path. If Rug Warrior does collide with something, it will change
direction and move away. When the designer claps his or her hands

in a special sequence, Rug Warrior will stop, play a tune, and then
resume wandering.

9.4 Implementing Behavior Control

How do you implement a network of many behaviors, all running
in parallel on a small microprocessor that is inherently a sequential
machine? The answer is to multitask, or run a loop that, when
repeated, gives a small amount of time to each behavior. In this way,
we can simulate the effect of all behaviors running simultaneously.
Before we jump into the details of explaining such a strategy, let
us step back for a moment and understand more fully how we think
of a behavior control network. In this section, we will describe a

9.4 Implementing Behavior Control . 295

formalism for specifying a behavior control architecture. Then later,
in Section 9.5, we will explain in more practical terms how you can
apply the principles of behavior control while programming a robot
in a conventional language, IC.

Before proceeding, though, we must first introduce three useful
concepts: processes, schedulers, and finite-state machines.

9.4.1 Processes and Schedulers

First, we illustrate the concept of a process with an example of a
robot flashing some light-emitting diodes (LEDs).
Suppose we have a software driver called flash_leds and a func-

. tion called sleep. When activated, flash leds turns on a set of

LEDs briefly and then turns them off. The function sleep simply
does nothing for some number of seconds. Using these tools, we
could write the following IC function:

veid multi_flash() -

{ while (1) { /* while (1) means loop forever */
flash leds(); L P
sleep(1.0); }} /* Do nothing for 1.0 second */ s

The operation of multi_flash is easily understood. It will flash
the LEDs, wait for one second, flash the LEDs again, and so on.
There is a problem here, however. Once multi_flash begins to run,
the microprocessor can do nothing else; multi_flash is the only no&o
that can be executed. Since we would like Rug Warrior to‘do more

“than just flash its LEDs, we need to activate multi_flasHhin such a

way that it does not consume all the resources of the microprocessor.

One way to do this is to make multi_flash into a process. A
process, or task, is a piece of code that can be thought of as running
simultaneously with other processes or programs. While the com-
puter can only do one thing at a time, it is, nevertheless, possible
to give the appearance that different pieces of code are running in
parallel. This requires a supervisory program called a scheduler.

A scheduler is a master program that decides when all other
programs are allowed to run. A scheduler gives exclusive control of

the computer to one process for a brief period of time (typically, a

small fraction of a second) and then gives control to the next process

296 9. Robot P.omqwa:::m

and so on. Each process is allowed to compute for a short time at
regular intervals. This is known as multitasking.

A moderate level of sophistication is required to construct a
scheduler capable of interrupting a task after a given time and then
loading and executing another task (preemptive multitasking). A
simpler strategy for switching between processes is called coopera-
tive multitasking. In cooperative multitasking, it is the process that
decides when to return control to the scheduler so that the next task
may run.

In cooperative multitasking, the scheduler is simpler but the pro-
cesses are more complicated. The reason that the processes must be
more complicated is that each process must provide a way to resume
computing at the place it left off when it last returned control to
the scheduler. An effective approach for passing control between the
processes and the scheduler (and the approach employed in Brooks’
original subsumption architecture implementation) is to implement
each process as a finite-state machine.

Next, we describe the concept of finite-state machines, as this
mechanism will be useful for understanding how to construct your
own cooperative multitasker. Later, we will use IC’s preemptive
multitasker. (IC has its own scheduler for choosing when to run a
process.) This makes it easy for us to describe behaviors, as each
behavior then does not have to take care of the bookkeeping chores
of releasing control back to the scheduler.

9.4.2 Finite-State Machines

In the absence of a sophisticated scheduler, it is possible to build a
behavior control program by implementing the behaviors as finite-
state machines. Even if such a scheduler is available, it may be
helpful to think of behaviors in this way. A finite-state machine
(FSM) is an abstract computational element which is composed of a
collection of states. Given a particular input, a finite state machine
may change to a different state or stay in the same state. The spec-
ification of an FSM includes rules that determine the relationship
between inputs and state changes.

Figure 9.7 diagrams a possible finite-state machine representing
the operation of a turnstile. The turnstile finite-state machine has

9.4 Implementing Behavior Control 297

token
e“e -
person Turnstile

Figure 9.7. The finite-state machine diagram of a turnstile might consist of the
states Locked and Unlocked, along with some conditions for transitions between
the states. Here, circles in bold represent the states of the system, while labeled
arrows indicate inputs and their corresponding effects on the system state.

two states, locked and unlocked. The turnstile finite-state machine
accepts two forms of input, tokens and people. While in the locked
state, inputting a token will change the FSM to the unlocked state.
In the unlocked state, the turnstile finite-state machine will accept
any number of additional tokens and remain in the unlocked state.
From the unlocked state, the turnstile FSM will also accept the input
of a person. This input will change the FSM back to the locked state
and no further person inputs will be allowed.

9.4.3 A Behavior Control Formalism

The example of the turnstile gives us the mmdowm_.mm<o~,. of a finite
state machine. To be more explicit, we can write a program that
implements a finite-state machine. To do this, we begin by using

_pseudocode, which is not the syntax of any particular programming

language. Pseudocode is used here to present a formal, explicit rep-
resentation of how a finite-state machine should act.

Behavior as a Finite-State Machine

Suppose we wish to construct a behavior that causes Rug Warrior
to respond appropriately when it strikes an object. Let’s call this
behavior Escape. Escape should monitor the bumper and cause Rug
Warrior to back up and turn as required to move away from the
object. We can implement this behavior as a finite-state machine.
‘This behavior is illustrated in Figure 9.8 and described formally by
the following structure:

298 9. Robot _qum_.mSB_.sm_

Timeout-1

State-1: Timeout-2
Waiting for
bumper hit

State-4:
Turning
left

State-3:
Backing up

Escape

Figure 9.8. Rug Warrior’s Escape behavior is diagrammed here as a finite-state
machine (FSM). In State-1, the behavior waits for an input from the bumper.
While in this state, the behavior issues no motor commands. When a bumper hit
does occur, the FSM changes to State-2, 3, or 4, depending on which direction
the bump came from. While in the backing up, turning left, or turning right
states, motor commands are constantly issued. From any of these states, after a
certain time has passed (Timeout-1, 2, or 3), the FSM switches states again.

Escape
Outputs: (Motor-command)
State-1: If Bumper-Hit = Nil
Release
else if Bumper-Hit = LEFT
Switch to State-2
else if Bumper-Hit = RIGHT
Switch to State-4
else Switch to State-3
State-2: If time-in-this-state > timeout-1
Switch to State-1
else
motor-command = turn-right
Release
State-3: If time-in-this-state > timeout-3
Switch to State-2
else
motor-command = back up
Release
State-4: If time-in-this-state > timeout-2
Switch to State-1
else
motor-command = turn-left
Release

" Behavior

9.4 Implementing Behavior Control 299

When initially called by the scheduler, the finite-state machine
Escape will be in State-1. The code that implements this FSM checks
a software driver called Bumper-Hit to determine what sort of col-
lision, if any, has occurred. If a bump did not occur the Release
statement will return control to the scheduler without changing the
state of Escape. This means that, the next time the scheduler runs
Escape, it will still be in State-1 and the same sequence of operations
will occur again.

Eventually, Bumper-Hit will return a non-Nil value. When this
happens, Escape will switch its state to one of the other states.
For instance, if the left bumper hit, control would pass to State-
9. The Escape FSM would then execute the body code. associated
with State-2. If State-2 were to keep control for an amount of time
greater than Timeout-1, then control would switch back to State-
1. Otherwise, the turn-right motor command would be issued, and
control would be released back to the scheduler.

State-4 is similar to State-2 except that State-4 commands a left

. turn and remains active for a different amount of time, Timeout-2.

State-3 implements the back up phase of the Escape behavior.
It commands the robot to backup for a period equal to: Timeout-3
and then switches to State-2. State-2 then responds just as'it would
if activated from State-1. He makes the robot turn right ::9_ the
period Timeout-1 expires.!

We can now represent the general format of a voUNSOw Bo&c_m
implemented by a finite-state machine as follows:

Inputs: I, Is...1,

Outputs: 01, Os...0
Local-variables: L1, Ls...L,
State-1: {Body-code-1}
State-2: {Body-code-2}

State-N: {Body-code-N}

’ 1Strictly speaking, these timed operations do not fit the definition of a finite-

"state machine. Rather, we must think of the structures described here as en-

hanced or augmented finite-state machines.

300 9. Robot Programming

That is, the body code may compute any arbitrary function and
may read local inputs and compute local outputs. The body code
must compute the next state and explicitly release control back to
the scheduler. This strategy places a burden on the code in each
FSM. The code in each FSM must release control fairly quickly. Any

FSM that hogs too much time will lock out all the other finite-state
machines. .

The Scheduler

Once finite-state machines have been defined, how does the scheduler
manage to run them all in parallel? The scheduler of a cooperative
multitasker is quite simple, as the following format illustrates:

" Scheduler
Call Behavior-1
Call Behavior-2

Call Behavior-N
Call Arbitrate

The scheduler for a cooperative multitasker simply loops indefi-
nitely, calling each behavior in turn. The active behavior computes
for a certain time and then returns control to the scheduler. Once
during each loop (at least), the scheduler calls an Arbitrate function
to pass messages and resolve conflicts between competing behaviors.

Arbitration

The connections between behavior modules in a behavior control
network are specified by a wiring diagram. To connect our Escape
finite-state machine to our Motor finite-state machine, the behavior
module that directly controls the motors, we might say:

Connect
Output: Escape, motor-command
Input: Motor, command-in

Escape and Motor both have inputs and outputs (called motor-
command and command-in, respectively) which are stored locally.

9.4 Implementing Behavior Control 301

The Arbitrate function sees to it that, whenever Escape computes
a new value for motor-command, that value is transferred to the
command-in variable of Motor.

The same output can be connected to any number of inputs,
and we can implement suppression nodes by ordering the Connect
statements. For example, if we order Connect statements as shown
below, the second Connect statement will be given higher priority:

Connect
QOutput: Behavior-1, Bl-out
Input: Behavior-2, B2-in

Connect
Output: Behavior-3, B3-out
Input: Behavior-2, B2-in

If, on the same scheduler loop, Behavior-1 computes a value for
Bl-out and Behavior-3 computes a value for B3-out, the arbitration
code would make sure that only Behavior-3’s value reached Behavior-
2’s B2-in input. , :

An implicit characteristic time has now mbnonam the ?Qsam If

. one passage through the scheduler loop is thought of as a single tick

of the system, then one message may suppress-a second message if the
second message arrives within one tick of the first message. A-careful
implementation of behavior control will make this or@nmhgﬁmﬁo Egm

“explicit. Values other than one tick may be chosen. . 7%

There are other types of arbitration mechanisms than arm sup-
pression nodes described above. Brooks’ original subsumption im-
plementation also uses inhibit nodes. An inhibit node functions as
a switch. Messages that enter through the dominant connection do
not replace messages from the inferior connection; rather, they pre-
vent the inhibit node from transmitting the message from the inferior
connection.

We have now described the mechanism of a finite-state Emoguo
and the functioning of a cooperative multitasker. Next, we illus-

-trate a preemptive multitasker and give an example implementation

using IC.

302 9. Robot Programming

9.5 Behavior Control in IC

In the previous section, we used pseudocode to present a formalism
for thinking about behavior control programs and for instantiating
robot behaviors as finite-state machines. Thinking of behaviors as
finite state machines gives us a more or less simple way to program
our own cooperative multitasking system on computers that lack true
multitasking capability. With cooperative multitasking, the design of
a task scheduler become effortless. The scheduler is simply a looping
sequence of calls to the behaviors. The behaviors, although more
difficult to program since they must cooperate with the scheduler,
are still tractable.

In this section, the multitasking feature built into IC will act
as our task scheduler. The behaviors will then be easier to follow,
as they need contain no bookkeeping code to handle giving up and
resuming program control. Let’s now walk through how we might
implement a behavior control program for Rug Warrior using IC.

Recall the earlier example of multi_flash on page 295. We wish
to activate multi_flash as an IC process so that we can use the mi-
croprocessor to run more than just that one program. IC gives each
process a unique identification number so that we have a “handle” for
use later to terminate the process, if desired. To start multi_flash
as a process in IC, we could say:

int id;
id = start_process(multi_flash());

Rug Warrior would then begin to flash its LEDs. While this pro-
cess is running, we are free to type statements to the microprocessor
to run a program or to start other processes. Through it all, the
LEDs will continue to flash. :

If at any time, we say:

kill_process(id);

the flashing will stop. This command could also be issued by another
process.

9.5 Behavior Control in IC 303

Bumper I Escape
m_w detector U'V Avoid S
mv-_ognm:m T Follow S

Cruise S Motors

Figure 9.9. We implement this portion of Rug Warrior’s behavior control net-
work using IC and its process constructs.

Later, we will use the start_process function to turn on the

Rug Warrior behaviors outlined in Figure 9.9. But first, we must
-describe the code that implements those behaviors.

The first behavior module we will implement is called Cruise.
Like all the behaviors we will build, it declares two global variables
for each quantity it wishes to output. Here, cruise_command holds
the value of the command Cruise wishes to send to the motor con-
troller and cruise_output_flag is a flag specifying whether Cruise

. is currently trying to send that value. Each time-a module computes
" a new output, it will set the associated flag to 1. On any iteration,

~ when a module chooses to produce no output, the flag will be set

to 0. Observing this protocol is an essential part of our behavior
control implementation: ‘)

> int cruise_command; /* Command to So»oﬂwM\,w\J.V.

int cruise_output_flag;

void cruise()

{ while(1) { ,
cruise_output = FORWARD; /* Rug Warrior goes forward */
cruise_output_flag = 1; }} /* Command is now active */

Cruise does nothing except output the FORWARD command and de-
clare that this command is currently active as often as the scheduler
will allow. ’ .

The Follow module implements light-source following and is some-
what more complicated:

304 9. Robot Programming

int follow_command;
int follow-output_flag;

void follow() /% Follow a light #/

{int left_photo, right_photo, delta;/* Left and Right Photocells */
while (1) {

left_photo = analog(1); N
right_photo = analog(0);
delta = right_photo-left_photo;
if (abs(delta) > photo_dead_zone)
{if (delta > 0)
follow.command = LEFT_TURN; /* Light on left, turn left */
else
follow.command = RIGHT_TURN;/* Otherwise turn right */
follow_output_flag = 1; /% Activate when detected */

}

else
follow_output_flag = O;

1}

/* Read A/D channel 1 %/
/* Read A/D channel 0 */

/* No difference, deactivate */

If Follow detects that the difference between what the left and
right photocells measure is above the threshold, photo_dead_zone,
it will turn the robot in the direction of the brighter side. Otherwise,
Follow will compute no command.

Next, we implement the Avoid behavior, which gets sensor inputs
from the near-infrared proximity sensors:

int avoid_command;
int avoid_output_flag;

void avoid()
{ int val;
while (1) {
val = ir_detect();
if (val == Obl1) /* Both left and right see something */
{avoid_output_flag = T;
avoid command = LEFT_ARC; }
else if (val == 0b10)
{avoid_output.flag = T;
avoid_command = RIGHT_ARC; }
else if (val == 0b01)

/* Left IR sees something */

/* Right IR sees something */

9.5 Behavior Control in IC 305

{avoid_output_flag = T;
avoid_command = LEFT-ARC; }

else /% Neither sees anything */
{avoid_output_flag = NIL; }

1}

The Escape behavior is designed to allow the robot to escape from
collisions with obstacles when Rug Warrior’s bump sensors detect a
collision:

int escape.command;
int escape_output_flag;

void escape()
{ while (1) {
bump_check() ; /* Get state of bumper */
if (bump_left && bump_right) /% Bumped from the front */
{escape_output_flag = 1; -
escape_command = BACKWARD ;

sleep(.2); /* Backup for a while */

escape_command = LEFT.TURN; /% then turn LEFT-.*/

sleep(.4);} : o
else if (bump-left) /* Bumped on the left */

{escape_output_flag = 1;
escape_command = RIGHT.TURN; . .
sleep(.4);} /* Turn right for a while */
else if (bump._right) /* Bumped on the right #/-
{escape_output_flag = 1; C i
escape_command = LEFT_TURN; .
sleep(.4);} /* Turn left a while */
else if (bump_back) /% Bumped from behind */
{escape_output_flag = 1;
escape_command = LEFT.TURN;) .
sleep(.2);} , ./* Confront attacker *\,
else /# No bumps so deactivate */
escape_output_flag = 0;
1}

What we have so far is a collection of task-achieving behaviors.
Each behavior may examine from none to several inputs and compute

306 9. Robot P,om_‘mBB,,:m

an output. The output of each of the behaviors above is what that
behavior wants the robot to do.

Next, we must activate the behaviors as processes so that they
will run simultaneously. We must also establish an arbitration struc-
ture that will decide which behavior gets control of the motors when
a conflict arises. The behaviors are initiated by calling the following
program. IC uses main as a special name. Once loaded into the

battery-backed RAM, the main program begins to run whenever the
robot is switched on:

void main()

{ start_process(motor.driver());
start_process(cruise());
start_process(follow());
start.process(avoid());
start_process(escape());
start_process(arbitrate());

}

The motor_driver function is a simple software driver that looks
at a global variable motor_input and outputs the appropriate values
to the ports connected to the motors.

The Arbitrate function implements message passing between the
other processes. After the behaviors have been designed, a wiring
diagram specifies how they are to be connected. Here, Arbitrate
implements wiring instructions with an ordered list of statements.
When multiple outputs are directed to the same input, those oc-

curring later in the list of connections subsume (actually overwrite)
earlier ones:

void arbitrate()
{ while (1) {
if (cruise_output_flag == 1)
{ motor_input = cruise_output; }
if (follow_output_flag == 1)
{ motor_input = follow_ output; }
if (avoid_output_flag == 1)
{ motor_input = avoid_output; }
if (escape_output_flag == 1)
{ motor_input = escape_output; }
sleep(tick); /* Message controls for one tick */

1}

9.5 Behavior Control in IC 307

Figure 9.10. Rug Warrior executes the program described in the ﬂmﬁ. wiﬁww%
the room is dark. At point (a), Rug Warrior is switched on, Smmw.m,, a m.vonn while,
plays its “alert” tune, and then begins to move. Since the room is dark; the

- signals from both photocells are the same and the light-following Béhavior issues

no commands. Rug Warrior moves straight forward, as directed _u.% Cruise. At
points (b) and (c), the near-infrared sensors sense the wall and Avoid commands
right turns. Because the leg of the chair is too narrow or perhaps the wrong color,
the near-infrared sensors fail to detect it, and Rug Warrior collides at point (d).
This collision activates the Escape behavior, which causes the robot to back up
and turn. At point (e), the room light is switched on and the robot begins to
execute its Follow behavior. When Rug Warrior gets too near at (f), it no longer
sees the lamp directly and turns toward a brighter spot in its field of view.

.wom 9. Robot Programming

Figure 9.11. When Rug Warrior’s near-infrared detectors miss seeing an obsta-
cle and Rug Warrior collides into a chair, the bump sensors trigger the Escape
behavior, which causes Rug Warrior to back up or turn.

Emerging from these seemingly distinct sets of processes is an
overall behavior for Rug Warrior, which is illustrated in Figure 9.10.
Figure 9.11 shows a close up of one element of this behavior, namely
a collision between Rug Warrior and a chair. (To see a somewhat
different implementation of the program described above, refer to
Section 10.1.1 and Section 10.1.1.)

It may seem pointless to go though the complicated exercise per-
formed by arbitrate when the behaviors could have sent the messages
to the motor driver themselves. When Behavior-1 computes an out-
put for Behavior-2, why not just write it directly?

There are two reasons. First, we wish to maintain modularity.
Suppose a robot control system has been written and debugged and
that it contains no formal message-passing scheme. All the behaviors
simply write their outputs to the correct inputs directly. If we now
want to add a new layer of complexity, it is not possible to simply
write new modules and wire them in by adding statements to the
connection diagram. Instead, we must have a detailed knowledge of
which behaviors pass what messages to which other behaviors and

9.6 What Did We Do? 309

in what order. This is easy to do for a small system, but it becomes
intractable for a large one.

Secondly, the relationship between the behavior control diagram
and the code becomes difficult to understand. The connections,
rather than being explicitly represented in the connection list, are
now hidden in the code. If the order in which the behaviors are ex-
ecuted changes or new behaviors are added, the overall behavior of
the robot may change in unexpected ways.

By observing certain protocols as we programmed our robot in
1C, we were able to build a network of finite-state machines that
could pass messages to each other, running in (what appeared to be)
parallel operation. :

9.6 What Did <<m,_uo,.~

What we have described in the previous section'is a style of pro-
gramming that implements behavior control principles. But what
does organizing an intelligence system in this manner really buy us?

The approach of building networks of layered task-achieving be-
haviors that run concurrently has a number of advantages over the
paradigm of sensing, world modeling, and planning. The first advan-
tage is that behavior control grants real-time robustness to events in
a changing environment. Taking the traditional approach of building
a map of the world and updating it with fused sensor data leads to
a computational bottleneck, which causes the Hovow to ﬁm‘Ww a long
time to plan a strategy about what to do. This comifion problem
of artificial intelligence (AI) programs taking longer to run when
more knowledge becomes involved was one of the original difficulties
that subsumption architecture set out to solve. For instance, what
if a robot were walking down the street and crossing a railroad track
while contemplating “pawn-to-king-three” and a train began to come
down the track? Should the robot finish searching the decision tree
for possible moves or hustle off the track? Behavior control offers a
way for pressing concerns to assume precedence.

Beyond the capability of real-time robustness, however, is the re-
alization that, if the intelligence system is organized without a world
model, then the hard problem of sensor fusion can be ignored. In

310 9. Robot Programming

fact, we can think of a programming technique using sensors as sen-
sor fission, whereby different sensors interject themselves into the
control system at various levels to trigger different behaviors. The
problem of sensor fusion is then passed off to the problem of be-
havior fusion, which is miuch less computationally intensive. The
problem of behavior fusion is arbitrated by the designer’s prioritiza-
tion scheme based upon his or her arrangement of suppressor nodes.
Because no geometric world model is maintained, the robot requires
less computational hardware. Rug Warrior does not have to haul a
supercomputer around with it.

Even more interesting than the speed and space advantages of
behavior control are the possibilities of what this paradigm might
hint to us about models of intelligence. Because seemingly complex
behaviors can be seen to emerge from what we know are very simple
reflexive behaviors, perhaps complex mechanisms that we hypothe-
size exist in what we acknowledge as wdﬁo:mmmbom might actually just
be combinations of much simpler mechanisms.

When we, as humans, look at the scene illustrated in Figure
9.10, we see Rug Warrior acting with interesting if not purposeful
behavior. We also see walls, chairs, and table lamps. These images
bring to mind the associations that people sit in chairs and that table

lamps are useful for reading. Rug Warrior sees none of these things -

yet can operate effectively in this environment.

Building robots has helped us to stay on track and to keep fo-
cused on solving the problems that need to be addressed in creating
machines that we would consider clever. Before actually building
your own robot, it is easy to ascribe all sorts of complex structures
to the putative thought processes of robots; you can hypothesize
complicated networks, special architectures, and the need for lots
of “computrons” to connect perception to action. One of the great
advantages to building things is that you can see exactly how much
machinery is required. Oftentimes, a priori intuition about what
will be needed is completely wrong. After building a machine of
your own, you can look at an already built system (such as Na-
ture’s) with greater insight and the hope of being able to discern the
extraneous from the essential.

In our book, then, we have come full circle. From the myriad
of details involved in learning about electronics, mechanics, motors,

9.7 References 311

and software, we have seen that a robot can be much more than
the sum of its parts. As a system, if organized in the proper way,
intelligent behavior can seem to emerge from a collection of simple
competencies.

9.7 _wm.nn_.msnmm

There is a large body of work on robot intelligence systems in the
artificial intelligence community. While we cannot go into all the
threads here, we point to a few conferences and workshops whose
proceedings encompass the broad field and then mention a few local
pieces of work from which the robots of the Mobile Robot Lab, and
later this book, evolved.

Over the past 15 or 20 years, different notions have taken form
about how to go about organizing intelligent behavior in computer
programs. Much of this work was chronicled in proceedings of confer-
ences of the American Association of Artificial Intelligence (AAAI)
and the IEEE Robotics and Automation Society (IRAS). Early work
in intelligent autonomous robots led to the development.of planning
strategies (Nilsson 1984) and visual map making (Moravec 1981).
These directions later found applicability, especially in fixed-base
arm and manipulator-type robots for assembly QLonEo Huowon J OSQm“
Mazer, and O’Donnell 1992).

During this time, new ideas were proposed, aimed at m&&uommydm
issues that did not fit well with world-model vmﬁy&m In an ef-
fort toward understanding common-sense reasoning, Minsky ﬁwmmv
proposed The Society of Mind as the idea that the brain is com-
posed of independent agents, collectively interacting to produce in-
telligent behavior. Simultaneously, Brooks, pondering why simple
insects could perform feats that would be unimaginable even for the
largest supercomputers, proposed subsumption architecture (Brooks
1986) for programming autonomous robots, where collections of sim-
ple behaviors and reflexive rules interact in such a way that seem-
ingly more complex behaviors emerge. Connell (1990) extended this
work, introducing a number of new ideas to the subsumption ar-

* chitecture approach. Brooks (1991a, 1991b) and Maes and Brooks

(1990) discuss subsequent experiments in the Mobile Robot Lab with

312 9. Robot Programming

behavior-based robots that walk, climb, collect, wander, hide, and
learn.

One fallout from the subsumption architecture/behavior control
approach was that the resulting intelligence system did not have to
deal with sensor fusion and world modeling and consequently com-
piled down to a very lean block of code. This breakthrough in soft-
ware led to new opportunities in hardware. Brooks and Flynn (1989)
outlined the possibilities.

Powerful ideas coinciding with a ripening of technologies has cre-
ated a movement, nouvelle AI, where believers (there are skeptics)
dabble in pursuing these distributed approaches to organizing intel-
ligent systems. Maes (1991) is an edited collection of recent work
along this avenue.

For a more rigorous explanation of behavior control and other
methods of controlling robots combined with a broader and more
historical perspective, consult (Arkin 98) and the forthcoming book
(Brooks and Ferrell 98).

- way

> often degenerate into mysterious bumps and gyrations

10

Robot Projects

Now that you have learned how to design a ﬂovoﬁ. mw& (we W_M@MW
constructed one of your own, what can %ws.&o éaﬁkocﬁ ro nw _
How can you connect sensing to @oﬁcmamoﬁ n Eﬁoammﬁﬁm mﬁ.& wmmvﬂ
s? In this chapter we sketch out a few a.mmm for projects ,m.“c:.\m,H e
for Rug Warrior II class robots. &m,oH certain Wm%.oouﬁ.mvﬁm we also
ly an analysis and sample code. . . e
mCUWMwodm rmZM a knack for exposing the wmbogwow of dvmﬁ.wnmw@ﬂoa.
Behaviors of elegance and sophistication, as seen in the mind’s eye,

“when exe-
cuted by the robot. Each time we seek to make a nowo.d do something
new. we as robot builders are obliged to learn something new. To be
convinced of this, try a few of the projects in this chapter.

10.1 Projects for Individual Robots

The following projects are suitable for a single Rug é@aﬂg robot.
Even if your intent is to program several Ho_ooﬁm. to ovﬂ,mﬁ in a team,
“you should first try some individual robot pro gmoﬁ. to build up your
base of robot programming tools and skills. To give you a running

314 ‘ 10. Robot Projects

Escape
Bumper
Drive
Motors
(«a :
QH_l\\|Y Avoid
IR sensors
Cruise J
Arbitrate Motors
Sensing - Intelligence system Actuation

Figure 10.1. Behavior control diagram for Lewis and Clark. In conflicts over
which behavior gets to control the robot’s motors, Escape has the highest priority,
Avoid the next highest, and Cruise the lowest.

start, we will work through the first project below from behavior
diagram to Interactive C code.

10.1.1

The first imperative for a great many robot projects can be stated
as “move about and don’t get stuck.” The Lewis and Clark program
embodies that notion in its essence—the robot’s only purpose is to
keep moving, exploring new territory.

One way to program Lewis and Clark is to use the collection of
five behaviors diagrammed in Figure 10.1. These behaviors running
together satisfy the problem statement. Cruise provides the “move
about” part while Avoid and Escape give us “don’t get stuck.”

Cruise is a single-minded behavior. Ignoring all sensing, Cruise’s
only purpose is to make the robot go forward.

Avoid tries to steer the robot away from obstructions. Using Rug
Warrior’s infrared (IR) detector, Avoid determines if any obstacles
are in the robot’s path. If so, Avoid issues motion commands that
will turn the robot so as to avoid hitting the obstacle. When deciding
which behavior gets control of the Eoﬁon Avoid must have a higher
priority than Cruise.

Sometimes things go wrong 59;5/5? and collisions happen de-
spite Avoid’s best efforts. To recover from this, an Escape behavior

Lewis and Clark

N

10.1 Projects for Individual Robots 315

is needed. After the bumper detects a collision, Escape takes con-
trol and commands the robot to backup and turn a bit, so that the
robot will go off in a new direction, away from whatever object it
just struck.

These three simple behaviors, plus an arbitration behavior to
enforce priorities, and a motor-driver behavior to make the motors
move, are all that is needed to keep Rug Warrior exploring its sur-
roundings indefinitely.

Now consider the IC code that actually implements these behav-
iors. A complete listing of the code follws the analysis.

Each behavior in the behavior control diagram corresponds to
a similarly named C function in the code. To control robot mo-
tion, a behavior function must have three associated global variables,
X _trans, X_rot, and X _act (where X is a mnemonic for the be-
havior’s name). To make the robot move, behavior X computes
translation and rotation values, stores.these numbers in X _trans
and X _rot, and sets X _act to 1. When behavior X is ready to give
up control, it sets X _act to 0.

Behaviors run constantly in parallel, thus behavior functions all
contain a while(1) expression. The code in the body“of the while
expression runs as often as IC’s scheduler will allow. :

The Cruise behavior repeatedly sets cru_act to 1 and commands
a motion whose translation component is cru_def_vel and ‘whose
rotational component is 0. The Arbitrate behavior c::bmd&% de-
cides if these commands ever reach the motors.

Code implementing the Avoid and Escape vmrm;:oam &mo sets ac-
tive flags, av_act and es_act respectively, and assigns translational
and rotational velocities. Unlike Cruise, Avoid and Escape compute
these values based on sensor readings.

In the Lewis and Clark program, the Arbitrate behavior imple-
ments a strict priority scheme. If Escape wants control (if es_act
= 1), Arbitrate passes Escape’s motion commands on to the Motors
behavior.

If Escape does not need control, .Plo:uamﬁm checks to see if Avoid
is active. If so, Avoid’s motion commands are passed on; if not, the
commands issued by Cruise are allowed to control the robot.

The Motors behavior is aware only of the values output by Arbi-
trate, mot_trans and mot_rot. Motors constantly calls the function

316 10. Robot Projects

drive with these values, making the robot move. (It would be a vi-
olation of the behavior control paradigm if any other behavior were
allowed to call drive).

Avoid functions by checking to see if the IR detectors have sensed
a reflection from an obstacle (ir_detect is a library function that
returns the state of Rug Warrior’s obstacle detectors). If the detec-
tors have seen nothing (if ir_hit = 0) then Avoid is finished; it sets
av_act to 0. If there was a detection on both sides of the robot
(ir_hit = 3), Avoid arbitrarily decides to turn left (the rotation
variable is set to a positive value). The remaining possibility is that
there was an IR detection on either side of the robot. In this case
the utility function, 1r_rot, uses the value of ir_hit to compute a
positive or negative number, as appropriate, to make the robot turn
left or right.

Avoid computes a motion command only during the time the
IR sensors detect a reflection. No reflection means Avoid gives up
control immediately. Escape functions differently; it continue to is-
sue motion commands for a brief time after the event that triggered
Escape has ended.

The Escape behayior monitors the bumper using the library func-
tion bumper. If there is a collision on the left or right, Escape com-
mands a negative translational velocity, then waits for a, time, es_bf,
allowing the robot to backup. Next, based on which side the collision
occurred, Escape commands a rotation to the left or right, and waits
again. Finally, Escape commands a forward motion. The final for-
ward motion ensures that when Escape terminates, the robot is in a
different position and does not immediately bump into the obstacle
again. If bumped from the back, Escape spins a bit, then releases
control.

To run in parallel, each behavior must be instantiated as a pro-
cess: This is what the main function does. Another purpose of the
special function main is to automatically start the Lewis and Clark
program after a reset or power up. .

A Report behavior is included for debugging purposes. Report
displays on the liquid crystal display (LCD) screen which behaviors
are active and shows what velocity is actually being commanded.
Knowing which bit of code causes the robot to act in a particular
way is essential when your program does not behave as you expect.

10.1 Projects for Individual Robots 317

From these primitive behaviors, a global behavior emerges. The
robot moves forward until it nears an obstacle. Rug Warrior then
steers so as to avoid the obstacle. If it collides with an undetected
obstacle, Rug Warrior backs, turns, and proceeds off in a new direc-
tion.

Lewis and Clark Program

/%* Lewis and Clark
* Purpose: Move and don’t get stuck */

/% UTILITY FUNCTION */

/* Decide to spin left or right based on IR or bumper hit
1 => detection on right, 2 => detection on left.
Return +1 if robot should spin to left, -1 if it should
spin right :

*/

int 1lr_rot(int detect)
{ return ((detect & 1) << 1) - 1;
}

/* BEHAVIORS */

/% Cruise Behavior:
Move forward always */

0; /* Cruise translational velocity command */
/* Cruise rotational velocity command */
/* Cruise active flag */

int cru_def_vel = 100; /* Cruise default velocity */

int cru_trans =
int cru_rot = 0;
int cru_act = 0;

void cruise()

{ while (1)
{ cru_act = 1; /% Cruise always wants control */
cru_trans = cru_def_vel; /* Move at the standard velocity */
cru_rot = 0; /* Don’t rotate */
.} :
¥

318

10. Robot Projects

/* Avoid Behavior

Detect obstacles with the IR sensor and arc away */

int av_trans = 0; /*
int av_rot = 0; /*
int av_act = 0; /*
int av_def_trans = 100; /%
int av_def_rot = 50; /*
void avoid()
{ int ir_hit = 0; /* Local
while(1)
{ ir_hit = ir_detect();

if (ir_hit == 0)

av_act = 0;

else if (ir_hit == 3)

{

av_act = 1;
av_def_rot;

av_rot =
av_trans =
else
{ av_act = 1
av_trans =
av_rot =

/* Escape Behavior

Move away from a collision */

0; }

/*
0;

av_def_rot * lr_rot(ir_hit)

int es_trans = 0; /*
int es_rot = 0; /*
int es_act = 0; /*
int es_def_trams = 100; /%
int es_def_rot = 50; /*
float es_bf = 0.25; /*

float es_spin = 0.25; /#*
void escape()
{ int es_hit = 0;
while (1)
{ es_hit = bumper();

Avoid translational velocity command */
Avoid rotational velocity command */
Avoid active flag */

Avoid default translational velocity */
Avoid default rotational velocity */

variable for obstacle detection */

/* No IR detection */
/* Avoid behavior has nothing to say */
/* Obstacles on both sides */

/* Avoid wants control */
/* Arbitrary rotate left */
/* Don’t go forward */
/* Obstacle on one side or the other */
Avoid wants control */
/* Don’t move forward */

/* Rotate left or right */

Escape
Escape
Escape

translational velocity command */
rotational velocity command */
active flag */

Escape default translational velocity #*/
Escape default rotational velocity #*/
Backward/Forward time */

Spin in place time */

/* Variable to save collision dir */

/* Get and remember the bumper */

10.1 Projects for Individual Robots

319

if (es_hit & 3)
{ es_act = 1;
es_trans =
es_rot = 0;
sleep(es_bf);

es_trans = O;
es_rot =
sleep(es_spin); /*
es_trans = es_def_trans;
es_rot = 0; /*
sleep(es_bf); /*
es_trans = 0; /*
es_act = 0; /%

¥

else if (es_hit & 4) /%

{ es_act = 1; /*

es_trans = 0; /*
es_rot = es_def_rot;
sleep(es_spin); /*
es_rot = 0; /*
es_trans = O; /*
es_act = 0; /*

/* If left or right collision... */
/* Escape wants control #*/
(- es_def_trans);
/+ Don’t turn while backing up */
/* Backup for a while */

/% Backup */

0; /% Rotate left or right */

1r_rot(es_hit) * es_def_rot; /* Rotate L or R */

/* Motor Driver Behavior

Constantly tell the motors how to move */

int mot_trans = O;
int mot_rot = 0;

void motors ()
{ while(1)

drive(mot_trans, mot_rot);

}

/* Drive Motor Arbitration
Prioritize the outputs of the behaviors */

void arbitrate()
{ while(1)

Spin for a while */

/* Forward past obstruction */
Don’t rotate */

Wait for motion */

Stop */

Relinquish control */

Bumped from the back */
Bump wants control */
Stop forward motion */
/* Spin in place */

Spin a while */

Stop spinning */

Stop */ ,
Relinquish control */

320 10. Robot Projects

if (es_act) /* If Escape wants control... */
{ mot_trans = es_trans; /* pass along Escape’s commands */
mot_rot = es_rot; }
else if (av_act) /* If Avoid wants control... */

{ mot_trans = av_trans; /* pass along Escape’s commands */
mot_rot = av_rot; }

else if (cru_act) /* If Cruise wants control... */
{ mot_trans = cru_trans; /* pass along Cruise’s commands */
mot_rot = cru_rot; }
else /* If no one is active, just stop */

{ mot_trans = 0
mot_rot = 0;}

/* Report Behavior

Reporting what the robot is doing to the LCD screen aids
debugging the program */

void report()
{ while (1)
{ printf("L&C E:%d A:%d C:%d", es_act, av_act, cru_act);
printf(" Tr:%d Rt:%d\n", mot_trans, mot_rot);
) sleep(0.2); /* Don’t overtax the LCD */

/* Automatic startup behavior */

void main()

{ printf("Lewis and Clark\n"); /+* Announce the program */
sleep(1.0); /* Give user time to read LCD */
mﬂwwalvHonmmmAmmnwvavv /* Start each of the processes #*/
start_process(avoid());
start_process(cruise());
start_process(motors());
start_process(arbitrate());
start_process (report());

10.1 Projects for Individual Robots 321

10.1.2 Moth

A Moth program makes the robot seek out the brightest light (or
dimmest light if you like). By pointing a flashlight at a robot that
is executing a Moth program, you can make the robot come to you
from across the room.

One way to write the heart of the Moth program is given in the
following code: .

int mth_trans = 0;
int mth_rot = 0;

void moth_point(int light_dark) /* Aim at light (or dark) */
{ int diff;
while(1) /% Left/Right difference */
{ diff = analog(photo_right) - analog(photo_left);
mth_rot = light_dark # diff; /# Light diff => Rot rate */

This very simple function computes rotational velocities that
point the robot toward (or away from) a light source.“The argument
to moth_point (light_dark), controls whether the robot seeks light
or darkness. A positive number makes the robot turn toward the
light; a negative number makes the robot point toward the dark.
The magnitude of the argument determines how strongly the robot
responds to light differences. The code is an elementary proportional
control system. If the magnitude of 1ight_dark is B.wmm ﬁoo rﬁmm
the robot’s motion will be unstable. :

Using the structure of Lewis and Clark you can mmm;% add the
Moth behavior to make a new program. With this done, Rug Warrior
follows the light but avoids obstacles and escapes from collisions
along the way. (This will give you an alternate implementation of
the program described in Section 9.5.)

10.1.3 Baryshnikov

Rug Warrior can play tunes and it can move in interesting ways. The
Baryshnikov program puts these two talents together. You are the
choreographer—write a program that enables your robot to dance
to its own accompaniment.

320 10. Robot Projects

if (es_act) /* If Escape wants control..
{ mot_trans = es_trans; /*
mot_rot = es_rot; }
else if (av_act) /* If Avoid wants control.
{ mot_trans = av_trans; /*
mot_rot = av_rot; }

else if (cru_act) /* If Cruise wants control...

{ mot_trans = cru_trans; /#
mot_rot = cru_rot; }

else /% If no one is active,
{ mot_trans = 0;
mot_rot = 0;}

/* Report Behavior

Reporting what the robot is doing to the LCD screen aids
debugging the program */

void report()

{ while (1)

{ printf("L&C E:%d A:%d C:%d", es_act, av_act, cru_act);
printf(" Tr:%d Rt:%d\n", mot_trans, mot_rot);
sleep(0.2); /* Don’t overtax the LCD */

}

}

/* Automatic startup behavior */

void main()

{ printf("Lewis and Clark\n");
sleep(1.0);
start_process (escape());
start_process(avoid());
start_process(cruise());
start_process (motors());
start_process(arbitrate());
start_process (report());

/% Announce the program */
/* Give user time to read LCD

pass along Escape’s commands */

pass along Escape’s commands */

pass along Cruise’s commands */

just stop */

*/

*/

*/

*/

/* Start each of the processes */

10.1 Projects for Individual Robots 321

10.1.2 Moth

A Moth program makes the robot seek out the brightest light (or
dimmest light if you like). By pointing a flashlight at a robot that
is executing a Moth program, you can make the robot come to you
from across the room.

One way to write the heart of the Moth program is given in the
following code: .

int mth_trans = 0;
int mth_rot = 0;

void moth_point(int light_dark) /* Aim at light (or dark) */

{ int diff;

while(1) /* Left/Right difference %/
{ diff = analog(photo_right) - analog(photo_left);

mth_rot = light_dark * diff; /* Light diff => Rot rate %/

This very simple function computes rotational velocities that
point the robot toward (or away from) a light source.” The argument
to moth_point (1ight_dark), controls whether the robot seeks light
or darkness. A positive number makes the robot turn toward the
light; a negative number makes the robot point toward the dark.
The magnitude of the argument determines how strongly the robot
responds to light differences. The code is an elementary proportional
control system. If the magnitude of 1ight_dark is Bmhm ﬁoo 5&@@
the robot’s motion will be unstable.

Using the structure of Lewis and Clark you can mwm&\ add the
Moth behavior to make a new program. With this done, Rug Warrior
follows the light but avoids obstacles and escapes from collisions
along the way. (This will give you an alternate implementation of
the program described in Section 9.5.)

10.1.3 Baryshnikov

Rug Warrior can play tunes and it can move in interesting ways. The
Baryshnikov program puts these two talents together. You are the
choreographer—write a program that enables your robot to dance
to its own accompaniment.

320 10. Robot Projects

{
if (es_act) /* If Escape wants control... */
{ mot_trans = es_trans; /* pass along Escape’s commands */
mot_rot = es_rot; }
else if (av_act) /% If Avoid wants control... */
{ mot_trans = av_trans; /* pass along Escape’s commands */
mot_rot = av_rot; }
else if (cru_act) /* If Cruise wants control... */
{ mot_trans = cru_trans; /* pass along Cruise’s commands */
mot_rot = cru_rot; }
else /% If no one is active, just stop */
{ mot_trans = 0;
mot_rot = 0;}
}

/% Report Behavior

Reporting what the robot is doing to the LCD screen aids
debugging the program */

void report()
{ while (1)
{ printf("L&C E:%d A:%d C:%d", es_act, av_act, cru_act);
printf(" Tr:%d Rt:%d\n", mot_trans, mot_rot);
, sleep(0.2); /* Don’t overtax the LCD */

/* Automatic startup behavior */

void main()

{ printf("Lewis and Clark\n"); /% Announce the program */
sleep(1.0); /* Give user time to read LCD #*/
start_process(escape()); /% Start each of the processes */
start_process (avoid());
start_process(cruise());
start_process (motors());
start_process(arbitrate());
start_process(report());

10.1 Projects for Individual Robots 321

10.1.2 Moth

A Moth program makes the robot seek out the brightest light (or
dimmest light if you like). By pointing a flashlight at a robot that
is executing a Moth program, you can make the robot come to you
from across the room.

One way to write the heart of the Moth program is given in the
following code: .

int mth_trans = 0;
int mth_rot = O;

void moth_point(int light_dark) /* Aim at light (or dark) */
{ int diff;
while(1) /* Left/Right difference */

{ diff = analog(photo_right) - analog(photo_left);
mth_rot = light_dark * diff; /* Light diff => Rot rate %/

This very simple function computes rotational velocities that
point the robot toward (or away from) a light source. The argument
to moth_point (1ight_dark), controls whether the robot seeks light
or darkness. A positive number makes the robot turn toward the
light; a negative number makes the robot point toward the dark.
The magnitude of the argument determines how strongly the robot
responds to light differences. The code is an elementary proportional
control system. If the magnitude of 1light_dark is Em&o doo Eﬁmmq
the robot’s motion will be unstable.

Using the structure of Lewis and Clark you can mmm&% add the
Moth behavior to make a new program. With this done, Rug Warrior
follows the light but avoids obstacles and escapes from collisions
along the way. (This will give you an alternate implementation of
the program described in Section 9.5.)

10.1.3 Baryshnikov

Rug Warrior can play tunes and it can move in interesting ways. The
Baryshnikov program puts these two talents together. You are the
choreographer—write a program that enables your robot to dance
to its own accompaniment.

322 10. Robot Projects

A much more difficult variation on this theme is to have two
or more robots coordinate their actions, perhaps playing tunes in
harmony.

10.1.4 Mouse

An interesting and useful exercise is to program your robot to follow
walls. Such a behavior is often a vital component of other more
complex programs.

One simple approach to a Mouse program is to use the IR detec-
tor to track the wall. Suppose you wish your robot to move parallel
to a wall on its left. Have the robot arc to the left when no wall
is present on the left and arc to the right when a wall is detected.
(This is one of the behaviors TuteBot exhibited in Chapter 2.)

The behavior that emerges from this simple programming scheme
is that the robot wiggles back and forth as it moves forward along the
wall. If the parameters that control the arcing are chosen correctly,
the robot will even go through doorways and find its way out of dead
ends.

In Mouse, as with most simple behaviors described in this chap-
ter, it is helpful to use the bumper as a fail safe. Regardless of what
else it is doing, when the robot detects an object against its bumper
in the front, the robot should stop. Without this feature, your robot
will frequently find itself stuck against an obstacle with motors at full
power—needlessly wasting battery charge and stressing components.

10.1.5 Magellan

Decide on some closed path through your home or classroom and
then write a program that will make Rug Warrior navigate the course
so that it returns to the starting point. Depending on the course you
choose, there are a great many possible ways to accomplish this task.

A popular approach is to have your robot repeatedly drive for-
ward for some time or for some number of encoder clicks, turn for
some time or number of clicks, drive forward again, and so on until
the robot arrives back at the starting point. This method is called
dead reckoning. With this approach, your job is to discover the pa-

10.1 Projects for Individual Robots 323

PA2 R1 R2 R3
PA3
Osel0
g
S
Osel3 PE7 PE6
Osct X [PES >
1sell K ‘\ \ X \
Isel2 @ @
Iset3
Upward @
~~ pointing
photocell Left side Upward Right side
photocell hotocell photocelt

Figure 10.2. Here three additional photocells are connected to Rug Warrior via
a RugEx™ board. Photocell light sensors are implemented as voltage dividers.
The proper value for resistors R1, R2, and R3 is about 10 k{2s assuming the same
photocells are used for this circuit that are used for the Rug Warrior brains.

rameters of the path. How far should you command the robot to go,
how long should you have it turn at each segment of the path?.

Unless the path you have selected is very short, however, small
positional errors will build up as the robot moves. Quickly the robot
will become lost and no amount of tuning will make the robot follow
the path reliably. . S

A more robust approach is to use some feature of the environment
that the robot can sense to help guide the robot. Perhaps there is a
wall the robot can follow for most of the way, or maybe the robot can
home in on a strong light. Consider carefully which features along
your proposed path the robot can exploit to find its way.

10.1.6 Apollo 13

If you place a single bright light source in a dark room, it is easy to
have the robot home in on the light. The robot can do this by mon-
itoring the difference in intensity between left and right photocells.
(See Section 10.1.2.) The robot moves forward while turning left or
right so as to minimize the difference.

An additional interesting behavior is possible if you also have the

- robot pay attention to the absolute intensity of the light. When far

away, the robot can move toward the light. But when close to the

324 10. Robot Projects

light, the robot can turn away. By balancing these two effects you
can get the robot to orbit the light. Have the robot do this without
either crashing into the light or becoming lost in space.

A more complex variation is to use two light sources. Try to make
the robot perform a figure eight around the lights. It may be helpful
to connect additional photocells to your robot for this project. You
can use Rug Warrior’s PE5, PE6, and PE7 analog inputs for this
purpose. See Figure 10.2.

10.1.7 Fire!

The Fire Fighting Home Robot Contest (www.trincoll.edu/~robot/)
is a popular event held annually at Trinity College in Hartford, Con-
necticut. Robots compete in a maze of four rooms connected by
hallways. A lit candle is placed in one of the rooms. The robot must
navigate the maze, find the candle, and extinguish it. The winning
robot is the one that does this in the least amount of time.!

Simpler variations of this contest are possible without adding fire
extinguishing equipment or ultraviolet (UV) flame-detecting sensors
to Rug Warrior. You could, for example, replace the candle with a
small lamp. Consider the fire extinguished when the robot bumps
the lamp.

10.2 Multi-Robot Projects

Employing more than one robot in a project tremendously expands
the possibilities. For two or more robots, new avenues open for both
competition and cooperation between robots and between builders.

10.2.1 You're E

Robot tag is an exciting game that a group of two or more Rug
Warriors can be programmed to play.2 One simple implementation
requires adding a small lamp to each robot. You can use Rug War-
rior’s batteries to power the light.

A contestant using a Rug Warrior brain is a past winner of this contest.
2We thank Professor Susan Hruska’s graduate seminar class at Florida State
University for developing this robot project and presenting it to the authors.

10.2 Multi-Robot Projects 325

Start.the game with the room darkened and with a lamp in place
on each robot. One robot is designated “it” and the rest “not-it.”
The “it” robot executes a “seek light” behavior. Thus it tends to
chase any “not-it” robots that it sees. The “not-it” robots execute
an “avoid light” behavior—they tend to move away from the “it”
robot (and each other).

‘When a collision does occur, an ambiguity arises which the robots
must resolve. Did an “it” collide with a “not-it,” did a “not-it”
collide with another “not-it,” or did a robot just strike the wall? To
solve this problem, each robot monitors its bump sensor. When a
collision happens the robot stops. A “not-it” robot plays a tone on
its piezo buzzer, then listens. An “it” robot listens first, then plays
a tone. If a robot hears a tone, then it assumes it collided with a
robot of the opposite type and it switches state. That is, a “not-it”
becomes “it” and an “it” becomes “not-it.” If the robot does not
hear a tone, it assumes it collided with a wall or-a robot in the same
state as itself and it does not change state. ,

10.2.2 Ready, Set, Go!

Interest has grown in robot racing. (For mote on this topic, see
for example, www.teleport.com/“raybutts/.) The traditional way to
implement robot racing is line following; a black line on the floor
defines a path for the robot to follow. Special sensors on the robot
identify the robot’s position relative to the line and the wovoa moves
forward as fast as it can without losing the line. : .

You can implement your own system to @mamoid line wozoaﬁﬂm
with Rug Warrior. Downward pointing photocells, photodiodes, pho-

_toreflectors, etc. can be used for this purpose.

Other clever courses are also possible. You may define a race
course consisting ‘of a wall that must be followed. Or, you can arrange
a series of lights that the robots must approach sequentially (see
Figure 10.3.). Suppose each light is placed on a low table, somewhat
taller than a robot. A robot on the race course will approach the
nearest light until it comes into the shadow of the table. The robot
will then lose sight of the first light and will begin to travel toward
the next nearest light in the series. In this way the race course can
be extended indefinitely or formed into a closed loop.

326 10. Robot Projects

Figure 10.3. Lights and shadows can be arranged to a robot race course. The
robot approaches lamp a until the robot drives into the shadow of the table. The
robot then begins to travel towards the next nearest lamp, lamp b.

10.2.3 Ready or Not, Here | Come

With a bit of cooperation, robots can play hide-and-seek.

The maximum range of Rug Warrior’s IR obstacle detection sys-
tem is only about 18 inches to 2 feet. However, when the emitter of
one robot is directed toward the detector of another, detection across
a room of moderate size is possible. This feature can be exploited
to allow robots to play a game of hide-and-seek.

At the start of the game, the seeker robot and one or more hider
robots are together at the center of the room. The seeker robot
begins to count, beeping 20 times with its piezo buzzer. When the
hider robots hear the count start, they run away, perhaps stopping
when they bump into something. When they stop, the hiders turn to
face the direction they came from and they turn on their IR emitters.

The seeker finishes its count. and begins to search for the hiders.
The seeker spins slowly in place, monitoring its IR detector. If the
seeker senses an IR source, it approaches that source. When the
seeker bumps a hider robot, the hider acknowledges by sounding its
piezo buzzer. The seeker then begins looking for the next hider and
proceeds in this way until all the hiders have been found.

Hardware for Beacon Following

Because the notion of beacon following is an important one, we will
describe in depth one method by which a robot can follow a beacon.
Rug Warrior nominally has only one IR detector. This is. adequate
for avoiding obstacles as the left and right emitters allow us to deter-
mine on which side an IR-reflecting obstacle is located. The single

10.2 Multi-Robot Projects 327
Left IR
detector (—
Left IR
detector
3 —
vee
2
@nd
1
[PA1 Vout
mv<on
= 3
Vvee
2
Gnd
(P> ! v
i @a &) Right IR
u._mmww._cm_. detector

Figure 10.4. The schematic diagram on the left and the pictorial layout on
the right, show one simple way to add extra IR detectors to Rug Warrior. The
detectors used are Sharp IS1U60s.

detector poses a problem, however, when trying to follow a beacon.
Thus, we need to make a small addition to Rug Warrior’s comple-
ment of sensors. . :

Adding extra sensing is a simple matter for Rug Warrior (see
Figure 10.4). In this example we have made use of RugFx™ the
Rug Warrior Experimenter’s board.? Signals from the IR detectors
go to unassigned digital I/O pins PA1 and PA2. ;

Building a Beacon

Creating a beacon requires no new hardware; Wzm Warrior’s standard
IR emitters can be used. All we need is a snippet of code to turn
the emitters on and off at detectable intervals:

void main(long msec) /* Process for the Hiding robot */
{ printf("Hiding...\n"); /* Report which program is running */
poke (0x1009,0b111100) ; /* Set port D for output */

3RugEx™ can be plugged directly into the new Rug Warrior Pro™ robot.

A connection to the original Rug Warrior can be made through RugUp™, the
Rug Warrior upgrade board. Alternatively, the IR detectors can be wired to
a connector plugged into the expansion socket. RugEx™ and RugUp™ are
available from A K Peters, Ltd.

328 10. Robot Projects

IR detectors —.__

a b

Figure 10.5. Top view of two robots playing a game of hide-and-seek. The
hiding robot & cooperates by emitting an IR signal. The seeking robot a uses
three IR detectors to determine the direction of the signal.

while(1) /* Broadcast forever */

{ poke(0x1008,0b1100) ; /* Turn on PD2 and PD3 */
msleep(iL); /% Wait for 1 millisecond */
poke (0x1008,0) ; /% Turn PD2 and PD3 off */
msleep(1L); } /% Wait for 1 millisecond */

}

This simple program is all that is required for the “hiding” robot.
The program informs the user that the robot is hiding (the printf
statement does this), sets the bits of port D to be outputs (the IR
emitters are controlled by PD2 and PD3), then at one millisecond
intervals turns the modulated IR emitters on and off.

Code for Beacon Following

The seeking robot’s job is somewhat more difficult. The basic idea
is that we will constantly monitor Rug Warrior’s three IR detectors,
counting how often each turns on and off. We make use of the
fact that the more directly a detector is pointed at an emitter, the
more reliably it will detect the transmission. For example, if the
hiding robot is to the right of the seeking robot, the seeker’s right IR
detector will count a large number of detections in some interval, the
forward detector will count a few detections, and the left detector
will count no detections. See Figure 10.5.

First we must have a function to tell the robot which IR detectors
have sensed an on-off signal from the beacon. That is accomplished
by ir_rec3.

10.2 Multi-Robot Projects 329

int ir_rec3(long msec)

{ int vall, val2;
vall = A.mewﬁouaoo»v & 0b00010000) | (peek(0x1000) & 0b00000110) ;
msleep (msec) ;
val2 = (peek(0x100A) & 0b00010000) | (peek (0x1000) & 0b0O0000110);
return (vall & “val2) | (“vall & val2);

The current value of Rug Warrior’s standard IR detector (con-
nected to PE4) is bitwise ORed with the output of the two new
detectors connected to PA1 and PA2. This value is stored in vali.
Then ir_rec3 waits for a time (typically 1 millisecond) to let the
beacon change state. Next, the states of the IR detectors are col-
lected again into val2. Finally, ir_rec3 returns a bitwise account-
ing of what happened. A detection occurred if the signal from a
detector was high and then, one millisecond later, low. Or a detec-
tion is counted if the signal was first low, and then one millisecond
later, high. For example, if the binary values of vall and val2 are
0b10010 and 0b00110 respectively, then the result will be 0b10100.
The implication is that the middle and right mmnmoaow.m have sensed
the beacon, and the left detector has not.

Now that we can tell when a single detection of each QmwogoH has
occurred, we need a way to keep a constantly updated count of how
many detections by each detector have occurred within some interval.
This is accomplished by the ir_measure3 function. ir_measure3
calls ir_rec3 a number of times equal to ir_measure3’s.argument
count. Following each call, ir_measure3 increments thelocal counter
associated with each detector. After count ;mamﬂozm these internal
values are copied to global counters associated with each detector
and the process repeats.

int r_rate = O; /* Right detector detection count */
int m_rate = 0; /* Middle detector detection count */
int 1l_rate = 0; /* Left detector detection count */

void ir_measure3(int count)
{ int i, rec; .
int li_rate, mi_rate, ri_rate; /* One local ctr per detector*/
while(1)
{ li_rate = mi_rate = ri_rate = 0; /* Init local ctrs */

330 10. Robot Projects

for (i = 0; i < count; i++) /* Check COUNT times %/
{ rec = ir_rec3(1L); /* Get reading */
if (rec & 0b00000100) /* If a detector has */
ri_rate++; /* detected something */
if (rec & 0b00000010) /* then increment the */
li_rate++; /* associated counter */

if (rec & Ob00010000)
mi_rate++;
}
r_rate = ri_rate; /# Copy local variables to global */
l_rate = 1li_rate; /* detector counters */
m_rate = mi_rate;

At this point we know which detector recorded the most detec-
tions within a standard interval. We can now define the function
seek to use this information to guide the robot toward the beacon.

int bias_abs = 25; /* Default homing rotation rate #*/
int spin_speed = 40; /* Default find-beacon rot rate */
int seek_trans = 35; /* Default translation speed */
int lr_dead = 5; /* Left/Right difference dead band */
void seek() /* Make a robot follow an IR beacon */
int bias = 0;
int trans = 0;
while (1)
{ if (bumper() != 0) /+ If the robot bumps into anything */
{ trans = 0; /% make it stop */
bias = 0;
}
else if ((r_rate + m_rate + 1l_rate) < 5) /% If the */
{ trans = 0; /* detectors see nothing, spin */

bias = spin_speed; /# in place looking for beacon */
T
else if ((r_rate > 1l_rate) && (r_rate > E|Hdevv
{ trans = seek_trans; /+ If most hits are on right */
bias = (- bias_abs); /* then arc to the right. */
b
else if ((l_rate > r_rate) && (l_rate > m_rate))
{ trans = seek_trans; /* If most hits are to left, */
bias = bias_abs; /* then arc to the left */

10.2 Muiti-Robot Projects 331
else /* Beacon is straight ahead */
{ trans = seek_tramns;
bias = 0;
¥

drive(trans,bias); /% Send vels to motors */
printf("Seek tr¥%d rt¥d", trams, bias); /* Report */
printf (" L%d M%d R%d\n", l_rate, m_rate, r_rate);
sleep(0.25); /* Drive a bit before switching */

The function seek finds the detector with the most hits (above a
minimum number, 5) and computes a rotational velocity bias that
will turn the robot in that direction. Here, for simplicity, we allow
seek to act as both a task achieving behavior and as the arbitra-
tion behavior. This is possible because there are no other behaviors
that wish to control the robot. If you adopt this code into a larger
program, you should break arbitration out into a separate behavior.

Finally, we define a main function for our seeker robot. In this
case main starts up the detection counter process mza the seek pro-
cess. Seeker begins the search for hider.

void main() .

{ poke(0x1008,0); /* Seeker’s IRs must be off */
start_process(ir_measure3(50)); /* Start beacon hit counter */
start_process(seek()); /* Then go find the_ beacon */

}

10.2.4 Couch Potato

The IR emitter and detector systems built into Rug Warrior can be
used to enable inter-robot communications. To do this, you must
define some number of distinct codes—combinations of IR pulses of
specific duration. Connect some sensory input of the transmitting
robot to a specific code. For example, when you push the rear bump
switch, the 110 code is transmitted.

The receiving robot constantly samples its IR Q@emoaoa classi-
fying patterns of IR detected and not detected into one (or none)
of the predefined codes. When the receiving robot identifies a valid

332 10. Robot Projects

1-bit 0-bit
Transmitted
— 7, ||v_ | signal
0 1 2 3 4 5 6
K= K= ==X VA» Sampled receive X
e . LN signal S
’ s ‘ \ 7
’ N s\ \ ’
I A L |

0 1 2 3 4 5 6 7 8 9 10 1 12

Figure 10.6. To signify a 1-bit, the transmitter turns the emitter on for two
transmit periods, Tp, then off for one transmit period. A 0-bit is indicated by
leaving the emitter on for a time equal to T, and off for 2T},. To decode the
data, the receiving robot must sample the signal from the transmitter at a rate
of at least twice the highest frequency of the transmitter. That is, the sampling
period, R, must satisfy the relation, R, < T, /2.

code, it performs the action associated with that code. Perhaps code
110 means “spin 90 degrees to the left.”

With a scheme such as this, one robot can perform as a sort of
remote control for another robot.

The initial challenge in a Couch Potato program is to identify
when a signal has been received from the transmitting robot. You
must encode the bits of the transmitting signal into periods of vary-
ing length indicating when the IR emitters are on or off. For one
example of how this can be done, see Figure 10.6. Here the transmit-
ter has a fundamental period of 7},. A 1-bit is encoded by leaving the
emitter on for a time 27}, and off for Tp. A 0-bit keeps the emitter
on for T}, and off for 27,

The receiving robot samples the incoming signal with a period
of Rp. According to the Nyquist theorem we must have R, < Tp/2.
Note that since there is no connection between the clocks of the
receiving and transmitting robots, sampling by the receiver will not
ordinarily be exactly in phase with transmissions from the sender.
Thus, if R, = T,/2 we can expect the sampled 1-bit to consist of
three or four high samples followed by one or two low samples, while
a 0-bit will be received as one or two high samples followed by three

10.2 Multi-Robot Projects 333

or four low samples. In general, other sequences of samples must be
discarded as noise.

Sampling in this way yields a high communication speed; other
simpler ways are possible if slower communication can be tolerated.
In Section B.7 we control the robot by counting the number of loud
sounds during an interval of predetermined duration. The same
scheme is possible with an IR transmission. You can use a modi-
fied form of the IR detection code in Section 10.2.3 combined with
the sound counting code in Section B.7 to decode IR transmissions.

10.2.5 Out of Africa

There is a species of termite found in parts of Africa that builds
large, meter-high nesting mounds. The mounds are elaborate con-
structions, internally incorporating true arches. Individual termites,
arguably, have no more neural computing power than Rug Warrior
and yet, without explicit communication, termites are able to coop-
erate in the construction of their homes.

Partly because of observations such as ﬁﬂm robot cooperation
has become an active area of robotics research. Box'pushing is an
elementary cooperation task you can program your robots-to do.
Boxes can be made heavy enough that one robot acting alone cannot
successfully move the box, but two robots acting together can. To
decide when and how to cooperate, robots must monitor their bump
sensors and shaft encoders. Robots move until they ooﬁnmow a box
(perhaps the boxes are identified with lights on top). :

The bump skirt tells the robot that it is in contact with an ov,,
ject. The robot applies power to its motors and monitors its shaft
encoders. If the shaft encoders indicate that the robot is moving, it
continues to push the box. If the robot is pushing but not moving,
then it can eithér give up and look for another box to push or the
robot can try to attract other robots to help it push the box. The
robot might try to attract others by, for example, turning on its IR
emitters.

Although Rug Warrior cannot easily climb to build a tower, you

‘may find ways that groups of robots can cooperate to arrange boxes

or other objects in some useful way. Or you may simply have the
robot collect scattered objects, pushing them into a central area.

334 10. Robot Projects

Vertical

Horizontal
polarizer polarizer
N B-team A-team /

\ r
Lamp ; Goal robot robot Goal ; Lamp
HH” Ball 77

A
_b; s m ¥2%) _ c_ il wbﬂ

Figure 10.7. Robots competing in a robot soccer game identify the ball us-
ing their IR sensors. Robots locate the proper goal using polarized light. The
robot with vertical polarizers covering its photocells, for example, sees only the
vertically polarized light of its opponent’s goal.

10.2.6 World Cup

In recent years, soccer tournaments for robots have gained in pop-
ularity worldwide. The participating robots in these contests are
typically custom-designed, centrally-controlled, special-purpose ma-
chines that incorporate some sort of vision system. However, a team
of Rug Warriors can be programmed to play a credible game of
soccer; all it takes is a bit of ingenuity and possibly a specially engi-
neered “ball.”

To play soccer, robot players must be able to locate the ball,
their opponent’s goal, and maybe each other. It is possible to use
a beacon transmitting a particular code to identify each goal. (You
can use a spare robot or a Rug Warrior brains as the beacon.) The
identifying code can be quite simple since there are only two goals.

Robots can detect the ball using their photocells. You can make
a special-purpose photocell-detectable ball from a small lamp and
battery. The ball need not be able to roll (the game may work
better if it doesn’t) but it should slide easily when pushed. The ball
should not tip over and it should be rather rugged.

An alternative that allows the use of an unlit rolling ball is to
arrange your playing field such that the ball is the only IR-reflective
object. Robots detect the ball with their IR sensors, while goals are
identified with polarized light. Each goal has a lamp with a polarizer
between the lamp and the playing field. (See Figure 10.7). One goal
is identified by horizontally-polarized light, the other by vertically-
polarized light. Each robot wears small sunglasses made of either
horizontally- or vertically-polarized material over its photocells. In

10.3 References 335

this way, each robot can see only the light coming from the goal
toward which the robot should dribble the ball.

Begin the game by blowing a whistle. Robots race to the ball
and try to push the ball toward their opponent’s goal. The mmBEwmﬁ
game needs only two players; more players increase the opportunity
for subtle strategy.

Robot soccer is a complex undertaking and should probably not

" be your first robot project. Hone your programming and design skills

by completing other projects. When you then tackle robosoccer, your
arsenal of robot behavior programs will match your imagination.

10.2.7 The Undiscovered Country

Do not be constrained by the small number of projects described
here. We strongly encourage you to invent robots and projects that
appeal to you. ;

The most pervasive use of any technology is almost always one
that the original practitioners did not foresee. No one &ombgm.&u
for example, in the early days of oogﬁcgnm. that ﬁﬁ automotive
industry would become the world’s largest consumer of computers.
Now there is a microprocessor in every car. It is up to you to take
mobile robotics where we cannot, to create the applications we have
not imagined. : o

10.3 References

The best reference for robot projects is the World Wide Web. Most
robot builders are eager to share their experiences with whomever is
interested, and many builders have designed web pages that reveal
their creations in great detail. Use a search engine to look for phrases
such as “my robot” or “robot project,” and you will get a large
number of hits. ‘

Cooperating robots and robots working in swarms have become
widespread research topics in recent years. For information on some
groups involved in such research, see the following sites:

336 10. Robot Projects

e avalon.epm.ornl.gov/~parkerle/coop_robotics.html,
o www.cs.brandeis.edu/~agents/, and
e www.cs.ualberta.ca/ ~kube/crip.cgi.

Information about a prominent robot soccer competition held in Ko-
rea can be found at the site: mirosot.org/MIROSOT98/index.html.

Information on these and other robot contests can be found in Ap-
pendix F.

11

Robot Applications

Robots are tools. We use robots, as we use other tools, to reduce the
amount of human effort required to satisfy our needs and desires. It
is often stated that robots are especially appropriate for jobs that are
dirty, dull, or dangerous. This chapter presents examples of robots,
both commercial and pre-commercial, in each category. v

The DC-3 of mobile robots has yet to appear.! However; many
compelling demonstration projects and pioneering pradiicts hint that
commercial success is tantalizingly close. The past:few, years have
seen mobile robots descend into a volcano, explore the surface of
Mars, and clean dirty floors. In this chapter, we briefly review a few
of these robotic firsts. Our list is by no means complete. We seek
only to illustrate some key elements from the broad and growing area
of robotic applications.

The road to the everyday robots of the near future is not without
bumps and detours. The successes and failures described in this
chapter can provide useful caveats for robot designers.

1The Douglas DC-3 was the first aircraft to become an unequivocal commercial
success. First introduced in 1935, the DC-3 accounted for 95% of US civil air
commerce by 1938.

338 11. Robot Applications

Figure 11.1. RoboScrub, a floor scrubbing robot, was developed by Denning
Mobile Robotics in cooperation with Windsor Industries. (photograph courtesy
of Jim Maddox)

11.1 Down and Dirty

When, in casual conversation, one admits to being a roboticist, the
almost universal first question one is asked is “Can you make a robot
that will clean my floors?” The appeal and market potential of
floor-cleaning robots have not been lost on the commercial world.
Numerous attempts to build vacuuming and scrubbing robots have
been made, and efforts continue.

11.1.1 Denning RoboScrub

In 1991 Denning Mobile Robotics, a company dedicated to commer-
cializing mobile robots, and Windsor Industries, a manufacturer of
cleaning equipment, joined forces to build RoboScrub, a floor scrub-
bing robot. RoboScrub was billed as a “large area cleaner.”

The approach taken by Denning seemed sensible; begin with an
existing manual floor scrubber and add robotic elements to elimi-
nate the need for an operator. Obstacle-detecting sonar transduc-
ers, a forward-looking infrared (FLIR) cliff detector, a tape-switch
bumper, and a high-precision laser navigation system were added to
the existing Windsor floor scrubber.

11.1 Down and Dirty 339

Figure 11.2. This navigation system recently marketed by Intelligent Solutions,
Inc., allowed RoboScrub to be accurately positioned within its cleaning area. A
rotating laser reflecting from bar coded targets determined the robot’s position
by triangulation. (photograph courtesy of Jim Maddox)

RoboScrub was programmed to follow a path through the space
to be cleaned, testing as it went for the presence of obstructions.
RoboScrub responded in a sophisticated way to such unexpected en-
counters. Obstacles at some distance caused the robot to slow down
but otherwise maintain its path; closer obstacles triggered an imme-
diate avoidance behavior, and obstacles detected only mﬁnHS‘QOmmmﬁ
range made the robot stop and wait. In the later case, RoboScrub
would not move until the obstacle departed. RoboScrub’s program-
ming scheme might best be described as ad. hoc; the robot did not
adhere strictly to either classical modeling/planning or to behavior
control. v

The outcome of the RoboScrub development was unsatisfactory.
The robot performed as it was designed to perform, but RoboScrub
never became a commercial success. The reason for this likely has
to do with the mismatch between the needs of the marketplace and
RoboScrub’s technology.)

In the performance of their duties, robot cleaners add value
slowly. Usually the rate is no more than a few dollars per hour—
approximately the hourly rate an employer would have to pay to have

340 11. Robot Applications

a human worker do the same job. If a cleaning robot should bump
into something, knock something over, or tumble down the stairs, it
might damage merchandise, the facilities, or the robot itself. In an
instant, the robot cleaner could easily undo all the economic good it
had ever done. That is, the cost of the damage caused by the robot
could exceed the money saved by using a robot in the first place.
This concern makes designers of cleaning robots very cautious.

RoboScrub’s designers understood this; they also understood the
limits of their technology. In particular, sonar, as the primary obsta-
cle avoidance sensor, has shortcomings. Large objects some distance
away are sensed adequately. This is especially true if the obstacle
presents a surface perpendicular to the direction of the sonar beam.
Unfortunately, small obstacles (say, the slim metal pegs on which
merchandise hangs) or large smooth objects approached obliquely (a
glass case containing watches for example) are not reliably sensed by
sonar.

Because of these and other blind areas, RoboScrub’s designers
designated the robot for use in large open areas only. Unfortunately
for RoboScrub, customers do not normally segment their cleanable
space into open areas versus areas near obstacles. A robot that
could clean the middle of an aisle, but not the sides of the aisle,
or one that could scrub the entrance foyer but none of the cluttered
corridors connected to the foyer, held little interest to most potential
customers. Still other cleaning possibilities were off limits because
RoboScrub’s navigation system required attaching large bar code
targets (about 6 X 12 inches) at eye level. RoboScrub never found
its market niche.

11.1.2 RoboKent

In 1988 the Kent Corporation, a manufacturer of cleaning equipment,
began development of a product called RoboKent. RoboKent has
the distinction of being perhaps the most successful cleaning robot
to date.

The basic technology of RoboKent is similar to that of the Den-
ning RoboScrub. RoboKent uses sonar as its primary obstacle sen-
sor, and the robot has a method of detecting cliffs and sensing colli-
sions. RoboKent, like RoboScrub, includes a mode that allows direct

11.1 Down and Dirty 341

Figure 11.3. The Kent company manufactures and sells both a robotic floor
scrubber, pictured here, and a robot vacuum cleaner of similar construction.
(photograph courtesy of Kent)

operator control—it’s robotic brain can be disconnected to allow it
to operate as a piece of manual equipment.

RoboKent is designed to work in either hallways or large open
areas. To initiate cleaning, an operator guides the robot to the area
to be cleaned and sets it in motion along a long straight wall. The
robot follows the perimeter of the space until it returns to its starting
location (as determined by dead reckoning). The robot then cleans
inward from this point until it has covered the entire area. ~ -

There is no need to install beacons, coded targets, or other arti-
ficial markings as RoboKent does not rely on these things. Neither
does RoboKent need to be programmed with a map of the area it is
to clean. Instead, RoboKent restricts the areas it can clean to places
with simple, rectangular geometries, and it requires an operator to
move the robot from one area to another.

RoboKent has had a position in Kent’s product line for a num-
ber of years, and has enjoyed modest success. Arguably, RoboKent’s
technology is no better than that of RoboScrub—the limitations of
both robots makes them attractive to only a specialized segment of
the cleaning market. No floor cleaning robot to date has demon-
strated the advances in technology needed to breach the boundaries
of this small niche.

342 | 11. Robot Applications

Figure 11.4. The Denning Sentry, a security robot, patrolled a fixed area defined
by active beacons. (photograph courtesy of Phil Veatch)

11.2 Making the Rounds

11.2.1

The first product Denning. Mobile Robotics attempted was a robot
called the Denning Sentry. Sentry was envisioned as an all-purpose
security robot. Bristling with intruder-detecting sensors, Sentry
would tirelessly patrol a warehouse or other facility., When power
was low, Sentry would automatically return to its charging station
and recharge its batteries without operator assistance.

Sentry incorporated a ring of obstacle-detecting sonar sensors,
infrared motion detectors, and a microwave motion detector. It also

Sentry

used a TV camera, microphone, and transmitter to transmit infor-

mation back to the security station. To find its way around, Sentry
required that some number of active IR beacons be installed in the
space to be patrolled. Sentry followed one beacon until it reached
an intersection where another beacon was detectable. Depending on
the route stored in its program, Sentry could then follow the inter-
secting beacon, or note its position and continue following the first

11.2 Making the Rounds 343

beacon. Given proper electrical modifications to the facility, Sentry
could even call the elevator by radio and ride to a different floor.

Like RoboScrub, Sentry could claim both technological success
and commercial failure. Without studying the security industry, it
might be imagined that security personnel spend their time pursu-
ing intruders and actively preempting theft. But in practice such
events are very rare. Typical duties of a security guard include such
things as testing the doors to make sure they are locked, checking
that the coffee maker is turned off, and adjusting temperature and
lighting to their after-hours settings. The Denning Sentry could do
none of these things. Few customers felt that rolling about the hall-
ways, transmitting back picture and sound justified the approximate
$75,000 cost of the Denning Sentry.

11.2.2 HelpMate

The effectiveness of nurses and other hospital .ﬁo%owmamum reduced
when they spend their time on incidental tasks. Ferrying paper work,
medications, and specimens from station to station is not high on the

- priority list of any caregiver. The HelpMate robot from HelpMate

Robotics, Inc. was designed to provide relief from these tedious tasks.

HelpMate navigates the corridors of a hospital using: a-combina-
tion of dead reckoning and sonar location. By pressiiig-a button,
a user can dispatch HelpMate to follow a stored map and navigate
from one programmed station to another.

For obstacle avoidance, HelpMate relies on its sonar sensors, an
interesting strobed-light triangulation system (Everett 95), and a
sensitive bumper mounted near the floor. Like the Denning Sentry,
HelpMate can be wired into-elevators and automatic doors so that
it can travel anywhere within a building.

HelpMate seems to be a robot that has found a profitable niche;
it has been installed in nearly 100 hospitals worldwide. HelpMate

- Robotics offers the robot for sale or lease. Currently lease rates are

a few dollars per hour.

..fE 11. Robot Applications

Figure 11.5. HelpMate Robotic’s HelpMate robot transports medications, sam-

ples, and paperwork from one hospital station to another. (photograph courtesy
of HelpMaster Robotics)

11.3 In Harm’s Way

There are frequent reports in the media of robots being used in
hazardous situations. Teleoperated robots were used in the cleanup
following the incidents at Three Mile Island and the Chernobyl nu-
clear plants. Police routinely employ remotely-controlled devices to
pick up, probe, or destroy bombs and suspicious packages.

So far, no danger-seeking autonomous robots have attained prod- ;

uct status. However, one-of-a-kind autonomous robots have been

used in high-rigk situations, and other robots that may become prod-
ucts are under development.

11.3.1 Sojourner

The Pathfinder mission to Mars in the summer of 1997 stands as one
of autonomous mobile robotics most compelling success stories. The

robot Sojourner captured the imaginations of millions on Earth as
it explored an alien world (see Figure 6.1).

11.3 In Harm's Way 345

Sojourner faithfully executed commands from its controllers at
the Jet Propulsion Laboratory in California, but Sojourner was ca-
pable of more. For the first time, a robot sent to another planet
had the power to take actions on its own. As Sojourner rolled about
what proved to be the site of an ancient flood, the robot was alert
for obstacles and cliffs. Sojourner could countermand instructions
from Earth if it determined that it was in danger. Several times in
the course of the mission, the robot did exactly that. In the event
that communication from the Earth to the robot was lost, Sojourner
even had the ability to conduct the exploration mission by itself.

The reduced scale and cost of Sojourner’s mission represented
a significant change of course for NASA where formerly bigger was
better. But the choice of a small, autonomous robot was deliberate
and carefully reasoned (Gat et al. 94). The cost of placing a payload
on the surface of another planet is proportional to the weight of the
payload, but the constant of proportionality is very large. The only
way to limit the cost of a space mission is to severely limit the weight
of the payload; the robot must be very small.

Mostly because of power considerations, ,woéaﬁwﬁ a very small
robot can be allowed only a very small computer. "The roundtrip
communication time between Earth and Mars is as much as 40 min-
utes. This delay prevents the possibility of direct teleoperation.
Thus, a robot used in space with a modest onboard processor must
nevertheless be capable of autonomous operation.) o

NASA recognized that behavior control is the logical software
architecture for an autonomous robot of this type. "/.Hrw robot So-
journer was developed through a series of earlier prototybes and was
programmed according to behavior control principles. Behavior con-
trol allowed Sojourner to get by with a processor some have described
as “computationally challenged.” ,

Because qualifying hardware for space operation can take years,
Sojourner used a proven, but ancient, processor. At the heart of So-
journer’s control system was an Intel 80C85, 8-bit processor able to
execute 100,000 instructions per second. A total of 160K of memory
was available to Sojourner, but the core of the program fit into only

-16K of high-reliability memory. Remarkably, the robot that amazed

the world had a processor much slower than that of Rug ‘Warrior and
only half as much main memory!

346 11. Robot Applications

Figure 11.6. IS Robotics’ Fetch robot was designed for explosive ordnance re-
mediation. Fetch is a tracked, differentially driven robot. The mast holds the
antenna for the onboard positioning system, the compass, and inclinometer. An
electro-magnet on a one degree-of-freedom arm enables Fetch to lift and transport
unexploded munitions made of ferrous material. A force sensing bumper protects
the robot’s front, infrared obstacle detecting sensors look out on all sides, and a

munition sensing metal detector is mounted underneath the robot. (photograph
courtesy of IS Robotics)

11.3.2 Fetch

The Fetch robot from IS Robotics? is designed for a serious purpose—
the removal of small unexploded cluster bombs from a battlefield.
(See Figure 11.6.)

Anti-tank cluster munitions are dropped from the air by the thou-
sands during a battle. When the battle is over, munitions that didn’t
explode (up to 25% of the total) create a difficult and dangerous
problem. Removal of these small but deadly munitions is an obvious
task for a robot. Fetch was designed to prove the concept that a
robot could perform this task.

In the operational scenario, the battlefield is returned to pro-
ductive use in the following way: An explosive ordnance disposal

2Members of the original Fetch design team included Joseph Jones, Art Shect-
man, and Rosario Robert from IS Robotics and Richard Myers of ISX Corp.

11.3 In Harm's Way ’ 347

technician arrives at the contaminated site in an all-terrain vehicle.
The technician unloads and powers up 10 to 15 robots, each about
the size of a carry-on suitcase. The robots comb the hazardous area,
searching for unexploded munitions. The robots pick up any muni-
tions they discover and transport them to a disposal point. After
the entire area has been searched and all munitions collected, a robot
carries an explosive charge to the disposal point. The charge is deto-
nated remotely and all unexploded munitions are destroyed at once.

To implement these tasks, Fetch requires a number of functional
subsystems and behaviors.

Fetch needs a means to detect munitions. Fortunately, the mu-
nitions are made of ferrous metal and are thus easily located using
commonly available metal detectors. By bringing an inert munition
and other metal objects into a local Radio Shack store and perform-
ing experiments in the aisle, a member of the Fetch team was able
to identify and purchase a suitable metal detector for the robot.

To retrieve munitions, Fetch uses a one degree-of-freedom arm.
The arm can lower the attachment mechanism to the ground and lift
up the munition for transportation. The attachment mechanism, a
simple electromagnet, exploits the fact that the munitions are made

" of ferrous metal. A break beam sensor shines-along the bottom of

ﬁrm&moﬁoam@bmﬁ.é:wnrmmagﬁmummum Uuowmﬁdmmgws&nmamm
that a munition is attached. : ; .
Fetch’s munition search strategy needs to- efficiently cover the
area being searched while respecting the fact that obstacles will be
present in the search area. It was discovered that w,&&ma&ﬂm.mwﬁ&
pattern performs well in both regards (see Figure 11.7) ,
Fetch begins its search at some selected point (indicated by the
checkered circle in Figure 11:7). From this point, Fetch moves out-
ward in an arithmetic spiral. The distance between successive ro-
tations of the rebot is chosen such that the new area swept out
somewhat overlaps the area of the previous rotation. This ensures
that Fetch does not leave any accessible area unsearched. Upon en-
countering an obstacle that it cannot surmount, Fetch stops, spins in
place 180 degrees, and continues the spiral in the opposite direction.

‘This is a simple, yet robust, strategy for dealing with most obstacles

in the search area.

346 11. Robot Applications

Figure 11.6. IS Robotics’ Fetch robot was designed for explosive ordnance re-
mediation. Fetch is a tracked, differentially driven robot. The mast holds the
antenna for the onboard positioning system, the compass, and inclinometer. An
electro-magnet on a one degree-of-freedom arm enables Fetch to lift and transport
unexploded munitions made of ferrous material. A force sensing bumper protects
the robot’s front, infrared obstacle detecting sensors look out on all sides, and a

munition sensing metal detector is mounted underneath the robot. (photograph
courtesy of IS Robotics)

11.3.2 Fetch

The Fetch robot from IS Robotics? is designed for a serious purpose—
the removal of small unexploded cluster bombs from a battlefield.
(See Figure 11.6.)

Anti-tank cluster munitions are dropped from the air by the thou-
sands during a battle. When the battle is over, munitions that didn’t
explode (up to 25% of the total) create a difficult and dangerous
problem. Removal of these small but deadly munitions is an obvious
task for a robot. Fetch was designed to prove the oo:omvﬁ that a
robot could perform this task.

In the operational scenario, the battlefield is returned to pro-
ductive use in the following way: An explosive ordnance disposal

2Members of .26 original Fetch design team included Joseph Jones, Art Shect-
man, and Rosario Robert from IS Robotics and Richard Myers of ISX Corp.

11.3 In Harm's Way : 347

technician arrives at the contaminated site in an all-terrain vehicle.
The technician unloads and powers up 10 to 15 robots, each about
the size of a carry-on suitcase. The robots comb the hazardous area,
searching for unexploded munitions. The robots pick up any muni-
tions they discover and transport them to a disposal point. After
the entire area has been searched and all munitions collected, a robot
carries an explosive charge to the disposal point. The charge is deto-
nated remotely and all unexploded munitions are destroyed at once.

To implement these tasks, Fetch requires a number of functional
subsystems and behaviors.

Fetch needs a means to detect munitions. Fortunately, the mu-
nitions are made of ferrous metal and are thus easily located using
commonly available metal detectors. By bringing an inert munition
and other metal objects into a local Radio Shack store and perform-
ing experiments in the aisle, a member of the Fetch team was able
to identify and purchase a suitable metal detector for the robot.

To retrieve munitions, Fetch uses a one degree-of-freedom arm.
The arm can lower the attachment mechanism to the ground and lift
up the munition for transportation. The attachment mechanism, a
simple electromagnet, exploits the fact that the munitions are made
of ferrous metal. A break beam sensor shines along the bottom of
the electromagnet. With the arm lifted, a broken beam ‘indicates
that a munition is attached. : .,

Fetch’s munition search strategy needs to. efficiently cover the
area being searched while respecting the fact that obstacles will be
present in the search area. It was discovered that mwn@@mﬁ&#.@.w?w&
pattern performs well in both regards (see Figure 117y

Fetch begins its search at some selected point (indicated by the
checkered circle in Figure 11.7). From this point, Fetch moves out-
ward in an arithmetic spiral. The distance between successive ro-
tations of the robot is chosen such that the new area swept out
somewhat overlaps the area of the previous rotation. This ensures
that Fetch does not leave any accessible area unsearched. Upon en-
countering an obstacle that it cannot surmount, Fetch stops, spins in
place 180 degrees, and continues the spiral in the opposite direction.

‘This is a simple, yet robust, strategy for dealing with most obstacles

in the search area.

.wAm 11. Robot >vu__nm:.03m

[

Actual location s, Reported location

of munition 1 Fetch | of munition

Figure 11.7. Fetch searches for munitions using a ammmo»..im spiral _mﬁ,wawm%.
Fetch begins by spiraling outward from its starting point. When an obstacle is

encountered, Fetch rotates in place 180 degrees then continues the spiral in the
opposite direction.

Systematic search would not be possible without a positioning
system to tell Fetch where it is. Fetch uses a carrier phase-differential
global positioning system (GPS) device for this purpose. This prod-
uct delivers 2 cm positioning accuracy. Other search strategies that
do not require a high precision navigation system to ensure search
area coverage were investigated. However, such strategies, most of

; which involve random search, were rejected as inappropriate for the
munition removal application.

A carrier phase-differential GPS device operates by, (incredibly)
counting the number of wavelengths between the receiving mobile an-
tenna and four or more GPS satellites. All this, while the satellites
whiz by overhead at greater than 17,000 miles per hour. Unfortu-
nately, such a system cannot compute its position instantly, but only
converges on a highly-accurate estimate after integrating for 3@5%
minutes. If the link between receiver and satellite is broken, the
solution is lost, and the integration process must begin again. For
this reason, anytime it becomes necessary to approach Fetch during
testing, members of the Fetch team must crawl along, belly to the
ground. This is the only way to avoid coming between the antenna
on the robot and passing satellites! ,

Unlike most robots, Fetch cannot simply detect objects at a large
distance and avoid them. Were it to do this, Fetch would leave an

11.3 In Harm’s Way 349

unsearched area, possibly harboring unexploded munitions, around
every obstacle. Rather, while searching, Fetch must slow down when
it comes near an obstacle, then proceed until it bumps the object
and can go no further. For this reason Fetch has no need of long-
range obstacle sensors but rather makes do with short-range reflec-
tive, near-infrared obstacle sensors. These sensors are mounted on
the front, back, and sides of the robot. Fetch also uses a collision
sensor that covers its entire front. An inclinometer enables Fetch to
avoid tumbling over on slopes that are too steep.

The Fetch system incorporates an operator control unit (OCU)
that allows the operator to intervene in the otherwise autonomous
operation of the robots. The OCU makes it possible for an opera-
tor to direct the robots at any level of detail, reassigning robots to
new tasks on the fly or extricating robots from situations their on-
board programming cannot handle. An onboard video camera and
transmitter relay the view from each robot back to the operator.

Behaviors

Fetch is controlled by a large number of behaviors. A simplified
version of Fetch’s behavior control diagram is shown in Figure 11.8.

At the top level is the Exec behavior. The Control Radio behav-
ior handles the interaction with the radio modem. Control Radio
feeds commands from the operator to Exec. Exec, like many of the
other behaviors, can issue robot motion commands. Exec also sets
the mode of the Drive Motor Arbitration behavior. Drive Motor Ar-
bitration transfers motion commands from other behaviors to Drive
Control. When the arbitration behavior receives conflicting com-
mands, it selects for transfer the command whose behavior has the
highest priority. Priority depends on the mode selected by the Exec
behavior. Drive Control is the behavior that actually makes the mo-
tors move. The dark line in the Figure 11.8 is meant to indicate
Exec’s mode-setting capability.

The Escape behavior monitors the front force-sensing bumper
and the rear-pointing IRs. Anytime the bumper senses force above
a certain threshold, Escape commands motions to free the robot.

*These motions consist of backing up until either the robot has moved

a certain distance, a timer has expired, or the rear IRs indicate an
obstacle. Then Escape commands the robot to spin in place away

————

350 11. Robot Applications

Control E
Radio Xee
Progress
Monitor
Bumper 7] Escape
IRs Avoid
Metal <
Sensor W Search
GPS Goto
Shaft
Encoders Dead
Reckoning
Compass |_||V
— o 3 Arm/Grip
h Control
Beam Pickup
ARA N
- Drive Motor Drive
| 5
nclinometer | Arbitration 7| Control

Figure 11.8. The diagram shows a simplified view of the behaviors that control
Fetch.

11.3 In Harm’s Way 351

from the side where the collision occurred. Finally, Escape moves
the robot forward a distance equal to the backup motion.

While navigating to the starting point of a search operation or
to the munition drop-off point, Fetch must avoid obstacles. But it
is not acceptable for Fetch to simply bounce away from obstacles it
encounters—this would make reaching the commanded point more

difficult. Fetch instead must hug the perimeter of any object it finds, -

turning toward the commanded point when the obstacle has been
cleared. The perimeter-hugging feature is embedded in the Avoid
behavior.

Avoid and Escape are allowed to gain control of the robot’s ac-
tuators only when Fetch is navigating to a point, either to begin a
search or to put down a munition. While conducting a spiral search
for a munition, the Search behavior subsumes Escape and Avoid.
As stated earlier, during a search it would be an error for Fetch to
turn away from an obstacle detected remotely. Ho discover as many
munitions as possible, Fetch must search up to every obstacle until
it can physically go no farther. The Search behavior is complete
when either the Metal Sensor behavior indicates that a munition
is present or when the robot has reached the Uocb&mmw of its local
search region.

The GPS, Shaft Encoders, and Compass behaviors all 05.%5
values to the Dead Reckoning behavior. Dead Reckoning integrates
this data to compute the robot’s current position. This voﬁﬁon&&
information is sent to the Goto behavior. Goto’s purpose is to.com-
pute commands that drive the robot toward a m:\mb point. - The
connection is not shown in the drawing, but. this goal point can be
provided by the operator and sent to Goto via the Exec behavior.

When Search terminates successfully, that is, when the metal de-
tector indicates the presence of a munition, the Auto Pickup behavior
becomes active. The metal detector and electromagnet gripper are
separate from each other; one is under the robot, the other is at
the end of the arm. Thus, there is some uncertainty as to exactly
where the robot should put down its gripper when the metal detector
indicates a munition.)

Auto Pickup commands the arm to go down, the magnet to turn
on, and the arm to lift up. If the break-beam sensor that shines
across the electromagnet is unbroken, then the munition has not

352 11. Robot Applications

been successfully acquired. In this case, Auto Pickup commands
a localized search procedure. The arm moves up and down as the
robot moves back in an effort to acquire the munition. If the beam
of the break-beam sensor remains broken with the arm lifted, the
munition is assumed to be attached. Goto is then allowed to drive
the robot toward the disposal point.

The Arm/Grip Control behavior, as the name implies, has control
over the arm and the electromagnetic gripper. Arm/Grip Control
also has a bit of embedded arbitration, giving commands from the
Exec behavior priority over commands from Auto Pickup.

Drive Motor Arbitration uses the readings from the inclinometer
to limit the maximum velocity the robot is willing to go. When

* moving over rough terrain, the bouncing of the robot generates large
transient readings from the inclinometer. This causes the robot to
slow down. Also, when the robot is on a steep slope or has upended
itself, the inclination reading causes the robot’s velocity to go to
zero. If the robot finds itself not moving, it alerts the operator. The
operator can override this behavior and extricate the robot from its
predicament.

Finally, the Progress Monitor behavior seeks to avoid behavior
loops. Unfavorable arrangements of obstacles can cause the robot
to become stuck while executing the Avoid behavior. Occasionally,
avoiding one wall of an inside corner causes the robot to turn to face
‘the other wall, which causes the robot to turn back to face the first
wall, and so on. Progress Monitor measures the time the robot has
been near the same location. If the robot dwells too long near one

spot, Progress Monitor, forces a 180 degree turn in an attempt to
break the cycle.

Results

In evaluation-testing, Fetch achieved its design goal, demonstrating
that a robot can dispose of explosive ordnance. Fetch succeeded
in autonomously navigating to a point, conducting a spiral search,
locating a munition, picking the munition up, transporting the mu-
nition to a disposal point and placing the munition on the ground.
However, more development, ruggedization, and cost reduction must
be accomplished before Fetch is ready for operation in the field.

11.4 Summary 353

11.4 Summary

Many individuals, research groups, and companies have built im-
pressive robots. The Denning Sentry, RoboScrub, and several other
robots we have not mentioned were technological triumphs but failed
in the marketplace. The RoboKent and HelpMate robots as well as
a few others have carved out a small niche for themselves. But the
mobile robotics industry still awaits the appearance of the equivalent
of desktop computing’s “killer app.” .

Tt should be clear that technology alone cannot ensure a robot’s
success. As builders, we may appreciate and value robots for their
elegance and technological sophistication, but a customer purchases
a robot because the robot accomplishes a needed task and does so
at a cost lower than competing methods. Robot builders may be
unused to thinking in these terms, but if our creations are to have
,md% impact they must go beyond elegance and Umpc.@ and actually
fill an economic need. .

11.5 References

The best source of information about new robot applications is aﬁm
World Wide Web. Thousands of pages on the web are devoted to
robotics. More pages are added daily. An excellent starting .UoEﬁ for
most queries about robotics is the Robotics FAQ Am,noﬁﬂ.obﬂ%, Asked

, Questions) page at www.frc.ri.cmu.edu/robotics-faq.

NASA was famously successful with its web site devéted to So-
journer during the 1997 Mars exploration. Archived information
about the Sojourner robot can be found by following the links at
mpfwww.jpl.nasa.gov. Check the site for future developments as
follow-up robotic missions to Mars are planned. (Gat et al. 94) has
an illuminating account of the reasons behavior control architecture
was chosen for the Mars robot. The paper also recounts the series
of Earth-bound experimental robots leading up to Sojourner.

Before Sojourner, the robot Dante took on a dangerous explo-
ration job on Earth. On eight metal legs, Dante walked into an ac-

" tive volcano. See .Egm,.ﬁ.obmmm.mo<\bmé\@HS.mndm\oﬂ@sﬁm\a@sﬁo.gg_

for the details.

354 11. Robot >UU=nmzo.:m

Information about RoboKent can be found at www.kentco.com.
For a look at another interesting floor cleaning attempt and to see
how the Paleozoic era has influenced robotics, try the website
www.electrolux.fi/robot.

More information on the HelpMate robot can be found by visiting
the HelpMate Robotics site, www.helpmaterobotics.com.

The Honda Motor Company has produced an impressive if some-
what eerily humanoid robot. The Honda Humanoid can be found by
following the links starting at www.honda.co.jp/eng.

Cog, a robot that attempts to act like a human, if not look like
one, is the current project of Professor Rodney Brooks at MIT. Check
out www.ai.mit.edu/projects/cog.

Fetch and a plethora of other interesting robots are on display at
the IS Robotics’ website, www.isr.com.

Finally, because the web is so dynamic, you can expect any ref-
erences given here to become obsolete at some point. In any ommm, to

get the latest information from the web you should be prepared to
search.

12

Robot Design Principles

You have by this point learned a great many technical details of
robot creation. Take a moment now to step back and consider how
all these lessons can be applied. What principles should guide you as
you design and construct value producing, task achieving, real world
robots? In this chapter we offer a few ideas. o R

12.1 Complexity _A:_m

" Every system on a robot and every component of every sy§tem must

be designed, built, and tested by the roboticist. Individually, each
element of a robot can fail or misbehave in one or more ways. Addi-
tionally, every element has the potential to interact with every other
element causing failures in combination that could not be produced
by any element alone. .

Every system and component you add increases your robot’s com-
plexity. If the added complexity is not justified by a corresponding
increase in essential functionality, your project will suffer. Unneces-
sary or unjustified elemnents increase the time needed to design and

* build your robot. Once in place, unnecessarily complex systems add

new possibilities of failure and increase the likelihood your robot

356 12. Robot Design Principles

will exhibit unexpected (and undesirable) behaviors. Such problems
increase the time needed for debugging and repair.

Early in your project, as you decide exactly what you will build,
attempt to strip away embellishments and non-essential features.
Continue in this manner until only the “atomic” robot is left. An
atomic design is one that cannot be further reduced; removal of any
of the remaining elements would leave the robot unable to perform its
task. Once the atomic robot functions robustly, you can confidently
add other systems that complement and improve the functionality
of the basic unit.

Complexity is the scourge of robust performance and the nemesis
of project deadlines. A well-worn engineering adage is especially
apropos for robots: “KISS—Keep it simple stupid.”

12.2 Holistic Robotics

Every robot is built to accomplish a particular task.. To succeed,
the robot’s various systems and components must all work together
in support of this purpose. A common pitfall among robot builders
(especially novice builders) is to become focused on a single aspect
of the robot to the detriment of the system as a whole. Resist this
temptation. If you want to build a robot that performs proficiently,
you must think of the whole system not just your favorite part.

Strive for a balanced design. Overall performance is often lim-
ited by the robot’s weakest subsystem. Concentrate your efforts on
improving the most poorly performing subsystems. This will yield a
much bigger payoff than making improvements to a subsystem that
already performs adequately.

12.3 Code versus Reality

The experience that carefully planned code often yields unplanned
responses from a robot, is a common one. This dissonance between
the expected behavior of a robot and its actual behavior often stems
from the programmer’s failure to appreciate certain complexities.
Situated in the real world, neither sensors nor mobility systems be-

12.4 Computer Program 7# Robot Program 357

have as our idealized models would have them do. Commanded mo-
tions may not be executed faithfully; sensor readings may be inter-
preted in more than one way. The programs you write must respect
these ambiguities. The less sensitive your code is to inaccuracies in
sensing or errors in motion execution, the more robustly your robot
will perform. Experience will be your best guide.

12.4 Computer Program #
Robot Program

If you are used to writing computer programs targeted to run on a
desktop computer, you will appreciate the advantage of faster pro-
cessors and algorithms as they improve the performance of your pro-
gram. The program that you write must compute a value (or perhaps
a large set of values) and return the correct result to the user.

In contrast, a robot control program must compute an adequate
response to incoming sensor data. The program must do this suffi-
ciently quickly to assure a timely response to avoid irreversible errors
or damage. This response is limited by the v.r%mmn& &Skwhﬁmﬁmﬁnm
of the robot, such as mass, motor power, wheel traction, etc. A pro-
gram that can make a decision in 1 /1000 of a second is no better than
a program that reacts within 1/100 of a second if the robot requires
1/10 of a second to actually respond. While a faster processor on
a desktop computer can compensate for a host. of programmer sins,
this is not true for robot programs. If the robot E@mwmgamﬂ has
failed to solve a problem correctly, using a faster processor to arrive
at the solution more quickly is of no help.

12.5 Magician’s Bag

Mobile robots face a harsh reality. Their motions are imprecise,
their sensors are often in error, and the real world is too complex to
be adequately modeled. What’s a roboticist to do? The answer is
-redundancy. :

When no one element can be relied on to work all the time, you
must employ many elements that each work some of the time. To

l

358 12. Robot Design Principles

achieve robust performance in the real world a robot must, in effect,
draw from a bag of tricks. When, for example, a specular reflection
prevents the robot’s sonar from seeing a wall at an oblique angle, the
infrared sensor will discover the wall when it gets close enough. If

the wall is a shiny black and the IR misses the wall too, the collision
sensor will inform the robot.

12.6 Avoiding “Usually”

When analyzing the problem your robot will solve, beware of de-
pending on the average case. Suppose you design your robot in a
certain way based on the (correct) observation that: “Usually X is
true.” If X is usually true, it follows that sometimes X is false. You
can be sure that your robot will find all those situations where X is
false. What will it do then? .

Never dismiss a potential problem by appealing to “usually.” De-
signing a robust robot requires giving more consideration to what will
happen when your assumptions are violated than to how the robot
will behave when everything goes as planned.

12.7 Design Steps

We recommend asking the following questions in the order given
whenever you design a new robot.

1. What is the robot supposed to do? It is vital that you develop a
clear and detailed understanding of exactly the task your robot
is to accomplish. The statement of this task is the source from

which all other decisions about how to design your robot should
flow. ;

2. What is the simplest way to accomplish the task? How you
answer this question can largely determine whether your design
job is easy or impossible, so be scrupulously honest. It may
seem heresy but sometimes the simplest solution is to use a
mechanism other than a robot.

12.7 Design Steps 359

3. What mechanical platform is needed? Knowing the problem
and having chosen an approach to solving it, what power sup-
ply, body, and arrangement of actuators is required? The prac-
tical realities introduced at this step will often force you to
rethink the previous steps.

4. What information does the robot need? Before considering the
sensors that will supply data to the robot, decide in the ab-
stract what the robot needs to know. This will drive your
choice of sensors. :

5. What sensors can supply this information most effectively?
The robot uses data from its sensors to answer certain ques-
tions about its environment. The robot chooses between pos-
sible actions based on the answers to these questions. Thus,
in general, a sensor that can answer a relevant question di-
rectly is preferred over a sensor whose output requires more
interpretation. ,

6. How can the problem be decomposed into behaviors? Once the
problem is understood, the simplest “approach to a solution
has been devised, and appropriate actuators and sensors have
been chosen the problem of writing the robot control program
should be greatly simplified. . ’ .

An effective robot can almost never be built in a single iteration.
You should expect multiple cycles of design, prototype; test, and
redesign. Your project will benefit if you plan for these cycles in
advance.!

Finally, following the heuristics given here can help you avoid
some common errors. A text book, however, cannot build a robot,
only you can do that. We wish you good fortune.

1gome will argue that adherence to good systems engineering practices will
allow robot construction in a single iteration. We believe this is incorrect. In a

_mature technology, bridge building, for example, systems engineering has great

benefit. However, for a technology in its infancy, such as robotics, many of
the mathematical models and rules-of-thumb on which good systems engineering
practices are founded, do not yet exist.

l

13
Unsolved Problems

Rug Warrior has been an exercise in both engineering and artificial
intelligence (AI). We have seen that building a robot involves many
issues. We have had to deal with bias in our circuits, bugs in our code,
slip in our wheels, noise in our sensors, and transients in our power
supplies. The process has forced us to take lessons from electrical
engineering, mechanical engineering, computer science, and artificial
intelligence. . ’ o

The fortunate part is that we have been able to demonstrate
this system on a minimal budget with eight chips, a mmé o,mwsmnﬁou,mq
and some inexpensive sensors and actuators. Using only this simple
system, we have also been able to teach modern theories of AI, which
preach combining simple behaviors in programs that are embodied
in the real world with real sensor data for input and real actuators
for output. Rug Warrior then is an input/output (1/O) device for
those wishing to study the issues involving the interplay between
intelligence and embodiment.

We have seen some examples of the range of behaviors that Rug
Warrior was able to achieve. Of course, if you expected that Rug
Warrior would be as talented as R2D2 or C3P0, then perhaps you
were disappointed. The gap between expectations and experiences
for the beginning roboticist can be daunting.

362 13. Unsolved Problems

The crux of the problem is that humans are just very good. We
take many things for granted in our own biological selves: the acu-
ity of our eyesight, the fine dexterity of our fingertips, the amazing
power-to-weight ratio of our muscles, and the efficiency of our energy
conversion system, to name a few. Instilling human-level equivalence
in a robot is quite a challenge!

In fact, the disparity between expectations and experiences grows
even wider if we think about the tiniest insects. Even their perceptual-
motor skills are amazing. Common houseflies can land upside down
on ceilings, spiders can assemble the most intricate homes, and ants
can carry loads many times their weight. Robots have a lot of catch-
ing up to do.

13.1 Navigation

There are a host of unsolved problems in mobile robotics. One open
question has to do with what is involved in endowing a robot with the
ability to navigate its environment. Salmon can locate their spawning
grounds from thousands of miles away, pigeons can find their desti-
nations on either sunny or cloudy days, and bumblebees can make a
beeline to a food source in quick response to another bee’s dance. By
contrast, few robots can make it down the hallway without recourse
to humans modifying the environment with beacons and bar codes.

The underlying issue here is one of representation. What sorts of
computational structures are required to grant competence in navi-
gation? How far can reactive systems be stretched? Are world models
and sensor fusion required at some point?

13.2 Recognition

Another problem that goes along with navigation is recognition.
Landmark recognition in a generally unstructured environment is
a very hard problem. Whether using cameras, pyroelectric sensors,
force sensors, or microphones, recognizing patterns in the environ-
ment is not trivial. Recognition problems can be computationally

intensive and subject to complexities due to lighting, occlusion, and
noisy data.

13.3 Learning 363

13.3 Learning

As our mobile robots become more and more complex and as we .@n-
tempt to make them more sophisticated, perhaps by incorporating
more sensors for greater perceptual acuity or by adding more @chw.
tors for finer dexterity, the software can become severely strained in
trying to deal with so many inputs and outputs. One area of research
is to investigate how, when, and where learning algorithms can be
incorporated into a robot’s intelligence system to alleviate the pro-
grammer’s burden. What are the right types of things to learn? Can

‘s robot learn to calibrate its sensors? Can a mobile robot learn new

and better behaviors?

13.4 Gnat Robots

The versions of Rug Warrior described in this book were rather small,
simple machines. However, from another viewpoint, they were actu-
ally awfully big. Our Rug Warriors did not have any B@.Eﬁ&méoﬁm,
did not do any assembly or heavy lift operations: They simply wan-
dered around, looking, listening, and reacting. v . A
There was really no good reason that they had to be as big as
they were. The sensors and the silicon on board mnﬁcmﬁ%. took up
a fairly small amount of space. The motors and batteries took up

_most of the heft and bulk. The motors used were E.me&, ‘dmowcmm

they offered the cheapest configuration available at a rating suitable
to carry the weight of the chassis and batteries.

‘With recent advances in hardware technology, we should be able
to do much better in the future. The idea of gnat robots is to scale
all the oOB@Ob@S&m of a robot down to a single piece of mEooP,éwawm
motors, sensors, computers, and power supplies can all be printed in
a single process very cheaply in a batch fabrication manner, much
like integrated circuits.

It may be quite a while before a chip gets up and walks, but the

. technologies of microsensors, micromotors, and microbatteries are

moving in that direction.

364 . 13. Unsolved Problems

13.5 Cooperation

In the drive to make ever cheaper mobile platforms, both for useful
robot applications and for wider availability of embodied machines
for Al research, single-chip gnat robots have provided one image for
a future goal. Rug Warrior, a machine approaching the concept of
single-board robot, is a step toward this goal.but closer to today’s
technology.

The process of contemplating the notion of a single-chip robot
makes building single-board robots look easy. Indeed, we have shown
this to be the case with Rug Warrior and have walked all our readers
through it. Rug Warrior is not exactly a single-board robot. While we
have managed to put all the computational hardware and almost all
the sensors on a single board, we still required a few hand-assembled
connectors to attach the two motors, two encoders, and two batteries
to Rug Warrior’s circuit board. It is not a single-board robot, but it
is close, and it is fairly simple and inexpensive.

Imagine, then, swarms of robots. What kind of intelligence sys-
tems could we build now? Again, intriguing questions arise from
biology. How is it that colonies of small termites can work together
to devour something as large as a house? How can a society of bees

survive as an organization without (we presume) explicit detailed -

communication? What are the constraints that communication (or
the lack thereof) imposes on the communal intelligence of a swarm
of independent agents? How might collections of simple robots aid
us in our human endeavors?

13.6 Thoughts

Twenty-five years ago, nobody would have believed a computer would
be used as a fuel-injection controller in every car. Back then, when
computers filled entire rooms, the people who built the first micro-
processor were laughed at. They took a little bit of CPU, a little
bit of memory, and a little bit of control logic and got a little bit
of nothing, as far as most people were concerned—except that lots
and lots of those tiny little computers eventually changed the way
the world works.

13.7 Exercise 365

A robot may not injure a human
—>{being, or. through inaction, allow

2 human being to come to harm.

A robot must obey orders given S
Sensors it by a human being.

A robot must protect its own S Actuators
ﬁ) existence.

Figure 13.1. Asimov’s familiar laws of robotics fit naturally into behavior pro-

gramming.

Single-board robots are not very different—a little _w# of dow.ﬁ?
a little bit of brawn, a little bit of battery, and a little bit of sensing
creates a little-bitty robot. But lots and lots of little-bitty robots
may just change the way we think about solving Eogmam.

The knowledge that surprising and novel unforeseen applications
lie down the road makes the dream of building these Bogo robots
even more compelling. From inspiration to mEUF.Embd@ﬁoP ém.ro?w

*. our readers take their dreams to their limits.

13.7 Exercise

Many years ago, Tssac Asimov listed three laws of robotics ﬂ&a de-
clared how robots should behave. These behaviors fit well into the
style of behavior programming (see Figure 13.1.) A H.ovoﬂ.m most ba-
sic behavior should be to protect its own existence, but given orders
by a human, it should obey. Of highest priority is a Umr.w.ﬁoﬁ that
prohibits a robot from harming a person or, through inaction, allows
a human being to come to harm. , ;

. We leave the details of the implementation as an exercise for our
readers. A mere matter of programming!

366 13. Unsolved Problems

13.8 References

The problems of navigation and recognition are widely worked on,
and many papers can be found in the IEEE journals Robotics and
Automation, Computer Vision and Pattern Analysis and Machine
Intelligence. Horn (1986) is a good text on the essentials of com-
puter vision. Navigation is explained for the novice in (Miller, Win-
kless, Bosworth 98). The book includes a disk of simulation software.
Another book (Borenstein, Everett, Feng 96) delves into robot nav-
igation on a more rigourous level.

Machine learning is also a popular research interest at the present
time. McClelland and Rumelhart (1986) introduce many of the ideas
involved in neural networks and parallel processing.

Microfabrication technologies have expanded in the last few years
from integrated circuits to microsensors and more recently to mi-
croactuators and microbatteries. A series of IEEE workshops on
microelectromechanical systems [MEMS| was begun in 1987, and
the proceedings from the ensuing years give broad coverage of this
emerging field. Demonstrations of subsumption architectures during
a similar timeframe illustrated that control systems for mobile robots
could compile straightforwardly to a small number of silicon gates.
This realization led Flynn to the idea of gnat robots (1987), which
was expanded on in Flynn, Brooks, and Tavrow (1989). A journal,
begun in 1992, the IEEE/ASME Journal of Microelectromechanical
Systems, provides a forum for research results in this area of mi-
cromechanics and integrated systems.

With possibilities for smaller, cheaper robots, many people have
begun to contemplate the possibilities of swarm intelligence. New
conferences, such as the International Conference on Simulation of
Adaptive Behavior (SAB), have emerged to draw these people to-
gether.

The most up-to-date information on a given topic in robotics
can often be found on the web. To pursue an interest in any of the
unsolved problems, fire up your favorite search engine and begin your
quest in cyberspace.

Schematics

Rug Warrior
Fr———=——==-=--=- ———————
~ I\ Expansion . External | Bump !
L7 Circuitry) Memory Sensing !
- [. N —
. Lght |,
! Sensors | A
Host I i
1 ‘IR Obstacle ||
I Sensing . |1
i | — :
! Serial Micro- Pyro :
.W Interface processor Sensor

—— I . I
. J Sound I
|] Sensing | |
: LCD Motor ﬁl — I
| Display . U_‘_”\mﬂ Buzzer !
1

|
Shatt ||
__ Power Motors Encoders |
et A -l

.Emc.‘m A.1. Block diagram of Rug Warrior. The microprocessor has a direct

connection to all onboard sensors and actuators. Additional sensors and actuators
can be interfaced via optional expansion circuitry.

368 A. Schematics
b ,, Motor Supply wi »%_W
wr supply DS81233M _ycc A
Vinl Battery low »._
indicafor A
& PAZS
/7 ENM
Vi
e
~ /RESET P
Phone jac AS,
Expansion
ADDR-HI Vee o Mode Microprocessor Voo
47K lumper o g §
(Green) oBATT _sm%um ,“_._ o
(W) RUN/DL- MODA PE7
SET E AS ~ PE3 w
Power Power LCD 10M 3 002 E PE6 ut
indicator Static RAM 0BATT contrast RW PE2 m
HM62256 . Vee Crystal mw.ﬂwr WMm o
Latch oVce || —R/W w Y 8.000 MHz P
ASprEve Y FJI0E B Gnd >g™C) 9% 50K o &) PEo
[—0C ¥ /CE ¥ VR 3 | ¢ o<y EES
PESLID7 Q7 Al AQ Ay S—— & PC3 PBi z
D6 Q6142 Al 8 —— |3 8 PG4 PB2 >
f r»umomLW A2 - |PA4 5 SR BBr—Is
e D4 Q4 A3 D7 PCO > |37 = o % boe =]
[E&ains Q3 A4 D6 pei—— > Vee o a7k —JRESET PBRI— ~
[BE2i02 Qo4 A5 D5[EGS] [PG2 5—— C AT TINRG | PRy
| E&tint a1 Lr_} A6 D4 PC3 >—— o o
'PCOIR) QoA A7 D3 PG4 S— R Q- PAD
A8 D2 PC5 >\ - PDO PAI
74HC573 —] A9 D1 PCE S—rs o) PD1 PA2
i P i
o D4 PAS—]&
[»“w ° 16 x2 LCD o PD5 PA6 mw
—A14 O o Vdd __ PA7 g
T Veeo MCBBHC11A0
or
DATADDR-LO MC68HC11A1

*As part of the battery cwoxmo.o:ocz power is supplied
to the 74HC10 and HM66256 directly from the battery.

Figure A.2. This schematic shows Rug Warrior’s logic, power and serial line
interface circuits. The Rcv, Tx, and GND lines from the MAX233 chip can be
connected to the user’s host computer. Note that external memory is battery
backed when power is off.

Reading the schematic

In an effort to make the schematic clear without cluttering the draw-
ing with a great number of wires we have followed certain conven-
tions. First, the collection of wires that forms the bus is shown as
a bold line rather than as individual wires. There should be no
ambiguity in the connection as both ends are labeled.

One can determine whether crossing wires are connected or not
by examining Figure A 4.

Reading the Schematic 369

; 5
IR emitters wn IR detector w_.ﬂ
GP1US2X

=
>y 4

Piezo
Buzzer _

Shaft encoders
45 ¢ N 45

v N
6.8K
A A

+m.\”+m

4 10K
6.8K. 0
S = = [P

+5
Pyroelectric

sensor H
r—

680
68

Motor driver
Dir PWM L293D T

a_ PAS >— Ent Vs
4

Outl Outd —)
- Grd Gnd = E a
2.2K 21K
Out? Outl - \
173 2
LED 3 LED 4 A
7AHC10 In2 13 PWM Dir _
vs e PAG {PD4 — =
Motor Supply _

Figure A.3. Rug Warrior’s sensor and actuator circuits.

LEDs are HLMP-1700QT

370 A. Schematics

Wires not connected Wires are connected

Figure A.4. Wire connection diagram.

A general description of how Rug Warrior’s microprocessor, mem-
ory, and serial line circuits work can be found in Section 3.6 starting

on page 61. The functioning of its-sensors is described throughout
Chapter 5.

Parts for Rug Warrior

Building a robot from scratch is not easy or quick. Neither is it
inexpensive; this is due mostly to the fact that often distributors
have hefty minimum order requirements. Indeed, the reason Rug
Warrior was offered as a kit in the first place was to satisfy the
many readers who complained about having a hard time finding
the components we so painstakingly compiled. Nevertheless, for the
diehard enthusiast who insists on building a robot from scratch, we
include the following list of parts.

We list the manufacturer and part number for components we
have used, but any pin-compatible parts from other manufacturers
are fine. The Texas Instruments SN754410NE, for example, can be
substituted for the SGS-Thompson L293D motor-driver chip. Some
manufacturers sell directly to the public, others work only through
distributors. Call or visit the web site of the manufacturer (contact
information is in Appendix C or Appendix E) to find distributors

nearest you. Rug Warrior can be built using either MC68HC11AOFN
or the MC68HC11A1FN microprocessor.

Mucroprocessor and related components
1 Rug Warrior brain

1 Motorola MC68HC11A1FN

1 52-pin plastic leaded chip carrier

Printed circuit board
Microcontroller
PLCC 6811 socket

[el il

parts for Rug Warrior

371

MS62256L-10P
7TAHC573AN
74HC10E

DS1233M

Augat MSS-3350
Panasonic P8037S
Optrex DMC-16249

Clock circuit
1 10 MQ resistor
1 8.000 MHz crystal

Baittery backup capacitor
1 47 uF capacitor

Power supply
1 1000 uF capacitor
4 4.7KQ resistors

Serial line interface
1 Maxim MAX233ACPP
1 Hirose H9072

- Motor Driver Chip

1 SGS Thompson 1.293D or TI SN754410NE

Debugging LEDs -

5 Quality Tech. Corp. HLMP-1700-QT-ND
1 Quality Tech. Corp. HLMP-1790-QT-ND
6 2.2 K resistors

Pyroelectric

. 1 Eltec 442-3

Shaft encoders

2 Hamamatsu P5587 Photo IC
2 6.8 K2 resistors

2 68012 resistors

Photocell circuit
2 EG&G VT801
2 10 K} resistors

Piezo buzzer .
1° Panasonic ERB-RD24C411

32K x8 static RAM-
Latch

Triple input NAND
Low voltage inhibit
3P3T power switch
SPST reset switch
16 x 2 LCD Screen

m W resistor
Clock

Tantalum capacitor

Electrolytic capacitor
Use one 5-resistor SIP

Serial:port driver
Phone jack 6-4 connector

"H-bridge B

High efficiency red LEDs
High efficiency green LED
1 4-res. SIP; 2 $ W res. .

IR emitter/detectors
wﬁ\ resistors
+ W resistors

CdS photocells
w W resistors

Piezo buzzer

372

A. Schematics

Bumper circuit

3 Omron SS5GLT
3 47K resistors

2 1.2KQ resistors
1 2.2KQQ resistor

Microphone circuit

1 Panasonic WM-034CY195
1 LM386N-1

1 10 uF capacitor

1 0.001 uF capacitor

1 2.2KQ resistor

IR emitters/detectors
Sharp GP1U52X
Siemens SFH486
TAHCO04N

100 K2 resistor

100 Q2 resistors

5 K potentiometer
6.8 K2 resistor
0.001 uF capacitor

e

Connectors

Samtec IDMD2S12
Samtec IDSD2S12
Samtec SS132T2
Samtec TS132T-AA
Amp 2-640463-3
Amp 2-640357-3
Amp 2-640358-3
Amp 2-640464-3

NP NEENDPRNDO

Lever switches

Use one 3-resistor SIP
W W resistors

7 W resistors

Microphone
Op-amp

Tantalum capacitor
Disc capacitor

1 W resistor

IR receiver unit

IR LEDs

Inverter

w<< resistor

w W resistor

Cermet laydown style
W W resistor

Disc capacitor

Cable plug strips
Cable socket strips
32-socket socket strips
32-plug terminal strips
8-pin IC socket

14-pin IC socket
16-pin IC socket
20-pin IC socket

Distributors for Rug Warrior
Components

Manufacturers usually work through a number of local distributors.
If the distributors do not have parts in stock and the lead times
are long, you can call the manufacturer and have them locate dis-
tributors for you who do have the parts in stock. Alternatively, the
manufacturer may be willing to give you samples. Motorola has a
special division, Motorola University Support, which assists univer-

parts for Rug Warrior 373

sities and schools in acquiring parts which Em% have long lead times,
such as the MC68HC11AO0FN microcontroller!. Here we list a num-
ber of distributors or manufacturers who sell components used in
Rug Warrior. The list is not meant to be exclusive, just helpful in
getting started. Distributors of semiconductors usually carry whole
lines of semiconductor companies’ products and specific chips listed
below under one distributor can likely also be bought from another
distributor. Call around to comparison shop and find out who has
what in stock.

In the list below, note that when discrete components such as
resistors are necessary, while the schematic will show separate re-
sistors, it is often easier to incorporate resistors into a design using
resistor single-in-line-packages (SIP). Resistor SIPs come in two va-
rieties, bussed and isolated. Isolated resistor SIPs have separate pins
for each end of the resistor while bussed resistor SIPs have one end
of each resistor tied to a common pin. Bussed resistor SIPs are
convenient for pullup resistors tied to the positive voltage supply.
Motorola University Support (602) 952-3855.

Newark’ Electronics (508) 683-0913

1 MC68HC11AOFN Microcontroller .

1 10F7807 Augat MSSA-3350 3P3T mé_ﬁow
1 50F066 1000 uF capacitor :

1 44F7982 Amp 2-640463-3 8-pin IC moonn
2 44F983 Amp 2-640357-3 14-pin IC socket
1 44F7984 Amp 2-640358-3 16-pin 1C socket
2 44F7986 Amp 2-640464-3 20- Eb HO socket

Wuyle Laboratories
1 SN754410NE

Mazim Small Orders Desk
1 MAX233ACPP

Hamamatsu
2 P5587

Allied Electronics
2 980-2500

(800) 444-9953
H-bridge Awmﬁ@omamﬁ for L293D)

(408) ﬂwq-qmoo
Serial port driver

" (908) 231-0960

IR emitter/detector pairs

(800) 433-5700
EG&G VT801 CdS photocells

'Rug Warrior’s brain can also be constructed using a MC68HC11A1FN mi-

Croprocessor.

374 A. Schematics

M.Q,Sumo (812) 944-6733

: %me%mm 12 4-pin plug cable assemblies

R 2512 4-pin socket cable assemblies

s 132T2 32-socket socket strips
S132T-AA 32-pin terminal strips

Hamilton-Hallmark © (800) 272-9255

1 74HCI0E Triple NAND

1 7T4HC573AN Latch

1 74HCO04N Inverter

1 MS62256L-10PC 32K x 8 static RAM

2 SFHA485 IR LEDs

Sterling Electronics
1 Sharp GP1U52X

Dallas Semiconductor
1 DS1233M

Digi-Key

H9072
LM386N-1
P8037S
SW143-ND
X056
750-83-R-2.2K
750-61-R-~4.7K
750-63-R-47K
HLMP-1700-QT-ND
HLMP-1790-QT-ND
P9924

P9962

100Q

680Q

1.2KQ

2.2KQ

6.8KQ

10KQ

100KQ

10MQ

P4200

P2026

P2030

36C53

36C54

PR RRRRRERRPRRHREBRRRRORRRPSRWRR

(617) 938-6200
IR detector module

(214) 450-0400
Low voltage inhibit

(800) 344-4539
Phone jack 6-4 socket

- Op-amp

SPST reset switch

Omron SS5GLT bump switch
8.000 MHz crystal

2.2KQ (isolated) resistor SIP
4.7KQ (bussed) resistor SIP
47KQ (isolated) resistor SIP
2.0mA red LEDs

2.0mA green LED
ERB-RD24CA411 piezo buzzer
Panasonic WM-34CY 195 microphone
Pack of 5 1002 resistors
Pack of 5 6802 resistors
Pack of 5 1.2 KQ resistors
Pack of 5 2.2 K(Q resistors
Pack of 5 6.8 K2 resistors
Pack of 5 10 K2 resistors
Pack of 5 100 KQ resistors
Pack of 5 10 M) resistors
Pack of 10 0.001 uF disc capacitors
10 uF tantalum capacitor

47 uF tantalum cap

5 K potentiometer

50 K2 potentiometer

Accessories and Alternatives 375

Accessories and Alternatives

To download code to Rug Warrior from your personal computer, you
will need a serial port cable to connect to the Rug Warrior board’s
modular phone jack connector which is similar to a telephone hand-
set’s socket. You will need a cable which has a matching modular
phone jack plug on one end and the proper connector for your off-
board computer on the other end. Oftentimes, a computer’s serial
port connector is a D-shaped female DB-25 connector. The easiest
thing to do is to buy a special male DB-25 connector which has an
attached modular phone socket on the back of the case with wires
and plugs in between, which allows you to configure the pin-outs
in whichever way you like. Then you can just use a normal phone
cord for the cable running from this connector, which you plug onto
the back of your workstation, to Rug Warrior. Digi-Key sells the
necessary parts.

Another suggestion is to use a non-volatile RAM in place of the
static RAM listed above. While the battery-backup circuit on Rug
Warrior will keep the program resident in RAM as long as the bat-
teries are plugged in, you may find that in working on Rug Warrior,
you tend to take it apart fairly often and disconnect the batteries.
Non-volatile RAMs are more expensive than static RAMs, but have
a battery inside the chip’s package which keeps the memory backed
up even when you remove it from Rug Warrior’s board. Dallas Semi-
conductor and Greenwich Electronics both sell 32K %8 &o&é&mﬁmm
RAMs. Replacements for other components such as sensors-and dis-
crete electronics can also be found at Radio Shack as listed below.2

The pyroelectric sensor that we specified” (which has an on-chip
amplifier) for Rug Warrior is fairly expensive. You can add it as
an accessory or buy a discrete pyroelectric sensor and add your own
‘amplifier. v

21f you use the non-volatile RAM you should disable the battery backup cir-
-cuit. The quiescent current drawn by the non-volatile RAM is large compared
1o the current needed by the static RAM and will drain the robot’s batteries in

a few days.

376

A. Schematics

Digi-Key
1 H164107ND

Dallas Semiconductor
1 DS1230AB-120

Greenwich Electronics
1 GR3281-100

Eltec
1 442-3

Vero Electronics
1 -244-26221G
-1 244-26213E

Samtec
1 ESW-136-34-T-S
1 TSW-136-34-T-S

Radio Shack
2 276-143
1 276-137
1 276-099
1 276-1657
1 270-090

(800) 344-4539
Phone cable assembly

(214) 450-0400
32K Non-volatile static RAM

(800) 476-4070
32K Non-volatile static RAM

(800) 874-7780
Pyroelectric sensor w/amplifier

(800) 242-2863
Reel of 250 Speedwire pins
Speedwire wiring pen

(812) 944-6733
Spacer connector socket for LCD
Spacer connector plug for LCD

(Consult local directory)
SYIR53L IR LED

GP1U52X IR detector module
Infrared sensor display card
Pack of 5 Cds photocell
Microphone

Rug Warrior Programs

The following sections implement a number of example Rug War-

rior programs. We invite you to build on these examples to create

programs for you own robot. All programs except the velocity con-

trol program rely on standard library functions. (The library is

distributed with IC. IC plus the example code in this appendix is

included with the new Rug Warrior Pro™ robot kit.) :
Important library functions include: .

analog(chan) Perform an A /D conversion on analog n:msw&vnwmb.
Wait until conversion has completed before returning.

“bumper () Return a number identifying which bump mé#nwom are

closed.

defer () This function is used to tell the scheduler that the current
process is ready to be suspended. defer has no effect other
than to increase the efficiency of the code.

msleep(msec) Sleep for msec milliseconds.
mseconds () Return the number of milliseconds since the last reset.

peek(addr) Return the 8-bit byte stored at addr.

378 Rug Warrior Programs

poke(addr, value) Load an 8-bit value into the memory location
specified by addr.

sleep(sec) Wait for sec seconds before returning.

start_process(proc-name) Begin a process that will run in the
background. (See Chapter 9 for more details.)

tone(freq, duration) Activate the piezoelectric buzzer at a fre-
quency of freq for duration seconds.

set_beeper_pitch(freq) Set the frequency the beeper will make
when it is activated.

beeper_on() Turn beeper on continuously. .

beeper_off () Turn beeper off.

init_velocity() Initialize open loop PWM velocity control.

get_left_clicks() Count the number of clicks made by the left
encoder since the last call.

get_right_clicks() Count the number of clicks made by the right
encoder since the last call.

motor (index, vel) Low level open loop motor control command.
The motor identified by index (0 or 1) is commanded to move

at velocity vel. vel is a percentage of maximum velocity in
the range -100 to +100.

drive(trans, rot) Fundamental open loop robot motion command.
drive causes the robot to translate at a velocity of trans, ro-
tate at a velocity of rot. trans and rot are given as a percent-
age of maximum. Each argument can take on integer values
from -100 to +100. Note that a few examples in the book rely
on an earlier version of driver (and motor) that had float ar-

guments. You can use type conversion to make these examples
work with newer libraries.

Each of the example programs below defines a function of the
form start_name. To run the example from the keyboard, you must

type in this function. The first example can thus be started by
typing: start.bugle();.

379
B.1 Bugle

B.1 Bugle

Bugle demonstrates one of the simplest possible connections of sens-
ing to actuation. The bumper is used to control the frequency of the
tone emitted by the piezo buzzer. The function meo.m Uﬁm.u.m does
just two things: it prints “Bugle” on the LCD when it begins, and
i endlessly on the function select_bumper.
* HO‘MMM ?boﬁob%mmu.moaldcbwmﬂ is also fairly simple. It checks to see
if the bumper is currently depressed. If the bumper wmm been pressed
(bpr # 0) then select_bumper turns the beeper on; if the vsﬁwoa
is not pressed select bumper turns the beeper om,.. The function
select_bumper further sets the frequency of the piezo buzzer de-
pending on where the bumper was pressed. The @wmm_zm notes are
C, Fand A; the C, F, and A in the octave above middle (OH QD&/ the
C two octaves above middle C.

With practice, you can play reveille, taps, and other bugle fa-
vorites on your robot!

/* Bugle —- Connect bump switches to tones */

/* Hrmwm are 12 steps in an octave. Step O oo&ﬂmmﬁob&m,ﬂo A, 1 Mo A
sharp, 2 to B, and so on. A common tuning is-to let >|u‘¢wo* Mw A
To compute the frequency of a given HOﬁm.s¢ use: freq = w» c
(s / 12)), where s is the step. Step 0 is the A below middle C,
step 12 is the A above middle C.
*/

float octave = 440.0;

float c_note = octave ¥ (2.0~ 3.0/ 12.0);
float f_note = octave * (2.0 = 8.0/ 12.0);
float a_note = octave * (2.0 = 12.0 / 12.0);
float cl_note = octave * (2.0 ~ 15.0 / 12.0);
float f1_note = octave * (2.0 = 20.0 / 12.0);
float al_note = octave * (2.0 ~ 24.0 / 12.0);
float c2_note = octave * (2.0 ° 27.0 / 12.0);

/* Select an action based on which bumper switch is closed
Note played —>nome C F A C1 F1 Al C2
Switches closed ——> none B RkB R L& L L&B LRB
bumper () returns ——> 000 100 101 001 011 010 110 111

*/

380 Rug Warrior Programs

void select_bumper()
{ int bpr = bumper();
if (bpr == 0b100)
set_beeper_pitch(c_note);
else if (bpr == 0b101)
set_beeper_pitch(f_note);
else if (bpr == 0b001)
set_beeper_pitch(a_note);
else if (bpr == 0bC11)
set_beeper_pitch(ci_note);
else if (bpr == 0b010)
set_beeper_pitch(f1_note);
else if (bpr == 0b110)
set_beeper_pitch(al_note);
else if (bpr == 0bi1ill)
set_beeper_pitch(c2_note);

/* Local Var for bumper contents */

if (bpr !=0) /% Turn beeper on if any switch is pressed */
beeper_on() ;
else : /* Turn beeper off otherwise */

beeper_off();
¥

void bugle()
{ printf("Bugle \n");
while(1)
{ select_bumper();
X
}

void start_bugle()
{ start_process(bugle());
}

B.2 Theremin

The Theremin (named for Russian inventor Leo Theremin) is a mu-
sical instrument whose pitch and volume is controlled by capacitive
coupling between the instrument’s two antenna and the performer’s
hands. Rug Warrior simulates this control using the amount of light
falling on the photocells rather than capacitive coupling. Also, rather
than controlling the volume, we select how often the tone is played.

i 381
B.2 Theremin

/* Theramin */

/* Compute beeper frequency from the difference of the photo cells */

float freq(int left, int right)

{ int delta;
float frq = 100.0;
delta = left - rTight; . .
frq = 2500.0 *. (1.0 + ((float) delta) /((float) max(left, right)));
return frq;

¥
float vmwwoalmmwu = 0.0005;

th
/% Compute the length of the pause between beeps from the sum of e
photo cells */

float period(int left, int right)
/* Protect against negative periods */ . Y
{ return (period_gain * (float) (max (0, (512 - (left + right) ;

}

void theremin()
{
int left = 0;
int right = 0;
while (1)
{

]

left analog(photo_left);
right = analog(photo_right); et
tone(freq(left, right),0.1);/+Play a tone of N.OWmevv.mHmﬁ */
sleep(period(left, right)); /* then wait a while %/
T
¥

void start_theremin()
{ -printf ("Theremin\n");
start_process(theremin());

}

382) Rug Warrior Programs

B.3 Yo-Yo

The yo-yo program exercises the robot’s skirt and shaft encoders for
input and its motors for output. When you press the skirt at the
back, yo-yo directs the robot to drive forward a preset distance, then
stop and backup until the robot returns to the starting point.

/* Yoyo —— when the back bumper is pressed the robot goes out a
measured distance. Then it comes back.
Requires: track.c
*/ .
int yo_inches = 30;

/* Go out this many inches */

int yoyo(int yo_inches)

{
int yo_clicks = yo_inches * 2; /* Aprx clicks to in. conversion*/
while(1)
{ if (bumper() == 0b100) /* Bumper was hit from the back */
{
track(90,0,yo_inches); /* Go out */
track(~90,0,yo_inches); /* Come back */
X sleep(0.5); /* Wait in case bpr is vibrating #*/
¥
¥

void yo_tune()

{ tone(1000.0 * (2. ~ 12./12.) ,0.15);
tone(1000.0 * (2. =~ 8./12.) ,0.15);
tone(1000.0 * (2. ~ 5./12.) ,0.15);
tone (1000.0 * (2. ~ 8./12.) ,0.15);
tone(1000.0 * (2. =~ 12./12.) ,0.15); }

void start_yoyo()

{ printf("Yo-Yo\n");
yo_tune();
init_velocity();
sleep(1.0);
start_process(yoyo(yo_inches));

/* Needed by track */

Yo-yo and other programs depend on the Track function:

B.4 Wimp . 383

/* Track - Move a specified number of encoder clicks */
/% init_velocity must be called before calling track */

float stop_time = 0.035; /% Approximately, one servo cycle */

/* Track - drive at selected velocity until CLICKS encoder clicks */
/* have occurred, then stop. Track works best with either */
/* trans_vel = 0, or rot_vel = 0. */

int track(int trans_vel, int rot_vel, int clicks)

{ 1long time_out = mseconds () + 5000L; /* Time out after 5 sec */
‘int 1_tot_clks =0; /* Total clicks */
int r_tot_clks = 0;
int ave_clks = 0;

get_left_clicks(O; /* Reset clicks */
mmﬁaﬂwmﬁd|0HwnWmAV“ /% Reset clicks */
driveb(trans_vel, rot_vel); /% Turn motors on */
while(1)

{

1_tot_clks = 1_tot_clks + get_left_clicks();/* Sum clks*/
r_tot_clks = r_tot_clks + get_right_clicksQ;
ave_clks = min(1l_tot_clks, HndOﬂlnHWme,*eHMm ave_clks*/
if ((ave_clks >= clicks) || (mseconds () > time_out))
{ driveb((- trans_vel), (- rot_vel));/*Kill motion#*/

sleep(stop_time); L E

stopQ);

return (clicks - ave_clks);

B.4 Wimp

The Wimp program just tries to escape annoyances. Press on the
skirt at any point. The robot will beep and try to move away from
the point where it was touched. :

/* Wimp.c -- move away from any touch
Requires: track.c

*/

float oct = 440.0;

384 Rug Warrior Programs

float wfreq(int step) /* Freq. of note */
{ if (step == 0)
return oct;
else

X return (oct * (2.0 ~ ((float) step / 12.0)));

int wimp_active = 0;/* Don’t start process when already running */

void start_wimp_tune()
{ if (! wimp_active)
start_process(wimp_tune());

}

~void wimp_tune()

{ wimp_active = 1;
oct = 1760.0;
tone (vfreq(5),0.1);
tone (wfreq(4),0.1);
tone (wfreq(5),0.1);
tone (wfreq(4),0.1);
wimp_active = 0;

¥

/* Move away from any bump —- play an annoyed tune */

void wimp()

{ int bmpr;
printf ("Wimp\n");
while(1)
{ bmpr = bumper();
if (bmpr != 0) /* Somehow, we were bumped */
{ start_wimp_tune(); /* Play an-annoyed-wimp tune */
if (bmpr == 0b110) /* Back and Left bump */
track(0,-80,5); /* Spin right ~60 deg */
else if (bmpr == 0b010) /* Left Bump */
track(0,-80,10); /* Spin Right 120 deg */
else if (bmpr == 0b011) /+* Left and Right => Front */
{ track(-80,0,4); /* Backup then turn away */

track(0,80,17); }
else if (bmpr == 0b001)
track(0,80,10); /* Spin Left 120 deg */
else if (bmpr == 0b101) /* Right and Back bump */
track(0,80,5); /* Spin Left 60 deg */
track(80,0,8); /* Go forward a bit */

/* Right Bump */

B.5 Follow 385

sleep(0.75); /* Let bumper damp out %/
W. .

}

void start_wimp()

{ tone(1000.0,.1);
wimp_tune(Q) ;
sleep(1.0);
init_velocity(Q);

start_process(wimp());

/* Needed by track */

B.5 Follow

With the Follow program loaded, put your hand in front of the robot.
The robot will move toward your hand and stop pressed against it.
Follow uses the IR sensors to find and follow the nearest object. A
collision with that object causes the robot to turn off its motors.

If you have two robots, an interesting “cooperative behavior” can
be exhibited by loading Wimp on one and Follow on the other. The
robot executing Follow will move toward the Wimp robot until it
collides. The Wimp robot will then move away. Follow will again
move toward its target. The robot will thus move across the-floor.in
a dance of apparent longing and annoyance.

/% Follow.c —- Try to crowd others. Use the IRs to mem,owwmw.ﬂodOdm
* and follow them. : o
*/

int fol_trans_def = wow /* Default translational ¢oHonwd% */

int fol_rot_def = 35; /% Default rotational velocity */

/% Use the IRs to follow closest target */

void follow()

{ int ir = 0; /% Local var for obstacle infrared data */
int bmp = 0; /* Local var for bumper data */
int old_bmp = O; . /% Local var for bmp on previous iteration*/
printf("Follow\n"); /* Print message on LCD screen */
while(1)

——

386 Rug Warrior Programs

{ ir = ir_detect(); /* Record IR obstacle detection sensor */
bmp = bumper() &% ObO11;/* Only consider Left or Right col. */
if (old_bmp & (! bmp)) /* Collision just ended */

sleep(0.5); /* Wait a bit before following */

else if (bmp) /* If bumper is pressed... */
stop(); /% Stay right here */

else if (ir == 0) /* Don’t know which way to go, so stop */
stop(); /* Stay right here */

else if (ir == Obl1) /* Object straight ahead */
driveb(fol_trans_def,0); /* Race forward */

else if (ir == 0bO1) /* Object on right */
driveb(fol_trans_def, (- fol_rot_def));/* Arc to the right */

else if (ir == 0b10) /* Object on left */
driveb(fol_trans_def,fol_rot_def); /* Arc to the left */

sleep(0.1); /% Debounce bumper */

old _bmp = bmp;

}

void start_follow()

{ start_process(follow());
¥

B.6 Echo

With Echo running, whistle or clap loudly a few times in quick
succession. The robot will repeat the number of loud sounds it
hears by beeping and rocking back and forth. (If you operate the
robot in a noisy environment, you may need to change the value of
sound_delta.)

Echo is an interesting behavior for two robots to execute simul-
taneously. Have the first robot begin by making some number of
beeps. The second robot will echo the beeps, the first will echo the

echo, and so on. The robots seem to talk back and forth to each
other.

/* Echo —— Repeat the number of loud sounds heard */

int sound_delta = 50;/% Must be low for robots to hear each other */
long hold_time = 175L;/* Number of milliseconds to hold high time */
int loud_p = 0; /* 0 => quiet, 1 => loud */

B.6 Echo 387

int sound_count = O;

int listen_p = 1; /* Make it O during echo execution */

int s_level_max = 0;

float smelHoﬂ = 1500.0;
float warb_high = 1600.0;
float warb_dur = 0.01;

void warb()
{ float freq = warb_low; .
twitch(); /* Motion accompanies sound */
beeper_on() ; o
for (freq = warb_low; freq < warb_high; freq = freq + 10.
{ set_beeper_pitch(freq);
sleep(warb_dur); }
beeper_off () ;
¥

/* Sample the microphone to see how much noise there is */

void sample_sound()
{ int s_level = O;

long go_low_time = OL;

long current_time = OL;

while (1)

{ while(listen_p)
{ current_time = mseconds();
s_level = abs(analog(microphone) - 128); E

- /*Abs diff from 128%/ -

/* Instantaneous sound level */

if (s_level > s_level_max)
s_level_max = s_level;
if (s_level > sound_delta)
go_low_time = current_time + hold_time;
. /#New go low timex/
if (current_time > go_low_time)
loud_p = 0;
else :
{ if (loud_p == 0)
/% Was 0, now 1 => add to trans count */
sound_count++; '
loud_p = 1; }

jads

388 Rug Warrior Programs

/* Count the number of low high transitions during some interval.
Start a timer at the first low high tramsition, then keep
checking for more low high transitions until time runs out */

int echo_cmd = 0;
float cmd_period = 1.2; /% Gather sound for this long */

void capture_command ()
{ int old_count = 0;
while(1))
{ if (old_count != sound_count)
{ sleep(cmd_period); /* Wait for the sounds to happen */
echo_cmd = sound_count;
sound_count = 0; }

3}

void twitch_aux()

{ drive(100,0);
sleep(.07);
drive(-100,0);
sleep(0.07);
drive(0,0); }

void twitch()
{ start_process(twitch_aux(),1);

1

void echo_control()
{ int i = 0;
while(1)
{ if (echo_cmd != 0)
{ listen_p = 0;
for (i = 0; i < echo_cmd; i++)
{ warb();
sleep(0.2);
i
sleep(0.15);
echo_cmd = 0;
listen_p = 1;

/* Wait longer before listening again */

B.7 Sonic Commander 389

void rpt()
{ while(1)
{
printf("Echo Cnt: %d Max sound: %d\n",
sound_count, s_level_max);
s_level_max = 0;
sleep(0.4);
1

void start_echo()

{ start_process(sample_sound());
start_process (capture_command(),1);
start_process(echo_control(),1);
start_process(rpt(),1);

B.7 Sonic Commander

Three loud sounds in rapid succession make the robot go forward.
Two sounds cause it to spin in place and one sound makes the robot
stop. Sonic Commander lets you drive the robot around by clap-
ping, whistling, or even speaking loudly. For example; it will seem
that your robot understands speech if you command it by shouting
“Stop!,” “Turn now!,” and “Go forward now!”

/* Sonic commander —— steer the robot with sound */

/* The value for snc_sound_delta must be chosen carefully because
the microphone tends to hear the sound of the motors. */

int snc_sound_delta = 80; /* Pick large baswmw, make LOUD sound*/
long snc_hold_time = 100L;/# Number of ms to hold high time */

int snc_loud_p = O; /* 0 => quiet, 1 => loud */

int snc_sound_count = 0; .

int snc_bmpr = 0; /% Escape process/analog conflict problem */

void snc_sample_sound()
{ .
int s_level = 0; ’ /* Instantaneous sound level */
long go.low_time = OL;
long current_time = OL;

390 Rug Warrior Programs

while (1)
{ snc_bmpr = bumper();
/*Must have all analog calls in one process*/
current_time = mseconds();
s_level = abs(analog(microphone) - 128);
. /*Abs diff from 128%/
if (s_level > snc_sound_delta)
go_low_time = current_time + snc_hold_time;
/* New go low timex/
if (current_time > go_low_time)
snc_loud_p =
else
{ if (snc_loud_p == 0)
/* Was O, now 1 => add to tramns. count*/
snc_sound_count++;
snc_loud p = 1; }-
}}

/* Count the number of low high transitions during some interval.
Start a timer at the first low high transition, then keep
checking for more low high transitions until time rums out */

int sonic_cmd = 0;
float snc_cmd_period = 1.2; /# Gather the sound for this long */
void snc_capture_command ()
{ int old_count = 0;
while(1)
{ if (old_count != snc_sound_count)

{ sonic_cmd = 1; /* Stop immediately, wait for next cmd */
sleep(snc_cmd_period) ;/* Wait for the sounds to happen */
sonic_cmd = snc_sound_count;
snc_sound_count = 0; }

I}
/* Obey the sonic commands:
1 - Stop
2 - Turn

3 - Forward
Stop in the event of a collision */

void sonic_control()

{ while(1)
{ if (snc_bmpr & 0bO11)
{ drive(-75,0);

sleep(0.5)
sonic_cmd

/* Bump L or R %/
/* Backup */

0; }

B.7 Sonic Commander 391

else if (sonic_cmd == 2) /+* Spin in place %/
drive(0,75);
else if (sonic_cmd == 3) /* Forward */
drive(75,0);
else
drive(0,0); /% Stop by default */
B}

void snc_rpt()
{ while(1) . /* Show what the robot is doing */
{ printf("Sonic Commander Cmd: ");)
if (snc_bmpr & ObO11)
printf("Backup");

else if (sonic_cmd == 2)
printf("Turn ");

else if (sonic_cmd == 3)
printf ("Forward");

else

printf("Stop ");
printf("\n");
sleep(0.5);
I

void start_sonic()

{ start_process(snc_sample_sound(});
start_process(snc_capture_command () ,1);
start_process(sonic_control(),1);
start_process(snc_rpt(),1);

The 03690 comment “Must have all mbmu.om omﬂ,m in one
process” in the above program refers to a peculiarity“ef IC. Calls
to the analog function occuring in two different processes can, on
occasion, cause a problem. If the scheduler interrupts one process
and starts another process at just the right moment, a call to analog
started in the first process can be intercepted by the second process.
This leads to an erroneous value being reported to the second pro-
cess. This woﬂmdﬁ,& problem can be eliminated by placing all calls
to analog in a single process.

392 Rug Warrior Programs

B.8 Auxiliary Code

The following functions do not ﬁovomw in the standard library but
are needed by one or more of the examples.

/* Common.c %/

/* No two drive motors respond in exactly the same way to the same
applied voltage. Use the drive_bias term to correct for biases
in your robot. If your robot arcs to the right, make drive_bias
positive, arcs to the left require a negative correction. */

int drive_bias = 0 /* Open loop correction term for drive motors */
/* Common Utilities */
/* Absolute value function for integers */

int abs(int val)
{
if (val < 0)
return (- val);
else
return val;

}

int min(int a, int b)/* Find the minimum of two arguments */
{ if (a <b)
return a;
else
return b;

}

int max(int x, int y) /* Find the maximum of two arguments */
{if x>y

return x;

else

return y;

}

void driveb(int trans, int rot) /* Correct for motor bias */
{ int rot_bias = (drive_bias #* trans) / 100;

motor(0,trans - (rot + rot_bias));

motor(l,trans + (rot + rot_bias));

}

B.9 Velocity Control Code 393

B.9 Velocity Control Code

Here is the velocity control code described earlier in the text. This
code, for the most part, does not use the standard library definitions.

/* Components of robot velocity control:
Velocity monitoring
Open loop PWM
Velocity control loop

*/

/* VELOCITY MONITORING */
int TCTL2 = 0x1021; /% Timer Control 2, interrupt edge */

int TMSK1 = 0x1022; /% Timer Interrupt Masks, 8-bit reg */

int TFLG1 = 0x1023; /* Timer Flags, 8-bit reg */

int PACTL = 0x1026; /* Pulse accumulator control, 8-bit reg */
int PACNT = 0x1027; /* Pulse accumulator counter, 8-bit reg */

void init_velocity (O)

{ poke(PACTL, 0b01010000); /* DDRA7 in, pulse acc rising edges */
poke (PACNT,0) ; /* Start off with O measured velocity */
bit_set (TCTL2,0b00000001); /* Make IC3 interrupt on rising edges */
bit_set (TMSK1,0b00000001); /* Enable IC3 interrupts */.

}

/¥ Call get_left_vel and get_right_vel
at regular intervals to get velocity */

float get_left_vel() /* Left vel from PA7 using vdem,nnﬁude */
{ float vel;

vel = (float) peek(PACNT);

poke (PACNT,0) ; /% Reset for next time */

return(vel); ¥

float get_right_vel() /* Right vel from PAO, interrupt routine */
{ float vel; , .

vel = (float) right_clicks;

right_clicks = 0; /* Reset for next time */

return (vel); 1}

/% OPEN LOOP PWM) */
int DDRD = 0x1009; /* Port D data direction */
int 0C1M = 0x100C; /* Output Compare 1 Mask */

394 Rug Warrior Programs
int 0C1D = 0x100D; /% Output Compare 1 Data */

int TOC1 = 0x1016; /* Output Compare Tmr 1, %/

int TOC2 = 0x1018; /* Output Compare Tmr 2, (left motor) */

int TOC3 = 0x101A; /* Output Compare Tmr 3, (right motor) #*/
int TCTL1 = 0x1020; /* Timer Control 1, 8-bit reg */

/* motor_index: O => Left motor, 1 => Right motor */

/% int TOCx[2] = {TOC2,TOC3}; /* Index for timer register */

int TOCx[2] = {0x1018, 0x101A}; /% Index for timer register */

int sign[2] {1,1}; /% Sign of rotation of motor */
int dir_mask([2] = {0b010000, 0b100000}; /#* Port D direction bit */

/* Utility functions */

float abs(float arg)
{ if (arg < 0.0)
return (- arg); else return arg; }

/* Absolute value function */

int get_sign(float val) /* Find the sign of the argument */
{ if (val > 0.0)
return 1; else return -1; }

/% Limit range of val */
float limit_range(float val, float low, float high)
{ if (val < low) return low;
else if (val > high) return high;
else return val; }

void init_pwm() /* Initialize Pulse Width Modulation */

{ poke(DDRD,0b110010); /% Port D dir: OUT 5,4,3,1; IN O */
poke (0C1M,0b01100000) ; /* Output Compare 1 affects PA5 and PA6 */
poke (0C1D,0b01100000) ; /* OC1 compare turns on PA5 and PA6 */
bit_set (TCTL1,0b10100000); /*0C3 turns off PA5, 0C2 turns off PA6%/

pokeword(TOC1,0) ; /* When timer (TCNT) = 0, OC1 successful */
pokeword(T0C2,1) ; /* Minimum on time for 0C2 */
pokeword(T0C3,1); } /* Minimum on time for 0C3 */

/* The sign is handled in a special way —-
we have only a 1 channel encoder */
float pwm_motor(float vel, int motor_index)

{ float vel_1;

if (sign[motor_index] > 0) /* Choose the dir of rotation */
bit_set(port_d, dir_mask[motor_index]);
else

bit_clear(port_d, dir_mask[motor_index]);

B.9 Velocity Control Code : 395

vel_1 = limit_range(vel, 1.0, 99.0);/* 1 < vzzlnddﬁlmwnnOH 100 */
vowm£OHnAHooxmEOHOlebnmxu~ (int) (655.36 * vel_1));
return vel_1;} ’

/* Top level open loop PWM command */
void move(float 1_vel, float r_vel) /* R, L vel: [-100.0, 100.0] */

{ signl0] = get_sign(l_vel); /* Desired direction of rotation */
sign[1] = get_sign(r_vel);
pwm_motor (abs(l_vel), 0); /* Set PWM constant */

pwn_motor (abs(r_vel), 1);
/* CONTROL LOOP */
float control_interval = 1.0; /* How often to run the servo loop */

float des_vel_clicks = 0.0; /* Des vel in clicks per interval */
float des_bias_clicks = 0.0; /* Des bias in clicks per interval */
.0

float power[2] = {0.0,0 }; /% Positive power command to motor */
float integral = 0.0; /* Integral of velocity difference */
float k_integral = 0.10; /* Integral error gain */

float k_pro = 1.0; /* Proportional gain */

void alter_power(float error, int motor_index) /* Set, save power */
{ power[motor_index] = limit_range (power [motor_index]
+ error, 0.0, 100.0);
pwm_motor (power [motor_index], motor_index); '}

float integrate(float left_vel, float right_vel, float bias)
{ integral = limit_range((integral + left_vel + bias - right_vel),
-1000.0, 1000.0); - . :
return integral; }

void speed_control() el L
{float left_vel, right_vel, integral_error, left_error right_error;
while (1)) o
{left_vel = get_left_vel(Q);
right_vel = get_right_vel(Q);
integral_error =
k_integral # integrate(left_vel, right_vel, des_bias_clicks);
left_error - =
k_pro * (des_vel_clicks - left_vel -~ HudmmeH:mHHowvw
right_error =
k_pro * (des_vel_clicks — right_vel + integral_error);
alter_power (left_error, 0);
alter_power(right_error, 1);
sleep(control_interval);

33

396 Rug Warrior Programs

float k_clicks = 8.0 / 100.0;

void set_velocity(float vel, float bias)

{ des_vel_clicks = k_clicks * vel;
des_bias_clicks = k_clicks * bias;
sign[0] = get_sign(vel - bias);
sign([1] get_sign(vel + bias);

void start_speed_control()
{ init_velocity();
init_pwm();
get_left_vel();
get_right_vel();
start_process (speed_control()); }

void vel()
{ while (1)
{
left_vel = get_left_vel();
right_vel = get_right_vel();
sleep(control_interval);

}

Yellow Pages

One of the major roadblocks in building robots is not knowing where
to get parts. Sensors, motors, electronics, batteries, prototyping
equipment, connectors, and tools all come from a variety of vendors.
After years of tracking things down, we have compiled a database of
suppliers we commonly turn to for interesting robot parts.’ After the
alphabetical listing of suppliers, Section C.1, is & owOmm-wmmmwmﬁnm list
by component category, Section C.2. The Ummﬁ egsm to do is start
calling these companies, consulting their web pages, msm collecting
catalogs. Most suppliers will gladly send catalogs, free of oﬁmamo.

If you are searching for a type of component and have no idea
how to find a supplier (i.e., none exist in our list below), the place
to start is the Thomas Register. This is an index to the world. The
Thomas Register is a set of over two-dozen very large books that
lists manufacturers and suppliers of every type of product that you
can imagine. The Thomas Register is also available on CD ROM
and can be accessed over the web (www.thomasregister.com). To
learn more, contact Thomas Publishing Company, Attn: Circulation

Department, One Penn Plaza, New York, NY 10117-0138.

398

C. Yellow Pages

C.1 Suppliers

3M Electronic Products
225-1N 3M Center

St. Paul, MN 55144

(800) 328-SPEC

Fax: (651) 737-7117
innovation@mmm.com
www.mmm.com/

A K Peters, Ltd.
63 South Ave.
Natick, MA 01760
(508) 655-9933

Fax: (508) 655-5847
service@akpeters.com
www.akpeters.com

A. Cohen Company
353 Washington Street
Boston, MA 02108
(617) 523-7440

Fax: (617) 523-8723

Acroname

PO Box 1894
Nederland, CO 80466
(303) 258-3161
Fax:(303) 247-1892

www.acroname.com/

Active Electronics
11 Cummings Park
Woburn, MA 01801
(781) 932-0500

Fax: (781) 933-8884

Advanced Design
1101 East Rudsill Road
Tucson, AZ 85718
(602) 544-2390

Fax: (602) 575-0703

Alirtronics

1185 Stanford Court
Anaheim, CA 92805
(800) 567-6867

Fax: (714) 928-1540

Alarm Supply

48 Mechanic Street

Newton Upper Falls, MA 02494
(617) 527-4931

Fax: (617) 527-4534

Scotchflex prototype wiring technology;
distributed by Wallace Electronics Sales

Publisher of Mobile Robots: Inspiration to
Implementation and numerous other robotics
texts. A K Peters also distributes Rug Warrior
Pro kits, 8xpansion modules for Rug Warrior
Pro, and Interactive C

Vigor watchmakers’ tools

Acroname, Inc. makes a Pyro sensor designed
for Rug Warrior, sensor is complete with
Fresnel lens

Retail dealer for electronic components

This company makes a clever and inexpensive

robot arm using airplane servos

Motors

Pyroelectric sensors

C.1 Suppliers

399

Alberta Printed Circuits
Unit 3, 1112 40th Ave. NE
Calgary, AB, T2E 5T8, Canada
(403) 250-3406

www.apcircuits.com/

All Electronics Corporation
PO Box 567

Van Nuys, CA 91408

(800) 826-5432

Fax: (818) 781-2653
allcorp@allcorp.com
www.allcorp.com

Allied Electronics
10-L Centennial Drive
Peabody, MA 01960
(800) 433-5700

www.allied.avnet.com

America’s Hobby Center
146 West 22nd Street

New York, NY 10001-2466
(212) 675-8922

Fax: (212) 675-0060
www.ahcl1931.com

American Control Technology
850 Church Road

Elgin, IL 60123

(847) 468-6000

Fax: (847) 468-8959

American Design Components
400 County Ave.

Secaucus, NJ 07094

(800) 776-3800

American Science and Surplus
3605 W. Howard Street

Skokie, IL 60076

(847) 982-0874

Fax: (800) 934-0722
www.sciplus.com

AMP Sensors

PO Box 799

Valley Forge, PA 19482
(610) 650-1500

Fax: (610) 650-1509

Animate Systems

390 Wakara Way, Suite 56
Salt Lake City, UT 84108
(801) 581-0155

.Fax:(801) 581-1151

f.smith@sarcos.com

Low cost, rapid turnaround circuit board
fabrication house

Surplus dealer, surplus boards, components,
and assemblies

Electronic components

Radio-control products, servos, motors

LCD thumbwheel switches

Surplus dealer, computer mncmvgmgkvoimn
supplies, motors, batteries, MOVIT robot kits

Surplus dealer, wide assortment of .&mnﬁnoio
components : o

Thin film piezoelectric/pyroelectric material
supplied by this company can be used to build
custom-designed sensors

Entertainment robots, small servo valves

400

C. Yellow Pages

Arrick Robotics
PO Box 1574
Hurst, TX 76053
(817) 571-4528
Fax:(817) 571-2317
info@robotics.com
www.robotics.com

AVNET

10M Centennial Drive
Peabody, MA 01960
(800) 272-9255

Fax: (978) 532-9802

www.avnet.com

Banner Engineering
97114 Tenth Avenue North
Minneapolis, MN 55440
(612) 545-0813

Fax: (612) 544-3213

www.baneng.com

BEI

7230 Hollister Avenue
Goleta, CA 93117-2891
(805) 968-0782

Fax: (800) 960-2726

Berg

499 Ocean Avenue

E. Rockaway, NY 11518
(516) 599-5010

Fax: (516) 599-3274

Binsfeld Engineering
4571 W. MacFarlane
Maple City, MI 49664
(616) 334-4383

Fax: (616) 334-4903
www.binsfeld.com

BNF Enterprises
134 Newbury Street R
Peabody, MA 01960
(978) 536-2000

Fax: (978) 536-7400
peterb@bnfe.com
www.bnfe.com

Bourns

Sensors and Controls Division

2533 N. 1500 West

Ogden, UT 84404

(801) 786-6200

Fax: (801) 786-6228

Dennis Snavely@bourns.com
www.bourns.com

Stepper motor control system and robot
components

Distributor for many semiconductor

manufacturers

Infrared sensors

Encoders

Gears, linkages, pulleys, etc

Strain gage telemetry system

Dealer in computer components

Encoders, potentiometers

C.1 Suppliers

401

Burden’s Surplus Center
1015 West O Street

PO Box 82209

Liricoln, NE 68501

Amoov 228-3407

Fax: (402) 474-5198

Canon

One Canon Plaza

Lake Success, NY 11042
(516) 488-6700

Fax: (516) 328-4609
Ron'Travis@cusa.canon.com

Capsella
See MIT Museum Shop

Centro Vision

2088 Anchor Court

Newbury Park, CA 91320-1601
(805) 499-5902

Fax: (805) 499-7770
www.centrovision.com

Chinon America
Industrial Products Division
PO Box 1248

1065 Bristol Road
Mountainside, NJ 07092-1248
(908) 654-0404

Circuit Board Fabrications
179 Bear Hill Road

Waltham, MA 02254

(617) 890-1878

Fax: (781) 890-7098
sales@circuitfab-co.com
www.circuitfab-co.com

Circuit-Wise

400 Sackett Point Road
North Haven, CT 06473
(203) 281-6511

Fax: (203) 287-8409

Detection Systems
130 Perinton Parkway
Fairport, NY 14450
(716) 223-4060

Fax: (716) 223-9180
www.detectionsys.com

Mechanical parts

Encoders, motors

Silicon photodetectors and linear arrays

Small cameras

Printed circuit board for th %SWHZOH

Molded boards for anrwumnm_\ m._m,onw»nmw

integration

Pyroelectric sensors

402

C. Yellow Pages

Digi-Key

701 Brooks Avenue South

PO Box 677

Thief River Falls, MN 56701-0677
(800) 344-4539

Fax: (218) 681-3380
sales@digikey.com
www.digikey.com

Direct Imaging

PO Box 820

Wilder, VT 05088

(802) 295-3770

Fax: (802) 295-3862
directim@aol.com
www.uppervalleydirectory.com/

Dunfield Development Systems
PO Box 31044

Nepean, Ontario

K2B 8S8 Canada

(613) 256-5820

Fax: (613) 256-5821
info@dunfield.com
www.dunfield.com

Duracell

Berkshire Industrial Park
Bethel, CT 06801

(800) 431-2656

Fax: (203) 791-3021

www.duracell.com

Edlie Electronics

2700 Hempstead Turnpike
Levittown, NY 11756-1443
(516) 735-3330

Fax: (516) 731-5125

Edmund Scientific
101 E. Gloucester Pike
Barrington, NJ 08007
(609) 547-3488

Fax: (609) 573-6295
info@edsci.com
www.edsci.com

EDO Corporation

Barnes Engineering Division
88 Long Hill Cross Road

PO Box 867

Shelton, CT 06484-0867

(203) 926-1777

Fax: (203) 926-1030

www.edocorp.com

Digi-Key is a “hobbyist friendly” business; they
accept small orders, ship products promptly,
and have huge assortment of products in stock

Circuit boards

Markets inexpensive C compiler ooavw,i.c_m
with the MC68HC11 as well as several other
popular microprocessors

Batteries

Surplus assortment of tools, test equipment,
parts

Optical components, science kits, surplus
motors

Temperature sensors

C.1 Suppliers

403

Electronic Goldmine
PO Box 5408
Scottsdale, AZ 85261
(602) 451-7454

Elmec

4127 Avenida De La Plata
Oceanside, CA 92056
(760) 631-0202

Fax: (760) 631-0237
sales@elmecmfg.com
www.elmecmfg.com

Eltec Instruments

PO Box 9610

Central Business Park
Daytona Beach, FL 32020
(800) 874-7780

Entran Devices

10 Washington Avenue
Fairfield, NJ 07004
(800) 635-0650

Fax: (973) 227-6865
sales@entran.com
www.entran.com

EP Circuits

5468 Highroad Crescent
Chilliwack, BC, V2R 3Y1, Canada
(604) 824-1238

fax: (604)858-7663
epproto@uniserve.com
www.uniserve.com/epicircuits

Erector Set
See MIT Museum Shop

ETAK

1605 Adams Drive
Menlo Park, CA 94025
(650) 328-3825

Fax: (650) 328-3148
info@etak.com
www.etak.com

Fischer-Technik
See MIT Museum Shop

Fresnel Technologies

101 West Morningside Drive
Fort Worth, TX 76110

(817) 926-7474

Fax: (817) 926-7146
info@fresneltech.com

- www.fresneltech.com

Electronic components

Flexible circuit design and fabrication

Pyroelectric sensors, Fresnel lenses
Accelerometers, Force sensors, Pressure sensors,

Strain gauges

Clircuit boards

Navigation systems for cars

Fresnel lenses

404

C. Yellow Pages

Futaba Corporation
1605 Perry Lane
Schaumberg, IL 60173
(8437) 884-1444
www.futaba-na.com

Gerber Electronics

128 Carnegie Row
Norwood, MA 02062

(800) 225-1800

Fax: (781) 762-8931
Postmaster@gerberelec.com
www.gerberelec.com

Gleason Research

PO Box 1247 .

Arlington, MA 02174
(781) 641-2551

Fax: (781) 641-2551
info@gleasonresearch.com
www.gleasonresearch.com/

Globe Motors
2275 Stanley Avenue
Dayton, OH 45404
(937) 228-3171

Fax: (937) 461-1017

Graymark International
PO Box 2015

Tustin, CA 92781

(800) 854-7393

Fax: (714) 544-2323
www.labvolt.com

Gurley Precision Instruments
514 Fulton Street

Troy, NY 12181-0088

(800) 759-1844

Fax: (518) 274-0336
Info@Gurley.com

www.Gurley /com

Hamamatsu Photonics
360 Foothill Road
Bridgewater, NJ 08807-0910
(908) 231-0960

Fax: (908) 231-1218
www.hamamatsu.com

Harbor Tool

20 Southwest Park
‘Westwood, MA 02090
(617) 329-4432
info@harbortool.com
www.harbortool.com

Accessories for radio-controlled toys

Electronic components

Supplier of the Handy board

Motors

Robots

Optical encoders

Photoresistors, infrared detectors, rangers,
color sensors, shaft encoder sensors

Machine tools, hardware

C.1 Suppliers

405

HDS

12310 Pinecrest Road
Reston, VA 20191
(703) 620-6200
hds@hdscorp.com
www.hdscorp.com

Heathkit Company
455 Riverview Drive
Benton Harbor, MI 49022
(800) 253-0570

Fax: (616) 925-2898
heathkit@heathkit.com
www.heathkit.com

Herbach and Rademan
16 Roland Avenue

Mt. Laurel, NJ 08054
(800) 848-8001

Fax: (609) 802-0465
sales@herbach.com
www.herbach.com

Hohner Corp.
5536 Regional Road No. 81

Beamsville, Ontario, LOR. 1B3,

Canada

(800) 295-5693

Fax: (905) 563-4924
hohner@hohner.com
www.hohner.com

Humphrey

9212 Balboa Avenue
San Diego, CA 92123
(619) 565-6631

Fax: (619) 565-6873

WWW.remec.com

IC Sensors

1701 McCarthy Bivd.
Milpitas, CA 905035-7416
(800) 767-1888

Fax: (408) 432-7322

Images Company
PO Box 140742

Staten Island NY 10314
(718) 698-8305

Fax: (718) 982-6145

www.imagesco.com

Small cameras

Many electronic products, including test
equipment

Surplus dealer

Encoders

Gyros "

Micromachined accelerometer:
pressure sensors

Source for bend sensors

406

C. Yellow Pages

Integrated Circuit Systems
2435 Boulevard of the Generals
PO Box 968

Valley Forge, PA 19482

(610) 630-5300

Fax: (610) 630-5399
www.icst.com

Interlink Electronics
546 Flynn Road
Camarillo, CA 93012
(805) 484-8855

Fax: (805) 44-8989
www.interlinkelec.com

IS Robotics

Suite 6

22 McGrath Highway
Somerville, MA 02143
(617) 629-0055

Fax: (617) 629-0126
www.isr.com

ITT Cannon

666 E. Dyer Road
Santa Ana, CA 92705
(714) 557-4700

Fax: (714) 654-2142
www.ittcanon.com

Jameco

1355 Shoreway Road
Belmont, CA 94002
(650) 592-8097

Fax: (650) 592-2503
info@jameco.com
WWW.jameco.com

Jenson Tools

7815 S. 46th Street
Phoenix, AZ 85044-5399
(800) 426-1194

Fax: (800) 366-9662
sales@jensentools.com
www.jensentools.com

Johuco Ltd.

PO Box 385

Vernon, CT

johuco@pcrealm.net
www.pcrealm.net/ johuco/index.html

Battery-charging ICs

Force-sensing resistors

Research robots, commercial robots,
and sensor systems

Microminiature connectors

Electronic components, Bend sensors,
Compasses

Hand tools, test equipment

Robots

C.1 Suppliers

407

Joker Robotics
Muenchinger Str. 8

71282 Hemmingen, Germany
+49 (172) 711-3633

Fax: +49 (7150) 970 850
joker@joker-robotics.com
www.joker-robotics.com/

K-Team

Ch. de Vuasset

CP 111

CH 1028 Préverenges, Switzerland
+41 (21) 802-5472 .

Fax: +41 (21) 802-5471
info@k-team.com
www.k-team.com

Kaufman Tools

110 Second Street
Cambridge, MA 02141
(800) 338-8023

Fax: (800) 638-8805
sales@kaufmanco.com
www.kaufmanco.com

Laser Services
123 Oak Hill Road
Westford, MA 01886
(508) 692-6180

LEGO

LEGO Educational Dept.
PO Box 39

Enfield, CT 06082
(800)527-8339
www.lego.com

Lucas Control Systems
Shaevitz Sensors

100 Lucas Way

Hampton, VA 23666

(757) 766-1500

Fax: (757) 766-4297
sales@schaevitz.com
www.schaevitz.com

Lucas Ledex

801 Scholz Drive

PO Box 427

Vandalia, OH 45377-0427
(937) 898-3621

Fax: (937) 898-8624
www.golucas.com

Distributes Rug Warrior Pro™ and accessories
in Europe

Khepera miniature mobile robots

Machine tools, hand tools

Laser job shop

All components needed for quickly building
robot prototypes; LEGO MindstormsTM
educational department sells primarily to
schools

Gyros, Accelerometers

Encoders

408

C. Yellow Pages

Lucas Novasensor
1055 Mission Court
Fremont, CA 94539
(510) 490-9100
www.golucas.com

Lucas Schaevitz

7905 N. Route 130
Pennsauken, NJ 08110-1489
(609) 662-8000
www.golucas.com

Mabuchi Motors America
3001 W. Big Beaver Road
Suite 520

Troy, MI 48084

(248) 816-3100

Fax: (248) 816-3242

Marshall Electronics
33 Upton Drive
Wilmington, MA 01887
(978) 658-0810

Fax: (978) 657-5931
www.marshall.com

Maxon Precision Motors
838 Mitten Road
Burlingame, CA 94010
(650) 697-9614

Fax: (650) 697-2887
WWW.mpm.maxonmotor.com

MCM Electronics

650 Congress Park Drive
Centerville, OH 45459-4072
(800) 543-4330

Fax: (937) 434-6959
www.mcmelectronics.com

McMaster-Carr

PO Box 440

New Brunswick, NJ 08903-0440
(732) 329-3200

Fax: (732) 329-3772
nj.sales@mcmaster.com
www.mcmaster.com

Meccano
See MIT Museum Shop

Mendelson Electronics
340 E. First Street
Dayton, OH 45402

(800) 422-3525

Fax: (937) 461-3391
meci@meci.com
wWww.meci.com

Micromachined pressure sensors and
accelerometers

Force sensors, displacement sensors

Mfrs. of a full range of motors

Electronic components

Small high-quality motors

Tools, connectors, transistors

Machine tools, hardware, materials, everything
you’d find in a factory

Subassemblies of discontinued Heathkit
HERO 2000 robot

C:1 Suppliers

409

Methode Electronics
1700 Hicks Road

Rolling Meadows, IL 60656
(800) 323-6864

Fax: (847) 392-9404

Micro Gage

9537 Telstar Avenue
El Monte, CA 91731
(626) 443-1741

Fax: (626) 443-7290

Micro Measurements

PO Box 27777

Raleigh, NC 27611

(919) 365-3800

Fax: (919) 365-5945
email@measurementsgroup.com
WWW.measurementsgroup.com

Micro Miniature Bearing
7 Jocama Boulevard

Old Bridge, NJ 08857

(800) 526-2353

Fax: (732) 591-1890
www.mmbearco.com

Micro Mo Electronics
14881 Evergreen Ave.
Clearwater, FL 33762 \
(813) 572-0131

Fax: (813) 573-5981
Wwww.micromo.com

Mikron Instrument Company

16 Thornton Road
Oakland, NJ 07436
(201) 891-7330

Fax: (201) 405-0900
sales@mikroninst.com
www.mikroninst.com

Minco Products

7300 Commerce Lane
Minneapolis, MN 55432-3177
(612) 571-3120

Fax: (612) 571-0927
info@minco.com
www.minco.com

MIT Media Laboratory
20 Ames Street

Room E15-315

Cambridge, MA 02139
(617) 253-0300)

Fax: (617) 358-6264
www.media.mit.edu

Sockets and connectors

Force sensors

Strain gauges

Bearings

Small motors”

Pyroelectric sensors .

Flexible coils

Developed IC, performs research on robots in
education

410

C. Yellow _umm,mm

MIT Museum Shop
Building N52

MIT Student Center
Cambridge, MA 02139
(617) 253-4462

Model-A Technology
Fischer-Technik

2420 Van Layden Way
Modesto, CA 95356
(209) 575-3445

Fax: (209) 527-6016

Mondo-tronics

4186 Redwood Highway No. 226
San Rafael, CA 94903

(800) 374-5764

Fax: (415) 455-9333
www.robotstore.com

Mouser Electronics
958 North Main St.
Mansfield, TX 76063-4287
(800) 34-MOUSER

Fax: (817) 483-6899
sales@mouser.com
WWW.Imouser.com

MTI Instruments Division
968 Albany-Shaker Road
Latham, NY 12110

(800) 828-8210

Fax: (518) 785-2127
www.mechtech.com

Murata

2200 Lake Park Drive
Smyrna, GA 30080
(404) 436-1300

www.murata.com

Namiki

201 West Passaic Street
Rochelle Park, NJ 07662
(201) 368-0123

Fax: (201) 368-2244
motor@namiki.co.jp
www.namiki.co.jp

New Micros

1601 Chalk Hill Road
Dallas, TX 75212

(214) 339-2204
general@newmicros.com
WWW.newmicros.com

Sells Fischer-Technik, Meccano, Capsella,
LEGO and Erector Set construction kits

Construction kits

Shape memory metal, robots, robot books,
robot videos :

Wide selection of electronic components; will
fax detailed specs; regional distribution
centers; accepts small orders

Fotonic sensor for displacement

Temperature sensors

Very small motors

Single-board computer uses MC68HC11
chip; Forth language in ROM

C.1 Suppliers

411

Newark Electronics
59 Composite Way
Lowell, MA 01851
(800) 463-9275 ,
Fax: (508) 229-2222
www.newark.com

Newton Research Labs
4140 Lind Ave SW
Renton, WA 98055

(425) 251-9600

Fax: (425) 251-8900
sales@newtonlabs.com
www.newtonlabs.com/

Nomadic Technologies

2133 Leghorn St.

Mountain View, CA 94043-1603
(650) 988-7200

Fax: (650) 988-7201
nomad@robots.com
www.robots.com

Omron Electronics

1 East Commerce Drive
Schaumburg, IL 60173
(847) 843-7900

Fax: (847) 843-8568

WWwWw.omron.com

Optima Batteries

17500 East 22nd Avenue
Aurora, CO 80011

(888) 867=8462

Fax: (303) 340-7474
cdouglass@optimabatteries.com
www.optima.com

Optoelectronic Center
Lincoln Loop

Sauk Centre, MN 56378
(320) 352-6556

Fax: (320) 352-3617
oci@sockherald.com
www.optoelectronics-oci.com

Pace Electronics

34 Foley Drive

Solus, NY 14551-0067
(315) 483-9122

Fax: (315) 483-0480
pace@PaceElectronics.com
www.PaceElectronics.com

Distributor of electronic components

Newton Labs offers a commercial
(supported) version of IC

Robots

Photomicrosensors, relays, bump switches

Manufacturer of batteries, especially lead acid

Optical switches - i

Distributor for Nippon Ceramics; cheap pyros

412

C. Yellow Pages

Pacer Electronics
112 Commerce Way
‘Woburn, MA 01801
(781) 935-8330

Fax: (781) 938-7881
pacerelect@msn.com
www.pacerelc.com

Parallax

3805 Atherton Road
Suite 102

Rocklin, California 95765
(888) 512-1024

Fax: (916) 624-8003
info@parallaxinc.com
www.parallaxinc.com

Pico Electronics

143 Sparks Avenue
Pelham, NY 10803

(800) 431-1064

Fax: (914) 738-8225
info@picoelectronics.com
www.picoelectronics.com

Piezo Systems

186 Massachusetts Avenue
Cambridge, MA 02139
(617) 547-1777

Fax: (617) 354-2220
sales@piezo.com
WWW.piezo.com

Pioneer Electronics
44 Hartwell Avenue
Lexington, MA 02173
(781) 861-9200

Fax: (781) 863-1547
www.pios.com

Pittman

P.O. Box 3

Harleysville, PA 19438-0003
(215) 256-6601

Fax: (215) 256-6601
info@pittmannet.com
www.pittmannet.com

Polaroid Corporation
OEM Components Group
153 Needham Street

PO Box 9122

Newton, MA 02464-9122
(781) 386-3964

Fax: (781) 386-3966
ultrason@polaroid.com
www.polaroid-oem.com

Electronic components

Parallax offers the very popular Basic Stamp
computer for embedded systems

DC-DC converters

Piezoelectric ceramics, sensors, actuators

Distributor of many semiconductor
manufacturers’ lines.)

Motors

Sonar transducers, sonar drive boards

C.1 Suppliers

413

Portescap US

110 Westtown Road
Westchester, PA 19382
(610) 692-2700

Fax: (610) 696-4598
pub@portescap.com
www.portescap.com

Precision Navigation
1235 Pear ‘Ave.

Suite 111

Mountain View, CA 94043
(650) 962-8777

Fax: (650) 962-8776
sales@precisionNav.com
www.PrecisionNav.com/

Radio Shack

National chain — consult
telephone directory for
nearest distributor

(800) THE-SHACK
www.radioshack.com

Ramtron

1850 Ramtron Drive
Colorado Springs, CO 80921
(719) 481-7000

. Fax: (719) 481-9294

www.ramtron.com

RC Systems

1609 England Avenue
Everett, WA 98203-2627
(425) 355-3800

Fax: (425) 355-1098
WWW.ICSys.com

RCD Components

520 East Industrial Park Drive
Manchester, NH 03109

(603) 669-0054

Fax: (603) 669-5455
info@rcd-comp.com
www.rcd-comp.com

Reactive Technologies
P.O. Box 2095 o
Merrimack, NH 03054
info@reactivetechnologies.com
www.reactivetechnologies.com

High-quality DC gearhead motors

Precision Navigation offers several versions
of electronic compasses

Offers a variety of electronic components
from local distributors; to mail order, see Tech
America

RAM and DRAM, Discrete semiconductors,
LEDs, LCDs '

High-quality, inexpensive speech _u.omnmm:

Temperature sensors

Reactive Technologies supplies Rug Warrior Pro
compatible modules and robotics
hardware and software development services.

414

C. Yellow Pages

Real World Interface
32 Fitzgerald Drive

PO Box 375

Jaffrey, NH 03452

(603) 532-6900
www.rwii.com

Redwood Microsystems
959 Hamilton Ave.

Menlo Park, CA 94025
(650) 326-1896

Fax: (650) 326-1899
www.redwoodmicro,com

Redzone Robotics

2425 Liberty Avenue
Pittsburgh, PA 15222-4639
(412) 765-3064

Fax: (412) 765-3069
info@redzone.com
www.redzone.com

Reptron

20 Blanchard Road
Burlington, MA 01803
(800) 345-2921

Fax: (412) 765-3064
info@reptron.com
www.reptron.com

Richards Micro Tool
250 Nicks Rock Road
Plymouth, MA 02360
(508) 746-6900

Fax: (508) 747-4339

RMB Miniature Bearings
29 Executive Parkway
Ringwood, NJ 07456

(973) 962-1111

RMB Tech@comopuserve.com
www.rmb-ch.com

Rogers Corporation
One Technology Drive
Rogers, CT 06263
(860) 774-9605

Fax: (860) 779-5509
info@rogers-corp.com
WWW.rogers-corp.com

Royal Products Corporation
790 W. Tennessee Avenue
Denver, CO 80223

(303) 778-7711

Fax: (303) 778-7721

Robot bases, sensory systems; RWI is now a

division of IS Robotics

Micromachined miniature valves

Hazardous waste robots, applications in
nuclear energy, and mobile robots

Distributor of electronic components

Small tools

Bearings

Bendflex flexible printed circuit boards

Inexpensive model airplane servo motors

C.1 Suppliers

415

Samtec

PO Box 1147

New Albany, IN 47150-1147
(812) 944-6733

Fax: (812) 948-5047
tammy.rudy@samtech.com
www.samtech.com

Sanyo Electric
2055 Sanyo Avenue
San Diego, CA 92173
(619) 661-6620

Fax: (619) 661-6743
www.sanyo.com/

Sarcos Microsystems
390 Wakara Way, Suite 65C
Salt Lake City, UT 84108
(801) 581-0155

Fax: (801) 581-1151
info@sarcos.com
WWW.Sarcos.comnt

Sharp Electronics Corporation
Sharp Plaza

Mahwah, NJ 07430-2135

(201) 529-8200

Fax: (201) 529-8425
www.sharpelectronics.com

Sheldon’s Hobbies

2135 Old Oakland Road
San Jose, CA 95131

(800) 822-1688

Fax: (408) 943-0904
www.btown.com/sheldons/

Shinkawa Electric Co. Ltd.
Shinkojimachi Building 3F

3-3 Kojimachi 4-chome
Chiyoda-ku, Tokyo 102, Japan
+81-332-62-4417

Fax: +81-332-62-2171
soishi@shinkawa.co.jp

Small Parts

13980 NW 58th Court

PO Box 4650

Miami Lakes, F1. 33014-0650
(305) 557-8222

Fax: (305) 558-0509
smlparts@smallparts.com
www.smallparts.com

Distributor of electronic components

Batteries

Multi-axis strain sensors, rotary displacement
transducers

Sharp makes many useful types of photosensors

Radio-control products, servos, motors, gyros

mrwswmﬁm&mwn.—v:dmmme:méﬁmmo«ﬁnoﬂzw.;m
and accessories in Japan I

Supply of metal, plastics, tools, and hardware

416

C. Yellow Pages

Southco

210 North Brinton Lake Road
Concordville, PA 19331

(610) 459-4000

Fax: (610) 459-4012
www.southco.com

Spectron

595 Old Willets Path

PO Box 13368
Hauppauge, NY 11788
(516) 582-5600

Fax: (516) 582-5671
info@spectronsensors.com
wWww.spectronsensors.com

Spiricon

2600 North Main
Logan, UT 84321
(435) 753-3729

Fax: (435) 753-5231
sales@spiricon.com
www.spiricon.com

Sterling Electronics
15D Constitution Way
Woburn, MA 01801
('781) 938-6200

Fax: (781) 933-5468

Stock Drive Products
55 South Denton Avenue
New Hyde Park, NY 11040
(516) 328-0200

Fax: (516) 326-8827
www.sdp-si.com

Strataflex Corporation

11 Dohme Avenue

Toronto, Ont. M4B 1Y7, Canada
(416) 752-2224

Fax: (416) 752-6719
keirstead@strataflex.com

Supercircuits

One Supercircuits Plaza
Leander, TX 78641
(512) 260-0333

Fax: (512) 260-0444
www.supercircuits.com

T-Tech

5591-B New Peachtree Road
Atlanta, GA 30341

(404) 455-0676

www.T-Tech.com

Mechanical fasteners

Inclinometers, mercury switches

Sensors for laser systems

Distributor of electronic components

Assortment of small parts

Laser machining of flexible circuits

Microvideo cameras and transmitters

Inhouse milling machine for fabbing PC
boards

C.1 Suppliers

417

Tech America

PO Box 1981

Fort Worth, TX 76101
(800) 877-0072

Fax: (800) 813-0087
tacusrel01@tandy.com
www.techamerica.com

TestEquity

2450 Turquoise Circle
Thousands Oaks, CA 91320
(800) 732-3457 .

Fax: (800) 272-4329
www.testequity.com

Tower Hobbies

PO Box 9078
Champaign, IL 61826
(800) 637-4989

Fax: (800) 637-7303
www.towerhobbies.com

Trilogy Linear Motors
141 Bay Area Boulevard
‘Webster, TX 77598

(281) 338-2739

Fax: (281) 338-1227
info@trilogsystems.com
www.trilogysystems.com

Unitrode Corporation
7 Continental Blvd.
Merrimac, NH 03054
(603) 424-2410

Fax: (603) 429-8771
macdonald@unitrode.com
www.unitrode.com

Vero Electronics

5 Sterling Drive

Wallingford, CT 06492

(800) 242-2863

Fax: (203) 949-1101
vero@vero-usa.com .
www.vero-usa.com/index.html

Wallace Electronics Sales
935-K East Mountain Street
Kernersville, NC

(336) 996-2742

Fax: (336) 996-1630
info@wes-inc.com
www.wes-inc.com/

Mail order source for a wide variety of
electronic components, no minimum order

Used equipment, scopes, and meters
Radio-control products, servos, motors, gyros

Linear motors

Battery charging ICs

Speedwire wiring equipment, :pins, sockets

Electronics distributor; carries 3M Scotchflex
wiring technology

418

C. Yellow Pages

Watlow

5710 Kenosha Street
Richmond, IL 60071
(815) 678-2211

Fax: (800) 537-4644

www.watlow.com

‘Watson Industries
3041 Melby Road

Eau Claire, WI 54703
(800) ABC-GYRO

Fax: (715) 839-8248
support@watson-gyro.com

‘Wirz Electronics

PO Box 457

Littleton, MA 01460-0457
(888) 289-9479

Fax: (978) 448-0196
sales@wirz.com
WWW.wirz.com

‘Wyle Laboratories
5 Oak park Drive
Bedford, MA 01730
(781) 271-9953

Fax: (781) 275-3809
www.wyle.com

Z-World Engineering
2900 Spafford Street
Davis, CA 95616

(530) 753-3737

Fax: (916) 753-5141
www.zworld.com

Pyroelectric sensors

Gyros

Supplies microcontroller prototyping systems,
sonar sensor kits, stepper motor controllers
and an LCD serial interface

Carries TI replacement, the SN754410NE, for
the SGS-Thompson L293D motor-driver chip

C-based single board computer

C.2 Products

#19

C.2 Products

Accelerometers
Entran Devices, IC Sensors,
Lucas Control Systems
Schaevitz Sensors, Lucas Novasensor

Actuators
Lucas Ledex, Piezo Systems

Batteries
Duracell, Optima Batteries,
Sanyo Electric

Battery-charging ICs
Integrated Circuit Systems,
Unitrode Corporation

Bearings
Micro Miniature Bearing,
RMB Miniature Bearings

Bend sensors
Images Company, Jameco

Buzzers, piezoelectric
Digi-Key

C compilers
Dunfield Development Systems

Cameras
All Phase Video Security,.Chinon
America, HDS, Supercircuits

Circuit boards
Alberta, Printed Circuits,
Circuit Board Fabrications,
Circuit-Wise, Direct Imaging, Elmec,
EP Circuits, Rogers Corporation,
Strataflex Corporation, T-Tech

Color sensors
Hamamatsu Photonics

Compasses
ETAK, Jameco, wnmn_m_os Navigation

Computer components
BNF Enterprises i

Connectors
ITT Cannon, MCM Electronics,
gmﬂromm Electronics, Samtec

Construction kits
Capsella, Erector Set, Meccano,
MIT Museum Shop,
Model A Technology-Fischer-Technik

DC-DC converters
Pico Electronics

Displacement sensors
Lucas Schaevitz

Electronic components
Active Electronics,
All Electronics Corporation,
Allied Electronics,
American Science and Surplus, b»\ZmH_u
Digi-Key, Edlie Electronics,
Electronic Goldmine, all
Gerber Electronics, Jameco, Em&w
Electronics, Mouser Electronics,
Newark Electronics, Pacer
Electronics, Pioneer Electronics,
Radio Shack, Ramtron, Reptron,
Sterling Electronics, Tech Amerit®
Wyle Laboratories

Encoders
BEI,
WO:nam-mmdmonm 95& Control U_< nts
Canon, Gurley Precision Instrup™
Hamarmatsu Photonics,
Hohner Corporation,
Sarcos Microsystems:.

Force sensors
Entran Devices, Interlink m.ﬂ@n»
Lucas Schaevitz, Micro Omma,
Sarcos gﬁwo&\mnmﬂ_w

ics
Hnﬂu)

Fresnel lenses A

I
Eltec Hsmnnﬁdwam Fresnel ,Hmnw‘ ologies
Gyros -
Futaba Corporation’ mﬁﬂ%ramu:
Lucas Control Systems s
Schaevitz Sensors, Tower Hobbi?™’

‘Watson Industries

IC
h Lab:
A K Peters Ltd., Newton Wmmm\.o abs

Inclinometers
Spectron

Infrared sensors
Banner Engineering,
Hamamatsu Photonics

Laser machining services
Laser Services

S

420

C. Yellow Pages

LCD thumbwheel switches
American Control Technology

Mechanical parts
Berg, Burden’s Surplus Center,
Small Parts, Southco,
Stock Drive Products

Microphones
Digi-Key

Motors
Canon, Edmund Scientific,
Globe Motors,
Mabuchi Motors America,
Maxon Precision Motors, Namiki,
Pittman, Portescap US,
Trilogy Linear Motors

Optical components
Edmund Scientific

Photosensors
Centro Vision, Hamamatsu Photonics,
Omron Electronics,
Optoelectronic Center,
Sharp Electronics Corporation

Piezoelectric materials
AMP Sensors

Piezoelectric sensors
Piezo Systems

Pressure sensors
Entran Devices, IC Sensors,
Lucas Novasensor

Proximity sensors
MTI Instruments Division

Pyroelectric sensors
Acroname, Alarm Supply,
Detection Systems, Eltec Instruments,
Mikron Instrument Company,
Pace Electronics, Spiricon, Watlow

Radio-control products
Airtronics, America’s Hobby Center,
Royal Products Corporation,
Sheldon’s Hobbies, Tower Hobbies

Relays
Omron Electronics

Robots
A K Peters, Ltd., Advanced Design,
Animate Systems, Graymark
International, IS Robotics, Johuco Ltd.,
Joker Robotics, K-Team, Mendelson
Electronics, Mondo-tronics, Real
World Interface, Redzone Robotics

Rug Warrior Pro™ kits/modules
A K Peters, Ltd., Joker Robotics,
Mondo-tronics,
Reactive TechnologiesShinkawa Electric

Shape memory metal
Mondo-tronics

Single-board computers
Gleason Research, New Micros,
Parallax, Z-World Engineering

Sonar sensors
A K Peters, Ltd., Polaroid Corporation,
Wirz Electronics

Speech products
RC Systems, Reactive Technologies

Stepper motor controllers
Arrick Robotics, Wirz Electronics

Strain gauges e
Binsfeld Engineering, Entran Devices,
Micro Measurements,

Surplus dealers
All Electronics Corporation,
American Design Components,
American Science and Surplus,
Herbach and Rademan

Temperature sensors
EDO Corporation/Barnes Engineering
Division, Minco Products, Murata,
RCD Components

Test equipment
All Phase Video Security,Edlie
Electronics, Heathkit Company,
Jenson Tools, TestEquity

Tools
Edlie Electronics, Harbor Tool,
Jenson Tools, Kaufman Tools,
MCM Electronics, McMaster-Carr,
Richard’s Micro Tool

Valves
Animate Systems,
Redwood Microsystems.

Vision systems :
Joker Robotics, Newton Research Labs

Watchmakers’ tools
A. Cohen Company

Wiring products
3M Electronic Products,
Vero Electronics,
Wallace Electronics Sales

Trade Magazines

Technology changes so quickly that a “how to build a robot” voow
can swiftly become outdated. We Hmooggoﬂa,nwma Ho,,cod enthusiasts
and engineers make every effort to stay abreast of technology because
a circuit that takes five chips and seven discrete components today
might come out tomorrow in single-chip form (and at woémm. oo.%&.
The best way to remain aware of what new parts are available
is to subscribe to the numerous trade magazines that advertise sup-
pliers and their latest products. Most of these ﬁcwﬁowﬁoﬁm ,m,m.o free
if you qualify when filling out their subscriber HoHBm»“mw&mm by ‘s.oﬂ.W.
ing in a related profession or by being a student. In this mﬁvmd&uﬁ
we list the publications we have found helpful over the years. Again,
most are free, but a few listed are of the pay-for-subscription variety.
Other important sources of information are the electronic bul-
letin boards and online interest groups available through various
computer network services. In particular, a number of ideas and sug-
gestions for this book have come from the comp.robotics news group
available on the Internet. By using such a network to offer a com-
ment or pose a question, it is literally possible to reach, overnight,

.a large audience throughout the world who have an interest in the

subject.

422

D. Trade Magazines

Circuit Cellar INK: The Com-
puter Applications Journal
Circuit Cellar Incorporated

4 Park Street, Suite 20

Vernon, CT 06066-3233

(800) 269-6301

Design News
Cahners Publishing
275 Washington Street
Newton, MA 02158
(617) 964-3000

Designfax

- A Huebcore Publication
PO Box 1151
Skokie, IL 60076-9917

EDN

(Electronic Design News)
Computer Center

PO Box 5563

Denver, CO 80217-5563

EDN News Edition
Computer Center

PO Box 17844

Denver, CO 80217-0844

EE Product News
PO Box 12982 :
Overland Park, KS 66282-981

Electrical Manufacturing
Lake Publishing

PO Box 159

Libertyville, IL 60048-9961

Electronic Component News
Box 2011
Radnor, PA 19080-9511

Electronic Engineering Times
Circulation Dept.

Box 2010

Manhasset, NY 11030

Electronic Packaging and
Production

PO Box 5690

Denver, CO 80217

Electronics
1100 Superior Avenue
Cleveland, OH 44197-8118

Electronics Now

Gernsback Publications, Inc.
Subscription Dept., Box 55115
Boulder, CO 80321-5115

(516) 293-3000

Embedded Systems
PO Box 41094
Nasghville, TN 37204
(800) 950-0523

Evaluation Engineering
2504 North Tamiami Road
Nokomis, FL 34275-9987
(941) 966-9521

Fiber Optic Product News
301 Gibraltar Drive

PO Box 650

Morris Plains, NJ 07950-0650
(973) 292-5100

IEEE Robotics and Automation
345 East 47th Street

New York, NY 10017-2394
(212)705-7900

Trade Magazines

423

Instrumentation and
Automation News
Box 2005

Radnor, PA 19080-0405

Integrated Device
Technology, Inc.
2975 Stender Way
Santa Clara, CA 95054

Journal of Electronic
Engineering

Dempa Publications, Inc.

11-15, Higashi Gotanda 1-chome
Shinagawa-ku 141

Tokyo, Japan

Lasers and Optronics

301 Gibraltar Drive

PO Box 601

Morris Plains, NJ 07950-9827

Literature Distribution
Services for Motorola
5005 E. McDowell Road
M/D A 201

Phoenix, AZ 85005

(602) 244-6548

Machine Design
Penton Publishing
PO Box 95759
Cleveland, OH 44101

Measurement Science
and Technology

Techno House, Redcliffe Way
Bristol BS1 6NX,

United Kingdom

+44-(117)-930-1128

Medical Equipment Designer
Subscriber Services

Huebcore Communications
29100 Aurora Road, Suite 200
Cleveland, OH 44139

Microsensor Research
Tech Trends Associates
PO Box 386

Bel Air, MD 21014
Microwaves and RF
1100 Superior Avenue
Cleveland, OH 44197-8040

Motion Control

Attn: Circulation Dept.
PO Box 7907

Wheaton, IL 60189-9850

NASA Tech Briefs
NASA STI Facility
Manager. TU Division

PO Box 8757
Baltimore, MD 21240-9985

Nuts and Valts Magazine :
430 Princeland Court :
Corona, CA 91719
(800) 783-4624 - .-
PCIM — Power Conversion
and Intelligent Motion

PO Box 420374

Palm Coast, FL 32142-0374

Personal Engineering and
Instrumentation News
Circulation Department

PO Box 430

Rye, NH 03870-0430

424

D. Trade Magazines

Power Transmission Design
1100 Superior Avenue
Cleveland, OH 44197-8038

Printed Circuit Design
200 Powers Ferry Center
Suite 450

Marietta, GA 30067

(888) 847-6177

Product Design

and Development
PO Box 2001

Radnor, PA 19080-9501

Research and
Development Magazine
Reader Service Dept.
Computer Center

PO Box 5833

Denver, CO 80217-9937

Robot Science and Technology

2351 Sunset Blvd. No. 170-235
Rocklin, CA 95765
(888) 510-7728

Robotics Digest
1700 Washington Ave,
Rocky Ford, CO 81067
(719) 254-4558

Security Magazine
Reader Service Department
Computer Center

PO Box 5500

Denver, CO 80217-9808

Sensor Review

MCB University Press

62 Toller Lane, Bradford
BD8 9BY, United Kingdom

Sensor Technology
Technical Insights

PO Box 1304

Fort Lee, NJ 07024-9967

Sensors

Helmers Publishing 174 Concord Street
PO Box 874

Peterborough, NH 03458-0874

Surface Mount Technology
IHS Publishing Group

17730 West Peterson Road
Libertyville, IL 60048-0159
(847) 362-8711

Data Books

Semiconductor companies publish a series of data books that give the
specifications and pinouts of their chips. Often, chapters are included
in each book that contain application notesand brief reviews of
theory. A set of data books for a large semiconductor company
might number a dozen or more volumes, while more specialized or
newer companies might have only a single data book. H%@Hw:& data
books will be sent free if you call the literature department of each
manufacturer and ask for copies. PR

The following list comes from the collection we have acquired over
the years. Probably the most important reference to have, however
(which is not free), is the first item on the list, the IC' Master. This
multivolume set lists all chips made by all manufacturers in the world

and has an index by part number. That is, if you come across a

chip marked with some part number but you have no idea what its
function is, you can look it up in-IC Master and find out all the
companies that make that chip and what it is. Then you can go to
the data book for one of the companies for the pinouts and electrical
characteristics. There is also an online version of IC Master.

426 E. Data Books

IC gmmn@w Index of all manufacturers’ integrated
Hearst Business Communications circuits

645 Stewart Avenue
Garden City, NY 11530
(516) 227-1300

Fax: (516) 227-1453
www.icmaster.com

Advanced Micro Devices
1 AMD Place

PO Box 3453

Sunnyvale, CA 94088

(800) 538-8450
www.amd.com

Memories, microprocessors, analog
chips

Allegro Microsystems, Inc.
115 Northeast Cutoff

Box 15306

Worcester, MA 01615

(508) 255-3476

Fax: (508) 853-7895
www.allegromicro.com

Hall effect sensors and more

Analog Devices

One Technology Way

PO Box 9106

Norwood, MA 02062-9106
(781) 329-4700

Fax: (7810 326-8703
www.analog.com

D/A and A/D converters, analog
electronics)

Apex Microtechnology Corp.
5980 N. Shannon Road

Tucson, AZ 85741

(520) 690-860

Fax: (520) 888-3329
support.apexmicrotech.com
www.apexmicrotech.com

Power op-amps

Benchmarq Microelectronics
17919 Waterview Parkway
Dallas, TX 75252

(800) 966-0011

Fax: (9720 437-9198
www.benchmarqg.com

Battery-charging 1Cs

Data Books

427

Burr-Brown Corporation
PO Box 11400

Tucson, AZ 85734-1400
(520) 746-1111

Fax: (520) 746-7401
www.burr-brown.com

Cherry Semiconductor
2000 South County Trail
East Greenwich, RI 02818
(401) 885-3600

Fax: (888) 427-2328
info@cherry-semi.com
www.cherry-semi-com

Cypress Semiconductor
3901 North First Street
San Jose, CA 95134

(408) 943-2600
WWW.Cypress.com

Dallas Semiconductor
4401 S. Beltwood Parkway
Dallas, TX 75244

(972) 371-4000

Fax: ,(972) 371-3715
www.dalsemi.com

Dense-Pac Microsystems
7321 Lincoln Way

Garden Grove, CA 92641-1428
(714) 898-0007

Fax: (714) 897-1772
www.dense-pac.com

EEM — Electronic Engineers
Master Catalog

Hearst Business Communications
645 Stewart Avenue

Garden City, NY 11530

(516) 227-1300

Fax: (516) 227-1901
www.hearstelectroweb.com

EG&G Reticon
345 Potrero Avenue
Sunnyvale, CA 94086
(408) 738-4266

" Fax: (408) 738-3832
www.egginc.com/reticon

Instrumentation amplifiers, linear
circuits

Telecom circuits, motor control, power
and automotive ICs

Memories

Nonvolatile RAM, microprocessor and
support circuits

Memory modules’

Suppliers of electronic 008 onents ™

Image-sensing products

428

E. Data Books

Elantec

675 Trade Zone Boulevard
Milpitas, CA 95035

(408) 945-1323

Fax: (408) 945-9305
www.elantec.com

Electronic Designs Inc.
1 Research Drive
Westboro, MA 01581
(508) 366-5151

Fax: (508) 836-4850

Exar Corporation
48720 Kato Road
Fremont, CA 94538
(510) 6668-7000
WWW.exar.com

Fujitsu Microelectronics, Inc.
3545 North First Street

San Jose, CA 95134

(408) 922-9000

www.fujitsu.com

Gennum Corporation
PO Box 489, Stn A
Burlington, Ontario,
Canada L7R 3Y3

(905) 632-2996

Fax: (905) 632-2055
WWW.gennum.com

Greenwich Instruments USA
11925 Ramah Church Road
Huntersville, NC 28078

(800) 476-4070

Fax: (704) 875-2801
www.greenwichinst.com

Harris Semiconductor
1025 West NASA Blvd.
Melbourne, FL 32919-0001
(407) 727-9207

Fax: (407) 727-9344
www.harris.com

Operational amplifiers

Hybrid memory modules

Telecommunications ICs

Memories

Video and power supply products

Nonvolatile memories

Digital and analog ICs,
Microprocessors

Data Books

429

Hewlett Packard
3175 Scott Blvd.

Santa Clara, CA 95054
(408) 654-8675

Fax: (408) 654-8575
www.hp.com

Hitachi America, Ltd.

2000 Sierra Point Pkwy., MS-080
Brisbane, CA 94005-1897

(800) 285-1601

Fax: (303) 297-0447
www.halsp.hitachi.com

Hyundai Electronics America
3101 N. First Street

San Jose, CA 95134

(408) 232-8000

www.hea.com

IMP Inc.

2830 N. First Street
San Jose, CA 95134
(408) 432-9100

Fax: (408) 434-0335
www.impweb.com

Integrated Device Technology
2975 Stender Way

Santa Clara, CA 95054

(408) 727-6116

Fax: (408) 492-8674
info@idt.com

www.idt.com

Intel Corporation
21515 Vanowen Street
Suite 116

Canoga Park 91303
(800) 628-8686
support@intel.com

International CMOS
Technology, Inc.
2123 Ringwood Avenue
San Jose, CA 95131
(408) 434-0678
_ Fax: (408) 434-0688
www.ictpld.com

Optoelectronics, microprocessors,
radio-frequency ICs

Microcontrollers, peripherals, LCDs,
memories

Memories, serial EEPROMSs

Communications components

Semiconductors and related devices

Microprocessors and periph ,E&mv

Electronically erasable PROMs and
PLDs

430

E. Data Books

International Rectifier
233 Kansas Street

El Segundo, CA 9024
(310) 322-3331

Fax: (310) 252-7175
www.irf.com

IXYS Corporation

3540 Bessett Street

Santa Clara, CA 95054-2704
(408) 982-0700

Fax: (408) 748-9788
sales@ixys.com
www.ixys.com

Lambda Advanced Analog
2270 Martin Avenue

Santa Clara, CA 95050-2781
(408) 988-4930

Fax: (408) 988-2702
www.lambdaaa.com

Lambda Electronics
515 Broadhollow Road
Melville, NY 11747
(800) 526-2324

Fax: (516) 293-0519
www.lambda.com

Marktech Optoelectronics
5 Hemlock Street

Latham, NY 12110

(800) 984-5337

Fax: (518) 786-6599
info@marktechopto.com
www.marktechopto.com

Maxim Integrated Products
120 San Gabriel Drive
Sunnyvale, CA 94086
(408) 737-7600 x6380

www.maxim-ic.com

Micrel

1849 Fortune Drive
San Jose, CA 95131
(408) 944-0800
www.micrel.com

Power MOSFETSs

Stepper motor controllers, power ICs

A /D converters, power supplies

Power semiconductors

Optoelectronics

Data converters, RS232 chips, video
products, amplifiers

Smart-power ICs

Data Books

431

Micro Linear

2092 Concourse Drive
San Jose, CA 95131
(408) 433-5200

Fax: (408) 432-1627
info@mlinear.com
www.microlinear.com

Micro Semiconductor Inc.
1010 N. Shiloh Road
Garland, TX 75042

(972) 272-9811

Fax: (972) 487-0406

Microchip

2355 W. Chandler Blvd.
Chandler, AZ 85224-6199
(602) 963-7373

Fax: (602) 899-9211
www.microchip.com

Micron Technology, Inc.
800 South Federal Way

PO Box 6

Boise, Idaho 83707=0006
(208) 368-4000

Fax: (208) 368-4435
www.micron.com

MITEL Semiconductors
Sequoia Research Park
1500 Green Hills Road
Scotts Valley, CA 95066
(408) 438-2900

Fax: (408) 438-6231
www.mitel.com

Mosel Vitelic Corp.
3910 N. First Street
San Jose, CA 95134-1501
(408) 433-6000

Fax: (408) 433-0331
www.moselvitelic.com

Motorola Literature Dist.
PO Box 20912
Phoenix, AZ 85036
(800) 544-9497
© www.mot.com

Data converters, communications, and

power ICs

Rectifiers

Memories, microcontrollers, and
peripherals

Memories

Digital signal processors

Memories

Digital, analog, and optical ICs.

432

E. Data Books

National Semiconductor
2900 Semiconductor Drive
PO Box 58090

Santa Clara, CA 95052-8090
(408) 721-5000
WWW.nsc.com

NEC Electronics, Inc.
2880 Scott Blvd.

Santa Clara, CA 95052
(408) 588-6000

Fax: (408) 588-6130

WWWw.nec.com

Oki Semiconductor

785 North Mary Avenue
Sunnyvale, CA 94086-2909
(408) 720-1900

Opto-Diode Corporation
750 Mitchell Rd.

Newbury Park, CA 91320
(805) 499-0335

Fax: (805) 499-8108
www.optodiode.com

Phillips Semiconductors
811 E. Arques Ave.

PO Box 3409

Sunnyvale, CA 94088-3409
(408) 991-2000

www.semiconductors.phillips.com

Power Trends

27715 Diehl Road
Warrenville, IL 60555

(800) 531-5782

Fax: (630) 393-6902
marketing@powertrends.com
www.powertrends.com

Powerex

200 Hillis Street
Youngwood, PA 15697-1800
(724) 925-7272

Digital and analog ICs

Linear and digital products

Memories, telecom and networking
ICs

Optoelectronics

Digital, linear Ics, microprocessors,
peripherals

Switching regulators for voltage
regulators

Power semiconductors

Data Books

433

Qualcomm

6455 Lusk Blvd.

San Diego, CA 92121-2779
(619) 587-1121

Fax: (619) 658-2100
www.qualcomm.com

Reliability Inc.

PO Box 218370
Houston, TX 772118
(281) 492-0550

d denning@relinc.com

Rockwell Semiconductor
Systems

9868 Scranton Road

San Diego, CA 92121

(619) 452-7580

Fax: (619) 452-7294
www.rockwell.com

Samsung

3655 N. First Street

San Jose, CA 95134-1708
(408) 544-4000

Fax: (408) 544-4980
www.samsungsemi.com

Seeq Technology Inc.
47200 Bayside Pkwy.
Fremont, CA 94538
(800) 333-7766

Fax: (510) 657-2837
WWW.seeq.com

SenSym

1804 McCarthy Blvd.
Milpitas, CA 95035
(408) 954-1100

Fax: (408) 954-9458
WWW.Sensym.com

Sharp Electronics Corp.
Sharp Plaza

Mahwah, NJ 07430-2135
(201) 529-8200

Fax: (201) 529-8425
www.sharpelectronics.com

Digital frequency synthesizers,
signal-processing I1Cs

DC-DC converters

Video and graphics chips

Digital, analog, optical electronics

EEPROMs

Pressure sensors and accelerometers

Photosensors

434

E. Data Books

Siemens Components
19000 Homestead Road
Cupertino, CA 95014
(408) 725-3586
www.smi.siemens.com
Siliconix

2201 Laurelwood Road
Santa Clara, CA 95054-1516
(408) 988-8000

Fax: (408) 567-8979
www.siliconix.com

STMicroelectronics
10 Maguire Road
Building 1, 3rd Floor
Lincoln, MA 02421
- (781) 861-2650

Fax: (781) 861-2664
www.st.com

Stanford Telecom
1221 Crossman Avenue
PO Box 3733
Sunnyvale, CA 94088
(408) 745-0818

Fax: (408) 745-7756
www.stelhg.com

Supertex, Inc.
1235 Bordeaux Drive
Sunnyvale, CA 94089
(408) 744-0100

Fax: (408) 222-4800
www.supertex.com

Telcom Semiconductor

1300 Terra Bella Avenue

PO Box 7267

Mountain View, CA 94039-7267
(650) 968-9241

Fax: (650) 947-1590
www.telcom-semi.com

Digital, linear electronics,
microprocessors, optoelectronics

Power MOSFETs, data converters

Digital signal processing chips; analog,
digital motion control ICs

Digital frequency synthesizers

Power MOSFETsS, high-voltage ICs

Data~-acquisition ICs

Data Books

435

Telephonics Large Scale
Integration, Inc.

770 Park Avenue
Huntington, NY 11743
(516) 755-7610

Fax: (516) 755-7626
www.tlsi.com

Texas Instruments
Literature Response Center
PO Box 172228

Denver, CO 80217

(800) 477-8924

Fax: (303) 297-0447
www.ti.com

Toshiba America, Inc.
9740 Irvine Blvd.

Irvine, CA 92618

(949) 455-2000

Fax: (949) 859-3963
www.toshiba.com

Unitrode Integrated Circuits
7 Continental Blvd.

Merrimack, NH 03054

(603) 424-2410

Fax: (603) 429-8771
macdonald@unitrode.com
www.unitrode.com

Vishay Sprague
70 Pembroke Road
Concord, NH 03301
(603) 224-1961

Fax: (603) 224-1339
www.vishay.com

VLSI Technology, Inc.
1109 McKay Drive

San Jose, CA 95131
(408) 434-3000

Fax: (408) 922-5252
www.vlsi.com

Strain gauge conditioner ICs

Memories, microprocessors, analog,
digital, optoelectronics

CCD imagers, LCD displays,

optoelectronics, memories

Power-management ICs

Discrete actives

RISC microprocessors and peripherals

436

E. Data Books

‘White Microelectronics
3601 E. university Drive
Phoenix, AZ 85034

(602) 437-1520

Fax: (602) 437-9120
www.whitemicro.com

‘WSI, Inc.

47280 Kato Road
Fremont, CA 94538-7333
(800) 832-6974

Fax: (510) 657-8495
www.wsipsd.com

Xicor, Inc.

1511 Buckeye Court
Milpitas, CA 95035
- (408) 432-8888

Fax: (408) 432-0640
www.xicor.com

Xilinx, Inc.

2100 Logic Drive

San Jose, CA 95124-9920
(408) 559-7778

Fax: (408) 559-7114
www.xilinx.com

Zilog

910 E. Hamilton Avenue
Campbell, CA 95008
(408) 558-8500

Fax: (408) 558-8300
www.zilog.com

Memories

Programmable system devices

Memories, EEPROMs, digital

potentiometers

Programmable gate arrays

Microprocessors and peripherals

Robot Contests

This appendix contains a sample of robot contests and information
on how to find out more about them. They are presented here to
give you an idea of what kind of robotics contests might be avail-
able. Many thanks to Steve Rainwater (email: srainwater@ncc.com)
who maintains a robot contests and competitions list that is on the
Web at www.ncc.com/misc/rcfaq.html. Steve’s site is copyrighted
©1997, Steve Rainwater/Network Cybernetics Corp. with all rights
reserved. Permission has been received for using his site. to gain
much of this information. e

Another web site to find infomation about robot contests is:
www.frc.ri.cmu.edu/robotics-fag/5.2html. Due to the rapid changes
on the Internet, the authors suggest you use a search engine and
type in “Robotics Contests” to get the latest information.

AAAT Robot Competitions

www.aaal.org
The American Association of Artificial Intelligence has an
annual robotics' competition. Rules and locations vary from year
to year.

438 F. Robot Contests

All Japan MicroMouse Contest
www.bekkoame.or.jp/~ntf/mouse/mouse-e.html
Micromouse Contest is a contest in which contestants enter their
robots to compete for intelligence and speed while the robots negoti-
ate a specified maze. A robot participating in this contest is termed
a micromouse. (email: KYD02036@niftyserve.or.jp)

ANS Remote Material Handling Robot Competition
www.ri.cmu.edu/ans99/
This American Nuclear Society competition has been designed to
emulate a teleoperated robotic mission. Both navigation and ma-
nipulation tasks will have to be accomplished from outside the “hot
room” with no direct line of site to the mobile platform.

AUVS International Aerial Robotics Competition

- avdil.gtri.gatech.edu/AUVS/index.html
The Association of Unmanned Vehicle Systems International Aerial
Robotics Competition usually has prize money for the “winner.”

AUVS Ground Robotics Competition
avdil.gtri.gatech.edu/AUVS/index.html
The objective of this competition is to build a completely autonomous
vehicle capable of navigating itself around a grass track outlined with
white lines. There are also several obstacles on the track which the
robot must avoid.

BEAM Robot Olympics

sst.lanl.gov/robot/
BEAM (Biology, Electronics, Art and Mechanics) organizer Mark
Tilden (mwtilden@math.uwaterloo.ca) advocates using the parts
from discarded electronics items such as printers, disk drives, radios,
etc., to make machines that move. He avoids the use of computers
and microcontrollers in his machines. Many BEAM contests are held
throughout the world.

Canada FIRST

www.canadafirst.org/
Canada FIRST is patterned after the US FIRST competition (now
just FIRST). In CANADA FIRST the students build the.robots while
the engineers advise. (email: canfirst@inforamp.net; Mailing ad-
dress: CANADA FIRST Robotics Games, 3 Rice Drive, Suite 100,
Whitby, Ontario, LIN 7X1 CANADA)

Robot Contests 439

FIRST Competition

www.usfirst.org/ :
Given the standard FIRST kit of parts, a set of rules, and a brief
robot-building workshop led by Woodie Flowers of MIT, corporate-
sponsored teams of high school students work with professional en-
gineers to design and build robots for the contest. (Mailing address:
Attn: Susan Howland FIRST 340 Commercial Street Manchester,
NH 03101; tel 603-666-3906; fax 603-666-3907)

International Fire-Fighting Home Robot Contest
shakti.trincoll.edu/~jhough/fire_robot/comp.html
This annual contest at Trinity College organized by Jake Mendelssohn
has many classes of robots trying to put out a fire (candle) in a house-
like maze. (email: JMENDEL141@AOL.COM)

Robot Symposium and Navigation Contest
The Robotics Society of Southern California holds an annual Robot
Symposium and Navigation Contest. Detailed rules will provided
on request. (email: pir2@aol.com ; Mailing address: Jerry Burton
10471 S. Brookhurst St., Anaheim, CA 92804; tel: (714) 535-8161)

Sumo Robot Competition

www.ncc.com/misc/rcfag.htmi ,
There are Robot Sumo Tournaments throughout the United States
and other countries. .

Color and ASCIl Codes

Resistor Color Code

The value of a resistor may be determined from its color bands. For exam-
ple, if the bands on the above resistor, running from left to right, are red,
yellow, and orange then the resistance would be: 24 x 103 = 24K ohms.

The tolerance band tells how closely the resistance of a given resistor
will match its color code. A silver band indicates that the actual resistance
will be within 10% of the marked value; a gold band means 5%.]

The value of a small capacitor is sometimes indicated by a three-number
code stamped on the body of the device. To get the capacitance in pico-

First digit
Second digit
\ Multiplier
\\._.o_m_.uznn

Figure G.1. Resistor color codes.

W_»nxom;n:m
Brown 1 Blue 6
Red 2 Violet 7
Orange 3 Gray 8
Yellow 4 White 9

442 G. Color and ASCH Codes

farads, multiply the first two digits by 10 to the power specified by the
third digit. For example, the code 124 would indicate a value of 12 x 104
picofarads, or 0.12 microfarads.

ASCII Code

C §) C ¢
D| H h pDlH|h|D|H|R]| DI|H h
e € a € e a e € BE: 3 e e a
C X r C X r C X r C X T
00 | 00 | NUL || 32 | 20 64 40| @ | 96 | 60 7
o1 |o1 | SOH |[33 |2t |1 |les| 41| A 97 |61] a
02|02 | sTX ||34]| 22| «“ 66|42 | B | 98 | 62| b
03] 03 |[ETX ||35| 23 |# 67| 43| C |l 99 |63 ¢
04| 04 | EOT || 36] 24 | $ |l 68| 44 | D || 100] 64| 4a
05| 05 |[ENQ || 37] 25 | % |[69]| 45 | E || 101 | 65| e
06 | 06 | ACK || 38| 26 [& |[70| 46 | ¥ || 102 | 66 £
07| o7 | BEL {| 39| 27| * || 71| 47| G L0367]| g
08| 08| BS [[40| 28| (|| 72| 48 | H || 104]| 68] n
09|00 | HT [[4r|20]) || 73] 40| 1 [105] 69 i
10|0A| LF |[42|2a| *ff7al4a| 5| 106|6a] j
1n|oB| vr |43 2B|+ 75| 4B | K || 107 6B | k
12loc| Fr ffaa|2c| , || w|4c| L | 108]6Cc| 1
13|loD| crR |[45 | 2D | - || 77{4aD| M| 109|6D| m
14|0E| sO |[46|2E| . || 8| 4E| N} 110 6E| n
15{0F | st [|4ar|{oFr |/ ||79|4F | O 111 |6F]| o
16|10 |DLE|[48 {30 |ofs|s0|P|112f7] p
1711 | Det |40 st qQfus|7| g
18| 12| Dc2 lls0]32]2|s2|52|R[114]72] ¢
19| 13| Dc3 {51333 fs3]5s3|s|15]73] s
20|14 | Do || 52 34| 484|541 || 16| 74] ¢
21| 15 | NAK || 53| 35 | 5 (85|55 | U [|127] 75| w
22116 | SYN || 54| 36 {6 | 8|56 | v |[1ns|mw]| v
23| 17 |ETB || 55|37 | 7 || 87|57 | W 119] 77| w
24|18 |caN | 56] 38| 888|558 | X ||120] 78| x
25| 19| EM |57 39 | 9|89 t59 | Y |121]79]| ¥
2% | 1A | sUB |58 |3A | : [loo|s5a| z || 122]7A] 2
or|{1B | ESC |59 [3B| ; flot|sB| [||123]7B]| {
28 |1c| Fs ||eo|3c| < |o2]|5C| \ | 124 | 7C _
20|1D| as |[61|sD|{=193|sD|] ||[125]|7D]| }
30| 1IE| RS |62 |38 |>|loa|sE| -~ ||126|7E] -
s1|1F| Us ||e3|3r | 2 los|sF | _ || 127] 7F | DEL

Bibliography

Some of the references listed here may be hard to find for the general reader.
A number of the papers listed came out of work at the Mobile Robot Group
at the MIT Artificial Intelligence Laboratory. While often published in
journals or conference proceedings, these papers are usually also published
internally as AI Laboratory Memos. AI Memos can be acquired for a small
copying fee by writing or calling the MIT Artificial Intelligence Laboratory
mvcv:nmﬁoumommom” . . ;

Publications Office
MIT AT Lab, Room 818
545 Technology Square
Cambridge, MA 02139

(617) 253-6773

While journal articles can often be found in a university library, con-
ference proceedings can be difficult to locate. If the.journal or conference
papers were published by the Institute of Electrical and Electronics Engi-
neers, they can be ordered directly from the IEEE:

IEEE Publishing Services
345 47th St.
New York, NY 10017
(212) 705-7900

Many authers now maintain their papers on line in downloadable form.
Searching the web for the author or title is often the fastest way to find
the paper you seek.

444 Bibliography

(AAAI Proceedings) MIT Press, Cambridge, MA.

(Angle and Brooks 90) Colin M. Angle and Rodney A. Brooks. Small Planetary
Rovers. Proceedings of the IEEE International Workshop on Intelligent Robots
and Systems. Tokyo, Japan, July.

(Angle 89) Colin M. Angle. Genghis, A Six Legged Autonomous Walking Robot.
S.B. Thests, MIT Dept. of Electrical Engineering and Computer Science. March.

(Angle 91) Colin M. Angle. Design of an Artificial Creature. Master’s Thesis,
MIT Electrical Engineering and Computer Science Department. June.

(Arkin 98) Ronald C. Arkin. Behavior-Based Robotics. Bradford Books. 1998.
(Artificial Life) Addison-Wesley Publishing Co, Redwood City, CA.

.Aonwéwnr and Marangoni) Thomas G. Beckwith and Roy D. Marangoni. Me-
chanical Measurements. Addison-Wesley Publishing Co., MA. Reading, MA,
1990.

(Borenstein, Everett, Feng 96) Johann Borenstein, H.R. Everett, Ligiang m‘mzm
Navigating Mobile we?&w A K Peters, Ltd., Natick, MA. 1996.

(Braitenberg) Valentino Braitenberg. Vehicles: Experiments in Synthetic Psy-
chology. MIT Press. Cambridge, MA, 1984.

(Brock 91) David L. Brock. Review of Artificial Muscle Based on Contractile
Polymers. MIT AI Lab Memo 1330. November. ,

(Brooks 86) Rodney A. Brooks. A Robust Layered Control System for a Mobile
Robot. IEEE Journal of Robotics and Automation. RA-2, 14-23 April, also
appears as MIT AI Memo 86/, September, 1985.

(Brooks and Ferrell 98) Rodney A. Brooks and Cynthia Ferrell. Embodied Intel-
ligence, MIT Press, Cambridge, MA (in preparation).

(Brooks and Flynn 89) Rodney A. Brooks and Anita M. Flynn. Fast, Cheap and
Out of Control: A Robot Invasion of the Solar System. Journal of the British
Interplanetary Society. Vol. 42, pp. 478-485, also appears as MIT Al Memo
1182, December, 1989.

(Brooks 89) Rodney A. Brooks. A Robot that Walks; Emergent Behavior from a
Carefully Evolved Network. Neural Computation 1:2. pp. 2563-262, also appears
as MIT AI Memo 1091, February, 1989.

(Brooks 91a) Rodney A. Brooks. New Approaches to Robotics. Science. Vol.
253, pp. 1227-1232, September 13.

(Brooks 91b) Rodney A. Brooks. Intelligence Without Reason. m._.mv&ma for
Computers and Thought, IICAI-91, MIT AI Laboratory Memo 1293. April.

Bibliography 445

(Connell 88) Jonathan H. Connell. The Omni Photovore: How to Build a Robot
that Thinks like a Roach. Omni Magazine. October.

(Connell) Jonathan H. Connell. Minimalist Mobile Robotics: A Colony-Style
Architecture for an Artificial Creature. Academic Press. Boston, MA, 1990.

(Connell 91) Jonathan H. Connell. Design Your Own Robot. Popular Electronics.
August.

(Everett 95) H. R. Everett, Sensors for Mobile Robots. A K Peters, Ltd., Natick,
MA. 1995.

(Everett, Gilbreath and Tran 90) H.R. Everett, G.A. Gilbreath and T. Tran.
Modeling the Environment of a Mobile Security Robot. Technical Document
1835, Naval Command Control and Ocean Surveillance Center, San bsmmc“ CA,
92152-5000. June.

(Everett and Stitz 92) H.R. Everett and E.H. Stitz. Survey of Collision Avoidance
and Ranging Sensors for Mobile Robots. Technical Report 1194, Update 1, Naval
Command Control and Ocean Surveillance Qmamﬂ San Diego, CA, 92152-5000.
December.

(Ferrell 92) Cynthia Ferrell. Multiple Sensors, Virtual Sensors and Robustness.
Sensors Expo. Chicago, IL, September 29-October 1.

(Fitzgerald, Kingsley and Umans) A.E. Fitzgerald, Charles mﬁs,mmp..m% and Stephen
D. Umans. Electric Machinery. McGraw-Hill. New York, NY, 1990.

(Flynn 87) Anita M. Flynn. Gnat Robots (and How They Will Change Robotics).
Proceedings of the IEEE Micro Robots and Teleoperators Workshop. E%E::m
MA, November. Also appears in Al Ezpert, December 1987.

(Flynn et al. 88) Edited by Anita Flynn, with contributions ?05 OO_E >bm~m
Rodney Brooks, Jon Connell, Anita Flynn, Ian Horswill, gﬁm Mataric, Henry
Minsky, Peter Ning, Paul Viola and William Wells. The Olympic Kébot Building
Manual. MIT Al Lab Memo 1230. December.

(Flynn 89) Anita M. Flynn. The Official Photograph Album of the 1989 Robot
Olympics. MIT AI Lab Manual. April.

(Flynn, Brooks and Tavrow 89) Anita M. Flynn, Rodney A. Brooks and Lee S.
Tavrow. Twilight Zones and Cornerstones: A Gnat Robot Double Feature. MIT
Al Memo 1126. July.

(Flynn, Brooks, Wells and Barrett 89) Anita M. Flynn, Rodney A. Brooks,
William M. Wells III and David S. Barrett. Intelligence for Miniature Robots.
Journal of Sensors and "Actuators. Vol. 20, pp. 187-196, also appears as
Squirt: The Prototypical Mobile Robot for Autonomous Graduate Students, MIT
Al Memo 1120, July, 1989.

446 Bibliography

(Flynn, et al. 92) Anita M. Flynn, Lee S. Tavrow, Stephen F. Bart, Rodney A.
Brooks, Daniel J. Ehrlich, K.R. Udayakumar and L. Eric Cross. Piezoelectric
Micromotors for Microrobots. IEEE Journal of Microelectromechanical Systems,
Vol. 1, No. 1, pp. 44-51. March, also appears as MIT AI Memo 1269, February,
1991.

(Foster) Caxton C. Foster. Real Time Programming - .Zmﬁmonm& Topics. Addison-
Wesley. Reading, MA, 1982.

(Gat, et al. 94) Erann Gat, Rajiv Desai, Robert Ivlev, John Loch, and David
Miller. Behavior Control for Robotic Exploration of Planetary Surfaces. IEEE
Transactions on Robotics and Automation. Vol. 10. No. 4, August 1994.

(Grant and Gowar) Duncan A. Grant and John Gowar. Power MOSFETs. John
Wiley & Sons. New York, NY, 1989.

' (Hayes and Horowitz) Thomas C. Hayes and Paul Horowitz. The Student Manual
for the Art of Electronics. Cambridge University Press. Cambridge, UK, 1989.

(Hennesy and Patterson 96) John L. Hennessy and David A Patterson. Com-
puter architecture: A Quantitative Approach: Second Edition. Morgan Kaufman
Publishers, Inc. San Francisco, CA 1996.

(Hollerbach, Hunter and Ballantyne) John M. Hollerbach, Ian W. Hunter and
John Ballantyne. A Comparative Analysis of Actuator Technologies for Robotics.
In Robotics Review 2, MIT Press. Edited by Khatib, Craig and Lozano-Pérez,
1991.

(Horn) Berthold K.P. Horn. Robot Vision. MIT Press. Cambridge, MA, 1986.

(Horowitz and Hill) Paul Horowitz and Winfeld Hill. The Art of Electronics.
Cambridge University Press. Cambridge, UK, 1989.

(Hosoe 89) Kazuya Hosoe. An Ultrasonic Motor for Use in Autofocus Lens
Assemblies. Techno. pp. 36-41, in Japanese.

(Howe, Muller, Gabriel and Trimmer 90) Roger T. Howe, Richard S. Muller,
Kaigham J. Gabriel and William S. N. Trimmer. Silicon Micromechanics: Sensors
and Actuators on a Chip. IEEE Spectrum. July 19.

(Inaba et al. 87) R. Inaba, A. Tokushima, O. Kawasaki, Y. Ise and H. Yoneno.
Piezoelectric Ultrasonic Motor. Proceedings of the IEEE Ultrasonics Symposium.
pp. 747-756.

(IRAS) IEEE Robotics and Automation Proceedings, IEEE Computer Society
Press, Los Alamitos, CA.

(Jung) Walter G. Jung. IC Op-Amp Cookbook. Howard W. Sams & Company.
Indianapolis, IN, 1986.

Bibliography 447

(Kassakian, Schlect and Verghese) John C. Kassakian, Martin F. Schlect and
George C. Verghese. Principles of Power Electronics. Addison-Wesley. Reading,
MA, 1991.

(Kasuga et al. 92) Masao Kasuga, Takashi Satoh, Jun Hirotomi and Masayuki
Kawata. Development of Ultrasonic Motor and Application to Silent Alarm Ana-
log Quartz Watch. 4th Congres Europeen de Chronometrie. Lausanne, Switzer-
land, 29-30 October, pp. 53-56.

(Kenjo) Takashi Kenjo, Power Electronics for the Microprocessor Age. Oxford
University Press. New York, NY, 1990.

(Kleinschmidt) Kirk A. Kleinschmidt, Editor. The ARRL Handbook for the Radio
Amateur. American Radio Relay League. Newington, CT, 1990.

(Lancaster) Don Lancaster. CMOS Cookbook. Howard W. Sams & Company.
Indianapolis, IN, 1977.

(Latombe) J. C. Latombe. Robot Motion Planning. Kluwer Academic Press.
Norwell, MA, 1991.)

(Lozano-Pérez, Jones, Mazer and O’Donnell) Tomés Lozano-Pérez, Joseph L.
Jones, Emmanuel Mazer and Patrick A. O’Donnell. Handey - A Robot Task
Planner. MIT Press. Cambridge, MA, 1992.

AzmommbawHOOWm@ovwwﬁawmkgmmm@dmmoabo%? wwoowm. hm@wbmﬁmﬁoOooam-
nate Behaviors. AAAI-90. August. . .

(Maes) Pattie Maes. Designing Autonomous Agents: Theory-and Fﬁasam from

_ Biology to Engineering and Back. MIT Press. Cambridge, MA, 1991.

(Martin) Fred Martin. The 6.270 Robot Builder’s Guide. MIT gm&@ Hmvow.mﬁoﬂ%
Cambridge, MA, 1992.

(Martin 1998) Fred G. Martin, The Art of Robotics: A mas.&?hw: Initroduction
to Engineering. Addison-Wesley. 1998.

(McClelland and Rumelhart) James L. McClelland and David E. Rumelhart.
Parallel Distributed Processing, Vols. I and II. MIT Press. Cambridge, MA,
Homm. :

(MEMS) Proceedings &w the IEEE Micro Electro Mechanical Systems Workshops,
IEEE, 47th St., New York, NY.

(Miller, Desai, Gat, Ivlev and Loch 92) D.P.Miller, R.S.Desai, E.Gat, R. Ivlev
and J.Loch. Reactive Navigation through Rough Terrain: Experimental Results.

Proceedings of the 1992 AAAI Conference. pp. 823-828, San Jose CA.

(Miller, Winkless, Bosworth 98) Merl Miller, Helson Winkless, Joe Bosworth.
Personal Robot Navigator PRT Press, Conifer, CO. 1998.

448 Bibliography

(Minsky) Marvin Minsky. The Society of Mind. Simon and Schuster. New York,
NY, 1986.

(Mondo-tronics 91) Mondo-tronics Inc. Biometal Robot DH-101. 1014 Morse
Avenue, Suite 11. Sunnyvale, CA 94089.

(Moravec) Hans P. Moravec. Robot Rover Visual Navigation. UMI Research
Press. Ann Arbor, MI, 1981.

(Moroney, White and Howe 89) R.M. Moroney, R.M. White and R.T. Howe.
Ultrasonic Micromotors. IEEE Ultrasonics Symposium, Montreal, Canada. Oc-
tober.

(Moroney, White and Howe 90) R.M. Moroney, R.M. White and R.T. Howe.
Fluid Motion Produced By Ultrasonic Lamb Waves. IEEE Ultrasonics Sympo-
stum. Honolulu, Hawaii, Dec. 4-7.

{Motorola 88) Volumes I and II. Microprocessor, Microcontroller and Peripheral
Data. Motorola Inc., Microprocessor Product Group, Microcontroller Division.
Oak Hill, Texas 78735, 1988.

(Motorola 91) Motorola Inc., Microprocessor Product Group. Motorola M68HC11
Reference Manual. Microcontroller Division. Oak Hill, Texas 78735, 1991.

(Nilsson 84) Nils Nilsson. Shakey the Robot. Artificial Intelligence Center, SRI
International Technical Note 323. Menlo Park, CA, April.

(Ohnishi, Myohga, Uchikawa, Inoue, Takahashi and Tomikawa 89) Osamu Ohnishi,

Osamu Myohga, Tadao Uchikawa, Takeshi Inoue, Sadayuki Takahashi and Yoshiro
Tomikawa. Paper Transport Device Using a Flat Plate Piezoelectric Vibrator.
Japanese Journal of Applied Physics. Vol. 28., Suppl. 28-1, pp. 167-169.

(Pratt 92) Gill Andrews Pratt. EVs: On the Road Again. Technology Review.
pp. 51-59, August/September.

(Ragulskis, Bansevicius, Barauskas and Kulvietis) K. Ragulskis, R. Bansevicius,
R. Barauskas and G. Kulvietis. Vibromotors for Precision Microrobots. Hemi-
sphere Publishing Co. New York, 1988.

(Riezenman 92) Michael J. Riezenman. Electric Vehicles. Spectrum. Vol. 29,
No. 11, pp. 18-21.

(SAB) From Animals to Animats. International Conference on Simulation of
Adaptive Behavior. MIT Press. Cambridge, MA.

(Sashida) T. Sashida. Trial Construction and Operation of an Ultrasonic Vi-
bration Drive Motor. Oyo Butsuri. Vol. 51, No. 6, pp. 713-720, in Japanese,
1982.

(Seippel) Robert G. Seippel. Transducers, Sensors, & Detectors. Reston Pub-
lishing Company, Inc.. Reston, VA, 1983.

Bibliography 449

(Tanaka 81) T. Tanaka. Gels. Scientific American, pp. 124-138. January.

(Udaykumar, Chen, Brooks, Cross, Flynn and Ehrlich 91) K.R. Udayakumar, J.
Chen, K.G. Brooks, L.E. Cross, A.M. Flynn and D.J. Ehrlich. Piezoelectric Thin
Film Ultrasonic Micromotors. 1991 MRS Fall Symposium on Ferroelectric Thin
Films. Boston, MA, Dec. 1-4.

(Walter 50) W. Grey Walter. An Imitation of Life. Scientific American. 182(5),
pp- 42-45, May.

(Walter 51) W. Grey Walter. A Machine That Learns. Scientific American.
185(2), pp. 60-63, August.

(Ward and Halstead) Stephen A. Ward and Robert H. Halstead, Jr. Qe.:%ia?oﬁ
Structures. MIT Press. Cambridge, MA, 1990.

(Wehner 87) Riidiger Wehner. ‘Matched Filters’ - Neural Models of the External
World. J. Comp. Physiol. A 161. pp. 511-531.

(Weiner 48) Norbert Weiner. Cybernetics. John Wiley and Sons. New York, NY,
1948.

(Weiner 61) Norbert Weiner. Cybernetics. Second Edition, MIT Press. New
York, NY, 1961. -

(Woodson and Melcher) Herbert H. Woodson and James R. Melcher. Electrome-
chanical Dynamics, Part II Fields, Forces and Motion. mmdmmﬁ‘ Publishing Co.
Malabar, FL, 1985.

(Zaks) Rodney A. Zaks. From Chips to Systems: An ?&3&:0303 3 Esﬁ,cﬁg-
cessors. Sybex, Inc. Berkeley, CA, 1986.

A/D, 56, 118
abstraction barrier, 112, 160
acceleration, 219
accelerometer, 163
accumulator, 68
accumulator,
A, 68
B, 69
D, 69
Ackerman steering, 171, 174
acrylic, 189
address space, 51
addressing mode,
direct, 71
extended, 71
immediate, 71
indexed, 71
relative, 73
ampere, 204
ampere-hour, 220, 271
analog-to-digital, 56
AND, 129
angular force, 203
angular speed, 204
anode, 26

Index

- arbitration, 6, 300
‘arguments; 67
arithmetic,
integer 73
artificial intelligence, 309, 361
AS11, 117 :
Asimov’s laws of robotics, 365
assembler, 47, 67
augmented finite-state machines,
299 -

back-emf, 206 -
battery, o
alkaline, 268
carbon zinc, 268
level, 164
Lithium-ion, 269
nickel-metal-hydride, 269
primary, 265
secondary, 265
storage, 265
beacon following, 326
behavior, 288 -
fusion, 283, 288, 310
task-achieving, 290

|
i
|

452

INDEX

behavior control, 288, 294
behavior programming, 288
behavior-based, 283
behavior-based robotics, 6
bend sensor, 140
beta, 239
binary, 66
bipolar device, 236
bipolar transistor, 26
bipolar junction transistor, 233
bootstrap loader, 91
brake, 187
branch, 75
breadboard, 24, 25, 28, 29, 32, 33,
. 34, 41, 95
break beam sensor, 347
brush, 182, 197
bumper,

assembly, 22, 23

front, 14, 18
bump sensor, 15, 16
bus, 49, 51
bus contention, 61

C, 117
C3P0, 361
capacitor, 18, 25, 27, 31, 35, 36,
37, 40

electrolytic, 32
capacity, 220, 271
carry bit, 74
cathode, 26
CC, 69
charge carrier, 231
charge pump, 245
crystals, 29
circuit,

equivalent 205
circuitry,

analog, 15
clock, 50

cycles, 50

E, 251

cluster munitions, 346
CMOS, 63, 65, 231
commutator, 182, 197, 201
comp.robotics, 421
compass,

digital, 163
compiler, 47
computer network, 421
computer operating properly, 88
condition code register, 69
conductor, 231
configuration space, 178
control,

closed loop, 257

open loop, 257

proportional-integral, 258
cooperation, 364 -
coulomb, 204, 271
crystal, 50
current,

base, 37

electron, 236

gain, 239

hogging, 243

hole, 236

no-load, 209, 210

stall, 206, 210

starting, 206

Dante, 353
data sheets,
Escap 16M11-210, 214
Escap M16M11-210, 215
DC gearhead motors, 194
decimal, 66
differential drive, 172
diode, 25, 26, 29, 31, 32, 39
flyback, 230
forward biased, 233
reverse biased, 233
voltage drop, 165

INDEX

453

discharge
curve, 268
rate, 266
downloader, 91
dropout, 274
duty factor, 131

EEPROM, 53
efficiency, 208, 210
electromotive force, 206
electron, 231
" mobility, 238

valence ,232
emf, 206
encoders,

absolute, 150

incremental, 150
energy, 203

density, 266, 269
EPROM, 53
error signal, 257
expanded multiplexed mode, 62

feedback, 257
Fetch, 346
finite-state machine, 296
flags, 70
flux, 200
flyback diode, 230
force,

applied, 219

net, 219
force-sensing, 137

resistor, 141
free-body diagram, 218
friction, 219

coefficient of, 219
FTP, 47, 198
full-duplex, 63

- gear, 193

axle-mounted, 18, 20
belt-and-pulley drive, 211

lead screw, 211
pinion , 212
planetary, 211
rack-and-pinion, 211
spur , 211
worm, 18, 20, 211
geardown, 212
Gerber, 108
global positioning system, 348
gnat robots, 363
GP1U52X, 127
gram-force, 203
ground loops, 279
gyroscope,
rate, 161

H-bridge, 225, 227
hack, 226

Handey, 284
Handy board, 93
hexadecimal, 66
holes,- 232

IC, 47, 295
IC Master, 249, 425 - , !
illegal opcode trap, 87 : ,
immediate addressing, 71
impurity atoms, 232 - .~
in-line code, 77
inclinometer, 162,,349
index registers, 69
inductor,
switching, 229
inhibit node, 301
input capture, 81, 86, 250
registers, 157
input/output, 54
insulator, 232
integrated circuit chip,
74HC10, 65
DS1233M, 63
HM62256LP-12, 63
IR8200, 166

454

INDEX

L293E, 166
LM386, 142
LMT7805, 164
MAX233, 63
MC68HC24, 64
MCT74HC688, 56

intelligence, 3, 310

internal resistance, 266, 272

Internet, 198, 421

interrupt, 81, 83
handler, 157
service routine, 83

IR, 126

IS1U60, 127

- isolation, 278
IX, 69
1Y, 69

joule, 203
jump, 75

keying, 103
kinematics, 175
inverse, 175

latch, 65

layout, 108

learning, 363

light emiting diode (LED), 35
linear regulator, 274

local variables, 80
locomotion, 169

logarithmic amplifier, 120
logic gates

Lorentz force law, 199

machine code, 67
mask register, 84
memory, 29, 49, 52
map, 54

mercury switch, 162
metal detector, 347
microcontroller, 48
microphone, 142

microprocessor, 29, 43, 48
microswitches, 138
Mindstorms, 93 P
Mini Board, 92
monopolar device, 236
MOSFET, 231, 236
depletion-mode, 236
body, 237
constant-resistance region, 240
drain, 237
enhancement mode, 236
gate, 237
gate drive, 243
gate-source voltage, 236
linear region, 240
logic-level, 244
low threshold, 244
n-channel, 236
on-resistance, 238
p-channel, 236
power, 29, 227, 238
source, 237
source-drain diode, 237
voltage control, 241
motor,
AC, 193
artificial muscles, 198
attachments, 224
data sheets, 213
DC, 193
driver, 227
electromagnetic, 193
electrostatic, 197
Escap, 214
Futaba, 196
manufacturers, 216
oversized, 210
permanent magnet, 199
piezoelectric ultrasonic, 197
Royal Titan, 196, 217
selection, 220
servo, 196
servo dealers, 217

INDEX

455

shape memory, 199

stepper, 194

surplus dealers, 216
Multilayer boards, 107
multiplexing, 65
multitasking, 294, 296

cooperative, 296

preemptive, 296
music wire, 138 -

NAND gate, 64

navigation, 362

nested subroutines, 79
Newton-meter, 203

NiCd, 166

normally closed, 26, 35, 38, 39
normally open, 26, 35, 38, 39
nouvelle Al 312

Nyquist theorem, 143, 332

OEM, 216

Ohm’s Law, 27

opcodes, 67

operand, 68

operational amplifier, 29

operating modes,
expanded multiplexed, 64
single chip, 64

operator control unit, 349

optoisolator, 281

ounce-inch, 203

output compare, 87, 250
registers, 250

overbar, 62

oxide, 232

p-type regions, 233
PC, 68

photodiodes, 121
photointerrupter, 151

- photoreflector, 151

Hamamatsu, 152
photoresistors, 29, 41, 121

phototransistors, 121
piano wire, 138
pick-and-place problem, 284
piezoelectric film, 143
polarized, 34, 38
PN junction, 233
polling, 81, 83
port, 49
A, 54, 246
B, 54
C, 54
D, 56, 68, 248
E, 56
I/0, 54
replacement unit, 64
position sensitive detector, 131
power, 203, 265
electrical, 204
electronics, 231
“integrated circuits, 246
mechanical, 204
regulation,:273
supply, 274
potentiomieter, 29, 36, 39 -
printed circuit board, 105
process, 295
processor, 49, 50 -
program counter, 68 - -
Programmable Brick; 93"
PROM, 53 N
proprioceptive sensor, 164
proximity detector,
near-infrared, 126
PSD, 131
pseudocode, 297
pulse accumulator, 155
pulse-code modulation, 225
pulse-width modulation, 228
pyroelectric sensor, 134

R2D2, 361
radian, 204
RAM, 53

456

INDEX

random access memory, 53

range, 118

rate gyro, 161

read-only memory, 53

recharging, 272

recognition, 362

recursion, 79

relay, 18, 25, 26, 36, 38, 39, 40,
227

double-pole, double-throw (DPDT),

35
representation, 362
reset, 62

vector, 90

resistor, 27, 31, 34, 35, 36
robot programming, 283
Robot Talent Show, xix, 173, 191
ROM, 53
rotor, 198
routing, 108
Rug Warrior, 13, 92
Rug Warrior Pro™ | xv
RugBat™, 145
RugEx™, 323, 327
RuglO™, 59
RugUp™ | 57, 327

sampling, 142
scheduler, 295
schematic capture, 108
Scotchflex, 97
search,
random, 348
spiral, 347
semiconductor, 231
sensitivity, 118
sensor fission, 310
sensor fusion, 283, 287, 309
servo loop, 226
servo motor, 194
shaft encoder, 150
shear, 187

sheet metal, 187
shelf life, 266
side load, 184
single-board computers, 92
single-board robot, 44, 364
single-chip - mode, 62
single-chip robot, 364
single-point ground, 279
software drivers, 117
Sojourner, 344
solenoid, 182
sonar, 144
SP, 69
special bootstrap mode, 62
special test mode, 62
speech synthesis, 143
speed, 208
armature, 206
no-load, 209
speed-torque relationship, 207
speed controller, 249
speed of sound, 149
stack, 69, 78
stack pointer, 69
stall current, 166
stator, 198
Stiquito, 198
subroutine, 77
subsumption, 6, 288
suppressor node, 290
switch,
in H-bridge, 227
high-side, 244
ideal, 239
low-side, 244
momentary contact, 27, 37
real, 240

single-pole, single throw (SPST),

26
solid state, 229 ,
switching regulator, 277
synchro drive, 174

INDEX

457

task, 295
temperature, 166
Theremin, 380
thermal runaway, 243
thermister, 41
Thomas Register, 397
tilt sensor, 162
timer-counter, 250
torque, 203
constant, 206
stall, 209
transducer, 31, 20
transistor, 18, 25, 34, 35, 36, 37,
40
base, 234
base current, 234, 239
base-emitter diode, 234
biasing, 244
bipolar, 227
collector, 234
current amplifier, 234
emitter, 234
forward active region, 242
linear region, 242
Ip vs. Vpg curve, 240 -
MOSFET, 236
npn bipolar, 234
pnp bipolar, 235
power, 234

saturation region, 241
signal-level, 234
temperature effects, 243
transit time, 217
trap, 87
trickle charging, 273
tricycle drive, 174

ultraviolet sensors, 136

vehicle,
model, 218
electric, 243

video transmitters, 137

VLSI, 235

voltage, 266, 270
divider, 122, 164
induced, 230
measuring, 214

- rated, 214

regulation, 274
spike, 230

wall following, 6
watt, 203
wire-wrap,. 96

world modeling,-284

zero page, 71. .

