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PREFACE

This book offers a comprehensive coverage to the mechanics of
microelectromechanical systems (MEMS), which are analyzed from a
mechanical engineer’s viewpoint as devices that transform an input form of
energy, such as thermal, electrostatic, electromagnetic or optical, into output
mechanical motion (in the case of actuation) or that can operate with the
reversed functionality (as in sensors) and convert an external stimulus, such as
mechanical motion, into (generally) electric energy. The impetus of this
proposal stems from the perception that such an approach might contribute to
a more solid understanding of the principles governing the mechanics of
MEMS, and would hopefully enhance the efficiency of modeling and
designing reliable and desirably-optimized microsystems. The work
represents an attempt at both extending and deepening the mechanical-based
approach to MEMS in the static domain by providing simple, yet reliable
tools that are applicable to micromechanism design through current
fabrication technologies.

Lumped-parameter stiffness and compliance properties of flexible
components are derived both analytically (as closed-form solutions) and as
simplified (engineering) formulas. Also studied are the principal means of
actuation/sensing and their integration into the overall microsystem. Various
examples of MEMS are studied in order to better illustrate the presentation of
the different modeling principles and algorithms.

Through its objective, approach and scope, this book offers a novel
and systematic insight into the MEMS domain and complements existing
work in the literature addressing part of the material developed herein.
Essentially, this book provides a database of stiffness/compliance models for
various spring-type flexible connectors that transmit the mechanical motion in
MEMS, as well as of the various forces/moments that are involved in
microtransduction. In order to predict their final state, the microsystems are
characterized by formulating, solving and analyzing the static equilibrium
equations, which incorporate spring, actuation and sensing effects.

Chapter 1 gives a succinct, yet comprehensive review of the main
tools enabling stiffness/compliance characterization of MEMS as it lays the
foundation of further developments in this book. Included are basic topics
from mechanics of materials and statics such as load-deformation, stress-
strain or structural members. Presented are the Castigliano’s theorems as basic
tools in stiffness/compliance calculation. Straight and curved line elements
are studied by explicitly formulating their compliance/stiffness characteristics.
Composite micromembers, such as sandwiched, serial, parallel, and hybrid
(serial-parallel) are also treated in detail, as well as thin plates and shells. All
the theoretical apparatus presented in this chapter is illustrated with examples
of MEMS designs.

Chapter 2 is dedicated to characterizing the main flexible components
that are encountered in MEMS and which enable mechanical mobility through



x

their elastic deformation. Studied are flexible members such as microhinges
(several configurations are presented including constant cross-section, circular,
corner-filleted and elliptic configurations), microcantilevers (which can be
either solid or hollow) and microbridges (fixed-fixed mechanical components).
Each compliant member presented in this chapter is defined by either exact or
simplified (engineering) stiffness or compliance equations that are derived by
means of lumped-parameter models. Solved examples and proposed problems
accompany again the basic text.

Chapter 3 derives the stiffnesses of various microsuspensions
(microsprings) that are largely utilized in the MEMS design. Included are
beam-type structures (straight, bent or curved), U-springs, serpentine springs,
sagittal springs, folded beams, and spiral springs (with either small or large
number of turns). All these flexible components are treated in a systematic
manner by offering equations for both the main (active) stiffnesses and the
secondary (parasitic) ones.

Chapter 4 analyzes the micro actuation and sensing techniques
(collectively known as transduction methods) that are currently implemented
in MEMS. Details are presented for microtransduction procedures such as
electrostatic, thermal, magnetic, electromagnetic, piezoelectric, with shape
memory alloys (SMA), bimorph- and multimorph-based. Examples are
provided for each type of actuation as they relate to particular types of MEMS.

Chapter 5 is a blend of all the material comprised in the book thus far,
as it attempts to combine elements of transduction (actuation/sensing) with
flexible connectors in examples of real-life microdevices that are studied in
the static domain. Concrete MEMS examples are analyzed from the
standpoint of their structure and motion traits. Single-spring and multiple-
spring micromechanisms are addressed, together with displacement-
amplification microdevices and large-displacement MEMS components. The
important aspects of buckling, postbuckling (evaluation of large
displacements following buckling), compound stresses and yield criteria are
also discussed in detail. Fully-solved examples and problems add to this
chapter’s material.

The final chapter, Chapter 6, includes a presentation of the main
microfabrication procedures that are currently being used to produce the
microdevices presented in this book. MEMS materials are also mentioned
together with their mechanical properties. Precision issues in MEMS design
and fabrication, which include material properties variability,
microfabrication limitations in producing ideal geometric shapes, as well as
simplifying assumptions in modeling, are addressed comprehensively. The
chapter concludes with aspects regarding scaling laws that apply to MEMS
and their impact on modeling and design.

This book is mainly intended to be a textbook for upper-
undergraduate/graduate level students. The numerous solved examples
together with the proposed problems are hoped to be useful for both the
student and the instructor. These applications supplement the material which
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is offered in this book, and which attempts to be self-contained such that
extended reference to other sources be not an absolute pre-requisite. It is also
hoped that the book will be of interest to a larger segment of readers involved
with MEMS development at different levels of background and
proficiency/skills. The researcher with a non-mechanical background should
find topics in this book that could enrich her/his customary modeling/design
arsenal, while the professional of mechanical formation would hopefully
encounter familiar principles that are applied to microsystem modeling and
design.

Although considerable effort has been spent to ensure that all the
mathematical models and corresponding numerical results are correct, this
book is probably not error-free. In this respect, any suggestion would
gratefully be acknowledged and considered.

The authors would like to thank Dr. Yoonsu Nam of Kangwon
National University, Korea, for his design help with the microdevices that are
illustrated in this book, as well as to Mr. Timothy Reissman of Cornell
University for proof-reading part of the manuscript and for taking the pictures
of the prototype microdevices that have been included in this book.

Ithaca, New York
June 2004



This page intentionally left blank



Chapter 1

STIFFNESS BASICS

1. INTRODUCTION

Stiffness is a fundamental qualifier of elastically-deformable mechanical
microcomponents and micromechanisms whose static, modal or dynamic
response need to be evaluated. This chapter gives a brief introduction to the
stiffness of microeletromechanical structural components by outlining the
corresponding linear, small-deformation theory, as well as by studying
several concrete examples. The fundamental notions of elastic deformation,
strain, stress and strain energy, which are all related to stiffness, are briefly
outlined. Energy methods are further presented, specifically the Castigliano’s
theorems, which are utilized herein to derive stiffness or compliance
equations.

A six degree-of-freedom lumped-parameter stiffness model is proposed
for the constant cross-section fixed-free straight members that are sensitive to
bending, axial and torsion loading. A similar model is developed for curved
members, both thick and thin, by explicitly deriving the compliance
equations. Composite beams, either sandwiched or in serial/parallel
configurations, are also presented in terms of their stiffnesses. Later, the
stiffness of thin plates and membranes is approached and equations are
formulated for circular and rectangular members. Problems that are proposed
to be solved conclude this chapter.

2. STIFFNESS DEFINITION

MEMS mainly move by elastic deformation of their flexible components.
One way of characterizing the static response of elastic members is by
defining their relevant stiffnesses. The simple example of a linear spring is
shown in Fig. 1.1, where a force is applied by slowly increasing its
magnitude from zero to a final value over a period of time such that the
force is in static equilibrium with the spring force at any moment in time.

The force necessary to extend the spring by the quantity is calculated
as:
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where is the spring’s linear stiffness, which depends on the material and
geometrical properties of the spring. This simple linear-spring model can be
used to evaluate axial deformations and forced-produced beam deflections of
mechanical microcomponents. For materials with linear elastic behavior and
in the small-deformation range, the stiffness is constant. Chapter 5 will
introduce the large-deformation theory which involves non-linear
relationships between load and the corresponding deformation. Another way
of expressing the load-deformation relationship for the spring in Fig. 1.1 is
by reversing the causality of the problem, and relating the deformation to the
force as:

where is the spring’s linear compliance, and is the inverse of the stiffness,
as can be seen by comparing Eqs. (1.1) and (1.2).

Figure 1.1 Load and deformation for a linear spring

Similar relationships do also apply for rotary (or torsion) springs, as the one
sketched in Fig. 1.2 (a). In this case, a torque is applied to a central shaft.
The applied torque has to overcome the torsion spring elastic resistance, and
the relationship between the torque and the shaft’s angular deflection can be
written as:

The compliance-based equation is of the form:
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Figure 1.2 Rotary/spiral spring: (a) Load; (b) Deformation

Again, Eqs. (1.3) and (1.4) show that the rotary compliance is the inverse of
the rotary stiffness. The rotary spring is the model for torsional bar
deformations and moment-produced bending slopes (rotations) of beams.

Both situations presented here, the linear spring under axial load and the
rotary spring under a torque, define the stiffness as being the inverse to the
corresponding compliance. There is however the case of a beam in bending
where a force that is applied at the free end of a fixed-free beam for instance
produces both a linear deformation (the deflection) and a rotary one (the
slope), as indicated in Fig. 1.3 (a).

Figure 1.3 Load and deformations in a beam under the action of a: (a) force; (b) moment

In this case, the stiffness-based equation is:

The stiffness connects the force to its direct effect, the deflection about the
force’s direction (the subscript l indicates its linear/translatory character).
The other stiffness, which is called cross-stiffness (indicated by the
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subscript c), relates a cause (the force) to an effect (the slope/rotation) that is
not a direct result of the cause, in the sense discussed thus far. A similar
causal relationship is produced when applying a moment at the free end of
the cantilever, as sketched in Fig. 1.3 (b). The moment generates a
slope/rotation, as well as a deflection at the beam’s tip, and the following
equation can be formulated:

Formally, Eqs. (1.5) and (1.6) can be written in the form:

where the matrix connecting the load vector on the left hand side to the
deformation vector in the right hand side is called bending-related stiffness
matrix.

Elastic systems where load and deformation are linearly proportional are
called linear, and a feature of linear systems is exemplified in Eq. (1.5),
which shows that part of the force is spent to produce the deflection and
the other part generates the rotation (slope) Equation (1.6) illustrates the
same feature. The cross-compliance connects a moment to a deflection,
whereas (the rotary stiffness, signaled by the subscript r) relates two
causally-consistent amounts: the moment to the slope/rotation. The
stiffnesses and can be called direct stiffnesses, to indicate a force-
deflection or moment-rotation relationship. Equations that are similar to Eqs.
(1.5) and (1.6) can be written in terms of compliances, namely:

and

where the significance of compliances is highlighted by the subscripts which
have already been introduced when discussing the corresponding stiffnesses.
Equations (1.8) and (1.9) can be collected into the matrix form:
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where the compliance matrix links the deformations to the loads. Equations
(1.8) and (1.9) indicate that the end deflection can be produced by linearly
superimposing (adding) the separate effects of and As shown later on,
Equations (1.5) and (1.6), as well as Eqs. (1.8) and (1.9) indicate that three
different stiffnesses or compliances, namely: two direct (linear and rotary)
and one crossed, define the elastic response at the free end of a cantilever.
More details on the spring characterization of fixed-free microcantilevers that
are subject to forces and moments producing bending will be provided in this
chapter, as well as in Chapter 2, by defining the associated stiffnesses or
compliances for various geometric configurations

Example 1.1
Knowing that for the constant

cross-section cantilever loaded as shown in Fig. 1.4, demonstrate that
where [K] is the symmetric stiffness matrix defined by:

Figure 1.4 Cantilever with tip force and moment

Solution:
Equation (1.10) can be written in the generic form:

When left-multiplying Eq. (1.11) by the following equation is obtained:

Equation (1.7) can also be written in the compact form:

By comparing Eqs. (1.12) and (1.13) it follows that:

The compliance matrix:
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is now inverted and the resulting stiffness matrix is:

An explanation of the minus sign in front of the cross-stiffness in Eq. (1.16)
will be provided in Example 1.15 of this chapter.

The direct stiffnesses can physically be represented by a linear spring (in
the case of a force-deflection relationship) – as pictured in Fig 1.1, or a rotary
one (for a moment-rotation relationship) – as indicated in Fig. 1.2. These two
cases are sketched for a cantilever beam in Figs. 1.5 (a) and (b) by the two
springs, one linear of stiffness and one rotary of stiffness The cross-
stiffness is represented in Fig. 1.5 (c), which attempts to give a physical,
spring-based representation of the situation where the moment creates a
linear deformation (the deflection by means of the eccentric disk which
rotates around a fixed shaft and thus moves vertically the tip of the beam.

Figure 1.5 Spring-based representation of the bending stiffnesses: (a) direct linear stiffness;
(b) direct rotary stiffness; (c) cross-stiffness

3. DEFORMATIONS, STRAINS AND STRESSES

The stiffness of a deformable MEMS component can generally be found
by prior knowledge of the corresponding deformations, strains and/or
stresses. The deformations of elastic bodies under load can be linear
(extension or compression) or angular, and Fig. 1.6 contains the sketches that
illustrate these two situations. When a constant pressure is applied normally
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on the right face of the element shown in Fig. 1.6 (a), while the opposite face
is fixed, the elastic body will deform linearly by a quantity such that the
final length about the direction of deformation will be The ratio of
the change in length to the initial length is the linear strain:

If an elementary area dA is isolated from the face that has translated, one can
define the normal stress on that surface as the ratio:

Figure 1.6 Element stresses: (a) normal; (b) shearing

where is the elementary force acting perpendicularly on dA. For small
deformations and elastic materials, the stress-strain relationship is linear, and
in the case of Fig. 1.6 (a) the normal stress and strain are connected by means
of Hooke’s law:

where E is Young’s modulus, a constant that depends on the material under
investigation.

When the distributed load acts on the upper face of the volume element
and is contained in that face, as sketched in Fig. 1.6 (b), while the opposite
face is fixed, the upper face will shear (rotate) with respect to the fixed
surface. The relevant deformation here is angular, and the change in angle
is defined as the shear strain in the form:
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Similarly to the normal strain, the shear strain is defined as:

A linear relationship also exists between shear stress and strain, namely:

where G is the shear modulus and, for a given material, is a constant amount.
Young’s modulus and the shear modulus are connected by means of the
equation:

where is Poisson’s ratio.
For a three-dimensional elastic body that is subject to external loading

the state of strain and stress is generally three-dimensional. Figure 1.7 shows
an elastic body that is subject to the external loading system generically
represented by the forces through In the case of static equilibrium, with
thermal effects neglected, an elementary volume can be isolated, which is
also in equilibrium under the action of the stresses that act on each of its
eight different faces.

Figure 1.7 Stresses on an element removed from an elastic body in static equilibrium

As Fig. 1.7 indicates, there are 9 stresses acting on the element’s faces, but
the following equalities, which connect the stresses, do apply:
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Because of the three Eqs. (1.24), which enforce the rotation equilibrium, only
6 stresses are independent. The equilibrium (or Navier’s) equations are:

where X, Y and Z are body force components acting at the center of the
isolated element.

Six strains correspond to the six stress components, as expressed by the
generalized Hooke’s law:

The strain-displacement (or Cauchy’s) equations relate the strains to the
displacements as:

It should be noted that for normal strains (and stresses), the subscript
indicates the axis the stress is parallel to, whereas for shear strains (and
stresses), the first subscript indicates the axis which is parallel to the strain,
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while the second one denotes the axis which is perpendicular to the plane of
the respective strain.

By combining Eqs. (1.25), (1.26) and (1.27), the following equations are
obtained, which are known as Lamé’s equations:

Equations (1.28) contain as unknowns only the three displacements and
In Eqs. (1.28), is Lamé’s constant, which is defined as:

In order for the equation system (1.28) to yield valid solutions, it is
necessary that the compatibility (or Saint Venant’s) equations be complied
with:

Equations (1.24) through (1.30) are the core mathematical model of the
theory of elasticity. More details on this subject can be found in advanced
mechanics of materials textbooks, such as the works of Boresi, Schmidt and
Sidebottom [1], Ugural and Fenster [2] or Cook and Young [3].

Many MEMS components and devices are built as thin structures, and
therefore the corresponding stresses and strains are defined with respect to a
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plane. Two particular cases of the general state of deformations described
above are the state of plane stress and the state of plane strain. In a state of
plane stress, as the name suggests, the stresses are located in a plane (such as
the middle plane that is parallel to the xy plane in Fig. 1.7). The following
stresses are zero:

Figure 1.8 Plane state of stress/strain

Thin plates, thin bars and thin beams that are acted upon by forces in their
plane, are examples of MEMS components that are in a plane state of stress.
For thicker components, the cross-sections of shafts in torsion are also in a
state of plane stress. In a state of plane strain, the stress perpendicular to the
plane of interest does not vanish, but all other stresses in Eqs. (1.31)
are zero. Microbeams that are acted upon by forces perpendicular to the
larger cross-sectional dimension are in a state of plane strain for instance.
Figure 1.8 illustrates both the state of plane stress and the state of plane strain.

Example 1.2
A thin microcantilever, for which t << w, can be subject to a force as

shown in Fig. 1.9 (a) or to a force as pictured in Fig. 1.9 (b). Decide on the
state of stress/strain that is setup in each of the two cases.

Solution:
The loading and geometry of Fig. 1.9 (a) show that the stresses and

strains will be planar because of the thin condition of the microcantilever (t
<< w). However, because the load is perpendicular to the plane xy, the stress
about the z-direction does not vanish, and therefore, according to the
definition introduced previously, the microcantilever is in a state of plane
strain. In the case pictured in Fig. 1.9 (b), the force is located in the xy
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plane of the thin microcantilever, and there is no stress acting about the z-
direction. As a consequence, and according to its definition, a state of plane
stress is setup in the microcantilever under this particular load.

Figure 1.9 Thin microbeams under the action of a tip force: (a) perpendicular to the plane;
(b) in-the-plane

Example 1.3
A thin-film microbar, having the configuration and dimensions of

Fig. 1.10 is subject to a state of extensional residual stresses (this condition
will be detailed in Chapter 6) after microfabrication. The state of residual
stress will generate an axial deformation of the bar, which can be monitored
experimentally, as sketched in Fig. 1.10. By using the theory of elasticity
equations, determine the residual stress in the film. Known are:

and E=120GPa.

Figure 1.10 Displacement sensing for residual stress measurement in a microbar

Solution:
This particular state of stress, where only the normal stresses about the x-

direction are non-zero, is called state of uniaxial stresses. Hooke’s law Eqs.
(1.26) simplify to the following form:
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Equations (1.32) are solved for the strains and

Because this is a state of uniaxial stress, the only variable is x, and therefore
the displacement about this direction can be calculated as:

under the assumption that the strain is constant about the microbar’s length.
By combining now the first of Eqs. (1.33) with Eq. (1.34) results in the
following stress about the x-direction (which is also the tensile residual
stress):

where the subscript r indicates residual. The numerical value of the residual
stress is:

The work done quasi-statically by the normal stress on the volume
element of Fig. 1.6 (a) is equal to because the intensity of the stress
increases gradually from zero to its actual value Similarly, the work
performed by the shear stress on the element of Fig. 1.6 (b) is Since
the two elements are in static equilibrium, the external work fully converts
into strain (elastic) energy under ideal conditions. The potential strain energy
which is stored in a body that deforms elastically, such as the element in Fig.
1.7, comprises contributions from all the stresses and strains, namely:

The total strain energy can be expressed either in terms of stresses as:

or in terms of strains as:
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The stress-strain Eqs. (1.26) have been utilized to derive Eqs. (1.37) and
(1.38).

4. MEMBERS, LOADS AND BOUNDARY
CONDITIONS

MEMS components are designed in various geometric configurations,
and the states of external load, together with the constraining boundary
conditions, can be diverse as well. These factors affect the
stiffness/compliance properties of flexible mechanical microcomponents.

The elastic members can be one-dimensional (such as bars, rods, beams
or columns), two-dimensional (such as membranes or plates) and three-
dimensional (such as blocks). For each of them, specific equations that
describe the state of deformation or stress apply. There are four different
types of loading/deformations, namely: normal, torsion, shearing and
bending. They are briefly characterized here in terms of stresses,
deformations and strain energy for one-dimensional members.

4.1 Normal Loading

In the case of normal loading, the stresses and strains (deformations) are
perpendicular to the surface where the axial (normal) force is applied. Figure
1.1 is the physical model of a fixed-free bar of constant cross-section that is
acted upon by an axial force at its free end. The constant normal stress that is
generated by an axial load N over an area A is:

The total axial deformation which is registered at the free end (where the
axial force is being applied) with respect to the fixed end, spaced at a
distance l, is:

and the strain is:
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Because only normal stresses and strains are produced in this particular case,
the strain energy of the generic Eq. (1.37), in combination with Eq. (1.39),
simplifies, for the more generic case where the area is variable, to:

where it has been taken into account that the elementary volume can be
expressed in terms of the cross-sectional area A and the elementary length dx
as:

4.2 Torsion Loading

MEMS deformable components are vastly conceived to have rectangular
cross-sections because of either microfabrication constraints or design
purposes. Torsion loading produces shearing, and the maximum shear stress,
which is generated by a torque acting on a fixed-free bar of rectangular
cross-section, occurs at the middle of the longer side (w) and is expressed as:

where w and t are the cross-sectional dimensions (w > t) and is a torsional
constant depending on the w/t ratio, as mentioned by Boresi, Schmidt and
Sidebottom [1]. For very thin cross-sections, where w/t > 10, as
indicated by the same source. The rotation angle at the free end of Fig. 1.9
(a) – where a torque can be applied about the x-axis – with respect to the
fixed end, spaced at a distance l, is:

and the corresponding shear strain is:

In Eqs. (1.45) and (1.46), is the torsion moment of inertia, which will be
defined later in this chapter.

The total strain energy stored in the bar that is subject to torsion is:
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4.3 Shearing

For shear loading, the maximum stress which is generated by a shear
force S – consider it be the force in Fig. 1.9 (a) – is:

where is a coefficient depending on the cross-section shape and which is
equal to 3/2 for rectangular cross-sections – see Young and Budynas [4]. The
corresponding maximum shear strain is:

The strain energy stored in the elastic body through shearing is:

where  for rectangular cross-sections – Young and Budynas [4].

4.4 Bending

The bending of a beam mainly produces normal stresses. The stress
varies linearly over the cross-section going from tension to compression
through zero in the so-called neutral axis, which coincides with a symmetry
axis for a symmetric cross-section. The maximum stress values are found on
the outer fibers as:

where c is half the cross-sectional dimension which is perpendicular to the
bending axis, is the bending moment, and I is the cross-sectional moment
of inertia about the bending axis.

When a beam is subject to the action of distributed load, point forces
perpendicular to its longitudinal axis and point bending moments, an element
can be isolated from the full beam, as sketched in Fig. 1.11, and the
following equilibrium equations can be written:

The deformations in bending consist of deflection and slope, as sketched in
Fig. 1.3. These deformations are described by the following differential
equations:



1. Stiffness basics 17

Figure 1.11 Beam element under the action of distributed load, shear force and bending
moment

Equations (1.53) are valid for small-deformations only and under the
assumptions that plane cross-sections remain plane after deformations, and
that cross-sections remain perpendicular to the neutral axis (as mentioned,
the normal stresses are zero at the neutral axis). The latter two assumptions
define what is known as the Euler-Bernoulli beam model, which is
recognized to be valid for long beams where the length is at least 5-7 times
larger than the largest cross-sectional dimension. For relatively-short beams,
shearing effects become important, and the regular bending deformations are
augmented by the addition of shearing deformations, according to a model
known as Timoshenko’s beam model. In this case, the cross-sections are no
longer perpendicular to the neutral axis in the deformed state, and the
deformations are described by the following equations:

as shown, for instance, by Reddy [5] or Pilkey [6].
The strain energy stored in a beam that is acted upon by a bending

moment over its length is:
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For relatively short beams, as already mentioned, the shearing effects are
important, and the shearing stresses are given by the equation:

where S is the shear force and the integral (the statical moment of area) is
taken for the area enclosed by an arbitrary line, parallel to the y-axis, situated
at a distance z measured from the cross-section center and one of the external
fibers. The shear strain is:

In this case, the total strain energy is:

4.5 Load Sign Conventions

Because the loads acting on an elastic body might be directed one way or
the other about a specified direction, it is customary to follow some simple
rules that define the positive direction for a particular load. For axial loading,
the normal force is considered positive when its action tends to extend the
portion of the body under consideration. In the case of torsion, selecting a
positive direction is entirely arbitrary.

Figure 1.12 Load sign convention: (a) generic fixed-free member under planar loading; (b)
axial force; (c) shearing force; (d) bending moment
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In shearing, the variant generally accepted is that the shear force is positive
when it tends to rotate the portion of the structure in a clockwise direction,
whereas in bending, a component of the bending moment (either force or
moment) produces a positive bending moment if the analyzed structural
segment deforms in a sagging manner (by compressing the upper fiber). All
these situations are sketched in Fig. 1.12.

The normal force N, shearing force S, torsion moment and bending
moment are defined at a specific point on the linear member by
calculating the sum of all relevant components that are applied between one
end point of the member (the free end of Fig. 1.12 is a convenient choice
because it does not introduce any reactions, which are usually unknown
amounts) and the specific point, as given in the equations:

Example 1.4
Determine the axial, shearing and bending moment equations for the

fixed-free microcantilever, which is loaded with the tip forces and as
shown in Fig. 1.13.

Figure 1.13 Cantilever under tip axial force and shearing force

Solution
The axial force, as generally defined in the first Eq. (1.59), is in this case:
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and the minus sign indicates that produces compression of the segment
limited by the point of abscissa x and the end 1. There is obviously no torsion
acting on the microcantilever, but the shear force is:

where the plus sign shows compliance with the rule mentioned above,
because this component tends to rotate the considered segment in a clockwise
direction when this segment is allowed to rotate about point P. Similarly, the
bending moment at point x is:

and it is positive because tends to sagg the portion 1-P with respect to
point P which is considered fixed.

4.6 Boundary Conditions, Determinate/Indeterminate
Systems

Figure 1.14 shows the most frequently encountered boundary conditions
in one-dimensional members. In a given member under load, each boundary
condition introduces a number of reactions, which are unknown initially. A
pinned end, such as the one shown in Fig. 1.14 (a) introduces one reaction
force, which is normal to the support direction, a guided end – pictured in Fig.
1.14 (b) – has two unknown reactions: one force normal to the support
direction and one moment perpendicular to the plane of the structure.

Figure 1.14 Main boundary conditions: (a) pinned; (b) guided; (c) simply-supported; (d)
fixed
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Two reaction forces correspond to the simply-supported boundary
condition of Fig 1.14 (c), whereas the fixed end of Fig. 1.14 (d) adds a
reaction moment to the forces of the previous case. It should be noted that for
a line member, three equilibrium equations can be written, and therefore the
boundary conditions should introduce three unknown reactions only, in order
for the system to be statically determinate. When less than three reactions are
present, the respective system is statically unstable (it is actually a
mechanism). For more than three unknown reactions, the system is statically
indeterminate, and additional equations need to be added to the equilibrium
ones, in order to determine the reaction loads.

5. LOAD-DISPLACEMENT CALCULATION
METHODS: CASTIGLIANO’S THEOREMS

5.1 Castigliano’s Theorems

There are several methods that can be utilized to determine the
deformations in an elastic body. In the case of bending for instance,
procedures exist to find the slope and deflection, such as the direct
integration method of the differential equation of beam flexure – Eq. (1.53),
the area-moment method or the Myosotis method. More generic methods that
allow calculation of elastic deformations for any type of load are the energy
methods (such as the principle of virtual work or Castigliano’s theorems), the
variational methods (the methods of Euler, Rayleigh-Ritz, Galerkin or
Trefftz), and the finite element method. Castigliano’s methods are
particularly useful when attempting to determine the stiffness of various
elastic members, and they will be utilized in this work quite extensively.
Figure 1.15 shows a bar that is acted upon axially and quasi-statically by a
force F, which produces a deformation

Figure 1.15 Strain energy and complementary energy in axial loading

In the general case where the material properties are non-linear (as
indicated by the force-displacement curve of Fig. 1.15), two energy types can
be defined, namely: the regular strain energy, which is:
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and the complementary energy:

If the strain energy can be expressed as a function of solely the displacement
function, as:

then the variation in the strain energy can be written as:

which, by comparison to Eq. (1.63) yields:

Equation (1.67) is actually the mathematical expression of Castigliano’s first
theorem, stating that the load which is applied to an elastic body can be
calculated as the partial derivative of the strain energy stored in that body
taken with respect to the deformation set at the considered point about the
load’s direction.

When the complementary energy is a function of simply the loads acting
on the elastic body in the form:

the variation of this energy is:

By comparing Eqs. (1.69) and (1.64) results in:

which is the Castigliano’s second theorem , also known as the displacement
theorem, stating that an elastic deformation can be found by taking the partial
derivative of the complementary energy in terms of the load that is applied at
that point and about the considered direction.
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The first theorem of Castigliano can easily be applied when the
deformation field is known in advance, but this proves to be difficult in
situations where the cross-section of the line element is variable. Instead, the
loads acting on a body can be known amounts, and the application of
Castigliano’s second (displacement) theorem is more feasible, especially in
cases where the material is linear, and therefore the strain and
complementary energies are equal (the force-displacement characteristic of
Fig. 1.15 is a line). The strain energy for a relatively-long line member that is
subject to complex load formed of axial force, torsion moment, shearing
force and bending moment can be written –see Den Hartog [7] or Cook and
Young [3] – in the form:

Equation (1.71) considered that the member’s cross-section has two principal
directions (it possesses two symmetry axes, and therefore a symmetry center)
and that bending moments and shearing forces act about these axes. Similarly,
the complementary energy can be expressed in terms of loading, and in the
case of a linear material this energy is:

which has been obtained by collecting individual strain energy terms from
axial, torsion, two-direction shearing and two-directional bending loads.

Example 1.5
Find the slope at the midspan of the beam shown in Fig. 1.16 by

considering that the beam is relatively long and is constructed of a material
with linear properties. An external moment loads the beam.

Solution
The beam is statically-indeterminate because there are four unknown

reactions (one at point 1, and 3 at point 3), and therefore an additional
equation needs to be written in order to complement the regular three
equations of static equilibrium. It can be seen that the specific boundary
condition at point 1 prevents the vertical (z) motion at that point, and
therefore:
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Figure 1.16 Fixed-guided beam

At the same time, the deflection can be expressed by means of
Castigliano’s displacement theorem, Eq. (1.70), as:

The bending moment at the generic position of abscissa x is:

It can be seen in Eq, (1.75) that the partial derivative of         in terms of  is
x. As a consequence, Eq. (1.74) permits solving for the unknown
namely:

In order to find the slope at midspan, a dummy moment is artificially
applied at point 2 in order to enable performing calculations by means of
Castigliano’s displacement theorem in the form:

The bending moment will have two different equations one for each of the
intervals 1-2 and 2-3, namely:
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After performing the needed calculations, the sought slope is:

Equation (1.79) took into account that the dummy moment is actually zero in
the bending moment expression, and that the reaction is given in Eq.
(1.76).

Example 1.6
Solve the problem of Example 1.5 by considering that the beam is

relatively short, and compare the results with the results of the previous
example.

Solution:
The shearing force needs to be taken into account in the strain energy

equation, and therefore the deflection can be written as:

where the shear force is simply Solving Eq. (1.73) with the particular
expression of Eq. (1.80) gives:

with:

The slope at midspan is calculated by means of Eq. (1.79) and its equation is:

A comparison is made now between Eqs. (1.79) and (1.83) by means of the
following ratio:
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By considering the following equations that define the cross-sectional
amounts of interest:

it can be shown that the ratio of Eq. (1.84) only depends on the length 1 and
thickness t, and for a Poisson ratio of (for a polysilicon material)
and a value of (Young and Budynas [4]), the slope calculated with
shearing effects taken into account is up to 30% smaller than the slope
determined without considering shearing, as shown in Fig. 1.17.

Figure 1.17 Plot of the ratio of slopes at midspan – according to Eq. (1.84)

5.2 Stiffnesses of Constant Cross-Section Straight Beam
Using Castigliano’s First Theorem

Castigliano’s first theorem, as introduced in this chapter, enables
calculation of the stiffnesses that connect a force/moment to the
corresponding linear/angular displacement. A fixed-free straight beam of
constant cross-section is considered here, loaded as shown in Fig. 1.18.
Bending about the y-axis is produced by and Bending about the z-
direction is generated by and Axial deformation is created by the
force and torsion is caused by the moment

5.2.1 Bending About the y-Axis

We shall assume here that the beam is relatively long (length is at least 5
times larger than the maximum cross-sectional dimension), and that plane
sections that are perpendicular to the beam’s midsurface (neutral fiber)



1. Stiffness basics 27

remain plane and perpendicular on this surface after the load has been
applied. These assumptions are at the basis of the Euler-Bernoulli model, as
mentioned previously.

Figure 1.18 Cantilever with full three-dimensional loading

According to Castigliano’s first theorem, the force or moment producing
bending at a point on a beam can be found by evaluating the partial
derivatives of the strain energy generated through bending in terms of the
corresponding deflection or rotation (slope) at that point in the form:

where the subscript b,y indicates bending about the y-axis. Within the small-
displacement (engineering) beam theory, the strain energy which is produced
through bending about the y-axis is expressed as:
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The following boundary conditions apply for the fixed-free beam:

The differential equation for the equilibrium position of the analyzed
cantilever can be written by combining Eqs. (1.52) and (1.53) as:

The solution to Eq. (1.90) is a third degree polynomial in x whose 4
unknown coefficients can be found by applying the boundary conditions of
Eq. (1.89). This solution can be put into the following form:

where the distribution functions and (b stands for bending, d for
deflection and s for slope, respectively) are dependent on the geometry of the
analyzed microcantilever. For the specific case being analyzed here, the
distribution functions are:

The slope function is the derivative of the deflection function in terms of the
space variable x, and therefore its equation derives from Eq. (1.91):

The tip force can be expressed by using Eqs. (1.86), (1.88), (1.91) and
(1.93) as:
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where the stiffness terms are:

and

Note:
In Example 1.1, the cross-stiffness of Eq. (1.96) has been derived by

inversion of a compliance matrix. The minus sign in front of (and which is
denoted by in Eq. (1.96)) in Eq. (1.16) will be explained in Example
1.15.

In a similar fashion, is calculated by means of Eqs. (1.87), (1.88),
(1.91) and (1.93), as:

where the new stiffness term is:

It should be remarked that and are direct-bending stiffnesses,
and this particular subscript notation is utilized instead of using the already-
introduced subscripts l and r of Eqs. (1.7) in order to emphasize the point
where these stiffnesses are calculated (point 1 here), as well as the acting
load (force or moment and the resulting elastic deformation
(deflection or slope/rotation A similar rationale has been applied in the
notation used for the cross-bending stiffness which has been
symbolized by the subscript c in Eqs. (1.7).
Note:

The stiffnesses corresponding to bending about the z-axis are similar to
the ones corresponding to bending about the y-axis, and they are not derived
here. They can easily be obtained from the stiffnesses already formulated by
switching the y and z subscripts, or by using z instead of y, when applicable.

5.2.2 Axial Loading

The axial force at the beam’s free end can be expressed by means of
Castigliano’s first theorem as:
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where is the strain energy stored in the component of Fig. 1.18 under the
action of  The strain energy produced in axial loading can be expressed
from Eq. (1.71) in the form:

The equilibrium equation in terms of axial loading is:

The solution to the differential Eq. (1.101) is a second degree polynomial,
which can be expressed as:

By applying the boundary conditions:

the distribution function is found to be:

The tip axial force can be determined by using Eqs. (1.99) through
(1.104) as:

where the axial stiffness is:
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which is the known equation for the axial stiffness of a constant cross-section
bar.

Example 1.7
Design a microcantilever of constant rectangular cross-section which

needs to have a minimum stiffness while having maximum stiffnesses
and

Solution:
The following objective function can be constructed:

which has to be minimized in order to satisfy the requirements of the
example. By using Eqs. (1.95) and (1.106), the function of Eq. (1.107)
becomes:

It is assumed that the length l and width w can be expressed as fractions of
the thickness t as:

By substituting Eqs. (1.109) into Eq. (1.108), the objective function changes
into:

In order to minimize f, and have to be maximum, which means that w
and l have to be maximum.

5.2.3 Torsion

The tip moment that produces torsion is expressed in terms of the
rotation angle by means of Castigliano’s first theorem as:

where the torsion-related strain energy is formulated from Eq. (1.71) as:
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The torsion equilibrium equation is:

By applying the boundary conditions:

the angular deformation can be written as:

Similar to the case of axial loading, the torsion moment of Eq. (1.111) is
determined as:

where the torsion stiffness is:

The torsion moment of inertia of Eq. (1.117) can be calculated according
to two different models, depending on the relationship between the thickness
t and the width w. For very thin members (t << w), Boresi, Schmidt and
Sidebottom [1] suggest:

whereas for members where t < w, simply, the moment of inertia can be
approximated to:
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as shown in Young and Budynas [4] or Lobontiu [8].

Example 1.8
Evaluate the relative difference (error) between the torsional stiffness of

a fixed-free, constant rectangular cross-section microbar when considered
very thin (t << w) versus the same stiffness when the cross-sectional
dimensions are simply related as t < w.

Solution:
As previously indicated, the torsion stiffness is proportional to the

torsion moment of inertia. As a consequence, differences between the
stiffness produced by the two models only arise from differences in the
respective moments of inertia. If the inertia moment of Eq. (1.118), which
corresponds to very thin bars, is denoted by and the one corresponding to
thin bars, Eq. (1.119), is the relative difference between the two moments
of inertia is:

Figure 1.19 is the plot corresponding to Eq. (1.120) and has been drawn for t
ranging from to and w varying from to The
relative difference between the two models’ compliances is largest for small
values of the width w and large values of the thickness t.

Figure 1.19 Relative stiffness differences between very thin and thin cross-sectio
microbars in torsion

n

5.3 Compliances of Constant Cross-Section Curved Beam
Using Castigliano’s Second Theorem

Curved beams can be divided in two main categories, namely: thick
beams, also named beams of relatively large curvature, and thin beams, or
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beams of small curvature. Thin curved beams have their width w (the cross-
sectional dimension which is in the plane of the curved beam) generally less
than 10% of the radius R, as mentioned by Den Hartog [9] for instance.
During planar deformation of thin beams, the loading mainly consists of the
bending moment that acts perpendicularly to the beam’s plane, whereas for
thick beams, the effects of normal loading and shearing forces have to also
be taken into account.

Figure 1.20 Loads and displacements for a curved beam of relatively-small curvature

The aim here is to define the six displacement components (three
translations and three rotations) of the free-fixed curved beam of Fig. 1.20 in
terms of the six load components, the geometry of the beam, namely its
radius R, angle constant cross-section (the eccentricity e included), and the
material parameters. Various compliances will be defined by this approach,
similar to the stiffnesses which have been obtained previously for a straight
beam. Formally, the load and displacement components are separated into in-
plane and out-of-the-plane.

5.3.1 Thick Curved Beams

For a thick curved beam, the neutral axis (the axis where the stresses normal
to the cross-section are zero) is offset from the geometric symmetry axis, by
the quantity e – the eccentricity, as shown in Fig. 1.21. The eccentricity is
dependent on the shape of the cross-section, and it can generally be
calculated (see Young and Budynas [4], for instance) by means of the
equation:

For a rectangular cross-section, as the one sketched in Fig. 1.21, the
eccentricity is:
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when 0.6 < R/w < 8 – Young and Budynas [4], whereas for 8 <R/w < 10, the
eccentricity can be approximated to:

where is the moment of inertia about the centroidal axis and A is the cross-
sectional area, as indicated by Young and Budynas [4].

Figure 1.21 Cross-secion geometry and eccentricity position for a thick curved beam

5.3.1.1 In-Plane Compliances

The circular segment of Fig. 1.20 undergoes deformations within its own
plane under the action of and which are located at its free end 1.
Unlike the case of the straight beam, where the action of for instance, is
strictly axial, all three loads combine in the present case to produce axial,
shearing and bending deformations. The strain energy U contains
contributions from the bending moment, the normal force, and the shearing
force, in the form:

where is a generic angle ranging between 0 and The displacements at
point 1 are calculated by means of Castigliano’s displacement theorem as:
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The bending moment, axial force and shearing force are defined for a given
point P on the curved beam, positioned at an angle measured radially from
point 1, as shown in Fig. 1.22, namely:

Figure 1.22 Geometry and loading for in-plane compliance derivation

The direction of the axial force N is the tangent axis at P, whereas the
direction of the shearing force S is the normal (radial) axis in Fig. 1.22.
Equations (1.124), (1.125) and (1.126), combine into:
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The terms of the symmetric compliance matrix of Eq. (1.127) are:

5.3.1.2 Out-of-the-Plane Compliances

The out-of-the-plane action is generated by the loads and which
produce local bending about the tangent to the current point, torsion about
the normal (radial) direction to the current point and shearing by the force
in the case where the curved beam is relatively short, as shown in Fig. 1.23.
The bending moment, torsion moment and shearing force are:
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Figure 1.23 Geometry and loading for out-of-the-plane compliance derivation

The out-of-the-plane displacements at point 1 can be again calculated by
means of Castigliano’s second theorem as:

where the strain energy is:

After performing the calculations of Eqs. (1.134), (1.135) and (1.136), the
out-of-the-plane displacements and loads can be connected as:



1. Stiffness basics 39

where the terms of the symmetric compliance matrix are:

Example 1.9
Determine the in-plane and out-of-the-plane compliances for a free-fixed

curved beam, as the one of Fig. 1.20, in the case where

Solution:
The in-plane compliances are:
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The out-of-the-plane compliances are:

5.3.2 Thin Curved Beams

The in-plane and out-of-the-plane compliances are now derived for a thin
beam (R/w > 10), according to Fig. 1.20. The beam is also considered long,
which enables ignoring the shearing effects.

5.3.2.1 In-Plane Compliances

The two linear displacements about the x- and y-directions, together with
the rotation about the z-axis, are again calculated by means of the generic
formulation of Eqs. (1.125). The strain energy, as mentioned, includes only
the bending moment, and therefore is of the form:
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where is given in the first Eq. (1.126). By taking the partial derivatives
of the strain energy, Eq. (1.155), in terms of  and respectively, the
compliances of Eq. (1.127) become:

5.3.2.2 Out-of-the-Plane Compliances

Similar to the case of a thick curved beam, the out-of-the-plane
compliances can be formulated as arranged in Eq. (1.137). The strain energy
for a thin (relatively-long) curved beam is formed by contributions from the
bending moment and the torsion moment only, namely:

with and being defined in Eqs. (1.134). By performing the partial
derivatives of the strain energy given in Eq. (1.162) in terms of and

respectively (according to the first two sides of Eqs. 91.135)), the only
compliance that is different from the ones already derived for a thick curved
beam is:

It can be seen that Eq. (1.163) can be obtained from Eq. (1.138) by
considering that the shearing effects are negligible
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Example 1.10
Consider a quarter-circle fixed-free curved bar for which w = 0.1 R.

Calculate the compliance by considering that the beam is thick and
then compare the result with the one produced when considering that the
beam is thin.

Solution
For a thin curved beam, the compliance of interest is in this particular

case

For a thick beam, the same compliance is given in Eq (1.131). After carrying
out the required numerical calculations, the ratio between the compliance

calculated according to the thin beam theory and the same compliance
computed by means of the thick beam assumption is 0.999, which proves that
for the limit value w = 0.1 R, both theories provide similar predictions.

Example 1.11
Find the out-of-the-plane (z-direction) deflection of the free end 1

produced by the force acting about a direction perpendicular to
the plane of the free-fixed quarter-circle microbeam of Fig. 1.24. The radius
of the circle is and the cross-section is rectangular with

and The material is homogeneous with E = 150 GPa and

Figure 1.24 Out-of-the-plane loading of a curved beam

Solution
The deflection about the z-direction of point 1 can be found by using Eq.

(1.137) in the form:
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because the only load is
The compliance of Eq. (1.165) can be determined from Eq. (1.163) in the

following form:

The moments of inertia are:

and E and G are related according to Eq. (1.23). By using the numerical
values given in this example, it is found that the out-of-the-plane deflection is

6. COMPOSITE MEMBERS

Many structural microcomponents are built in a composite manner by
depositing layers of different materials on a structural component. A thin
piezoelectric layer might be attached to the structural layer of a
microcantilever, in order to achieve actuation or sensing purposes for
instance. There are also cases where members of different cross-sectional
and/or material properties are fabricated in a serial manner in beam-type
microcomponents that are designed for various transduction purposes. Both
cases will be analyzed next by focusing on one-dimension (line) members.

6.1 Sandwiched Members

Figure 1.25 (a) shows the cross-section of a sandwich beam consisting of
two different materials, having the elastic modulii and for instance.
Figures 1.25 (b) and (c) picture the strain and stress variations over the height
of the compound cross-section as produced through bending. The two layers
have different thickness, and and identical widths w – but this is not a
necessary condition. In such instances, stiffness properties can be formulated
that are equivalent to the real situation, by utilizing the stiffness or
compliance equations that have been derived for homogeneous cross-sections.
The response to bending, axial loading and torsion will be addressed next.



44 Chapter 1

Figure 1.25 Beam of composite cross-section: (a) cross-section geometry; (b) bending
strains; (c) bending stresses

6.1.1 Bending

Bending about the y-axis, which is assumed the most sensitive axis, will
be thoroughly analyzed. Assume that a homogeneous cross-section is being
studied first. The strain varies linearly about the z-axis, as sketched in Fig.
6.25 (b), and if the horizontal line that passes through the bottom of the
cross-section is chosen as a datum line, the strain can be expressed as:

The normal stress is:

The stress and strain are zero in the neutral axis, and therefore:

where gives the position of the neutral axis, and in the case of a
homogeneous cross-section this coordinate is half the beam’s thickness. The
bending moment that acts on the cross-section can be expressed as:
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This equation has been obtained by using Eqs. (1.169) and (1.170) and by
considering that:

Equation (1.171) can further be put in the standard form:

where, according to the parallel axis theorem, the moment of inertia is:

A similar approach is now followed for the composite beam of Fig. 1.25
(a). In this case, the position of the neutral axis is unknown. Because the state
of stress is of pure bending, the axial force that acts on the cross-section is
zero, which leads to:

where and are the cross-sectional areas of the two components. The
strain will however follow the linear distribution of Eq. (1.168), and
therefore Eq. (1.170) is still valid. The stresses in the two components are:

By substituting Eqs. (1.176) into Eq. (1.175), the position of the neutral axis
becomes:

When more than two layers form the composite cross-section, Eq. (1.177)
generalizes to:
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The bending moment can be found by following the path detailed for the
homogeneous cross-section, and it becomes simple to show that the bending
moment is given by.

where and are the moments of inertia of the two segments, each taken
with respect to its own principal axis (passing through its center of
symmetry). By comparing Eq. (1.179) to Eq. (1.173), it can be concluded
that the bending rigidity of the composite beam is:

where the subscript denotes equivalent and is given in Eq. (1.177).
When more than two layers are included into the composite cross-section, the
equivalent bending rigidity can be expressed as:

where is calculated by means of Eq. (1.178). This formulation is quite
convenient as any of the bending-related stiffnesses/compliances that can be
formulated for various geometries in the case of homogeneous materials are
able to be utilized by simply using the bending rigidity provided by Eq.
(1.181).

Bending about the z-axis, which for classical MEMS devices where w > t
is not a very frequent occurrence, can be treated in a similar fashion, and the
generic Eqs. (1.178) and (1.181) just need to use the subscript z instead of the
subscript y.

6.1.2 Axial Loading and Torsion

For a homogeneous cross-section bar that is loaded axially by a force
this force can be expressed as:

Consider now that the composite cross-section of Fig. 1.25 (a) belongs to a
fixed-free bar subjected to an axial force This force will divide into two
components, and each of them acting on one of the two distinct
portions. By assuming that the two segments are of equal length, they will
also deform axially by the same quantity, and therefore their strains will be
identical. In this case, the total axial force is:
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By comparing Eqs. (1.182) and (1.183), it follows that the equivalent axial
rigidity of the composite bar can be calculated as:

or, in the case where more than two components make up the bar, in the
form:

This result is predictable, as the two portions have identical lengths and act
as springs in parallel whose resultant stiffness is therefore the sum of the
individual stiffnesses.

Torsion of composite cross-section bars is very similar to axial loading,
and therefore the torsional rigidity of a composite bar is given by an equation
similar to Eq. (1.184), namely:

or, if the cross-section is composed of more than two different members, the
equivalent rigidity in torsion is:

Note:
Caution should be exercised when a sandwiched member is subject to

mixed loading, such as bending and axial, for instance, because the material
or geometric properties that result from the different rigidity equivalence
operations might be non-consistent. An example will be studied next where
the thickness resulting from bending-related equivalence is not always equal
to the thickness generated through axial-related equivalence.

Example 1.12
A sandwiched cantilever of the type shown in Fig. 1.25 (a) is formed of

two different members that have equal widths and completely
overlap over their length. Apply the bending-related equivalence, as well as
the axial-related one, and find the two corresponding equivalent thicknesses
by considering that is Young’s modulus of the equivalent material. Also
consider that and
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Solution:
The position of the neutral axis is given by Eq. (1.177). It can be shown

that this equation reduces to:

The equivalent rigidity in bending is calculated by means of Eq. (1.180), and
an equivalent homogeneous cross-section beam can be found whose bending
rigidity is:

By equating Eqs. (1.180) and (1.189), the equivalent thickness is:

The rigidity that corresponds to axial equivalence is determined by using Eq.
(1.184) and by considering that the same axial rigidity should be produced by
an equivalent homogeneous bar, namely:

and the axial-related thickness for this problem is:

which results from equating Eqs. (1.184) and (1.191).

Figure 1.26 Thickness ratio in terms of thickness factor and elastic factor
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It is clear that the thicknesses produced by Eqs. (1.190) and (1.192) are equal
only for one relationship between the two factors, and Expressing one
of the factors in terms of the other implies solving a third degree equation
(resulting from equating the right hand sides of Eqs. (1.190)) and (1.192)),
which will have one real solution. Figure 1.26 is the plot of the thickness
ratio:

and it can be seen that this ratio spans the (0.8 1.2) range. It can also be
seen that due to its monotonic variation, the ratio can only be equal to 1 for
one pair, and the two thicknesses are identical solely for that unique
combination.

6.2 Serially-Connected Members

A problem directly resulting from the previous one addresses the case
where two or more different structural members are connected serially, as
depicted in the structure sketched in Fig. 1.27. The case studied in the
previous subsection 6.1 offers the explanation with respect to the necessity of
approaching the topic of serially-connected components. When the two
different components that are sandwiched together do not have identical
lengths, the equivalent rigidities can be calculated as shown in paragraph 6.1
for the overlapping length. This equivalent member will behave as a new
portion that is serially connected to the remaining segments that are
homogeneous.

Figure 1.27 Two serially-connected members in a fixed-free configuration

The aim here is again to determine the equivalent rigidity/stiffness
properties of the compound cantilever shown in Fig. 1.27, as produced
through bending, axial loading, and torsion.

6.2.1 Bending

The stiffness of each of the two series-connected beams of Fig. 1.27 is
given by:
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where i = 1, 2. If the stiffness of the compound beam 1-3 were to be
calculated by the rule that applies to serially-connected springs (this aspect
will be treated in more detail in Chapter 5), then it would be found by means
of the equation:

and its value would be:

However, if one calculates the free end’s deflection by means of
Castigliano’s displacement theorem, the real stiffness is:

where the denominator is:

It can be seen that the combined Eqs. (1.197) and (1.198) are not identical to
Eq. (1.196), and therefore the stiffness of the compound beam of Fig. 1.27
cannot be solved by following the simple rule that applies to springs.
Similarly, the other two bending-related compliances cannot be calculated by
the serial rule for spring stiffnesses. By applying again Castigliano’s
displacement theorem it can be shown that the other direct-bending stiffness
is given by the equation:

whereas the cross-bending compliance is:
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Example 1.13
Two microcantilevers are fabricated as shown in Fig. 1.28 (a) and (b)

from the same material and they also have the same thickness t. Which of the
two designs is the most compliant (in terms of the direct linear compliance
about the z-axis, which is perpendicular to the planar microcantilevers at
their free ends) when

Figure 1.28 Two microcantilevers formed by serial connection of rectangular segments

Solution:
The linear direct compliance of the microcantilever sketched in Fig. 1.28

(a) can be obtained by applying Castigliano’s displacement theorem in the
presence of a force acting at the free end about a direction perpendicular to
the microcantilever’s plane. Its equation is:

Similarly, the compliance of the microcantilever of Fig. 1.28 (b) is:

By taking into account that:

the ratio of the two compliances of Eqs. (1.201) and (1.202) is:

As a conclusion, the configuration of Fig. 1.28 (a) is approximately 1.66
times more compliant than the design of Fig. 1.28 (b).
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6.2.2 Axial Loading and Torsion

The equivalence operation in the case where axial forces or torsion
moments act on the serially-connected member of Fig. 1.27 is quite
straightforward because in either of the situations the two components do
behave as springs that are connected in series, and therefore the equivalent
stiffness will be given by:

Specifically, in the case of axial loading, Eq. (1.205) gives:

whereas for torsion, the equivalent stiffness is:

Example 1.14
A microcantilever is formed of a structural layer of thickness on top of

which another layer of thickness is deposited, as shown in Fig. 1.29 (a).
Determine the deflection that is produced by a given tip force
when:

Solution:
The two components overlap over the length and therefore the rigidity

of that portion can be determined by means of the substitutions used in
Example 1.12, namely:

Now, the three portions shown in Fig. 1.29 (b) are serially connected, and
therefore the direct stiffness about the z-direction can be calculated by means
of Castigliano’s displacement theorem, such that the required deflection is:

and the numerical value is
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Figure 1.29 Hybrid microcantilever: (a) geometry of real design; (b) equivalent serial model

6.3 Beams in Parallel

The situation will be analyzed here where two beams are connected in
parallel by means of a rigid link, and the direct-bending stiffness will be
evaluated. However, in order to solve this particular problem an additional
example is discussed that highlights the influence of boundary conditions on
the stiffness of a beam in bending.

Example 1.15
Find the spring constant corresponding to the elastic interaction between

the force and the resulting deflection for the beams shown in Fig. 1.30
by using Castigliano’s displacement theorem. Compare the two results.

Figure 1.30 Boundary conditions in bending: (a) fixed-free beam; (b) fixed-guided beam



54 Chapter 1

Solution:
For the fixed-free beam of Fig. 1.30 (a), the linear stiffness that

corresponds to the free end’s deflection was shown to be:

in Example l.l, or in the direct stiffness derivation of subsection 5.2.1. For
the second configuration, the one sketched in Fig. 1.30 (b), where the end
point 1 is confined to move vertically by always having zero slope, this
point’s deflection and slope can be expressed in terms of loading and of the
compliances corresponding to a fixed-free beam as:

Because the slope at that point is zero, it follows from the second Eq. (1.211)
that:

and, as a consequence, by substituting Eq. (1.212) into the first Eq. (1.211),
the sought stiffness is:

For a constant cross-section fixed-free beam, the compliances of Eq. (1.213)
are simply:

By substituting now Eqs. (1.214) into Eq. (1.213), the stiffness of the beam
sketched in Fig. 1.30 (b) becomes:
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It can be seen that the stiffness for this particular boundary conditions is
equal to the stiffness of an identical beam whose boundary conditions are
fixed-free, as illustrated in Fig. 1.30 (a).

This conclusion should not be very surprising within the context of the
stiffness that has been derived in Example 1.1, namely by means of
inversion of the compliance matrix. The first equation of Eqs. (1.7) can be
written with the aid of Eq. (1.16) as:

This equation, again, reflects the principle of superposition which indicates
that the total force being applied at the free end of a microcantilever is equal
to the algebraic sum of a force that needs to purely translate the free end by

with zero slope – the first term of Eq. (1.216) – and a force that
would simply rotate the free end by with zero deflection – the
second term in Eq. (1.216). This latter term has to be negative because the
real force that has to produce both and for a free end cantilever is
smaller than the force needed to only generate the same deflection, as in
Fig. 1.30 (b). This is the reason why the bending-related stiffness has to be
negative, as Example 1.1 has demonstrated.

However, individual springs, either linear or rotary, as the ones pictured
in Fig. 1.5 and utilized as equivalent lumped-parameter models of real,
distributed-parameter beams, have to be uniquely defined in terms of their
stiffnesses. Because stiffness depends on boundary conditions, it is expected
that two different sets of boundary conditions will generate two different
stiffnesses for the same physical spring. Conversely, one stiffness could not
possibly describe two different boundary conditions applied to the same
spring. It has been shown at the beginning of this chapter that axial and
torsional stiffnesses are simply calculated as algebraic inverses of their
corresponding compliances, and this relationship should also hold true for
bending-related stiffnesses as they define unique linear or rotary springs.
Indeed, the direct and cross stiffnesses of springs that model bending of
cantilevers are calculated as:

These expressions are clearly different from those of the stiffnesses
and that have been obtained in Example 1.1, Eq. (1.16),

through inversion of the compliance matrix, for the same fixed-free boundary
conditions. While the stiffness set of Eqs. (1.217) is utilized to individually
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define the three springs that characterize the lumped-parameter elastic model
of a cantilever, and is further employed in calculating the natural frequencies
of such a structure, the stiffnesses of Eq. (1.16) are the ones to be used when
calculating forces and moments that correspond to known tip deflections and
slopes. The difference between individual (definition) stiffnesses (denoted
with an upper bar, as shown in Eqs. (1.217) – this notation will be used from
this point on) and stiffnesses resulting from inversion of the compliance
matrix (which is unique for a given beam configuration) will become more
evident in Chapter 2 when studying microcantilever applications.

Having solved this example, the particular case mentioned at the
beginning of this subsection is studied now with the two beams connected in
parallel by means of a rigid link, as shown in Fig. 1.31. The aim is to verify
whether the two beams really do behave as two springs in parallel in terms of
their direct-bending linear stiffnesses. For a beam that has one fixed end and
the other end is constrained to strictly move on a direction perpendicular to
the beam’s axis, (the slope at that point is zero), the stiffness, as shown in
Example 1.15, is given in Eq. (1.215).

Figure 1.31 Identical beams connected in parallel

It is known that the stiffness of two identical springs in parallel can be
calculated as:

where is the stiffness of one spring. In order to check the validity of Eq.
(1.218), the horizontal displacement at point 2 is calculated by means of
Castigliano’s displacement theorem as:
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Since the system of Fig. 1.31 is three-times indeterminate, the reactions
and need to be first determined, by using the corresponding

boundary conditions:

which can be expressed as:

The bending moment is:

The unknown reactions are:

The horizontal displacement at point 2 can now be found by means of Eqs.
(1.219), (1.221), (1.222) and (1.223), which give the stiffness about the x-
direction as:
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Equation (1.224) shows that the stiffness of the two-beam structure can be
found by summing up the stiffnesses given in Eq. (1.215), and therefore it
can be considered that the two beams act as two springs in parallel.

In addition, the slope at point 2 is calculated here. This slope can be
found in a similar fashion, by following the two-step procedure outlined
previously. The new reactions have to be determined by applying Eqs.
(1.220) and (1.221). The only difference is that a dummy moment has to
be added in the bending moment of the second Eq. (1.222). It can be shown
that the two reactions of Eq. (1.223) are the same, whereas the bending
moment reaction becomes:

With this addition, the slope at point 2 is calculated as:

and its value is zero since the dummy moment is also zero. This result
confirms the physical intuition that the system should deform under the
action of the horizontal force such that the rigid segment 2-3 translates
horizontally.

7. PLATES AND SHELLS

Plates and shells are structural components that can use their elastic
deformation in MEMS applications for devices such as valves, pumps,
switches etc. By design, plates and shells have their thickness much smaller
than the in-plane dimensions. Den Hartog [7] and Reddy [5], among others,
mention that the thickness in these members is less than 1/10 of the smallest
in-plane dimension, and moreover, if the thickness is less than 1/20 of the
smallest planar dimension, the member is considered thin.

The plate is generally a flat member and it is the two-dimensional
correspondent of the straight beam, whereas the shell is curved and is similar
to a curved beam. In their thin variant, both members can accommodate
bending and axial (stretching) loads. For small deformations, where the
deflections are less than the thickness, the bending is preponderant, and the
load-deformation relationship is linear. For large deformations, 5 times larger
than the thickness or more, the membrane behavior becomes paramount, and
the bending effects can be neglected. In such cases, the load-deformation law
is non-linear. The transition cases, where the maximum deformation is
comparable to the thickness, approximate equations can be formulated to
accommodate both the bending and the membrane effects. For a circular thin
plate of radius R and thickness t, clamped on its edge and acted upon by a
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uniform pressure p, the maximum displacement is registered at its center, and
it can be calculated by solving the following third degree equation – see den
Hartog [7] for instance:

where is the center deflection and D is the rigidity which is defined as:

It can be seen that Eq. (1.227) incorporates both the small-deformation
bending effects through the linear term in and the membrane (stretching)
effects through the non-linear term in the same

For bending-dominated cases, where the membrane effects can be
ignored, the differential equation of deflection is:

The maximum deflection for the circumferentially-clamped circular plate
under uniform pressure is:

The maximum deflection of the same plate under a concentrated load acting
normally at the disc’s center is:

For rectangular plates, the solution to Eq. (1.229) is found by using the
Fourier series expansion, and thus the solution is only approximate. For a
rectangular plate of dimensions and which is fixed on its edges and is
acted upon by a pressure p, the maximum center deflection is:

where the summation only retains the odd counters i and j. The maximum
deflection of this plate when acted upon by a force, perpendicularly to the
plate’s plane, is similarly calculated as:
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Problems

Problem 1.1
In a plane stress problem, the non-zero stresses are located in the xy

plane, as shown in Fig. 1.8. Express the strain energy when the shear
modulus and Lamé’s constant are known.

Answer:

Problem 1.2
A fixed-free beam is acted upon by a force at its free end as shown in Fig.

1.9 (a). Determine the length of the beam 1 as well and its cross-sectional
thickness t in such a way that the maximum tip deformations are and
without exceeding a bending stress limit when Young’s modulus is E.

Answer:

Problem 1.3
Calculate the ratio of the tip deflection when shearing forces are

accounted for to the tip deflection when shearing effects are negligible for a
microcantilever acted upon by a tip force which is perpendicular to the
longitudinal axis. Known are Poisson’s ratio beam thickness t and length l.

Answer:

Problem 1.4
Find the stiffness of the pinned-guided microbeam shown in Fig. 1.32 at

its midspan about the z-direction (Hint: assume a force is applied at midspan
about the z-direction).

Figure 1.32 Simply supported – guided microbeam
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Answer:

Problem 1.5
Find the relationship between the thickness t and the length l for a

microcantilever such that the stiffness ratio at the free end 1 is
equal to n (n > 1), and that the axial stiffness at the same point is less than a
fixed value of

Answer:

Problem 1.6
A curved beam of rectangular cross-section defined by and

has a radius of Determine the position of the neutral axis
by calculating the eccentricity e.

Answer:
for 0.6 < R/w < 8
for R/w > 8

relative error between the first and second predictions: 0.1%

Problem 1.7
Find the z-direction deflection at point 1 for the free-fixed structure of

Fig. 1.33. Known are l, R and The constant cross-section is square and
the material is homogeneous with known E and G.

Figure 1.33 Out-of-the-plane deformation of a straight-circular beam

Answer:
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Problem 1.8
Compare the compliance of a fixed-free straight beam with the

same compliance of a fixed-free curved beam that subtends an arc of
The two beams have identical lengths and rectangular cross-sections.
Consider both the case where torsion is and is not taken into account.

Answer:
When torsion is ignored, the compliance ratio is:

When the torsion is taken into account, the compliance ratio becomes:

Problem 1.9
Compare the bending rigidity of the sandwich beam in Fig. 1.34 for the

particular case where to the bending
rigidity of the homogeneous microcantilever of length and thickness

Figure 1.34 Sandwich beam

Answer:

Problem 1.10
Calculate the stiffness about the x-direction (horizontal) at point 2 for the

parallel beam structure of Fig. 1.35. The two side beams are identical and
parallel to the center beam whose length is twice the length of the side beams.
Consider that the three beams have identical cross-sections and are built of
the same material.

Answer:
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Figure 1.35 Three beams in parallel

Problem 1.11
Compare the maximum deflection of a thin circular plate with that of a

thin square plate when the two structures are acted upon by the same uniform
pressure, and when they have identical mid-plane areas and thicknesses.
Consider that both members are clamped on their edges.

Answer:
The deflection ratio is:

Problem 1.12
Design a constant rectangular cross-section microcantilever which is

acted upon by a tip transverse force in such a manner that the allowable
bending stress is not exceeded, while producing a tip deflection and tip
slope The material’s Young’s modulus is E.

Answer:

Problem 1.13
Find the value of the force which needs to be applied at the midspan

of a fixed-fixed beam (microbridge) of length and cross-sectional
dimensions of and in order to generate a deflection of

at the midspan. The material Young’s modulus is E = 130 GPa.

Answer:
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Problem 1.14
Compare the bending rigidity of the two sandwiched-beam cross-sections

shown in Fig. 1.36. The top layer’s material has a Young’s modulus of
whereas the Young’s modulus of the bottom layer is Also

Figure 1.36 Cross-sections of two composite bending members

Answer:

Problem 1.15
Compare the torsional stiffnesses of the two microcomponents pictured

in Fig. 1.28. The shearing modulus is G and the cross-section is very thin (t
<<w).

Answer:
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Chapter 2

MICROCANTILEVERS, MICROHINGES,
MICROBRIDGES

1. INTRODUCTION

This chapter studies the microcantilevers, the microhinges and the
microbridges, which are MEMS components that can operate either
individually – with no other accompanying structural component – or can be
incorporated into more complex configurations. Essentially, all three
components are designed to deform either in bending or torsion about a
sensitive axis, but in actuality they are also subject to other deformations
(called parasitic because they alter the intended functionality) such as those
produced by axial forces, shearing forces or bending moments about
directions other than the main sensitive axis. These microcomponents are
one-dimensional members with either fixed-free boundary conditions (such
as the microcantilevers and microhinges) or fixed-fixed boundary conditions
(such as the microbridges). In other words, the very same geometrical
configuration can function in either one of the three categories mentioned
here, subject to different boundary conditions and overall structure of a
specific mechanism. They can operate as sensors (the microcantilevers
particularly), actuators (both the microcantilevers and microbridges) or as
simple flexible joints in compliant microdevices (such as the case is with the
microhinges).

The three categories are defined here in terms of their relevant stiffnesses
and/or compliances according to the generic procedure outlined in the
previous chapter. Designs from each category are specifically analyzed and
discussed based on concrete and fully-solved examples. A section with
problems to be solved completes this chapter. Although the prefix micro
might seem redundant (and sometimes the structural dimensions can reduce
to the nanometer level, case where nano would work better), the micro
denomination will be kept here as in microcantilevers, microhinges and
microbridges, which is also the terminology used in the specialty literature.
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2. MICROCANTILEVERS

2.1 Introduction

The microcantilevers are used as sensing/actuation devices in a vast
range of applications that include nanoindentation, high-resolution optical
position detection, surface topology imaging, measurement/probing of
material elastic and strength properties, writing on surface topologies, high-
aspect ratio metrology, metallography, chemical/electrochemical
characterization, micro-lubrication/tribology, corrosion processes, cellular
engineering or grain growth and surface adhesion phenomena, as indicated
by Morita et al. [1], Chui [2], Lange et al. [3], as well as Gad-El-Hak [4],
Pelesko and Bernstein [5] or Madou [6], to name just a few works related to
this area. Figure 2.1 is the photograph of a circularly-filleted microcantilever
which is realized by the MUMPs (Multi User Multi Processes) technology, a
surface micromachining procedure that builds three structural polysilicon
layers on top of a pre-existing substrate. This prototype design can operate as
a force-sensing device and will be more thoroughly discussed later in this
chapter.

Figure 2.1 Circularly-filleted microcantilever prototype: (a) Top view; (b) Cross-
section

The microcantilevers can be utilized either in the static/quasi-static
regime – in order to generate/measure deflections and/or rotation angles – or
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in the oscillating mode – when the modal frequencies are actually monitored
and determined. They can operate in a contact mode or in a non-contact
mode (when a pre-designed distance is kept between the microcantilever and
the monitored three-dimensional topography, for instance). Functionally and
constructively there are two main microcantilever categories. The first
category includes configurations that are designed for atomic force
microscopy (AFM) applications, where the out-of-the-plane bending of the
microcantilever is superimposed to a planar motion of either the
microcantilever or the target surface, such that a three-dimensional surface
topology can be either read or written by means of a tip that is located at the
microcantilever’s free end, as sketched in Fig. 2.2. In such applications, the
microcantilever needs to be compliant about one bending axis (also called the
sensitive axis) and as stiff as possible in terms of other motions/deformations,
such as torsion or in-plane bending about the other bending axis.

Figure 2.2 Schematic representation of a microcantilever for AFM applications

Figure 2.3 Schematic representation of a microcantilever for mass detection applications

The other category contains microcantilevers that are designed as sensing
devices in applications such as detection of very small amounts of added
substance, and Fig. 2.3 illustrates this principle.
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Figure 2.4 Lumped-parameter mass-spring model of a microcantilever

In either actuation or sensing, the microcantilever will deflect from its
original straight shape/position. This alteration can be quantified by either
measuring the deflection or the slope (generally at the tip of the
microcantilever) through optical means, or by monitoring the change in the
natural frequency. In both methods, knowledge of the stiffness properties is
paramount. As shown in Fig. 2.4, a simplified representation of the
distributed-parameter beam can be the equivalent lumped-parameter mass-
spring model. For such a model, the linear direct stiffness about the z-axis
has to be calculated either directly or based on previously-determined
compliances.

This section focuses on the static response of microcantilevers by
introducing and discussing the relevant stiffnesses/compliances of various
designs. Microcantilevers of either solid or hollow geometries will be
presented here.

2.2 Solid Microcantilevers

Solid microcantilever configurations such as rectangular, trapezoid and
filleted (the fillet area is either circular or elliptic) are studied in this sub-
section. Two main applications are specifically addressed, namely the mass
addition detection and the AFM reading/writing by defining the minimum set
of compliances or stiffnesses that are necessary to solve either of the two
problems in the static/quasi-static domain when experimental data is
available.

2.2.1 Generic Formulation

The microcantilever is a fixed-free line member whose cross-section,
mostly rectangular in MEMS, can be variable and whose
compliance/stiffness characteristics are defined here by lumping the elastic
properties at the free end. Chapter 1 described the procedure of calculating
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the lumped-parameter axial, torsion and bending compliances/stiffnesses of
fixed-free, constant rectangular cross-section straight and curved
micromembers. The procedure followed in Chapter 1 – based on Fig. 1.18 –
also applies here, where the straight member is of variable cross-section. The
six degrees of freedom at the free end, as shown in Fig. 1.18, can formally be
grouped into the ones generated by bending about the sensitive axis (the y-
axis), namely: and bending about the other symmetry axis: and
axial deformation, and torsion, It has also been shown in Chapter 1
that the static response of a microcantilever can be formulated based on the
lumped-parameter model, in one of the two equivalent forms:

where:

is the displacement/deformation vector at the free end,

is the forcing vector at the same end, and:

is the compliance matrix whose bending-related sub-matrices are:

and



70 Chapter 2

The compliance terms of Eqs. (2.6) and (2.7) have been calculated in Chapter
1 for a constant cross-section straight member. In the case of a variable
cross-section member, the compliances of Eq. (2.6) are calculated (see
Lobontiu [7] for instance) as:

The compliances of Eq. (2.7) are found by switching the subscripts y and z in
Eqs. (2.8) through (2.10).

The axial-related compliance of Eq. (2.5) is calculated as:

whereas the torsional compliance of Eq. (2.5) is:

The variable rectangular cross-section amounts in the equations above are:

The equations for the torsion moment of inertia are similar to Eqs. (1.118)
and (1.119) that correspond to a constant rectangular cross-section. All cross-
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sectional amounts in Eq. (2.13) take into account that the thickness t of the
microcantilever is constant, whereas the width w(x) varies along the length.

The stiffness matrix [K] of Eq. (2.2) can be calculated either as:

or by applying Castigliano’s first theorem, as presented in Chapter 1. The
compliance-based approach is computationally simpler, compared to the
direct evaluation of stiffness properties, especially in the case of variable
cross-section micromembers. In addition, the compliance expressions can be
used to formulate/solve problems where the loads/deformations are required
at locations other than the free end of the microcantilever. The stiffness
matrix is expressed as:

where:

and

Evidently, the stiffness submatrices of Eqs. (2.16) and (2.17) are the inverses
of the compliance submatrices of Eqs. (2.6) and (2.7), respectively. Also:

and:
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It has been shown in Chapter 1 that by inverting the bending-related
compliance matrix of a constant rectangular cross-section microcantilever, a
stiffness matrix is obtained whose components are not the direct inverses of
their corresponding compliances. It has also been mentioned that although
the three springs characterizing the lumped-parameter model of a
microcantilever are defined by the stiffnesses

(the algebraic inverses of the stiffnesses
of Eqs. (1.16) – which are the components obtained by

inverting the compliance matrix of Eq. (1.15) – should be used when
calculating the force and moment at the free tip in terms of the deflection and
slope at the same point.

All these conclusions are also valid for a variable cross-section
microcantilever as demonstrated next. The compliance equation describing
the bending about the y-axis is:

where the matrix of the right-hand side is of Eq. (2.6). Equation (2.20)
can be rewritten by expressing the loads in terms of displacements in the
form:

where the matrix of the right-hand side is the submatrix of Eq. (2.16).
It is clear that:

and the components of are related to the components of  as:
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Equations (2.23) prove that the stiffnesses obtained by inverting the bending-
related compliance matrix are different from the stiffnesses that define the
three different springs and that are calculated as the algebraic inverses of the
corresponding compliances. It is useful to express one set of stiffnesses in
terms of the other set as:

or as:

Example 2.1
The tip deflection and slope are available for a constant cross-

section rectangular microcantilever. Find the errors of calculating the tip
force according to the approximate equation:
with respect to the force calculated by means of the exact equation:

Solution:
The relative error is:

Figure 2.5 Errors in evaluating the tip force by approximate versus exact equations
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Figure 2.5 is the plot of this error function in terms of the tip deflection
and slope when and It can be
seen that the errors can be as high as 75% for large tip deflections and small
slopes.

2.2.2 Constant Rectangular Cross-Section Design

The absolute values of the stiffnesses that define the out-of-the-plane
bending about the sensitive axis (the y-axis in Fig. 2.3) have been given in
Chapter 1 and are written here as:

Similarly, the magnitudes of the stiffnesses that define the bending about the
z-axis are:

The axial stiffness is:

The torsion stiffness in the case where the thickness is considerably smaller
than the width (t << w) is:

Example 2.2
Compare the stiffnesses that characterize the bending about the sensitive

axis (the y-axis) to the other pertinent stiffnesses of a constant rectangular
cross-section microcantilever.

Solution:
The length l and width w of a microcantilever are expressed in terms of

the thickness t as:
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The stiffnesses of Eqs. (2,27) to (2.30) can be written as functions of
and t only, where t enters to its first, second or third power in the respective
stiffnesses. In order to compare the stiffnesses containing t to its first power,
the following ratios are introduced:

According to their definitions given in Eq. (2.31), both and are larger
than 1, and also because the length is at least a few times larger than
the width. It is then clear that In other words, the
smallest is the linear direct-bending stiffness whereas the largest is the

and the interpretation given to the first Eq. (2.32) remains valid. The rotary
stiffnesses can be connected according to:

The second Eq. (2.34) indicates that the ratio of the torsion stiffness to the
direct-bending rotation stiffness is a fixed amount in terms of geometry.
Moreover, the second Eq. (2.34) indicates that for very thin cross-sections,
the torsional stiffness is smaller than the bending-related one.

2.2.2.1

As previously mentioned, the microcantilevers can be utilized to detect
minute amounts of substances that attach to them, either chemically or
physically (through adsorbtion mainly). The addition of new substances
alters the elastic and inertia properties of the microcantilevers, and these

axial stiffness If and range within the intervals with
i= 1, 2 , then can be up to larger than which, for

means 100 times larger. can be up to larger than
which for a value of for instance, signifies 10000 times larger.

The cross-stiffnesses can be related as:

Sensitivity to Position of Applied Load in Mass Deposition
Applications
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changes can be monitored quasi-statically or dynamically. The amount of
mass, as well as its position on the microcantilever’s plane, can be
determined by combining experimental data with modeling as shown in the
following examples.

Example 2.3
Calculate the amount of deposited mass, as well as its position on a

constant rectangular cross-section microcantilever, as the one sketched in Fig.
2.6 when the following amounts are known: E = 180 GPa,

Figure 2.6 Mass added to a microcantilever as a gravitational force

Solution:
Assume that a certain amount of mass attaches locally on the

microcantilever such that it can be treated as a point load. If a sensitive layer
is set over the length measured from the free end, the attached mass
(positioned at length which is measured as shown in Fig. 2.6) will deflect
the microcantilever a tip slope that can be determined experimentally for
instance. The tip rotation is related to the force owing to the deposited mass
as:

The gravitational force is equal to mass times the gravity constant, and
therefore Eq. (2.35) changes to:

As Eq. (2.36) indicates it, a given tip rotation can be produced by different
mass quantities because they can attach at different locations over the
sensitive length Figure 2.7 shows the plot of mass in terms of the
deposition location, and it can be seen that all the points located on the curve
satisfy the condition of Eq. (2.36).
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Figure 2.7 Plot of added mass as a function of position on microcantilever

In order to unequivocally determine the quantity of deposited mass,
together with its position, another experimental measurement needs to be
available, such as knowledge of the tip deflection. In this case, the tip
displacement about the z-axis, which is caused by the mass added at point i,
is calculated as:

Equations (2.36) and (2.37) can now be used to solve for the unknown
quantities and

Another possible situation occurs in the case of microcantilevers of
relatively-large widths, where the mass might attach in a position that is
offset from the longitudinal symmetry axis by a quantity The tip slope can
be determined experimentally by monitoring the position of a laser beam
which is reflected by the deformed microcantilever, as sketched in Fig. 2.8.
In such cases, the torsion of the microcantilever as produced by the deposited
mass will shift the light reflected by the tip of the beam not only along the x-
axis, by a quantity but also along the y-axis, by a quantity (as
sketched in Fig. 2.8). Both amounts can be determined experimentally by
specialized detection devices. The tip angles can be calculated as:
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where h is the distance measured about the z-direction between the
microcantilever and the xy detection plane.

Figure 2.9 indicates the in-plane position of the attached mass. The
torsion moment produced by the added mass is:

such that the tip torsion angle is:

Figure 2.8 Experimental system for in-plane mass detection

Figure 2.9 In-plane position of added mass
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By coupling Eqs. (2.36) through (2.40) it is possible to determine the amount
of deposited mass as well as its in-plane position defined by and

Example 2.4
Determine the added mass as well as its position and on a

variable cross-section microcantilever when the tip slopes and and the
deflection are known.

Solution:
When the cross-section of the microcantilever is variable, the tip slope

(which is given in Eq. (2.35) for a constant cross-section) can be found by
means of Castigliano’s displacement theorem as:

where:

is the compliance of the microcantilever portion which is comprised between
the point of application of the deposited mass and the fixed root. In a similar
manner, the tip deflection can be expressed as:

where the new partial compliance is:

The torsion-related tip slope is expressed as:

with the partial torsional compliance being:
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Equations (2.41), (2.43) and (2.45) can be solved for the unknown amounts
and by also employing Eqs. (2.42), (2.44) and (2.46).

2.2.2.2

In atomic force microscopy (AFM) reading applications, a
microcantilever such as the one sketched in Fig. 2.10 is designed to
determine the amounts of force that are applied on its tip about the x-, y- and
z-directions, and thus describe (read) a three-dimensional variable geometry.
The experimental setup pictured in Fig. 2.8 can again be utilized to evaluate
the tip rotations and

Figure 2.10 Tip forces detected by a microcantilever in atomic force microscopy

Example 2.5
Evaluate the forces and that act on the tip of the constant

rectangular cross-section microcantilever of Fig. 2.10 by using the available
experimental data.

Solution:
It can simply be shown that the tip slope which is produced through

bending by the combined action of and as well as the slope which
is generated by torsion due to can be calculated as:

If the only experimental information consisted of the tip slopes and
the bending-produced deformation can globally be interpreted as generated
by an apparent tip force, such that:

Three Dimensional Force Detection in Atomic Force Microscopy
Applications
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By equating the first Eq. (2.47) to Eq. (2.48) results in:

which indicates that by approximating the force according to this
equation will always result in either an overestimation, when acts in
unison with or in an underestimation, when is directed in the opposite
direction. Assuming that the force can be expressed as a fraction of the
real namely:

the apparent force of Eq. (2.49) can be written as:

The relative error between the force calculated by Eq. (2.51) and the real
force is:

and Fig. 2.11 is a plot giving the relative errors for the case where c = 0.5.

Figure 2.11 Errors between the real force and the apparent one in AFM measurements
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In order to render this problem determinate, another set of experimental
measurements, for instance the deflection at a point placed at a distance
from the free end, is needed. In this case, the deflection at the experimental
point of detection is:

Equations (2.47) and (2.53), together with Eqs. (2.38), enable solving for
and from experimental measurements.
All these calculations are valid for and have been applied thus far to a

constant cross-section microcantilever. The following example will solve this
problem for the cases where the cross-section of the microcantilever is
variable.

Example 2.6
Determine the force components and that are applied at a

microcantilever’s tip when contacting a three-dimensional surface. The tip
slopes and tip deflection are experimentally available. Assume
that the microcantilever’s cross-section is variable and neglect the axial
deformation.

Solution:
The Castigliano’s displacement theorem is utilized again to express the

tip displacements. The torsion, for instance, is produced by the force
which is offset by the quantity h and the corresponding tip slope is given by
the equation:

where the torsional compliance has been defined in Eq. (2.12). The tip slope
in bending is produced by the combined action of the forces and and
is:

whereas the tip deflection is:

Equations (2.54), (2.55) and (2.56) enable finding the tip force components
when and are available experimentally.
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2.2.3 Solid Trapezoid Design

The geometry of a trapezoid microcantilever is sketched in Fig. 2.12.

Figure 2.12 Geometry of solid trapezoid microcantilever

The variable width depends linearly on the abscissa x, namely:

By utilizing this equation in the generic compliance formulation, the
stiffnesses of a solid trapezoidal microcantilever can be computed by
inverting the compliance submatrices or terms. The bending-related
stiffnesses corresponding to the sensitive axis are:

The stiffnesses that describe bending about the other bending axis (the z-
axis) are:
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The axial stiffness and torsional stiffness are:

For the particular condition where the trapezoid becomes a
rectangle, and consequently by taking the limit in Eqs. (2.58)
through (2.65), the stiffness equations for a constant, rectangular cross-
section cantilever – Eqs. (2.27), (2.28), (2.29) and (2.30) – should be
retrieved, which indeed occurs, as it can easily e checked.

Example 2.7
Compare a constant cross-section, rectangular microcantilever to one of

trapezoid configuration, which has the same length and by
analyzing the and stiffnesses. Consider that and c
spans the [1, 5] range. Also consider that the microcantilever’s cross-section
is very thin (t << w).

Solution:
The following stiffness ratios can be formulated:

where the * superscript indicates the constant rectangular cross-section
microcantilever. By utilizing Eqs. (2.27), (2.30), (2.58) and (2.65), together
with the given width relationship, Eqs. (2.66) transform into:
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which are functions of only one variable, the parameter c. Figure 2.13 shows
the variation of these stiffness ratios, and it can be seen that, as expected, the
trapezoid design becomes stiffer in both bending about the sensitive axis and
torsion as the ratio of the maximum width to the minimum width increases.

Figure 2.13 Stiffness comparison between constant rectangular and trapezoid
microcantilevers: (a) bending about the sensitive axis; (b) torsion

Example 2.8
Determine the deformations at the tip of a trapezoid microcantilever that

is acted upon by the forces and as indicated in Fig.
2.10. Consider that the member is constructed of a material with E = 160
GPa and and that its geometry is defined by:

Solution:
The displacements that are related to y-axis bending can be expressed in

terms of compliances as:

It has been shown that the compliance matrix corresponding to bending about
the y-axis is the inverse of the related stiffness matrix, which is given in Eq.
(2.16). The terms entering the stiffness matrix of Eq. (2.16) are calculated by
means of Eqs. (2.58), (2.59) and (2.60). They have the following values:

It
follows that the stiffness matrix of Eq.(2.16) is:
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By inverting Eq. (2.69) it is found that the related compliance matrix is:

and therefore and such that,
according to Eqs. (2.68), and

By applying a similar procedure for the bending about the z-axis, which
is produced by the force the corresponding tip displacements are:

and It can be seen that although the force is 10 times
larger than the force the displacements produced by are
approximately one order of magnitude smaller than those generated by

2.2.4 Filleted Microcantilevers

2.2.4.1 Circularly-Filleted Design

Microcantilevers that are filleted at their root by means of two circular
portions are customary designs, particularly in mass detection applications.
The circularly-filleted area is a way of reducing the stress concentrations, but
sometimes is a technological by-product, as sharp corners at a
microcantilever’s root are difficult to obtain through certain microfabrication
procedures. However, when the fillet radius is small compared to the length
and width, the fillet area is usually neglected in analytical calculations.

On occasion, the fillet radius can be relatively large, as a means of
increasing the root area, and therefore increasing the torsional stiffness for
instance. In such situations, neglecting the contribution of the fillet zone to
the various stiffnesses defining the microcantilever would amount to
unacceptable error levels. Closed form compliance equations will be
provided here (as also given in Lobontiu and Garcia [8], where a more
generic model has been proposed) for two filleted designs, namely: one with
circular areas, and the other with elliptical areas.

A circularly-filleted microcantilever is shown in Fig. 2.14, together with
the defining geometry. The filleted area extends over the entire length of the
microcantilever and the length is equal to the radius of the circular fillet. The
circular fillet is tangent to both the horizontal and vertical lines that meet at
the root, and therefore this particular configuration is called right circularly-
filleted microcantilever. The variable width of this configuration is:
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The eight compliances that characterize the elastic behavior of this design
can be calculated according to their definitions, as defined in Eqs. (2.8)
through (2.12), by using the variable width of Eq. (2.71). The bending about
the sensitive axis (the y-axis, which is contained in the plane of the figure) is
defined by the following compliances, which are calculated based on their
definition of Eqs. (2.8) through (2.10):

Figure 2.14 Geometry of a right circularly-filleted microcantilever

The corresponding stiffnesses, and can be determined
through inversion of the compliance matrix, which comprises, according to
Eq. (2.6), the individual compliances of Eqs. (2.72), (2.73) and (2.74). The
compliances that are connected to bending about the z-axis can similarly be
calculated and they are:
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Again, the stiffnesses corresponding to bending about the z-axis can be
determined by inverting the compliance submatrix, Eq. (2.6), containing the
terms of Eqs. (2.75), (2.76) and (2.77).

The axial compliance is:

and the torsional compliance for a very thin cross-section (t << w) is:

The axial- and torsional-related stiffnesses are the algebraic inverses of the
corresponding compliances of Eqs. (2.78) and (2.79), respectively.

2.2.4.2 Elliptically-Filleted Design

The right elliptically-filleted microcantilever and the defining geometric
parameters are sketched in Fig. 2.15. The length of the microcantilever is
equal to the longer semi-axis a, whereas the height of the two filleted areas is
equal to the length of the other semi-axis b, but the design with the reversed
axes is also possible.

The variable width for this design is:

The compliances corresponding to bending about the sensitive axis are:

88



2. Microcantilevers, microhinges, microbridges 89

Figure 2.15 Geometry of a right elliptically-filleted microcantilever

and the corresponding stiffnesses can be found by inverting the compliance
submatrix of Eq. (2.6).

The compliances characterizing the bending about the z-axis are:

The axial compliance is:
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The torsional stiffness for a very thin cross-section is given in Eq. (2.79).

Example 2.9
Compare the performance of a right circularly-filleted microcantilever to

the performance of a right elliptically-filleted one when and is the
friction force between the microcantilever tip and the investigated three-
dimensional surface. The microcantilevers have the same length

thickness width w = 1/4 and the other semi-axis of the
elliptical configuration is b = 2a.

Solution:
The friction force is related to the normal force as:

and therefore the tip slope is:

The ratio of the slopes can therefore be written as:

where denotes circular and indicates the elliptical.

Figure 2.16 Tip slope ratio as a function of the friction coefficient and height of the
microcantilever’s tip
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Figure 2.16 is the plot of the ratio formulated in Eq. (2.90) in terms of the
friction coefficient and the height h of the microcantilever’s tip. It can be
seen that the circularly-filleted microcantilever can rotate up to 65 % more at
its tip than the elliptical design, and that the ratio between the tip slopes of
the two designs increases quasi-linearly when both and h are increasing.

2.3 Hollow Microcantilevers

Several hollow microcantilever configurations are now analyzed, and the
trapezoid design sketched in Fig. 2.17 is one example. These
microcantilevers can be used in AFM applications where the bending
stiffness about the sensitivity axis needs to be relatively low, because this
motion is the most important one.

Figure 2.17 Hollow microcantilever for AFM applications

As mentioned previously, the tip of the microcantilever might interact
with a non-smooth three-dimensional surface (either directly, through contact,
or by preserving a specified distance to the sample), such that three force
components, and act on the microcantilever’s tip. The main
motion is the bending produced by the component as the microcantilever
is designed to be sensitive in bending about the y-axis. It is therefore
important to define the stiffness of the member about this direction. The
other two forces might also be sizeable such that the stiffnesses about the z-
axis and the x-axis can also be important. In addition, the force produces
torsion due to its offset by the quantity h, whereas the force is producing
both axial deformation and bending of the microcantilever. Compliances will
be determined for a few hollow microcantilever configurations with respect
to the six degrees of freedom that can be set to define the elastic
deformations at the free tip.
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As shown previously, the tip slopes and as well as the tip
deflection might be available experimentally, which can aid in
determining the forces on the microcantilevers via compliances/stiffnesses.

2.3.1 Rectangular Design

Figure 2.18 is the simplified model of a hollow rectangular
microcantilever with its defining geometry. The transverse portion of length

is usually designed to be stiffer than the two parallel segments, and
therefore this component can be considered rigid.

Figure 2.18 Hollow rectangular microcantilever

The point of interest in defining the elastic properties of this microcantilever
is point 3, where the loads do apply in AFM applications. The loads and the
resulting compliances can be separated into two subcategories, namely out-
of-the-plane and in-plane. The force and moments and generate
deformations that are out of the xy plane, as sketched in Fig. 2.18.
Application of these loads will generate 6 reactions at the fixed points 1 and
5. In order to find the unknown reactions and (shown in Fig.
2.18), the equations of zero displacements at point 1 have to be used in
conjunction with the Castigliano’s displacement theorem. By considering
bending and torsion of the parallel segments, the three unknown reactions
can be expressed in terms of the loads at point 3. It is thus possible to
determine the displacements at 3 by using the same theorem. The deflection

and rotation are bending-coupled and their equations are:
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with:

Equations (2.92) indicate that the compliances of the hollow rectangular
design are half the ones corresponding to a single cantilever of length 1. The
two segments, 1-2 and 4-5, are actually combined in parallel by means of the
rigid coupler 2-4, and therefore the compliances of the parallel combination
are always half the compliances of one single member. The moment
produces a torsion angle, according to:

where the torsion stiffness is:

The in-plane compliances can be determined by applying two forces,
and and a moment (none of them are shown in Fig. 2.18). By
applying the same procedure as above, the in-plane displacements and loads
that correspond to bending and axial loading are related as:

where:

The axial load and deformation are decoupled from bending and they are
related by the equation:
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where the axial compliance is:

Equation (2.98) indicates that, being composed of two bars in parallel, the
axial compliance of the hollow rectangular microcantilever is half the axial
compliance of one component.

2.3.2 Triangular Design

A triangular hollow microcantilever is now analyzed according to the
geometry shown in Fig. 2.19 (a). The out-of-the plane compliances only will
be derived here, as they are the ones of main importance. The conclusions
drawn with respect to the compliances of microstructures that are formed as
parallel combinations of identical components can also be applied here, as
the two inclined legs are identical and are coupled in parallel. It will
therefore suffice finding the compliances of one leg as sketched in Fig. 2.19
(b).

Figure 2.19 Hollow triangular microcantilever: (a) full model; (b) half model

The calculation procedure follows the one detailed previously, and therefore
application of the loads and will produce the elastic
deformations and The deformations and loads are formally
connected as:
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where the components of the symmetric matrix are:

As Eq. (2.99) indicates it, bending and torsional are coupled this time, unlike
the case of the hollow rectangular design.

2.3.3 Trapezoid Design

Figure 2.20 (a) is the simplified model of a hollow trapezoid
microcantilever’s. The stiffnesses which are of interest are found in a similar
fashion to the ones determined for the triangular configuration. The coupler
2-4 is considered rigid.

Figure 2.20 Hollow trapezoid microcantilever: (a) full model; (b) half model
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By applying a procedure similar to the one used to find the out-of-the-
plane compliances for half the triangular microcantilever, the displacements
at the mid-point 3 in Fig. 2.20 (b) can be expressed as:

The compliances of Eq. (2.106) are:

Example 2.10
A rectangular microcantilever and a triangular one, both hollow, provide

identical tip experimental data for and Assuming the two designs have
identical geometries and material properties, determine the force which is
sensed by each configuration. Consider the following numerical values:

E= 130 GPa, G = 0.8
E.

Solution:
The force detected by a hollow rectangular microcantilever is calculated

by means of Eqs. (2.91) and (2.92) which enable solving for the unknowns
and The tip force is
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The force corresponding to the hollow triangular microcantilever is
calculated by using Eqs. (2.99) through (2.102). These compliances have
been divided by 2 in order to account for the two members that compose the
triangular design. The force depends on the tip semi-angle for the hollow
design. Figure 2.21 plots the tip force in terms of the semi-angle.

Figure 2.21 Tip force as a function of the triangular microcantilever semi-angle

3. MICROHINGES

3.1 Introduction

Flexure or torsion hinges, or simply called hinges, are utilized as joints in
MEMS that provide the relative motion between two adjacent rigid links
through elastic deformation. In small-scale applications the microhinges
mainly deform in bending or torsion. Figure 2.22 (a) shows an accelerometer
whose out-of-the-plane motion is supported by four flexure hinges, which
bend and enable the z-motion of the central mass.

Figure 2.22 Two applications of monolithic microhinges: (a) accelerometer with four
flexure hinges; (b) micromirror with two torsion hinges



98 Chapter 2

Figure 22 (b) is the sketch of a micromirror whereby the rotational motion
about the x-axis is enabled by the torsion of the aligned hinges.
Constructively, the hinges of these two examples can be identical, only their
deformations and resulting operational roles are different. Figure 2.23 shows
the picture of a double-symmetry circular corner-filleted microhinge which is
realized by means of the MUMPs technology. The microhinge is fixed at one
end on the substrate and connects to a rectangular plate (which is used in this
application for electrostatic actuation/sensing) at the other end. The main
motion of this device is an out-of-the-plane bending about an axis contained
in the plane of the microflexure.

Figure 2.23 Double-symmetry circular corner-filleted microflexure

The microhinges are generally slender portions (notches) that can sustain
axial and shearing deformations in addition to bending and torsion. A
microhinge is modeled as a fixed-free member, exactly as the
microcantilever was, and therefore all the derivations that have been
developed so far in terms of stiffnesses/compliances are valid. The simplest
hinge is a constant rectangular cross-section member defined by a length 1,
width w and thickness t. The lumped stiffnesses and, conversely, the related
compliances have been given at the beginning of this chapter when treating
the microcantilevers. Other designs will be introduced here in terms of their
stiffnesses in bending about the sensitive axis, torsion and axial loading.
Figure 2.24 pictures three configurations that have fillets at their root areas.
The fillet area is a circle of radius r– Fig. 2.24 (a) and an ellipse of semi-axes
a and b – Figs. 2.24 (b) and (c). It can be seen that for all these configurations,
the total length is larger than two times the circle radius r or two times the
corresponding ellipse semi-axis.

The microhinge configurations that are pictured in Fig. 2.25 (again the
fillet area is a circle, as in Fig. 2.25 (a) or an ellipse as in Figs. 2.25 (b) and
(c)) share the feature that the total length of these designs is twice the length
of the corresponding fillet feature (either the radius r – Fig. 2.25 (a) or the
corresponding semi-axes – Figs. 2.25 (a) and (b)), and such designs are
called right microhinges. The stiffnesses characterizing the bending about the
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sensitive axis (the y-axis), the torsion and the axial loading will be given next
for a corner-filleted microhinge, such as the one pictured in Fig. 2.24 (a), for
a right circular design as sketched in Fig. 2.25 (a) and a right elliptic one –
Fig. 2.25 (b).

Figure 2.24      Filleted microhinges: (a) circular; (b) elliptic – large semi-axis is aligned with
length; (c) elliptic – small semi-axis is aligned with length

Figure 2.25      Right filleted microhinges: (a) circular; (b) elliptic – large semi-axis aligned
with length; (c) elliptic – small semi-axis aligned with length



100 Chapter 2

3.2 Designs

3.2.1 Circular Corner-Filleted Microhinge

The stiffnesses and/or compliances of the above-mentioned microhinge
configurations will be calculated for one end of the microhinge (for instance,
the right end point from where the abscissa x is measured in Figs. 2.24 (a)
and 2.25 (a)) – this end point is free and is formally denoted by 1 – with
respect to the other end which is considered fixed. Of special interest will be
the stiffnesses describing the bending about the sensitive y-axis, namely:

as well as the axial stiffness and the torsional
stiffness

For the circularly corner-filleted microhinge of Fig. 2.24 (a), the variable
width can be expressed as:

The stiffnesses that are related to bending about the sensitive axis are:

where A, B and C are functions depending on w, r and l in the form:
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The torsional stiffness for the case where t<<w is:

The axial stiffness is:

3.2.2 Right Circular Microhinge

The variable width of the right circular microhinge with the dimensions
indicated in Fig. 2.25 (a) is:

The stiffnesses that define bending about the sensitive axis (the y-axis) are:

where the function A is:

The torsion-related stiffness is:

The axial stiffness is:
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3.2.3 Right Elliptic Microhinge

For a right elliptic microhinge, as the one pictured in Fig. 2.25 (b), the
variable width is defined as:

The stiffness equations related to the main bending axis are quite complex,
and therefore the compliance equations that describe the same bending are
given here, after being calculated by means of Castigliano’s displacement
theorem. They are:

The torsional stiffness is:

The axial stiffness is:

The length l is equal to 2a in Eqs. (2.130) to (2.134), as shown in Fig. 2.25
(b).

Equation (2.134) also serves at determining the corresponding axial
compliance by simple inversion, so that the compliance of Eq. (2.132)
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can be determined. The bending-related stiffnesses can be found by inversion
of the compliance sub-matrix, namely:

Example 2.11
A right circular microhinge is designed to produce a tip slope of
under a force Determine the thickness t when l = 150

and E = 135 GPa and when the tip deflection is not taken into
account.

Solution:
The tip force can be approximated to:

in the case where no other experimental data, such as the tip deflection is
available. The cross-bending stiffness is given in Eq. (2.124). By substituting
it into Eq. (2.136), the thickness can be determined as:

and its numerical value is

4. COMPOUND  MICROCANTILEVERS

The solid microcantilevers that have been analyzed thus far were
constructed as single members, but designs do also exist with several
compliant members of different geometries making up together compound
devices that overall function as regular microcantilevers. Two cases will be
analyzed here, namely the notched microcantilever and the folded one.

4.1 Notched  Microcantilevers

Applications such as mass addition detection by means of monitoring the
tip slope of a microcantilever might require stiffnesses that have specific
values, enabling thus capturing of discrete environmental changes such as
mass deposition. For a pre-specified geometric envelope of the
microcantilever (such as a rectangle), the only way of altering the stiffness is
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by changing the geometry of the member, which can be done for instance by
cutting notches in the original rectangular profile. The design of a
microcantilever having two circular notches is pictured in Fig. 2.26 (a). This
configuration is formed of a constant rectangular cross-section portion of
length that is connected in series to the circularly-notched segment whose
length is twice the notch radius r. The serial connection of the two distinct
portions is schematically illustrated in Fig. 2.26 (b).

Figure 2.26 Circularly-notched microcantilever: (a) geometry; (b) equivalent series
connection

The overall stiffness properties of this compound cantilever can be
determined by applying a serial-connection calculation procedure, based on
Castigliano’s displacement theorem, as outlined in the previous chapter for
two constant cross-section members. A generic formulation will be first
derived here, enabling stiffness computation for any constant-thickness
flexible components that are serially connected in a compound
microcantilever design. The only required condition is that the compliances
of any of the microcantilever’s components be known. Two examples will
then be solved, based on the generic formulation.

When considering that the compound microcantilever of Fig. 2.26 (b) is
loaded by a transverse force and a moment at the free end, the
Castigliano’s displacement theorem can be applied to determine the tip
deflection and slope in the following manner:
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where the compliances of Eqs. (2.138) are calculated as:

The superscripts (1) and (2) in Eqs. (2.139), (2.140) and (2.141) indicate the
first component and the second component, respectively, whereas the same
numbers in the subscripts indicate the point where the respective compliance
has been calculated. In other words, indicates the linear compliance
of the component at the tip (the first component), calculated at point 1 and
considering that the member 1-2 is fixed at 2. Similarly, represents
the linear compliance of the component at the root of the compound
microcantilever (component number 2), calculated at point 2 with respect to
the fixed point 3. Having found the overall compliances of the compound
microcantilever, the corresponding stiffnesses are simply determined by
inversion of the symmetric compliance matrix, which consists of

and as shown in Eq. (2.127), for instance.
It is also simple to demonstrate that the overall axial and torsional

compliances are the sums of the corresponding individual compliances,
namely:

and

One of the simplest two-component microcantilevers is shown in Fig.
2.27, where two rectangular cutouts have been removed symmetrically from
a rectangular microcantilever.



106 Chapter 2

Example 2.12
Determine the stiffness that are related to bending about the sensitive

axis (which passes through the anchor) to axial deformation and torsion for a
microcantilever which if formed of two constant rectangular cross-section
segments, as sketched in Fig. 2.27. It is known that

and (the sensitive plate is denoted by 1 and the thinner
microcantilever by 2).

Figure 2.27 Microcantilever formed of two rectangular components

Solution:
The individual compliances of the two portions are:

for the free end segment and:

for the root segment. The overall compliances are found by using Eqs.
(2.139) through (2.143), which enables formulation of the 2 x 2 compliance
matrix. The stiffness matrix is determined by inversion of the compliance
matrix and its terms are:
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The overall axial stiffness is:

an the overall torsion stiffness is:

Example 2.13
Determine the mass that attaches to the microcantilever sketched in Fig.

2.26 (a), assuming that the deposition takes place at the free end on the
longitudinal (symmetry) axis. The tip slope is 0.02° and known are also
the following material and geometry parameters: E = 140 GPA,

Solution:
The free end slope can be expressed in this case as:

where is calculated by means of Eq. (2.140). The component
compliances are calculated as:

Because the gravity force is equal to mass times gravitational acceleration,
Eq. (2.149) gives the unknown mass as:



108 Chapter 2

By using the data of this example, the numerical value of the attached mass is

4.2 Folded Microcantilevers

Figure 2.28 shows a design which utilizes a folded series/parallel
configuration consisting of one microcantilever that is attached serially to
another microcantilever pair. This particular design is also known as
microcantilever-in- microcantilever – Spacek et al. [9]. The primary out-of-
the-plane bending is realized by the two side microcantilevers, such that the
deformation of the center (inner) microcantilever, which is serially connected
to the outer pair, is augmented.

Figure 2.28 Folded microcantilever

Figure 2.29 (a) is the simplified model of a planar folded microcantilever as
the one shown three-dimensionally in Fig. 2.28, and it is considered first that
the two cross microhinges 2-3 and 3-5 of Fig. 2.29 (a) are rigid.

One advantage of the folded microcantilever design is space saving,
because the compliant member 3-4 is placed inside the space enclosed by the
two root compliant members 1-2 and 5-6, as shown in Fig. 2.29 (a). Figure
2.29 (b) indicates that in reality, the member 3-4 can be mirrored with respect
to the 2-5 line and placed outside the space formed by the links 1-2, 2-5 and
5-6. On the other hand, the two identical components, 1-2 and 5-6, can be
reduced to one single component, as demonstrated for hollow rectangular
microcantilevers in this chapter. As a consequence, the equivalent simplified
model of a folded microcantilever is sketched in Fig. 2.29 (c), and consists of
two compliant members connected serially.
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Figure 2.29 Geometry and loading for a folded microcantilever. (a) beam model; (b)
simplified parallel/series model; (c) simplified equivalent series model

This last configuration was studied in the previous sub-section, and the out-
of-the-plane, bending-related compliances are:

Compared to the original equations of a two-member serial microcantilever –
Eqs. (2.139), (2.140) and (2.141) –, all compliances of the root member 2 in
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Fig. 2.29 (c) are divided by 2 because in actuality there are two such
segments – see Fig. 2.29 (b) – which are connected in parallel, and, as
demonstrated for hollow rectangular microcantilevers, the resulting
compliances of the equivalent member are half the ones of a single
component member.

Example 2.14
Compare the linear bending stiffness of a folded microcantilever having

constant rectangular cross-section compliant members with to the
linear bending stiffness of a similar folded microcantilever where
Consider the two designs have lengths that are correspondingly identical.

Solution:
For constant rectangular cross-section compliant members, the generic

Eqs. (2.154), (2.155) and (2.156) reduce to:

The stiffness matrix can be obtained by inverting the corresponding
compliance matrix, as has been previously explained in Eq. (2.135). The
generic stiffness is located in the first row and first column of the
generic stiffness matrix, and its equation is:

Figure 2.30 Ratio of stiffnesses
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The stiffness of the first design can be found by taking in Eq.
(2.160) and the stiffness of the second design also results from Eq. (2.160)
when taking The ratio of the two stiffnesses is plotted in Fig. 2.30. It
can be seen that the stiffness of the microcantilever with can be up
to 15 % higher than the stiffness of the design with

Example 2.15
Find the linear bending stiffness of the folded microcantilever

drawn in Fig. 2.31 by only considering the bending deformations in the five
parallel legs. Known are the lengths and (assume that of the
three bending-compliant legs, as well as the cross-sectional moment of
inertia, (identical for all compliant legs), and the material Young’s
modulus E. Compare this stiffness with the one corresponding to a regular
folded microcantilever with legs of length and as the one shown in Fig.
2.29 (a).

Figure 2.31 Folded microcantilever with two pairs of side long segments and a middle
shorter segment

Solution:
When only bending of the relatively-long beams is considered, the folded

microcantilever of Fig. 2.31 behaves as a serial-parallel combination of the
three different beams. Similar to the algorithm presented for a folded
microcantilever with two different beams, the present case has the following
compliances that are associated with the free end of the middle microbeam:
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where the individual compliances of the three microbeams are indicated by
the superscripts 1,2 and 3.

Figure 2.32 Stiffness ratio: two- versus three-leg folded microcantilevers

Because there are two beams number 2 and also two beams number 3, each
pair being a parallel combination of two identical beams, the respective
compliances have been divided by two, as shown in Eqs. (2.161), (2.162) and
(2.163). The stiffness can be found by inverting the symmetric
compliance matrix formed with the three compliances defined here, as the
term in the first row and first column. Its equation is:

For a two-leg folded microcantilever, the z-stiffness was determined in the
previous example.

Figure 2.32 plots the ratio of the stiffness for a regular two-leg
folded microcantilever to the similar stiffness of this three-leg configuration
for the particular case where and when considering that where
the fraction c ranges within the [1, 2.5] interval. As it can be seen, the
stiffness of the regular folded microcantilever can be up to 4 times higher
than the stiffness of the design analyzed herein.

A more complete model of the folded microcantilever would be one
accounting for torsion of the cross microhinges (which have been considered
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rigid thus far), in addition to the bending of the relatively-long beams. By
applying a force perpendicularly to the plane of the microhinge, as well as
a moment as sketched in Fig. 2.33, the out-of-the-plane bending (which
is the operational deformation of the system) can be studied.

Figure 2.33   Folded microcantilever with torsional hinges included in the model

The system is three times indeterminate because three equations of static
equilibrium can only solve for three unknown reactions out of the six
unknowns introduced by the two fixed supports 1 and 6. By applying again
Castigliano’s displacement theorem, the three reactions at point 1,
and can be determined by using the following boundary conditions:

Having found these unknown reactions, the free end deflection and slope
can be found and expressed in the known manner:

The equations of the three global compliances entering Eqs. (2.166) are quite
complex and are not given explicitly here. The following example will
however express these compliances for a particular case.

Example 2.16
Calculate the three compliances of Eqs. (2.166) for a two-leg folded

microcantilever defined by: Also
consider that Poisson’s ratio of the material is and that the
microcantilever is very thin.
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Solution:
Young’s modulus and the shear modulus are connected as:

when Poisson’s ratio is equal to 0.25. In the case of very thin cross-sections,
the relationship between the torsional moment of inertia and the regular
(bending) moment of inertia is:

By using Eqs. (2.167) and (2.168), together with the relationships known in
this example, the following compliances are obtained:

5. MICROBRIDGES

5.1 Introduction

Microbridges are essentially microcantilevers (or microhinges) that are
fixed at both ends. They are mainly used in MEMS applications such as
filters and switches. Actuation is usually applied over a region located about
the member’s center line, such that out-of-the-plane bending motion is
achieved. The main stiffness of a fixed-fixed constant rectangular cross-
section member is the one relating to z-translation (bending about the y-axis)
and is formulated at the midpoint of the bridge, as sketched in Fig. 2.34.

Figure 2.34 Microbridge as a fixed-fixed beam
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Figure 2.35 is the photograph of a microbridge built by means of the
MUMPs technology and which consists of two notched areas that border a
central plate where electrostatic actuation/sensing can be applied. The
advantage of this particular configuration is that bending is localized at the
two notch regions such that the central portion can perform an out-of-the-
plane motion, which more closely resembles the translation of a rigid body.

Figure 2.35 Prototype microbridge with two circular corner-filleted hinges

5.2 Single-Profile Designs

The main motions that are of interest here are the out-of-the-plane
bending and the torsion about an axis passing longitudinally through the
microbridge and its two anchors. As a consequence, two stiffnesses,
and both evaluated at the symmetry center of the microbridge (see Fig.
2.36) will be calculated next. Examples of this generic design include the
constant rectangular cross-section, the circularly-filleted, the right-circular
and right-elliptic configurations that have been analyzed in this chapter’s
section dedicated to microhinges.

Figure 2.36 Microbridge of double symmetry
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For all these designs, stiffnesses or compliances have been derived at the
free end with respect to the opposite fixed one. It is considered that the
microbridge has a variable cross-section and is symmetric about both the
longitudinal and transverse axes in its front section, as indicated in Fig. 2.36.
These features will enable expressing the sought stiffnesses of the whole
microstructure in terms of the compliances that have already been defined for
half the structure.

5.2.1 Bending

The z-direction stiffness at the midspan of a microbridge can be
determined by considering that a force loads the fixed-fixed beam
(microbridge) shown in Fig. 2.37. The stiffness of this beam about the z-
direction at the midpoint can be calculated as:

Figure 2.37 Microbridge loaded with a force at its midpoint

The two unknown reactions ... and need to be first determined in order
to enable subsequent calculation of the deflection The slope and
deflection are zero at point 1, and therefore Castigliano’s displacement
theorem can be applied in the form:

After expressing the bending moments on the two intervals, 1-2 and 2-3, Eqs.
(2.171) can be written in the form:
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By using the following variable change (as indicated in Fig. 2.36):

it is possible to express the integrals taken between 0 and l/2 in Eqs. (2.172)
as:

where the superscript 1 indicates the first (1-2) symmetric part of the
microbridge of Fig. 2.36. All the compliances in Eqs. (2.174), (2.175) and
(2.176) are calculated at point 2 (assumed free) with respect to the fixed
point 1. Such compliances have been provided for various microhinge
configurations in this chapter.

The integrals that are taken between the limits of l/2 and l in Eqs. (2.172)
can be expressed in a more convenient manner by using the following change
of variable:
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and this enables formulating the integrals in terms of the compliances of the
second interval, 2-3 (where 2 is considered free and 3 fixed) as:

The superscript 2 in Eqs. (2.178) through (2.180) indicates the second (2-3)
symmetric segment of the microbridge of Fig. 2.36, and the compliances of
the same equations are calculated at point 2 (considered free) with respect to
the fixed point 3. Because the way in which the variables and have been
chosen, and because the two segments, 2-1 and 2-3, are identical, it follows
that any compliance denoted by the superscript 1 in Eqs. (2.175) through
(2.177) is identical to the corresponding compliance bearing the superscript 2
in Eqs. (2.178) through (2.180). As a consequence, Eqs. (2.172) permit
solving for the unknowns and in the form:

The superscript 2 indicates again that the compliances in Eqs. (2.181)
correspond to one symmetric half of the microbridge sketched in Fig. 2.36.
The deflection at midpoint 2 can now be found by using a procedure similar
to the one that gave the reactions at point 1, namely:

After performing the necessary calculations, it is found that the bending
stiffness is:
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A check was performed by considering that the cross-section is constant, and
the compliances of Eq. (2.183) reduced to the simpler form:

By substituting Eqs. (2.184) into Eq. (2.183), the stiffness becomes:

which is indeed the stiffness of a constant cross-section fixed-fixed beam of
length l.

Example 2.17
Compare the bending stiffness of a right elliptic microbridge, as the one

sketched in Fig. 2.25 (b), to the bending stiffness of a constant rectangular
cross-section microbridge. The two microstructures have the same length,
thickness, minimum width and material properties.

Solution:
The right elliptic microbridge is formed of two identical right elliptically-

filleted microhinges (as the one sketched in Fig. 2.14). As a consequence, by
using the compliances of Eqs. (2.81), (2.82) and (2.83), the stiffness of Eq.
(2.183) can be found for the right elliptic microbridge.

Figure 2.38 Bending stiffness comparison between right elliptic microbridge and constant
rectangular cross-section microbridge



120 Chapter 2

The bending stiffness of a constant rectangular cross-section microbridge
is given in Eq. (2.185), and consequently, the ratio of the two microbridges,

can be expressed just in terms of the parameters b and w, as
plotted in Fig. 2.38. The bending stiffness of the right elliptic microbridge
can be 10 times larger than the stiffness of the constant cross-section design,
as illustrated in Fig. 2.38.

5.2.2 Torsion

A torque is applied at point 2 of the microbridge sketched in Fig
2.37 in order to determine the torsion-related stiffness at that point. The two
end-point torque reactions are equal to half the torque that is applied at
midpoint 2. The torsional stiffness is defined as:

The angular displacement at point 2 is found by means of Castigliano’s
displacement theorem as:

By applying considerations similar to the ones presented for bending, the
torsional stiffness can be expressed as:

where the compliance of Eq. (2.188) corresponds to the 2-3 interval of the
microbridge.

For a thin, constant cross-section configuration, the torsional stiffness of
Eq. (2.170) simplifies to:

which is indeed the known relationship.

5.3 Compound Designs

Microbridges can be formed of different compliant segments that are
connected serially and are fixed at the extremities of the chain, as pictured in
Fig. 2.39 for instance. Figure 2.39 gives the geometric dimensions of a
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microbridge which is composed of two identical segments, 1-2 and 4-5,
which are adjacent to the middle segment 2-4.

Figure 2.39 Microbridge formed of three compliant segments

Such a design can use microhinges for the identical parts 1-2 and 4-5,
enabling thus the mid-segment to either translate about the z-axis (as in the
case where a transverse force acts on it, as shown in Fig. 2.39), or to rotate
about the longitudinal x-axis, under the action of a torque. As a consequence,
the bending stiffness and the torsion stiffness that are connected to the mid-
point 3 might present interest and will be derived in the following.

5.3.1 Bending

Bending of the compound microbridge of Fig. 2.39 will be analyzed first
under the assumption that a transverse force acts at the midpoint 3. The
aim is to find the linear direct bending by following a derivation
similar to the one detailed for single-profile microbridges. Before
determining the sought stiffness, an example will be solved in order to
establish connections between the compliances calculated at the midpoint of
a microcantilever and the corresponding ones determined with respect to the
free end.

Example 2.18
Find the bending-related compliances connected to the midpoint of a

microcantilever of length l and of constant cross-section in terms of the
compliances determined with respect to the free end, according to Fig. 2.40.

Figure 2.40 Model for mid-point compliances of a microcantilever
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Solution:
By applying Castigliano’s displacement theorem, the deflection and

slope at point 2 can be calculated as:

which indicates that the compliances are:

and therefore, each of these compliances has the general form of the full-
length compliances given in Chapter 1, but they are calculated for half the
length. They can be expressed in terms of the compliances corresponding to a
microcantilever of length l as:

Returning to the generic microbridge of Fig. 2.39, the unknown reactions
and are first determined by applying Castigliano’s displacement

theorem and the zero deflection and zero slope boundary conditions at point
1. The reactions are of the form:

where the constants and are calculated as:

The coefficients of Eqs. (2.194) depend on the compliances of the individual
portions 1-2, 2-4 and 4-5 in the form:
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The linear direct stiffness is eventually found to be of the form:

where:

The formulation given here allows for two end segments of various shapes,
provided they are identical and of double symmetry (as the microhinges
treated in this chapter). The same requirement of double symmetry applies
also to the middle segment, but usually this can be selected as having
constant cross-section. A check has been performed for this model by
assuming that all segments have identical constant rectangular cross-section
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and, in addition: By using these particular values the stiffness
given in Eq. (2.184) has been obtained, and this validates the more generic
model developed here.

Example 2.19
Determine the bending stiffness connected to the midpoint of a

microbridge which is formed of two identical segments of length l and
constant cross-section of moment of inertia that are placed at the ends and
are adjacent to a middle segment of length l and constant cross-section with

Solution:
The compliances of the two different compliant segments are:

where i = 1, 2. By using the particular parameters of this problem, it is found
that the linear stiffness is:

Example 2.20
A microbridge is formed of three segments of constant rectangular cross-

section, the end portions being identical, as in Fig.2.41. Find the maximum
deflection when the central segment is acted upon by a distributed load q.

Figure 2.41 Microbridge with distributed load on the middle segment

Solution;
A dummy load in the end) needs to be applied at point 3 in order

to enable calculation of the deflection The procedure is similar to the
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previous ones that have already been presented. The unknown reactions have
to be first determined as functions of the distributed load q and the dummy
force followed by calculation of The calculus tool is again
Castigliano’s displacement theorem. The bending moments are next given,
which provides the means of solving the two above-mentioned tasks:

In the end, the deflection at the mid-point 3 is:

5.3.2 Torsion

A similar approach can be applied when a torque is applied to the
compound microcantilever of Fig. 2.39. The reaction moment at the end 1 is
determined to be (by applying the zero rotation angle at that point and
through Castigliano’s displacement theorem):

The torsional stiffness at the midpoint 3 is then calculated as:

For a microbridge formed of three identical segments of identical rectangular
cross-section with Eq. (2.210) simplifies to:

which is the known equation, also given in Eq. (2.189).



126 Chapter 2

Problems

Problem 2.1
For a constant rectangular cross-section microcantilever, the tip force

that corresponds to the tip deflection and slope can be expressed as shown in
Eq. (2.21) with the stiffnesses being:

However, one can approximate the individual compliances
as being the algebraic inverses of the corresponding stiffnesses as:

Determine the maximum relative
errors between the force calculated according to the first set of stiffnesses
and the same force calculated by the second set of stiffnesses, when

and and

Answer:
Maximum relative error = 50%

Problem 2.2
Design a solid rectangular microcantilever such that its linear bending

stiffness about the bending-sensitive axis, is 16 times smaller than the
other linear bending stiffness and 100 times smaller than the axial
stiffness

Answer:

The thickness can be chosen arbitrarily.

Problem 2.3
Determine the mass that adheres to a constant rectangular

microcantilever with and E = 150 GPa
assuming the deposition produces no torsion of the microcantilever. Known
are also the tip displacements and

Answer:

Problem 2.4
A circularly-filleted microcantilever is used in a magnetic writing

application. Find the maximum values of the tip force components and
considering that is negligible. The parameters defining the

microcantilever are: E = 200 GPa, and
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Answer:

The maximum tip slopes are determined experimentally as:
and

The corresponding numerical values are: and

Problem 2.5
In a microcantilever-based force detection application the experimental

equipment can sense maximum tip displacements of and
A rectangular design can be used in a rectangular envelope of
and The microfabrication technology produces a thickness of

and the tip has a height of The material is polysilicon with E =
130 GPa. What are the forces and that can be detected by a solid
configuration and by a hollow one (both designs have the same square cross-
section) ?

Answer:

For the solid design the forces are: and
For the hollow configuration they are: and

Problem 2.6
A hollow microcantilever needs to be designed in either a triangular or a

rectangular configuration in an application where the direct linear
compliance about the sensitive bending axis has to be maximum. If the cross-
section is a square with the side and the geometrical envelope for
both design variants is a rectangle of length and width
decide the design that has to be selected.

Answer:
For the triangular design the main geometric parameters are:

The triangular-to-rectangular compliance ratio is 1.034, and therefore the
triangular design should be utilized in this application.
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Problem 2.7
A hollow trapezoid microcantilever is designed to operate in an

application where the torsion-produced tip slope is not available, and
therefore the effects of torsion have to be minimum. If the cross-section is
square and the maximum area where the trapeze can be
inscribed is a rectangle defined by and what is the best
design for this application ? Known are E = 130 GPa and

Answer:
The lengths defining the trapeze are:

and the trapeze semi-angle can range between the values of 0 to arctan
[w/(21)]. The torsional compliance is minimum for a semi-angle and
therefore for a rectangular configuration.

Problem 2.8
Determine the direct linear stiffness about the z-direction at point 3 for

the hollow microcantilever sketched in Fig. 2.42. Consider that only the two
thin circular portions are compliant and have a square cross-section of side

The angle is 90° and the radius r is Young’s modulus is E
= 130 GPa and Poisson’s ratio is (Hint: Formulate the compliance
matrix for half of the symmetric microcantilever.)

Figure 2.42 Geometry of a hollow circular microcantilever

Answer:

Problem 2.9
A constant rectangular cross-section microhinge with
has to be replaced by a circularly-filleted one having the same length and
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minimum width as the original design in order to increase the axial stiffness
by 50%. Determine the fillet radius which will produce this stiffness.

Answer:
The axial stiffness of the circularly-filleted microhinge is 1.5 times the

axial stiffness of the rectangular configuration. The fillet radius is

Problem 2.10
A circularly-notched microcantilever is used as a torsional balance in a

mass deposition detection application. The constant rectangular segment is
defined by and The notch width is and
the shear modulus is G = 80 GPa. If the notch radius is what is the
thickness t which will produce an overall torsional stiffness of
Nm?

Answer:

Problem 2.11
A folded microcantilever has a fixed length of the longer, identical legs

and the same cross-section for all three legs. Determine the length of the
middle leg that would minimize the out-of-the-plane bending stiffness of
this design.

Answer:
If the relationship exists between the two lengths: then the linear

bending stiffness is minimum when c = 1 (the legs have identical lengths).

Problem 2.12
Design a constant rectangular cross-section microbridge whose torsional-

to-bending stiffness ratio is maximum.

Answer:
The stiffness ratio is:

and therefore the length of the microbridge has to be maximum whereas the
material has to have a minimum Poisson’s ratio.

Problem 2.13
A microbridge consists of two end corner-filleted microhinges defined

by and a middle plate of constant
rectangular cross-section defined by and
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(all segments have the same thickness). By also knowing E = 150 GPa,
calculate the central transverse force, which will produce a maximum
deflection of

Answer:

Problem 2.14
A microbridge is formed of three constant rectangular cross-section

members, of which the end ones are identical, The microbridge is acted upon
by a central torque Knowing

and G = 60 GPa, determine the maximum
angular deformation of the microbridge.

Answer:

Problem 2.15
A microbridge is formed of three constant rectangular cross-section

segments (the end ones being identical) with Find the proper ratio
which will maximize the mid-point deflection under the action of a

distributed load acting on the middle segment. (Hint: Plot

Answer:
The ratio c needs to be maximum.
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Chapter 3

MICROSUSPENSIONS

1. INTRODUCTION

This chapter introduces the microsuspensions, which are MEMS
components that accomplish the double role of supporting other components,
which are regularly rigid, and of providing the necessary flexibility in a
microdevice that has moving parts. Essentially springs, the microsuspensions
are characterized here by means of their stiffnesses, which are derived both
about the main direction of motion and about other directions (degrees of
freedom) where other motions – usually undesired – may occur. The lumped-
parameter stiffness equations of these microcomponents will further be
utilized in Chapter 5 in order to study the static response of microdevices that
incorporate microsuspensions.

Several microsuspension designs are comprehensively presented, for
linear (translatory) motion such as beams, bent beams, U-springs, serpentine
springs, bent beam serpentine springs, sagittal springs or folded beams. Other
designs, such as the curved-beam springs and the spiral springs, which are
intended for rotary motion applications, are also treated in detail. Solved
examples are again included in order to better characterize the various
designs and to compare their performances. The chapter concludes with a set
of proposed problems.

2. MICROSUSPENSIONS FOR LINEAR MOTION

Although the microsuspension designs of this section can be sensitive to
rotary motion, they are mainly intended to operate as linear springs in
devices that undergo translatory motion.

2.1 Beam Suspensions

The simplest microsuspension is a beam which enables a rigid body to
translate, to rotate or to displace in a combined translatory-rotary motion. In
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doing so, the beam elastically deforms mainly under bending or/and torsion.
Figures 3.1 and 3.2 illustrate two microaccelerometer configurations that are
supported by two identical beams (Fig. 3.1) and by four identical beams (Fig.
3.2), respectively. Each beam is fixed at one end by means of an anchor.

Figure 3.1 Two-beam microaccelerometer

Figure 3.2 Four-beam microaccelerometer

The center proof mass of Fig. 3.1 can perform three different types of
motions, namely: translation about the y-axis, out-of-the-plane translation
about the z-axis and rotation about the x-axis. Any combination of these
basic motions is also enabled. The beams will deflect in bending for each of
the translatory motions of the proof mass and will rotate as a result of torsion
during the rotary motion of the proof mass. The microaccelerometer of Fig.
3.2 is designed to be sensitive to translation about the z-axis, as well as to
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rotations about the x-axis and the y-axis, respectively. Translation about
either the x- or y-axis is possible, but at least one of the four members is
subject to compression in that case, which might lead to elastic instability (or
buckling), as will be discussed in Chapter 5.

Each beam-spring will be defined by means of stiffnesses that related to
either bending or torsion. Figure 3.3 is the model of a beam suspension, and
indicates the corresponding boundary conditions and the load generated by
the central mass inertia when the motion about the z-axis is of interest.

Figure 3.3 Beam-spring model for bending-related stiffness

In order to find the linear direct-bending stiffness (or simply the
procedure that has been applied within the previous chapters is again utilized.
A force is applied and the unknown bending moment reaction is
determined followed by calculation of the deflection which enables
specification of the sought stiffness. Both steps are solved by means of
Castigliano’s displacement theorem. It can be shown that in the case where
the beam has a variable cross-section, the stiffness is:

where:

The compliances of Eqs. (3.1) and (3.2) have been given in Chapter 1 for a
constant rectangular cross-section beam. By substituting them in Eqs. (3.1)
and (3.2), one obtains:

The bending compliances of Eqs. (3.1) and (3.2) can be expressed in terms of
their corresponding stiffnesses, as shown in Chapter 1, in the matrix form:
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By substituting the compliances of Eq. (3.4) in Eqs. (3.1) and (3.2) results in:

which shows that the linear direct-bending stiffness of a fixed-guided beam
here) is identical to the one of a fixed-free beam – see Example

1.1, for instance. For a fixed-guided beam of constant cross-section, the
bending stiffness (see Young and Budynas [1] for instance) is given by Eq.
(3.3), which confirms the more generic Eq. (3.5)

The stiffness that is related to bending about the y-axis can be
determined similarly, and its equation is:

with:

It can be shown that this stiffness of the fixed-guided beam is equal to the
stiffness of its corresponding fixed-free beam, namely:

Similarly, the torsion stiffness of this configuration is:

where is the torsional stiffness of the same-geometry, fixed-free
beam. When subject to axial extension, the resulting stiffness at the guided
end 1 is:

where is the axial stiffness of the fixed-free beam. Defining the axial
stiffness of a beam spring makes physical sense as point 1 of Fig. 3.3 can be
attached to a rigid mass (such as the proof mass of Fig. 3.1) that might
translate about the x-direction and cause the beam to deform axially.
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Example 3.1
A constant square cross-section beam is connected to a shuttle mass in a

bending-sensitive accelerometer. Design the beam-spring such that it can
sense a minimum tip force of when a displacement sensor, as
the one sketched in Fig. 3.4, can detect linear displacements with an accuracy
of Consider that and that
Design also a circular corner-filleted microhinge, having the fillet radius

and w = t, in addition to the other properties of the constant cross-
section beam (w and t are the cross-sectional dimensions).

Figure 3.4 Model of a beam spring with displacement sensing

Solution:
The stiffness of the constant cross-section beam is given in Eq. (3.3),

which, after substitution of the cross-sectional moment of inertia:

and of the relationship between t and l, produces the following length of the
constant cross-section beam:

or, numerically, Accordingly, the thickness of the square cross-
section is:

For the circular corner-filleted microhinge, the bending-related stiffness
has explicitly been given in Eqs. (2.114), (2.117), (2.118) and (2.119) –
Chapter 2. If all the necessary substitutions are made, the length of the
microflexure is and It can be seen that the
length of the constant cross-section beam is almost three times larger than the
length of the circular corner-filleted microhinge.

Example 3.2
An angular accelerometer is suspended by mean of two torsion beams at

its ends, as shown in Fig. 3.2. A torque is expected to act on a beam-
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spring at its connection point to the mass. Compare the maximum rotation
angle of a constant rectangular cross-section beam when w = 5 t with the
maximum rotation angle of a right elliptic microhinge having the same length
and minimum width with the constant cross-section design, and a root
parameter b = 1/5.

Solution:
The maximum rotation angle generated by a torsion hinge is:

The ratio of the maximum rotation angle for a constant rectangular cross-
section spring to the similar rotation angle corresponding to a right elliptic
microhinge is:

where the superscript denotes elliptic. Figure 3.5 is a three-dimensional plot
of this ratio as a function of the minimum width w and length 1. It can be
seen the elliptical hinge is up to 6 times stiffer than the corresponding
constant rectangular cross-section beam-spring.

Figure 3.5 Constant cross-section versus right elliptic torsion microhinges by means of the
rotation angle

Example 3.3
Determine the linear direct-bending stiffness of one of the four

inclined beams which connect to the central mass of Fig. 3.6 (a) and compare
this stiffness to the stiffness of a beam with no inclination in Fig. 3.6
(b)).
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Solution:
The procedure followed previously for the non-inclined beam-spring also

applies here, but in addition to calculating the unknown bending moment
the reaction force as sketched in Fig. 3.6 (b), needs to be calculated in
the beginning.

Because both the rotation and the displacement are zero, these two
conditions will provide the equations to solve for and They can be
expressed in terms of and therefore the displacement can now be
determined such that the sought stiffness is expressed as:

Figure 3.6 Inclined beam spring: (a) accelerometer configuration; (b) Geometry, loads and
reactions

where:

and:

By taking in Eq. (3.15), (3.16) and (3.17), Eqs. (3.6) and (3.7) are
retrieved, as expected. Equation (3.15) can also be expressed in terms of
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stiffnesses by utilizing the matrix transformation of Eq. (3.4), and the
stiffness becomes:

Equation (3.18) simplifies to Eq. (3.8) when which checks the validity
of the generic model. Figure 3.7 plots the ratio of the stiffnesses that are
given in Eqs. (3.8) and (3.18) in terms of the parameter and a parameter c
(it has been assumed that the length and width are related as l = cw). It can be
seen that the stiffness of the straight beam increases noticeably, compared to
the stiffness of the inclined beam. When the inclination angle and the
parameter c increase towards their upper limits in the selected ranges, the
stiffness ratio reaches a local maximum.

Figure 3.7 Inclined-to-straight beam-spring stiffness ratio

2.2 Bent Beam Suspensions

A spring design which is formed of two compliant straight segments that
are perpendicular can be utilized to enable the two-axis motion of a rigid,
such as the one shown in Fig. 3.8, where four springs support the central
mass symmetrically. While the body translates about one of the directions
indicated in the figure, the spring leg that is directed perpendicularly to the
motion direction will bend, whereas the other leg will be subject to axial
extension/compression in addition to bending. Figure 3.9 indicates the
geometry of a bent beam suspension (also called corner spring), where the
two legs have different lengths. The boundary conditions are assumed to be
fixed-free, as also indicated in the same figure. The main deformations of a
bent beam spring are planar and they result from the two-dimensional motion
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of the central mass. However, the bent beam is also sensitive to z-axis
parasitic loading, generated by the weight of the central mass. As a
consequence, in-plane stiffnesses about the x- and y-directions, as well as the
out-of-the-plane stiffness about the z-direction will be derived for this
microsuspension.

Figure 3.8 Rigid body and four bent beam springs for planar motion

Figure 3.9 Geometry of a bent beam microsuspension

The in-plane deformations of the bent beam can be studied by applying
the loads and and by calculating the corresponding tip
displacements and through Castigliano’s displacement theorem.
The strain energy collects contributions from bending and axial loading on
the two segments, 1-2 and 2-3. The tip deformations can be related to the tip
loads by means of a compliance matrix in the form:
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The terms of the compliance matrix are:

The superscripts (1) and (2) refer to the first segment 1-2 and to the second
one 2-3, respectively. The compliances of the right-hand side of Eqs. (3.20)
through (3.25) are calculated for each of the two members with respect to
their local frames. In doing so, members of different geometries (defined as
free-fixed microhinges) can be utilized in a bent beam design. A stiffness
matrix can be defined by inverting the compliance matrix of Eq. (3.19):

In the case the two compliant segments of the bent beam are identical, the
particularly-important in-plane stiffnesses are:
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When the axial deformations are negligible compared to the bending
deformations, Eqs. (3.27) and (3.28) can still be used by considering that the
axial compliances of the two segments are zero (axially rigid members).

The mention was made in Chapter 2 that the stiffnesses defined by
inverting the compliance matrix are different from the stiffnesses that are
calculated as:

and that the stiffnesses of Eqs. (3.27) and (3.28) should be used when forces
need to be calculated based on known displacements. However, Eqs. (3.29)
are used as definition relationships and their values can be obtained by using
the transformation Eqs. (2.25) of Chapter 2 from the stiffnesses of Eqs.
(3.26).

The out-of-the-plane definition stiffness can be determined by applying a
force at point 1 of Fig. 3.9 about a direction perpendicular to the bent
beam’s plane and by calculating the corresponding displacement. By taking
bending and torsion into account, the z-direction stiffness is:

Example 3.4
Calculate the mam stiffnesses of a bent beam microsuspension with

identical legs and of constant rectangular cross-section. Evaluate the errors in
calculating by its definition – Eqs. (3.29) – as opposed to the compliance
derived stiffness of Eq. (3.27).

Solution:
For this particular case, the linear in-plane stiffnesses are equal, namely:

and the z-axis stiffness is:

It has been considered that w << t (very thin cross-section) and therefore:
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The ratio of the x-axis stiffnesses becomes:

and for and this ratio is almost
constant with a 2.5 approximate value.

2.3 U-Springs

Microsprings that have the approximate shape of the letter U (called here
U-springs) are mainly used in applications involving translatory motion of
rigid bodies. Due to symmetry about the axial (motion) direction, the proof
mass can translate about that axis, as suggested in Fig. 3.10.

Figure 3.10 Proof mass in translatory motion with four U-springs attached frontally

Other (parasitic) motions, either planar or out-of-the-plane (especially due to
the self-weight of the proof mass) are also possible, hence quantifying the
stiffnesses about the direction perpendicular to the motion direction and the
direction perpendicular to the plane of the microdevice of Fig. 3.10 will also
be done, in addition to formulating the main stiffness about the motion
direction.

Figure 3.11 pictures a U-spring with the reference frame that is used to
define the linear stiffnesses of interest, and which are (the stiffness related
to the main translatory motion of the proof mass shown in Fig. 3.10), (the
stiffness defining the elastic properties of the U-spring when the body
translates about a direction perpendicular to the main one and is contained in
the plane of the microdevice) and (the stiffness which describes the spring
behavior for the case of an out-of-the-plane motion about the z-direction, as
indicated in Fig 3.11).
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Figure 3.11 U-spring model with boundary conditions, main degrees of freedom, and
corresponding forces

As a result of these three translatory motions of the shuttle, the true
boundary condition at point 1 in Fig. 3.11 is a forced translation about the x-
axis. However, as a simplification to the real situation, it may be considered
that point 1 is free to move, as also assumed previously with the bent beam
microsuspension. Because the force acting at that point is basically directed
about the same direction, the errors of considering point 1 as free are expected
to be small. Three different configurations will be analyzed in the following:
one with sharp corners, a second one where the short straight link of the
model is substituted by half a circle, and a third variant with filleted corners.

2.3.1 U-spring with Sharp Corners (Configuration # 1)

Configuration # 1 is formed of three elastic segments, as shown in Fig.
3.12. In order to keep the formulation valid for a generic case, they can have
different but constant cross-sections. It will also be considered that only
bending of each of the three segments contribute to the total strain energy of
the spring. The in-plane compliances are calculated by applying the loads

and as shown in Fig. 3.12, and by calculating the corresponding
displacements and Castigliano’s displacement theorem is applied
again in order to calculate these displacements. A compliance matrix of the
type shown in Eq. (3.19) can be formulated, whose terms are:
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Figure 3.12 U-spring design with sharp corners

The stiffness is the element of the stiffness matrix (which is the inverse of
the compliance matrix consisting of the elements defined in Eqs. (3.35)
through (3.40)) located on the first row and first column. Similarly, the
stiffness is the element placed on the second row – second column position
of the same stiffness matrix. The definition stiffnesses are simply the inverses
of the corresponding compliances, and

The stiffness about the z-direction is calculated in the definition sense that
has been introduced in the previous chapters and was also mentioned
previously in Eq. (3.30) for instance. Its expression is found by taking the
ratio of a force which is applied at point 1 in Fig. 3.12 about a direction
perpendicular to the plane of the microdevice to the corresponding
displacement namely:
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Example 3.5
Analyze the change in the main compliance of a U-spring when the axial

deformations are also taken into account. Consider that the three legs have
identical constant rectangular cross-sections.

Solution:
In the case where the axial deformations are considered, the strain energy

will include terms induced by the axial effects, in addition to bending-
produced ones, but the procedure of calculating the main compliance,
remains the same. For a constant rectangular cross-section, the ratio of the
bending-related compliance to the compliance that considers both bending
and axial effects becomes:

Figure 3.13 Compliance ratio in terms of and

Figure 3.14 Compliance ratio in terms of w and
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Equation (3.42) indicates that the model including bending effects generates a
compliance about the main direction of action which is very slightly larger
than the compliance yielded by the model that adds axial effects to bending.
Figure 3.13 is the plot of the compliance ratio of Eq. (3.42) as a function of
and when and Similarly, Fig. 3.14 is the plot of the
same compliance ratio in terms of w and when As both
figures indicate, the compliance ratio is in the very close vicinity of 1 when
the design variables of Eq. (3.42) span relatively wide ranges, which indicates
that neglecting the axial effects has little influence on the main compliance.

Example 3.6
Find the definition stiffness of a U-spring about the y-direction in the case

where the middle leg has a small length which implies considering the
additional shearing effects and associated deformations. Compare the
resulting stiffness with the regular one determined by means of the
compliance of Eq. (3.38) in the case where and

Solution:
When the length is only about 3-5 times greater than the largest cross-

sectional dimension, the deformation produced by the shearing force
has to be accounted for in addition to bending. The displacement at point 1
about the y-direction in Fig. 3.12 is calculated by means of Castigliano’s
displacement theorem as:

where the subscripts in bending moments M and shearing force S indicate the
specific segment out of the three ones making up together the U-spring. The
linear stiffness about the y-direction can be expressed according to its
definition as:

whereas the same stiffness which only considers bending is:

By constructing the ratio of the y-axis stiffness in Eq. (3.44) to the stiffness of
Eq. (3.45), the plot of Fig. 3.15 can be drawn in terms of the lengths and
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for It can be seen that the stiffness ratio is almost constant and equal
to 1, which indicates that the shearing effects are not particularly large.

Figure 3.15 Stiffness ratio in terms of and

2.3.2 U-spring with Circular Short Link (Configuration # 2)

As Fig. 3.16 shows it, configuration # 2 incorporates a semi-circular
portion instead of the straight segment 2-3 of the previous design.

Figure 3.16 U-spring design with circular short link

There are two possibilities, connected to the form factor of the semi-
circular section. It is known (see Young and Budynas [1], for instance) that
for thin curved beams, when the ratio of the radius R to the cross-sectional
width w is greater than 10, the deformations of the curved beam can safely be
treated by using the tools applicable to straight beams. By applying the same
procedure that has been used for the U-spring configuration # 1, and by only
taking bending of the three segments into account, the in-plane compliances
of the constant cross-section design are:
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By arranging these compliances into a 3 by 3 symmetric compliance matrix,
the corresponding stiffness matrix can be obtained through inversion of this
compliance matrix. When the definition stiffnesses are needed, then simple
inversion of the individual compliances of Eqs. (3.46) through (3.51) will
produce these stiffnesses.

For designs where the circular segment is relatively short (R < 10 w),
Young and Budynas [1] recommend using the following bending energy:

where e is the eccentricity, which, for a rectangular cross-section, can be
calculated by means of Eq. (1.122). By applying again Castigliano’s
displacement theorem for the configuration of Fig. 3.16 in the presence of the
tip loads and (not shown in Fig. 3.16), the resulting displacements

and can be found by means of the following compliances:
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The out-of-the-plane definition stiffness is found by applying a force at the
free point of the spring in Fig. 3.16, perpendicularly to the plane of the figure.
This stiffness is the ratio of the applied force and the resulting deflection to its
equation is:

2.3.3 U-spring with Filleted Corners (Configuration # 3)

Configuration # 3 is sketched in Fig. 3.17 where the middle segment is
composed of two quarter-circles encompassing a straight line such that overall,
this spring configuration is made up of five segments.

Figure 3.17 U-spring design with circularly-filleted corners

For a thin configuration where the radius-to-width ratio R/w is larger than
10, and in the case where all segments have the same constant cross-section,
the in-plane compliances can be determined by following the procedure that
has been used for the other U-spring configurations. Their expressions are:
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For a relatively-thick design (R / w < 10), the in-plane compliances are:

As Fig. 3.17 indicates, when the radius of the two circular portions is zero, the
current design transforms into the design configuration # 1, whereas when

configuration # 3 changes into configuration # 2. Checks have been
performed in order to verify whether the corresponding stiffnesses of either
configurations #1 or # 2 are retrieved by using the particular geometric
parameters limits mentioned above. When R 0, Eqs. (3.60) through (3.65)
transform indeed into Eqs. (3.35) through (3.40), respectively, which define
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configuration # 1. Similarly, when the same Eqs. (3.60) through (3.65)
change into Eqs. (3.46) through (3.51), respectively, which define
configuration # 2. All these calculations confirm the correctness of the
equations derived here.

The out-of-the-plane stiffness for this configuration # 3 is:

Example 3.7
Decide which of the three U-spring configurations is the most compliant

about the main direction of motion when compliant members of all design
variants have the same rectangular cross-section and can be inscribed each in
the same rectangle of sides equal to and Also known are

and

Solution:
The compliances of the three U-spring configurations will be

compared by analyzing compliance ratios. It can be seen that while the first
two configurations have their compliances determined by the parameters
given in this example, the third configuration can have various compliances
because the radius R can take any value from 0 to

The following compliance ratios are discussed:

where the superscripts 1, 2 and 3 denote the first, second and third
configuration, respectively.

Figure 3.18 is the plot of the first ratio defined in Eqs. (3.73) as a
function of the radius R, in the case R / w > 10 for configuration # 3.
Similarly, Fig. 3.19 pictures the second ratio of Eq. (3.73). As Fig. 3.18
indicates it, the design configuration # 1 is more compliant than the design
configuration # 3, but they tend to be equal for small radii. Configuration # 2
is less compliant than configuration # 3, but for large radii, the two designs
have almost identical compliances. Similar plots are drawn in Figs. 3. 20 and
3.21 when R / w < 10 for configurations # 2 and # 3.
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Figure 3.18 Compliance comparison: configuration # 1 versus configuration # 3 (R / w > 10
for configuration # 3)

Figure 3.19 Compliance comparison: configuration # 2 versus configuration # 3 (R / w > 10
for both designs)

Figure 3.20 Compliance comparison: configuration # 1 versus configuration # 3 (R / w < 10
for configuration # 3)
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Figure 3.21 Compliance comparison: configuration # 2 versus configuration # 3 (R / w < 10
for both designs)

The trends that have been mentioned for the case where R / w > 10 are also
seen when R / w < 10. As a conclusion, configuration # 1 is the most
compliant about the x-direction, followed by configuration # 3 and
configuration # 2, which is the stiffest.

Example 3.8
Compare the performance of the U-spring configurations # 1 and # 3 in

terms of the out-of-the-plane stiffness about the z-direction in the case where
w = 10 t and where c is a parameter. Consider the

stiffness equations according to the definition.

Solution:
Again, the following stiffness ratio can be analyzed:

Figure 3.22 is a two-dimensional plot showing the variation of the
stiffness ratio defined in Eq. (3.74) as a function of the parameter c, when c
ranges from 2 to 20. It can be seen that configuration # 3 is stiffer than
configuration # 1 (the stiffness ratio is larger than 1) in the particular case of
this example, and that for relatively small values of c the stiffnesses of the
two designs are quite different.

On the other end of the spectrum, the difference in stiffness between the
two design configurations diminishes as the parameter c increases, and this
situation should be expected because when the parameter c increases the
corner radius decreases, and therefore configuration # 3 approaches the limit
case of configuration # 1 which is defined by R = 0.
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Figure 3.22 stiffness comparison: configuration # 3 versus configuration # 1

2.4 Serpentine Springs

Another solution for springs that support a proof mass frontally is the
serpentine spring. Figure 3.23 is a three-dimensional drawing of a pair of
serpentine springs connected to a proof mass that can move and alternatively
extend and compress each spring. The in-plane motion about a direction
perpendicular to the one indicated in Fig. 3.23 is also possible for the same
arrangement of the springs. A serpentine spring is formed of one or several
series-connected units, as the one shown in Fig. 3.24, where also indicated
are the defining geometric parameters of the unit. When the units are
identical, a final configuration of the type sketched in Fig. 3.25 is obtained;
when the units scale down in their dimension, linearly for instance, a
design such as the one sketched in Fig. 3.26 can be conceived, but the scaling
law can be, in general, different than the linear one exemplified here.

Figure 3.23 Pair of serpentine springs attached frontally to a moving mass
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Figure 3.24 Serpentine base unit with defining geometry

Figure 3.25 Serpentine spring configuration with identical units

Figure 3.26    Serpentine spring configurations with linearly scaled units
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It is therefore sufficient to define the compliances or stiffnesses of a unit,
because the compound serpentine springs are formed by series connection of
several base units. Figure 3.27 is a three-dimensional model of a serpentine
unit with the local reference frame. The in-plane compliances can be found
based on Fig. 3.24, which shows the applied loads and By using
Castigliano’s displacement theorem (in the case where only bending is
accounted for and the 5 segments composing the base unit are assumed to
have identical constant cross-sections), the corresponding displacements

and are determined. The compliances that form the 3 by 3 symmetric
compliance matrix of Eq. (3.19) are given below.

Figure 3.27 Three-dimensional view of a serpentine base unit with boundary conditions and
loads for stiffness calculations

As mentioned previously, the definition stiffnesses can be found by simply
taking the algebraic inverses of the compliances formulated in Eqs. (3.75)
through (3.80). If the loads need to be calculated when the
corresponding displacements at point 1 – Fig. 3.24 – are known, then a
stiffness matrix has to be determined by inverting the compliance matrix of
Eq. (3.19) and which contains the terms of Eqs. (3.75) through (3.80).
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The definition stiffness about the z-direction is determined by applying a
force (not shown in Fig. 3.24) and by calculating the corresponding
displacement (when bending and torsion are taken into consideration), as
done with previous spring designs. The equation of this stiffness is:

There are situations where the rigid body which attaches frontally to two
spiral springs undergoes a rotation about its longitudinal (x) axis. In this case,
each spiral spring will be subject to torsion, and therefore the torsional
stiffness is of interest. By applying a moment at the free end 1 – this
moment is not drawn in Fig. 3.24 – the torsional stiffness of a serpentine
spring unit is:

Equation (3.82) took into consideration that the long legs are subject to
bending about the in-plane direction y, whereas the short legs are loaded in
torsion about their longitudinal axes.

Example 3.9
Design a basic serpentine spring in such a manner that the following

stiffness relationship apply: (both stiffnesses are calculated
in the definition sense). The rectangular cross-section is constant is defined
by and Poisson’s ratio is

Solution:
By using the following equations for the cross-sectional properties:

the stiffness condition, which is:

results in an equation that can be solved for the length of the short leg in
terms of the length of the other leg as plotted in Fig. 3.28. It can be seen
that in order to satisfy the requirements of the example, the length varies
almost linearly with
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Figure 3.28 Short leg’s length as a function of the long leg’s length

Example 3.10
Compare the total axial stiffness of a serpentine spring which has 5

linearly-scaled units to the axial stiffness of another serpentine spring which
contains 5 identical units. The width of the third (middle) unit in the scaled
version is equal to the width of the units in the other design, which is
Assume the two configurations are built of the same material and have
identical constant rectangular cross-sections. The legs are defined by

and

Solution:
The total stiffness of each configuration is given by the rule of series

connection (which is also treated in Chapter 5) and therefore its expression is
determined as:

For the configuration with identical units the, factors of Eq. (3.85) are
identical, and can be calculated by inverting the compliance of Eq.
(3.75) with the appropriate length For the scaled version, one needs to
calculate the length for each of the units. It is known that the length of the
unit in the middle of the second design is equal to the length of the identical
units in the first design, namely.

The lengths of the other four units can be calculated with the aid of Fig. 3.26
as:



3. Microsuspensions 159

The ratio of the non-scaled to the scaled stiffness becomes a function of only
the angle and is plotted in Fig. 3.29.

Figure 3.29 stiffness ratio comparing a non-scaled to a scaled serpentine designs

2.5 Bent Beam Serpentine Springs

One disadvantage of the bent beam spring suspension is that for any of
the two in-plane translations of the central body, one spring’s leg will be in
compression, and the load produced by the moving mass might reach the
critical limit that will generate buckling of that leg. A modality to circumvent
this drawback is two utilize the bent beam in a serpentine configuration, as
shown in Fig. 3.30, where each of the four identical springs is formed by
adding another scaled-down bent beam.

The result will be that the net cross-section which opposes the
compressive load is almost doubled, and there is additional rigidizing by the
short segment (of length in Fig. 3.31) so that the value of the buckling load
is substantially raised. In addition, the segments that have been mostly acted
upon by axial loads in a bent beam microspring, are loaded in bending for a
bent beam serpentine microsuspension, and this is the natural manner of
deformation for these compliant members.

The in-plane compliances are determined again by calculating the
displacements at point 1 in Fig. 3.31 as produced by the loads and

under the assumptions that the cross-section is constant and identical for
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all segments, and that only bending contributes to the elastic deformation of
the member.

Figure 3.30 Microaccelerometer with four identical bent beam serpentine springs

Figure 3.31 Geometry of a bent beam serpentine spring

The six in-plane compliances are:
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The out-of-the-plane definition stiffness will again consider bending and
torsion, and is calculated by applying a force at point 1 in Fig. 3.31. Its
equation is:

Example 3.11
A bent beam serpentine spring and a bent beam spring occupy the same

square area. Which of the two microsuspensions is the stiffest in terms of the
main stiffness assuming they are built of the same material and they have
identical cross-sections ?

Solution:
Both springs are inscribed in a square area of side The definition

stiffnesses for the two springs are expressed by inversion of the
corresponding compliances of Eqs. (3.88) and (3.20), respectively.

Figure 3.32 stiffness ratio comparing a bent beam spring to a serpentine bent beam
spring

By considering that:
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the bent beam to bent beam serpentine stiffness ratio can be evaluated in
terms of only the parameters and introduced in Eq. (3.95). Figure 3.32 is
the three-dimensional plot of this ratio, and it can be seen that the bent beam
design is stiffer than the corresponding bent beam serpentine variant.

2.6 Sagittal Springs

Figure 3.33 illustrates another design that utilizes a pair of sagittal
springs. This spring configuration can also be employed as a displacement
amplification microdevice (this will be shown later in Chapter 5), because an
input motion about the long axis can be amplified (sometimes by factors
larger than 10) about the direction perpendicular to it, very much similar to
the action of a bow-arrow system. The three definition stiffnesses,
(both are in-plane stiffnesses) and (the out-of-the-plane stiffness), will be
expressed for a sagittal spring configuration. In order to do determine the
stiffness, which defines the spring action about the direction of motion of the
shuttle mass, as shown in Fig. 3.33, half of the entire microsuspension will be
analyzed, as sketched in Fig. 3.34. The identical links 2-3 and 4-5 of Fig.
3.34 are the only ones being compliant.

Figure 3.33 Microaccelerometer with two frontal sagittal springs
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A first-level design and modeling approach would be the one considering
constant cross-section compliant microhinges, but they could also be of a
different shape, such as corner-filleted or be a series combination of different
compliant segments in order to achieve specific design requirements. It is
considered here that both compliant links have the same constant cross-
section, and that only bending is taken into account.

By applying a force at point 1 in Fig. 3.34, the corresponding
displacement can be found which will enable determining the required
stiffness As previously mentioned, the reactions and need to be
calculated by solving the equations: and which are set up by
applying Castigliano’s displacement theorem.

Figure 3.34 Half-model of a sagittal spring for x-stiffness calculation

It can be shown that the stiffness about the motion direction of the half model
is:

By taking in Eq. (3.96) results in:

which is the stiffness for a U-spring formed of two parallel fixed-free beams
of length When the cross-section of the two identical compliant members
of Fig. 3.34 is variable, Equation (3.96) can be generalized to the form:
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where is the direct linear bending stiffness of the compliant member
2-3, calculated at point 2 with respect to point 3 and in a local reference
frame placed at 2. Obviously, any of the hinge designs that have been
presented in Chapter 2 can be implemented in the sagittal microspring.
However, one complete sagittal microspring is composed of two identical
parts (as the one drawn in Fig. 3.34) that are connected in parallel, and thus
the total stiffness about the x-direction is:

The other in-the-plane stiffness, can similarly be determined by using
the sketch of Fig. 3.35. A force is applied at that point and by calculating
the corresponding displacement the sought stiffness is found to be:

Figure 3.35 Half-model of a sagittal spring for y-stiffness calculation

where, again, just the bending has been taken into account. Equation (3.100)
can be generalized to the form:

where is the direct linear bending stiffness of the microhinge 4-5 of
variable cross-section, and which can be of variable cross-section. The
stiffness is calculated at point 4 in Fig. 3.35 with respect to a local frame.
The total stiffness of a sagittal microspring is twice the stiffness of one half
because the two half components are connected in parallel, and therefore:

The out-of-the-plane stiffness about the z-direction can be found by
applying a force and by determining the corresponding displacement
at point 1 in Fig. 3.34. It is however necessary to first determine the reaction
moment and are not shown in Fig. 3.34) by means of the related
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condition Eventually, the z-axis stiffness is calculated by considering
bending and torsion of the two compliant members (the cross-section is
considered constant) and its (quite complex) expression is:

with:

Example 3.12
A sagittal spring needs to be as insensitive as possible to the action of

external forces that act about the y-direction while maintaining a good
compliance about the motion direction. What is the inclination angle that
would accomplish these objectives for a given constant rectangular cross-
section ?

Solution:
The conditions of the problem require maximizing the following stiffness

ratio:

By using the definition Eqs. (3.98) and (3.101), the ratio of Eq. (3.105)
becomes:

and therefore the stiffness ratio is maximum when the inclination angle is
minimum, i.e. A practical solution will take a very small value of

2.7 Folded Beams

Another microspring configuration that is being utilized to spring-couple
to the translatory motion of a proof mass is shown in Fig. 3.36 where two
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pairs of so-called folded beams are placed on the sides of the moving mass.
Unlike the other configurations where the springs have been coupled in a
serial fashion at both ends of the mass and aligned with the motion direction,
each of the folded-beam springs are placed in parallel to the mass by
supporting it from the two sides.

Figure 3.36 Two folded-beam springs attached to the sides of a moving proof mass

The aim is again to determine the spring stiffnesses about the three
possible translatory motions of the center mass, namely the x-direction (the
motion direction indicated in Fig. 3.36), the y-direction (the other in-plane
direction, which is perpendicular on the x-direction) and the out-of-the-plane
z-direction. In order to find these stiffnesses, it is sufficient to analyze just
half of one folded-beam spring, as pictured in Fig. 3.37.

When only the links denoted by 2-3 and 4-5 in Fig. 3.37 are compliant,
and each of the segments has a constant cross-section, the simplest
expression of the x-axis stiffness is:

which simply considers that the two compliant segments behave as two
beams in parallel with respect to the x-motion. As a consequence, the
resulting stiffness is the sum of the two component stiffnesses. When the two
compliant segments have variable cross-sections, Eq. (3.107) can be written
as:
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where the superscripts 1 and 2 denote the 2-3 and 4-5 members, and the
subscript Fy-uy indicates the direct linear bending stiffness of the compliant
members with respect to their local frames.

Figure 3.37 Half-model of a folded-beam spring

Because one entire folded-beam spring is composed of two identical halves
(as the one sketched in Fig. 3.37) connected in parallel, the total stiffness is:

The stiffness about the y-axis, the other in-plane motion direction, which
is perpendicular to the main (motion) direction, can be found by considering
that a force is applied axially to all four compliant bars. In this situation
the bars will only deform axially, and because they are placed in parallel, the
total stiffness about the y-direction is:

where it has been considered that the two compliant links have constant
cross-sections. When the cross-sections are variable, Eq. (3.110) changes to:
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The terms in the right-hand side of Eq. (3.111) are the axial stiffnesses of the
two compliant members, taken with respect to their local frames (their x-axes
are parallel to their length dimensions).

The spring stiffness about the out-of-the-plane motion (the z-direction)
of the mass can be found by also using Fig. 3.37. A force is applied at
point 1 about the z-direction and the corresponding (out-of-the-plane)
displacement can be determined by considering bending and torsion of the
two compliant members. The z-direction stiffness of the half-model is:

which is valid when the two compliant segments are of constant cross-
sections. The whole folded-beam microspring is formed of two parallel-
connection identical parts (as the one sketched in Fig. 3.37), and therefore the
stiffness of the full microspring is:

Example 3.13
In a folded-beam microsuspension, the long legs cannot exceed a

maximum length of What is the length of the short legs
which would produce a specified stiffness of the
microsuspension about the motion direction for a given rectangular cross-
section and material properties E = 130 GPa) ?

Solution:

Figure 3.38 Stiffness for a folded-beam suspension

If the short leg length is connected to the length of the long leg as:
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and for the given moment of inertia and Young’s modulus, the stiffness
depends on and c, as shown in Fig. 3.38. The stiffness decreases with
and c increasing. For the values of and the solution is c = 0.94, and
therefore the length of the short leg is

Example 3.14
A sagittal suspension and a folded-beam spring can be inscribed within

the same a x b rectangular area What are their
stiffnesses about the motion direction, in the case both designs have the same
cross-section of their compliant members ? Consider that and
for the sagittal spring, and that for the folded-beam suspension.

Solution:
When both designs are inscribed in the given rectangular area, the main

dimensions of the sagittal suspension are related by the following
relationships:

which yield The conditions for the folded-beam design are:

and they result in:

Figure 3.39 stiffness ratio of sagittal spring versus folded-beam spring
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By also using the other numerical values, one can study the sagittal-to-
folded-beam stiffness ratio which is plotted in Fig. 3.39 as a function of
the length of the folded beam. It can be seen that the sagittal design is
approximately 2.5 times stiffer than a corresponding folded-beam
configuration for small lengths of the middle compliant leg.

3. MICROSUSPENSIONS FOR ROTARY MOTION

Several microsuspensions are studied in this section, which are designed
for implementation in rotary-motion micromechanisms. Similar to the
microsuspension configurations that are used in linear-motion applications
and which were shown to be able to accommodate rotary motion as well, the
rotary microsprings can also be sensitive to linear motion.

3.1 Curved-Beam Springs

rigid bodies undergoing translatory motion. A microspring design is analyzed
here that can function as a torsional suspension for rotary motion. Figure
3.40 is a two-dimensional sketch showing several identical curved springs
that are attached to a central hub at one end and to a tubular shaft (which is
concentric with the inner hub) at the other end. The set of curved beams (they
can also be straight beams) act as both suspensions and springs, as they
connect the hub and the central shaft and elastically oppose the relative
rotary motion between the two rigid components.

Figure 3.40 Set of curved beams acting as springs for the concentric hub-hollow shaft
system

It is of main interest to find the total stiffness of the curved spring set in
terms of the relative rotation between hub and the outer hollow shaft. Under
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the action of an external torque that is applied to the outer shaft, for
instance (case where the inner hub is supposed to be fixed), the relative
rotation angle is expressed by the equation:

The torsion stiffness is:

where n is the number of beams and is the rotation stiffness of the
curved beam shown in Fig. 3.41 and which is defined by a radius R, a center
angle and a constant rectangular cross-section.

Figure 3.41 Curved spring with defining planar geometry

This stiffness can be determined by utilizing the compliance formulation that
has been introduced in Chapter 1 for a relatively-thin curved beam. It has
been shown there that the in-plane deformation of a curved beam is defined
by a set of six compliances, which have explicitly been derived, and arranged
into a compliance matrix – Eq. (1.127). It is known that the inverse of the
compliance matrix is the related stiffness matrix, and therefore Eq. (3.26)
also applies to this case. Through inversion of the compliance matrix of the
right-hand side in Eq. (3.26) and by using the corresponding individual
compliance Eqs. (1.156) to (1.161), it is found that:

Of interest is also the suspension capacity of the curved spring set as the
self-weight of the supported member (the outer hollow shaft in this case) can
displace it downward about the z-axis. The corresponding linear stiffness
about the z-axis can be calculated as:
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where is the out-of-the-plane stiffness of one curved spring. The six
out-of-the-plane compliances of a thin curved member have explicitly been
formulated in Eqs. (1.139) to (1.143) and Eq. (1.163), respectively. The
linear stiffness can be found by inverting the compliance matrix of Eq.
(1.137), which results in:

As a consequence, the individual stiffness is:

Example 3.15
Find the tip angle of a curved microbeam which is part of a rotary

(torsional) spring suspension which connects an inner shaft of diameter d to
an outer hub of interior diameter D (D = 2d), in a way that would maximize
the spring’s compliance with respect to an external torque for a given
rectangular cross-section and material properties. Consider that

and E =125 GPa.

Solution:
The tip angle of the curved spring can be expressed as:

and therefore this condition has to be used in Eq. (3.119), which gives the
torsional stiffness of such a spring. The stiffness of interest is plotted in Fig.
3.42 in terms of the shaft diameter d and the radius of the curved spring R by
utilizing the given numerical values. As the figure shows, the stiffness is
larger for larger values of d and smaller values of R. As a consequence, one
has to select these parameters accordingly, namely small values for d and
large values for R.
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Figure 3.42 Torsion stiffness plot

3.2 Spiral Springs

Another microsuspension variant for rotary motion is the spiral spring.
Two designs will be presented next, the spiral spring with small number of
turns and the spiral spring with large number of turns. Both designs will
consider thick and thin configurations.

3.2.1 Spiral Spring with Small Number of Turns

3.2.1.1 Thick Spiral Spring

A spiral spring that has a small number of turns is sketched in Fig. 3.43.
The inner end is fixed whereas the outer one is free. The outer (maximum)
radius is and the inner (minimum) one is

Figure 3.43 Spiral spring with small number of turns
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An arbitrary point is situated an angle measured from the vertical line
passing through the fixed end.

The radius r corresponding to the generic point P of Fig. 3.43 can be
calculated in the case it varies linearly as:

where is the maximum angle subtended by the spiral. The aim here is to
determine the in-plane compliances that relate the loads which
are shown in Fig. 3. 43, to the corresponding displacements and
The Castigliano’s displacement theorem is applied in order to find the six
compliances of the 3 x 3 symmetric compliance matrix. In the case of a
relatively thick spiral spring (where the maximum radius is less than 10
times the cross-sectional width w), the bending energy is expressed in Eq.
(3.52) and the bending moment is:

The resulting in-plane compliances are:
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Example 3.16
What is the torsional stiffness of a thick spiral spring with square cross-

section microfabricated of a material with E = 135 GPa when the
maximum angle is 270° ? Also consider that and

Solution:
The definition torsional stiffness is the inverse of the torsional compliance.

As Eq. (3.131) shows, the eccentricity e needs to be calculated. An average
radius of is taken which gives an eccentricity of by way
of Eq. (1.122), Chapter 1. By substituting the other numerical values into Eq.
(3.131), the torsional stiffness is

3.2.1.2 Thin Spiral Spring

For a thin spiral, according to the theory presented in Chapter 1, only the
bending moment is taken into consideration, and the elastic deformations are
calculated by means of the equations pertaining to straight beams. By
applying again Castigliano’s displacement theorem, and by considering the
bending moment of Eq. (3.125), the six in-plane compliances which are of
interest can be expressed as:
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Example 3.17
Consider that point 1 in Fig. 3.43 is confined to move about the x-

direction. Find the stiffness of a thin spiral spring with small number of turns
knowing and

Solution:
The stiffness about the x-direction in this case can be found after

determining the reactions and When taking into account that the y-
displacement and z-rotation at point 1 are zero, the unknown reactions can be
written in terms of in the form:

where and are functions of and After finding the x-
displacement at point 1 as a function of and the geometry/material
properties defining the spiral, the corresponding stiffness about the x-direction
(according to the definition) can be expressed as:

The function is too complex to be presented here, but Fig. 3.44
shows the variation of the stiffness about the x-direction as a function of the
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radii and for the particular parameters given here. It can be noticed that
that decreases quasi-linearly with and increasing.

Figure 3.44 Stiffness as a function of and

Example 3.18
A thin spiral spring has to be designed within a circular area of radius R.

Find the rectangular cross-section of the spring with a given thickness-to-
width ratio and a given ratio of the maximum-to-minimum radii that would
produce the best compliance in torsion for a given material. Consider that

and E = 150 GPa.

Solution:

Figure 3.45 Stiffness ratio

The following relationships:
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are substituted into Eq. (3.137)‚ which defines the torsion compliance. The
corresponding definition stiffness is the inverse of the compliance. The plot of
Fig. 3.45 is drawn in terms of and It can be seen that the influence of
is not marked in comparison to The latter parameter should be small in
order to reduce to stiffness (and implicitly to increase the compliance).

3.2.2 Spiral Spring with Large Number of Turns

The case of a spiral with a large number of thin turns‚ as the one pictured
in Fig. 3.46‚ is studied now.

Figure 3.46 Spiral with a relatively large number of turns

The outer end is clamped whereas the inner end is fixed to a shaft that can
rotate under the action of a torque The torsion stiffness (relating to
the rotation angle is of interest here. The bending moment at a generic
point of coordinates x and y is:

The following approximate equilibrium equation applies:

By combining Eqs. (3.141) and (3.142)‚ the bending moment becomes:

By applying Castigliano’s displacement theorem‚ the forces and can be
expressed in terms of and‚ in the end‚ the rotational stiffness of the spiral
spring is found to be (as also shown in Chironis [2] and Wahl [3]):
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where l is the total length of the spiral.

Problems

Problem 3.1
The poly silicon fixed-guided beam of Fig. 3.4 has a length of

and a constant rectangular cross-section with and
Young’s modulus is E = 150 GPa. The beam is used in an accelerometer
whose measuring unit can read displacements with a precision of

What is the minimum force that can be detected by this microsystem ?

Answer:

Problem 3.2
An inclined beam is used in a static application where the stiffness about

the active direction of motion‚ is two times smaller than it should be.
Determine the inclination angle of the beam that would achieve the stiffness
objective (see Fig. 3.6 (b)). Known are

Answer:

Problem 3.3
The ratio of the stiffness to the stiffness of a bent beam spring‚ as

the one sketched in Fig. 3.9‚ has to be of a fixed value r. What is the length of
the beam’s square cross-section side that would produce this result and what
is the permissible range of r ? Consider that

Answer:

and therefore:

Problem 3.4
A U-spring is designed according to the prescriptions of configuration #

1, Fig. 3.12. It has a constant rectangular cross-section with and
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and Young’s modulus is E = 130 GPa. The application where the U-
spring is incorporated into requires that and Determine the
length that produces a maximum stiffness of = 0.3 N/m about the direction
of motion (calculated according to the definition).

Answer:

Problem 3.5
A configuration # 2 U-spring (see Fig. 3.16) has to replace a

configuration # 1 U-spring (see Fig. 3.12) in order to increase the stiffness
about the active direction of motion‚ If the geometrical envelope‚ the
cross-section and the material properties are identical for the two designs‚
what is the factor of improvement in that is achieved by this design
change ? Consider that and for configuration # 1 and use the
stiffness expressions according to the definition.

Answer:
The stiffness of configuration # 2 is 1.226 times larger than the stiffness

of configuration # 1.

Problem 3.6
A configuration # 3 U-spring‚ as the one shown in Fig. 3.17‚ is used in a

microaccelerometer dynamic application instead of a configuration # 1 U-
spring in order to reduce stress concentration at the sharp corners. Known are

E
= 150 GPa and G = 60 GPa. Find the change in the out-of-the-plane stiffness.

Answer:
Stiffness for configuration # 1 is 19.97 N/m.
Stiffness for configuration # 3 is 6.37 N/m.

Problem 3.7
A bent beam spring (shown in Fig. 3.9) and a configuration # 1 U-spring

(as sketched in Fig. 3.12) are microsuspension candidates in an application
where the compliance about the in-plane y-direction has to be minimum.
When both springs have the same square cross-section are built of
the same material and‚ additionally‚ the following geometry constraints have
to be complied with: (1 is the leg length of the bent
beam spring)‚ which design is best suited for the task ?

Answer:
The compliance of the bent beam spring is 4.57 times larger than the

compliance of the U-spring‚ so the U-spring is the option.
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Problem 3.8
A basic serpentine spring of very thin cross-section (t << w) with a given

value of its long leg‚ has to be stiff about the out-of-the-plane (z) direction
and compliant in torsion. Select a length which will satisfy these
requirements. (Hint: Analyze the ratio).

Answer:
The ratio is maximum (which means the numerator is maximum and the

denominator is minimum) for a given when is minimum.

Problem 3.9
What is the main compliance of a linearly-scaled serpentine spring that

contains two units ? The length of the smaller unit’s long leg is
the shorter leg’s length is and E = 140 GPa.

Answer:
The compliance is the sum of the two units compliances;

Problem 3.10
Compare the two linear in-plane compliances of a bent beam serpentine

spring that is microfabricated of polysilicon with E = 130 GPa‚ G = 40 GPa‚

Answer:

Problem 3.11
Find the out-of-the-plane deflection of a bent beam serpentine spring

with E = 135 GPa‚ G = 42
GPa under the action of a force of Also calculate the deflection of
a similar bent beam spring with under the same loading and having all
other geometrical and material properties identical to the ones of the bent
beam serpentine spring.

Answer:
Stiffness of bent beam serpentine spring is 36.219 N/m.
Stiffness of bent beam spring is 11.808 N/m.

Problem 3.12
A configuration # 1 U-spring (with the boundary conditions of Fig. 3.12)

with and a sagittal spring (Figure 3.35)‚ both inscribed in the same
rectangular area are possible solutions for an application where
relatively high (definition) stiffness is required. Determine the best design
solution‚ when E = 140 GPa.
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Answer:
Stiffness of U-spring is 10.24 N/m.
Stiffness of sagittal spring is 372.46 N/m (for

Problem 3.13
A folded-beam spring as the one sketched in Fig. 3.37 is microfabricated

by a technology which imposes a thickness of Find the cross-
sectional width w of its two compliant legs assuming that
E = 150 GPa and when a stiffness needs to be produced.

Answer:

Problem 3.14
Find the number of curved springs with
and E = 130 GPa‚ which combined as shown in Fig. 3.40 will be able to

produce a rotation angle of 2° under an external torque of

Answer:
n = 4

Problem 3.15
A thin spiral spring with a small number of turns and with its external

end free‚ needs to have its compliance 5 times larger than in an
application where and Determine the external radius

Answer:
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Chapter 4

MICROTRANSDUCTION: ACTUATION AND
SENSING

1. INTRODUCTION

This chapter analyzes the main forms of MEMS actuation and sensing‚
also known together as transduction methods. The actuation basically
converts a form of energy‚ such as electric or thermal‚ into mechanical
motion by various means. The performance of a specific actuation method is
usually qualified through mechanical amounts‚ such as force/moment or
linear/rotary displacement. Conversely‚ in sensing‚ an already-existing
mechanical motion or the effects of the microdevice interaction with its
environment need to be evaluated by transforming the mechanical energy
corresponding to motion into another type of energy‚ which can directly be
measured.

On the other hand‚ one microdevice can be used as either actuator or
sensor. An electrostatic comb drive‚ for instance‚ can function as an actuator
when is supplied with electric energy and sets into motion a microdevice‚ but‚
equally‚ it can be used as a sensor in a microdevice that is actuated by a
different source in order to measure displacements by quantifying electric
capacitance changes. However‚ the relationship between mechanical
displacement and capacitance variation is unique. In other words‚ a unique
equation governs a specific transduction form‚ which can be used
conveniently to describe either actuation or sensing‚ through calculation of
the corresponding output amount in terms of the input quantities.

Studied in this chapter are transduction methods such as thermal‚
electrostatic‚ electromagnetic and magnetic‚ piezoelectric‚ piezomagnetic‚ by
means of shape memory alloys‚ and through bimorphs and multimorphs.
Transduction is energetically imperfect‚ as one form of energy cannot
convert into another form of energy without losses (which can be substantial
at times)‚ but this subject‚ which needs further research‚ especially regarding
the mechanisms that are involved in energy conversion‚ is not approached
here.
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2. THERMAL TRANSDUCTION

2.1 Introduction

The thermal actuation has the benefit of producing relatively large forces
and/or displacements but these performances come at the expense of large
input energy and at relatively low frequencies because of the time necessary
to reach thermal equilibrium (which is necessary for reproducible operation).

The principle of linear thermal expansion is sketched in Fig. 4.1 where a
fixed-free bar of length 1 is shown that expands through heating by a quantity

which can be determined as:

where is the material coefficient of linear thermal expansion (measured in
1/°C) and is the temperature variation. Notice that when the bar
compresses and vice versa‚ the bar expands when the
temperature increases as the case is with the example shown in Fig.
4.1.

Figure 4.1 Fixed-free bar expanding axially under a temperature increase

This device is probably the simplest thermal actuator as the free end 1 can be
coupled to a microdevice at a port where actuation is needed. The thermal
displacement of Eq. (4.1) can also be produced by an equivalent force that
acts at the free end 1‚ and which is:

where E is the material Young’s modulus and A is the cross-sectional area.
Equation (4.1) has been used to determine the final form of Eq. (4.2).

The output capacity of an actuator‚ such as the simple thermal bar‚
depends on the load is has to overcome. Let us assume that an axial load is
applied opposing the free expansion of a fixed-free bar‚ and let us consider
that this force can increase up to a certain level that will completely
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annihilate the thermal expansion of the heated bar. As long as the external
force is less than this threshold value‚ usually called bloc force‚ the total
displacement of the tip of the bar is the difference of two opposing
deformations‚ namely:

where F is the external force. Equation (4.3) can be rewritten in the form:

There is a linear relationship between the external force and the total linear
expansion‚ as Eq. (4.4) indicates. For zero axial displacement the
force is maximum and equal to the bloc force:

whereas its minimum value of zero occurs for the free displacement
which is:

Several of the actuators that are going to be presented in this chapter behave
similarly to the thermal actuator‚ and their force-displacement characteristic
can be written in the form:

The linear relationship of Eq. (4.7) is plotted in Fig. 4.2.

Figure 4.2 External force working against constant actuation force in terms of the output
displacement
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As Eq. (4.7) suggests‚ this relationship is fully determined by means of the
two parameters‚ the bloc force and the free displacement and therefore
these two amounts will be formulated for the types of actuators that behave
similarly.

2.2 Bent Beam

By changing the boundary conditions of the fixed-free bar analyzed
previously‚ bending and different levels of actuation can be achieved through
thermal heating‚ such as in the example of the bent beam (discussed also by
Que et al. [1] and Gianchandani and Najafi [2] for instance) that is sketched
in Fig. 4.3.

Figure 4.3 Bent beam: (a) Geometry and boundary conditions; (b) Half model with
actuation force and support reactions

When the temperature increase does not reach levels that would produce
buckling of the bent beam (and which will be analyzed later in this book)‚ the
mutually constrained thermal expansion of the two beams making up the
device will result in a linear motion by the combined bending of the beams‚
as suggested in Fig. 4.3 (a). Because of the system’s symmetry‚ it is
sufficient to analyze only half of the model‚ as indicated in Fig. 4.3 (b). Point
1 will be forced to move about the y-axis. By applying a temperature
increase to the component of Fig. 4.3 (b)‚ the free expansion is impeded by
the two supports‚ and the only way the member can deform is through
bending‚ which will move the end 1 vertically upwards in the figure. Figure
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4.4 is the picture of a real thermal actuator which consists of five bent beams
that are placed in parallel‚ in order to enhance the output force capabilities.

Figure 4.4 Bent beam actuator realized by the MUMPs technology

In order to determine the two performance parameters that have been
defined for a straight free-fixed bar under thermal heating‚ and which are the
free displacement and the bloc force‚ it can be considered that the beam is
subject to a force which is the equivalent of the free expansion at end point 1‚
as given in Eq. (4.2)‚ and which has been denoted as (to highlight its
thermal nature) in Fig. 4.3 (b). As a result of boundary constraints‚ the
support reacts with the force and the moment which have to be
determined first. This can be done by using the conditions of zero
displacement about the x-axis and zero rotation about the z-axis at point 1‚
together with Castigliano’s displacement theorem. The deflection at point 1
about the y-direction can be found similarly after calculating and by
applying the same theorem and by considering that bending and axial
deformations produce the total strain energy. The equation for is:

where A and are the cross-sectional area and moment of inertia about the
z-axis‚ respectively. Equation (4.8) indicates that the deflection at point 1
depends linearly on the temperature increase and non-linearly on the
geometric parameters defining the half bent beam. An example will be
analyzed next that studies the free displacement in terms of the defining
geometry.
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Example 4.1
A bent beam thermal actuator has a rectangular cross-section defined by

the width w and the thickness t. Known are the following material properties
which correspond to polysilicon: E = 130 GPa and For a
temperature increase of analyze the influence of the geometry
defining the bent beam on the free displacement.

Solution:
Figures 4.5 and 4.6 are two plots showing the variation of the output

displacement in terms of the defining geometry. For the simulation of Fig.
4.5 it has been considered that and

Figure 4.5 Free displacement in a bent beam as a function of beam length and inclination
angle

Figure 4.6 Free displacement in a bent beam as a function of cross-section width

The simulation of Fig. 4.6 took the same numerical values‚ except for w‚
which is the variable here‚ and for and It can be seen that
the free displacement decreases in a non-linear fashion when the inclination
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angle increases‚ and is larger for larger lengths – Fig. 4.5‚ as expected.
Increasing the cross-sectional width reduces the free displacement‚ as shown
in Fig. 4.6. The thickness t of the beam cancels out in Eq. (4.8).

The bloc force‚ as previously introduced‚ is the force that has to be
applied at point 1 about the y-direction in order to annihilate the output y-
displacement at the same point produced by application of a temperature
increase – Fig. 4.3 (b). The force is determined by following a procedure
similar to the ones already presented and its equation is:

Example 4.2
Analyze the relationship between the bloc force and the geometric

parameters that define the bent beam actuator of Example 4.1.

Solution:
The same numerical values have been used here as in the case of the

output displacement studied in Example 4.1. Figures 4.7 and 4.8 are two
plots that show the variation of as a function of the defining geometric
parameters‚ namely inclination angle‚ length and cross-sectional dimensions.

The plot of Fig. 4.7 indicates that the bloc force is larger at smaller
lengths where it also reaches a local maximum. For longer elements‚ the bloc
force is almost constant when the inclination angle varies. However‚ the bloc
force is larger for small inclination angles‚ as seen in Fig. 4.7. As expected‚
the bloc force increases quasi-linearly with increasing the cross-sectional
dimensions w and t‚ as shown in Fig. 4.8.

Figure 4.7 Bloc force in a bent beam as a function of beam length and inclination angle
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Figure 4.8 Bloc force in a bent beam as a function of cross-sectional width and thickness

Example 4.3
Compare a fixed-free bar and a bent beam half model in terms of their

free displacement and bloc force assuming they have identical lengths‚ cross-
sections‚ material properties and are subjected to the same temperature
increase.

Solution:
It is useful to analyze the following two ratios that relate the output

displacement and bloc force of the two thermal actuators‚ namely:

where the subscripts bb and s denote bent beam and straight‚ respectively.

Figure 4.9 Bent beam versus straight bar in terms of free displacement as a function of
inclination angle and length

By using Eqs. (4.8) and (4.6)‚ the first ratio of Eq. (4.10) becomes:
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and is larger than one‚ which indicates that the displacement produced by a
bent beam is always larger than the axial deformation of a fixed-free beam.
Figures 4.9 and 4.10 are the plots of the ratio defined in Eq. (4.11) in terms
of the geometric parameters. The free displacement of the bent beam can be
20 times larger than the one of a straight bar‚ for smaller inclination angles
and larger lengths‚ as shown in Fig. 4.9. For larger cross-sectional widths‚ the
free displacement ratio of Eq. (4.11) decreases almost to unity‚ as illustrated
in Fig. 4.10.

Figure 4.10 Bent beam versus straight bar in terms of displacement output as a function of
leg width

The bloc force ratio of Eq. (4.10) becomes‚ by way of Eqs. (4.9) and
(4.5):

This time‚ as Eq. (4.12) suggests‚ the ratio is less than 1‚ and therefore the
bloc force of the fixed-free bar is always larger than that of the corresponding
bent beam. Figures 4.11 and 4.12 contain two similar plots showing that the
bloc force of the bent beam increases relative to the one of the fixed-free bar
for larger cross-section dimensions (the dimension w‚ specifically)‚ smaller
inclination angles and smaller lengths. Figures 4.12 and Fig. 4.10 are drawn
in terms of the parameter w‚ as t cancelled out in Eqs. (4.12) and (4.11)‚
respectively.
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Figure 4.11 Bent beam versus straight bar in terms of bloc force as a function of inclination
angle and length

Figure 4.12 Bent beam versus straight bar in terms of bloc force as a function of leg’s width

2.3 Two-Beam Thermal Actuator

A two-beam thermal actuator is sketched in Fig. 4.13 (a) consisting of
two parallel beams of dissimilar lengths and a connecting rigid link. When
the longer beam is heated‚ its free thermal expansion is prevented by the rigid
connecting link as well as by its own fixed end.

The resulting deformed shape‚ which is sketched in Fig. 4.13 (b)‚ is
produced by bending of both the thermally-active (long) beam and the
passive (short) one. The geometric parameters defining this actuator system
are given in Fig. 4.14. The result of prevented thermal expansion can be
modeled by a force which is applied parallel to the heated beam at its end‚
and which is given in Eq. (4.2). As mentioned previously‚ the free
displacement and the bloc force fully defined the performance of a thermally-
driven fixed-free bar.
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Figure 4.13 Two-beam thermal actuator: (a) original shape; (b) deformed shape

Figure 4.14 Geometry and loads resulting from thermal actuation and boundary supports

As a consequence‚ the two-beam thermal actuator can be qualified by the free
displacement at point 2 about the y-direction‚ and the bloc force‚

that needs to be applied at the same point in order to completely bloc
the actuator. Another qualifier that can be used to supplement characterizing
this actuator is the free rotation being produced through heating at the same
point 2. In order to achieve either of these tasks‚ it is necessary to find the
unknown reactions at the fixed end‚ and As previously done‚
they are found by solving the corresponding equations showing that the two
translations and the rotation are zero at that point. The respective
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displacements can be formulated by considering the strain energy stored in
the two beams through bending and axial effects‚ and by applying
Castigliano’s displacement theorem. After determining the three reactions as
functions of and the system’s geometry‚ the rotation at point 2 can be
found similarly‚ and its equation is:

It has been assumed in Eq. (4.13)‚ as well as in all following equations of this
sub-section‚ that the two beams have identical cross-sections and are built of
the same material. The free displacement at point 2 is found to be:

The bloc force can be found by expressing first as a function of and
then taking This gives the bloc force as:

It is interesting to study how the length parameters and influence the
performance of the two-beam thermal actuator‚ for instance the free
displacement of Eq. (4.14)‚ as discussed in the following example.

Example 4.4
Analyze the free displacement of a two-beam actuator by expressing

and as fractions of the length The following geometric and material
values are known: E
= 130 GPa.

Solution:
Considering that (see Fig. 4.14) and that the short lengths

and are fractions of the long beam’s length namely:
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the free displacement is plotted in terms of and as shown in Fig. 4.15.

Figure 4.15 Free displacement of a two-beam thermal actuator in terms of the length
fractions

It can be seen that the free displacement is larger when both the short beam
and the short connecting link are small relative to the active beam length
and that depends non-linearly on the coefficient and quasi-linearly on
the coefficient of Eq. (4.16).

The thermal microactuators that have been studied here can also function
as sensors in the sense that they can be placed in an environment where
thermal changes are expected. The amount of mechanical deformation being
produced through thermal variation‚ which can be evaluated experimentally‚
will furnish the corresponding amount of temperature change by reversal of
the cause-effect relationship utilized in the actuation-type equations
presented thus far. Two other transducers‚ the bimorph and the multimorph‚
which can also operate thermally‚ will be presented later in this chapter.

ELECTROSTATIC TRANSDUCTION3

3.1 Introduction

Electrostatic actuation and sensing are largely utilized in MEMS
transducers due to advantages such as sensitivity‚ fast response‚ precision‚
relatively easy fabrication‚ or integration with CMOS technology.
Drawbacks of the electrostatic transduction‚ which can be linear or rotary‚
include the relatively small amounts of actuation force and capacitance
variation. Figure 4.16 gives a graphic representation of the underlying
principle of electrostatic transduction. By charging two bodies with equal and
opposite charges (+q and –q)‚ capacitive-type attraction forces between the
two bodies can be generated potentially about the three Cartesian directions.
Charging can be done by means of an external voltage‚ either direct-current
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(DC) or alternating-current (AC)‚ and thus actuation is achieved. Conversely‚
when relative motion about one of the three Cartesian directions indicated in
the figure takes place‚ the change in the gap between two adjacent bodies
will translate in a capacitive change that can further be used as a sensing
metric of the mechanical motion in an external circuit. The attraction force
between two oppositely-charged plates is generated by the electric field E‚ as
shown in Fig. 4.17.

Figure 4.16 Potential motion directions of a charged mobile plate when attracted by three
fixed Cartesian wall-plates

Figure 4.17 Attractive nature of the electrostatic force between two charged plates

MEMS devices that use the electrostatic-force principles for transduction
are most of the time designed to be sensitive about one direction of motion.
A simple solution that prevents motion about one direction‚ while enabling
mobility about a different axis‚ is shown in Fig. 4.18. By placing the mobile
central member symmetrically in terms of the y-axis with respect to the fixed
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mating counterpart‚ the attraction forces about the y-direction cancel out‚ and
therefore the only motion will be along the x-axis‚ where the attraction force

is unbalanced. This principle can be extended to the three-dimensional
space‚ as another direction can be denied mobility‚ by using symmetry about
the corresponding out-of-the-plane z-axis.

Figure 4.18 Using symmetry to enable motion about a given direction while blocking
motion about a different direction

Figure 4.19 Transverse (or parallel-plate‚ 1) versus longitudinal (or comb-finger‚ 2) motions
in an interdigitated microdevice
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In the majority of MEMS applications‚ the actuation force or the sensing
signal are insufficient when only one pair of moving-fixed parts are being
utilized. The practical solution to this problem is to couple several pairs of
such mating members in a comb-type configuration. Figure 4.19 sketches an
interdigitated pair with the main geometric parameters. The motion about
direction 1 in this figure is usually referred to as parallel-plate whereas the
other possible motion‚ about direction 2‚ is generally named comb-finger
motion. However‚ the interdigitated designs are used for both motions‚ and
therefore‚ in order to avoid confusion‚ the alternative denominations of
transverse and longitudinal will be used to indicate motions about the 1 and
2 directions‚ respectively.

These two types of motions are the main technological applications in
planar MEMS‚ and they will be presented in the following sub-sections. The
potentially-variable distances between the moving and fixed parts are the
gaps‚ denoted by and in Fig. 4.19 in order to indicate the axis they refer
to. Similarly‚ the thickness of a fixed/free member is indicated by either or

depending on the axis. These two main directions of transductions are
better indicated in Fig. 4.20. The guided supports are just a notional
representation because pure roller bearings are rare in MEMS design. The
motion directionality is rather achieved by using a proper spring suspension‚
as the ones studied in the previous chapter.

Figure 4.20 Main electrostatic linear transduction motions: (a) Transverse; (b) Longitudinal

The transverse and longitudinal transduction principles will be presented
next‚ as well as another electrostatic method which uses microcantilevers for
out-of-the-plane actuation/sensing. It should be mentioned that the purpose
of studying the actuation is to define the actuation force that is produced
electrostatically‚ whereas the objective of characterizing the sensing is to
determine the capacitance variation as a function of the changing in gap.
Figure 4.21 is the picture of a transverse electrostatic sensing device that was
fabricated by the MUMPs technology. The upper row of plates is mobile
whereas the two rows at the bottom of the figure support the fixed plates. It
can be seen that a pair of fixed plates is placed between two mobile plates in
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this design‚ which creates a differential sensing capacity that increases the
overall reading performance.

Figure 4.21 Electrostatic transverse transduction microdevice (MUMPS technology)

Similarly‚ Fig. 4.22 shows another MUMPs device that realizes
transduction by using the longitudinal principle.

Figure 4.22 Electrostatic longitudinal transduction microdevice (MUMPS technology)

3.2 In-Plane Transverse (Parallel-Plate) Transduction

3.2.1 Actuation

According to the motion direction 1 of Fig. 4.19‚ and when the mobile
plate moves a distance x from its initial position‚ the capacitance of a
transverse-type transducer is:
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where is the electric permittivity‚ is the overlap out-of-the-plane
dimension‚ is the initial gap in the x-direction‚ and x is the displacement
produced through attraction electrostatic forces. The initial-condition (no
actuation) capacitance can be found by taking x = 0 in Eq. (4.17)‚ namely:

As Eqs. (4.17) and (4.18) suggest‚ the variability in capacitance is only
produced through changing of the gap between the two plates because the
overlapped area is constant for a transverse electrostatic actuator.

When a voltage V is supplied externally‚ the electrostatic energy is:

The corresponding attraction force between the fixed and the mobile plates is
defined as the partial derivative of the electrostatic energy in terms of
displacement (which is similar to Castigliano’s displacement theorem)‚ and is
calculated by using Eqs. (4.18) and (4.19) as:

The initial force (when the two plates are apart) is:

Figure 4.23 Normalized force in terms of normalized displacement for a transverse
electrostatic actuator

By using the non-dimensional amounts:
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Eqs. (4.20) and (4.21) can be combined into:

Equation (4.23) is plotted in Fig. 4.23, which shows the non-linear
relationship between the normalized force and the normalized displacement.
It can be seen that the attraction force is 100 times larger than the initial-gap
force when the gap is 10% of the initial value.

In many practical applications, several identical pairs of transverse
actuators are used in order to increase the total force, and this principle is
exemplified in the picture of the MUMPs microdevice shown in Fig. 4.21
where two fixed digits were placed in the space created by two mobile ones.
Another solution is sketched in Fig. 4.24 where one digit of the movable part
is placed closer to one digit of the fixed counterpart, in such a way that the
attraction force generated by the resulting gap is larger than the opposite
force that is produced through the larger gap between the mobile digit and
the other neighboring fixed digit.

Figure 4.24 Digitated arrangement in a transverse electrostatic actuator

The resulting force in this case is simply the difference between the two force
components, namely:
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If n such pairs are used, the total force will be n times larger than the force
given in Eq. (4.24). It is interesting to assess the relative force loss that
occurs when using the arrangement of Fig. 4.24 in comparison to the pure
one-pair transverse actuation, as shown in the following example.

Example 4.5
Compare the two-pair transverse actuator of Fig. 4.24 with the single-

pair design of Fig. 4.20 (a) in terms of the output force.

Solution:
By considering that the initial gap can be written as a fraction of the

actuator spacing as:

the following force ratio can be formed:

where F is given in Eq. (4.20) and F’ in Eq. (4.24). The force ratio of this
equation is plotted in Fig. 4.25 as a function of the fraction c and the distance
x, in the case where The relative force difference of Eq. (4.26)
increases non-linearly with c increasing and decreases quasi-linearly when x
increases. When c = 0.5, which means that the mobile plate is symmetrically
placed with respect to the two fixed plates, the relative difference is 1 (or
100%), as it should be, due to the fact that there is no resulting force (F’ = 0)
to act on the mobile plate.

Figure 4.25 Relative difference between force produced by simple transverse actuator pair
and interdigitated configuration
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3.2.2 Sensing

The same device, as has been mentioned previously, can be utilized to
perform motion sensing when the mobile plate is actuated externally. The
gap change between two plates will result in a capacitance change that relates
to a voltage variation of an external circuit comprising the capacitor. As Eq.
(4.17) suggests, the capacitance depends on the distance x, and therefore the
following equation can be written for the capacitance variation:

where the partial derivative of Eq. (4.27) is called sensitivity and is calculated
as:

By analyzing Eqs. (4.27) and (4.28), it is evident that a change in distance
translates in a change in capacitance, on one hand, and, on the other hand,
this relationship is not linear because the sensitivity of Eq. (4.28) is not
constant. The capacitance variation can be related to a voltage variation
because voltage is defined as charge over capacitance:

By assuming that the charge remains constant, one can find the voltage
variation by differentiating Eq. (4.29), namely:

and therefore the voltage change can be related to a capacitance change,
which corresponds to a gap variation, in the form:

Equation (4.31) indicates that the voltage variation, which can be monitored
in an external electric circuit, is inversely proportional to the distance change.
Another form of Eq. (4.31) can be obtained by using Eqs. (4.28) through
(4.30) as:
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3.3 In-Plane Longitudinal (Comb-Finger) Transduction

3.3.1 Linear Transduction

3.3.1.1 Actuation

The other possibility of in-plane actuation is illustrated in Fig. 4.26,
which shows two adjacent plate digits, one fixed and the other one mobile,
the latter one moving parallel to the former one. By charging the two plates
with equal and opposite charges, +q and –q, the electric field will generate
attractive forces between the two plates, with the net result that the mobile
plate will move to the right in the figure.

In order to simplify notation, no subscript is used to refer the gap because
the gap is constant, as shown in Fig. 4.26. The overlap area will vary this
time, since the engaging distance over the direction of motion changes. The
capacitance is:

where is the plate’s dimension perpendicular to the plane of the drawing.

Figure 4.26 Principle of longitudinal electrostatic actuation

The force that generates the motion to the right can be calculated by means
of the definition given in Eq. (4.20) and its expression is:

It can be seen that the actuation force is constant, as contrasted to the case of
a transverse actuator where the force varied with the distance in a non-linear
manner. The plus sign indicates that the electrostatic force favors the increase
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of distance y (or the increase of the overlap region between two adjacent
plates).

When several pairs of mobile-fixed digits are utilized, the total force
increases to a value which is n times larger than the force of Eq. (4.34),
where n is the number of gaps.

3.3.1.2 Sensing

Conversely, the device sketched in Fig. 4.26 can be utilized as a sensing
tool when the motion of the mobile plate is generated externally through
connection of the mobile digits to a source of motion that is of interest. The
capacitance variation can be calculated similarly to the case of a transverse
sensing device, and its equation is:

where:

is the sensitivity of the linear longitudinal transducer, and is constant, which
is a major advantage of the longitudinal configuration over the transverse
design. Similarly to the transverse sensing case, the change in voltage – Eq.
(4.30) – can be expressed here as:

In the case where n fixed-free digit pairs are used, the total change in
capacitance will be n times the value of Eq. (4.35) because the capacitors are
connected in parallel.

Example 4.6
Compare the voltage gain of an electrostatic transverse sensor with

the one of a longitudinal sensor assuming that the initial overlap length of
the longitudinal sensor is five times larger than the initial gap of the
transverse sensor.

Solution:
By using the subscripts t for transverse and l for longitudinal, the

following voltage gain ratio can be formed by using Eqs. (4.32) and (4.37):

One can take:
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and consider that the displacement input is the same for both sensors,
namely: Equation (4.38) can be written in this case as:

The voltage gain ratio of Eq. (4.40) has been plotted in Fig. 4.27 for the case
where the parameter ranges between 0 and 0.8 and takes values between
0 and 1.

As shown in Fig. 4.27, the voltage gain by the transverse principle can be
5 to 60 times higher than the one of the longitudinal method for the particular
condition of this problem, but this is dictated by the particular assumption
connecting the initial gap and the overlap length.

Figure 4.27 Voltage gain: transverse versus longitudinal electrostatic sensors

3.3.2 Rotary Transduction

The longitudinal principle of transduction can also be applied to
generate/sense rotary motion. When fixed-free digit pairs are placed
concentrically, as sketched in Fig. 4.28, the relative rotary motion can be
generated or monitored in a manner similar to the one describing the linear
longitudinal transduction.
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3.3.2.1 Actuation

Application of an external electric field in a pair of fixed-mobile plates
that can sustain relative rotary motion through adequate boundary conditions
will generate tangential forces which will rotate the mobile part. Figure 4.29
shows a pair of conjugate digits that are disposed at a radius with respect
to a rotation center.

Figure 4.28 In-plane rotary transduction

Figure 4.29 Geometry of a fixed-mobile digit pair for in-plane rotary transduction

The initial overlapping area between the fixed and the mobile digits is
defined by an angle as sketched in the Fig. 4.29. The radius defining
the corresponding gap suggests that several pairs can be placed
concentrically at different radii. The two curvilinear digits will have a
relative rotary motion defined by a variable angle and the capacitance
pertaining to this angular motion is:
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where is the radial gap. The force that is generated through application of
the voltage U is found as:

By using the definition equation of the electrostatic energy, Eq. (4.19), and
by considering that:

the tangential force becomes:

Equation (4.44) shows that the generated force is constant for a given voltage
U and defining geometry, and is independent on the radial position of the
capacitor. However, because the relative motion is rotary, it is useful to
determine the torque that results from the combined action of all the
tangential forces that act at potentially n radial gaps. The moment produced
by the force at a radius is:

The generic radius can be expressed in terms of a minimum radius as:

where is indicated in Fig. 4.29 as the digit radial thickness. The total torque
results by adding up all individual torques, each corresponding to one of the
n gaps. Its equation is:

3.3.2.2 Sensing

When the relative rotary motion is produced externally, the transducer
shown schematically in Fig. 4.29 will function as a sensor that can monitor
the rotation angle. Similar to the linear design, the rotary device will detect a
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capacitance change when the relative angle between the fixed and the free
digits varies, according to the equation:

The gaps form an equivalent capacitor whose change in capacitance is the
sum of the individual capacitance changes, so that the total capacitance
variation is:

The total capacitance change can be transformed in voltage by proper
inclusion of the capacitors in an external electric circuit. The voltage
variation is expressed as:

3.4 Out-of-the-Plane Microcantilever-based Transduction

The electrostatic attraction can also be utilized in transduction
applications that are based on out-of-plane relative motion, such as the case
is with microcantilevers. Figure 4.30 illustrates this principle whereby a
microcantilever will bend towards an underlying pad of length either when
the two parts are charged externally with equal and opposite charges, or
when bending of the microcantilever is achieved externally, and the change
in gap between the two conjugate parts is monitored by a variation in
capacitance. In essence, the problem here is one resembling the transverse
principle of transduction, but the major difference, which is also
computationally paramount, consists in the gap not being constant along the
overlapping region. Moreover, determining the basic relationship between
the capacitance change and the gap change, which is fundamental to both
actuation and sensing, means solving an integral-differential equation and
this can only be done by means of numerical methods. This electrostatic
transduction principle will briefly be discussed in the following, together
with a numerical example illustrating the calculation procedure.

When applying external charges on the microcantilever and the pad that
are equal and opposite in sign, the compliant microcantilever will be
attracted by the fixed pad and will bend towards it. In doing so, the gap
between the two parts will vary along the overlapping length according to
the quasistatic equilibrium between actuation forces and elastic properties of
the microcantilever. Thus, the posed problem is not purely an actuation one,
as the elastic features of the microcantilever condition the entire situation,
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but it will be seen a bit later in this chapter that similar cases do exist where
other forms of actuation cannot be separated from the underlying elasticity
properties of structures.

Figure 4.30 Out-of-plane electrostatic transduction by microcantilevers: (a) Boundary
conditions and geometry; (b) Detail with distributed electrostatic loading

A procedure will be detailed next giving the maximum tip deflection (at
point 1 in Fig. 4.30 (b)) under the action of the electrostatic forces, and this
will qualify the actuation side of this microdevice. The variable gap over the
actuation length is:

where is the gap between the undeformed microcantilever and the plate,
and is the deflection at abscissa x. The force acting on an elementary
length dx can be considered constant and equal to:

and therefore the distributed force that acts on the overlapping zone (force
per unit length) can be expressed as:

The tip deflection can be expressed by applying Castigliano’s
displacement theorem which takes into account the strain energy produced
through bending of the entire microcantilever, namely:
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with:

where F is a dummy force applied to the microcantilever at the free end 1. By
applying the assumptions that the deflection varies according to a quadratic
distribution over the overlapping length (see Kovacs [3] for instance),
namely:

it is possible to simplify Eq. (4.54) – which contains and as
unknowns – to an equation which only contains as unknown. Although
simpler, this equation is still an integral-differential one, which can be solved
only numerically. The final solution is complex and is not given here, but an
example will be studied next to better illustrate this problem.

Example 4.7
Determine the free tip deflection of a microcantilever defined by

and when a voltage U = 50 V acts electrostatically
on the overlap length The initial gap between the microcantilever and its
corresponding fixed actuation plate is The microcantilever’s
material has a Young’s modulus of E = 130 GPa, and the permittivity of the
free space is Assume that the overlap length can range
in the interval.

Solution:
The solution to Eq. (4.54) was obtained by using the calculation

procedure that has previously been outlined, based on the numerical values
of this problem. When the overlap length was given values in the specified
range, the tip deflection values that are plotted in Fig. 4.31 have been
obtained. As Fig. 4.31 indicates, the tip deflection of the microcantilever
increases quasi-linearly with the overlap length increasing.
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Figure 4.31 Tip displacement as a function of overlap length for an electrostatically-
actuated microcantilever

4 ELECTROMAGNETIC/MAGNETIC
TRANSDUCTION

The electromagnetic and magnetic effects are generally recognized to
produce larger forces at larger air gaps, compared to the electrostatic
actuation/sensing methods. In many MEMS designs, electromagnetic and
magnetic transduction methods are utilized concurrently in order to enhance
the performance of the microdevice.

4.1 Electromagnetic Transduction

The electromagnetic actuation and sensing are based on the interaction
between the electric current and an external magnetic field. Figure 4.32
shows a linear conductor carrying a current I, and placed in an external
magnetic field B. The Lorentz force that corresponds to this interaction is
defined by the vector product:

and its magnitude is:

where l is the length of the conducting wire and is the angle between the
directions of I and B. As Eq. (4.58) indicates, the vectors B and Il need to
make a non-zero angle in order that a Lorentz force be produced.
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Figure 4.32 Lorentz force acting on a linear wire carrying a current I in an external
magnetic field B

This general principle is implemented in MEMS devices by means of loops
that can be either circular or rectangular. Figure 4.33 sketches a rectangular
loop which can be placed on a mobile structure for instance. The loop carries
the current I and is placed in an external magnetic field B, which is parallel
to the plane of the loop, as indicated in the same figure.

Figure 4.33 Rectangular loop carrying a current in an external magnetic field

Because the field B is parallel to the current in the shorter arms of the loop
(of length there is no force acting on those sides. However, there will be
two forces acting on each of the longer arms, one entering the loop’s plane (it
is indicated by an x in a circle) and the other one exiting the same plane (it is
shown by a point in a circle). According to the Lorentz force definition of Eq.
4.57, these two forces are equal and opposite, and their value is:



214 Chapter 4

As a consequence, there is no force resultant acting on the loop, but there is a
couple produced by the two parallel and opposite forces of Fig. 4.33. The
moment of this couple is:

and its effect is to rotate the loop about the axis indicated in the same figure.

Figure 4.34 Circular loop carrying a current in an external magnetic field

A similar result can be obtained by using a circular loop of radius R, as
the one pictured in Fig. 4.34. The Lorentz force acting on a circular segment
of length dl, which is defined by an angle is:

and its magnitude is:

The total force acting on the circular loop can be found by summing up all
these elementary forces, which means calculating the following integral:

so, again, there is no resultant force acting on the loop. If one now considers
two elementary lengths that are situated at an angle disposed
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symmetrically with respect to the horizontal diameter of the circular loop,
two forces dF, which are equal and opposite according to Eq. (4.62), will
produce an elementary couple about the horizontal diameter, and the
corresponding moment is:

The total moment that will tend to rotate the loop about the horizontal
diameter, as indicated in Fig. 4.34, can be calculated as:

By comparing Eqs. (4.60) and (4.65) it can be seen that the moments for both
the rectangular and the circular loops can be written as:

where A is the area of the loop. This remark enables to generalize the
formulation of the mechanical moment produced in a loop carrying a current
when subject to an external magnetic field in the vector form:

where m is called the magnetic dipole moment – see Sadiku [4], for instance,
and is calculated as:

where is the direction perpendicular to the loop’s plane. In the case n
loops are used to increase the actuation/sensing capacity, the corresponding
bending moment of Eq. (4.67) will be n times larger.

One of the simplest implementations of using a loop carrying current for
actuation/sensing purposes in MEMS is to place the respective loop at the
free end of a cantilever beam, as discussed in the next example.

Example 4.8
A microcantilever is used to sense an external magnetic field whose

direction is known, as sketched in Fig. 4.35. Determine the value of the
magnetic field B, assuming that the geometry and the material properties of
the microcantilever are known, as well as the tip slope, which is measured
experimentally.
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Figure 4.35 Microcantilever for Lorentz-based magnetic field detection

Solution:
The interaction between the external field B and the current in the

circular loop will tend to rotate the loop about an axis that is perpendicular to
the length direction and passes through the loop’s center. The value of this
moment is given in Eq. (4.65). It can be shown that application of this
moment will produce a slope at the microcantilever’s tip according to:

By combining Eqs. (4.65) and (4.69), the external field becomes:

where the inertia moment of the microcantilever’s cross-section is:

4.2 Magnetic Transduction

The principle of magnetic actuation/sensing is similar to the one defining
the electromagnetic-based operation. A magnet that is placed in an external
magnetic field will be acted upon or will sense forces/moments that result
from the interaction between the own magnetic field of the magnet and the
external magnetic field. Figure 4.36 (a) illustrates a short magnet of length l
(which is pictured as a vector departing from the south pole S and arriving at
the north pole N of the magnet), together with the field lines that go
externally from the N pole and close in the S pole. Similar to a loop carrying
a current I, a magnetic dipole moment m can be defined in the form:
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where is the isolated magnetic charge or the pole strength – Sadiku [4].
As shown in Eq. (4.72), the vectors m and l are parallel.

Figure 4.36 Short magnet: (a) Magnetic field; (b) Interaction with an external magnetic
field

When this magnet is placed in an external magnetic field, as shown in Fig.
4.36 (b), a couple will act on the magnet about a direction perpendicular to
its plane, and will attempt to align the magnet with the external field. The
moment of this couple can be calculated by the generic Eq. (4.67), which
becomes:

The same moment of Eq. (4.73) can be conceived as being the effect of two
equal and opposite forces that act at the magnet’s poles and are defined as –
Sadiku [4]:

The two forces are opposite because the magnetic charge is positive at one
pole and negative at the other, as shown in Fig. 4.36, and, as a consequence,
no resultant force will act on the magnet, just the couple produced by the two
forces, which is equal to:

By combining Eqs. (4.74) and (4.75), the moment of Eq. (4.73) is retrieved.
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The value of is not readily available in the literature because this
amount is rather a conceptual descriptor. A way of finding its value in terms
of other known amounts is briefly mentioned next. The magnetic dipole
moment m can be expressed as:

where is called magnetization, and for a linear and isotropic magnetic
material can be related to the magnetization field of the magnet as:

where is the magnetic permeability of the free space, and is the relative
permeability of the magnet, defined as the ratio of its permeability to the
permeability of the free space. The relative permeability of a given material,
other than air, is always larger than 1 and values are given for different
magnetic materials in the literature. By combining Eqs. (4.72), (4.76) and
(4.77) results in:

For anisotropic materials, the situation is a bit more complex because the
relative permeability cannot be represented by a single value. More details on
anisotropic magnetic material behavior can be found in Jakubovics [5] for
instance, and application of the anisotropic magnetic properties is explained
in more detail in Judy and Muller [6].

An attraction force ca be generated between a permanent magnet and a
ferroelectric layer (which can be magnetized), as a means of magnetic
transduction. Figure 4.37 is a sketch showing this principle.

Figure 4.37 Magnetic force between a permanent magnet and a ferroelectric substrate

The magnetic force can be calculated – see McCraig and Clegg [7] – as:
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where is the magnetic field created by the magnet, is the magnet area
normal to the field and is the permeability of the free space.

4.3 Magnetic-Electromagnetic Transduction

Several MEMS applications use the interaction between the
electromagnetic and magnetic fields in order to enhance the transduction
capabilities. Combining a coil carrying a current with a permanent magnet,
such that their fields are parallel, is an example where a force is generated
along the two fields’ directions. This force and the microsystem’s geometry
are illustrated in Fig. 4.38 (a).

There are two different ways to calculate the force between the two
components. One method is to transform the real magnet into an equivalent
coil, as sketched in Fig. 4.38 (b), based on the fact that the magnet and the
equivalent coil have the same magnetic moment m, which leads to the
equation:

The interaction force can be calculated as the partial derivative of the total
magnetic-electromagnetic energy in terms of direction as:

Figure 4.38 Magnetic-electromagnetic interaction: (a) Coil and permanent magnet; (b)
Equivalent coil-coil

The magnetic energy can be calculated as the sum:
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where and are the direct inductances of the two coils and is the
mutual inductance connecting the two coils. These inductances are:

It can be shown that in the case where is constant over the equivalent coil,
the force of Eq. (4.81) reduces – as shown in Seely and Poularikos [8] – to:

Another way of calculating the interaction force between the coil and the
magnet of Fig. 4.38 (a) is by expressing the magnetic-electromagnetic energy
in a different fashion, namely:

where R is the magnetic reluctance of the portion of magnetic line
comprising the coil, air gap and magnet, and which is calculated as:

If there was no magnetic core inside the coil, then is zero in the equation
above. By applying the definition of Eq. (4.81), the interaction force
becomes:

Example 4.9
A circular coil of radius is placed at the end of a microcantilever, as

shown in Fig. 4.35. A magnet defined by its area thickness and
inductance is fixed under the coil, such that an air gap is formed
between the magnet and the coil. Determine the current of the coil that will
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reduce the initial gap by half. It is assumed the microsystem is operating in
air and that the circular loop has one coil only.

Solution:
It can be shown that the force which needs to be applied at a distance

measured from the free end in order to produce a deflection of at the free
end of the microcantilever of length l is:

This force is produced by the magnet-coil interaction, and, as a consequence
is also given in Eq. (4.87). By equating Eqs. (4.87) and (4.88), the following
equation is obtained for the current

The reluctance of the system is in this case:

Figure 4.39 Magnetized microcantilever in electromagnetic field: (a) m is parallel to B; (b)
m directed parallel to the microcantilever length; (c) m is perpendicular to the microcantilever

length; (d) m has an arbitrary direction in the microcantilever plane

Another possibility of combining magnetic and electromagnetic fields is
to utilize thin microcantilevers of different magnetizations in order to realize
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the interaction with an external electromagnetic field, as suggested by
Kruusing and Mikli [9] for instance. Figure 4.39 shows four different cases
of magnetization m of a microcantilever that is placed in an external
electromagnetic field B, whose direction is assumed to be constant. The
interaction between the magnetization vector and the external
electromagnetic field vector B results in a force and a moment that act on the
cantilever and which are figuratively shown in Figs. 4.39 (a) through (d). The
force and the moment are calculated as:

It can be seen that in the case where the electromagnetic field B varies about
the z-direction, a force will be produced about the same direction, and will
bend the microcantilever, irrespective of the direction of magnetization. The
moment, however, according to the definition of Eq. (4.91) will have
different directions, as a function of the magnetization direction. In the case
of Fig. 4.39 (b), the total moment will be a pure bending moment combining
to the bending effect produced by the force whereas Fig. 4.39 (c) depicts
the situation where the moment is a torsional one. When m has an arbitrary
direction, as shown in Fig. 4.39 (d), the resulting moment can be resolved
into a bending component and a torsion component.

Example 4.10
A microcantilever of length l and cross-sectional dimensions w and t is

magnetized about a direction as shown in Fig. 4.39 (d). The microdevice is
used to monitor a constant external field B, as sketched in the same figure.
An optical system can measure a maximum slope at the microcantilever
tip. What is the maximum value of the magnetic field that can be detected by
this sensing microsystem ?

Solution
There will be no force acting at the free end, because the external field is

assumed constant. The moment produced at that end can be resolved into a
torsional component and a bending one. The later one has the expression:

The tip slope can be found as:

By combining Eqs. (4.92) and (4.93) results in:
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The tip angle produced through torsion about the longitudinal x-axis is:

Equation (4.95) has taken into account that for a thin cantilever, the torsional
rigidity is 4 times higher than the bending one – see Chapter 2. By taking the
ratio of the two tip angles results in:

As a consequence, is solution to Eq. (4.96)) and:

When which gives:

5 PIEZOELECTRIC (PZT) TRANSDUCTION

The piezoelectric materials have the property of becoming electrically
polarized in the presence of an externally applied load/deformation. The
degree of polarization is proportional to the level of mechanical deformation,
as well as is dependent on the direction of the applied strain. This
mechanical-to-electrical energy conversion is known as direct piezoelectric
effect, and crystals such as the quartz naturally exhibit this property.
Piezoelectric materials are also capable to responding in a linear manner to
the reverse excitation, in the sense that external application of a field will
generate mechanical deformation through the reverse piezoelectric effect
(also called electrostriction). Examples of piezoelectric materials largely
utilized in industrial/research applications are polycrystalline ceramic
materials such as the PZT (lead zirconate titanate) or semi-crystalline
polymers such as the PVDF (polyvinylidene fluoride). For such materials,
the component dipoles (molecules that are partly charged positively and
partly charged negatively) are randomly arranged in a lattice, but application
of an external electric field to such an unpoled structure will pole it, namely
arrange and direct the dipoles about a direction parallel to that of the external
field, as sketched in Fig. 4.40.

for
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Figure 4.40 Poling of a piezoelectric material by means of an external electric field

It should be mentioned that below a critical temperature, called the Curie
point (in honor of Jacques and Pierre Curie who discovered the piezoelectric
phenomenon in 1880), a piezoelectric material has a tetragonal symmetry
with the dipoles arranged such that the positive and negative poles are not
coincident.

Figure 4.41 Piezoelectric transaction: (a) sensing through the direct piezoelectric effect;
(b) actuation through the reversed piezoelectric effect
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Application of an electric field can modify the distances between dipoles and
arrange them adequately in a poled configuration. However, over the Curie
point, the crystalline structure is cubic and symmetric with no dipoles as the
negative and positive poles do coincide. As a consequence, poling cannot be
applied and therefore the piezoelectric effect cannot be produced over this
critical point.

The two principles, the direct and the reversed piezoelectric effects, can
be utilized for transduction purposes in both macro-scale and micro-scale
applications, and Fig. 4.41 gives a sketch of both phenomena. Application of
the external compressive forces F in Fig 4.41 (a) will compress the poled
piezoelectric material by a quantity which, in turn, will generate a field

(g stands for generated) and the corresponding current in an external
electric circuit. The direction of the generated field in this case opposes the
mechanical action, as it tries to restore the piezoelectric material to its initial
dimensions. The reverse piezoelectric effect is shown in Fig. 4.41 (b).
Application of an external field (m stands for motor) in opposition to the
poling field     will generate an expansion of the piezoelectric sample by a
quantity Both examples also show that the direct and reversed
piezoelectric effects are directional, in terms of both electrical field and
mechanical deformation.

Figure 4.42 shows a piezoelectric plate with its geometric axes x, y and z
(which usually is parallel to the plate’s thickness, which is also the poling
direction). The numbers 1, 2 and 3 indicate directions along which
electrical/mechanical physical amounts can be aligned to, as briefly
explained next.

Figure 4.42 Directions for electrical/mechanical vectors defining the piezoelectric behavior

The numbers 1 to 6 are used in the literature to indicate the six different
stresses/strains that are set at a point in the three-dimensional space. While
electrical fields are vectors that can be applied about the directions 1, 2 or 3,
and so are also the normal mechanical stresses (denoted by the symbol in
Chapter 1), the numbers 4, 5 and 6 are used to denote the three shear stresses
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that have been introduced in the same Chapter 1 as and The shear
stress for instance, produces rotation about the direction 6 of Fig. 4.42,
and similarly, generates the rotation 4 whereas gives rotation about
direction 5. The subscripts 4, 5 and 6 are used to denote these directions.

The deformation of a piezoelectric body in the presence of both external
mechanical loading and electric field is calculated in the linear domain as the
sum of a mechanically-produced deformation and an electrically-generated
displacement, according to the matrix equation:

where is the total strain vector (the subscript m means mechanical and
is used to distinguish this vector from the permittivity vector, which has the
same notation) defined as:

is the stress vector, similarly defined as:

and {E} is the electric field vector, having three components:

The two matrices that enter Eq. (4.99) are the compliance matrix which
is calculated for constant field (the electrodes of the piezoelectric component
are shortcut) and is a 6 x 6 symmetric matrix defined as:

and the charge constant matrix, defined as:
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The first subscript of a term of Eq. (4.104) represents the direction of
application of the electric field, whereas the second subscript indicates the
direction of measuring the strain. An example will be studied next in order to
better understand the physical meaning of the amounts introduced in Eqs.
(4.99) through (4.104).

Example 4.11
Determine the total strain about the thickness direction for the fixed-free

piezoelectric plate of Fig. 4.42, which is subject to a force in the
presence of an electric field (the two vectors are parallel). The
material has a Young’s modulus of E = 48 GPa, and a charge constant

The area of the cross-section normal to the external force is

Solution:
The only mechanical stress is the one generated by the force F, about the

direction z (or 3). As a consequence, the matrix Eq. (4.99) reduces to a single
algebraic equation, namely:

Both terms are compressive as the mechanical load and the electrical field (in
conjunction with the piezoelectric poling field) generate deformations
(strains) about the negative direction of axis 3. The first term in the right-
hand side of Eq. (4.105) is the mechanical strain, which in this case can be
calculated as:

By combining Eqs. (4.105) and (4.106) and by using the given numerical
values, the total strain about the direction 3 becomes:

An equation similar to Eq. (4.99) can be written to express the
piezoelectric effects as:
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where {D} is the dielectric displacement vector and is the electrical
permittivity matrix (the subscript indicates that the matrix is determined
under constant-stress conditions). The vector {D} is defined as:

and the symmetric permittivity matrix is:

When premultiplying Eq. (4.99) by the vector the following
equation is obtained, which contains only specific energy (energy per unit
volume) terms:

where is the mechanical energy and is formulated as:

and is the piezoelectric energy defined as:

The following equation can be obtained from Eq. (4.107) through left-
multiplication by

where the electric energy is:
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The energy formulation is useful as it allows introducing an amount, the
piezoelectric coupling factor, which is defined as:

and which gives the measure of the degree of energy conversion efficiency.

Example 4.12
Determine the coupling factor for the case defined in Example 4.11

knowing that the electrical permittivity is

Solution:
For the particular problem of the previous example, the stress vector

reduces to the component. Similarly, the compliance matrix is single-
termed as it only contains the permittivity matrix reduces to its
component, and the electric field vector reduces to The piezoelectric
energy will be in this case:

The mechanical energy is:

and the electrical energy simplifies to:

By substituting Eqs. (4.116), (4,117) and (4.118) into the definition equation

and it can be shown by analyzing the strain-stress relationship of Eq. (4.105)

direction 3 or z). As a consequence, Eq. (4.119) yields a coupling factor of
approximately 0.2.

The case of utilizing piezoelectric layers sandwiched with other
structural or active layers in bimorph/multimorph microcantilevers for

 – Eq. (4.115), the following equation is obtained for the coupling factor:

– Example 4.11 – that              (where E is the Young’s modulus about
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transduction purposes will be studied later in this chapter. The piezoelectric
layers (ZnO is a material frequently used in MEMS) can be deposited to the
substrate through sol-gel spin coating, which enables deposition of
thicknesses of up to

6 PIEZOMAGNETIC TRANSDUCTION

Ferromagnetic materials such as alloys containing iron, cobalt or nickel
are piezomagnetic, a property which is the magnetic counterpart of
piezoelectricity. Piezomagnetic materials produce therefore both the direct
effect, which consists of generation of a magnetic field under adequate
mechanical load and the reversed effect (generally known as
magnetostriction), which implies mechanical deformation as a result of
magnetization. The dimensional change under the action of an external
magnetic field in piezomagnetic materials is produced through alignment of
the material magnetic domains in accordance to the external field, which
creates internal motion and rearrangement with the macroscopic result of
dimensional alteration. Figure 4.43 depicts such a situation, whereby an iron-
based piezomagnetic alloy, such as Permalloy, elongates through application
of a magnetic field.

Figure 4.43 Elongation of an iron-based alloy under the action of the magnetic field

Other ferromagnetic compounds, such as those containing nickel, display the
reversed response and contract under the action of an external magnetic field.
Materials that expand are also called positive magnetostrictive, whereas the
ones that do contract are alternatively named negative magnetostrictive, as
shown by Jakubovics [5] for instance. The anisotropy in magnetized piezo-
materials is reflected in the sensitivity to the direction of an external
magnetic field. In a positive magnetostrictive material, application of an
external magnetic field about a direction parallel to the polarization direction
will lengthen the dimension parallel to that direction and will shorten the
other two dimensions, as sketched in Fig. 4.44 (a), which is the top-view of a
piezomagnetic plate. On the contrary, when the magnetic field is applied
perpendicularly to the polarization direction, the material will contract about
the polarization direction and will extend about the external field’s direction,
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as suggested in Fig. 4.44 (b). For a negative magnetostrictive material the
deformation instances presented above reverse.

The similarity with the piezoelectric materials also extends in the
modeling domain where the magneto-elastic equations replicate the electro-
elastic ones describing the piezoelectric effect. In essence, the equations that
describe the magnetostrictive effect can be written as:

It can be seen by comparing Eq. (4.120) to Eq. (4.99) that, formally, the only
difference consists in using the magnetic field H for magnetostrictive effects
instead of the electric field describing the piezoelectric effects. The subscript
ma was used to designate the magnetic charge constant matrix, whereas the
superscript H indicates that the compliance matrix is calculated under
constant-field conditions.

Figure 4.44 Deformation of a positive magnetostrictive material when: (a) the external
magnetic field is parallel to the polarization direction; (b) the external magnetic field is

perpendicular to the polarization direction

An equation similar to Eq. (4.107) also applies for piezomagnetic
materials in the form:
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where the induction vector {B} replaces the dielectric displacement vector
{D}, the magnetic permeability matrix substitutes the electrical
permittivity matrix (both calculated for constant stress), and the magnetic
field H is used instead of the electric field E. The changes mentioned here in
Eqs. (4.120) and (4.121) are also valid for the two problems solved that
studied the piezoelectric effect. The remark has to be made that the coupling
factor is defined here as:

where the piezomagnetic energy is:

and the magnetic energy is:

Piezomagnetic materials, such as Terfenol-D, can be deposited in thin or
thick layers on various substrates in order to create composite
microcantilevers that can be used for MEMS actuation purposes especially,
as will be shown in the sections presenting the bimorphs and the
multimorphs, later in this chapter.

7 SHAPE MEMORY ALLOY (SMA)
TRANSDUCTION

The shape memory alloys, in their bulk (macroscopic) form, are utilized
in many applications, particularly in the medical industry and are mainly
noted for two properties: the shape memory effect (SME) and the
superelasticity (SE). Shape memory alloy thin films are shown to preserve the
important advantages of SMAs in macro-scale designs, namely the large
levels of actuation force and deformation, while substantially improving
(reducing) the response time (which is a deficiency of macro-scale SMA
designs) due to higher surface-to-volume ratios. Medical applications include
arch wires for orthodontic correction, dental implants (teeth-root prostheses)
and the attachments for partial dentures, orthopedics where SMA plates are
used as prosthetic joints to attach broken bones, the spinal bent calibration bar
(the Harrington bar), actuators in artificial organs such as heart or kidney,
active endoscopes and guidewires. Other SMA applications are free and
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constrained recovery, force actuation, flow control and actuation at microscale.
Micrometer-order thick titanium-nickel (Ti-Ni) films that were sputter-
deposited have demonstrated excellent actuation and reaction-time properties.

The shape memory effect (SME) was discovered in a gold-cadmium (Au-
Cd) alloy as early as 1951, whereas the same effect in Ti-Ni alloys was
reported in 1963. More details regarding the structure, properties and
applications of shape memory alloys can be found in Otsuka and Wayman
[10] who gave a synthetic view on the evolution lines in the shape memory
alloy research. The shape memory effect consists in a phase transformation of
an alloy under thermal variation. At lower temperatures, the martensite phase
of an SMA – with lower symmetry and therefore more easily deformable – is
stable, whereas at higher temperatures, the austenite phase (also called the
parent phase) – of cubic, higher symmetry, which renders the SMA less
compliant/deformable under mechanical action – is stable.

Figure 4.45 Thermo-mechanical cycle in a SMA with shape memory effect

It is thus possible to utilize the sequence of Fig. 4.45 in order to realize
the SME. A temperature decrease is first applied which initiates the
martensitic transformation from austenite to martensite. By subsequently
applying the mechanical load, the SMA component in its martensitic phase
(which is called twinned martensite, with at least two orientations of its
potential deformation) at low temperature can be altered into deformed
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martensite (since this phase is more compliant), with relatively low levels of
external intervention. By further increasing the temperature over a critical
value, which triggers the reversed martensite-austenite transformation,
whereby the higher-symmetry crystallographic orientation of the parent
(austenite) phase becomes stable, the component changes its shape to its
original condition, and thus it remembers it. The reversed transformation will
take place upon heating when the martensite becomes unstable.

Usually, the shape memory alloys produce the one-way SME, as depicted
in Fig. 4.46 (a), and therefore the cyclic martensite-austenite transformation
is not possible, as the deformed martensite state cannot be reached through
cooling of the austenite phase. However, there are SMAs which remember
both states, as sketched in Fig 4.46 (b), and such compositions are called
two-way shape memory alloys. In MEMS applications, the SMA layers that
are currently being used as actuators/sensors are mainly capable of reacting
through the one-way SME.

Figure 4.46 SMA effects: (a) one-way SME; (b) two-way SME

The load-deformation (or equivalently, stress-strain) characteristics of
the martensite and austenite are schematically shown in Fig. 4.47 when the
loading increases gradually about the directions indicated by the arrows. The
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difference in slope between the two phases over the first deformation stage is
the result of the fact that the austenite is stiffer than the martensite, due to its
higher cubic symmetry, and this is the core feature enabling the utilization of
SMAs as actuators/sensors in macro/micro applications. The martensite
characteristic displays a quasi-horizontal portion (called the
plateau region) where a component in this state can be deformed with
virtually no increase in the external load.

Figure 4.47 Load-deformation characteristics of the martensite and austenite phases of a
typical SMA

Figure 4.48 Superelastic (SE) effect in a shape memory alloy
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The other important feature of certain SMAs, the superelasticity
(sometimes called pseudoelasticity), is depicted in Fig. 4.48. Figure 4.48
shows the force-temperature characteristics of four different SMA
compositions, each of them corresponding to a temperature which is relevant
to either the martensitic transformation or the reversed one. The temperatures
denoted by and symbolize the start of the martensitic transformation
and the end (finish) of it, respectively. Similarly, and represent the
same points for the austenite phase. For temperatures smaller than the
entire composition is martensite, whereas for temperatures higher than the
SMA is completely in its austenitic phase, in the absence of loading.
Obviously, for temperatures within the range, the SMA contains both
phases. The SE effect, as suggested in this figure, consists in heating the
SMA over the point (where only the austenite exists in stable condition),
and loading the mechanical component at constant temperature (iso-
thermally) – direction 1 in Fig. 4.48. In doing so, a final state can be reached
where the martensite fraction predominates and where large superelastic
deformations of 15-18% can be achieved easily, since the plateau region
permits it. By downloading the mechanical component, along direction 2 in
the same figure, it is possible to reach the initial state. However, the
generation of the SE effect is more complex and manifests itself as a
spontaneous, stress-free phenomenon, which takes place in certain shape
memory alloys after many cycles of so-called training. Training consists of
combined thermal and mechanical loading which alters the crystallographic
structure of an SMA in order to favor SE behavior – Otsuka and Wayman
[10].

The mechanics of shape memory alloy actuation/sensing are exemplified
by the simple experiment illustrated in Fig. 4.49 where a weight is attached
to a SMA wire.

Figure 4.49 SMA transformation as a source for actuation/sensing
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It is assumed that in state 1, the SMA wire is in martensitic phase and is
deformed by the gravity force exerted on it through the attached weight. In
case the temperature increases over the critical reversed transformation value,
the austenitic transformation takes place and the natural tendency of the wire
is to shrink and remember its original austenitic phase. In order to keep the
wire’s length unchanged, an external force directed downward has to be
applied. This scenario is indicated by the sequence 1-2 in Figs. 4.49 and 4.50,
which attempt to explain the change in force by the jump from the martensite
characteristic (point 1) to the austenite characteristic (point 2).

As a consequence, the force gain during the 1-2 phase is equal to:

where A and M stand for austenite and martensite, respectively. For a wire,
the stiffness can be expressed as:

where A is the cross-sectional area, l is the length and E is Young’s modulus.
It is therefore clear that the force of Eq. (4.125) is due to the difference in
Young’s moduli between austenite and martensite. Obviously, this simple
force generation mechanism can be used in actuation.

Figure 4.50 Force and stroke potentially gained through SMA transformation in the wire-
weight device

Conversely, when no external force is applied during the heating and the
corresponding martensite-austenite transformation, the SMA wire will shrink,
as sketched in the 1-2’ sequence of both Figs. 4.49 and 4.50. The
displacement gained in this case is:
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and the underlying mechanism can be utilized in micro-scale sensing for
instance.

Example 4.13
A circular, circumferentially-clamped SMA membrane in martensitic

state is deformed through an external pressure such that a maximum central
deflection is reached. A temperature increase of is applied to the
membrane and the martensite transforms completely in austenite. Find the
maximum force that can be generated through this reversed transformation.
Consider that the membrane is defined by a radius and thickness

The elastic properties of the austenite and martensite are:
(after Otsuka and

Wayman [10]). Also consider that

Solution:
The maximum force that can be generated during the membrane’s

martensitic-austenitic transformation equals the force that is needed to
prevent any resulting deformation, and the stiffness of a clamped circular
plate that is acted upon by a force placed at the symmetry center
perpendicularly to the membrane plane is given in Eq. (1.231), Chapter 1. As
a consequence, the maximum (bloc) force becomes:

The flexural rigidities in austenitic and martensitic phase are:

By using the numerical values of this problem, the maximum force is found
to be of 0.206 mN.

8 BIMORPH TRANSDUCTION

8.1 Generic Formulation

Bimorphs are composed of two layers of different materials laid upon
each other as sketched in Fig. 4.51 (a). In general, one layer is active, in the
sense that it can deform axially upon application of a specific type of energy.
Because the two layers are sandwiched together, the free axial deformation
of the top layer is constrained by the bottom layer and, as a result, the
composite beam will bend. When the top layer shrinks, the resulting
deformed shape of the beam is the one shown in Fig. 4.51 (b). When the free
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shrinking of the top layer generates a strain the bottom fibers of the top
layer are prevented from fully shrinking by the adjacent bottom passive layer.
As a consequence, there is a distribution in the axial deformation, from a
maximum shrinking in the free top fiber to a minimum shrinking registered
in the bottom (interface) fiber of the active layer. The same deformation
trend is followed by the bottom (passive) layer due to its attachment to the
top layer.

Figure 4.51 Bending deformation of a bimorph with shrinking top active layer: (a) general
configuration; (b) Detail of deformed sandwich

Figure 4.51 (b) also indicates the forces and moments that are acting on
each of the two layers, as produced by the induced free strain If one
analyzes the interface fiber belonging to the active layer, there are three types
of strains that linearly superimpose under the assumption of small
deformations, namely: the free strain an axial strain generated by the
action of the force and another strain component resulting from the
bending of this layer. The same interface fiber also belongs to the bottom
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layer, and the strains on it are an axial compressive strain due to the force
and a bending strain. Because the strains on this interface should be identical,
it follows that:

It should be noticed that the free strain is compressive (according to the
initial assumption), whereas the axial strain is extensional (the force has
the tendency of extending the top layer) as well as the bending strain (since
the interface fiber is under the neutral axis of the bent beam which has its
center of curvature upwards, as shown in Fig. 4.51 (b)). Similar reasoning
explains the signs of the strain components pertaining to the interface fiber of
the bottom layer – the right-hand side of Eq. (4.130).

Because there is no net axial force acting on the composite beam, it
follows that the two forces should be equal, namely:

As also indicated in Fig. 4.51 (b), there should be a relationship between the
bending effects produced on the right side section C-D of the form:

The bending moments and can be expressed according to the
engineering beam theory, as:

Equation (4.133) took into consideration that bending of the two layers takes
place independently, about the neutral (symmetry) axis of each component,
such that both deform as circles with the same curvature radius R. By
combining Eqs. (4.130) through (4.133), the unknown radius of curvature is
found to be:

Equation (4.134) is quite generic as the free strain can be generated by a
variety of means, for instance thermally, piezoelectrically or through shape-
memory effects. Each of these transduction solutions will be discussed
individually in the following.
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It has also been shown in Chapter 1 that the bending of a sandwich beam
can be described by an equivalent bending rigidity which was defined
in Eq. (1.180) in terms of individual material and geometry properties of the
component layers. The bending moment that needs to be applied at the
cantilever’s tip in order to produce the curvature radius of Eq. (4.134) is
determined as:

Equation (4.134) or Eq. (4.135) can serve as a metric in comparing the
different possibilities of actuating a bimorph with a given geometry, but in
actuality only the peculiarities of the free strain will dictate the differences
in bending between two physically-identical bimorphs that are actuated by
means of different sources.

When used as an actuator, the bimorph needs to be characterized in terms
of its free displacement and bloc force capabilities, as mentioned in the
beginning of this section. For a fixed-free (cantilever) configuration, the free
displacement can be calculated as:

where the equivalent rigidity is given in Eq. (1.180) of Chapter 1.
Similarly, the force that will bloc the tip motion of a bimorph can be
calculated as:

For a bimorph with given cross-section, material and induced-strain
properties, the free displacement is proportional to the square of the length,
as indicated by Eq. (4.136), whereas the bloc force of Eq. (4.137) is inversely
proportional to the bimorph length.

The generic equations presented thus far can also be utilized as metric
tools in quantifying the mechanical motion or the environmental changes by
means of bimorph-based sensors. A variation of the tip bending moment or
deflection translates in an induced strain, and this latter amount can easily be
converted into an electrical signal for instance.

8.2 Thermal Bimorph

In a thermal bimorph, as the name indicates, the source strain is
induced thermally. In the hypothesis that the temperature of the upper layer
of Fig. 4.51’s bimorph decreases by (such that shrinking of this layer is
possible, according to the assumptions here), the induced strain is:
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Equation (4.138) has to be substituted into Eq. (4.134) in order to determine
the curvature radius of a thermal bimorph.

A more realistic case is when both layers of a bimorph are exposed to the
same temperature variation. For instance, when the lower layer has a
tendency to expand more than the upper layer and this situation is equivalent
to only decreasing the temperature of the upper layer. This design was
analyzed as early as 1925 by S. Timoshenko [11], who called the thermal
bimorph a bi-metal thermostat since the materials of the two layers were
metals. By following a procedure similar to the one already presented in the
introduction to this sub-section, it can be shown that Eq. (4.134) remains
valid by taking:

Example 4.14
Compare the bending performance of two physically-identical thermal

bimorphs, when for one of them the lower layer is heated by a temperature
whereas for the other bimorph both layers are heated by the same

temperature. Assume that

Solution:
Equation (4.134) gives the curvature radius for both bimorph designs by

means of the induced strain of either Eq. (4.138) – for the design with one
heated layer, or Eq. (4.139) – for the configuration with both layers heated.
The ratio of the two radii is simply:

Although the ratio of Eq. (4.140) is larger than 1 only when
and therefore the radius of curvature of the bimorph with one heated layer is
greater than the radius of the similar bimorph with both layers heated. When

the ratio of Eq. (4.140) is less than 1, which indicates that

8.3 Piezoelectric (PZT) Bimorph

When one of the layers forming the bimorph (for instance the upper one)
is made up of a piezoelectric material, the free strain of this layer can be
expressed, according to Eq. (4.99), as:
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where it has to be assumed that the voltage variation is negative, in order
to comply with the assumption of the generic case that the upper layer is
under free compression.

Example 4.15
Calculate the voltage that needs to be applied to a piezoelectric bimorph

in order to achieve the bending capability of a thermal bimorph which has the
same physical configuration. Assume that

Solution:
A piezoelectric bimorph can be compared to a physically-identical

thermal bimorph by means of the free strain, and it can be seen from Eqs.
(4.141) and (4.138) that the ratio of the free strain is:

Equal bending capability of the two bimorphs means equal free strains and
therefore:

Equation (4.143) indicates that for given material and geometric properties of
the two bimorphs, the voltage is proportional to the temperature variation and
the proportionality constant in the parenthesis of Eq. (4.143) is 0.025 V/°C.
Figure 4.52 shows the plot of voltage variation as a function of the
temperature variation in this problem.

Figure 4.52 Voltage variation in terms of temperature variation in a piezoelectric-versus-
thermal bimorph comparison
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As the figure indicates, a voltage variation of about 1.2 V is necessary to
apply to a piezoelectric bimorph in order to achieve the same bending radius
as in a thermal bimorph which is subject to a temperature variation of 50°.

8.4 Piezomagnetic Bimorph

As discussed in the section introducing the piezomagnetic materials, a
component made out of such a material can either expand or contract about a
given direction as a function of the type of piezomagnetism (positive or
negative) and of the directional relationship between the polarization field
and the external magnetic field. In any situation, however, the amount of
strain is usually denoted by and is equal to:

Figure 4.53 Bimorph with positive piezomagnetic active layer: (a) external magnetic field is
parallel to polarization field; (b) external magnetic field is perpendicular to polarization field

When a piezomagnetic material is attached to a structural layer (in MEMS
this is generally done by magnetron sputtering) in a cantilever-type
configuration, the resulting bimorph can bend in the presence of an external
magnetic field. Figure 4.53 for instance shows a bimorph that contains a
positive piezomagnetic layer attached to a thicker structural layer. Assuming
that the piezomagnetic direction of polarization is parallel to the length of the
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microcantilever, two situations are possible, in terms of the direction of the
external magnetic field. When the field is parallel to the polarization
direction, as indicated in Fig. 4.53 (a), the piezomagnetic layer will stretch
and the bimorph will bow downward. When the external magnetic field is
perpendicular to the polarization direction, as shown in Fig. 4.53 (b), the
piezomagnetic material will contract and will bow the bimorph upward. The
material properties that define the coupled magnetic-mechanical behavior of
a piezomagnetic material are generally determined experimentally, and the
strain of Eq. (4.144) can be found as a function of the applied magnetic field.
An example of piezomagnetic bimorph will be solved next.

Example 4.16
Find the tip bending moment produced by an amorphous negative

piezomagnetic bimorph when the external magnetic field acts as shown in
Fig. 4.53 (b). Assume that the polysilicon substrate is individually heated by

The induced strain has a value of for a field of H =
1000 Oe. The thicknesses of the two layers are and and
the common width is The elastic properties are: and

and the coefficient of linear thermal expansion is
for the polysilicon.

Solution:
The deformation of this bimorph is the one sketched in Fig. 4.53 (a)

because the piezomagnetic material is negative and has the opposite reaction
compared to a positive material under identical external magnetic influence.
The interface strain equation is in this case:

By coupling this equation with the curvature radius Eq. (4.134) – where
– and the moment equilibrium Eq. (4.132), the equation of the tip

bending moment becomes:

and its numerical value is

8.5 Shape Memory Alloy (SMA) Bimorph

An SMA bimorph is formed of a layer of shape memory alloy (sputter-)
deposited over a substrate layer. The following scenario can be envisioned
for actuation: the bimorph is heated from a temperature to a temperature
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which might be selected to coincide with which marks the start of the
austenitic transformation. Assuming that the substrate has a higher
coefficient of linear expansion, the bimorph will bend, due to the
dissimilarity in the linear expansion coefficients of the two materials, in the
way shown in the generic Fig. 4.51 (b). Being in martensite phase, the SMA
is easily deformable. Further increasing the temperature from to a
temperature above the point (where all the SMA is in austenitic form)
will cause the SMA to shrink, which will produce more bending in the
bimorph. The equations which define the deformation over the first
temperature variation can be written as:

and:

Equations (4.147) and (4.148) can be solved for the curvature radius, which
is:

The bending moment M is given by Eq.(4.148). During the second phase,
new forces and a new bending moment are set by the relative shrinking of the
SMA layer, and the corresponding equations are:

and:

Similarly, Eqs. (4.150) and (4.151) are solved for the new radius, which is:
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whereas M’ is given by Eq. (4.151). As previously, the subscript M denotes
martensite and the subscript A symbolizes austenite.

Example 4.17
A bimorph cantilever is formed of an SMA layer with thickness and is

deposited on a polysilicon substrate with thickness An external bending
moment M is applied at the free end in the positive manner (the SMA layer is
stretched), followed by a temperature increase that takes the bimorph from an
initial value to a final one, Determine the final configuration
of the SMA-based bimorph.

Solution:
The external moment M which is applied to the SMA bimorph acts as a

constant bias moment, and is plotted in Fig. 4.54 against the curvature of the
bimorph. At the SMA is in martensitic state and the moment-curvature
relationship is of the form:

Figure 4.54 SMA bimorph with bias spring

At the operation point, the bending moment of the martensitic SMA is equal
to the bias moment and therefore the curvature is:

where the equivalent moment of inertia has been calculated in Chapter 1 by
means of Eq. (1.180) where one has to take instead of The amounts

and are the positions of the symmetry axes of the two layer and the
position of the neutral axis, respectively (they are needed in Eq. (1.180)). The
latter amount, is given in Eq. (1.178).
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The change in temperature and the subsequent phase transformation from
martensite to austenite sends the operation point from the curve
corresponding to the martensitic SMA, with lower Young’s modulus, to the
curve representing the bending moment-curvature characteristic for the SMA
in the austenitic state, where Young’s modulus is larger. For the latter state,
the curvature is:

where, again, the bending rigidity is calculated by Eq. (1.180), Chapter 1, by
taking instead of

8.6 Bimorph with Dissimilar-Length Components

The bimorph configurations discussed thus far had identical lengths of
their components. There are also situations where one of the two layers is
shorter than the other. Figure 4.55 sketches such a design where the two
layers do not overlap completely. As shown previously, it is possible to
determine the bending moments M that are generated through induced strains
and act at the ends of the shorter layer, which mark the boundaries of the
overlapping region. It has also been shown in Chapter 1 that an equivalent
bending rigidity can be calculated for the length As a consequence,
it is possible to quantify the free displacement and the bloc force of this type
of actuator at its free end.

Figure 4.55 Bimorph with dissimilar-length layers

The free displacement, for instance, is given by the equation:

where the bending moment M is given in Eq. (4.135) and the equivalent
rigidity can be calculated as shown in Eq. (1.180) of Chapter 1. The force
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that needs to be applied at the bimorph’s free end in order to bloc the actuator
is calculated as previously detailed and is:

Example 4.18
Study the relationship between the short patch length and its position

on the microcantilever to the free displacement produced by a bimorph
with dissimilar lengths.

Solution:
For given thicknesses and material properties of the bimorph, the free

displacement expressed in Eq. (4.156) depends on two parameters: the
position of the shorter patch, and its length, It can be shown that the
free displacement is proportional to the function:

Figure 4.56 is a three-dimensional plot of the function defined in Eq. (4.158).
It can be seen that in order to maximize this function, and consequently the
free displacement, the upper layer should be placed towards the root of the
actuator and its length should be as large as possible.

Figure 4.56 Free displacement function plot in terms of length and position of active layer

9 MULTIMORPH TRANSDUCTION

A multimorph is composed of more than two structural layers that are
sandwiched together. Strain can be induced externally in each or just some of
the layers, and the differential axial deformation, which is the result of
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different layer material properties, results in bending of the multimorph that
can be used for either actuation or sensing purposes. Using three or more
active layers in a compound microcantilever allows for more power to be
produced by the actuator (the stiffness of the resulting structure is larger
because of more beams in parallel) or for combining actuation and sensing
together in the same device. Figure 4.57 shows a three-layer multimorph with
its reference frame.

Figure 4.57 Three-layer multimorph with geometry and reference frame

The model developed next, together with the related solved examples and
more detailed derivation can be found in Garcia and Lobontiu [12]. Figures
4.58 (a) and (b) illustrate the multimorph composition and its deformed shape.

The interface fiber between layers i and i+1 has a unique deformation and
therefore the strains of the two neighboring layers at this interface should be
identical. By applying the principle of linear superposition, the resulting strain
comprises three terms: one is produced by axial deformation of a layer, the
second is produced by bending and the third term considers the strain which
can be induced externally. As a consequence, the strain continuity equation at
the interface between layers i and i+1 is:

Since there is no external load acting axially, the sum of all the forces needs
to be zero:
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Figure 4.58 Generic multimorph beam: (a) side view with undeformed geometry; (b) close-
up of bent segment

Equation (4.159) can be rewritten as:

By successively applying Eq. (4.161), the force on a particular layer can be
expressed in terms of the force on the previous layer, which, in turn, depends
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on the force of the previous layer, and so on, such that, in the end, the
particular force is expressed in terms of Also demonstrated in [ 12] is that
the generic force is expressed as:

with:

and:

The curvature radius can be expressed as:

The individual moments which are produced by pure bending about each
individual neutral (symmetry) axis are defined as:

The total bending moment can therefore be calculated as:

Example 4.19
Determine the curvature radius in a three-layer multimorph cantilever

having the characteristics given in Table 1 in the case of applying a
temperature increase of  The length of the composite cantilever is
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and the common width of the layers is Use the analytic model
developed herein, as well as an independent finite element simulation.

Solution:
The Ansys software has been used to run the finite element analysis, with

two-dimensional elements having the material properties of Table 1. The tip
slope was 0.02° which translated into a curvature radius of approximately R =
0.11 m. The analytic model proposed here resulted in a curvature radius of R
= 0.1 m, and therefore there is agreement between the two methods, and this
particular example constitutes another check of the accuracy of the proposed
model.

Example 4.20
An anti-parallel trimorph is formed of two identical active layers that are

laminated on a middle structural layer. When the two external layers are
actuated such that one compresses and the other one stretches, desirably by
the same amount of strain, an anti-parallel configuration is achieved with
enhanced actuation/sensing capabilities. Assuming the two active layers are
made of PZT material and that the middle layer is a polysilicon substrate,
determine the bending moment that can be achieved by this structure when
applying a +120/ -120 V variation on the two PZT layers.

Solution:
Assuming the top PZT layer shrinks under the negative voltage variation,

and the other PZT layer stretches when subject to the positive voltage
variation, the strains induced in the two layers are:

By utilizing the conditions of Eq. (4.168) into the generic multimorph model,
one obtains the following particular equation for the curvature radius R:

The tip bending moment is:
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The PZT-generated strain, as defined in Eq. (4.141), has been used in Eq.
(4.170). It should be mentioned here that the neutral axis coincides with the
longitudinal symmetry axis of the middle layer, namely:

and that the axial force on the middle layer is zero, whereas the forces on the
two external layers are equal and opposite:

Example 4.21
A multimorph can combine three of the active effects analyzed so far,

namely the thermal, piezoelectric and shape memory effects in order to
produce actuation, sensing or both. Figure 4.59 shows the longitudinal
disposition, from top to bottom, of a piezoelectric (PZT) layer, an electric
insulator layer (such as silicon nitride and whose thickness is negligible
compared to the other layers’ thicknesses), a shape memory alloy (SMA)
layer and a structural layer (made up of polysilicon). Analyze the behavior of
this multimorph transducer.

Figure 4.59 Side view of a PZT-SMA-based multimorph

Solution:
One can assume that initially the PZT layer can function as the actuator

agent, when subject to a voltage variation which will shrink its original length
and this will bend the multimorph, as shown in Fig. 4.58 (b) for a generic
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multimorph. The SMA layer, being at low/martensitic temperature, can easily
be deformed, as driven by the PZT deformation.

If a temperature increase is subsequently applied so that the SMA’s
martensite phase transforms into austenite, the SMA layer will shrink,
becoming the actuator, and the multimorph will further bend. If no voltage is
supplied to the PZT during the SMA actuation, the PZT can act as a sensor
because the change in strain translates in a proportional voltage change. As a
consequence, the sandwich device can function as both actuator and sensor by
switching the functions of the PZT layer.

It is of interest to quantify the level of actuation, as well as the
relationship defining the voltage detection during the second phase, when
SMA is the actuator and the PZT layer is the sensor. By using the generic
multimorph model, it is possible to calculate the curvature radius R, as well as
the corresponding tip moment acting on the bender. At the same time, the
voltage generated through SMA-driven deformation into the PZT layer can be
evaluated by considering the strain on its lower fiber as being produced
through bending and axial deformation, namely:

where the axial force  acting on the PZT layer is:

and the curvature radius corresponding to SMA-generated bending is
expressed as:

where:

and:
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10 OTHER FORMS OF TRANSDUCTION

Actuation and sensing can be produced by other means, as well. Figure
4.60 for instance, shows an elastic, membrane-like layer that covers an
enclosure. If heating is provided to an element in the enclosure, the gas
trapped inside the enclosure will expand and the resulting pressure will
deform the membrane outward.

Figure 4.60 Actuation by gas expansion and elastic membrane: (a) Initial undeformed state;
(b) High-pressure deformed state

In the case of a general gas transformation, the pressure after the temperature
increase has been applied can be calculated as:

Another equation can be written relating the pressure in the final state with
the deformation, and therefore the new volume and the solution to these
two equations will characterize the transduction problem.

The membrane can also deform by introducing fluids under pressure in
the provided enclosure, such that the case is with hydraulic or pneumatic
transduction.

Hydrogels, which can undergo large volume changes (swelling or
shrinking) under diverse stimuli such as variations in the water pH, solute
concentration, electric field, light or temperature, are also utilized in MEMS
transduction, as microcomponents that actuate flow-control components in
microfluidics – see, for instance, Liu, Yu and Beebe [13] . Hydrogel-based
transduction needs no external power and is capable of producing relatively
large amounts of displacement and force in actuation, and to be very
sensitive to small environmental changes. Reducing the scale of hydrogel
MEMS components improves the time response of swelling-unswelling.

Electroactive polymers (EAP), also called artificial muscles, are actually
electrostrictive materials which can reversibly change shape through electric
field exposure, and are consequently used as transduction materials,
especially in multimorph configurations.
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Other transduction implementations, especially in microfluidics, utilize
various basic principles such as dielectrophoresis, surface-tension, liquid-
vapor phase change or microbubbles.

Problems

Problem 4.1
A bent beam thermal actuator needs to be able to deliver its mechanical

output around an operation point that lies within a domain bounded by
and Determine the inclination angle satisfying this

condition. Known are also the length l, the cross-sectional area A and the
moment of inertia

Answer:

Problem 4.2
Determine the optimal value of the inclination angle of a bent beam

thermal sensor that will maximize the free displacement for a temperature
increase Known are the coefficient of thermal expansion

the length and the cross-sectional dimensions

Answer:

Problem 4.3
A two-beam polysilicon thermal sensor is defined by the following

geometric parameters: Design the rectangular
cross-section of this sensor (w and t) which will produce a tip rotation

under a temperature increase of The coefficient of thermal
expansion is

Answer:
t can be chosen arbitrarily

Problem 4.4
A geometric envelope of is available for the design of a

thermal actuator of maximum bloc force. In case the cross-section of the
flexible beams is specified decide whether a bent beam
actuator or a two-beam design constitutes the best solution. (Hint: Study the
bloc force ratio).
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Answer:
The bloc force of the two-beam thermal actuator is up to 80 times larger

than the bloc force of a bent beam actuator, for very small lengths of the
short leg of the two-beam design.

Problem 4.5
A transverse (plate-type) electrostatic device is used as a capacitive

sensor. Design the sensor such that when the mobile plate travels between the
limit positions and the capacitance variation is no
less than a minimum value

Answer:

Problem 4.6
Design a longitudinal (comb-type) electrostatic actuator of given

sensitivity that is expected to deliver an output force F.

Answer:

Problem 4.7
A rotary electrostatic actuator with a single gap  produces a

maximum torque which is 1.5 times less than the desired effective value
By keeping the existing gap, other conjugate pairs are added radially in

order to meet the objective. Find the number of total gaps (radial digit pairs)
that will enable achieving the level of torque needed when

Answer:

Problem 4.8
A microcantilever of given dimensions and
is used as an electrostatic actuator. Find the gap between the

microcantilever and its mating pad (assuming both have the same length) that
will produce a tip deflection of under application of a 80 V voltage.
The material properties are E = 120 GPa and

Answer:

the area       Can be chosen arbitrarily;

n = 2
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Problem 4.9
Find the net effect on a loop having the geometry shown in Fig. 4.61

(where R = l/2) and carrying a current I when subject to an external field B.

Figure 4.61 Loop carrying a current in a magnetic field

Answer:
Rotation of the loop about an in-plane direction perpendicular on B and

passing through the semi-circle center; total moment

Problem 4.10
Find the deflection at the midpoint of the microbridge shown in Fig. 4.62,

which is produced by the interaction between the fields of a permanent
magnet attached to the microbridge and the fixed coil carrying a current
The microcantilever cross-section is defined by a width w and a thickness t.

Figure 4.62 Magnetic-electromagnetic interaction via flexible microbridge

Answer:

Problem 4.11
A microcantilever is magnetized as indicated in Fig. 4.39 (c). Determine

the actuation effects at the free end when the external filed is defined by the
law: and the magnetic field source is located underneath the free
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end at a distance h. Known are the cross-sectional dimensions w and t, and
the magnetization m of the magnet.

Answer:

Problem 4.12
A thin sheet is constructed of piezoelectric material of cross-sectional

dimensions w and t, and dielectric constant The piece is polarized over
its thickness direction 3 and is subject to bending moments M that are
applied at its ends. A total strain is measured on one of the sides of the
piezoelectric sheet. Calculate the corresponding voltage that is generated.

Answer:

Problem 4.13
Find the bloc force that has to be applied to a piezomagnetic bloc of

cross-sectional area A and Young’s modulus E. The piece is magnetized
about its height direction by means of a magnetic field H. Also determine the
coupling coefficient. Known are the magnetic charge constant the
magnetic permeability and the magnetic compliance

Answer:

Problem 4.14
A clamped square membrane constructed of SMA with side l and

thickness t is deformed while in martensitic state by application of a uniform
pressure p. A temperature variation, which brings the martensite into
austenite phase, is applied subsequent to removing the initial pressure.
Determine the variation in the maximum deflection. Known are Young’s
modulii in martensitic and austenitic states, and as well as Poisson’s
ratio (Hint: use Eq. (1.233) with the first two terms of the infinite series
expansion.)

Answer:
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Problem 4.15
A bimorph is constructed of two different materials, having

 Find the
thicknesses when and The tip slope is
produced by a temperature increase of

Answer:

Problem 4.16
A bimorph is formed of two layers, the active one being piezomagnetic

and the substrate being polysilicon. Find the length of the bimorph when a tip
bloc force of needs to be produced with an induced strain
Known are

Answer:

Problem 4.17
A bimorph sensor is formed of a piezoelectric layer attached to a

structural polysilicon layer of given thickness Determine the variation
in the external field when a tip deflection of is measured optically.
The following parameters are known:

Answer:

Problem 4.18
A bimorph with dissimilar-length components utilizes thermal expansion

for temperature change detection. Find the temperature variation when a
tip deflection of is measured experimentally. Known are the
following amounts:

Answer:

Problem 4.19
A three-layer multimorph is constructed to function as a thermal actuator.

Determine the tip deflection that this actuator is capable of producing under a
temperature increase of It is known that
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Answer;

Problem 4.20
Positive and negative magnetostrictive layers, of identical thickness, are

attached on both sides of a polysilicon layer. Determine the tip slope when an
external magnetic field induces opposite strains in the two
piezomagnetic layers. Known are: 

Answer:
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1. INTRODUCTION

This chapter studies the static response of microsystems by modeling the
combined effects of actuation, sensing and elastic suspension. The number of
microdevices that can be custom-built by integrating spring designs such as
those presented in Chapters 2 and 3 with rigid parts and transduction
principles, as the ones analyzed in Chapter 4, is vast, and the present chapter
contains just a sample of the extended pool of MEMS applications. The static
equilibrium equations are used for either translatory or rotary motion in order
to qualify the performance of various classes of MEMS, starting from the
simplest designs (with one suspension unit and one transduction unit) to
more complex ones (comprising several spring microsuspensions together
with either actuation or sensing units or with both actuation and sensing
capabilities). The large deformations of mechanical microsuspensions are
analyzed in MEMS applications that deform either axially or through
bending. The buckling phenomenon, as applied to straight and curved
microcomponents, is also addressed together with the post-buckling and
accompanying large-deformation phenomena. Later, the stresses and yield
criteria for combined stresses are presented for several MEMS applications.
Fully-solved examples supplement the text in order to better explain the
various topics of this chapter, and a set of proposed problems completes the
presentation.

2. SINGLE-SPRING MEMS

One of the simplest MEMS configurations comprises one
microsuspension (spring) and the actuation/sensing component. The
equilibrium in such situations is produced when the actuation force/moment
and the opposing elastic force/moment are equal. Several practical
applications will be analyzed next, including microdevices that are designed
for linear or rotary (mainly electrostatic) transduction and flexure microhinge
MEMS.

Chapter 5

STATIC RESPONSE OF MEMS



264 Chapter 5

2.1 Transverse Electrostatic Actuation with
Microsuspension

By coupling the transverse (plate-type) electrostatic transduction that has
been introduced in Chapter 4 to one of the microsuspensions presented in
Chapter 3 leads to the model shown in Fig. 5.1.

Figure 5.1 Model of transverse electrostatic actuation and microsuspension

The maximum gap between the fixed and the mobile plates, occurs
initially for y = 0. The static equilibrium sets in when the two opposing
forces, the electrostatic and the spring force, are equal:

The force produced through transverse electrostatic actuation was given in
Chapter 4 and is rewritten here as:

whereas the elastic force is:

Figure 5.2 shows the force-displacement plots of these two forces. As Fig.
5.2 indicates, there are two points of equilibrium, and where the two
forces are equal for specified spring and electrostatic actuation properties.
However, only the first equilibrium point, is stable because of the fact
that the slope of the electrostatic force is smaller than the (constant) slope of
the elastic force, whereas at point the slope of the electrostatic force is
larger than the one of the elastic force.
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Figure 5.2 Electrostatic and spring forces versus displacement

It is known that an equilibrium point, one for which the total force,
defined as:

is zero, has stable properties when the force derivative is negative, namely:

The limit point separating the stable region from the unstable one can be
found by solving the equation system:

where the total force F is determined by means of Eqs. (5.2), (5.3) and (5.4).
By solving the equation system (5.6) in terms of position and corresponding
voltage, the following solution is obtained:

The force corresponding to this point can be found by substituting of Eq.
(5.7) into either Eq. (5.2) or Eq. (5.3), and its expression is:
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The values of and define the point P of Fig. 5.2, which characterizes the
phenomenon known as pull-in. For forces less than of Eq. (5.8), the slope
of the electrostatic force is smaller than the one of the spring force (which is
equivalent to saying that the slope of the total force F is less than zero) and
the system is stable. When the forces are larger than the situation reverses
and the slope of F is greater than zero, which means that the system becomes
unstable. As a consequence, for displacements that are larger than one-third
of the initial gap the mobile plate collapses (it is pulled-in) against the
fixed one, irrespective of the microspring design. This also explains the
reason why the equilibrium point is stable (it is positioned to the left of
and the other equilibrium point is unstable.

The particular situation where Eqs. (5.7) and (5.8) are valid is pictured in
Fig. 5.3. Compared to the generic case of Fig. 5.2, the actuation voltage U
needs to be increased or the spring has to adequately be redesigned, in order
for the spring force characteristic to be tangent to the electrostatic force
characteristic, as shown in Fig. 5.3. By increasing the voltage for instance,
the force-displacement curve representing the electrostatic actuation will
translate upward until it becomes tangent to the spring characteristic.

Figure 5.3 Single-point equilibrium in transverse electrostatic actuation and microspring

Example 5.1
A transverse electrostatic actuator is serially coupled to a spring of

stiffness Find the actuation voltage that will result in the stable
equilibrium position being related to the pull-in position as: Known
are the following amounts:
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Solution:
As previously shown, the conditions for stable static equilibrium are:

The electrostatic force and the spring force are given in Eqs. (5.2) and
(5.3), respectively. The value of the pull-in displacement is also given in
the second Eq. (5.7). By combining these equations with the relationship
between and it is found that the voltage is U = 86.6 V.

2.2 Flexure-Spring Microdevices

Flexure-spring microdevices are used as acceleration sensors in
automotive control systems of airbags, chassis or navigation monitoring. The
simplest microaccelerometer consists of a flexure hinge and a tip mass, as
pictured in Fig. 5.4 (a).

Figure 5.4 Flexure-hinge microaccelerometer: (a) side view with schematic configuration;
(b) detail with displaced proof-mass



268 Chapter 5

By assuming that the acceleration of the monitored system acts
perpendicularly to the flexure-hinge microaccelerometer, it is possible to
evaluate this acceleration by means of a measured amount, such as the
deflection or the slope of the deformed flexure as shown next. It can be
considered that the inertia force acts at point 2, the center of the proof mass –
Fig. 5.4 (a), which means the flexure hinge is loaded at its tip 3 by the inertia
force and the moment The slope and deflection at point 3 can be found
by using the compliance formulation of Chapter 2 as:

where the compliances above define any of the flexure microhinges that have
been analyzed in Chapter 2. The inertia force and moment are:

The unknown acceleration a can be determined when either the slope or the
deflection of Eqs. (5.10) can be measured directly (experimentally), namely:

or:

Example 5.2
Determine the external acceleration by means of a flexure-hinge

microaccelerometer (as the one sketched in Fig. 5.4 (a)) whose gap is
measured electrostatically.

Solution:
An elementary electrostatic force can be formulated that corresponds

to a length dx (not shown in Fig. 5.4 (b)) and to the gap g(x). This force is:

The variable gap g(x), as shown in Fig. 5.4 (b), is:
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The total electrostatic force can be calculated by integrating Eq. (5.14) over
the length and by using Eqs. (5.10) and (5.11), namely:

This electrostatic force is equal to the inertia force that is generated by the
external acceleration and the mass of the proof mass, as given in the first Eq.
(5.11). The acceleration a can be determined by solving the third-degree
algebraic equation that results by equating Eq. (5.16) and the first Eq. (5.11).

2.3 Rotary Microdevices

Rotary actuation and sensing, together with appropriate suspensions, are
used in microgyroscopes for instance that are utilized to detecting changes in
the direction of rotation of navigational systems such as those implemented
in cars. The rotary portion of a microgyroscope consists at its minimum of
actuation, sensing and suspension. An example, similar to the one analyzed
by Geiger et al. [1], is sketched in Fig. 5.5, where two pairs of rotary
electrostatic actuators (connected in parallel) are disposed symmetrically to
ensure balancing of the microdevice. Two similar sensing pairs (also in
parallel connection) are disposed 90° with respect to the actuator units. The
outer mobile hub and the inner fixed post are connected by means of a spiral
spring.

Figure 5.5 Rotary electrostatic transduction with spiral-spring microsuspension
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Other suspension solutions, with several microsprings, such as those of Figs.
5.6 (a) and (b), are also possible.

Figure 5.6 Rotary electrostatic transduction with: (a) straight-beam microsuspensions; (b)
curved-beam microsuspensions

Application of a voltage differential between the fixed and mobile
electrodes of the two actuation units generates a couple that will rotate the
mobile hub. The maximum rotation angle under static actuation is given by
the equilibrium between the actuation torque and the elastic restoring couple
produced by the spiral spring. The two sensing units will detect the rotation
angle as a change in capacitance, as shown in Chapter 4. Comparing the
angle predicted by capacitance reading to the angle that results from the
torque balance equation can give an insight on the actuation losses, as
detailed in the following example.

Example 5.3
The microdevice pictured in Fig. 5.5 operates in an environment with

and is actuated electrostatically by a voltage U = 80 V. The
readout units indicate a capacitance variation of
Consider that each transduction unit is formed of n = 10 gaps and that

and – see Fig. 4.29. The spiral
microsuspension is defined by – see
Fig. 3.43, (the cross-sectional dimensions) and Young’s
modulus is 160 GPa. Find the relative error in the rotation angle between the
model-predicted value and the actual value read by the sensing units.

Solution:
The torque equilibrium in the position of static balance requires that the

electrostatic actuation torque be equal to the restoring torque produced by the
spiral spring, namely:



5. Static response of MEMS 271

where the actuation torque is twice the value determined in Eq. (4.47) of
Chapter 4 (there are two parallel actuators in Fig. 5.5). The elastic torque can
be expressed as:

where is the rotation angle of the mobile hub and is the rotation
compliance of the spiral spring, which has been defined in Eq. (3.137) of
Chapter 3 for thin spiral springs. Equation (5.18) uses the simplifying
assumption that the rotation compliance is simply the inverse of the
corresponding stiffness.

By combining Eqs. (5.17), (5.18), (4.47) and (3.137) together with the
numerical data of this example, the predicted value of the rotation angle is
found to be The capacitance change, as provided by the two
sensing units, relates to the actual rotation angle according to Eq. (4.49) of
Chapter 4 (the total capacitance variation is twice the value given by Eq.
(4.49) because there are two sensing units in parallel) and a value of

results from the measurement. The relative (percentage) error between
the model and actual rotation angles is therefore equal to

3. TWO-SPRING MEMS

Two springs can be coupled either in series or in parallel and the
resulting stiffness is found as a combination of the individual springs’
stiffnesses. Figure 5.7 illustrates the models that give the equivalent stiffness
for spring parallel/serial connection.

The equivalent parallel and series stiffnesses, as well-known from
elementary mechanics, are calculated as:

Equations (5.19) are specified for linear springs, but they are also valid for
rotary springs, which can similarly be coupled either in series or parallel. The
same equations can be extrapolated in design cases where more than two
microsprings are connected in parallel/series.
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Figure 5.7 Two-spring connection: (a) Parallel; (b) Serial

3.1 Flexure-Spring Microdevices

The model of a MEMS comprising a mass physically supported by two
suspensions that enable linear motion about an out-of-the-plane axis z, is
sketched in Fig. 5.8 (a).

Figure 5.8 MEMS with two flexure springs in parallel: (a) Configuration; (b)
Equivalent spring model

The device of Fig. 5.8 (a) can be used as an electrical switch or a
microaccelerometer for instance. The middle link (shuttle mass for
microaccelerometers) will displace about the z-direction through either
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actuation when it will touch another fixed component and close an electrical
circuit (in a microswitch application) or through inertial acceleration (in a
microaccelerometer). Figure 5.8 (b) shows the equivalent spring model of the
MEMS design of Fig. 5.8 (a). The static response of this system is
characterized by the equation:

Example 5.4
Find the minimum actuation voltage that will move the central link a

distance (where in an electrical microswitch with two
identical flexure hinges, as the one sketched in Fig. 5.8 (a). Young’s modulus
is E = 160 GPa, the electrical permittivity is and the
actuation area is
(a) The flexure hinges are long and have constant rectangular cross-
section with
(b) The flexure hinges are right circularly-filleted with r = 1 and

Solution:
In both cases, the actuation voltage can be found by solving Eq. (5.20)

after substituting the electrostatic actuation force of Eq. (5.2).

(a) For the constant cross-section flexure hinge, the stiffness is and
therefore a voltage of U = 29.1 V is obtained by solving Eq. (5.20).

(b) For the right circularly-filleted flexure hinge, as the one shown in Fig.
2.14, Chapter 2, the stiffness is found by inverting the symmetric
compliance matrix which is formed of and of Eqs.
(2.72), (2.73) and (2.74), respectively. By using again Eq. (5.20), the voltage
corresponding to this design is U = 98.16 V.

3.2 Other Linear-Motion Microdevices

Several examples of two-spring linear-motion microdevices are
presented next. One class of linear-motion MEMS comprises microdevices
whose linear motion takes place in an x-y plane, as shown in Fig. 5.9 (a).
Adding to the active planar motion, the effects of gravity about the z-
direction (which is perpendicular to the x-y plane) might play an important,
although undesired, role.

In addition to the spring-type stiffness of the two suspensions about the
x-axis, the self weight of the central mass solicits the flexibility of the same
suspensions about the out-of-the-plane z-axis, as indicated in Fig 5.9 (b).
Various suspensions have been studied in Chapter 3 and their stiffnesses
about both the x- and z-axes have explicitly been given.
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Figure 5.9 (a) Top view of a two-spring linear-motion microdevice; (b) Rotated
side view of model with mass and two suspensions

Through actuation about the x-direction, the central rigid link will move to
the right for instance, as shown in Fig. 5.10, and will generate reaction forces
by the stiffnesses opposing the motion. The midpoint P will move to a
position P’ in the x-z plane under the combined action of the actuation force

elastic forces and and gravity G. While the actuation force can
be generated by a variety of means, as described in the previous chapter, the
elastic forces are calculated as:

where and represent the deformations of the left, right and
vertical spring, respectively. The elastic force about the z-direction took into
account that two springs are connected in parallel.

Figure 5.10 Model for mass and two suspensions with stiffness about the x and z directions
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Equilibrium about the local and axes results in the equations:

and the motion of the midpoint P to the final position P’ is expressed by
means of the equation:

By using the following small-displacement assumptions:

the solution to Eqs. (5.22) and (5.23) gives:

These amounts enable calculation of the final position (point P’) as:

where and are the displacements of the midpoint P after application of
the actuation force

Example 5.5
Evaluate the errors that correspond to ignoring the suspensions’ stiffness

about the z-direction in a two-suspension MEM. Determine the actuation
force which is necessary to make this error zero.

Solution:
In the case where Eq. (5.25) becomes:
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whereas Eq. (5.26) remains unchanged. It can be seen that there is a non-zero
out-of-the-plane motion about the z-direction because the second Eq. (5.27)
in combination with Eq. (5.28) give a non-zero value of The following
relative error is introduced:

when is calculated by means of the second Eqs. (5.27) and (5.28). This
error reduces to:

As Eq. (5.30) shows, the error is dependent on both the device characteristics,
such as stiffnesses and geometry, and the actuation force. The errors are zero
when:

Example 5.6
Consider the case where, due to imperfections, the actuation force makes

a small angle with the horizontal direction, in the x-z plane of Fig. 5.10.
Evaluate the errors introduced by this imperfection.

and the horizontal projections of the two springs’ deformations are given by
Eq. (5.26) under the assumptions of small-displacements. By combining Eqs.
(5.25) and (5.32), results in the following error function, defined in Eq.
(5.29):

Equation (5.33) indicates that for the linearized, small-displacement case, the
error in the z-displacement varies linearly with the inclination angle of the
actuation force, and obviously, the error is zero when the angle of the
actuation force is zero.

Solution:
According to Fig. 5.10, the angle formed by the left segment with the

horizontal direction is in this case:
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Figure 5.11 Linear actuator working against spring

In many situations, linear actuators, such as thermal, work against one or
several springs that are designed to oppose the generated force/motion. An
example is sketched in Fig. 5.11, where a bar functions as an actuator as it
expands through thermal heating. Coupled to the thermal bar is a spring of
stiffness Application of a certain temperature increase will displace the
actuator-spring connection point to the right by a quantity as sketched in
the figure. This position is the result of the force equilibrium between the
actuation force (given generically in Chapter 4 in Eq. (4.7)) and the elastic
force developed in the spring, namely:

As discussed in Chapter 4, is the bloc force and the free displacement of
the actuator. The solution to Eq. (5.34) is:

The two characteristics, of the actuator and of the spring, are plotted in Fig.
5.12, and their intersection gives the value of Eq. (5.35).

Figure 5.12 Force-displacement characteristics of linear actuator and spring working in
series
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As the figure indicates, the force corresponding to the nominal
displacement/deformation can be determined from either the actuator or
spring characteristic, as also shown in Eq. (5.34).

Example 5.7
In an optical chopper, as the one sketched in Fig. 5.13, the light coming

perpendicularly to a plane can access through slots cut in a mobile plate and
trigger a 1-0 type signal. The microdevice is actuated thermally by the two
inclined beams at its left. Find the minimum temperature which is necessary
to displace the plate by the quantity The inclined beams are
defined by: and

The linear thermal expansion coefficient is Ignore the
weight of the plate.

Figure 5.13 Optical chopper design with four bent beams (two can be actuators)

Solution:
The bloc force and free displacement have been determined in

Chapter 4, Eqs. (4.9) and (4.8), for a bent beam thermal actuator, which
means that the actuation characteristic of Fig. 5.12 is determined. At the
same time, the stiffness of each of the inclined-beam springs are known –
given in Eq. (3.18) of Chapter 3. As a consequence, the nominal point of
operation is determined, as given by Eqs. (5.34) and (5.35). The equivalent of
the four inclined beams is a spring having four times the stiffness of a single
beam, and therefore Eq. (5.35) can be written as:

where it has been considered that the displacement corresponding to the
nominal operation point should be equal to the required pitch displacement
p, and the stiffness is given in Eq. (3.18). It can be seen that the bloc
force and free displacement can be put into the following form:
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where:

Solution of Eq. (5.36), via Eqs. (5.37), gives the following value of the
temperature increase (which is embedded in both and

With the numerical values of this example, the temperature increment has a
value of

Example 5.8
A two bent beam thermal actuator, as the one sketched in Fig. 5.14 (a), of

specified geometry and material properties, has to be evaluated. Its output
displacement is determined optically, whereas the output force is measured
indirectly by means of the fixed-free constant cross-section beam, which is
positioned as shown in the same figure. Determine the Young’s modulus of
the microdevice, as well as the output force. The geometry of the bent beam
is: the geometry of the test beam is:

the coefficient of thermal expansion is
l/° and the temperature increase is

Solution:
According to the spring model of Fig. 5.14 (b), the force equilibrium

equation is:

where the subscript bb denotes the bent beam and the subscript b stands for
the beam dedicated to measuring the actuation force. The thermal actuation
force is determined by means of the bloc force and the free displacement,
according to Eqs. (4.9) and (4.8) in Chapter 4. Also the stiffness of one bent
beam is known – Eq. (3.18) in Chapter 3. The stiffness of the test beam is
simply:
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Figure 5.14 Bent beam thermal actuator: (a) microdevice with force beam; (b) equivalent
actuation model with springs

As a consequence, the force exerted on the beam by the thermal actuator is:

By substituting (from Chapters 4 and 3, as mentioned) and of Eq.
(5.41) into Eq. (5.40), the unknown Young’s modulus is E = 347 GPa and the
force on the beam is according to Eq. (5.42).

Example 5.9
Determine the displacement of the linear micromotor sketched in Fig.

5.15. The actuation is provided by two identical two-beam units (as described
in Fig. 4.14, Chapter 4) and additional suspension is added into the system by
the two end beams. The beams and the compliant parts of the actuators have
identical cross-sections Known is the geometry of the
microsystem as well as
the material properties (E = 150 GPa, and the temperature
increase

Solution:
This example is conceptually similar to the previous one, in the sense

that two actuators are placed in parallel to increase the amount of horizontal
force and to produce a horizontal motion, because of the symmetry. As a
result of this similitude, the equation of static equilibrium between the
actuation force and the elastic restoring forces of the two beams is:
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Figure 5.15 Two-beam thermal actuator with beam springs

where the 2 multiplier indicates there are two actuators and two restoring
springs. The actuation force for a two-beam thermal device was given in Eqs.
(5.34) as a function of the free displacement and bloc force which are
given in Eqs. (4.14) and (4.15) of Chapter 4 for the two-beam actuator. The
stiffness of a fixed-guided beam is:

Therefore, by solving for the output displacement in Eq. (5.43) gives

3.3 Torsion-Spring Microdevices

When a central mass is supported by two springs on the sides and the
actuation creates a torque about the hinge longitudinal axis, as shown in Fig.
5.16, the equilibrium equation corresponding to this situation gives the
rotation angle resulting from the interplay between actuation and the elastic
properties of the two hinges:

One common application of the microdevice of Fig. 5.16 is the so-called
torsion micromirror, which is sketched in Fig. 5.17 (a). As shown in Figs.
5.17 (a) and (b), a central plate is supported by two torsion hinges.
Electrostatic actuation by the plate of dimensions and will attract the
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central plate and, due to the eccentric nature of these forces, the central plate
will rotate with respect to the hinge longitudinal axis.

Figure 5.16 Model for mass and two suspensions with torsion loading

Figure 5.17 Torsion micromirror. (a) Top view schematic; (b) Detail with rotated plate

When the two torques are in equilibrium, the angle of rotation can be
found by means of Eq. (5.45). Another important aspect is the pull-in
phenomenon, which has been discussed in this chapter and which defines the
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stable operation point. Both aspects will be studied next. A similar analysis is
given by Sattler et al. [2] for the particular case where and
(width of the actuation plate is equal to half-width R of the mirror plate).

Figure 5.17 (b) shows the central plate in a rotated position. An
elementary electrostatic force acts on the mobile central (mirror) plate
over a length dr (not drawn in Fig. 5.17 (b)), namely:

where, under the small-displacement modeling assumption, the variable gap
g(r) depends on the initial gap and the rotation angle as:

This force produces an elementary active torque:

The total active (electrostatic) torque is the sum of all the elementary torques
of Eq. (5.48), and is determined by integration between the limits
and as:

Equation (5.49) gives the actuation moment that is produced under
conditions of voltage control. Another possibility is to control the
electrostatic model by means of charge, the so-called charge-control problem.
The elementary charge corresponding to the area determined by and dr is:

The total charge q can be found by integrating Eq. (5.50) between the limits
and The voltage U can be expressed in terms of

capacitance C and charge q as:

and therefore the charge-control actuation equation – the counterpart of the
voltage control Eq. (5.49) – is:
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Equations (5.49) and (5.52) reduce to the equations of Sattler et al. [2], who
treated the particular case where and

As mentioned previously, the active moment of either Eq. (5.49) or Eq.
(5.52) is opposed by the elastic spring moment produced through torsion of
the two supporting hinges. The spring moment is:

where is the torsional stiffness of a hinge. At equilibrium, and
should balance each other, and the point of stable equilibrium, as discussed
for a single-spring microsystem, can be found by solving the equilibrium
equations:

where:

The solution to Eqs. (5.54) is the set for the voltage-control problem,
or the set for the charge-control problem (the p subscript denotes
pull-in, as mentioned previously).

Example 5.10
The torsion microdevice of Fig. 5.18 is used to determine the magnitude

of an electromagnetic field B which acts in the plane of the middle sensing
plate and of the two identical circular corner-filleted microhinges. The
rotation angle of the plate is determined experimentally to be 3° when a
current I = 20 mA passes through the circular loop of radius The
shear modulus of the hinges is G = 56.7 GPa and the hinges are defined by

r = 1/8, and Find the external magnetic
disturbance B.

Solution:
The torque M that is produced by the interaction between the current I

and the external magnetic field B is given in Eq. (4.65) of Chapter 4. This
torque rotates the microdevice of Fig. 5.18 by an angle according to Eq.
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(5.45). The torsional stiffness of a circular corner-filleted microhinge is
defined in Eq. (2.121) of Chapter 2. With these particular conditions, the
solution becomes B = 0.448 T.

Figure 5.18 Electromagnetic sensor with torsional microhinges

4. MULTI-SPRING MEMS

MEMS such as accelerometers, bridges or filters need be designed with
more than two spring microsuspension in order to stabilize/prevent motion
about specified directions. Figure 5.19 (a) for instance is the sketch of a
microaccelerometer that can sense the motion about the direction
perpendicular to the plane of the circular proof mass by means of three
flexure hinges. Similarly, Fig, 5.19 (b) shows a proof mass that is supported
by four identical springs (microhinges). The out-of-the-plane motion, as well
as the planar motion, both indicated in the figure, are possible for this
configuration.

Figure 5.19 Multi-spring MEMS: (a) Three-spring design; (b) Four-spring design

The out-of-the-plane z-displacement at the center of the disc shown in Fig.
5.19 (a) can be calculated as:
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whereas the similar motion of the microdevice of Fig. 5.19 (b) is:

Similarly, the linear motion of the proof mass of Fig. 5.19 (b) about an in-
plane direction x is:

Example 5.11
Compare the sensitivities of the two microaccelerometers shown in Fig.

5.19 (a) and (b) by considering they have identical proof masses and flexure
hinges.

Solution:
The sensitivity of an accelerometer can be defined as the ratio of

displacement to the (inertial) force, namely:

By way of Eqs. (5.56) and (5.57) it follows that the sensitivities of the two
microaccelerometers relate as:

which indicates that the three-flexure microaccelerometer is approximately
33% more sensitive than its four-flexure counterpart.

5. DISPLACEMENT-AMPLIFICATION
MICRODEVICES

This section discusses lever-based and sagittal displacement-
amplification microdevices by analyzing their performance criteria, the most
important being the displacement amplification ratio.

5.1 Lever-based Displacement-Amplification Microdevices

Displacement-amplification microdevices are designed based on the
principle illustrated in Fig. 5.20. The actuation force F works against the
torsional spring of stiffness and produces the rotation angle which is,
according to the moment balance, equal to:
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The horizontal displacement of the tip point 1, which moves to 1’ – as shown
in Fig. 5.20, is:

whereas the vertical displacement of the same point is:

Figure 5.20 Lever-based displacement amplification

At the same time, the displacement of the point 2, where the force F is
applied, is:

and therefore the displacement amplification, also called mechanical
advantage, can be calculated as:

Rotation joints, of the type sketched in Fig. 5.20, are rarely produced in
MEMS. A more convenient and often-applied solution is to utilize a flexure
hinge instead of a classical rotation joint, as discussed in Chapter 2.

Although the motion produced by a flexure hinge is not a pure rotation
and is also limited by the bending deformation capability of the flexure,
many MEMS designs implement it, especially due to its structural simplicity
and ease of microfabrication. Figure 5.21 shows two designs, which are the
flexure-based replicas of the lever of Fig. 5.20. The length of the flexure is
and its cross-section, generally rectangular, may be constant, or variable.
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Figure 5.21 Lever-based displacement amplification with flexure hinge: (a) flexure parallel
to lever; (b) flexure perpendicular to lever

As detailed in Chapter 1, the rotation angle (slope) and horizontal
displacement at point 3 (the tip of the flexure hinge) of the design in Fig.
5.21 (a) can be found when the compliances of the flexure are known in the
form:

The rigid lever is tangent to the deformed flexure hinge at the junction point
3, and therefore the position of the lever’s free tip can be calculated as:

Similarly, the displacement at point 2 about the force direction can be
calculated as:

such that the displacement amplification becomes:
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For the amplification scheme of Fig. 5.21 (b), point 3 will move due to
bending and axial deformations as follows:

The horizontal displacements and as well as the displacement
amplification a are given by Eqs. (5.67), (5.68) and (5.69), respectively. The
vertical displacement of point 1 in Fig. 5.21 (b) is:

Example 5.12
Assess the errors that appear in the amplification produced by the

microdevice of Fig. 5.21 (b) when neglecting the axial deformation of the
flexure hinge. Consider that the flexure has a constant rectangular cross-
section and that and

Solution:
When the axial deformation is accounted for, in addition to the bending-

produced deformation, the horizontal displacement at point 3 can be
calculated by means of Castigliano’s displacement theorem as:

and the slope at the flexure’s tip is:

For small displacements, the horizontal motions at points 1 and 2 can be
approximated as:

and the corresponding displacement amplification becomes:
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By following a similar approach, the amplification for the case where the
axial deformations are neglected is:

The relative error between the amplifications given in Eq. (5.76) versus Eq.
(5.75) can be expressed as:

and Fig. 5.22 is a plot showing this error as a function of the flexure’s cross-
sectional width.

Figure 5.22 Relative errors in the amplification of the microdevice of Fig. 5.21 (b) when
axial and bending deformation are considered versus the case when only bending deformation

is accounted for

Example 5.13
Compare the final positions of the two amplification devices shown in

Figs. 5.21 (a) and (b) when the flexure hinge has constant square cross-
section. Consider that and E = 160 GPa.
Also compare the amplifications produced by the two devices.

Solution:
The needed compliances are:
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The notation of the compliances in Eqs. (5.78) corresponds to the local frame
of the flexure, where the y-axis is perpendicular to the flexure’s longitudinal
axis. By using Eqs. (5.78), in combination to Eqs. (5.66) through (5.71), the
displacements of point 1 in the two configurations of Figs. 5.21 (a) and (b)
can be determined. If the following substitution is used:

the ratio of the displacements is plotted in Fig. 5.23.

Figure 5.23 Ratio of horizontal displacements for point 1: Fig 5.21 (a) versus Fig. 5.21 (b)

The ratio is larger than 1 for smaller values of and larger values of
which means when the force F acts closer to the flexure hinge and when the
length of the flexure hinge is larger.

Figure 5.24 Amplification ratio: Fig 5.21 (a) versus in Fig. 5.21 (b)
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The amplifications of the two mechanisms are calculated by means of the
corresponding equations, and a comparison between the two amplifications is
performed through the two device’s amplification ratio, as shown in Fig. 5.24.
The amplification of the mechanism in Fig. 5.21 (a) is larger than the one
produced by the mechanism in Fig. 5.21 (b) for the set of numerical values of
this problem, as shown in Fig. 5.24.

Example 5.14
The microdevice of Fig. 5.25 is actuated linearly by a thermal actuator of

length Determine the horizontal displacement at the free tip 1 of the rigid
vertical link for a temperature increase Known are all geometrical
amounts as well the elastic and thermal properties.

Figure 5.25 Thermally-actuated displacement-amplification microdevice

Solution:
The horizontal displacement at point 2 is given in Eq. (5.68) as a

function of the horizontal displacement at point 3 and the slope at the same
point. As shown previously for the mechanism of Fig. 5.21 (a), the
displacement and rotation can be calculated as:

where is the force generated by thermal actuation at the interface between
the horizontal actuator and the vertical rigid link. The value of is given in
Eq. (4.7), Chapter 4 and is rewritten here for convenience:
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where is the bloc force – Eq. (4.5) and is the free displacement – Eq.
(4.6). By substituting Eqs. (5.81) and (5.80) into Eq. (5.68), an algebraic
equation is formed, which can be solved for as:

By combining Eq. (5.82) with the first Eq. (5.67), the horizontal
displacement at point 1 becomes:

5.2 Sagittal Displacement-Amplification Microdevices

Another type of amplification microdevice is the sagittal design, which
was presented in Chapter 3 as a suspension component. Figures 5.26, 5.27
and 5.28 are sketches of three sagittal amplifiers.

Figure 5.26 Sagittal displacement-amplifying microdevice with four straight flexure hinges

Figure 5.27 Sagittal displacement-amplifying microdevice with four curved flexure hinges

The operation principle of all these devices is rather simple: application of an
input force F will generate deformation of the flexure-based mechanisms,
and the input displacement corresponding to the force F will be amplified at
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the output port, about a direction perpendicular to the input one, due to the
inclination in the compliant legs, as shown in Fig. 5.26.

Figure 5.28 Sagittal displacement-amplifying microdevice with eight straight flexure hinges

Figure 5.29 Quarter model of sagittal displacement amplifier with rotation joints

Figure 5.29 depicts the quarter model of an amplification mechanism of the
type sketched in Fig. 5.26 under the assumption that the flexure hinges are
pure rotational joints.

An input displacement translates into the amplified output
displacement as indicated in Fig. 5.29, where the initial position is

indicated by thicker lines. For and being the lengths of the three rigid
links 1-2, 2-3 and 3-4 respectively, it can be shown that the following
geometric relationships do apply:

By solving Eqs. (5.84) for it can be shown that the displacement
amplification of this device is:
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As Eq. (5.85) indicates, the displacement amplification is not a linear
function of the input displacement Figure 5.30 is a plot of the
amplification in terms of the length of the mid link and its original inclination
angle (for an input displacement whereas Fig. 5.31 shows the
variation of the same amount as a function of the input displacement (when

and

Figure 5.30 Displacement amplification as a function of the main link’s length and
inclination angle

As expected, the amplification increases with the length increasing and
with the inclination angle decreasing, as shown in Fig. 5.30. Also, an
interesting feature of this device consists in the fact that larger input
displacements produce smaller amplifications, as indicated by the plot of
Fig. 5.31.

Figure 5.31 Displacement amplification as a function of the input magnitude
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Figure 5.32 Physical quarter-model of sagittal displacement amplifier: (a) spring-based
model; (b) displacement diagram

The three mechanisms shown in Figs. 5.26 and 5.27 will be studied next
in terms of their displacement amplification capacity, but also they will be
characterized in terms of two other important qualifiers: the input stiffness
and the output stiffness. Figure 5.32 (a) is a simplified physical model of the
real microdevices of Figs. 5.26, 5.27 and 5.28 describing the spring features
by means of two sets of matching wedges that can relatively slip without
friction along their mating surfaces. For convenience, the subscript in has
been used to denote the input (horizontal) direction of Fig. 5.32 (a), whereas
out signifies the output (vertical) direction in the same figure.

The actuating (input) force F encounters elastic resistance which can be
modeled by the horizontal spring of stiffness At the same time, due to
the relative inclination of the two rigid links, elastic resistance is also set
about the perpendicular direction, and this is modeled by the spring of
stiffness The same inclination amplifies the input displacement to a
value about the direction perpendicular to the input one, as pictured in
Fig. 5.32 (b).

When the work introduced in the system by the action force F entirely
balances the work of the resistance force and the potential energy stored in
the two elastic springs, the following equation applies:

where division by the factor of 2 in the work terms has been applied because
the respective forces are applied quasi-statically. At the same time, the
following relationship holds true:
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from Fig. 5.32 (b). By substituting now Eq. (5.87) into Eq. (5.86), the
following equation is obtained:

In the particular case where both the active force and the resistance force are
zero (the mechanism deforms through application of the input displacement

Eq. (5.88) simplifies to:

which shows that the displacement amplification a, the input stiffness and
the output stiffness are related. This condition is accurate for a device
with pure rotation joints, but is only an approximation for devices utilizing
microhinges, as shown in the following.

Figure 5.33 Quarter-model of displacement-amplification microdevice with one straight
flexure hinge

The micromechanism of Fig. 5.26 will further be studied by formulating
the three corresponding qualifiers mentioned above, namely the displacement
amplification, input stiffness and output stiffness. A quarter-model will be
again employed, as sketched in Fig. 5.33. Essentially, the design of Fig. 5.33
is statically-equivalent to the simplified model of Fig. 5.34, where the two
rigid links have been eliminated.

Figure 5.34 Reduced quarter-model of displacement-amplification microdevice with one
straight flexure hinge for input stiffness calculation
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The approach followed here is the one based on the stiffness approach of
Chapter 1 for a straight flexible member. As shown in Fig. 5.34, two sets of
reference frames are utilized here: one is the global frame XY, and the other
is the local reference frame with its x-axis aligned with the straight flexure
hinge. The actuation force F decomposes locally into the and and
therefore, the following matrix equation can be written, according to
Castigliano’s first theorem:

The supplemental part of the subscript which has been used in Chapter 1 to
denote the extremity of the flexible member which is assumed free (point 3
here) was eliminated from the notation, because the 2-3 flexure is symmetric.
As Eq. (5.90) indicates, axial and bending effects are both taken into account.

In order to determine the input stiffness, a relationship between the force
F and the corresponding displacement (taken about the global direction
X) is needed. This displacement results from adding up the two local
deformations, and namely:

The local deformations and can be expressed from the first two rows
of the matrix Eq. (5.90) as:

where it has been taken into consideration that and are the projections
of F onto the local x-and y-axes. The rotation (slope) at point 2 is zero,
because the flexure hinge is rigidly attached to the link 1-2 at that particular
point. By combining now Eqs. (5.91) and (5.92), results in the following
equation giving the input stiffness:

It should be mentioned that Eq. (5.93) is generic in the sense that it can
accommodate any shape of a flexure hinge whose required stiffnesses are
known.
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A similar approach is followed in order to determine the other important
stiffness, the output stiffness. Figure 5.35 pictures the reduced quarter-model
that corresponds to this case.

Figure 5.35 Reduced quarter-model of displacement-amplification microdevice with one
straight flexure hinge for output stiffness calculation

The force is originally applied at point 4 of Fig. 5.33, and is transferred at
point 3 on the reduced quarter-model of Fig. 5.35. A relationship similar to
the matrix Eq. (5.90) can be written, connecting the load components
and to the deformations, according to the following equations:

The displacement at 4 about the Y-direction (the direction of the applied
force can be expressed as:

The output stiffness is found by combining Eqs. (5.94) and (5.95), namely:

The displacement amplification is determined by following a path similar
to the one used in finding the output stiffness, the only differences here being
that there is no force and the actuation force F (which is applied at point 1,
as shown in Fig. 5.34) will generate a horizontal reaction at point 4, which
can be transferred at point 3, as it was done previously. In this case, the
equations connecting local forces to local displacements (deformations) are:



300 Chapter 5

By combining Eqs. (5.97) and Eq. (5.95) gives the output displacement
which is produced by application of the force F at the input port 1, namely:

The displacement amplification is found by means of Eqs. (5.91), (5.92) and
(5.98) as:

Example 5.15
Check whether the input stiffness output stiffness and

displacement amplification a of the quarter-model of a microdevice with four
straight hinges, as the one pictured in Fig. 5.26, satisfy the condition of Eq.
(5.89), which is valid for a similar device with pure rotation joints.

Solution:
If one combines Eqs. (5.93), (5.96) and (5.99), the condition posed in Eq.

(5.89) is only possible when:

which is equivalent to the particular value of the inclination angle:

Example 5.16
Based on the equations giving the input and output stiffness and the

displacement amplification for a quarter-model amplification microdevice,
find those amounts that correspond to the full, four-flexure microdevice.

Solution:
The full microdevice comprises four flexures and its spring-based model

is shown in Fig. 5.36 (a). There are two branches between the nodal points A
and B, the upper one and the lower one, each formed of two identical springs
connected in series. The equivalent spring stiffness for each branch is
according to the series connection rule, presented in this chapter. As a
consequence, the equivalent spring shown in Fig. 36 (b) results from
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combining two springs in parallel, each having the stiffness and its
stiffness is the sum of these two intermediate stiffnesses, namely:

Figure 5.36 Spring-based models: (a) Full four-flexure sagittal amplification microdevice
model; (b) Equivalent model

As a consequence, the input stiffness of the whole micromechanism is equal
to the stiffness of one quarter of it. Similar reasoning can be applied to
demonstrate that the total output stiffness is:

by following the left and right branches between points C and D in Fig. 5.36
(a).

The following reasoning can be developed in order to determine the
displacement amplification of the full microdevice. A simplified quarter-
model amplification device of the type discussed here is sketched in Fig. 5.37
(a), where the input and output displacements are shown (the thicker line
indicates the flexure in its final position). The corresponding full microdevice
model is shown in Fig. 5.37 (b).

When the full mechanism is analyzed, the input displacement is actually
applied from both sides, as indicated schematically in Fig. 5.37 (b) and the
output can also be collected at two ports about the direction perpendicular to
the input direction. As a consequence, the amplification of the whole
microdevice can be calculated as:

As the case was with the input and output stiffnesses, Eq. (5.104) indicates
that the displacement amplification of the entire sagittal micromechanism is
equal to the amplification produced by one quarter model.
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Figure 5.37 Input and output displacements for a sagittal displacement amplification
microdevice: (a) quarter model; (b) full model

Example 5.17
Express the input and output stiffnesses, as well as the displacement

amplification of the microdevice with four curved flexure hinges sketched in
Fig. 5.27. The quarter-model of this sagittal microdevice, together with the
defining geometry, are shown in Fig. 5.38.

Figure 5.38 Quarter-model of displacement-amplification microdevice with four curved
flexure hinges

Solution:
The curvature radius of the flexure is R and the corresponding center

angle (not indicated in Fig. 5.38) is The lengths of the two adjoining rigid
links are and respectively. The input stiffness, output stiffness and
displacement amplification are calculated in a manner similar to the one used
for the straight-flexure quarter-model analyzed previously.

The reaction moment which is set when the force F acts at point 1,
can be found by considering that the rotation at point 2 is zero (the circular
flexure remains rigidly connected to the link 1-2 at that point). It is
considered that the local frame indicated in Fig. 1.20 of Chapter 1, it is also
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used for this example. According to Eq. (1.127) of Chapter 1, the rotation
angle at point 2 (which is actually zero) can be written as:

where (there is no vertical reaction at point 1, and therefore
no y-component at point 2) and By solving Eq. (5.105) for
gives:

The displacement about the x (input) direction at point 1 is given by the same
Eq. (1.127) of Chapter 1 as:

By substituting of Eq. (5.106) into Eq. (5.107), produces the following
input stiffness equation:

The compliance equations that define the input stiffness are explicitly given
in Eqs. (1.133), (1.128) and (1.130) in Chapter 1.

The output stiffness is calculated similarly by assuming that a force is
applied vertically upward at node 4, as shown in Fig. 5.39.

Figure 5.39 Quarter-model with load for output stiffness calculation

An equation can be written in order to express the zero rotation at node 4,
and this leads to the unknown moment
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The sine and cosine terms appear in Eq. (5.109) because of the inclination of
the force with respect to the local reference frame xy of Fig. 5.39. The
displacement about the vertical direction at point 4 results from
superimposing the local displacements at that point in the form:

where Y and X denote the global reference frame, as shown in Fig. 5.39. By
expressing the local displacement components at point 3, according to the
generic Eq. (1.127) of Chapter 1, the output stiffness can be formulated as:

The amplification factor is found by applying the force F at node 1 (as in
the case of finding the input displacement) and by determining the
corresponding displacement about the Y-direction at 4. In this case, a
horizontal reaction (not shown in Figs. 5.38 and 5.39) is set at node 4
such that The unknown bending moment at the same node can be
found as:

The vertical displacement at node 4 is determined by following the approach
previously described and by combining this displacement with which
was determined when formulating the input stiffness. The displacement
amplification becomes:

Another important aspect is assessing the way these displacement-
amplification micromechanisms interact with and can handle external loads
that are connected to the output port and are directed about the output
direction. A reduced quarter-model of the displacement amplification
microdevice is shown in Fig. 5.40, where the actuation force F is opposed by
the external (resistive) load
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Figure 5.40 Reduced quarter-model of sagittal microdevice with straight flexure hinge
under actuation and load

The procedure of finding the output displacement is similar to the ones
applied to find the output stiffness and the displacement amplification for this
microdevice. In essence, and without repeating the calculus that has been
already detailed previously, the output displacement that is produced under
the combined action of the input force F and the resistive force is:

It is important to determine the maximum value of the resistive force
which will bloc the motion at the output port of a sagittal microdevice and
which is known as the bloc force. By taking in Eq. (5.114), produces
the following equation of the bloc force:

The displacement amplification microdevices can be combined in
various ways in order to tune certain stiffness properties or to augment the
absolute output levels that cannot be reached by using a single unit.

Figure 5.41 Arrangement for displacement amplification enhancement
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Figure 5.41 shows an example where two identical units are used to
actuate a central unit. The two different units have potentially different
stiffness and amplification properties. The input forces actuate the two
side amplification devices in the way suggested in Fig. 5.41, and their output

serves as input to the middle amplification microdevice, which produces
the bi-directional doubly-amplified output displacements Knowing the
amount of actuation force it is of interest to determine the output
displacement The subscript 1 will be used to denote the side input
actuators and the subscript 2 will stand for the middle amplification unit. The
displacement amplifications produced by the two units are:

However, the input displacement to the middle unit is the output
displacement produced by the first unit and therefore the two Eqs.
(5.116) combine into:

The input displacement can be expressed as:

The input stiffness of the side amplification device is connected to the
stiffness at its output port about the output direction, as shown previously. In
the present case, the stiffness at the output port of the side device is
composed of the output stiffness of this device, coupled in parallel to the
input stiffness of the middle microdevice, and therefore, the following
equation applies (the minus sign of the original Eq. (5.89) is ignored):

By combining Eqs. (5.117), (5.118) and (5.119), yields the absolute output
displacement, namely:

In order to increase the output displacement, the amplification of the middle
microdevice needs to be high, whereas the amplification of the side
microdevices has to be relatively small. Also the output stiffness of the side
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units and the input stiffness of the middle unit need to be small in order to
produce large output displacements.

6. LARGE DEFORMATIONS

There are MEMS devices which are designed to operate under conditions
of large deformations/displacements in order to amplify their output
capabilities.

Figure 5.42 Rigid bar with one end pinned and a spring and a load at the other end

While the separation between small and large displacements is rather
flexible, the mathematical description and solutions of the two theories are
quite different. The small-displacement theory considers that the loading and
resulting deformations/displacements of a microcomponent are independent
and can be superimposed linearly. The large-displacement theory is non-
linear, and effects of different loads do combine and affect each other and,
together, they affect the deformed state of a MEMS component. In many
instances, an originally non-linear mathematical model can be linearized,
especially when the deformations are small, as shown in the example of Fig.
5.42, where the axial force produces an angular rotation of the pinned bar
of length l, because of an initial misalignment from the horizontal position.
The moment equilibrium equation is:

The following small-displacement approximations are used:

which transform Eq. (5.121) into:
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For an elastic body that is acted upon by external loads, the small-
displacement theory provides the Cauchy strain-displacement relationships
given in Eqs. (1.27) of Chapter 1. However, those equations are just keeping
the linear terms of the following more complete equations:

which are given, for instance, by Boresi, Schmidt and Sidebottom [3]. An
example will be analyzed next in order to better contrast the differences
between the small- and large-displacement theories.

Example 5.18
Consider a fixed-free bar of constant cross-section that is acted upon by

an axial force at its free end. Compare the maximum displacements
corresponding to small- and large-displacement theories. Given are the force

the cross-sectional area, the length of the bar,
and Young’s modulus, E = 160 GPa.

Solution:
The differential equation given by the small-displacement theory is:

which is a linear first-order differential equation whose solution gives the
well-known maximum displacement at the free end:

The first Eq. (5.124) can be expressed for large displacements by means
of the non-linear first-order differential equation:
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Figure 5.43 Maximum axial displacement of a fixed-free microbar as a function of the
extension load according to: (a) large-deformation theory; (b) small-deformation theory

The two plots of Fig. 5.43 show the tip displacements according to the
large-deformation theory – Fig. 5.43 (a) – and the small-deformation theory –
Fig. 5.43 (b) –, both in terms of the applied force. It can be noticed that the
predictions of the small-displacement theory are always higher than the ones
of the large-displacement theory –up to more than twice for large axial forces.

Many MEMS do deform by means of beam-like structures, and there are
situations where such members are subject to large deformations.

Figure 5.44 Cantilever with tip force producing large deformations

Figure 5.44 shows a microcantilever that is subject to large deformations
under the action of a tip force F. It can be seen that, unlike in the small-
displacement theory – where it is assumed that the projection of the bent
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beam on its original longitudinal direction has the same length with the
unbent beam, the horizontal projection of the deformed beam is shorter by
the quantity Another major difference consists in the fact that the three
parameters defining the ultimate position of the microcantilever free tip,
namely: and are dependent. In bending, the essential difference
between the large- and the small-displacement theories consists in the way
the basic differential equation is formulated. While the large-displacement
theory takes the exact form:

the small-deflection theory ignores the slope second power in the
denominator of Eq. (5.128), and therefore studies the approximate
differential equation:

Another form of the exact Eq. (5.128) is:

as shown, for instance, by Timoshenko [4] or Gere and Timoshenko [5]. As
suggested in Fig. 5.44, the relationships between the curvilinear variable s
and its projections on the x and y axes are:

By taking into account that the bending moment at a generic position x is
simply equal to F times x, Eq. (5.130) can serve to take its derivative in terms
of the curvilinear coordinate s by also using Eq. (5.131), which results in:

The solution to this differential equation, by taking into consideration that the
curvature at the free end is zero, becomes:

where:
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The length of the beam can be expressed by integrating the differential length
ds of Eq. (5.133), namely:

The right-hand side of Equation (5.135) can be expressed in terms of an
integral of the form:

which is known as an elliptic integral of the first kind where c is a constant.
Equation (5.135) enables to find the force F that corresponds to a tip slope

The maximum tip deflection can be found by solving the first Eq. (5.131),
namely:

Finding implies numerically solving an elliptic integral of the second kind,
which is defined as:

Similarly, the tip position is determined by integrating the second Eq.
(5.131) as:

An example will be studied now to highlight the differences between the
deformations of a beam when calculated by the large-displacement
hypotheses versus the small-displacement theory.

Example 5.19
Consider a microcantilever of length and having a cross-

section defined by and being acted upon by a force F as
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in Fig. 5.44. Find the deformed position at the free end defined by,
and by using the large-displacement theory and compare it with the
results given by the small-displacement theory when the force F increases
from to Consider that Young’s modulus is 130 GPa.

Solution:
The tip angle is found by solving Eq. (5.135) for the large-

displacement theory and Fig. 5.45 (a) is the plot of this angle against the
force, whereas Fig. 5.45 (b) shows the angle when calculated by means of
the small-deflection hypotheses, according to which:

Figure 5.45 Tip rotation angle according to the: (a) large-displacement theory; (b) small-
displacement theory

It can be noticed that the predictions of the small-displacement theory are
always higher than the ones of the large-displacement model, and for large
values of the force F the difference in results is more than 250%.
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Equation (5.137) is solved numerically in order to determine the tip
deflections of the microcantilever by means of the large-deformation model,
and Fig. 5.46 (a) plots the values of versus the force F. The non-linear
relationship between load and deformation can be seen again. The tip
deflection is calculated by the small-displacement assumptions by means of
the known relationship:

and Fig. 5.46 (b) shows the linear deflection-force relationship. Again, the
predictions by the small-displacement theory are overestimating the tip
deflection by significant amounts for large values of the force F.

Figure 5.46 Tip deflection according to the: (a) large-displacement theory; (b) small-
displacement theory

The tip position is plotted in Fig. 5.47 against the force F, as calculated by
means of Eq. (5.139) according to the large-displacement theory. Values as
large as are obtained by the large-displacement model predictions.
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Figure 5.47 Tip deformation about the longitudinal axis according to the large-displacement
theory

Example 5.20
Analyze the maximum stresses that are produced through bending of the

microcantilever in the preceding example when calculated by both the small-
and large-displacement theories.

Solution:
According to the small-displacement theory, the maximum stresses,

which are located on the upper fibers of the microcantilever, are calculated
as:

It has been shown that represents the true curvature, and this fact was
used in the large-displacement theory. The radius of curvature is therefore:

The maximum strain (on the upper fibers) can be calculated as:

By way of Eq. (5.133), which gives the space derivative of the slope
according to the large displacement theory, the maximum value invoked in
Eq. (5.144) is:

For materials with linearly-elastic behavior, the stress is the product of the
Young’s modulus and the corresponding strain, and therefore, by using Eqs.
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(5.144) and (5.145), the maximum stress according to the large displacement
model is:

As a consequence, the following stress ratio can be formulated, based on Eqs.
(5.142) and (5.146):

The stress ratio of Eq. (5.147) is plotted against the force F in Fig. 5.48. It
can be seen that by using the small-displacement theory, the stresses are
always overevaluated, as compared to the large-displacement theory, up to
factors of approximately 2.5 for large values of F. However, at relatively
smaller loads, the predictions given by the two methods are almost identical,
as also shown in Fig. 5.48, where the stress ratio is very close to 1 for small
values of the force F.

Figure 5.48 Stress ratio as a function of the tip force – Eq. (5.147)

7. BUCKLING

7.1 Introduction

Buckling is associated with structural instability occurring at
statical/dynamical loads which are called critical and which can produce
either failure or large deformations that are unacceptable. The discussion
here will be restricted to statically-generated buckling. Figure 5.49 pictures
three different situations that are stability-related.
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Figure 5.49 Stability-related conditions: (a) Stable; (b) Neutral equilibrium; (c) Unstable

Figure 5.50 Finite element model showing out-of-the-plane buckling of a thin column

Figure 5.51 Buckling of a thin ring: (a) Undeformed; (b) Finite element model of the out-
of-the-plane deformed shape

A perturbation will displace the ball, as shown in Fig. 5.49 (a), but the stable-
equilibrium position (denoted by SE) will be regained after the perturbation
ceases. In the case of Fig. 5.49 (b), any position is one of equilibrium, for
instance the ball will move from one equilibrium position to a
subsequent one after the perturbation ends, and therefore this situation is
one of neutral equilibrium (NE). On the contrary, when a perturbation is
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applied to the ball sitting at the top of the convex surface of Fig. 5.49 (c), the
ball will irreversibly move from its position UE, which is therefore an
unstable-equilibrium position. It should be mentioned that the three states of
Fig. 5.49 are defined based on small perturbations. When these perturbations
are large, there might be changes in the stability condition of a structure
leading, for instance, from a stable to an unstable state and vice versa.
Figures 5.50 and 5.51 illustrate two examples of structural buckling that
might be encountered in MEMS applications.

When the compression forces that are applied about the longitudinal
(long) axis of the thin member of Fig. 5.50 reach a certain critical level, the
column will lose its equilibrium position and will bend (buckle) outside its
plane as shown in the figure. Similarly, when the thin ring of Fig. 5.51 (a) is
compressed, it can buckle out of its plane, as illustrated in Fig. 5.51 (b). The
cases shown in Figs. 5.50 and 5.51 are representative for the bifurcation
buckling, where there is a sudden jump from one state/mode of deformation
(which is axial) to another mode (which is bending) at a critical level of the
compressive load. Another possibility is the limit-load or maximum-load
(also known as snap-through buckling – see Chen and Lui [6] for instance)
where the jump occurs between two modes that are similar in nature, such as
the case is with the arch of Fig. 5.52, which can snap-through (buckle) from
one stable bending state (shown with solid line), to a different one (indicated
by dotted line) under the action of external pressure.

Figure 5.52 Snap-through buckling of an arch under external pressure

Figure 5.53 contains the qualitative load-deformation plots of these two
buckling variants. Both situations follow the compression-defined path 1-2
up to the point 2 where they separate. In the case of bifurcation buckling,
when the critical load is reached at point 2 the deflection increases
substantially through bending-produced buckling with the compression force
being constant and equal to the critical value. As a consequence, the line 2-3-
4 is followed up to the point 4 where either the structure collapses or a limit
is reached in deformation. The limit-load or snap-through buckling situation
registers a jump in its load-deflection characteristic from point 2 to point 3
(as the 2-3 portion is inadmissible), and snaps to another bending state,
shown qualitatively by the segment 3-5, up to the limit point 5. It should be
noted that the segment 1-2 doesn’t have to be identical for the two buckling
cases, but it was drawn so in order to simplify the graphical representation.
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Figure 5.53 Bifurcation versus snap-through buckling

The buckling cases discussed so far (and which are retrieved in
significant numbers of MEMS applications) were produced by
bending/flexure. There are however cases where buckling is generated
through torsion (such as for thin-walled open-section members) or through
mixed bending and torsion (for coupled bending-torsional cases), but these
situations are beyond the scope of this presentation. Also, from a structural
standpoint, members that can buckle include columns (which can sustain
only axial loads), beam-columns (which can sustain bending loads, in
addition to axial loads), rigid frames (which are formed of two or more
rigidly-attached beam-columns), or plates/membranes. The presentation will
be limited here to columns and beam-columns (both straight and curved), as
the majority of buckling-related MEMS applications are based on these
structural members.

Buckling can be either elastic or inelastic, depending on the way the
buckling stresses do compare to the proportionality limit which is shown
in the plot of Fig. 5.54 for a ductile material. Long and thin (slender)
columns for instance buckle at stress levels that are less the proportionality
limit, where the stress-strain characteristic becomes non-linear (the material
no longer obeys the Hooke’s linear relationship). This type of buckling is
therefore elastic and this is the desired form of buckling in MEMS
applications, as the microcomponent recovers its original shape after the load
has been removed. Relatively short components are generally prone to
inelastic buckling, as part of their cross-section is already in the non-linear
portion of the stress-strain characteristic of Fig. 5.54 (the 2-3 portion), and
therefore this type of buckling is inelastic, so the micromember does not
completely regain its original shape. Unless the buckled micromember is
going to be discarded, this condition is to be avoided in buckling design.
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Figure 5.54 Stress-strain curve for a ductile material

7.2 Columns and Beam-Columns

Columns and beam-columns (straight, curved and bent) will be studied
next by analyzing their behavior in the elastic domain.

7.2.1 Straight Beam-Columns

The main problem with the elastic buckling is establishing the minimum
compressive force (the critical load), which is capable of producing buckling.
One method of solving this problem is formulating and solving the
differential equation of a column subjected to axial compressive load. Most
often, the pinned-pinned configuration of Fig. 5.55 is taken as the paradigm
example, and will also be utilized here.

Figure 5.55 Pinned-pinned column in buckling.

The pinned-pinned column is originally straight and its length is 1. Figure
5.55 shows it in buckled condition and indicates the generic deflection
which is generated through the action of the compressive axial load F applied
at the moving pinned end. The differential equation governing the static
bending of this member is:
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As Fig. 5.55 indicates, the bending moment is:

such that substitution of Eq. (5.149) into Eq. (5.148) results in:

where:

From basic differential calculus, it is known that the solution to the
homogeneous differential equation (5.150) is of the form:

where A and B are integration constants that are determined from the
boundary conditions. When x = 0, the deflection at that point is
and Eq. (5.152) gives A = 0. Similarly, when x = 1, which, after
substitution into Eq. (5.152), gives the non-trivial solution:

Equation (5.153) is equivalent to:

which, combined to Eq. (5.151), gives the equation of the forces that produce
buckling as:

Out of the set of forces that are obtained when n = 1, 2, 3,..., the critical
buckling load is the smallest one, corresponding to n = 1, and therefore:

Boundary conditions that are different from the ones of Fig. 5.55 are also
possible in other buckling-related problems, as shown in Fig. 5.56. The
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critical buckling load can be calculated for each case following the procedure
used in determining the critical load for a pinned-pined column, as detailed in
Chen and Lui [6] or Chajes [7]. The critical load can be expressed in the
generic manner:

where is called the effective length and is calculated by means of the
effective-length factor K as:

Figure 5.56 Combinations of ideal boundary conditions for beam-columns in buckling: (a)
guided-fixed (K = 0.5), (b) pinned-fixed (K = 0.7), (c) pinned-pinned (K = 1), (d) fixed-fixed

(K = 1), (e) free-fixed (K = 2), (f) fixed-pinned (K = 2)

Figure 5.56, which shows other combinations of boundary conditions for
beam-columns subjected to buckling, also gives the corresponding values of
K – after Chen and Lui [6].

Another measure of the elastic buckling is the critical stress, which is
produced by the compression load, and which can be calculated as:

By using the radius of gyration, which is defined as:
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and the slenderness ratio, which is:

the critical stress of Eq. (5.159) becomes:

The critical stress is plotted against the slenderness ratio in Fig. 5.57.

Figure 5.57 Plot of critical stress against the slenderness ratio

The curve denoted by 1 is the graphical representation of the critical stress –
slenderness ratio of Eq. (5.162), and therefore the elastic buckling is only
possible for values lager than the value which corresponds to the material
proportionality limit. For values smaller than which apply to shorter
columns – as the definition Eq. (5.161) shows it, the column might buckle
inelastically (the portions 2 or 3) or, for very short columns, buckling is not
even possible (the segment denoted by 4). The curve 2 for instance represents
the Engesser model for inelastic buckling, which uses a formula similar to
the one corresponding to the elastic buckling of Eq. (5.162). The only
difference with this model is that Young’s modulus is no longer constant, and
is taken as either the tangent or secant value from the experimental stress-
strain curve, or as an average combination of the two values. Another
solution is the Tetmajer-Jasinski model, which expresses a linear relationship
between the critical stress and the slenderness ratio. While the Engesser
model works better for metallic components, the Tetmajer-Jasinski model is
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more appropriate for aluminum-type materials – Chen and Lui [6]. In MEMS
devices, however, the inelastic buckling is not desirable, and redesign has to
be performed when a component is plausible to buckle inelastically.

Example 5.21
A guided-fixed beam-column, as the one sketched in Fig. 5.56 (a), which

is intended to function as an out-of-the-plane actuator, is designed by mistake
such that Take the necessary measures in order for the beam
column to operate reliably as an actuator. The material of the
microcomponent cannot be changed and the length is also specified.

Solution:
Because the beam-column will eventually buckle inelastically, as

shown in Fig. 5.57, and this is an undesired condition. For elastic buckling it
is necessary that the redesigned component have a slenderness ratio larger
than the proportionality limit. By considering a rectangular cross-section
defined by w and t (w being the in-plane dimension, and w > t), the
slenderness ratio in the initial design can be expressed as:

when taking into account that:

Obviously, the new slenderness ratio (of the redesigned microactuator) is
expressed similarly as:

and the intention is that:

in order to insure that the new slenderness ratio is at least equal to the
proportionality limit so that buckling takes place in the elastic domain.
Combination of Eqs. (5.163), (5.165) and (5.166) results in the following
relationship:
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One way of realizing condition (5.167) is to change the current boundary
conditions such that K increases. The highest theoretical value of K is 2, as
shown in Fig. 5.56, and this corresponds to either a free-fixed condition – Fig.
5.56 (e) or a fixed-pinned one – Fig. 5.56 (f). This provision would transform
Eq. (5.167) into:

because and as indicated in Fig. 5.56. As a consequence, the
microactuator will buckle elastically when the boundary is modified
according to the previous discussion and when the cross-section thickness is
reduced by at least 20%.

7.2.2 Curved Beam-Columns

A pinned-pinned thin curved beam of small curvature is now analyzed,
as the one sketched in Fig. 5.58, in order to find its critical load by means of
the energy method.

Figure 5.58 Pinned-pinned curved beam of small curvature under axial loading

The original shape of the beam is drawn with thick solid line, whereas the
deformed (buckled) shape is shown with a dotted line. The original offset of
the curved beam at a position x is denoted by and the maximum offset
a is located at the midpoint of the beam whose span is 1. The extra-
deformation gained through axially-produced bending is denoted by
for the x-position. By following the standard procedure that enables finding
the deformed shape of a pinned-pinned beam and under the assumption that
the original curved shape of the beam is defined as:

Timoshenko [4] derived the following solution for the bent shape of the
curved beam:
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The energy method which is utilized here as an alternative tool of
calculating the critical load states that the strain energy stored in a deformed
member is equal to the external work performed by the loads. In the case of
the small-curvature beam of Fig. 5.58, only the bending effects have to be
accounted for. As a consequence, the strain energy stored in the beam
through bending is expressed as:

The bending moment is produced by the axial force and is equal to:

By substituting Eqs. (5.170) and (5.172) into Eq. (5.171), the strain energy
can be calculated as:

The work in this case is produced by the force F traveling over a distance
about the x-axis, namely:

The travel by the force F can be calculated as:

By taking the x-derivative of of Eq. (5.170) and by substituting it into
Eq. (5.175), the work of Eq. (5.174) becomes:

By considering the statement of the energy principle, namely:

it can be found that the critical force is equal to the critical force
corresponding to a straight pinned-pinned beam.
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The advantage of the curved design, as well as of the next design
presented herein (the bent beam column), over the straight configuration is
that the curved beam-column produces buckling unidirectionally (outside the
curvature center), as it is improbable that buckling will occur the other
direction. This feature can be used in applications where buckling is sought
not to take place about certain directions, such as towards the substrate. At
the same time, the buckling direction of a straight beam-column is
completely unpredictable.

7.2.3 Bent Beam Columns

A design which is similar to the small-curvature curved beam of Fig.
5.58 is the one sketched in Fig 5.59. It consists of two symmetric beams
which are rigidly attached at the middle of the span 1, and are slightly
inclined, making a small angle with the line joining the two end pins. This
design, with different boundary conditions, was studied in the
sensing/actuation chapter, when dealing with the bent beam thermal actuator.
It is worth emphasizing that when the axial force is less than the critical
buckling load, the microstructure still bends, although not through buckling,
and this is also valid for the curved beam of the previous sub-section.

Figure 5.59 Pinned-pinned bent beam under axial loading

Determining the critical load can be done by using the energy method,
similarly to the procedure applied to the curved beam. The loading by the
force F is statically-equivalent to the loading by a force applied at the
beam’s midpoint, as shown in Fig. 5.60. The two loading systems are
equivalent when the areas of the two bending moment diagrams are equal, as
shown by Timoshenko [4], namely when:

The initial offset of a generic point of the bent beam of Fig. 5.60 is:
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Figure 5.60 Equivalent loading of the pinned-pinned bent beam

The deformation produced through bending by the action of the force can
simply be found by integrating the following differential equations:

and by using the appropriate boundary conditions that are zero deflections at
points 1 and 3‚ as well as equal deflections and equal slopes at point 2. It can
be shown that the total offset of the deformed beam is:

where:

By using Eqs. (5.171) and (5.181)‚ it is found that the strain energy is equal
to:

The work done by the axial force is:

By equating the strain energy U to the work W‚ according to the energy
principle‚ gives the expression of the critical force:
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which is also the solution for a straight beam of length l.

7.3 Post Buckling and Large Deformations

The critical load is found by means of the small-displacement theory‚ and
this cannot predict the displacement/deformations of a beam-column at
buckling or for conditions where the axial load exceeds the critical value.
However‚ as mentioned previously‚ MEMS applications are being
specifically designed to produce large output displacement through buckling
and therefore knowledge of the true deformation of a buckled member is
important. By using the large-deformation theory it is possible to predict the
so-called post-buckling behavior of a microcomponent‚ as shown next.

Figure 5.61 Postbuckling and large deformations: (a) straight guided-fixed column; (b)
same column in buckled condition; (c) one-quarter length free-fixed column; (d) free-fixed

column

The straight guided-fixed column of Fig. 5.61 (a) is the model for many
MEMS components that utilize buckling/postbuckling to achieve either large
displacements or actuation forces. When the axial force F exceeds the critical
buckling value‚ large deformations are set and the column deflects as shown
in Fig. 5.61 (b). The buckled shape of Fig. 5.61 (b) can be divided in four
equal segments‚ one of them (of free-fixed boundary conditions) being
shown in Fig. 5.61 (c). As Fig. 5.61 (b) suggests‚ there is a relationship
between a guided-fixed column and a free-fixed one‚ the latter having the
length equal to one quarter the length of the former‚ as mentioned by
Timoshenko [4]‚ for instance.

One consequence of this one-quarter-length relationship is that the
buckling load of the guided-fixed column can be calculated from the
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buckling load of the free-fixed column by using 1/4 instead of 1. Another
important consequence is that the maximum postbuckling deflection of the
guided-fixed column is twice the maximum postbuckling deflection of a free-
fixed column with one quarter length‚ as shown in Figs. 5.61 (b) and (c).
Calculating the maximum deflection of a free-fixed column is relatively
easier and it follows the path described previously when studying the large
deflections of a free-fixed beam under the action of a transverse force.

Figure 5.61 (d) is used to briefly formulate the maximum deflection of a
postbuckled free-fixed column. By using the same reasoning that has been
applied for the beam under the action of a transverse load – Fig. 5.44 – it can
be shown that:

where ds‚ and are indicated in Fig. 5.44 and k is given in Eq. (5.134).
Equation (5.186)‚ coupled to Eq. (5.133)‚ gives the length of beam-column
as:

Equation (5.187) is used to determine the force F (which is embedded in k by
way of Eq. (5.134)) corresponding to a certain value of the tip slope The
maximum tip deflection is found by combining Eqs. (5.186) and (5.131)‚
namely:

Example 5.23
Determine the maximum deflection of a guided-fixed microcolumn as

the one sketched in Fig. 5.61 (a) under the compressive action of a force
knowing and E = 160 GPa.

Solution:
The critical load of a free-fixed microcolumn having the length equal to

1/4 the length of the analyzed microcolumn is determined by means of Eqs.
(5.157) and (5.158) and of Fig. 5.56 (e) – showing that K = 2. The critical
load is found to be equal to Solving for in Eq. (5.187) gives a
value of 100°‚ which is further utilized in Eq. (5.188) to find the maximum
tip deflection of the free-fixed beam. This value‚ as mentioned previously‚ is
half the maximum deflection of a guided-fixed microcolumn having four



330 Chapter 5

times the length of the free-fixed microcolumn‚ which gives a value of
for the sought maximum postbuckling deflection.

8. COMPOUND STRESSES AND YIELDING

8.1 Introduction

Often times‚ normal and tangential stresses are produced concomitantly
in deformable MEMS components. In such cases‚ the loading produced
through actuation needs to ensure that the microcomponents that do deform‚
do so within the elastic range‚ so that the part regains its original shape after
loading is relieved‚ and that they do not fail.

Figure 5.62 Normal tangential and resultant (p) stresses on a cross-section

Figure 5.62 shows the cross-section of a MEMS component where
normal (perpendicular to the plane) and tangential (within the plane) stresses
are produced and combined vectorially to get the resultant stress p. The
normal stress can be produced by either bending or axial loading whereas
the tangential stress which is contained in the yz plane of the cross-section
and which has components about the principal axes y and z‚ can be generated
by torsion or shearing‚ as discussed in Chapter 1. The total stress p can be
found as:

Failure in MEMS‚ as the situation where a microcomponent does no
longer perform as expected/designed‚ can occur in the forms of fracture (in
the case of brittle materials)‚ yielding (for ductile materials where the stresses
exceed the yield limit)‚ excessive deformation (either elastic or plastic)‚
buckling or creep (deformation under constant load‚ especially at elevated
temperatures) – see for more details Boresi‚ Schmidt and Sidebottom [3] or
Cook and Young [8].
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8.2 Yielding Criteria

The MEMS yielding failure will be discussed here under statical loading.
In essence‚ a compound stress resulting from normal and tangential
components needs to be less than a limit value in order for the
microcomponent to operate reliably. In order to predict the yield response of
structural components that are constructed of various materials and under
different loading conditions‚ criteria have been formulated that enable
transforming the complex loading into a simpler one‚ usually the uniaxial
tension‚ for which experimental values of the yield stress are usually
experimentally available. A brief presentation of the yield criteria that are
most common are presented next‚ but the interested reader could consult
more advanced texts dedicated to this topic‚ such as Boresi‚ Schmidt and
Sidebottom [3]‚ Ugural and Fenster [9] or Den Hartog [10]‚ to cite just a few
sources.

The von Mises theory considers that yielding begins when the distortion
energy reaches the limiting value and therefore when it is equal to the
distortion energy at yielding in a simple tension test. It is known from
strength of materials that the actual state of stress and deformation in a
component is the superposition (sum) of a hydrostatic state (which causes the
structure to modify its volume without changing its shape) and a distorsional
state (which only generates shape modification through pure-shear
mechanisms‚ without altering the structural volume). By equating the
distorsion energy corresponding to the real three-dimensional state of stress
to the distorsion energy pertaining to a uniaxial tensile stress situation‚ the
von Mises criterion (or theory) gives the following equivalent stress:

It is sometimes considered that the von Mises theory is a particular case of a
more generic theory‚ also known as the Beltrami-Haigh (total energy)
criterion‚ which states that yielding initiates when the total strain energy of a
structural component under complex loading equals the total strain energy
corresponding to yielding in an uniaxial tension/compression. A common
particular case of the general three-dimensional state of stress is the state of
plane stresses where the only non-zero stresses are the normal stress and
the tangential stress case where Eq. (5.190) reduces to:

The Tresca criterion‚ also known as the maximum shear stress theory‚
assumes that yielding most likely occurs when the maximum shear stress in a
component under complex load is equal to the maximum (yield) shear stress
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in uniaxial tension/compression. As a consequence‚ the equivalent stress by
the Tresca criterion is formulated as:

where and are the maximum and minimum values of the three
principal stresses and which can be calculated as solutions of the
third-degree algebraic equation:

with  and – the stress invariant – being defined in terms of the three-
dimensional state of stress components as:

In a plane stress situation‚ the Tresca theory predicts that:

Both von Mises and Tresca yielding criteria are working well for ductile
materials.

Example 5.23
A microcantilever of constant rectangular cross-section is utilized in a

AFM reading experiment‚ where‚ at a given moment in time‚ the following
forces act at its tip‚ as shown in Fig. 5.63: and

Determine the maximum stress induced in the microcantilever when its
narrow cross-section is defined by and The length of the
microcantilever‚ is measured between the vertex of its tip and the
anchor root‚ and the distance h is equal to The microcantilever is
metallic with a yield stress of

Solution:
The most loaded cross-section of the microcantilever is the one located at

the anchor root. Bending moments and axial tension combine to produce
normal stresses‚ whereas the tangential stresses are generated by torsion
when shearing is ignored. The loading at the microcantilever’s fixed root
comprises the following components:
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Figure 5.63 Microcantilever for AFM reading acted upon by three tip forces

The von Mises criterion reduces in the case of the constant cross-section to
the form given in Eq. (5.191).

Figure 5.64 shows the variation of the normal bending stresses under the
action of and respectively.

Figure 5.64 Bending-produced stresses over the cross-section

The bending-produced stresses are zero in the symmetry axes‚ and reach a
maximum (either positive – corresponding to tension‚ or negative –
corresponding to compression) on the outer fibers. The bending moment
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generates the normal stress and generates such that the resultant
stress is their algebraic sum at any point of the cross-section. As Fig. 5.64
shows‚ at points A and B the sum is maximum‚ positive at A and negative at
B. In addition to bending‚ the axial force N also produces tensile stresses
which are constant over the cross-section. It follows that the maximum
normal stress is found at A‚ and is tensile (positive):

It is also known – see Boresi‚ Schmidt and Sidebottom [3] for instance‚ that
for a narrow cross-section the maximum torsion-produced stress occurs also
at one of the edge points – so either A or B – and is equal to:

By recalling that the equivalent stress represents a maximum value‚ it follows
that Eq. (5.195) becomes‚ by means of Eqs. (5.196) through (5.198):

The equivalent stress of Eq. (5.199) gives which is smaller
than the yield stress.

Example 5.24
A U-spring connects to a shuttle mass as in Fig. 5.65 (a). The spring is

acted upon by the forces and The U-spring is constructed of a ductile
material with a yield stress of and the spring’s cross-section is
a narrow rectangle‚ as shown in Fig. 5.65 (b) with and
Known are also and Determine
the force which will keep the maximum stresses in the microsuspension
at the yield threshold.

Solution:
When ignoring the stresses produced by axial and shearing effects‚ the

three segments of the half-model of Fig. 5.65 (a) are subject to the combined
action of bending and torsion. The maximum moments occur at the fixed
position 4‚ namely:
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The normal stresses in this case are produced by the two bending moments‚
and the maximum value occurs again at one vertex being of the form:

Figure 5.65 Model of a U-spring: (a) geometry and static loading; (b) cross-section

Because the cross-section is narrow‚ the tangential stress which is caused by
the torsion moment has its expression given in Eq. (5.198).The von Mises
theory results in:

which‚ by using Eqs. (5.200) and (5.201)‚ gives
For this state of stress problem‚ the Tresca criterion becomes:

The numerical data of this problem results in

Problems

Problem 5. 1
The precision-positioning microdevice shown in Fig. 5.66‚ utilizes

transverse electrostatic actuation and a spiral spring. The displacement is



336 Chapter 5

monitored by means of longitudinal electrostatic sensing in a controlled
feedback loop. Dimension the electrostatic actuator area A for an initial gap

such that minimum displacement increments can be
produced by minimum voltage increments The spiral spring is
defined by and E = 160 GPa. The
electrical permittivity is Also determine the pull-in voltage.

Figure 5.66 One-spring and electrostatic actuation

Answer:

Problem 5.2
A microaccelerometer, as the one of Fig. 5.4 (a), uses a constant

rectangular cross-section flexure hinge with cross-section
defined by and and E = 150 GPa. The tip mass has a
length and its mass is The electrical permittivity is

and the initial gap is The sensor has to be able to
detect accelerations as small as Determine the voltage that is
generated under these circumstances.

Answer:
U=10.11 V

Problem 5.3
The rotary electrostatic transducer of Fig. 5.6 (a) is used instead of the

one studied in Example 5.3. Determine the number of beam suspensions
having the cross-section defined by that will make this
microsystem perform identically to the one of Example 5.3 under identical
actuation and geometrical/material conditions.

Answer:
n = 3
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Problem 5.4
The microaccelerometer with two flexure microhinges of Fig. 5.67 uses

double capacitance readout (parallel capacitance). Find the acceleration
knowing that the maximum capacitance variation is and the
voltage generated externally is U = 0.1 V. The microaccelerometer mass is

Also known are
(the capacitive area), as well as the parameters of the flexure microhinges:

E = 155 GPa. (Hint: The total capacitance change is
the sum of the capacitance variations at the two gaps).

Figure 5.67 Microaccelerometer with double capacitance readout

Answer:

Problem 5.5
A microdevice as the one shown in Fig. 5.68 is composed of an

electrostatic longitudinal actuator and two beam suspensions, all connected
by a central shuttle mass. The microactuator has the following defining
parameters: (the number of gaps),

and the parameters of one microbeam are:
E = 160 GPa. Find the longitudinal displacement of the shuttle mass

when a voltage U = 80 V is applied to the electrostatic actuator unit.

Figure 5.68 Microdevice with electrostatic actuation and beam suspensions

Answer:
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Problem 5.6
The microdevice in Fig. 5.69 combines electrostatic transverse actuation‚

longitudinal sensing‚ and two folded-beam microsuspensions. The actuation
unit is defined by: The sensing
unit has the following parameters: The
sensed capacitance change is for a voltage of 100 V actuation-
supplied. Determine the model displacement of the central shuttle mass‚ as
well as its real displacement for

Figure 5.69 Microdevice with electrostatic transverse actuation‚ longitudinal sensing and
folded-beam suspensions

Answer:

Problem 5.7
A torsional microdevice‚ as the one sketched in Fig. 5.70‚ is employed to

measure the magnitude of an external magnetic field B‚ which is directed as
shown in the same figure. The rotation angle is measured experimentally by
optical means and its maximum value is The radius of the current
loop is the current is and the parameters defining the
two constant cross-section torsion microhinges are

and G = 62 GPa. Find the external magnetic field B.

Figure 5.70 Electromagnetic-field sensor with two torsional microhinges
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Answer:
B = 918.52 T

Problem 5.8
The microdevice in Fig. 5.71 is used as an angular electrostatic actuator

(as in Fig. 5.17) in an application where a rotation angle of needs to
be achieved. Find the necessary voltage knowing that:

The torsion microhinges are
defined by: and G = 80 GPa.

Figure 5.71 Angular electrostatic actuator with torsion microhinges

Answer:
U= 17.34V

Problem 5.9
The four-beam microaccelerometer in Fig. 5.72 is expected to sense an

acceleration Find the mass that will produce a displacement
of the central mass when the four identical flexure microhinges
are defined by: E = 165 GPa.

Figure 5.72 Microaccelerometer with four flexure microhinges

Answer:
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Problem 5.10
The plate of the optical chopper in Fig. 5.13 is suspended by means of

four inclined beams. Determine the minimum actuation force which is
needed to displace the plate by a quantity Ignore the plate’s self
weight‚ as well as the suspensions’ stiffness about the z-direction.

Answer:

Problem 5.11
The bimorph in Fig. 5.73 pushes the hinged mirror microplate with a

force such that an amplified out-of-the-plane motion is obtained at the
free tip of the microplate. A strain is induced in the bimorph. The
bimorph is defined by the following geometric and material parameters:

The two
identical torsion microhinges have G = 75 GPa‚ and
Also known are and Find the tip displacement

Figure 5.73 Displacement-amplification microdevice with bimorph actuation and torsion
microhinges (top view)

Answer:

Problem 5.12
Find the bloc force for a sagittal microdevice with curved flexure hinges‚

based on the quarter-model of Fig. 5.74.

Answer:
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Figure 5.74 Reduced quarter-model of sagittal microdevice with curved flexure hinges

Problem 5.13
A fixed-free microbar having a length and cross-section area

is used in a yield tensile test‚ which indicates that the axial force
producing fracture of the microspecimen is and that the
corresponding maximum tip displacement is Find the values of
Young’s modulus according to the small- and large-deformation models.

Answer:

Problem 5.14
The slender microbeam of Fig. 5.75 is utilized to generate large

displacements through buckling by means of a thermal actuator. The
microbeam is defined by and E = 165 GPa,
and the actuator by

The axial displacement at the actuator-microbeam junction is
when a temperature increase is applied to the actuator.

Establish if this condition is sufficient to produce buckling of the microbeam.

Figure 5.75 Buckling microdevice with thermal actuation and slender beam



342 Chapter 5

Answer:
(for a guided-fixed beam); buckling

possible

Problem 5.15
A microplate supported by two carbon nanorods of circular cross-section

is used to sense external magnetic fields by means of a current loop‚ as
shown in Fig. 5.76. Find the maximum torsion angle that would keep the
stresses in the nanorods under an allowable limit Known are the radius of
the nanorods circular cross-section‚ r‚ their length l and the shear modulus G.

Figure 5.76 Magnetic microsensor with torsion nanorods

Answer:
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Chapter 6

MICROFABRICATION‚ MATERIALS‚
PRECISION AND SCALING

1. INTRODUCTION

This chapter reviews succinctly some of the microfabrication processes
and materials that are currently being used in the MEMS technology.
Lithography‚ surface micromachining‚ bulk micromachining‚ micromolding
and stereolithography are presented‚ but existing literature which is
specifically dedicated to microtechnology‚ discusses the aspects mentioned
here in far more detail. Another segment of this chapter studies the
imperfections that MEMS design still has to overcome‚ as material property
variability‚ microfabrication limitations and simplifying assumptions in
modeling constitute perturbations that alter the would-be ideal MEMS final
product. The chapter concludes with a discussion of the scaling laws and of
the implications they have when small-scale is involved. Of particular
interest is the length and its influence on amounts studied in this book such
as stiffnesses and transduction forces. As in the previous chapters‚ solved
examples and proposed problems are included here.

2. MICROFABRICATION

Two basic microfabrication techniques that are used in MEMS
production are sketched in Fig. 6.1. Additive procedures‚ as shown in Fig. 6.1
(a)‚ start from a substrate material (such as a commercially-available silicon
wafer) and build the microstructure from one free surface of the wafer by
adding successively several layers. On the contrary‚ subtractive procedures –
Fig. 6.1 (b)‚ start from the same free surface of the substrate material and
construct the structural feature by removing (etching away) material until the
intended microdevice is obtained. The simple example of Fig. 6.1 is a
microcantilever that can ultimately be produced by either of these two basic
procedures.
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Figure 6.1 Basic MEMS fabrication procedures: (a) additive; (b) subtractive

Additive techniques are very diverse and they include processes such as
growth‚ physical vapor deposition (PVD) – which can be performed by
evaporation‚ sputtering‚ molecular beam epitaxy (MBE)‚ laser ablation or ion
plating –‚ chemical vapor deposition (CVD) – which can be done at
atmospheric pressure (APCVD) or at low pressure (LPCVD) and can be
enhanced by various energy sources such as plasma or laser –‚ tape casting‚
sol-gel deposition‚ plasma spraying‚ spin/dip coating‚ self-assembled
monolayers (SAMs)‚ micro-spotting or microprinting.

Subtractive microprocessing includes procedures such as wet and dry
etching‚ laser machining‚ focused ion-beam (FIB) milling‚ micro electrical
discharge machining (EDM) or ultrasonic drilling. An excellent resource
material for both additive and subtractive microfabrication procedures is the
monograph on microfabrication by Madou [1].

A brief presentation will be given here of the main microfabrication
techniques that are currently being employed to produce mechanical
microdevices‚ namely: lithography‚ surface micromachining‚ bulk
micromachining‚ molding‚ and microstereolithography and other techniques.
This is an abbreviated presentation‚ aimed at highlighting the specific
fabrication means that are used to produce the micromechanical structures
that have been addressed in this book. More details can be found in
specialized monographs‚ such as those of Madou [1] or Gad-el-Hak [2] for
instance.

2.1 Lithography

Lithography is a basic microfabrication procedure‚ which can be
implemented in either additive or subtractive procedures. As Fig. 6.2
indicates‚ there are several lithography categories‚ such as optical‚ charged-
particle‚ X-ray and nano-lithography‚ which will be discussed shortly. Figure
6.3 shows the main steps that are involved in a microlithographic process. In
essence‚ any of the lithography processes mentioned in Fig. 6.2 starts with
the deposition of the resist (a polymer that is sensitive to radiation) on top of
a substrate material‚ which can be a commercially-available silicon wafer –
Fig. 6.3 (a). This step is followed by selective exposure of the resist to
radiation by means of a mask which has transparent areas – the white regions
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in Fig 6.3 (b) – and areas that absorb the incident radiation – the black region
in the same Fig. 6.3 (b).

Figure 6.2 Lithography micro fabrication procedures

Figure 6.3 Lithography steps: (a) resist deposition; (b) resist exposure; (c1)
development of negative resist; (c2) development of positive resist

The mask can either be placed in contact with the wafer (which poses
problems such as mask alignment and contact deformation/stresses) or in
close proximity (as in shadow printing) of the wafer within a few microns
(which eliminates the contact stress problem but introduces limitations to
resolution due to diffraction). Both methods produce a one-to-one latent
image of the mask onto the resist. The projection lithography permits the
mask to be spaced away from the wafer such that optic systems can be placed
between the mask and the wafer with the effect of reducing the features that
are transposed to the resist and of enhancing the resolution. The exposed and
unexposed areas of the resist have different solubilities and the exposed
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regions are further eliminated through selective dissolving. The radiation-
exposed regions of negative resists are more soluble than the unexposed ones‚
whereas for positive resists the unexposed areas are more soluble‚ and
therefore the corresponding final results are shown in Figs. 6.3 (c1) where a
central cavity is produced in the exposed negative resist‚ whereas the positive
resist of Fig 6.3 (c2) presents two side cavities.

The lithography variants shown in Fig. 6.2 will be described in the
following.

2.1.1 Optical Lithography (Photolithography)

In photolithography‚ resists normally used in the integrated-circuit (IC)
industry can be deposited in layers up to thick with a film uniformity of
0.1 % through spin-coating techniques‚ whereby the wafer is rotated at 1000
– 2000 rpm and the viscous resist is layered and attaches to the substrate.
Negative resists generally consist of two-components and are based on a
rubber-like matrix. The most used positive resist is the
polymethylmethacrylate (PMMA) – also utilized in X-ray lithography. The
photoresists are usually removed after development but there are also
permanent resists such as the polyimide‚ which can be used to produce
flexible microcomponents in MEMS. Thicker photoresist layers can be
achieved through casting‚ polymerization or by using thick sheets of dry
resists. PMMA can be deposited in layers 1 cm thick‚ whereas the epoxy
resin known as SU-8 (developed at IBM) can be layered in a single spin coat
in films  thick.

The exposure is realized by using ultra-violet (UV) radiation‚ which can
range from the extreme ultraviolet (EUV) limit defined by wavelengths of
10- 14 nm to the near ultraviolet (NUV) limit‚ with wavelengths of 350 – 500
nm. The development stage‚ where selected regions of the resist layer that
have been exposed (for positive resists) or unexposed (for negative resists) to
UV radiation will be removed‚ can be wet (through techniques such as
immersion or spraying) or dry (by means of oxygen reaction ion etching

for instance).
The main phases in a classical photolithography process are preceded

and followed by various conditioning steps such as cleaning or pre- and post-
baking‚ which are aimed at eliminating the possible contaminants and at
assisting in completing the unfinished chemical reactions.

A qualifier that is used as a figure of merit in characterizing the
performance of a specific micro lithographic technique‚ but also any other
microprocess‚ is the aspect ratio (AR)‚ which can be defined‚ based on the
prism shown in Fig. 6.4‚ as:
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Figure 6.4 Geometrical dimensions of a prismatic feature obtained through lithography

The dimension t defines the thickness of the feature‚ which depends on the
resist thickness‚ whereas the dimensions and describe the cross-section.
In the case of photolithography based on the SU-8 material for instance‚ the
aspect ratio can reach a value of 25.

2.1.2 X-Ray Lithography (XRL)

The photolithography techniques are designed to operate in vacuum
environment‚ which challenges the cost-effectiveness of these procedures.
Unlike them‚ the X-ray lithography (XRL) does not need vacuum because
there are no particles involved in the process. The XRL uses very short
wavelengths‚ in the range of 10 Angstroms‚ produced by different sources
such as plasma‚ electron impact tubes and high-energy synchrotrons. The
latter source is the most powerful‚ but also the most expensive. It is however
the choice enabling exposure of thick layers of PMMA resists (in the
so-called deep X-ray lithography‚ or DXRL) because the specific energy
required to produce vertical walls over such large thicknesses is of the order
of which is difficult to be obtainable by other X-ray sources. The
PMMA resist can be deposited on the substrate material by spin-coating of
successive thinner layers‚ by casting or by plasma polymerization.

Both contact and proximity (shadow) printing are feasible variants in
XRL‚ which indicates that only 1:1 reproduction of the mask is possible.
Unlike proximity printing in photolithography‚ which is known to be
diffraction-limited‚ in shadow XRL the very small wavelength eliminates this
inconvenience. However‚ the mask process is quite involved‚ as the blank
regions need to possess good absorbance properties in order to bloc the high-
energy X-ray radiation‚ and metals such as gold or tungsten are used as
blanks. The transparent regions of the mask are realized by means of very
thin layers of materials such as beryllium‚ titanium‚ silicon or silicon nitride.

The results produced through XRL/DXRL techniques include long
vertical walls with runouts of less than for length (the runout
measures the deviation measured perpendicularly to the vertical/thickness



348 Chapter 6

dimension)‚ high reproducibility‚ very good resolutions (small critical
dimensions) and aspect ratios in excess of 100.

2.1.3 Charged-Particle Lithography

Lithography is also performed by using high-current densities in very
narrow beams (diameters are in the nanometer range) consisting of either
electrons or ions in a sequential (pixel-by-pixel) exposure of the planar
domain. The technique is virtually a write-system‚ which only needs a
software mask‚ stored in the computer’s memory‚ and which is replicated
point-by-point on the resist. However‚ both the electron-beam lithography
(EBL) and the ion-beam lithography (IBL) need a vacuum environment and
are serial techniques‚ which somewhat limit their throughput and cost-
effectiveness. Both methods are based on the beam-resist interactions‚ which
result in local solubility changes‚ which enable further removing of the
exposed/unexposed area.

The EBL utilizes high-energy‚ focused narrow-beam electrons (with
energies of the order of 100 keV) that interact and expose resists such as the
PMMA. The method is based on short wavelengths (approximately 0.005 nm
for 50 keV‚ as shown by Xia et al. [3])‚ which produces high resolution levels
of 0.25 nm diameter spots. Structures with minimum dimensions in the order
of 2 nm can be obtained from thin resist layers (up to 100 nm‚ which keeps
the electron backscattering at low levels)‚ but features of 50 nm can routinely
be produced by EBL‚ as also pointed out by Xia et al. [3].

The IBL also known as FIBL (focused ion-beam lithography)‚ as already
mentioned‚ uses ion beams for point-by-point exposure of a resist material.
The ion source materials include liquid gallium‚ indium or gold. The so-
called ion projection lithography (IPL) – Madou [1] – uses thin stencils
(membranes with very small circular holes) to direct the incoming flow of
hydrogen‚ helium or argon ions. Compared to the EBL‚ the IBL has a better
resolution and a higher resist exposure sensitivity (almost two orders of
magnitude higher‚ as mentioned by Xia et al. [3]).

2.1.4 Nanolithography

A more comprehensive review of other lithography-based techniques that
enable nanofabrication in the combined form of writing (creation of a
transferable pattern) and replication (transfer of a pattern to a material) is
given by Xia et al. [3]‚ and Madou [1] for instance‚ and the main aspects
characterizing these methods will be just highlighted here.

Atomic force microscopy (AFM)‚ scanning tunneling microscopy (STM)‚
near-field scanning optical microscopy (NFSOM) or scanning
electrochemical microscopy (SECM)‚ which are normally used to
characterize/define three-dimensional topography at atomic level‚ can be
used to generate patterns in resist materials (through direct contact or through
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proximity interaction)‚ patterns which are further exposed and developed in
order to produce very fine lithographic architectures.

The soft lithography technique employs a patterned elastomer for
replication on non-planar surfaces‚ materials that are not usually being used‚
or for large areas. Other lithography-based methods that produce features in
the nanometer range are the near-field phase-shifting photolithography
(which uses narrow‚ very-small-wavelength light sources that can be scanned
at 10 nm of the resist surface and thus highly increase the resolution)‚
topographically-directed photolithography (where a patterned photoresist
layer is utilized instead of a mask to direct the UV radiation through the
resist thickness in near-field optical domain)‚ or lithography with neutral
metastable atoms (where neutral atoms such as argon or cesium are used to
directly etch patterns in monolayers through adequate masks).

2.2 Surface Micromachining

Surface micromachining is an integrated-circuit (IC)-related technique‚
which has a direct relationship with the complementary metal-oxide-
semiconductor (CMOS) processes that are used to produce very large scale
integration (VLSI) devices‚ as mentioned by Spearing [4]. Surface
micromachining is essentially an additive process which deposits thin layers
in a sequential manner on a substrate material.

Figure 6.5 Surface micromachining process: (a) deposition of a sacrificial layer; (b)
patterning of the sacrificial layer; (c) deposition of the structural layer; (d) etching of the

sacrificial layer

Realization of a structural layer is produced in combination with another
layer‚ named sacrificial layer (also spacer layer or base) through deposition‚
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patterning and etching. The very name of surface micromachining is
connected to the prevalent planar nature of this process involving
microstructures that are formed of thin film layers (thicknesses less than

Because surface micromachining and CMOS are related‚ MEMS that
are obtained through surface micromachining can integrate mechanical and
electronic microcomponents. Figure 6.5 illustrates the main phases that
compose a typical surface micromachining process. The basic process flow
of Fig. 6.5 is usually repeated several times in order to obtain rather complex
microdevices with thicker structural components. Sandia National
Laboratories for instance produces MEMS through the 5-level SUMMiT
(Sandia Ultra-Planar Multi-Level MEMS Technology) surface
micromachining process‚ and the former Microelectronics Center of North
Carolina offers the 3-level MUMPs (Multi-User Multi-Process) technique.

While the IC-related surface micromachining process emerged in the
1960’s and was based on polycrystalline silicon (polysilicon)‚ the first
MEMS device was produced by Nathanson and coworkers at Westinghouse
Research Laboratory in the mid 1960’s‚ and consisted of a metallic
microcantilever implemented in a resonant gate field-effect transistor (FET).
The polysilicon has been introduced as the main component in surface-
micromachined MEMS by researchers at University of California Berkeley
in the mid 1980’s‚ and has remained since then the main structural material
utilized in surface micromachining. The preponderance of using polysilicon
is due to its very good compatibility with the IC process (which has been
pioneered by implementing polysilicon in microelectronics) and to the fact
that polysilicon has mechanical properties which are controllable and
reproducible (quasi-constant) within narrow error margins. Moreover‚
compared to single-crystal silicon‚ which is anisotropic‚ the polysilicon is
isomorphic‚ and therefore is amenable to simpler mechanical design. Another
important feature of polysilicon is the fact that it presents plastic deformation
before fracture‚ whereas the silicon is known to be brittle. The polysilicon is
usually deposited by low-pressure chemical vapor deposition (LPCVD) from
silane‚ which can be combined with phosphane or diborane in order to yield
doped film layers possessing electric conductivity.

Metals have also been used as structural layers in surface
micromachining‚ and examples include aluminum‚ tungsten‚ gold‚ platinum‚
iridium‚ nickel or copper. Other materials that can be incorporated in surface-
micromachined MEMS are the polyimide (utilized at creating large-
deformation monolithic hinges)‚ silicon nitride (which yields very thin layers
with good surface quality)‚ silicon oxide‚ diamond and silicon carbide (the
last two materials being known for high mechanical hardness‚ chemical
inertness and piezoresistive properties).

For polysilicon‚ the sacrificial layer can be produced out of silicon oxide
or phosphosilicate glass (PSG). The accompanying etchant in these cases is
hydrofluoric acid (HF)‚ which is used in aqueous solution. For other
structural materials‚ such as metals‚ the sacrificial layers can be built out of
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organic films, as well as of polyimide and parylene, which can be etched
away by means of dry plasma procedures.

While surface micromachining is fundamentally bound to produce
relatively-thin MEMS, an alternative procedure developed by Keller and
coworkers at University of California Berkeley and named HexSil was
conceived to generate high aspect ratio microstructures by means of a
process that combines surface micromachining and molding, as shown by
Bustillo et al. [5], or Madou [1]. The HexSil process, which is pictured in Fig.
6.6, starts with a silicon wafer as the substrate material.

Figure 6.6 HexSil process: (a) DRIE etching of deep vertical trench; (b) deposition of
sacrificial layer; (c) deposition of the structural polysilicon layer; (d) etching of the sacrificial
layer; (e) chemical-mechanical polishing; (f) etching of the sacrificial layer and full release of

microstructure

A deep trench (approximately  long) is microfabricated in the
silicon substrate, as shown in Fig. 6.6 (a), by means of deep reaction ion-
enhanced etching (DRIE). An oxide sacrificial layer is conformally deposited
over the trench and the exposed wafer horizontal surface, as pictured in Fig.
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6.6 (b). Over the sacrificial layer and filling the remaining trench gap,
polysilicon is deposited, as suggested in Fig. 6.6 (c). The trenched silicon
substrate can be used as a mold for another round of HexSil microfabrication.
Two different variants are further possible, one being suggested in Fig. 6.6
(d), where the sacrificial layer is directly etched and the resulting polysilicon
structure shown in that figure can either be fully released and utilized in
further applications or can be still attached to the silicon substrate by hinges
not shown in the figure. The second route is shown in the sequence of Figs.
6.6 (e) and 6.6 (f) and consists of chemical-mechanical polishing of the top
polysilicon layer – Fig. 6.6 (e), followed by etching of the sacrificial layer –
Fig 6.6 (f), which will completely release the structure with the shape shown
in this last figure.

2.3 Bulk Micromachining

MEMS bulk micromachining is aimed at removing (etching away)
relatively large amounts of material from a substrate in order to produce
mechanical devices that can move/deform. Compared to surface
micromachining, where the total thickness/depth of a microdevice was
technologically limited by the layer thickness and the number of layers,
deeper features can be obtained in bulk micromachining, which enables
delivering more power/force by the resulting microdevices.

Bulk micromachining procedures can be divided into wet and dry, the
latter category including vapor-phase etching and plasma-phase etching, as
shown in Fig. 6.7. These techniques will be discussed shortly. Figure 6.8
gives the process flow for a generic bulk micromachining process yielding a
microcantilever for instance. A patterned mask is first layered on top of a
substrate such as a silicon wafer – Fig. 6.8 (a). Etching of the two channels
shown in Fig. 6.8 (b) follows and eventually, side etching is applied to
undercut the microcantilever, as sketched in Figs. 6.8 (c) and 6.8 (d).

Figure 6.7 Main fabrication techniques in bulk micromachining
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Figure 6.8 Bulk micromachining of a microcantilever: (a) deposition and patterning of a
mask; (b) etching of the side channels; (c) undercutting and partial freeing of the

microcantilever; d) top view of the microcantilever

Although materials such as quartz, germanium and compounds of
gallium and silicon have been reported being used as substrate bases for bulk
micromachining – see Madou [1] for more details, the silicon is largely the
preferred material utilized for MEMS such as sensors and actuators that are
obtained by means of this procedure. Crystalline silicon is commercially
available in circular wafers, the most common being the 4 in (100 mm)
diameter, thick variant and the 6 in (150 mm) diameter, thick
version. Also available are silicon wafers of 8 and 12 in diameter which are
mostly employed in research applications. The silicon is an anisotropic
crystalline material with a diamond-like lattice. By using the Miller-indices
notation, according to which a lattice unit is defined by three Cartesian
directions, [100], [010] and [001] – as sketched in Fig. 6.9 (a), it is known
that crystalline silicon has three principal planes of anisotropy that are
denoted by [100] – Fig. 6.9 (a), [110] – Fig. 6.9 (b) and [111] – Fig. 6.9 (c).
Wafers can be cut parallel to one of these three planes and therefore the
resulting substrates are named (100) – , (110) – and (111) – oriented silicon
wafers. More details on the crystal structure of the silicon and the anisotropy
planes can be found in Madou [1] for instance. Experiments with etching of
silicon have shown that [111] planes act as etch stoppers as etching rates
along directions perpendicular to these planes are substantially lower than
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about other directions. This feature is employed in conveniently designing
MEMS that can be realized through anisotropic etching.

Figure 6.9 Miller indices and planes of interest in a silicon lattice: (a) (100)-oriented
silicon; (b) (110)-oriented silicon; (c) (111)-oriented silicon

Figure 6.10 shows one instance of isotropic etching (that can use a metallic
substrate) and two examples of anisotropic etching of silicon.

Figure 6.10     Examples of bulk micromachining: (a) isotropic; (b) anisotropic etching of
(100) silicon; (c) anisotropic etching of (110) silicon

In isotropic etching the etch rates are equal about any direction and the shape
carved in a substrate is like the one illustrated in Fig. 6.10 (a). For a (100)
silicon wafer – Fig 6.10 (b), the [111] planes are inclined at 54.74° with
respect to the [100] direction (the wafer surface) and because etching rates
about directions perpendicular to [111] planes are almost zero, etching stops
(or is considerably slowed-down) at those planes. When the process is
completed the trapezoid-like cavity of Fig. 6.10 (b) is obtained. For (110)
silicon wafers, as the one sketched in Fig. 6.10 (c), the primary [111] planes
are perpendicular to the [110] planes. While etching about the direction
perpendicular to [110] proceeds with high speed, etching about the [111]
direction is inhibited, and the result is the almost-vertical walls shown in Fig.
6.10 (c). Secondary [111] planes also exist at the bottom of the cavity, which
locally stop etching and produce the slightly imperfect shape, as indicated in
the same figure.
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2.3.1 Wet Etching

Wet etching is produced by exposure of the substrate to reactant fluids
that can remove material through chemical reactions either isotropically or
anisotropically. Isotropic etching results in material removal at uniform rates
about all directions and produces the rounded shape of Fig. 6.10 (a). The
most popular etchant for silicon, as shown by Kovacs et al. [6] for instance,
is the HNA, which consists of a mixture of hydrofluoric acid (HF), nitric acid

and acetic acid Masking against isotropic wet etching
can be ensured by materials such as silicon nitride or silicon dioxide. Light
doping (either of the p- or the n-type) of silicon can also be employed for
reducing the etching rate to approximately 150 times, as mentioned by
Kovacs et al. [6].

Anisotropic etching of silicon is mainly based on the differing reaction
speeds about the main anisotropic directions. One of the most popular
anisotropic etchant is potassium hydroxide (KOH) and its etch rates about the
meaningful directions are: 400 about the [100] direction and 600 about the
[110] direction when the etch rate about the etch-stop [111] direction is taken
1 (see Kovacs et al. [6]). The alkali hydroxide etchants, such as KOH or
NaOH are sometimes incompatible with CMOS technology as they may
react with metallic components of the circuitry. The ammonium hydroxide

especially the quaternary ammonium hydroxide known as TMAH,
is CMOS-compatible and is usable in integrated MEMS, although the etching
rates are slightly smaller than those produced by alkali hydroxides. EDP
(ethylenediamine pyrochatechol) is another anisotropic etchant, which
produces reductions of 50 times in contact with doped silicon. Like the alkali
hydroxides, EDP might react with aluminum components, which is
problematic in CMOS devices.

Figure 6.11     Fully-released microstructure by etching a highly doped silicon region

The etch-rate modulation through silicon doping can lead to the extreme
design situation pictured in Fig. 6.11, where a highly p-doped (p++) area can
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entirely release a structure through etching, and therefore can be a source of
building independent micro/nano components that can further be utilized in
other applications such as material property testing. This process is also
known as the lost wafer – Kovacs et al. [6]. Etch rate modulation is also
possible by changing the electrical potential between the silicon and the
etchant. Wet etching, because of the molecular hydrogen, which is usually a
reaction product, might generate local micromasking at the etched surface
and further microasperities (hillocking) that decrease the surface quality.
Among the countermeasures that can be taken to decrease surface roughness,
the ultrasonic agitation has been shown to eliminate hillocking altogether.

2.3.2 Dry Etching

As mentioned previously, dry etching can be performed by using either
vapor-phase or plasma-phase reactants. Vapor-phase etching is produced by
various reactants, one of which is the xenon difluoride This reactant
is particularly selective to a large collection of materials, including Au, Al,
TiNi, and therefore is CMOS-compatible. It comes however
with the down sides of producing relatively rough surfaces and of being able
to react to water and further producing HF which might react to
microcomponents/masks. A very good surface quality but at a lower etching
rate is produced by interhalogen gases such as or The laser-driven
vapor-phase (also known as LACE) procedure is an alternative which highly
accelerates etching rates through very intense local heating and expulsion of
free radicals by photolysis, such that very complex shapes can be obtained.

Plasma-phase etching, the other dry-etch category recourses to radio-
frequency (RF) power sources through ions that can initiate chemical
reactions at room temperature. Fluorine free radicals result from reactant
gases in the plasma environment, which attack the silicon and produce
that is etched away. Plasma etching is recognized to have high rates and to
generate cavities isotropically. Procedures have also been designed to enable
anisotropic etching by dry plasma. A solution, for instance, is to use
chlorofluorocarbons during plasma bombardment with the result that
polymer layers are deposited on the walls that are parallel to the ion attack.
These layers act as protective coating, and therefore etching advances rapidly
only about the ionizing direction. Another technique is the reaction ion-
enhanced etching (RIE), which can generate structures with aspect ratios as
large as 30:1. In RIE, cryogenic cooling of the wafer is utilized with the
effect that condensation of reactant gases on the side walls slows down
etching about directions perpendicular to these walls. A variant of RIE, the
deep reaction ion-enhanced etching (DRIE), as mentioned, uses high-density
plasma to produce long vertical walls, by applying anisotropic etching
through a two-phase sequence composed of etching and protective layer
deposition. Light ion exposure during the deposition phase prevents addition
of the Teflon-like protective layer on the surface of plasma attack, and
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therefore etching about this direction can advance very rapidly. Anisotropies
of 30:1 (ratio of etch rates about the unprotected direction versus the
protected directions) are reported to have been possible – Kovacs et al. [6].
Variable anisotropy etching is another alternative solution to anisotropic
plasma-phase etching, which is implemented by switching between isotropic
and anisotropic etching during ion exposure. A solution that provides
complete etch stop is sketched in Fig. 6.12, where two silicon wafers are
attached by bonding, one being bare silicon and the other one having a
layer grown on it.

Figure 6.12 Buried etch-stop layer in plasma-phase etching

2.4 Micromolding and the LIGA Process

The MEMS fabrication by means of micromolding creates mechanical
microdevices by using a pre-fabricated mold for deposition of the structural
material. The surface micromachining HexSil process, which has previously
been described, utilizes molding of polysilicon in order to obtain a fully- or
partially-released structure. The reusable polysilicon that results after
completion of the HexSil variant with fully-released microstructure – Fig. 6.6
(f) – can further be utilized to electroplate a metal on the surface of the
polysilicon mold, followed by planarization – Fig 6.13 (a). The metal part is
then separated from the master mold, as shown in Fig. 6.13 (b), and can
either be used as it is, or can subsequently be used as a mold insert in
precision plastic replication process, such as casting, injection molding or
hot embossing. Figure 6.13 (c) pictures the schematic of a hot embossing
process where the mold insert is pressed against the fluid plastic, which after
cooling will retain the shape impressed by the metal mold. The resulting
plastic part can either be used per se or can be a lost mold and may generate
metal parts in a second electroforming process, as mentioned by Madou [1].

The LIGA acronym comes from the German words Lithographie,
Galvanoformung, Abformung meaning lithography, electroplating and
molding. Therefore, LIGA is a mixed process consisting of the three
microfabrication techniques mentioned above. X-ray lithography and
electrodeposition of metals (which is the combination of the first two LIGA
phases) were achieved at IBM in the 1975s by Romankiv and coworkers who
reported production of high aspect-ratio gold microstructures. The full LIGA
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process was first introduced in Germany in the early 1980’s by Ehrfeld and
coworkers, who added the molding process to the lithography-electroplating
sequence, as a way of obtaining very precise micro-scale parts in a very cost-
effective way.

Figure 6.13 Micromolding process: (a) electroplating and planarization of metal; (b)
separation of metal mold and master; (c) utilization of the metal mold as an insert in precision

plastic hot embossing

Figure 6.14 shows the main steps of a variant of the LIGA process, called
SLIGA, which includes the additional step of including and removing a
sacrificial layer – see Guckel [7]. It should be mentioned that the typical
LIGA process is a single-level microfabrication method which produces
fixed prismatic parts. The addition of sacrificial layers such as in the SLIGA
technique, results in free, partly-attached members, that can be utilized in
MEMS. Utilization of deep X-ray lithography (DXRL) for patterning of thick
PMMA resists facilitates microfabrication of metallic parts with large aspect
ratios, and application of multiple LIGA steps results in high-aspect ratio
systems (HARMS). Transfer of the mask pattern onto the resist layer is
performed on a 1:1 scale by means of proximity printing. Advantages of the



6. Microfabrication, materials, precision and scaling 359

LIGA process include the following ones, as mentioned by Malek and Saile
[8]: very large structural heights (depths) – up to the order of centimeters – as

Figure 6.14 The sacrificial LIGA (SLIGA) process: (a) application and patterning of a
sacrificial layer; (b) metal electroplating; (c) PMMA resist deposition; (d) X-ray

radiation exposure and development; (e) metal molding; (f) removal of PMMA and
plating base; (g) etching of sacrificial layer and freeing of microstructure

well as aspect ratios (in excess of 1000) realizable in a single step, large
gamut of materials (metals, alloys, polymers, ceramics, composites,
multilayer materials), complex shapes (three-dimensional multi-level
structures with oblique faces), structural and dimensional accuracy, low



360 Chapter 6

surface roughness (in the order of 20 nm), excellent verticality of surfaces
with runouts of the order of 1 mrad, capacity of mixing different-scale
features or capacity of combination with other microfabrication process such
as surface and bulk micromachining.

The end result of the process shown in Fig. 6.14 is the high aspect ratio
microcantilever sketched in Fig. 6.15.

Figure 6.15 High aspect ratio microcantilever (free lateral shape) produced by the SLIGA
process

2.5 Microstereolithography and Related Processes

A brief presentation will follow of several other microfabrication
processes that are currently being utilized for MEMS production and are
collectively known as microstereolithography.

Microstereolithography is a technique that evolved from rapid
prototyping (RP) fabrication and is based on producing three-dimensional
microstructures by means of techniques that involve multi-layer stacking
through laser-induced polymerization – Bertsch et al. [9]. There are three
main categories of microstereolithographic fabrication techniques, namely:
vector-by-vector, integral and laser polymerization inside the reactive
environment. In vector-by-vector processes, the fine focusing of the laser
beam is made at the reactive surface, which reduces the attack spot size and
improves resolution. Subcategories of this process are the constrained-
surface method (where the laser beam is sent from a fixed window) and the
free-surface method (where the reactor is displaced in the three-dimensional
space by an x-y-z stage). In integral microstereolithography, the image of
one layer is projected on the resin surface with high resolution and pre-
specified depth. Usual pattern generators are liquid crystal displays (LCDs)
and digital micromirror devices (DMDs). Eventually, the laser
polymerization inside the reactive environment method, as the name suggests,
attempts to realize local polymerization underneath the reactant surface in
small increments that can be controlled three-dimensionally.

Other processes that are related to microstereolithography are the
polymerization with evanescent waves (PEW), the spatial forming and the
electrochemical fabrication (EFAB). In a PEW process, multilevel
microstructures are directly obtained. This method uses the phenomenon of
total reflection and the subsequent generation of evanescent waves (waves
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whose intensity decays exponentially over a layer’s thickness) to initiate
polymerization over maximum thicknesses of the order of 1.5 mm. The
spatial forming process uses ceramic inks to create a mold in a layer-by-layer
fashion. The pre-designed voids are subsequently filled with metal-based
inks and after curing and sintering, the final metallic microstructure is freed
from the ceramic matrix which crumbles.

Another microstereolithography-related fabrication process is EFAB
(Electrochemical FABrication), which can produce high aspect ratio
microdevices made out of metals, such as nickel, copper or permalloy. EFAB
is a batch process that belongs to the family of rapid prototyping (such as
stereolithography) and three-dimensional printing. EFAB utilizes the three-
dimensional CAD drawing of a microdevice that has to be fabricated and
slices the drawing into several cross-sections. For each slice a mask is
created by photolithography and all the masks that are needed for the 3D
microdevice are created prior to the fabrication process itself. The process
flow is sketched in Fig. 6.16.

Figure 6.16 EFAB process sequence: (a) Instant masking; (b) metal electroplating; (c)
planarization; (d) several (a)-(b)-(c) sequences; (e) removal of sacrificial material
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A sacrificial layer (usually copper), which has to be etch-compatible with the
metal used for building the microstructure, is pattern-deposited on a substrate
material, as shown in Fig. 6.16 (a). An instant mask is pressed against the
substrate and injects the support (sacrificial) material through the
unobstructed area of the mask. The mask is then removed and electroplating
of the structural metallic layer (nickel, for instance) is performed, as sketched
in Fig. 6.16 (b). Planarization of the two layers produces the composite
structure of Fig. 6.16 (c). These steps are repeated several times with
different masks until the multiple-layer structure of Fig. 6.16 (d) is obtained.
The final step in the EFAB process is acid etching of the sacrificial layers
and release of the structural microdevice – Fig. 6.16 (e). The number of
layers is virtually limitless and the fabrication time per layer is of the order of
tens of minutes (surface micromachining, for instance, might require a few
days for completion of one layer), whereas a layer can be thick.
Another advantage is that the EFAB process does not require clean room and
elevated temperatures.

2.6 Packaging

Mechanical microdevices are integrated with electronic circuitry, which
are sensitive to environmental factors such as temperature variations,
humidity or electromagnetic interferences, and therefore need protection,
which is performed by a process called packaging and which follows the
microfabrication itself. Figure 6.17 sketches few of the steps that are
involved in MEMS packaging

Figure 6.17 Principal phases in MEMS packaging

Through dicing or sawing the individual microdevices are cut away from the
wafer. Cavity sealing or bonding is utilized to bond the MEMS die to a
protective plate or to another die containing the electronic circuitry for
instance. Bonding, as indicated in Fig. 6.17, can be realized in several ways,
such as: thermal bonding (either anodic or with intermediate layers), fusion
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bonding (where chemical reactions between the components of the two plates
at relatively elevated temperatures create the physical attachment), eutectic
bonding (a phase mixture such as Au-Si is formed which bonds the two
components) or photolithographic bonding (which utilizes patterned thick
photoresist layers to glue two plates). Other phases in a MEMS packaging
process include connection of the die to power/electronic microcomponents
and wire bond, die protection (mostly through coating), stress isolation
measures and thermal management.

3. MATERIALS

As previously shown, structural members and devices in MEMS are
produced from a variety of materials, non-metallic and metallic alike. While
some of these materials are strictly used for structural design and others are
sacrificial materials being removed in the end of a process, there are a few
materials that can be used as either structural or sacrificial components,
depending on the application, process technology and the context of
combination with other materials. MEMS materials can be brittle (they break
almost abruptly, without any plastic deformation) or ductile (there is a non-
linear portion of the stress-strain curve before failure occurs). Silicon and
polysilicon, for instance, are brittle materials, whereas MEMS metals are
ductile.

All materials, brittle and ductile, need to have their Young’s modulus
determined, as this amount, together with the geometric parameters, defines
the stiffness of a microcomponent. Poisson’s ratio is another important
elastic parameter which defines the lateral contraction of a material sample
under tension. In addition, brittle materials can fairly be characterized in
terms of their mechanical behavior by means of the fracture strength (which
is the stress at the beginning of fracture). Ductile materials are generally
defined by means of the yield strength (which is the stress value
corresponding to the point on the stress-strain characteristic where the linear
behavior ends) and the ultimate strength – the stress where failure does occur.

A brief presentation of the main materials that are used in MEMS
construction and their main mechanical properties will be given next. It
should be emphasized that there are differences – sometimes quite large – in
the mechanical properties of the same material between the bulk and thin
film forms. At the same time, variability exists for the same mechanical
property of a thin film, depending on the method of microfabrication and
system of measurement. Possible causes of these large differences are the
imperfect models that are used and the fact that the geometry of a real
microcomponent cannot be assessed/measured precisely and is often not the
ideal one used in the model. An excellent source for up-to-date MEMS
material information regarding properties and testing can be found in Sharpe
[10], who surveyed the literature dedicated to mechanical properties of
MEMS (material property values are mainly cited here from this reference).
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The single-crystal silicon is a brittle material that can be grown as a
single crystal. It can also be processed by bulk micromachining and is the
platform for surface micromachining. Because single-crystal silicon is
anisotropic, its mechanical properties are direction-dependent, and Sharpe
[10] mentions that Young’s modulus can vary from 125 GPa to 180 GPa,
whereas values of the fracture strength can range from 0.26 GPa to 26.4 GPa
(an initial design value larger than 1 GPa is recommended Sharpe [10] and
Yi and Kim [11]).

Polysilicon is the most common material in MEMS that is used for
structural components. Its mechanical properties are similar to the ones of the
single-crystal silicon (Young’s modulus of 163 – 166 GPa, Poisson’s ratio of
0.22, fracture strength of 1.2 – 3 GPa), but polysilicon is an isotropic material,
which can be either deposited or grown. The silicon dioxide – with E
= 70 GPa and the fracture strength of 1 GPa – is used as sacrificial material
or etch mask – like in the case of dry etching of thick polysilicon, see
Zorman and Mehregany [12]. However, can also be incorporated into
MEMS as a structural component. Two other members of the same family
are the crystalline quartz and the spin-on-glass (SOG). The silicon nitride

– 250 GPa Young’s modulus, 0.23 Poisson’s ratio and 6 GPa fracture
strength – is another material that can be utilized for etch masking, but also
as a sacrificial material, for electrical insulation, surface passivation or as
structural material. can be deposited on a substrate by either LPCVD or
by plasma. The diamond-like carbon and the silicon carbide (SiC) are
materials that are implemented in MEMS having to operate in harsh
environments, where very good mechanical (hardness particularly), thermal
and electrical properties are required. Both materials have high mechanical
hardness and Young’s modulus (1035 GPa for the diamond-like carbon and
up to 700 GPa for SiC), high thermal conductivity and electrical stability at
temperatures in excess of 300° C. Both materials are also chemically inert.
They can be grown, deposited or micromolded by microfabrication processes
that have to modify the standard procedures. Germanium (Ge) is another
inert material, which can be used as either structural component or as
sacrificial layer – especially in the polysilicon-germanium compound, which
can easily be etched by

Metals and metal compounds are also well represented in MEMS
construction. Aluminum (Al) is probably the most utilized as it is also used in
and compatible with IC microelectronics. The aluminum is layer-deposited
and can function as either structural component or as a sacrificial material in
combination, for instance, with the polyimide – which is the structural
material. While Young’s modulus of bulk aluminum is 70 GPa, for thin-film
aluminum it can range from 8 to 40 GPa, and its fracture strength is 0.15 GPa.
Other metals, such as copper (Cu) (E = 120 GPa, nickel (Ni)
(E = 180 GPa, nickel-iron (Ni-Fe) (E = 120 GPa,

titanium (Ti) (E = 100 GPa, tungsten (W),
zirconium (Zr), gold (Au) (E = 70 GPa, silver (Ag) or
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platinum (Pt) are incorporated in MEMS as structural components and can be
deposited, sputtered or electroplated. Metal compounds that find use in
MEMS design are gallium arsenide (GaAs) and indium phosphide (InP) that
are commercially-available as wafers and have piezoelectric and special
optical properties. Other metal compounds that exhibit piezoelectric
properties are the zinc oxide (ZnO) and the lead zirconate titanate (PZT).

4. PRECISION ISSUES IN MEMS

4.1 Material Properties Precision

As mentioned previously, material property constants, such as Young’s
modulus or Poisson’s ratio, are often times dependent on the specifics of the
microfabrication process and of the experimental setup utilized to measure a
MEMS mechanical property. Both factors lead to large variabilities
sometimes in the value of a mechanical property for the very same material.
A simple example is presented showing the divergence in results when
Young’s modulus of a material is uncertain.

Example 6.1
A single-crystal silicon microcantilever of constant rectangular cross-

section is utilized for atomic force microcopy force reading in a contact
application, as sketched in Fig. 6.18. Knowing the length the
cross-sectional dimensions, and also the experimental
values of the tip displacements and determine the
maximum and minimum values that correspond to these parameters when the
Young’s modulus is uncertain and can have a minimum value of
GPa and a maximum value of GPa.

Figure 6.18 Microcantilever in an AFM application

Solution:
As shown in Chapter 2, the tip deflection and slope can be expressed for

this case as:
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By solving the equation system (6.2) results in:

The moment of inertia is:

By using the numerical values of this example, it is found that the maximum
values of the tip forces are and (they
correspond to whereas the minimum tip forces are
and

To generalize the example discussed above, it should be remembered
that Young’s modulus influences the stiffness of a microdevice according to:

and therefore chances are that the stiffness will be overestimated by taking
the maximum value of Young’s modulus, whereas when the minimum value
of E is considered, the stiffness will likely be less than the real value. The
next example looks at how uncertainty in Poisson’s ratio affects the quasi-
static behavior of a short microcantilever.

Example 6.2
A short microcantilever constructed from silicon nitride in a solid

trapezoid configuration, of the type sketched in Fig. 2.11, Chapter 2, is used
to write in a AFM application. Knowing that

and E = 140 GPa. Consider that the only force acting on the
microcantilever tip is and that the tip deflection and slope are measured
experimentally as Determine the force when the
Poisson’s ratio is known to have values in the [0.21, 0.28] interval.

Solution:
It has been shown in Chapter 1 that for a short beam (where the ratio of

the length to the largest cross-sectional dimension is approximately less than
5-7), the direct-bending compliance is the one affected by the
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consideration of the shearing effects that correspond to relatively-short
beams, and is expressed as:

where the compliances and are calculated for long configurations.
Chapter 2 gave the bending-related stiffnesses of a solid constant rectangular
cross-section microcantilever of trapezoid longitudinal profile, namely

and It is known that the bending-related compliance matrix is
the inverse of the stiffness matrix, and therefore can be computed as
the element in the first row and first column of the inverse of the stiffness
matrix:

As shown in Chapter 1, the axial compliance is calculated according to Eq.
(1.106), and therefore the direct-bending compliance of Eq. (6.6) can be
calculated for either or Now, the following compliance matrix:

will give by matrix inversion the corresponding stiffness matrix which
includes shearing effects. As a consequence, the force can be calculated
as:

The maximum value of the tip force is found to be and
the minimum force is

This example, too, can be generalized in order to highlight the influence
of considering the incertitude in evaluating Poisson’s ratio. The equations
above, particularly Eq. (6.6), indicate that the direct-bending compliance,
which is affected by the shearing effects, can be expressed in the form:

When the maximum value of Poisson’s ratio is taken in Eq. (6.10), the
microstructure will be over-evaluated in its compliance, whereas the opposite
will happen when taking the minimum value of Poisson’s ratio.
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4.2 Microfabrication Precision

Chapter 6

The microfabrication processes that are utilized for MEMS production
can yield sometimes shapes that are not geometrically perfect, either due to
limitations of the microfabrication process itself or because of phenomena
that take place during or after microfabrication. A few examples will be
analyzed pointing out the errors that can result through geometric
imprecision.

One such example is provided in wet etching of microstructures that are
supposed to have rectangular cross-sections, but instead, the final shape is
trapezoid, as shown in Fig. 6.19.

Figure 6.19 Trapezoid cross-section resulted by wet etching of silicon

This geometrical error can increase the net cross-section from the intended
rectangular shape (shown with dotted lines in Fig. 6.19) of dimensions w and
t to the trapezoid one. As a result, the new cross-sectional properties (area
and moments of inertia) will affect both modeling and experimental results.
An example will be studied of a fixed-fixed microbeam which is used in a
continuous stiffness measurement (CSM) technique to determine Young’s
modulus and the fracture strength, by monitoring the applied force and the
resulting deformation at the midspan of the beam – see more details in Li and
Bhushan [13], for instance.

Example 6.3
Analyze the errors that are produced in using the continuous stiffness

method technique for the experimental evaluation of Young’s modulus and
the fracture strength of a silicon fixed-fixed microbeam – Fig. 6.20 (a),
whose cross-section is trapezoid instead of rectangular. A variable force is
applied at the beam’s mid-span and its value, together with the resulting
deflection, are monitored continuously.

Solution:
It can be shown that the deflection and the corresponding force at the

beam’s mid-span – Fig. 6.20 (a) – are related as:
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Figure 6.20 Indentation test for material properties evaluation: (a) fixed-fixed microbeam
with mid-span loading; (b) bending stresses over cross-section; (c) trapezoid cross-section

which gives Young’s modulus equation:

The moment of inertia for the trapezoid cross-section (as shown in Young
and Budynas [14] for instance) of Fig. 6.20 (c) is:

If no geometric imperfection occurred, the moment of inertia of the
rectangular cross-section would be:

It is evident that the value of the Young’s modulus would be over-evaluated
if the rectangular cross-section was used instead of the real trapezoidal one,
which has a larger moment of inertia.

The bending moment is maximum at the midspan and its value is:

The maximum stress at that location and on the upper fiber, as shown in Fig.
6.20 (b), can be calculated as:
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where the distance from the neutral axis (where the stress is zero, as
shown in Fig 6.20 (b)) to the upper fiber, is:

In the case of a rectangular cross-section the neutral axis is placed at the
cross-section’s center, namely:

As it can be seen, the position of the neutral axis is another error source in
determining the maximum stress (in particular the fracture strength), which
ads to the error in the moment of inertia. Two plots are shown in Figs. 6.21
and 6.22, which show errors in Young’s modulus and in the maximum stress,
when taking a rectangular cross-section of dimensions w and t, instead of a
trapezoid one, as shown in Fig. 6.20 (c). Clearly, the error in the Young’s
modulus is generated by differences in the moments of inertia of the two
cross-section, therefore the following relative error function can be
evaluated:

The long side of the trapezoid can be expressed as:

where the angle is the deviation from vertical of the trapezoid’s non-
parallel sides, as shown in Fig. 6.20 (c).

Figure 6.21 Relative errors in the values of Young’s modulus



6. Microfabrication, materials, precision and scaling 371

Similarly, a relative error function for stresses can be formulated as:

The two error functions are now calculated by using the corresponding
equations presented in this example and by taking and by
considering that the angle ranges between 0° and 30°. As Figs. 6.21 and
6.22 indicate, the relative errors in considering a rectangular cross-section
instead of the real trapezoidal one can be as large as 15% in Young’s
modulus and 12% in the maximum stress.

Figure 6.22 Relative errors in the values of the maximum stress

Another source for imprecision in microfabrication is represented by the
residual stresses that are setup in a microcomponent and which deform it,
especially when the microcomponent has a small thickness (it is basically
realized as a film). Causes for residual stresses, as mentioned by Madou [1],
include gas entrapment or impurity inclusions, microvoids created by gases
that are generated during deposition and escape, thermal and lattice
mismatches between the film and the substrate, and doping. Often times, the
residual (or intrinsic) stresses do combine with thermal stresses that are
generated through different thermal expansion coefficients of the substrate
and deposited film. Eliminating or reducing the levels of residual stresses
(which can reach values in the – Madou [1]) is
generally attempted by post-deposition thermal treatment processes, such as
annealing. Efforts have been dedicated to evaluating the residual stresses in
MEMS, and a few of the specific methods will be presented next. One such
method consists of depositing the material of interest as a thin film over a
substrate microbeam. The residual stresses, which develop during and after
deposition, can be either tensile or compressive, and will bow the
sandwiched microbeam in one of the shapes shown in Fig. 6.23. Thin films
do not have a stress variation (gradient) over the thickness, as the thickness is
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very small. Constant axial stress/strain results in axial forces that can be
either compressive or tensile. The situation of Fig. 6.23 (a) corresponds to a
film that has inner tensile stresses, and therefore the film has the tendency to
expand axially (about a direction parallel to beam’s length). Because of the
film’s attachment to the substrate, the sandwich microbeam will bend
downwards, in the way described in Chapter 4 at bimorph transduction. A
film with compressive stresses, which tends to shrink axially, will bow the
microcantilever in the form pictured in Fig. 6.23 (b).

Figure 6.23 Bending effects of residual stresses in thin films deposited on microcantilever
substrates: (a) film under tensile stresses; (b) film under compressive stresses

Example 6.4
Determine the residual stress (assumed to be compressive) in a thin film,

which is deposited on a microcantilever substrate, Fig. 6.23 (b), by knowing
the maximum tip deflection of the microcantilever beam as well as the
dimensions and material properties for the film and substrate.

Solution:
It has been shown in Chapter 4 that the bending moment which acts on

the upper layer (the film here) is expressed as:

where the curvature radius – Eq. (4.134) – is calculated as:
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The subscripts f and s mean film and substrate, respectively, and is the
residual strain, which is unknown. By only considering the bending of the
film and the tip deflection produced by the moment of Eq. (6.22) results
the following equation:

By combining now Eqs. (6.22), (6.23) and (6.24) gives the residual strain:

and therefore the corresponding residual stress is simply:

It should be noticed that measuring the tip deflection, or directly the radius of
the deform bimorph, can be done by a variety of procedures, including
Raman spectroscopy, infrared spectroscopy, Moiré fringes, laser speckle
interferometry or X-rays acoustics. In the case the curvature radius can be
measured experimentally, Eq. (6.23) will directly give the residual strain, and
then Eq. (6.26) will enable calculation of the corresponding stress.

A similar method for evaluating residual stresses is known as the disc
method, which utilizes a film that is deposited over a substrate disc. The
residual stresses developed in the film will cause the disk to deform (bow),
and the deflection at the disk’s center is measured and subsequently used to
evaluate the residual stress. The Stoney equation is utilized in this case – as
given in Madou [1]:

Example 6.5
Determine the residual stress in a thin layer which is deposited on a

substrate disc of radius r (as shown in Fig. 6.24) when the center deflection
is available experimentally. Known are the geometric parameters and

material properties of the film and substrate.
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Figure 6.24 Bent circular disc for residual stress evaluation

Solution:
The Stoney formula – Eq. (6.27) gives the residual stress in terms of the

curvature radius R, but this parameter might not be available directly.
However, the following relationship exists between the center deflection and
the curvature radius:

The angle as shown in Fig. 6.24, can be approximated to:

where r is the disk radius. Equations (6.28) and (6.29) combine into:

If one considers the cosine series expansion which retained the first five
terms (the second and the fourth terms are zero):

then Eq. (6.30) changes to:

which is a third-degree equation in R. By solving it, the resulting value of R
can be substituted into Eq. (6.27), which gives the residual stress.

Another method dedicated to measuring the residual stresses in thin films,
as discussed in Madou [1] for instance, utilizes a series of fixed-fixed
microbeams formed of the material whose stresses are of interest. The
microbeams have identical cross-sections but different lengths. When the
tendency of the microbeam is to expand axially, due to residual stresses, the
fixed supports will react with opposing compressive forces, and for a given
(critical) length, one particular microbeam (having the critical length) will
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buckle and will give the residual stress, as discussed in the following
example.

Example 6.6
A series of fixed-fixed microbeams are used in a test to determine the

residual stress in a film material. The beams have identical rectangular cross-
section defined by w and t, but are of different lengths. An optical system
monitors the deflection at mid-span and decides that buckling occurred for
the microbeam of length as shown in Fig. 6.25. Determine the residual
stress when the material Young’s modulus is known.

Figure 6.25 Side view of a buckled microbridge for residual stress evaluation

Solution:
In has been shown in the previous chapter that the critical buckling load

for a fixed-fixed beam is:

This axial force enables calculation of the corresponding axial stress, which
is also the residual stress, as:

By using:

in combination with Eq. (6.33), the residual stress of Eq. (6.34) can be found
as:
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Another design variant, which utilizes buckling for residual stress
evaluation is the ring crossbar (also known as Guckel ring) of Fig. 6.26,
where a beam is fixed at two points on a ring about the ring’s diameter. The
ring is fixed on a substrate about a direction perpendicular to the beam’s
direction. Preexisting tensile strain in the ring will compress the crossbar
after etch and release, and for a critical length, the crossbar will buckle, and
the residual stress can be found as shown in the previous example.

Figure 6.26 Top view of a ring crossbar utilized to measure residual stresses through
buckling of the crossbar: (a) undeformed condition; (b) buckled condition

Thick films, too, can present residual stresses because of recrystallization
phenomena subsequent to deposition and to insufficient control authority
during the deposition process, as highlighted by Madou [1].

Figure 6.27 Thick-film microcantilevers with residual stresses: (a) tensile stresses on the
upper fiber and bent shape; (b) compressive stresses on the upper fiber and bent shape

In such cases, the strain/stress is no longer constant over the film’s thickness,
and therefore the strain/stress gradient will bend the microcantilever, in one
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of the shapes shown in Fig. 6.27. As Fig. 6.27 (a) indicates, the
microcantilever will bent downward for a stress gradient with tensile stresses
on the upper fiber and compressive stresses on the lower fibers. Upward
bending will occur, as shown in Fig. 6.27 (b) when the stress gradient is
opposite to the one of Fig, 6.27 (a).

Example 6.7
Find the maximum residual stress in a thick-film microcantilever of the

type pictured in Fig. 6.27 (a) when the tip deflection can be measured
experimentally and the geometry and material properties of the microbeam
are known.

Solution:
For a beam of thickness t and moment of inertia which is acted upon

by a moment       the maximum stress is:

The tip deflection of a microcantilever can be determined as:

By combining Eqs. (6.37) and (6.38) results in:

As in any classical (large-scale) fabrication technology, the dimensions
produced by microfabrication are not the nominal (as-designed) ones because
a process leads to inevitable dimensional errors. A linear dimension 1 for
instance can only be guaranteed to statistically range in a
domain. In surface micromachining for example, both gap and solid
dimension are subject to such technology limitations, which combined
together in a microdevice, can affect the nominal (theoretically-predicted)
performance.

Example 6.8
A longitudinal (comb-type) electrostatic microdevice, as the one shown

in Fig. 4.26 (Chapter 4), is used in a sensing application. The
microfabrication technology produces linear dimensions with tolerances of –

and Determine the ratio of the maximum to the minimum values of
the capacitance sensitivity (Eq. (4.36)) in terms of the tolerance fraction p,
where
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Solution:
The maximum capacitive sensitive can be found from Eq. (4.36) as:

Similarly, the minimum capacitive sensing is:

The linear dimension variation can be written as:

By substituting Eqs. (6.42) into Eqs. (6.40) and (6.41), the ratio of the
maximum to the minimum sensitivity becomes:

Figure 6. 28 is a plot corresponding to Eq. (6.43).

Figure 6.28 Ratio of maximum to minimum capacitive sensitivity ratios as a function of the
tolerance fraction

It can be seen that the sensitivity ratio varies non-linearly from a value of 1
for p = 0 (this is the ideal case, when the dimensions are perfect) to a value of
approximately 2.75, when p = 0.25.

Although not a microfabrication defect in itself, stiction – the
phenomenon of adhesion of thin-film structures such as microcantilevers,
microbridges or membranes, especially during the wet etching of sacrificial
layers – constitutes a source of shape damaging and even mechanical failure
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in MEMS. As shown by Mastrangelo and Hsu [15], the magnitude of the
forces that are developed through stiction are significant, such that attempts
to normally operate microfilm structures that have adhered to the substrate
can terminally damage the microdevice. The mechanisms that generate such
high levels of forces are the capillary phenomena at the liquid- solid interface
in very small interstices, as well as the solid-solid adhesion which is
established after contact. However, further discussion and quantitative
analysis of this phenomenon is beyond the scope of this book.

4.3 Modeling Precision

Another source of errors in MEMS design is the precision of modeling
the mechanical behavior of a microcomponent. Simplifying assumptions are
often used to keep the modeling process tractable while preserving the
certitude of its prediction accuracy, Examples can be cited where
modifications of the basic assumptions used in modeling have to be applied,
such as considering the shearing effects for relatively-short beams or using
the large deformation theory, when it warranted by reality. It is also very
important in MEMS that move through elastic deformation of their
components, such as the ones discussed in this book, to separate between the
members that can be considered rigid and the ones that cannot. Otherwise,
errors – sometimes significant – can be introduced in the
stiffness/compliance of the microdevice of interest. An example will be
analyzed next, highlighting errors that are produced through modeling
assumptions in boundary conditions.

Example 6.9
Evaluate the errors which are generated when considering that the

vertical anchor of the microcantilever of in Fig. 6.29 (a) is rigid as opposed
to the case when its flexibility is taken into consideration under the loading
suggested in Fig. 6.29 (b).

Solution:
It has been shown previously that the displacements at a certain point on

a free-fixed chain, as the one considered here, can be calculated by
combining the various compliances of the flexible links in terms of the
specific configuration of the chain. In this case, the deflection and slope

can be expressed as:
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Equations (6.44) and (6.45) are solved for and which can be
expressed in the form:

Figure 6.29 Microcantilever with anchor: (a) Three-dimensional sketch; (b) Loading and
boundary conditions

where the stiffnesses are:

If one takes and then Eqs. (6.48), (6.49) and (6.50) reduce to
the known equations for a simple cantilever, namely:
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The following ratios can be formulated and calculated by means of Eqs.
(6.48) through (6.53):

and Fig. 6.30 is the plot of in terms of h and for the case where
and Obviously, the relative errors increase

when the height h increases and the thickness decreases.

Figure 6.30 Stiffness error when considering the leg compliance in a microcantilever

Other examples of modeling errors have been presented in Chapter 5 when
analyzing the out-of-the-plane stiffness of microsuspensions in connection to
the regular, in-plane stiffness and motion of microdevices.

5. SCALING

The theory of similitude enables comparing the behavior of systems that
are similar by extrapolation of the available data (either experimental or
numerical) characterizing one system to another system, in order to predict
the response of the latter. In many cases data can be acquired by using a
laboratory model which suitably produces experimental data. By applying



382 Chapter 6

the theory of similitude, it is possible to scale up or down the model
properties and to predict the behavior of a similar system that is built at a
different scale. The theory of similitude is implemented by means of the
dimensional analysis, which is the analytical tool that takes into
consideration the dimensions of the pertinent amounts defining a given
phenomenon. The dimensional analysis, as shown by Murphy [16] or Taylor
[17], produces qualitative relationships, and in combination with
experimental/numerical data, yields quantitative results that lead to accurate
predictions. The dimensional analysis is based on two axioms, namely:

Two quantities are numerically equal only when they are
qualitatively similar (have the same dimensions). For instance, a
quantity that is measured in length units can only be equal to another
quantity that is also being measured in length units.
The magnitude ratio of two similar quantities is independent of the
measurement units when the same units are used for both quantities.
The width-to-thickness ratio of one microcantilever’s cross-section is
the same, regardless whether the measuring units are meters or
inches.

The scaling laws, as mentioned by Spearing [4], can be fundamental (or
quasi-fundamental), which are basically obtained from the theory of
similitude and the dimensional analysis, and which consider that material
properties and physical quantities such as density, elastic constants, or
thermo-electric properties are constant. Another category of scaling laws are
the mechanism-dependent ones, which take note that under a threshold value
of approximately certain material and physical properties are no
longer constant, and their values will vary according to the mechanisms that
dominate their behavior. A third branch of scaling laws, as also mentioned by
Spearing [4], form the extrinsic or indirect category, where restrictions
imposed by the peculiarities of a specific microfabrication technology, in
relationship with the given set of geometric shapes that can be obtained by
that microtechnology, affect scaling properties. Addressed will be here only
the fundamental scaling laws.

Among the features that determine the scaling trends of MEMS, the
length is a key parameter because the length directly reflects the dimensional
differences between small- and large-scale, and therefore carries over the
amount whose scale-dependence is being studied. As a consequence, the
length – denoted by 1 in the following – is the paramount basic variable, and
all the derivative amounts of interest are related to it. The length scales to
itself, namely to the area A scales to the volume V scales to whereas
the moment of inertia scales to

One important feature in scaling properties is the surface-to-volume ratio
(SVR) of a body, which is:
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Example 6.10
Compare the surface-to-volume ratio of a cube to that of a sphere.

Solution:
For a cube, the surface-to-volume ratio of Eq. (6.57) is simply the

inverse of the length (or where 1 is the cube’s side. For a sphere of radius
R, this ratio becomes:

and Fig. 6.31 plots this ratio when the radius ranges from to
and it can be seen that for small geometric features, this ratio becomes very
large.

Figure 6.31 Surface-to-volume ratio for a sphere

It is interesting to mention that when the cube and the sphere have the same
volume, the surface-to-volume ratio of the sphere is approximately 1.21
larger than the cube’s ratio, whereas when the cube and the sphere have the
same area, the of the sphere is approximately 1.34 larger than the of
the cube. In other words, forces that are proportional to the area (such as
external friction or superficial tension) become more important than forces
that are proportional to the volume (such as gravity, for instance) at small
scale, and the forces that are proportional to surface-to-volume are always
larger for sphere-like microcomponents than those of equivalent cube-like
ones.

Another amount which is of interest in qualifying the specific resistance
of a mechanical component is the strength-to-weight ratio, which is defined
as the maximum load over the mass. For a strut that is compressed by an
axial load F, the strength-to-weight ratio, SWR, is:
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When the yield stress and the density are constant, SWR scales (is
proportional) to the surface-to-volume ratio SVR, which was shown
previously to scale to

Stiffness is another feature which is of particular interest to this book, as
the main objective here was to qualify MEMS quasi-statically and therefore
to define/determine relationships between load and
displacement/deformation by means of stiffness.

Example 6.11
Determine the stiffness scaling for a fixed-free microcantilever of

constant rectangular cross-section.

Solution:
A constant cross-section microcantilever can be defined in bending by

three stiffnesses, namely the direct linear stiffness, the direct rotary
stiffness and the cross stiffness,

By taking into account that E is considered constant and scales to it
follows that scales to scales to and scales to The
torsional stiffness is similar to the direct rotary bending stiffness and
consequently scales to Because of the linear relationships between force
and deflection, on one hand, and moment and slope (rotation angle), on the
other hand, which are:

the force will also scale to as does, and scales to similar to

Trimmer [18] and [19] introduced the so-called vertical Trimmer bracket
symbolism as a way of determining the scaling proprieties of amounts that
result from forces/moments (which will be discussed shortly) and other
amounts, whose scalability is known. The load (composed of forces and/or
moments), depending on the specific character of the actuation – as detailed
in Chapter 4 –, can scale with different powers (exponents) of 1, and the
following formalism can be used to illustrate this connection:
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which simply indicates that one specific load can scale to either of the
components to If another amount A, formally
defined as:

combines to F in a way that produces another amount X, in the form:

then the scale definition of the new amount X is:

Equation (6.65) shows that when the force scales with for instance, the
derivative amount X will scale to

A direct application of the Trimmer symbolism is calculating
linear/angular displacements by utilizing corresponding forces/moments and
stiffnesses.

Example 6.12
Establish the scaling properties of linear and angular displacements of a

microcomponent by utilizing the vertical Trimmer bracket symbolism.

Solution:
A linear displacement is calculated as the ratio between the generating

force and the corresponding stiffness and it scales as:
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Similarly, a rotary displacement which is produced by a moment is the ratio
between the moment and the corresponding stiffness and it scales as:

Eventually, a rotary displacement which is produced by a force is the ratio of
the force to the corresponding cross stiffness and scales as:

The static work can also be scale-evaluated by using the vertical
Trimmer bracket method, as shown in the next example.

Example 6.13
Determine the scaling laws corresponding to linear and rotary work by

applying the vertical Trimmer bracket notation.

Solution:
The linear work produced by a force over a distance is proportional to

the force-distance product and scales as:



6. Microfabrication, materials, precision and scaling 387

Similarly, the rotary work produced by a moment is proportional to the
product between the moment and the resulting rotation angle, and it scales as:

where ml, m2, ..., mn represent the (potential) scaling laws of the moment.
Analyzed will be next the scaling of the various forces introduced in

Chapter 4.
The thermal force that is developed by a fixed-free bar under a

temperature increase of has been evaluated in Chapter 4 as:

and therefore, the force scales with the cross-sectional area, when
Young’s modulus E and the coefficient of thermal expansion are constant.

Forces such as piezoelectric or produced by shape-memory alloys also do
scale to and this can simply be shown by considering again a fixed-free
bar whose expansion/contraction needs to be prevented by an axial force,
which is proportional to the product between the maximum stress (which is a
constant material-dependent feature) and the cross-sectional area. As a result,
the respective force scales with A and consequently to

Similarly, electrostatic forces scale to In a transverse (plate-type)
actuation for instance, the electrostatic force has been defined in Chapter 4
as:

and therefore for constant electric permittivity and constant electric field, the
electrostatic force scales proportionally to the plate area and therefore to
For longitudinal (comb-finger) actuation, the electrostatic force has been
found to be:

and again for constant values of and E, the electrostatic force scales to
The attraction magnetic force developed between a permanent magnet

and a mating ferroelectric surface was found to be in Chapter 4:
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which indicates that, being proportional to the square of the cross-section, the
magnetic force will scale to

The Lorentz electromagnetic force that acts on a conductor of length l
carrying a current I when placed in an external magnetic field B was defined
as:

in the case where the magnetic field B is perpendicular to the linear
conductor. The current is defined as:

where j is the current density and A is the cross-sectional area of the
conductor. In the case where the current density is a constant, the current I is
proportional to A, and therefore scales to as suggested by Eq. (6.76),
which means that the electromagnetic force will scale to for constant B.

Example 6.14
Determine the scaling with respect to length of the electromagnetic force

acting between two parallel conductors of lengths and (as shown in Fig.
6.32) that are placed at a distance d in vacuum and carry the currents and
respectively.

Figure 6.32 Electromagnetic force between two conductors

Solution:
The electromagnetic force that will act on the mobile conductor is:
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It is known that the magnetic field generated by the left conductor is:

and therefore the attraction force of Eq. (6.77) becomes:

It has been shown previously that the current is proportional to the cross-
sectional area for constant current densities, and therefore Eq. (6.79)
indicates that the Lorentz force is proportional to the square of the current
and therefore scales to

Example 6.15
Establish the length-related scaling law of the force generated between a

magnet and an electromagnet, as shown in Fig. 4.38.

Solution:
It has been shown that the magnet of Fig. 4.38 (a) can be substituted by

an equivalent coil, as sketched in Fig. 4.38 (b) and the corresponding force
generated between the two coils (the real one and the equivalent one) is re-
written here for convenience:

where is the distance between the two coils and is the number of
windings of the real coil. If one carries a dimensional analysis in terms of
length, it is apparent that the force is proportional to (from strictly looking
at the relationship between and and to the square of the current
(because of the product and therefore, because the current itself is
proportional to as shown in the previous problem, the force will scale to
times which is

Two other possibilities that can occur and are connected to the current
density are analyzed by Trimmer [18] and the conclusions are briefly
mentioned here. In the case where there is a constant heat flow generated in
the conductor, the electromagnetic force scales to whereas in the situation
where a constant temperature increase is applied to the conductor, the
electromagnetic force will scale to
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Problems

Problem 6.1
A thermal bimorph, which is composed of two materials with

and having
identical cross-sections with and is subject to a
temperature increase of Young’s modulii are only known
approximately, namely ranging in a interval and in

interval. Calculate the minimum and the maximum
curvature radii that can be produced when p varies from – 0.2 to + 0.2.

Answer:

Problem 6.2
A bent beam thermal actuator, as the one shown in Fig. 4.3 is

microfabricated with the following nominal dimensions: cross-sectional
width thickness leg length and inclination
angle Young’s modulus is E = 160 GPa and the temperature increase
is The microfabrication process ensures that is realized with a
precision of around the nominal value. Also the precision of
measuring temperature variations is within a tolerance of
Considering that and (where p is a tolerance fraction
that can vary between - 0.2 and + 0.2) determine the maximum and
minimum values of the output displacement

Answer:
for p = - 0.2;

for p = + 0.2; (because the function (p) is
increasing monothonically

Problem 6.3
In a transverse (parallel-plate) electrostatic actuator, as the one pictured

in Fig. 4.19, the microfabrication technology produces linear dimensions
within a tolerance field of such that the dimension for
instance is located anywhere un the interval Calculate the
percent relative error between the maximum and minimum initial force in
terms of the minimum initial force (x = 0), namely 100
Numerical application: p = 0.1.

Answer:

Numerical percentage error: 82.58%
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Problem 6.4
A microcantilever of the type shown in Fig. 6.29 of Example 6.9 is

realized through wet etching and therefore the cross-section, instead of being
rectangular, is trapezoid with the dimensions and

(as shown in Fig. 6.19). The microcantilever is used in a reading
AFM application, which gives a tip deflection of and a slope of 1°. Find
the force producing these deformations and determine the error on this
force when the cross-section is considered rectangular (w x t). The length is

and Consider that the anchor leg is rigid and that
there are no other forces acting on the microcantilever,

Answer:

Problem 6.5
The vertical microcantilever in Fig. 6.33 is microfabricated by DRIE in

order to be utilized in a vibration detection application. The dimensions of
the microcantilever are: and A runout of

results through microfabrication. Find the difference in the tip
deflection between the real microcantilever and the ideal one (with no
runout) when a force is applied. Young’s modulus is E = 150
GPa.

Figure 6.33 Microcantilever for vibration monitoring

Answer:

Problem 6.6
Determine the deflection at the midpoint of the microbridge shown in Fig.

6.34 when considering the flexibility of all three segments. Find the error in
deflection when only the flexibility of the middle (horizontal) link is taken
into account. Known are: (w is the width of
the microdevice), and E = 150 GPa.
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Figure 6.34 Microbridge with force applied at midspan

Answer:
for fully-flexible microbridge;

for partially-flexible microbridge;
Relative error is 0.6 %.

Problem 6.7
A constant rectangular cross-section microcantilever has a length
cross-sectional dimensions and Young’s modulus E

= 135 GPa and Poisson’s ratio of 0.25. Calculate its main stiffness
according to the long beam theory and compare it to the similar stiffness
which is obtained by the short beam theory.

Answer:
(long-beam theory); (short-beam

theory)

Problem 6.8
A hollow rectangular microcantilever as the one sketched in Fig. 2.17 is

acted upon by a force of at point 3, about a direction perpendicular to
its plane. Given are the cross-sectional dimensions
and and Young’s modulus, E = 130 GPa. Determine the deflection
at point 3 by means of the small-deformation theory and compare it to the
result obtained by using the large displacement theory, Consider the short
segment of length is rigid. (Hint: The two flexible links act as two beams in
parallel).

Answer:
(small-deformations);

(large-deformations)
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Problem 6.9
The residual stress of a thin-film material is known to be

By using the disc method experiment, the center deflection is found to be
Determine the material’s Poisson’s ratio when the following

amounts are given: and

Answer:

Problem 6.10
A thick-film microcantilever has residual stresses in it after

microfabrication, and it bends downwards, as shown in Fig. 6.27 (a). The tip
slope is available experimentally and has a value of 1°. Determine the
maximum residual stress in the microcantilever, knowing that

and E= 150GPa.

Answer:

Problem 6.11
A constant rectangular cross-section microcantilever is acted upon by a

transverse force at its free tip. Determine the scaling law of the
corresponding strength-to-weight ratio when known are the microcantilever’s
geometry (l, w and t), as well as the material’s density (Hint: SWR =
Maximum bending moment / Mass).

Answer:

Problem 6.12
Determine the stiffness scaling for a fixed-free thin-film microbar of

constant rectangular cross-section, which is used to evaluate its tensile
residual stresses.

Answer:

Problem 6.13
Establish the scaling for the tip deflection of a microcantilever that can

deflect when placed in an external magnetic field.

Answer:
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Problem 6.14
Derive the scaling for the torque generated in rotary electrostatic

actuation.

Answer:
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