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Preface

This book grew out of a third year optional course taught to electrical engineering students
at South Bank Polytechnic. A parallel course on robot dynamics and control was taught
by a colleague. For completeness, 1 have added here my own treatment of robot dynamics.
The control of robots is, however, a very large subject area, which really requires a book
of its own. Many such texts already exist.

The scope of this book forms a consistent whole. The kinematics and dynamics of
robots are the essential basics on which all of current industrial robotics is built. At present
no book concentrates on this material. Certainly all basic texts in robotics mention these
subjects, but often only in a cursory manner. The treatment is invariably in terms of many
co-ordinate frames and festooned with indices. One of the main purposes of this book is to
present the kinematics of robots in as simple and clear a manner as possible. This involves
only using one co-ordinate frame and then using active rather than passive transformations
to describe the positions of rigid bodies.

Using a simple notation we are able to study real six joint robots. However, we approach
these examples via planar and spherical devices. These small examples are also interesting
in their own right as they are often component parts of larger machines. The inverse
kinematics is often difficult for students, usually because they have never had to solve
systems of non-linear equations. Before attacking these problems, the difficulties which
can arise in such systems are introduced.

The study of manipulator jacobians is sometimes called infinitesimal kinematics. We
look at a selection of the applications of the jacobian, but the main applications are in
the statics and dynamics of robots which are discussed separately. Six component vectors
called instantaneous screws are introduced. Also a simple proof is given that the columns
of the jacobian are the robot’s joint screws. Once again we build up from planar and
spherical examples.

Trajectory planning is usually associated with problems of obstacle avoidance. Tra-
jectory following by contrast is really an application numerical analysis; in particular,
function interpolation. We must approximate curves in joint space which correspond to
desired movements of the robot’s end-effector.

The study of forces and torques in static equilibrium is a precursor to robot dynamics.

vil



viii Preface

But it also has some useful applications in its own right, especially to gripping solid
objects. A different type of six component vector, called a wrench, is introduced. The
difference between screws and wrenches is that they transform differently under rigid body
transformations. A pairing between wrenches and screws is also introduced: it gives the
work done by a wrench acting on a screw. In classical screw theory, the work done is given
by the reciprocal product of two screws. Following such a style would make inertias more
difficult to handle later. Also, the introduction of wrenches, with different transformation
properties from screws, is more in keeping with modern approaches to classical mechanics.
The introduction of wrenches allows a straightforward derivation of the force on the end-
effector due to the joint torques. It is also an important theoretical tool for rigid body
dynamics.

To keep the exposition of robot dynamics simple, we use wrenches and screws. Using
wrenches we get a single six-vector equation for each rigid body. The dynamics of robots
are derived by writing the Newton-Euler equation for each link and projecting out the joint
torque component. This does involve the introduction of some more ‘machinery’, namely
the vector product of screws and the product of screws and wrenches. The same equations
can be derived using Lagrangian mechanics; however, it was assumed that students would
only be familiar with Newtonian mechanics.

The only other assumptions made are a knowledge of trigonometry, matrix algebra and
calculus, to the level of first year science or engineering degree. In fact it is hoped that a
mature “A’-level maths student could cope with most of the material in the book.

Throughout the book no specific units have been used, except that angles are always
measured in radians. This is not intended to mean that units are not important, just
that it does not matter if we use metric or imperial units. Most American robots have
lengths quoted in inches and weights in pounds, while Japanese and European models use
millimetres and kilograms.

Itis a cliché that research and teaching support each other. For me, writing this book and
teaching the course it was based on have been a practical demonstration. I could not have
contemplated teaching such a course without my previous research interest. As a result
of the research I felt that it was possible to simplify the presentation of robotics. Then,
in the course of the teaching I was forced to solve many problems. Usually the problems
were old ones, but the challenge was to present the solution as clearly as possible and in a
manner consistent with the rest of the course. This has very definitely helped my research.

I would like to thank colleagues at South Bank and elsewhere for their inspiration and
encouragement, in particular S. Adams, C.G. Gibson, A. Kaposi and T. Sattar, Finally 1
apologize to past students who suffered the course as it developed.

London 1991



1 Introduction

1.1 What is Robotics?

Many books and articles on robotics begin with a dictionary definition of arobot. In general,
it is a good idea to define our terms at the beginning, and be explicit as to what we are talking
about. Unfortunately, there is no commonly agreed definition of a robot, and several well
known dictionaries contain no definition at all. Most attempts at a definition say something
like ‘a robot is a machine that is capable of being reprogrammed’. The fact that a robot
can be reprogrammed is important: it is definitely a characteristic of robots. But of course,
the definition given above is much too crude. It includes computers and microprocessor
controlled washing machines, which we do not usually think of as robots. The trouble is
that if we try to be more specific about what kind of machines robots are, we will exclude
some robots. For example, if we insist that a robot must be capable of manipulating solid
objects, we ignore all sorts of paint spraying and welding robots. Suppose we said that
robots have to be in the form of an arm with some kind of tool or end-effector in the place
of the hand: then we would leave out the walking robots under development in several
places. Like all technology, robots perform tasks which are idealizations or extensions of
human capabilities. So we cannot use the anthropomorphic character of robots to define
them.

The difficulty stems from the fact that ideally we would like robots to be general purpose
machines, capable of almost anything. So we do not want to place limits on what robots can
achieve or how they are constructed. At present, though, robots can do very little, so it is
hard to distinguish them from machines with only limited capabilities. For the present our
definition will be similar to the well known definition of an elephant: ‘difficult to describe
but you will know one if you see one’.

Within its short history robotics has become an extremely large and eclectic discipline.
The study of robots involves elements of both mechanical and electrical engineering, as
well as control theory, computing and now artificial intelligence. Underpinning much
robotics is the mathematics of rigid body transformations. This is the main subject area
of the present book. We will look at the simple theory of moving solid objects around
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2 Introductory Robotics

in space using current six joint industrial robots. However, the theory also applies to
parallel manipulators like the Stewart platform, the fingers of multi-finger hands and the
legs of walking machines. The book only aims to cover a small part of the subject; the basic
kinematics and dynamics of robots. The details of motors to drive the robot’s joints, sensors
and other technical concerns are very important, but will be left to others to describe.

1.2 Popular Robotics

Mention robots to most people and they usually think of ‘mechanical’ beings, human in
every respect except their (re)production. Most of us have our favourite robot from films
or TV, Marvin the Paranoid Android from The Hitch Hiker’s Guide to the Galaxy perhaps.
Older readers may recall ‘Robby the Robot’ from Forbidden Planet or the robot from Lost
in Space; even older ones ‘Maria’ from Fritz Lang’s Metropolis.

There must be some reason why we have such a fascination with robots. One of the
deepest characteristics of humans is their talent for creating tools and machines. Yet
we have not succeeded in creating a living being. If we were to make such a creature,
would it be conscious? This is still a matter of controversy within the philosophy and
artificial intelligence communities. Some scholars believe that anything that behaves like
a conscious being, is a conscious being. The argument might be caricatured as ‘if it walks
like a duck and quacks like a duck, it is a duck’. Other scholars are not convinced. In the
popular conception robots have always been conscious beings and not the simple automata
currently used in industry.

The word robot comes from the Slavic word meaning work or worker. It came into the
English language via the play Rossum’s Universal Robots by the Czech author Karel Capek.
The plot, as with many early robot stories, harks back to Mary Wollstonecraft-Shelley’s
great gothic novel Frankenstein. A man creates a living being and in the end it destroys
him. Perhaps this is supposed to suggest that people are playing God and get no more than
they deserve. A more sinister interpretation might be that we are destined to kill, or have
already killed, our creator.

In its turn Frankenstein harks back to older folk tales and legends: the Gollem, for
example, a clay figure brought to life by a rabbi in Prague; also the ancient Greek legend
of Pygmalion, a statue brought to life. It is interesting to note how these stories reflect the
knowledge of their time: the older stories use magic and religion, while Frankenstein uses
the then emerging biological sciences, especially the experiments by Galvani on frogs’
legs.

In the 1950s the mood of robot stories changed, probably exemplified by Isaac Asimov’s
I Robot stories. With the new technological age, robots were now perfect machines created
in factories. They obey Asimov’s three laws of robotics: a simple code of ethics, saying, for
example that robots must not kill humans or injure themselves. The fiction then flows from
putting the unfortunate robots in situations which produce dilemmas within their simple
moral code. Incidentally, the word ‘robotics’, meaning the study of robots, seems to have
been coined by Asimov.
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In the late 1960s and early 1970s fiction took a turn against robots as it did against science
and technology in general. Several films of this period contain ‘bad robot’ characters. Most
well known of these are probably Westworld, Alien and Blade Runner. 1f one allows the
intelligent computer ‘HAL’ as arobot, then 2001 a Space Odyssey would be in this category,
as would Dark Star where the intelligent bomb could not make up its mind whether or not
to explode. Also at this time, other television programmes and films portrayed robots as the
unthinking, unfeeling henchmen of the bad guy: ideal for the good guys to blast to atoms,
but with no messy blood to frighten the children. The television series Buck Rogers in the
25th Century was particularly murderous towards robots, even though ‘Tweaky’ was the
hero’s pet.

The 1970s saw a rehabilitation of robots. Now robots tumed up as the hero’s cute
sidekick, for example ‘R2D2’ and ‘C3PO’ in Star Wars. However, one of the first films
like this was Silent Running where the maintenance robots were named after Donald Duck’s
nephews. Modern Japanese culture seems particularly fond of robots. This can be seen in
children’s cartoons which nearly always contain robot characters.

For someone making a serious study of robotics it is important to remember that the
popular conception of robots comes from this cultural tradition and that robots are always
thought of as human-like machines. What is more, these ideas predate the modern industrial
robots discussed in this book. So in a sense, they are the real robots and it is us who have
stolen the name.

1.3 History of the Technology

One evening in the mid 1960s Joe Engleberger met George Devol at a cocktail party. Devol
had just patented a design for a computer controlied mechanical arm. Engleberger saw
this invention as a primitive robot. The two of them went into business; they formed the
company Unimation. The ancestors of the original arm were the telechirs or tele-operated
arms developed in the 1940s. These ‘master-slave’ arms are used to manipulate radio-active
materials from behind the safety of lead-glass screens. The human ‘master’ was replaced
by computer control, using technology developed for computer controlled machine tools at
M.LT. Boston. In the early 1970s Engleberger visited Japan, and it was the Japanese who
first realized the potential of industrial robots. At the time Japanese industry was investing
heavily in new manufacturing plant. Unimation robots were at first manufactured under
licence in Japan, then improved models were developed and these spawned Japanese robot
companies.

Originally robots were intended to replace human workers. This was especially true in
the automotive industry which was suffering from industrial relations problems at the time.
It was thought that robots would be universal machines, capable of rapid reprogramming
for a wide variety of tasks. It was these ideals which motivated the development of the
Puma by Unimation in a research project for General Motors. It was closely modelied on
the human arm and could lift about the same weight.
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In practice the early robots were hard to reprogram and could not compete with humans
in tasks where the location of the work pieces was not precisely known. So the first
applications for these new machines was paint spraying and welding. Here the robot
could be programmed by a human operator leading it through the required sequence of
movements. Progress was made in assembly tasks with development of the Scara robot.
This was developed in Japan, for mounting components on printed circuit boards for the
electronics industry.

Around this time the ideology of robotics changed: no longer were robots to replace
human workers, but were advertised as being able to do jobs humans could not, such as
working in the hazardous environments of the mining, offshore oil and nuclear industries
or in fire fighting. Robots can work in places inaccessible to humans, in outer space, on
the sea bed or inside contorted pipe work. Finally, robots can work on a scale humans find
difficult, for instance in very large scale assembly or handling tasks. Alternatively, robots
can manipulate objects at almost microscopic scales.

With the world economic depression of the early 1980s many people saw the adoption of
new technology as a possible cure. However, this led to fear of even more unemployment
as robots took people’s jobs. This does not seem to have happened to any extent and
indeed the robot industry has gone through something of a depression of its own in the late
1980s. This may have been due to the fact that robots were sold as a universal panacea for
manufacturing industry: no one could have a modern production line without robots, they
could do anything. Clearly no technology could live up to such promises.

Moreover, the economic benefits of installing robots came under scrutiny and were found
wanting. Certainly, robots do not need holidays and do not go on strike, but they are only
machines. And like all machines they need regular maintenance and they will break down.
Installing robots in a factory is not simply a matter of replacing workers with robots. The
production line will have to be redesigned, the production process itself may have to be
changed. Often the product will have to be modified so that robots can manipulate the
components easily. Getting rid of unskilled workers involves employing highly skilied
robot technicians and programmers; fewer of them to be sure. But the shortage of such
personnel has, in some cases, hampered the installation of robots. The problems of applying
robots in real manufacturing situations deserves a book in itself, and indeed such books do
exist.

1.4 Looking Ahead

Current research in robotics tends to be in two main areas, artificial intelligence and
the related field of machine vision. A typical artificial intelligence problem in robotics
might be to find a clear path for a robot through a cluttered environment. However,
most of the research in this area is towards making intelligent machines. This is pure
artificial intelligence and has little to do with robotics, except that any successes would
have immediate applications to robots.
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Machine vision is another field which might be considered as separate from, but closely
connected with, robotics. Getting an electronic representation of a picture or scene into
a computer is relatively simple. Using a camera, points in the picture can be encoded
according to their light intensity and colour. Interpreting such a representation so that
the objects in the scene can be identified is extraordinarily difficult. The archetypical
application of such technology to robotics is the *bin picking’ problem. The vision system
Jooks at a bin of disordered components. It must recognize the parts and relay the position
and orientation of the correct part to the robot, in such a way that the robot can pick it up.

More generally, much of the current research can be seen as leading to robots capable
of working in disordered or cluttered environments and able to deal with greater levels
of uncertainty. To achieve this robots need more sensors and of a greater sophistication.
Such sensors would certainly include vision, but also touch, force and possibly ultrasonic
rangefinding. This leads to the problem of ‘sensor fusion’. Not only must the sensor data
from several different sources be interpreted, but also conflicts within the data must be
resolved. For example, if one sensor says that the wall is 10 cm away but another says itis
only 0.5 cm away, which one do you believe? Again these problems are not restricted to
robotics.

In the United Kingdom research in these areas has been termed ‘advanced robotics’, and
many developments are underway, particularly in domestic robots, which would perform
housework, and medical robots for surgery. Public acceptance of such machines will be a
problem, but it may not be too long before such robots are produced. Manipulators which
can replace lost human limbs have been possible for some years now. People have been
unwilling to use such devices for esthetic reasons. The increasing sophistication of these
protheses will probably soon overcome people’s reluctance though. The development of
robots for use by the disabled is also a small but lively area of research; more esoterically,
in Australia a sheep shearing robot has been demonstrated.

There is, however, another strand to current research, and these projects are closer to
the mechanical aspects of the subject. There is a lot of interest in redundant manipulators,
that is, manipulators with more that six joints. For such manipulators the position and
orientation of the gripper can be held fixed while the rest of the arm moves. Most humans
can just about do this with their arms. The advantage of such a robot is that it can reach
around obstacles and still perform its work. However, programming such a machine is
very difficult.

To make robots quicker it is necessary to make the links lighter. This means they will
be more flexible. In this book we assume the links are perfectly rigid, an approximation
of course. There is much current work on robots with significant flexibility. This is
particularly important for robots in outer space, where weight is at a premium. It is also
important to reduce the vibrations caused by this elasticity for accurate work on earth.

Mobile robots are also under development in many places. This type of work has quite
a long history, dating back to a legged truck built in the 1950s by General Electric. The
advantage of using jointed legs rather than wheels or tracks is that legged vehicles may
be able to cope with much rougher terrain. Certainly ants manage to walk over extremely
rough ground. Another idea borrowed from the insect kingdom is wall climbing robots.
Some of the prototype machines look very like spiders; however, they cling to the wall with
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suction pads or magnets. These robots are intended to have applications in the construction
industry.

Multi-fingered dextrous hands are another development based on a biological model.
It is a formidable technological task to build such a gripper with a size and complexity
comparable to the human hand. Automatically controlling such a device seems to be an
even greater challenge. A similar problem under active investigation is how to control two
or more co-operating robot arms. It is possible to plan trajectories for both arms so that
they do not collide, but doing this quickly enough is a challenge.

Lastly, although most researchers assume that there is no more to know about the serial
six joint arm described in this book, a few problems still remain, most notably hybrid
control, where both the position and force applied by the robot must be controlled stably.

In conclusion, it is always difficult to predict the future. The breakthroughs which will
shape robotics in the next century may not be in any of the above mentioned areas. The
above should only be taken as a rather biased attempt to summarize current research in
robotics. A final word of warning; readers should be wary of the extravagant claims made
by the robotics community. Often machines advertised as general purpose only work in
special circumstances. Unfortunately, robotics seems to suffer more than most disciplines
from being oversold or hyped.



2  Rigid Transformations

Robots move solid objects around in space. We will assume all solid objects are rigid
bodies, including the parts that make up the robot itself. In most cases this is a pretty
good approximation, but it can fail. For example, imagine using a robot to grasp a plastic
bottle. There is also growing research interest in fast robots made with light and therefore
flexible members, particularly for use in outer space. However, we will stick to the rigid
body model. What we need is a neat way of describing the possible positions of a rigid
body. This can be done by studying the possible rigid body transformations, since if we
fix a standard or ‘home’ position for the body we can describe any subsequent position by
giving the transformation needed to get there from home.

Rigid body transformations are characterized by the fact that they preserve the distance
between points. Suppose we have two points in the rigid body with position vectors v,
and vy. The square of the distance between these points is given by:

(vi—v2)-(vi—v2)=(v1— V2)T(V1 —v3)

After a transformation of the body the points will have new positions, say, v’y and v'5.
The new points will be separated by a distance:

(vll _ v/2) . (V’l _ V'z) — (vll _ V’2)T(V11 _ V’2)
So if:
(vi—va)-(vi—va) = (Vi1 = v2) - (V1 = V'2)
for every pair of points v; and v, the transformation is rigid.
We begin by looking at 2-D or planar transformations.
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2.1 Rotations and Translations in 2-D

Rotations are rigid transformations, they do not distort the size or shape of the body.
Rotations about the origin in 2-D can be represented by 2 x 2 matrices of the form:-

R(6) = (cosH —sin())

sinf cosé
Notice that we use the notation R () for the rotation matrix.

To see why this is, consider the effect of an anticlockwise rotation by # radians on a
general position vector, see fig. 2.1. Assume that v = (z,y)7 is the position vector of
some point on the rigid body. We can put this in polar form by writing £ = r cos ¢ and
y = sin ¢. After the rotation, the point will have the same r value, but the angle from the
z-axis will be 8 + ¢. So after the rotation the point will have position vector:-

v = rcos(0 + @)\ _ [ r(cosfcosp —sinfsing)\ _ [ xcosd — ysind
"\ rsin(@+¢) / ~ \ r(sinfcos¢+cosfsing) )~ \ xsinf+ ycosh

Using the standard trigonometric identities:-
cos(A+ B) = cosAcosB —sin Asin B
sin{A+ B) = sinAcosB + cos Asin B

This can be summarized by matrix multiplication by the rotation matrix:-
v =R(0)v = C?Sg —siné T\ _ xc.osﬂ—ysinﬂ
sinf cos# y zsinf + ycosd
There are several things to note about these rotation matrices.

e Clearly a rotation of 0 radians will have no effect, and indeed substitution of § = 0 into
the rotation matrix yields the identity matrix.

no- (1)

o The effect of two successive rotations is given by matrix multiplication,
v =R(62)v' = R(6:)R(6,)v

It is not too hard to see that the combined rotation will be through an angle ¢, + 8. This
can be checked by performing the multiplication:-

_ cosfy; —sinb, cos, —sint

R(6:)R(6:) = ( sinfly cosf, ) < sinf; cosé,
_ costy cosf; —sinfs sinf; sinf; cosf; — cos b, sin b,
- sinfl cos#; + cos s sinf; cos b, cosf; — sin Py sin 6,

(cos(01 +603) —sin(6; + 65)

sin(; + 62) cos(8; + 63) ) =R{f2+6)

again using standard trigonometric identities.
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e The inverse of a rotation matrix can now be seen to be just a rotation in the opposite
direction.

R(6)"! = R(-0)

By considering the symmetry of the sine and cosine functions we can also see that
R(6)"! = R(8)7, the transpose of the matrix. Hence, we have that:-

R(9)TR(6) =1

So if we have two vectors v; and v, rotating them both does not affect their scalar
product, since:-

(R(G)vl) : (R(O)vz) = (R(a)vl)T(n(o)VQ)
= vIRO)TR(O)va2 = vIv,
= V| Vg

This justifies our earlier assertion that these rotations are rigid body transformations, since
we can apply it to the square of the distance between two points; (v — va) - (v] — va).

o The determinant of a rotation matrix is given by:-

cosf —sind
sinf cosf

detR (9) =

‘:cos20+sin29: 1

This means that a rotation will leave the area of a rigid body unchanged: this is charac-
teristic of all rigid body transformations. The fact that the determinant is +1 and not —1
means that the transformation involves no reflections. Reflections are also rigid body
transformations but no real machine can effect such a transformation, so we exclude
consideration of them. Strictly, we should talk of proper rigid transformations if we
exclude reflections.

Next we look at the translations. A translation may be represented by a vector. The effect
of a translation on a point with position vector v is simply to add the translation vector to
it; see fig. 2.1. If the translation vector is t = (¢.,t,)7, then symbolically the translation

will be given by:-
o) (1)
y ty

Translations are rigid transformations as they preserve the distance between points. Two
points, v; and v, become v; +t and v, +t. Hence the vector between them is unchanged:-

(vi+t)=(va+t)=vi—vs

The effect of two successive translations t; and to, will be given by vector addition; t; +t».
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Figure 2.1 Rotation and Translation in the Plane

2.2 General Rigid Motions in 2-D

So far we have not defined what we mean by a rigid body transformation. In fact it is
simply a transformation which leaves the distance between any pair of points fixed. It
is not too hard to show that any rigid body motion can be broken down into a sequence
of translations, rotations about the origin and reflections. As mentioned already we will
ignore the reflections and consider only proper rigid body transformations.

A general proper rigid body transformation is given by a pair (R (0),t), where, as
before, R(8) is a 2 x 2 rotation matrix and t a translation vector. These pairs have the
following effect on the position vectors of points:-

(n(o),t) v R(O)V +t
So two successive transformations will give:-
(R(82),t2) :R(B1)V +t1 — R(6)R(81)v + R(B)t1 +
This is equivalent to the single proper rigid transformation given by the pair:-
(R (62)R (6:1), R (62)t, + tz)
Thus we get a sort of ‘funny’ multiplication rule for these pairs:-
(R(@2),t2) (R(81), t1) = (R(B)R (1), R(8:)01 + 1)

Notice here that pure translations are represented by pairs of the form (I,t), where | is
the identity matrix. Pure rotations, that is rotations about the origin, are given by pairs
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(R (6), 0) . The identity transformation, that is the one which leaves all vectors unchanged,
corresponds to the pair (1,0).
The order that these transformations are performed in is very important. That is, the

‘funny’ multiplication is not commutative. For example, the result of rotating and then
translating is different from translating first and then rotating. In the first case we have:-

(I,t) (R(e),o) = (n(o),t)

whereas the other way round gives:-

(R(a),o) (I,t) - (n (0),R(9)t)

We may reverse the effect of any transformation by applying the inverse transformation:-

(R(G),t)—l - (R(a)T,—R(o)Tt)

It is an easy matter to check that using the ‘funny’ multiplication we get:-

(n(o),t) (R(O),t)—l - (R(e),t)‘l(n(()),t) = (|,o)

The above notation is very cumbersome and it would be much more useful if we could
represent the transformations by single matrices. This can be done using the following
trick. Consider the 3 x 3 matrices of the form:-

cos —sinf t,
sin@ cosf t, or in partitioned form (

: : 1 R(9) t)

0 |1

Multiplication of two of these matrices gives:-

cosfly —sinfy ito, cosf, —sinby i,
sinf; cosfy i, sinfy cosb tyy | =
0 0 1 0 0 1

cos(f2 + 0;) sin(f + 01) tiocosby —t1,sinfs + to,
sin(fs + 6;) cos(f2 + 01) t1,sinfy + 11, cos by + Ly,
0 0 1

Symbolically, using partitioned matrices this can be written:-

(H((fg)Itf) (R(gl)}t11> _ (R(920+01){R(02):1+t2)

This exactly mimics the ‘funny’ multiplication of the pairs derived above. We may also
use these matrices to find the effect of transformations on the position vectors of points.
Suppose v = (z, y)7 is the vector under consideration. We can turn this into a three-vector
by appending an extra 1; v = (x,y, 1)7. This extended vector will also be called v. The
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Figure 2.2 Rotation about an Arbitrary Point

extra 1 here is just a mathematical device and not the z-co-ordinate of anything. So now
we can write:-

cosf —sinf t, T rcost —ysind +t,
sinf cosf i, y | =1\ zsinf+ycosf +1,
0 0 1 1 1

Again the partitioned form gives a clearer idea of what is going on:-

(4 (5)- (27

This give the co-ordinates of the new point with one appended. This matrix representation
is so much more convenient that we will not use the pairs at all.

2.3 Centres of Rotation

So far we have only considered rotations about the origin. Rotations about an arbitrary
point in the plane are also rigid transformations. Thus, we ought to be able to find the matrix
corresponding to a rotation of 6 radians, about some point p = (p,,p,)” not necessarily
the origin, see fig. 2.2.

The motion can be broken down into three stages:

. . - . ] -
o First translate the point p to the origin; the corresponding matrix is ( 0 1p )
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Figure 2.3 Finding the Centre of a Transformation

R(()G) (l))

o Finally, translate the origin back to p with ( :) Il) )

Putting all of this together gives:

(1) () (o) - (o 2)

Note that the first operation goes on the right. This is easily remembered by considering
the effect of the transformation on some point in the plane. Since the matrix representing
the transformation is written on the left of the vector representing the point, successive
transformation are written further to the left.

This method of finding a transformation by turning it into one that we already know is very
useful and we will see it many times. In general an operation on a matrix M, with the shape
TMT 1, is called a conjugation. In this case we end up with a rotation and a translation,
a rotation about the origin by 6, followed by a translation by p—R (6)p = (I —R(6))p. In
fact, apart from pure translations, any rigid transformation is of this form, that is a rotation
about some fixed centre.

It is possible to find the centre of rotation of a transformation graphically. All we need
is two points and their transforms; see fig. 2.3. We must join each point to its transform
with a line segment. The perpendicular bisectors of the segments will meet at the centre
of rotation. This works because the perpendicular bisectors must be normal to the circular
paths taken by the points, and hence be diameters of these circles.

For greater accuracy we need an algebraic technique for finding the centre of rotation.

o Now rotate about the origin, using (
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To do this, compare a general rigid transformation with the one just derived:-

(RWHt)_(RWHP—me)

0 1)\ 0 | 1

In order for this equality to hold we must have:-
p-R@p=t

This is a linear equation for p, the centre of the rotation. It can be solved so long as 8 # 0
and we have:-

p=(1-R)t

Equivalently, the centre of rotation is the point that is fixed under the transformation, that is
the point which is in the same position after the transformation. Hence, it must correspond
to an eigenvector of the matrix; the one associated with the eigenvalue 1:-

o) ()= (%)

This just gives the same equation as above.
To summarize, we have shown that all proper rigid body transformations can be repre-
sented by 3 x 3 matrices of the form:-
R |t
0 |1

This can be interpreted as a rotation of 8 radians about the origin, followed by a translation
t. Alternatively, we may think of the transformation as a rotation about some point in the
plane. This point p, called the centre of rotation, can be found by solving the linear matrix

equation:-
(o 1) (1) = (1)

Exceptionally, these equations cannot be solved: this happens when there is no rotation.
These transformations as referred to as pure translations, and some people like to think of
them as rotations about points ‘at infinity’.

Exercises

2.1  Find the 3 x 3 matrices which describe the following motions in 2-D:

(i) A % rotation about the origin.
(ii) A translation of one unit in the z-direction followed by a 3 rotation about the
origin.
(iii) A % rotation about the pointz = 1,y = 1.
2.2 Find the centre of rotation of the following 2-D motions:
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2.3 A2-Drigid motion takes the points (0, 1) and (1, 1) to ( 1%@’ 1—_23@) and (2%5, 3)
respectively. Find the 3 x 3 matrix which effects this transformation and also find
its centre of rotation.

2.4 Rotations about the Origin in 3-D

Next we turn our attention to transformations in three dimensions. For convenience, we
will use the standard notation in which i, j and k represent the unit vectors in the x, y and
z directions respectively.

In 3-D any rotation is about some fixed axis. So for a 3-D rotation we must specify the
angle of rotation ¢, as well as a unit vector along the rotation axis, v, say. To signify a

3 x 3 rotation matrix we will write R (¢, V). It is simple to write down a few such matrices
because of our previous work on 2-D rotations. We have:-

cos¢p —sing 0
R(¢,k) = | sing cos¢ O
0 0 1

The effect of such a rotation on a general point with co-ordinates (z, y, z) is given by:-

rcos¢ — ysing cos¢ —sing 0 z
rsing+ycos¢ | = | sing cos¢p 0 Y
z 0 0 1 z

This shows that the z-component of such a point is always fixed. Hence, the z-axis is fixed,
and this is just a rotation in the ry plane.

Similarly we also have simple expressions for rotations in the yz and zz planes:-

1 0 0 cos¢ 0 sing
R(¢,i)=| 0 cos¢ —sing R(¢.,j) = 0 1 0
0 sin¢g cos¢ —sing 0 cos¢

Notice that the sign of the sine terms are reversed in the last case. This is because R (¢, V)
is, by convention, a rotation of ¢ radians, measured anticlockwise when looking along v.
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Figure 2.4 Rotations do not Commute

Hence, we must limit the possible values of ¢ (usually we take 0 < ¢ < ), so a rotation
of —¢ is represented by R(¢, —v).

As usual the result of two rotations performed one after the other is obtained by matrix
multiplication. This leads us to a very important point: 3-D rotations do not commute.
The order in which we perform the multiplications is important. To illustrate this consider
the following rotations:-

1 0
0

X
—
I
=
~—
Il
(=R

-1 0 . 01
0 0 and R(=,)) = 10
0 1 2 ~10 0
Let us look at the two possible orders for combining these rotations. To fix our attention
think of the effect the rotations will have on a matchbox, see fig. 2.4.
The difference is reflected in the matrix multiplication. In the first case, fig. 2.4(a), we

get:-

1 1

R(G.R(5.4) =

S = O

-1 0 0 01 -
0 o 0 10]= 0 0
0 1 00 -1 0

O = O

Notice that the first operation goes on the right. The other order, fig. 2.4(b), gives:-

0 01\ /0 -1 0 00 1
R( 0 10 1 0 0]l={100
100/ \o o 1 010

The two answers are certainly different. Also notice that the result is not a rotation about
any of the co-ordinate axes.
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2.5 General 3-D Rotations

Having seen above some particular rotation matrices, the following question arises: what
does a general rotation matrix look like? This is not so easy to answer, however. Indeed,
all rotation matrices satisfy the basic relations:-

R(¢,v)TR(¢,¥) =1, detR =1

since rotations must preserve the lengths of position vectors and do not contain reflections.

To find the matrix representing a rotation about some arbitrary vector we may use
conjugation. For example, suppose that W is a unit vector in the = — 2 plane, making an
angle of 4 with the z-axis, see fig. 2.5. Now a rotation of ¢ radians about this vector can be
found by rotating W into coincidence with the z-axis, rotating ¢ about the z-axis and then
rotating back to the starting point:-

R(¢,w) = R(6,j)R (¢, k)R 1(6,j)

In 2-D it is possible to write any rotation matrix in terms of a single parameter 8, say. Then
any rotation matrix would be of the form:-

n(a)z(

In 3-D it turns out that we need three parameters, but it is impossible to choose the
parameters in an unambiguous way. For topological reasons there will always be some
choice of parameters which give the same matrix. These imperfect ‘local’ parameterizations
can be useful though; for example, any rotation can be thought of as a product of three
rotations about the co-ordinate axes:-

cosf —sinf
sinfd cosf

R (d)l" ¢yv ¢:) =
cos¢g. —sing. 0 cos¢, 0 sing, 1 0 0
sing. cos¢. 0 0 1 0 0 cosd, —sing, | =
0 0 1 —sing, 0 cos¢, 0 sing, cos¢,

cos @, cos ¢. sin ¢, sin @, cos . — cos ¢ sin ¢. cos ¢, sin ¢, cos @. + sin @, sin ¢
cos ¢y sin ¢. sin @, sin ¢, sin @. + cos ¢, cos ¢. cos ¢, sin ¢, sing. — sin @, cos P
—sin ¢, Sin ¢, €os @y €Os ¢ €OS Py,

Apart from the fact that this looks terrible, we run into problems when ¢y = %. The matrix
then becomes:-

T 0 Sin(¢1' - ¢:) COS(¢I - ¢:)
R ((bl‘v '2_-, ¢:) = 0 COS(¢I - ¢:) - Sin(¢r - ¢:)
-1 0 0

So we get the same result whenever ¢, = ¢. -+ ¢, for any constant c.

Another common, local parameterization is in terms of Euler angles. The Euler angles
(¢, 6,7) define the following rotations; rotate ¢ about the z-axis, then rotate 6 about the
y-axis, and finally rotate ¢ about the z-axis again, see fig. 2.5:-
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bl

Figure 2.5 Euler Angles

R(#.0,4) =R(4,k)R(6,j)R(¢,k)

costyp —siny 0 cosf 0 sinf cos¢p —sing 0
= sinyy cosy O 0 1 0 sin¢g cos¢ O
0 0 1 —sinf 0 cosf 0 0 1

coscosfcosd —sinysing —costcosfsing —siny cos¢ cosysinb
= siny cos cos ¢ + cosysing —siny cosfsing + cosycos¢ sinysin b
—sin#f cos ¢ sin @ sin ¢ cos 6

In this case we can have 0 < ¢ < 2w and also 0 < ¥ < 27, but to avoid duplication
we restrict 0 < 6 < 7. However we cannot avoid duplication entirely since when § = 0
we get the same matrix whenever ¢ + 1 has a constant value. This is easily seen from
the diagram defining the Euler angles. We will see later that this case is important when
studying robot wrists.

2.6 General Rigid Motions in 3-D

Pure translations can be dealt with very quickly, since they are so similar to the 2-D case.
Again translations can be represented by vectors, three component vectors this time of
course. Again rotations act on translations and we may write a general 3-D rigid motion as

a 4 x 4 partitioned matrix:-
R(¢,v) |t
0 1
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Figure 2.6 A General Screw Motion

This again models the ‘funny’ multiplication given by the action of the rotations on the

translations:-
R(¢2,V2) | t2 R(¢1,v) |t _
0 |1 o |1/

(R(¢2,V2) (¢1, V1) {R(¢2,V2)t1 +t2)

1

We saw earlier that a general 2-D rigid motion is (almost) always a rotation about some
point in the plane. For 3-D rigid motions we might be tempted to think that the general
motion would be a rotation about some line in space. This, however, turns out not to be
general enough: we must also allow a translation along the rotation axis. The result of such
a rotation plus translation is a helical or screw motion, see fig. 2.6.

A screw motion is given by the following matrix:-

() (5248 i) -y st

Here, the middle matrix is a screw about a line through the origin; that is, a rotation with
axis v followed by a translation along v. The outer matrices conjugate the screw and serve
to place the line at an arbitrary position in space. The parameter p is the pitch of the screw,
it gives the distance advanced along the axis for every complete turn, exactly like the pitch
on the thread of an ordinary nut or bolt. When the pitch is zero the screw is a pure rotation,
positive pitches correspond to left-hand threads and negative pitch to right-handed threads.

To show that a general rigid motion is a screw motion, we must show how to put a
general transformation into the form derived above. This amounts to being able to find
the parameters v, u and p. The unit vector in the direction of the line V is easy since it
must be the eigenvector of the rotation matrix corresponding to the unit eigenvalue. (This




20 Introductory Robotics

fails if R = I, that is if the motion is a pure translation.) The vector u is more difficult
to find since it is the position vector of any point on the rotation axis. However we can
uniquely specify u by requiring that it is normal to the rotation axis. So we impose the

- . . (R tY.
extra restriction that v - u = 0. So to put the general matrix (T’T into the above form

we must solve the following system of linear equations:-

P 0 —R)u=t

27
Now V- Ru = vV - u = 0, since the rotation is about v. So we can dot the above equation
with v to give 0 = v - (t — gf\?). This enables us to find the pitch:-

2m ot
p=—v.
¢

All we have to do now is to solve:-
I-Ru=(t— (v -t)v)

This is possible even though det(l — R) = 0, since the equations will be consistent.
As an example we will find the axis and pitch of the following rigid transformation:-

2+v3 2-v3 1 -1
4 4

V2 6V2
2-v3 24v3 -1 5
4 62

|
—

2

SRS
[V
o g -
o “5¥
[
|
W

[

First we must find v = (v,,vy,v.)7 and ¢, we can do this by solving the equation
(I —R)V = 0, since we know that V, the axis of rotation, is unchanged by the matrix:-

2—v3  —24V3 -1 v 0
4 4 2v2 *
—24v3  2-v3 1 v B
1 1 22 y | =
=1 2-v3 v, 0

1

2v2 2v2 2
This homogeneous system of equations has a solution since the matrix on the left-hand side
is singular; this is easily seen, as the first row is the negative of the second. If we multiply
the second row by 21W and subtract 2—‘%@ times the third row we get (52 + 52@ Yv. = 0.

Hence, v. = 0; substituting this in any of the equations gives v, = vy. So the unit vector
is:-

<
il
° S-S
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Figure 2.7 Finding the Angle of Rotation

To find the angle of rotation ¢, observe that v has no component in the z-direction, so
k - ¥ = 0. Since k is perpendicular to the rotation axis, the effect of the rotation is simply
to rotate it about the axis, see fig. 2.7. Therefore, k - Rk = cos ¢.

So cos ¢ = v/3/2 and hence ¢ = /6. We should really check that the angle is 7 /6, not
—n /6. This would be equivalent to reversing the sign of V. A quick way to check this is
by looking at the scalar triple product ¥V - Rk A k: if this is positive our results are correct.
This works because, by definition, the vector product a A b gives a vector perpendicular to
both a and b but where if one looks along the vector then a must be turned clockwise to
bring it into coincidence with b. Our rotations are positive when anticlockwise, hence the
ordering in the product; Rk A k.

The pitch is simply given by:-

_27r

P v-t)=4
measured as length per radian. Finally, u satisfies (I - R)u =1t — %‘5\7.
2-v3  -=24v3 L u 1
4 4 2v/2 x 2v2
—24v3 2-v3 1 ” — 1
4 4 22 Yy - 2\/'2'

1 -1 2-/3 u 2-3
2v2 2v2 2 2 2

The solution to this singular system can be found in the same way as the solution to the
homogeneous system above. The general solution is:-

1

0 7

_ 1
u=]|0]+AX 7
1 0

The solution perpendicular to the axis is therefore u = (0,0, 1)7.
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In this chapter we have seen how to write a general rigid motion in 3-D as a 4 x 4 matrix.
In general such a motion is a screw motion, and we showed this by demonstrating how to
find the axis and pitch of the screw given a four-matrix.

Exercises

24

2.5

2.6

2.7

id

A rigid body is rotated 7 radians about the z-axis and then 3 radians about the
y-axis. Find the axis of the resulting composite rotation. Also, find the axis of the
result when the rotation about the y-axis is performed first.

Find the 4 x 4 matrices corresponding to the following 3-D rigid transformations:

(i) A rotation of % radians about the z-axis, followed by a translation of 2 units
in the z-direction.

(ii) A translation of 2 units in the z-direction, followed by a rotation of 7 radians
about the x-axis.

(iii) A translation of 2 units in the z-direction, followed by a rotation of 7 radians
about the z-axis, followed by a translation of —2 units in the z-direction.

A rigid body transformation takes the three points:-
(0,0,0), (1,0,0) and (0,1,0)

to the points:-
(1,-1,1), (1,0,1) and (0,—1,1)

respectively. Find the 4 x 4 matrix corresponding to this transformation. Also find
the axis and pitch of the motion.

Let R be a 3 x 3 rotation matrix andlet A =R —R7:

(i) Show that A is an antisymmetric matrix (that is, a matrix which satisfies
AT = —A, also called a skew symmetric matrix).

(ii) Show that A = 0 if and only if R is a rotation of O or 7 radians.

(iii) Show that if v is an eigenvector of R with non-zero eigenvalue -y then V is
also an eigenvector of R” but with eigenvalue 2.

(iv) Hence, show that the matrix A given in (i) above is of the form:-

0 V. —Uy
A pd A —vV. 0 Uy
vy, -vr 0

Where ) is an arbitrary constant and v, v, and v. are the components of the
eigenvector Vv, corresponding to the eigenvalue 1.

Note, this gives a very easy way to find the axis of a 3 x 3 rotation matrix as long as the
angle of rotation @ is not O or 7 radians. In fact the constant can be shown tobe A = 2sin§.



3 Robot Anatomy

In this section we will look at the basic parts which make up robots. Essentially we consider
robots to be made up of rigid links connected together with joints. In the simplest cases
the links are connected together in series, to form an open loop structure. However, more
complicated arrangements are sometimes used, and the analysis of manipulators containing
closed loops is more complex. First we look at the links and see how to describe their
positions and orientations.

3.1 Links

Since we are considering the links to be rigid bodies, we saw in the previous chapter
how to specify their transformations. As already mentioned, we may define a ‘home’
configuration for the link. Then subsequent positions are described by giving the rigid
body transformation which moves the link from ‘home’ to the new configuration. This
involves specifying six parameters, three Euler angles (or equivalent) to determine the
orientation of the link, and three components of a translation vector to give the position.
Hence we say that an unconstrained rigid body has six degrees-of-freedom. This means
that changes in any of the six parameters will result in a change of configuration of the link
which is independent of changes in the other parameters.

Our purpose here is the other way around, that is, to find the rigid transformation which
takes the link from one given configuration to another. The shape and mass distribution of
the links are unimportant here. We can find all we need to know about a link by observing
three points on it, see fig. 3.1; for the 2-D case only two points are needed, see exercise 2.3.
Suppose the three points have position vectors p1, P2 and p3 in the home configuration.
Then after a rigid body transformation the new position vectors of the points will be:-

p, =Rp; +t, py=Rpz+t, p3=Rps+t (*)

Given the initial and final positions we can work out what rigid transformation must

23
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P3
P2
X P1

Figure 3.1 Rigid Body Motion Specified by Three Points

have been performed. For example suppose:-

0 1 0
pi=(0]}], p2=|0}, ps=|1
0 0 0
and
1 1 0
! 7 [
pp={-1], po=[0], p3=]-1
1 1 1

Now we must solve the equations (*) above for R and t. In this case, it is quite easy to
solve for t, since Rp; = 0 as p; is already the zero vector. Hence, t = pj. So we are left
with two equations:-
Rp:=p>—p;, Rps=p3-p)

Again since p; and p3 have a particularly simple form it is easy to find the first two columns
of R. Let:-

™1 Tiz T3

R=|ra ra2 7o
T3l T32 T33

then:-
11 T12
ot / ! [
21 | = P2 — Py re2 | =P3— P
T31 732

To find the third column we need another equation. This can be done by taking the vector
product of the two we have just used:-

Rp: ARps = R(p2 Aps3) = (p5 — P}) A (P3 — P1)
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Now, in this case, (p2 A p3) = (0,0,1)7, and so:-

ra3 | = (Py — P1) A (P3 — P1)

Notice that this also ensures that the rotation matrix satisfies the relation R”R = I. That
is, the columns of the matrix are mutually orthogonal unit vectors.
Putting all this together we have:-

0 -1 0 1
R=|10 0], t=]-1
0 0 1 1

The answer is a 5 rotation about the z-axis together with a translation of one unit in each
of the , —y and z directions.

Choosing ‘nice’ points simplifies the calculations here. It is possible to find the rigid
transformation from any three points, as long as they do not all lie on a line. Essentially we
must solve a system of linear equations for the twelve unknowns; the r;;’s and ¢;'s. These
equations will be linearly independent so long as the three points are not colinear. Hence
we can keep track of links by following the progress of three points fixed to the link.

3.2 Joints

Consider how we can join links together. At first sight there seem to be limitless ways of
attaching one link to another while still allowing relative movement. In the 1870s, Franz
Reuleaux, a German mechanical engineer, simplified things by defining lower pairs, see
fig. 3.2. A Reuleaux lower pair is a pair of identical surfaces; one solid, the other hollow.
These surfaces fit together but can still move relative to each other while remaining in
contact.

Reuleaux found six such pairs, and it can be shown that these are the only possibilities.

e Any surface of revolution gives a revolute or R-pair.
e Any helicoidal surface, like the mating surfaces of a nut and bolt, give a screw or H-pair.

e Any surface of translation, like a prism, results in a prismatic or P-pair.

e The surface of a cylinder is a surface of rotation and translation. Two cylinders form a
cylindric or C-pair.

e A sphere is a surface of revolution about any diameter. A ball and socket are a spherical
or S-pair.

e A plane is a surface of translation about any line in the plane and also a surface of
revolution about any normal line. Two planes form a planar or E-pair.
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i

Figure 3.2 The Reuleaux Lower Pairs

Each of these pairs can be used as a joint. Just fix one of the mating surfaces to one link
and the other to the second link. For example, the revolute pair will give a simple hinge
joint between two links. In fact any kind of articulation between links can be thought of
as combinations of these six, at least infinitesimally. This is because, as we have seen, any
rigid motion can be thought of as a screw motion or a translation. We will regard these as
our fundamental joints and will not consider any others. In fact we could do everything in
terms of just helicoidal and prismatic joints. Each H-joint has a pitch associated with it,
the pitch of the screw thread. So the revolute joint is just a pitch zero H-joint.

These joints are one degree-of-freedom joints, that is, we need one parameter to give the
relative position of the two sides of the joint. Such parameters are called joint variables.
The cylindric joint is a two degree-of-freedom joint, since it allows both rotations about,
and translations along, an axis, thus needing two parameters. Planar and spherical joints are
three degree-of-freedom joints. The spherical joint allows rotations about a point, and we
need three parameters to describe such rotations, the Euler angles for example, see section
2.5. The planar joint will allow movements only in a plane. To specify such moves we need
three parameters: the angle of rotation about a fixed point and the lengths of translation
along two orthogonal directions will do.

Given a joint, what rigid motions can the links execute with respect to each other? For
generality let us assume we have a screw joint. Hold one link fixed, with the axis of the
screw aligned along the z-axis for convenience. See fig. 3.3. The second link can undergo
a screw motion about the axis given by:-

1 0 0
cosA —sin A

0
0 sinA cosA
0 o 0

AQ) =

~ o ofR
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Figure 3.3 Rigid Motions Allowed by a Screw Joint

where p is the pitch of the screw.

The possible rigid motions that can be performed by a screw joint form a one parameter
family. The single parameter is the joint variable A. If the joint is a revolute joint then
p = 0 and thus the possible rigid motions are given by:-

0 0
cosA —sinA
sinA  cosA

0 0

A(N) =

oo o -
= = =]

The joint variable here is an angle. For a prismatic joint aligned along the x-axis the
corresponding rigid transformations are:-

100 A
0100
AN=15010
0001

Here the joint variable is a length.
If the joint is positioned arbitrarily in space, then we can find the rigid transformations

t
allowed by conjugating the results above, see also section 2.6. Suppose T = (%,T)

is a rigid transformation which takes the z-axis to the joint axis. The new one parameter
family of motions will be given by:-

A =TANT !
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3.3 Geometric Design

If a robot is to move objects around generally, it will need six degrees-of-freedom, since it
should be able to position and orient the object. This can be achieved by connecting six
one degree-of-freedom joints in series. The position and orientation of the final link, which
carries the object, will be specified by six parameters, the six joint variables (6,6, . . ., 6;).

The joint variables can be thought of as co-ordinates of a space; the joint space of the
robot. Each different configuration of the robot corresponds to a different point in joint
space. Furthermore, every point in joint space corresponds to a configuration of the robot.
In a practical robot the range of movement of each joint will be limited. For example
real revolute joints cannot usually turn a full circle but can only rotate in a limited range,
say —2.3 > 6 > +42.3 radians. Hence the practical robot will only be able to achieve
configurations corresponding to a subspace of the total joint space.

The work space of the robot, by contrast, is the space of positions and orientations
reachable by the robot’s end-effector. This will be a subspace of all possible rigid body
transformations, since there will always be transformations which the robot cannot perform.
For instance a robot of finite size will not be able to perform translations over an arbitrarily
long distance. Note, however, that some writers consider a robot’s work space to be only
the space of positions reachable by some point on the end-effector, irrespective of the
possible orientations. If this is done it is necessary to specify which particular point on the
effector one is considering, by giving its home coordinates for example.

Some robots have only five degrees-of-freedom. In applications such as paint spraying
and arc welding, the final orientation about the axis of the tool is irrelevant. Assembly
robots often only require four degrees-of-freedom. They need three degrees-of-freedom to
position and orient objects in the plane and an extra degree-of-freedom to lift objects out
of the plane.

Although many different designs for the arrangement of the joints in a robot are possible,
only a few have ever been used. This is because the inverse kinematics of the more esoteric
design cannot be solved; see later. The most common designs are shown in fig. 3.4,
All of the current designs separate the positioning from the orientation. The orientation
is taken care of by three joints in the form of a ‘wrist’, while another three joints are
able to position the centre of the wrist. This does make the analysis far easier but is not
the most general design possible. Many of the designs are constructed so that each of
the first three joints controls the position of the last link along one co-ordinate axis; not
necessarily in cartesian coordinates though. Since electric motors are readily available and
easily controlled components, revolute joints are often preferred to prismatic ones, and the
‘Puma’ type design is very common. ‘Puma’ is an acronym for Programmable Universal
Machine for Assembly. Its design is based on the human arm and hence is sometimes
referred to as the anthropomorphic design. In special circumstances prismatic joints are
used, for example in large gantry type robots.

So far all the designs considered are open loop designs. Closed loops are very important
in robotics. Not only are there robot designs which incorporate closed loops but also if an
open loop robot follows a definite path, then it can be considered as a closed loop. For
example, consider a Puma type robot performing a welding operation on a large circular
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Figure 3.4 Common Types of Robot Design

pipe; see fig. 3.5.

Because three of the robot’s axes are parallel and also parallel to the axis of the pipe,
the robot moves like a four-bar mechanism. In mechanical engineering a mechanism is a
movable system of links and joints, which can contain several closed loops. Mechanisms
usually, but not always, have only one degree-of-freedom, that is, the movement of any of
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Figure 3.5 Puma Robot Welding a Pipe, and a Four-bar

the links or bars can be parameterized by one variable. The four-bar mechanism is probably
the most common mechanism used in practice; its use and study have a long history. As far
as mechanics is concerned, mechanisms and robots are identical, so much of the material
of this book also applies to mechanisms. Similarly, work on mechanisms can be useful in
robotics.

The most common robot employing a closed loop is the parallelogram type, see fig. 3.6.
In fact, this is almost identical to the Puma from the point of view of kinematics. However,
this design allows the motor for the third joint to be mounted near the base, not on the
second link. Thus the end-effector can carry a heavier payload. For this reason other closed
loop designs are the subject of current research, with the hope that more of the drive motors
can be moved to the base of the robot.

Finally, the Stewart platform, shown in fig. 3.6, is not usually considered to be a robot, in
which case we must call it a six degrees-of-freedom mechanism. Its main use is in aircraft
simulators. The pilot sits in the simulated cockpit on the platform, while the six hydraulic
rams move the platform to mimic the plane’s motion. Each ram is connected to the base
and the platform by a passive (not driven) spherical joint. This allows movement in all
but the direction parallel to the ram, hence each ram imparts one degree-of-freedom to the
platform. Because none of the rams are in series, this mechanism is often referred to as a

Figure 3.6 Parallelogram Design and the Stewart Platform
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Figure 3.7 Coordinate Frames

parallel manipulator.

3.4 Co-ordinate Frames

In robotics it is common to keep track of link positions using embedded co-ordinate frames.
This method and the three point methods described above are equivalent. This is because
we can always use three points to define a co-ordinate frame. We simply take p} as the
origin of the new frame, fix the new x-axis along the direction of the vector ph — p},and
finally choose the new xy-plane so that it contains the point with position vector p5; see
fig. 3.7.

The problem with using embedded co-ordinate frames is that it is often very confusing
to deal with several different co-ordinate frames. Also one must introduce a new kind of
transformation. So far we have only had one co-ordinate frame and we have studied the
transformations we need to apply to vectors to move them around. This is called the active
point of view and the transformations are called active transformations. The other point of
view is the passive point of view. Here the vector is fixed and the co-ordinate frame moves.
A passive transformation will give us the components of the vector in the new co-ordinates.

Let us assume that i, j and k are respectively the unit vectors in the z, y and z directions.
Now we may change co-ordinates so that the new basis vectors are given by:-

i =Ri
i’ =Rj
k' = Rk

Further, suppose the new origin has position vector t, with respect to the old origin.
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Consider a point with position vector v = (z,y, z)7, relative to the old origin, see fig. 3.7.
With respect to the new origin the point has position vector v — t. In the new co-ordinates
this is:-

2 = i-(v-t) = i-(RTv-RTt)

y = j-(v-t) = j-(RTv-RTY)

2 = kK-(v-t) = k-(RTv-RTt)

In terms of the old co-ordinates this can be written as:-

!

-y

1

No| R

i w® oy

Notice that the 4 x 4 matrix which effects the transformation is the inverse of the active
transformations we have already considered.

We have seen two methods for keeping track of links and other rigid bodies. In the end it
is a matter of taste whether one uses the active or passive viewpoint. The active viewpoint
is preferred in this book. We have also seen how to write down the transformations allowed
by joint, as a matrix with a variable joint parameter. Finally, we have introduced the
concepts of joint space and work space for open loop robots.

Exercises

3.1 Find the rigid body transformations which take the points (0,0,0), (1,0,0) and
(0,1, 0) respectively to:-
() (2,0,0),(3,0,0)and (2,0,1)
Gi) (0,0,0), (0,1,0) and (—1,0,0)
(iii) (07 0, 1)’ (07 1, 1) and (—la 0, 1)
Find also the pitch and axis of these transformations.

3.2  Find the possible rigid body motions that can be generated by the following joints:-

(i) A revolute joint aligned with the z-axis.

(i1) A prismatic joint aligned with the z-axis.

(iii) A revolute joint located along the line x = 1,y = 0.
(iv) A screw joint of pitch 2 aligned withz = 1,y = 0.

R
33 LetA = (O

formation is given by:-

v - . . .
1 ) be a rigid body transformation; verify that the inverse trans-

RT|-RTy
-1 _
A= (51
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. - . Rt . . .
Consider a rigid transformation (TH) , where R is a rotation of # radians about

the vector V. Let u be the position vector of a point on the axis of this transformation.
Show that:-
(1 + RT)t = 2sinfuAv

Now, suppose v, and v, are two orthogonal unit vectors perpendicular to v and they
satisfy v, A vy = V. In other words assume Va, Vb, V form a set of orthonormal
basis vectors for some right-handed co-ordinate frame. Show that the projections
of u on to these two vectors is given by:-

v, = L T T
u-ve= 535V (1 +RO)t
o = =l oT T
u-Vy= sopva(l +RO)t



4 Kinematics

Kinematics is the study of possible movement and configurations of a system. It is really
only concerned with the geometry of the system. To understand how the system will move
in a given circumstance requires a knowledge of forces, inertias, energy and so forth. This
is the subject matter of dynamics which will be discussed later.

For robots we need to know the position and orientation of the last link or end-effector,
in terms of the joint variables. This is the forward kinematics. Before we look at a six axis
industrial robot we will look at some smaller examples; the three joint planar manipulator
and the three joint spherical manipulator. These are not, however, trivial examples. Many
commercial robots incorporate these structures. Any three parallel R-joints form a planar
manipulator; see, for example, the Puma and Scara type robots. Also any three R-joints
with intersecting axes will form a spherical manipulator; such structures are used as wrists
in many robots.

The basic idea is to find the matrices corresponding to the motions about each joint. We
met these matrices in section 3.2. Combining these matrices in the correct order will give
the rigid body transformations of the final link as a function of the joint variables.

4.1 The Planar Manipulator

In the plane three joints are needed to give the manipulator three degrees-of-freedom. To
specify the position of a link in the plane we could use two points, but we can also use
one point (z,y) and an angle ®. The joint variables will be three angles 6,, 6> and 5. As
usual, positive angles denote anticlockwise rotations. We must also specify the lengths of
the links, we will leave these ‘design parameters’ arbitrary and just write I, I and l3; see
fig. 4.1.

The first thing to do is to define a suitable home configuration. In this case a convenient
position would be where all the joint angles are zero, §; = 6, = 63 = 0. See fig. 4.1. Now
to get to the configuration with joint angles (6,6, 63), we perform the following three
rotations.

34
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Figure 4.1 The Planar Manipulator and its Home Configuration

First rotate joint 3 to angle 65. This is given by a 3 x 3 matrix of the form:-

As(6s) = (R(O(’3) 4 )

The centre of rotation is the position of the third joint in the home position and has
co-ordinates (I; + l2,0). So the matrix is:-

cosf; —sinf; (1 —cosfz)(l1 +12)
A3(03) = sin 93 COos 03 —sin 93(l1 + lg)
0 0 1

Notice that this rotation does not change the positions of the first and second joints. So
the second stage is:-

Rotate joint two, to angle 8>. The matrix for this is just:-

cosf, —sin#y (1 —cosb)l
A;(0;) = | sinfy cosfy —sinfslq
0 0 1

since the centre of rotation is at (I1, 0).

Finally, rotate the first joint to angle ;. Since this axis has not been affected by the
previous rotations the matrix is simply:-

CcOs 91 —sin 91 0
A.(6;)={ sin6; cosb O
0 0 1

So the effect of such a movement will be given by the product of the three matrices;
remembering that the first operation is the rightmost:-

cos(f, + 62 + 6;3) — sin(01 + 6y +6s5) k.
A 1(91 )A2(92)A 3(03) = sin(01 + 05 + 03) COS(01 + 62 + 03) k‘y
0 0 1
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y
]
03// l3sin 61 + 6, + 63
“\61 + 62
73
9 - I sin 61 + 6,
=% b
h
/4 sin [
(22 -
/1 cos 64 I cos 61 + 6, lzcos 6y + 6, + O3 X

Figure 4.2 Using Trigonometry to Derive the Kinematic Equations

The quantities k. and k, are given by:-

ky = licosO, + 1, COS(01 + 02) - (11 + 12) COS(G] + 65 + 03)
ky = Il;sinf; + 1, sin(01 + 32) - (11 + 12)Sin(01 + 05 + 03)

This matrix K(6,,62,683) = A1(6:)A(02)A 3(63) encapsulates everything there is to
know about the kinematics of the manipulator. So we will refer to it as the kinematic
transformation matrix of the manipulator. The angle & is easily seen to be & = 6, + 6, +
f3. 1f we want to find the position of any point attached to the end-effector, we simply
multiply its position vector in the home position by the matrix K. For example, the point
(l1 + 2 + 13, 0) after a general motion will have z — y co-ordinates given by:-

r COS(01 + 0y + 03) - sin(61 + 65 + 03) ke L+1+13
Yy} = sin(91 + 0, + 03) 005(01 + 6, + 93) k'y 0
1 0 0 1 1

This yields the so-called kinematic equations of the manipulator:

x licos B + 15 608(01 + 02) + 13 COS(91 + 85 + 63)
y = lisinf, +1, sin(01 + 02) + I3 sin(01 + 64 + 03)

It is a simple matter of trigonometry to check that these equations are correct, see fig. 4.2.
However, the matrix approach used above works in all cases, even when the geomeiry of
the situation is not as clear as in the planar case.

4.2 The 3-R Wrist

This structure is used as a wrist in many robots, the Puma and Stanford manipulator, for
example. Since all three revolute joint axes meet at a common point, this is an example of
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Figure 4.3 The 3-R Wrist

a spherical mechanism. One could think of such a mechanism as being able to manipulate
objects on the surface of a sphere. The arrangement of joints (J) is illustrated in fig. 4.3.

For simplicity, the home position has the first and third joints aligned along the z-axis
and the second along the y-axis. The origin is chosen to be where the joint axes meet.
Hence the kinematic transformation matrix is given by:-

K (8:,62,63) = R(81,k)R (62,3)R (63, k)

Here we are just using the 3 x 3 rotation matrices. Notice how similar this is to the Euler
angles, and this, of course, is no accident. In full the kinematics are given by:-

K=
cos §; cos B3 cos 3 — sin 8 sinf3 — cos 8 cos B2 sin B3 — sin 0, cos f3 cos #; sin 6
sin @ cos @ cos B3 -+ cos B sin B3 — sin 6y cos 6 sin 63 + cos B, cosf3 sinf; sin b,
—sin 05 cos 03 sin @5 sin 03 cos 8,

Using Euler angles the kinematic equations are just:-
Y =0y, 6 = 02, ¢ =03

However, if we choose a different parameterization for the rotations, the kinematic equations
become extremely complicated and very hard to derive, since we would then have to solve
complicated trigonometric equations. The kinematic transform matrix is the simplest way
to treat the kinematics of wrists: we can use it to find the positions of points. For example,
the point attached to the end-effector and with home position (0,0, 1) is transformed to:-

0 cos B sin 6,
K|O0| =1 sinf;sinf,
1 cos fl5

A slight variant of the 3-R wrist is the roll-pitch-yaw wrist, see fig. 4.4. Again this is
a spherical mechanism, since all the joint axes intersect. The home configuration might
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Figure 4.4 The Roll-Pitch-Yaw Wrist and the Cincinnati T Wrist

have the third joint along the z-axis, the second along the y-axis and the first joint along
the z-axis. This would lead to the kinematic transform matrix:-

K(61,62,03) = R(61, k)R (62,5)R(65,1)

However, if we choose a different home configuration, where the only difference is that
05 = 6, + %, then the wrist is seen to have exactly the same structure as the 3-R wrist
above. In practice, the revolute joints will not be fully rotatable, so the home configuration
may not be achievable by the manipulator. This does not matter as far as the mathematics is
concerned; the choice of home position is a matter of where one chooses the joint variables
to be zero.

Exercises

4.1

4.2

Consider a three joint planar manipulator with {; = 2,l, = 2 and I3 = 1 in some
units. Find the x — y co-ordinates of the point with home position (5, 0), and the
angle the last link makes with the z-axis when the joint angles are:-

(i) 01=7r/6, 02:7(/6, 03:71'/6

(i) 6, =7/2, 6 = 4w /3, 0 =7/3

(iii) 6, = —n/6, 62 = 27/3, 03 = —7/3

The wrist of the Cincinnati Milacron T robot is illustrated in fig. 4.4. Choose a

suitable home configuration and work out the kinematic transformation matrix of
the wrist.



Kinematics 39

Figure 4.5 Link Length, Twist Angle and Joint Offset

4.3 Design Parameters

For a planar mechanism with hinge joints, we saw that only the lengths of the links are
needed to specify the design. For spatial systems the situation is a bit more complicated.
To make things as simple as possible we will only look at systems of revolute joints. We
then have three kinds of design parameters.

To begin with, consider just two revolute joints, see fig. 4.5. Each joint determines a
line in space. Between any pair of lines there is a unique shortest distance, along the line
perpendicular to both. This length is called the link length. If the lines happen to intersect
then the link length is zero. A problem might arise here if the lines are parallel. Then
there are many common perpendiculars. However, the distance between the lines along
any common perpendicular is always the same, so no ambiguity arises.

Now if we look along the common perpendicular the lines will appear to cross. The
angle at which they cross is called the twist angle. Another way to think of this is as the
angle between the direction vectors along the lines. There are two possible choices for the
direction of the line, differing by 7 radians. But we can make the choice that results in the
twist angle a, being in the range 0 < o < . This of course fails if the twist angle is 5.In
this case we must choose some other criterion to fix the direction of the line.

The final design parameter is the joint offset. This is only relevant if we have three or
more joints, see fig. 4.5. The line perpendicular to joint 1 and joint 2 meets the axis of joint
2 at some point. Likewise, the common perpendicular to the second and third joint meets
the axis of the second joint. The distance between these two points is the joint offset. The
joint offset is positive when measured along the direction of the axis. A possible ambiguity
is here, if two consecutive axes are parallel; then the joint offset cannot be defined.

By considering fig. 4.6 we can draw up a table of the design parameters for the Puma
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Figure 4.6 The Puma Robot and its Home Position

robot.
Link | Link length  Twist angle Offset
J1 —Jz 0 7r/2 -
Jo—J3 Lo 0 (axes paraliel)
J3—J4 0 7!'/2 D3
J4—J5 0 7T/2 D4
J5—J6 0 7!'/2 0

These design parameters are also sometimes called the Denavit-Hartenberg parameters. If
we include prismatic joints, the offset for such a joint is now a variable. The joint angle,
that is the angle between the common perpendiculars, is now fixed, and hence is the new
design parameter.

4.4 ‘A’- Matrices for the Puma Robot

In this section we look at the kinematics of a six axis industrial robot; the Unimate Puma.
Many industrial robots follow the design of the Puma: some of the dimensions may be
different and also the details of the drive systems, but the basic arrangement of the joints
is often the same. Originally the Puma was designed to perform light industrial tasks,
especially in the car industry and was designed to match human capabilities in terms of
reach and lifting power.

As usual, we begin by choosing a home position for the robot, see fig. 4.6. Next we
must find the matrices corresponding to rotations about the joint axes. These are the ‘A -
matrices. If the line has direction vector v and t is the position vector of a point on the
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line, then rotations about this line will be given by:-

- (4) (4240 )

A(6) = (R(g,v) i a —lR)t>

The result is:-

The axes of the joints in their home positions are given by the following table:-

Joint | v t
J1 1k 0
Jo |1 0
Jz | 1i Lok
Jy |k Dasi
Js |1 (L2+ D4k
Js |k Dsi
Now it is a simple matter to find the A -matrices. The first one is simply:-
cosf; —sinf; 0 O
_ | sinf; cosf 0 O
AL(61) = 0 0 10
0 0 01
The second one is also simple:-
1 0 0 0
| 0 cosfy —sinfy O
Ax(62) = 0 sinf, cosf O
0 0 0 1

For A ; we need to know the term (I — R )t.

1 00 1 0 0 0 0
01 0]—]0 cosfs —sinbs 0 = Losinfs
001 0 sinf; cosfs L, Lo(1 — cosb3)
So that:-
1 0 0 0
A4 (65) = 0 cosf3 —sinf; Losinfs
0 sinf3 cosfl3 Lo(1—cosfs)
0 0 0 1

Similarly we have:-

cosfy —sinfy 0 (1 —cosby)Ds
sinfy «cosfly 0 —sinf4D
A4(94): 04 0 4 1 n04 5
0

0 0 1
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and also:-

0 0 0
cosf; —sinfy (L2 + Dy)sinbs
sinf3 cosf; (L2 + D4)(1 — cosfs)
0 0 1

As(0s) =

(== e R

Finally we have:-

cosfg —sinfg 0 (1 — cosbg)Ds
in 6 66 0 —sinfgD
As(aﬁ) — SIIE) 6 COZ 6 . Sln06 3
0

0 0 1
The kinematic matrix is just given by the product:-
K (6y,62,03,04,05,06) = A1(61)A2(02)A 3(83)A 4(64)A5(85)A 6(06)

As usual the first operation is represented by the rightmost matrix. Here, we may think
of performing the rotation about the final joint first, thus leaving the earlier joints fixed.
Continuing down the chain we get the above order for the A -matrices. Multiplying out
these matrices will give a very large, complicated matrix which we could not fit on a
normal page. Luckily, the complicated expressions obtained do not add anything to the
understanding of the machine. In a practical situation, we may have to multiply out the
matrices once; the resulting expressions would then be programmed into the robot’s control
system.

Since everything is measured from the home position, when all the angles are zero we
should get the identity matrix, and indeed it is not hard to check that:-

K (0,0,0,0,0,0) =1
Again we can use the kinematic matrix to find the position of points with known home
co-ordinates. For example, let p be a point rigidly attached to the gripper, and assume that

in the home position p has co-ordinates (0,0, L2 + D,4). Then when the joint angles are:-

T ™ ™ ™ T
2, 2 21 3 ’ 4 5

2 b
the new position of the point is given by:-

p T O A
= K(5,2,0,—=, =, =) { +—
(1) (320 2’2’2)(1>

0, =

1 0 0 (Ly—D;3+Dy) 0 (L2 — D3 + Dy)
100 -1 (L2 + D3 + Dy) 0 _ D;
“l101 o0 0 (La+Dy) |} — 0

00 0 1 1 1

To sum up, the forward kinematics give a mapping from the robot’s joint space to its work
space. This is expressed by the kinematic transformation matrix; a rigid transformation
depending on the joint variables. For open loop robots we have demonstrated a systematic
procedure for obtaining this matrix.
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Figure 4.7 The Scara Robot and the Stanford Manipulator

Exercises

43

44

4.5

Find the A matrices for the Scara robot illustrated in fig. 4.7. (Scara is an acronym
for Selective Compliance Arm for Robot Assembly.) Also find the A matrices for
the 5-R-1-P Stanford manipulator also illustrated in fig. 4.7.

A point p is rigidly attached to the gripper of a Puma type robot. In the home
configuration the point has co-ordinates (D3,0, L> + Dy). Use A matrices of the
Puma to find its position when the joint angles are:-

s T iy

3’ b5 = 7" s = r

Another point, r, is rigidly attached to the gripper of a Puma type robot. When the
joint angles are:-

=0, 6,=0, 03=0, 0,=

01 = - 21
the point r has co-ordinates (L2 + Ds, D3 + D4, 0). Find the co-ordinates of the
point in the home configuration.



5 Inverse Kinematics

In the last chapter we saw how to derive the kinematics of a serial robot. The position and
orientation of any point rigidly attached to the gripper can be found if the joint angles are
known. In this section we want to do the reverse. Given the position and orientation of the
gripper required, to what angles must the joints be set? This is one of the central problems
in robotics, since whenever we specify the motion of the robot’s gripper we need to know
the corresponding joint motions. Essentially we must solve the following matrix equation:-

A1 (6:1)A2(62)A 3(63)A 4(05)A5(05)A6(06) = K

where K is the constant matrix which specifies the position and orientation of the gripper.
This constitutes a set of highly non-linear equations for the joint angles 6,6, ..., 0.

In general, very little is known about solving such equations; even the number of solutions
is problematic. For n non-linear equations in n unknowns there may be no solutions at
all, one or more discrete solutions or even continuous families of solutions. This contrasts
sharply with the case of linear equations, where only a single solution or a linear space of
solutions is possible. In the linear case we can look to the determinant of the system to
distinguish these cases; for non-linear equations no such test exists.

Things are not quite so bad if there are no helical joints, since the joint angles only appear
in the equations as cos 6; or sin 8;. Now if we use these as our variables the equations are
algebraic. That is, they are only polynomials in the variables cos6; and sin 6;. So if we
solve for these variables it is a simple matter to find the joint angles; §;. However, we have
actually doubled the number of variables in the equations but we must also consider the
relations between the new variables. This means we must include the equations:-

cos?0; +sin’8; = 1

in our non-linear system.
There is another technique used to make the equations algebraic: to write the equations
in terms of ‘tan half angles’; that is, to make the substitutions:-
1— ¢ . 2t;
—1 sinf; = 5
1+t

]
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where t; = tan(6;/2). The only disadvantage of this approach is that it fails when 6, = 7.

Algebraic equations have nice properties. For example a polynomial equation in one
variable has as many solutions (roots) as the degree of the polynomial. This is familiar
from elementary algebra, and also we recall that the roots must be counted properly;
repeated roots and complex roots must be accounted for. There is a generalization of
this to systems of polynomial equations in several variables. If we have n equations of
degree dy,ds, . . ., d, in n unknowns then, in general, we get dy x da X ... % d, solutions.
However, there are exceptional circumstances when there is an infinite family of solutions.

So, for example, consider two quadratics in two variables. Quadratics in two variables
are just conic curves; ellipses, parabolas and hyperbolas. Their degree is two, so two of
them should intersect in 2 x 2 = 4 points. Some of these intersections may be complex;
they will occur in complex conjugate pairs if the coefficients of the equations are real.
Hence there may be no real intersections at all. Singular solutions are also possible. They
correspond to repeated roots in the one variable case, and occur when the curves intersect
and have the same tangent at the intersection. See fig. 5.1.

5.1 The Planar Manipulator

To get back to the problem of inverse kinematics let us look at a simple example. The
planar manipulator exhibits all the possibilities that can arise. Consider the position after
just two links, see fig. 5.2. The kinematic equations for the end point are:-

x = licosf; + lrcos(f; +63)

y lisinf; + lssin(8; + 62)

I

Given = and y we must find cos 8;,sin 6, cos 6, and sin#,. The above equations are in
fact quadratic, since we can use the trigonometric formulas to write:-

cos(8; +02) = cosb; cos By —sin 8, sin sin(6; +62) = sin 6, cos 62+ cos 6 sin 02

Then together with the identities satisfied by the sine and cosine functions, these give us
four quadratic equations in four unknowns:-

z = lycosb +lycosby cosbs — Iy sinb sinb, (A)
y = l;sin®, +lpsin6) cosfs + Iy cos By sin by (B)
1 = cos’f; +sin’8, <)
1 = cos®0, + sin’ 6, (D)

So we might expect 2 x 2 x 2 x 2 = 16 solutions: in fact only 2 arise. The discrepancy
is accounted for by four singular complex solutions at ‘infinity’.
To solve this system we square equation (A) and add it to the square of (B):-
(z2 +y?) = [3(cos? 0, + sin® ;) + 15(cos’ 0, + sin® 6;) cos® B,
+ lg(cos2 6, + sin® 6;) sin? 6, + 21 ly(cos? 6, + sin” 8, ) cos 6,
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Figure 5.1 Some Possible Intersections of Two Conics

Figure 5.2 The Planar Manipulator; Postures and Work Space
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Then using (C) and (D) to simplify we obtain:-
(2 +y?) = 12 + 12 + 21115 cos 65

In fact this is just the cosine rule from trigonometry. So the solution for cos 6 is just:-

1
cosfy = 571'5{(31”2 +¥) - +B)}=2X

We abbreviate this to X since it will occur frequently. Hence, by (D) sin 6, is:-
sinfy; = (1 — )\2)%

that is, there are two possible solutions. We will look at this in more detail in a moment.
First let us find cos #; and sin 6;. The simplest way to do this is to form the two equations:-

(A)cosb; + (B)sinf; = xcost +ysinf; = I +1lzcosb,
= L+LA
—(A)siné; + (B)cosfy = ~—xsinby +ycosby = 5 sin 6,

+lp(1 — A2)2

Again, the relation (C') has been used to simplify the above. Now we have two simultaneous
linear equations which are easily solved. So we have found explicit equations for the
sines and cosines of the angles in terms of the design parameters and the position of the
manipulator’s end-effector. In fact there are two solutions, corresponding to the upper and
lower sign choices. These equations are the inverse kinematic relations for the manipulator:-

1 1
C0801 = (—m{l‘(ll + lgA) + ylz(l — AZ)E}
. 1 1
sinf;, = W{ZF.’L'ZQ(I - /\2)2 + ’y(l] + lg/\)}
1
cosfy = ﬂ{($2 +7) -G +B)} =2
142

sinf, = +(1- %)%

5.2 Postures

For the planar manipulator of the previous section there are generally two solutions for the
inverse kinematics. They arise from the sign of the term sin 62: physically this corresponds
to the fact that there are two ways of reaching any point in the plane, see fig. 5.2. These two
configurations of the manipulator are called postures; one is referred to as ‘elbow up’, the
other as ‘elbow down’. However, not every point (z,y) has two postures. There is only
one solution for sin 6, if sin #; = O; that is when A = +1, which corresponds to §; = 0 or
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7. The points in the plane determined by these values are given by:-

cosfy = 1; gives (22 +y%) = (L +1b)?
cos, = —1; gives (22+¢%) =l —1)?

il

These are the equations of two concentric circles, on one the arm is at full stretch, while to
reach the other the arm must double back on itself, see fig. 5.2.

Beyond the outer circle and inside the smaller one, the solutions for sin 62 become
complex and it is clear that we cannot reach such points with a real arm. The annular
region is the projection of the robot’s work space onto the plane, see section 3.3. It is
the space that the robot can reach and work in. The work space of any robot is always
bounded by curves or surfaces on which the number of postures is different from the body
of the work space. Such points are called singular points; however, singular points may
also occur in the interior of the work space. A better characterization of singular points
is points where the robot loses one or more degrees-of-freedom. In the case of the planar
manipulator it is easy to see that on the boundary of the work space the arm has no freedom
to move in a radial direction.

So far we have said nothing about the design parameters /; and l;. In fact the relative
sizes of the links do not affect the number of postures, except in the very special case that
I; = l>. In this case there are still generally two postures for every point in the work space,
but the inner boundary has now shrunk to a point; the origin. If we try to place the tip of the
manipulator at z = 0, y = 0, then certainly we must have cos§, = —1 and sinf; = 0, but
our method for finding 6, breaks down. It is quite clear though that there is no restriction
on 1, so instead of one or two postures, this point in the work space has a whole circle
of postures. This kind of singularity, with a continuous family of postures, is particularly
difficult to deal with when it comes to controlling the robot. Unfortunately, all six axis
robots that have been designed or built have such singularities in their work space. It is not
known if this can be avoided.

5.3 The 3-R Wrist

As we saw in section 4.2 the kinematic equations of the 3-R wrist can be written in terms
of the Euler angles as:-
Y = 01, 6 = 0s, ¢=10;

so there does not seem to be any problem about the inverse kinematics. However, we must
remember that the Euler angles have a limited range whilst the joint angles can range over
a full circle, 0 to 27; at least in theory. The kinematic matrix, as we saw in section 4.2, is
given by:-
K =
cos 8y cos O cos 3 — sin 6 sinfl3 — cos B cos by sinflz — sinfy cosf3 cosfy sinby
sin @) cos @ cosf3 + cos f; sinf; — sin f; cos b sin b3 + cos 1 cosf3 sinby sinby
—sin#s cos 83 sin 05 sin 83 cos 2
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Figure 5.3 Flip and No Flip Postures of the 3-R Wrist

Notice that we get the same matrix if we make the substitutions:-

/

1 =m+6;, 0, = 2m — 05, 65 =7+ 03
This is because we can use the usual trigonometric relations to give:-

cos@ = —cosb cosf, = cosbh cos®, = —cosf;
1 ’ 2 ) 3
sinf; = —sinfy, sinf), = —sinfs, sin}, = —sinf3

So we have two postures, that is two possible solutions for the joint angles givena 3 x 3
rotation matrix. In terms of the Euler angles these solutions can be written as:-

8, = ¢ or T+Y
0> @ or 2n—40
93 ¢ or w— ¢

These two postures have been given the names ‘flip” and ‘no flip”. Fig. 5.3 shows how to
change from one posture to the other.

The above results have not been derived in a very systematic way: it is difficult to see
whether or not there are other solutions. We can repeat the analysis more efficiently by
looking at the effect of the kinematic matrix on two points. Suppose a = (0,0,1)T and
b = (1,0,0)7 are the home positions of two points rigidly attached to the gripper. Then
rotating about the three wrist joints will take the points to:-

a’ = K(01,02,93)a and b’ = K(91,02,93)b
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The co-ordinates of these new points are easily calculated:-

Tq cos B sin 8,
a' = Ya = sin 6, sin 0
Za cos 0>
Ty cos 8, cos §, cos B3 — sin 8 sin 03
b = Yo = sin @ cos 02 cos 03 + cos @) sin 03
2 —sinf; cos 83

The points have been chosen to simplify the calculations as far as possible. For example,
the new position vectors of the points are just the first and third rows of the matrix K.

From the first point we see that cosf, = z, and hence we can find the sine of the
angle sinf; = +,/(1 — 22). The sine and cosine of the first joint angle can now be
found from the z and y co-ordinates of this point; cos8; = +z,//(1 — 22) and sin; =
+y./+/(1 — 22). To find the third joint angle we must look at the second point, then;
cosf3 = Fz/+/(1 — 22). The sine of 83 can be found from x;, and ys:-

sinf3 = y,cosf, —xpsinb,
+ Tal¥p — ThYa
(1-22)

To summarize, the inverse kinematics of the 3-R wrist, in terms of the positions of the
two points, is given by:-

cosf = +—Ee—, sin 4=
(1-:2) (1—-22)

cosfly = Za, sin 6, +/(1 - 22)

cosf; = :Fm, sinf; = =+ 5\/—%%

The two postures are distinguished by the sign of sin f,. Notice that this analysis also tells
us where the number of postures is different from two, since, if sinf; = 0, we cannot
divide by this factor and the above analysis fails. In fact these two points with 6, = 0 or
, are singular points each with an infinite number of postures. At these points the first
and last axes coincide, thus the final link can be held fixed while the second joint rotates
perpendicular to the first and last joints; see also section 2.5.

Exercises

5.1 A planar manipulator has link lengths {; = 2 and I = 1 in some units. Use the
inverse kinematic equations to find the joint angles which will place the end point
at the following positions:-

M z=(3+1), y=1+%



. Inverse Kinematics 51

(i) z=2, y=1+v3
(iii) == V2, y=1+2

5.2  The two points (0,0,1) and (1,0, 0) are rigidly attached to the gripper of a 3-R
wrist. Use the inverse kinematic equations derived in the text to find the joint angles
when these points have the co-ordinates:-

(l) (éao )@) and (47"%, 3@)
G (3,%4,4)  and (2,1,

G G55 a5

5.3  Work out the inverse kinematic relations for the three joint planar manipulator
studied in section 4.1. If the links’ lengths are [; = 2,l; = 1 and I3 = 1 in some
system of units, find the possible joint angles which result in the end point having
co-ordinates z = 0.5, y = 3.0 and output angle & = 27 /3 radians.

5.4  Work out the inverse kinematics of the 3-R wrist in terms of the positions of two
points rigidly attached to the gripper and where the home co-ordinates are (0, 0, 1)
and (0,1,0).

5.4 The First Three Joints of the Puma

Now we are in a position to calculate the inverse kinematics for the Puma arm. This is
possible because the first three joints of the Puma are almost a planar manipulator while the
last three are a 3-R wrist. Hence, the problem can be split into two easier pieces. We will
express the inverse kinematics in terms of the components of three points rigidly attached
to the gripper. In the home position these points will have co-ordinates:-

D3 D;+1 D;
Pa = 0 , Py = 0 y Pe= 0
Lo+ Dy+1 L; + D, Lo+ Dy

These points have been chosen to make things easy, for example p. is the position of the
wrist centre. Hence, only movements about the first three joints will affect the position of
p.. Moreover, if we know the position of the wrist centre we can find solutions for the first
three joints.

The forward kinematics, or just a consideration of the geometry, gives:-

z. = Djcos@; + Lysinéy sinfy + D, sin 6, sin(f; + 63)
ye = Ds3sinf; — Lacos@;sinfy — Dy cos b sin(fz + 63)
2. = Lycosby + Dycos(62 + 63)

See fig. 5.4.

Since the second and third joint axes are parallel they behave like a planar manipulator.
The first joint simply allows rotation of the plane. So we could write these relations in
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RN A

Lefty and elbow up Lefty and elbow down

Righty and elbow up Righty and elbow down

Figure 5.4 The First Three Joints of the Puma and the Possible Postures

terms of the kinematics of a planar manipulator:-

z. = Djzcosf; —sinb;r,
Yo = D3zsinf; +costyr,
Ze = T

where ry = —Lasinf; — Dysin(6s + 03) and r. = Ly cos 62 + Dy cos(f2 + 63) can be
thought of as the forward kinematics of a planar manipulator. The first two equations can
be rearranged to give:-
D3 = z.cos6, +y.sinb
Ty = yYccosB —z.sind,
The effect is the same as multiplying by the inverse of A(6;). The first of these new
equations is linear in the sine and cosine of 61, so we can use it to eliminate sin §; from the
quadratic equation cos” 8, + sin” 6, = 1:-
(22 + y2) cos? 0y — 2x.D3cosb; + (D3 —y2) =0
Solving this for cos 8; we get:-
Diz, +y./22 + y2 — D2
cosf) = 3%c yc2 Le _; Ye 3
(=2 +2)

using the standard solution for a quadratic. The sine is given by substituting this back in
the linear equation:-

c

1 {Ds_chng:I:yC\/x2+y3—D§}

sin91 = —
(22 +92)
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These expressions are going to get very complicated, so to simplify things as much as
possible we will write the solutions in terms of the ones we have already found. Soitis
clear from the above that we could write everything explicitly in terms of the co-ordinates
of the points, but we will content ourselves with implicit relations.

Evidently we have two possible solutions for 8, depending on the sign of the square
root. Each will result in a different posture as we shall see later. Next we use the inverse
kinematics of the planar manipulator to solve for 6, and 83:-

1
2L2 Dy

sinf; = +4v/1—cos?8;

cos 03 {(rg +7r3) - (L% + D)}

This introduces a second ambiguity in sign:-

1
cos 8§, m {r.(L2 + D4 cos83) — r,Dysin 05}
1
sin 6, m{—ry(Lg + Dscosf3) + r.Dysinbs}
These results were simply obtained by substituting £ = 7.,y = —ry in the results of

section 5.1.

The two possible sign choices are independent of each other, so there are four possible
solutions, and hence four postures. For the Puma these have the cute names ‘elbow up’
or ‘elbow down’ depending on the choice of the sign of sinf3, and ‘righty’ or ‘lefty’
depending on which sign of \/x2 + y2 — D% is chosen. Notice that a little rearrangement
gives /z2 + y2 — D? = (y. cos 6, — z.sin ;). Hence given a set of joint angles, we can
tell which posture the robot is in by looking at the sign of these two functions. Including
the two possible postures for the wrist, the Puma has eight different postures in all, see
fig. 5.4.

5.5 The Last Three Joints of the Puma

Most of the hard work here has been done in section 5.3. The only difference is the effect
of the first three joints. Remember we are trying to solve the equations:-
A 1(61)A2(62)A 3(63)A 4(64)A 5(65)A 6(86)p = P’

where p = p, or ps. This equation can be rearranged to give:-

A (0:)A5(05)A6(06)p = AT (63)A; (62)AT (61)p' (%%)

Now, the right-hand side of the above equation is, in principle, known. Also we have
chosen the points p, and ps to be in the same relation to the wrist centre p., as the points
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a and b were to the origin in section 5.3. In fact we can write:-
Pa=p.+a and py=pc+b
Equation (*#*) above can now be written as:-
K(6s,05,06)a + pc = R(—03,1)R (=62, )R (01, k)p, — R(—03,1)v

Here K is the kinematic matrix of the 3-R wrist, as in section 5.3. Since p. lies on all the
axes of the wrist it is not affected by the kinematics of the wrist. On the right-hand side of
the equation we have the inverses of the rotations about the first three joints; the term in
v results from the translation part of A 3. We also get a similar equation for b. Now it is
possible to rearrange the above equation into the form we solved in section 5.3:-

K(04,05,06)a=a K(94,05,06)b=ﬂ
The vector a is given by:-

Q=
r,cos0, + y,sinf; — D3
z, sin ) cos(f2 + 83) + y, cos 6, cos(f + 83) + 2, sin(6z + 63) — Lo sin 65
Z4sin 0 sin(fs + 03) — y, cos 0y sin(fy + 83) + 2, cos(fz + 03) — Lacosfs — Dy

The vector 3 has a similar expression, with z,, ¥, and z, replaced by x;, ¥, and z;. It
is now just a matter of substituting these expressions into the solutions we have already
found for the 3-R wrist. Although tedious, the procedure is straightforward. The result is
not particularly instructive, but would be necessary for the robot’s control system.

5.6 Inverse Kinematics of the Puma

We may summarize the results of the last two sections in the following page of equations.

cosby = {Dsz.tyc\ 22 +y2— D3}/(z? +y2)
sinf; = {Dj3—xz.cos6,}/y.

ry = yccosb —x.sinby

T, = 2z
cosf; = {(1‘5 + 73— (L2 + D?)} /2L, D,
sinfl3 = 4+v/1— cos28;

cosfp = {r.(Lz + Dscosb3)—r,D,sin 93}/(7'5 + %)
sinfp = {—ry(L2 + Dycosb3) +r.Dysin 03}/(7‘5 +72)
Za = Zgsinbysin(fs + 63) — y, cos b, sin(6s + 03) + 2z, cos(6s + 3)
— Lycosf3 — D,

cosls = z,
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sinfs = =£+/1—cos20;

Tq = Tgco80) +y,sind, — D3
Ya = —2Zgsinb) cos(fz + 03) + yo cos by cos(f2 + 63) + z, sin(62 + 63)
— Losinf;
cosfy = xo/sinbs
siny = yo/sinbs
z3 = zpsinb; sin(fy + 03) — yp cos b sin(f2 + 03) + 25 cos(f2 + 63)
— Lycosf3 — Dy
ys = —xpsinb; cos(fy + 63) + yp cos by cos(f + 03) + z; sin(02 + 83)
— Losiné;
cosflg = —zg/sinbs
sinfg = (yg — sinfy cosfscosbe)/ cosby

Although this looks horribly complicated, at least a solution is possible. If we had chosen
the joints arbitrarily then the tricks we used would not have worked. For such general cases
analytic solutions are not possible, and usually numerical techniques have to be used. This
can be a problem if the number of postures is not known; most numerical methods will
only give a single solution. For the general six joint serial robot the number of postures
is believed to be sixteen. How the number of postures changes as the design parameters
are altered can only be guessed, at present. This is why there are so few different designs
of robots: only the ones with analytic solutions for the inverse kinematics tend to be used.
However, the range of designs for which the last three joint axes intersect in a common
point do always have an analytic solution.

5.7 Parallel Manipulators

The inverse kinematics of parallel manipulators like the Stewart platform are surprisingly
straightforward. In fact, it is the forward kinematics which are hard here, which is why
we have not studied them earlier. To keep things simple we will only look at a planar
parallel manipulator; see fig. 5.5. The mechanism has three sliding joints attached to both
the ground link and the movable link by hinge joints. This means that the movable link has
three degrees-of-freedom, the correct amount for a planar manipulator.

Let us choose our co-ordinates so that the hinges on the ground link are at the points
p1 = (0,0) and p2 = (1,0). Again for convenience, let us choose the two points which
determine the position and orientation of the movable link to be the centres of the hinges
attached to that link. We denote them a and b. Now the inverse kinematic problem is to
find the joint variables given the two points a and b: in this case the joint variables are the
lengths of the three sliding joints. Elementary geometry gives these lengths as:-

da1 = |a - pils dyp=|b—pil,  dez=|b—p2l
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Figure 5.5 The Planar Parallel Manipulator and its Conformations

The inverse kinematics gives a unique solution, so there are no complications with postures
here.

As mentioned above, the forward kinematics is more complicated. Given the joint
variables we seek the position and orientation of the movable link. From a consideration
of the geometry we get four equations:-

- 2
- dal

(a-p1)-(a—-p1)

(b—p1)-(b-p1) = dtzn

(b—p2)-(b—p2) = d§2
(a—b)-(a-Db) 1

The middle two of these equations can be expanded to:-
(B2+b2)=d;, and (b +b))—2b, +1=4dj,
So we can immediately solve for b,.:-
1
by = 5(1 +dy — di,)
Hence we get two solutions for b,,:-

by = i\/ dp, — b3

The first and last equations can now be written as:-

(a2 + af,) =d?, and azby +ayb, = d2, +d3, — 1
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Since b, and b, are now known, the second of these equations can be considered as linear.
So, assuming that b, # 0 we can substitute for a,, in the quadratic equation to give:-

d3a? — 2(d%, + dj, — 1)bebya, + (dgy +dy ~ 3d2, — 2d}, +2d3,dj, - 1) =0
The familiar solution for a quadratic equation in one variable can now be applied:-

_ -B+VB?-4AC

ar

24
where
A = dj
B = -2(dj, +dj)bsb,
C = di) +d} —3d2, —2d}, +2d,d}, 1

Finally, we recover a, from the linear equation:-
1

by
Notice that we get four possible solutions in general, called conformations. Different
conformations have the same values for the joint variables but correspond to different
positions and orientations of the end-effector. This is exactly the opposite way around
to serial manipulators, but we will get the same kinds of phenomena as with a serial
manipulator. The number of conformations will in general be four but will be less at
singular positions.

The Stewart platform is rather harder than this example, usually the forward kinematics
is done numerically. For a general manipulator, which is neither serial nor paraliel, both
the forward and inverse kinematics will be hard. Both will involve the solution of sets of
algebraic equations and we should expect both multiple postures and conformations to be
present.

(dgl + d%l - 1) - a:tbz

ay

Exercises

5.5  The wrist centre of a Puma robot is located at the following positions:-

5/V2 -2+ 5)
p.=| -3/vV2 ], (i) pe = | —(2+J5)
4

Use the inverse kinematic relations given in the previous sections to find the possible
settings for the first three joint angles in each case. Take L = 4, D3 =1 and
D4 = 4

5.6  Find the inverse kinematic relations for the first three joints of the Stanford ma-
nipulator, see fig 4.7. In particular find the joint variables (61, 62, d3) in terms of
the co-ordinates of the wrist centre (z.,y., 2.). How many postures does such a
manipulator have?
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Consider the planar parallel manipulator introduced in section 5.7. Let its home
position be when a = (0,1) and b = (1,1). Suppose the movable link undergoes
a rigid transformation given by the matrix:-

cosf —sind t,
sinf cos@ i,
0 0 1

Find the lengths of the sliding joint as functions of £, ¢, and 6.
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6.1 Linearized Kinematics

In previous chapters we have seen how kinematics relates the joint angles to the position
and orientation of the robot’s end-effector. This means that, for a serial robot, we may think
of the forward kinematics as a mapping from joint space to the space of rigid body motions.
The image of this mapping is the work space of the robot. In general, the work space will
be only a subspace of the space of all rigid body motions; it consists of all positions and
orientations reachable by the robot’s end-effector. As we have already mentioned, we can
only put local co-ordinates or parameterisations on the space of rigid body motions’.

We can also consider mappings associated with particular points; note that the image
of such a map is sometimes called the work space of the robot: it is the space of point
reachable by some point on the end-effector. Consider, for example the wrist centre of a
Puma robot:-

K: (ola 027 931 047 05, 06) - (zlca yé: zl)

c

The map is given explicitly in terms of the A -matrices:-

z!, T,
Zf = A1(6,)A2(62)A3(03)A 4(64)A5(05)A6(06) 'ZZ
1 1

Here, (., Y., z.) are the home co-ordinates of the wrist centre. In other words we have
three functions:-

z, = ki(61,...,06)

y; k2(01, e 706)
Z, = k3(01,...,96)

t Some authors like to regard the forward kinematics as a co-ordinate transformation; but this is not possible
since the spaces concerned are topologically different.

59
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As we have seen previously, these are highly non-linear functions of the joint angles.
However, if we are only interested in the neighbourhood of some point, it is possible to
linearize the map. That is, we find a linear approximation to the original map. So if we
make small changes in the joint angles we get:-

Ok, oo Ok ok,

ér = 66 —60 + - -- 66
T 8, 56, T 56,
6k2 3k2 a1‘72
by = —=60; + —60,+---+ —=60
y 36, 1+ 26, b+ -+ 90, 6
k3 Oks Oks
62 = 360, + L350, 4 ... 4 L3gg
S TG TR TR
If we write (62, 8y",62.)T = Ax and (66,,...,605)T = A8, then we can summarize
the above equations as:-
Ax =J A6

The matrix J is called the jacobian of the map; that is, the jacobian is the matrix of
partial derivatives. In this case:-

ok Oky oky

06, 96, 99

J=| 2k o oky
- 86, 096, 89
oky 0k ok

88, 86, 8

The jacobian matrix behaves very like the first derivative of a function of one variable. For
a function of several variables we have a version of Taylor’s theorem:-
x+ Ax = k(0) + J(0)A0

For small variations about 8 the map is approximated by its value at 8 plus J (8) times the
variation, A8.
For an example we turn to the planar manipulator yet again, see fig. 6.1. The kinematic
equations of the end point are given by:-
r = ljcosb + Iz cos(6y + 02) + I3 cos(6; + 02 + 03)
y = lysiné, + lrsin(6; + 92) +13 sin(01 + 6y + 03)

The jacobian of this is:-

Or 0z O
J(01,02,03) = %ﬁi %’i 39{
26, 06, 00,
where:-
58;—1 = —lysinf; — losin(6; + 62) — I3 sin(0; + 6> + 63)
5)7:”2 = lysin(0; + 62) — l3sin(6; + 02 + 03)
22 = Izsin(6y + 62 + 03)

Y = [ cos + 1z cos(fy + 62) + I3 cos(6, + s + 63)
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Figure 6.1 The Final and Starting Positions for the Planar Manipulator Example

I

%"’; Iy cos(#) + 62) + I3 cos(8; + 6 + 63)

39% I3 COS(H] + 65 + 93)

6.2 Errors

One of the first uses we can make of the jacobian is to find the effect of errors in the joint
angles. An error of A8 in the joint angles will produce a positional error of Ax = J A#8.
Because the map is non-linear, the effect of errors will be different at different positions.
Consider the planar manipulator in its home position; §; = 6, = 03 = 0.

0 o 0
J(an’o)_(l1+l2+l3 l2+l3 l3)

To first order, no joint error can produce an error in the z-direction. An error of 1/10 of a
radian in 62, A8 = (0,0.1,0)7, will give a y-error of:-

6y ~ 0.1(l2 + l3)

In a different position, say §; = 63 = 0,6, = %, the jacobian is:-

T . —ly — 13 —ly — lg —l3

Now an error A8 = (0,0.1,0)” will give a positional error of:-

_L
Ax ~Jd (0, g,O)AG - < 10(1(2) +l3))
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So there is no error in the y-direction and an error of — 5 (l2 + I3) in the x-direction; to
first order.

This tells us about singularities in the kinematics. In section 5.2 we defined a singularity
as a point where the robot loses a degree-of-freedom. In fact at a singularity the robot loses
an ‘instantaneous’ degree-of-freedom also. This means that, to first order, the robot’s end-
effector cannot move in one direction. The columns of the jacobian span the instantaneous
directions the end-effector can move in. That is, the robot can only move in directions
which are linear combinations of the columns of the jacobian. Thus a better definition
of a singularity is as follows. A point ¢ in the joint space of a robot is a singular point
if and only if the jacobian J (¢) has less than maximal rank. That is, if there are linear
dependencies among the columns of the jacobian.

In the example above, J (0,0, 0) had a row of zeroes. So all the 2 x 2 submatrices would
have zero determinant and thus the rank of the jacobian is one. Hence, the home position
is singular. However, J (0, 7, 0) has a submatrix with non-zero determinant, so the rank is
two, which is the maximum and the point is thus non-singular. If we are interested in the
position and orientation of a six joint manipulator then the jacobian is a square matrix. In
such cases the condition for a point ¢ to be singular reduces to det(dJ (¢)) = 0; that is, the
matrix is singular.

6.3 Numerical Methods

The jacobian of a manipulator also finds applications in various numerical methods, for
example, to solve the inverse kinematics. As an example, we will look at a method which
is the many-variable extension of the Newton-Raphson method.

For a single variable the Newton-Raphson method is as follows. We wish to solve an
equation:-

fz)=0

for some function f. We begin with an initial guess z(*), and then refine this guess using
the iteration formula:-
(9
P I (Gl
5 f(=)

Here the notation, superscript (¢), denotes the i jterate.
This generalizes to many variables quite easily. Suppose we have six equations to solve
in six variables:-

fi(61,...,08) = 0
f2(01,...,96) = 0
fe(61,...,86) = 0
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We may summarize this with the vector notation as f(8) = 0. Taylor’s theorem tells us
that:-

£( +h) ~ £(8) + J (6)h

Now if we assume that @ is the root we are looking for, then since f(8) = 0, we can
approximate the error h as:-

h~J-}(8)f(6 +h)

Since at this stage, we do not know # we cannot calculate J ‘1(0)‘, sO we approximate it
by J ~1(6 + h) which is our guess. By setting h(® = ) — 8U*D we can set up the
following iterative scheme:-

olith — g9 _ —l(g(i))f(g(i))

This is the Newton-Raphson formula for many variables. In practice, however, inverting
matrices is very slow. A quicker method is to solve the linear equations J (O(i))h(i) =
£(0'?), using Gauss elimination, for example.

To see how this could be used, we look at a simple example. Consider the planar
manipulator once more. This time we want to take account of the output angle & =
6, + 02 + 03 as well as the position of the end point. We will assume that L=2L=1
and I3 = 1 in some units. Suppose the arm is in the position illustrated in fig. 6.1, where
0, = /3,6, = w/6 and 3 = 7 /6.

The forward kinematics gives the starting position as:-

= 2cos(Z) 4 cos(Z + T)+cos(= + = + =) = 0.5000

r = COS 3 COS 3 6 O 3 6 6 = .
y = 2sin(§)+sin(z;-+%)+sin(§+%+%) = 3.5981
e T w T
d = — _ — = 2—
3v67 % 3

Now suppose we want to move the end-effector to the position where:-

_27r

=0.5, =30, &

We set up the three functions:-

fi = 2COS(01) + C05(01 + 02) + 008(01 + 65 + 93) - 0.5
f» = 2sin(8;) + sin(6; + 62) + sin(fy + 62 + 63) — 3.0
27
fs = 61+02+0;— —
In the desired position all three of these functions will vanish. So we may use the Newton-
Raphson method to find the roots, that is the values of the joint angles. The jacobian has
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columns:-
J (017 027 03) =

—2sin8; — sin(6; + 62)
—sin(6; + 02 + 93)
2cos 8y + cos(f; + 62)
+ COS(01 + 6 + 93)

1 1 1
Asourinitial guess we may as well use the starting position, so that 0% = (n/3,%/6,7/6)T.
So now:-
—3.5981 —1.8660 —0.8660 0.0000
J@O®)={ 05000 —0.5000 —0.5000 and  £(6'°) = [ 0.5981
1 1 1 0.0000
We find the first approximation to the error by solving:-
—3.5981 —1.8660 —0.8660\ [ A" 0.0000
0.5000 —0.5000 —0.5000 | | S | = [ 0.5981
1 1 1 L 0.0000
3
To four decimal places the solution is:-
5% 0.5981 0.4491
R ~1.6340 andthus 6 =0 —h® = [ 21576
A0 1.0359 -0.5123
For the next iteration the values of the jacobian and the functions are:-
2.2441 —1.3758 —0.8660 —0.059
J(0")) = | 04413 —1.4603 —0.5000 and  £f(6V)=[ -0.756
1 1 1 0.0000
This then gives:-
—0.1606 0.6097
M = | 0.5493 and therefore 69 = [ 1.6083
—0.3887 —0.1236
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- sin(01 + 02) sin(01 + 67 + 03)
- sin(91 + 60> + 03)
COS(01 + 92)

+ cos(6; + 02 + 63)

cos(f; + 62 + 63)

The values of the functions here are now £(6'2)) = (0.0367, —0.1910, 0.0000), which is
getting closer to zero. The next two iterations give:-

0.6789
1.4106
0.0049

o) —

and
0.6984

09 = | 1.4329

—0.0369

0.0608

, £(6) = | —0.0096
0.0000
0.0001

, £(6'Y) = [ -0.0010

0.0000
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A

Figure 6.2 A Three Joint Manipulator

If we can tolerate an accuracy of only two decimal places we can stop here. Otherwise we
could continue to any desired accuracy. In this particular case we have an exact solution
of the inverse kinematics: compare the results here with those of exercise 5.3.

Exercises

6.1 A manipulator has the kinematic structure illustrated in fig. 6.2.

(i) By setting up a suitable co-ordinate system and home position, find the kine-
matic equations for the co-ordinates of the point P.

(ii) Calculate the jacobian of this manipulator.

(iii) Show that the limiting positions, where the determinant of the jacobian van-
ishes, lie on the surface of a hollow torus. Assume that [} > Iy + 3.

(iv) How many postures are there in general?

(v) Ifly < (I2+13), show that there exist points with four postures, and that points
on the J; axis have a continuous set of postures.

6.2  For a parallel manipulator it is the inverse kinematics that gives a mapping, this
time from the space of rigid body motions to joint space. Find the jacobian matrix
for the parallel planar manipulator whose inverse kinematics were found in exercise
5.7.
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0

Figure 6.3 (a) Linear Velocity Given by an Instan- (b) Relation Between Angular and Lin-
taneous Centre of Rotation ear Velocities

6.4 Linear Velocities

Perhaps the most important use for jacobians is for relating the joint velocities to the link
velocities. In section 6.1 we saw that Az =~ J Af. Dividing by At and proceeding to the
limit we obtain the exact relation:-

x=J6

The dots, as usual, denote differentiation with respect to time. This is quite general, but
usually we are interested in the linear velocity of some point on a link, or the angular velocity
of a link. The movements that can be performed by robots are very general; however, for
any rigid body motion in the plane there is always a centre of rotation. Similarly for motion
on the surface of a sphere, as one gets from a spherical wrist, there is always an axis of
rotation. For rigid movements in three dimensions there is always a fixed line; the screw
axis. If arigid body undergoes some complicated motion in the plane, for example, then at
any time in the body’s motion there will be an instantaneous centre of rotation. Similarly
we get instantaneous rotation axes and instantaneous screw axes. As we shall see below,
these concepts are closely related to the velocities that we are interested in.

In two dimensions we have a simple relation between the velocity of a point and the
instantaneous centre of rotation, see fig. 6.3(a). This can also be shown using the 3 x 3
matrices which represent rigid movements. Let p be the centre of rotation and suppose
that we wish to know the velocity of the point x. Now the position of x is given by:-

(x(lt)) _ (Ré&) (1 —F;(G))p) (x(lo))

Note that from now on we will not write the partition lines in partitional matrices. Now
assume that § = 0 when ¢ = 0. We can always arrange for this to be true by beginning the
measurements from the point we are interested in. Now at 8 = 0 the time derivative of the
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(x(oo)) _ (n(g)é -R(OO)pé) (x(IO))

This gives the equation:-

above is given by:-

%(0) = R(0)(x(0) - p)é

cos@ —sinf
sin@ cos@

o= (7 7)

As mentioned above, we may begin measuring time anywhere, so these results apply for
any time, not just ¢t = 0. We can drop the time dependence and write:-

But we know that R = (

), so taking the differential and setting § = 0
gives:-

= (py— )0
g = (.’L‘ —Pz)0

Notice that the vector x is always normal to (x — p). These results can be used to compute
the jacobian of planar manipulators. For a three joint planar manipulator we have:-

(x(lt) ) = A(61)A2(02)A3(03) (X(10) )

Again we can arrange things so that at the point of interest 6, = 0 = 63 = 0. Then since
A ;(0) is the identity matrix, when we differentiate and set the joint angles to zero, we get:-

("E} )) = A,(0) (x(l ) ) 61 + A,(0) (x(l )) 6 + A3(0) (x(l ) ) 63
Once again there is nothing special about the point 6, = 0, = 03 = 0, and our result

applies quite generally. For each A -matrix the centre of rotation is simply the current
position of the joint. So if we denote the current position of joint i by j; we have:-

&= (Jry — y)a:l + (J2y — y)0:2 + (Jay — y)0..3,
g = (x — j12)01 + (z — jaz )02 + (T — Jaz)0s

This can be neatly summarized as:-
. : : ‘ 6,
(fv>_((11y—y) (j2y — 9) (sz—y)> g
- _ . . . 2
Y (I - ]1.1:) (1‘ - JZI) (‘73 - ]31) 0‘3

And this shows us that the jacobian is given by:-

G-y (Goy—v) (Jsy— )
“m”*%*‘(u—hn (& = joe) w—na)

The suitably altered co-ordinates of the joints are the columns of the jacobian.
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The planar manipulator in section 6.1 had its joints at:-
N\ _ (0 Jaz \ _ [ licosb, )
jly 0 ’ j2y ll sin 01 ’
I3z _ lycosf, + I3 COS(01 + 02)
j3y - ll sin 01 + 12 sin(01 + 02)
and the end point has co-ordinates:-

T Iy cosb) + Iz cos(0; + 03) + I3 cos(6, + 62 + 63)
Yy = lysinf; + 1 sin(01 + 02) + I3 sin(01 + 65 + 03)

So the jacobian is exactly as calculated in section 6.1. Its columns are:-

5 ~ly sinfy, — lysin(6; + 65) — Iz sin(6; + 05 + 63)
5%21- ly cos @y + I cos(8 + 03) + I3 cos(6; + 62 + 63)
2=\ _ [ Lsin(8; + 05) — Iz sin(8; + 0 + ;)

b%y; - Iy COS(01 + 02) + 13 COS(al + 605 + 93)

2\ _ ([ lzsin(6y + 62+ 65)

é%y— - I3 COS(ol + 62 + 03)

3

but here we have not had to find any derivatives.

6.5 Angular Velocities

The angular velocity of a rigid body is a vector. It is aligned along the instantaneous
rotation axis of the body and its magnitude is the angular speed about the axis. Consider
a point r attached to a body rotating with angular velocity w; see fig. 6.3(b). The linear
velocity of the point is given by r = w A r. If we represent the rotations by 3 x 3 matrices
we have that:-

r(t) = R($)r(0)
Differentiating and setting ¢ = 0 gives:-
#(0) = R (0)r(0)

Comparing this with our first result shows that R (0) must have the same effect on vectors
as ‘wA’; in other words for any vector a we must have:-

R(0D)a=wAa
This is not hard to solve, see exercise 2.7. It gives us that:-
. 0 —w. wy
RO0)=| w, 0 —w,

—wy Wy 0
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This can be used to find the velocity of the last link of a spherical wrist. For a three joint wrist
the overall transformation K is the product of three rotations, K = R1(61)R2(82)R 3(63).
The derivative when all the joint angles are zero is:-

K = R 1+ R 2+ R 3
and hence the angular velocity of the final link is just the sum of the angular velocities of

the joints. Now, because each joint just rotates about its axis, we can write the angular

velocities of the joints as w; = \‘r,-é,-; where ¥; is the unit vector along the ith joint. The
angular velocity of the last link can be expressed by the following matrix equation:-

D1z U2z Uaz 0'1
w = Viy U2y U3y 02
V1 V2: V3 03

Notice that the columns of the jacobian here are just the vectors along the joint axes.
So it is easy now to calculate the jacobian of the 3-R wrist, introduced in section 4.2, for
example.

0 0 —siné,
\71 = 0 y 02 = R(Ol,k) 1 = Ccos 91 ,
1 0 0
0 cos @ sinfs
(’3 =R (91, k)R (02,j) 0 = sin 01 sin02
1 cos 0

Hence the jacobian for this manipulator is:-

0 —sinf; cosf;sinfs
J=|0 cosf; sinf sinb,
1 0 cos B9

6.6 Combining Linear and Angular Velocities

For a rigid body moving in three dimensions we want to know both its angular velocity and
the linear velocity of its points. We can find these by considering a general screw motion:-

Rt
01
In section 2.6 we saw that the translation vector is given by t = gf%\*' + (I = R)u, where

p is the pitch of the screw, ¥ a unit vector along its axis, u a point on the axis and we have
used 0, rather than ¢, for the joint variable which depends on time. The velocity of a point

x is then given by:- .
x\_ (R t)[x
0/ \0 0 1
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Figure 6.4 A Screw Motion

Using what we already know about the derivatives of rotation matrices, this can be written
as:-
X=wAX+s

The linear velocity s = t is a characteristic velocity of the motion. Physically it is the
linear velocity of points on a line through the origin parallel to the axis of rotation. We can
find s by differentiating t:-

s=t=20

ﬂﬁ—ﬁu:éﬁx"—w/\u

2w 27

Notice that the term 9—2%0 is the velocity of a point lying on the screw axis. So, as we
would expect from contemplating fig. 6.4, the velocity of a point x can be written more

fully as:-
X:wA(x—u)+é£—0
27

We can combine the angular and linear velocities into six component vectors ( s ) . These

six component vectors are called instantaneous screws. As we shall see, they are for rigid
bodies the analogue of the angular velocity of particles.

Now, if the screw motion is about a joint, then ¥ is the unit vector in the direction of the
Joint, u is the position vector of a point on the joint axis and the angular velocity will be
w = V0. Finally p is the pitch of the joint. The velocity of a point attached to the joint will
be given by:-

. . D .\,
=(VA(x— —v)0
x=FPAX-u)+ 2Wv)
Connecting six joints together, as in a serial robot, both the linear and angular velocities
add vectorially to give the angular velocity w, and the linear velocity s, of the last link. So
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we may write this in terms of instantaneous screws:-

w (’1 A (’2 A 06 A
= N . )0 - - |02t N -
(S) (ull\v1+%v1> l+(UQ/\V2+%V2) 2+ +(u6AV6+%V6)06

This can be condensed into the matrix equation:-

w _ 9‘3
(S)_J 04

Vi
u AV + %f’,‘
by the ith joint. In other words, to each joint there is an associated instantaneous screw
which depends only on the position, orientation and pitch of the joint. These ‘joint screws’
are reasonably easy to calculate and once again we have been able to find the jacobian
matrix of the manipulator without computing any partial derivatives.

The jacobian is of fundamental importance in robotics. This is because it is the lin-
earization of the forward kinematics. Hence, it tells us about errors, velocities and other
first order properties of the robot. For robot manipulators with an open loop structure the
jacobian is very simple to calculate since its columns are given by the joints of the robot.

The columns of the jacobian matrix J are given by ( ) , and are determined

Exercises

6.3 In two dimensions a sliding joint is represented by a matrix (:) ’1() where

x = ( ; ) d, with d = d(#) is a function of time.

(i) Find the velocity of a point undergoing such a translation. If such a joint were
used in a serial manipulator, what would be the corresponding column in the
jacobian?

(i) A planar manipulator consists of a revolute joint and a sliding joint. In the
home configuration the revolute joint is at the origin, the sliding joint is aligned
along the z-axis and a point Q attached to the last link has co-ordinates (1,0).
Find the velocity of Q as a function of the joint angle 6 of the revolute joint
and the extension d of the sliding joint.

6.4  Find the jacobian of the Cincinnati T wrist illustrated in fig. 4.4.
6.5  LetR(t) be aone parameter family of rotation matrices, such that R (0) = 1. Using

the fact that rotation matrices satisfy RR 7 = 1, show that R (0) is an antisymmetric
matrix.
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6.6

Introductory Robotics

. C v .
The instantaneous screw of a revolute joint is given by ( WA ) If a rotation R

followed by a translation t is performed on the joint, show that the new joint will
have the instantaneous screw given by:-

R o v
TR R uAv
0 —t. t,
where T = t. 0 —t,

—t, t. O



7 Trajectory Following

7.1 Following Paths

So far we have only considered moving a robot arm to a particular point. In many
applications, however, we want the robot to follow a prescribed path. Examples might be
seam welding, profile and pattern cutting, or applying adhesives.

Here a path is a continuous sequence of rigid body motions, K(t); the parameter ¢
represents time. So we must solve the following equation:-

A1 (0)A2(62)A 3(05)A 4(04)A5(05)A6(06) = K(t)

that is, we must find the joint angles as functions of time, 6;(¢). This is a formidable
task: in some special cases it may be possible to find the exact solution, but generally it
is impossible. In practice we approximate these functions, 6;(t). This is a good idea in
any case since a computer will be used to calculate the functions and computers can only
compute approximations to the desired functions.

Usually, since a computer is controlling the robot, we will need to know the values of the
functions every fraction of a second. The precise time interval will depend on how quickly
the computer can respond. For very accurate work it is necessary to compute the inverse
kinematics at each of these points. This is accurate if the inverse kinematics are known, since
it involves no approximation (except for the usual approximations involved in computing
inverse trigonometric functions and square roots by computer). However, it is very slow,
because the inverse kinematics is so computationally intensive. Typically a floating point
multiplication will take something like 10~% seconds on a modern microcomputer, a large
mainframe computer may do this a hundred times quicker; but on either, computing the
inverse sine of an angle will take ten times as long. Since these calculations must be
performed every millimetre or so along the path, it is often the time taken to calculate the
inverse kinematics which determines the speed of the robot.

It is possible to speed up these caiculations in several ways. For example, rather than
recalculate inverse trigonometric functions every time, it is possible to store the values in
the form of a look-up table. Intermediate values can be approximated by some interpolation

73
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scheme. This method saves time at the expense of memory; the values must be kept in
semiconductor memory or a gain in speed will not be achieved. One could go even further,
and store the values of all six inverse kinematic functions; however, this will usually take
far too much memory. In the end, the success of these methods depends on a subtle mixture
of mass storage and efficient interpolating algorithms.

Another approach is to approximate the desired functions directly. The inverse kinemat-
ics can be used for some values of ¢, and then any method of interpolation can be used to
approximate the values of the functions at intermediate times. In this way the problem is
converted to a straightforward problem in numerical analysis. It is these methods that we
study in the rest of this chapter.

7.2 Linear Approximations

The paths we want to follow may be straight lines or arcs of circles in the simplest cases.
But there is no reason to restrict ourselves to such paths. In general, however, the path
taken by the robot will consist of three sections. To begin with the robot is at rest and in
the first path segment we must accelerate it. This is sometimes called the lift-off phase
of the trajectory. During the second path segment we expect the robot to be moving with
constant speed. Finally we must decelerate the robot to rest. This is referred to as the
set-down phase. However, we begin by considering the simplest case of uniform motion
along a straight line.

Let us look at moving the wrist centre of the Puma. Recall exercise 5.5. There we
assumed the dimensions of the Puma to be L, = 4, D3 = 1 and D, = 4, in some system
of units. In the exercise we used the inverse kinematics to find the joint angles required to
place the wrist centre at the two points:-

5/V2 ~(2+ %)
Pc = _3/\/5 and Pe = _(2 j‘ %)
—4 %

Suppose we want to move the wrist centre along a straight line between these two points.
We can normalize the units of time so that at time ¢t = 0 the wrist is at the first point and
then at time ¢ = 1 the wrist must reach the second point. If the wrist moves with uniform
velocity along the line joining the two points, then at any intermediate time the co-ordinates
of the wrist centre will be:-

5/V2 —-(2+
p(t)=(1—-t) | -3/v2 | +t| -2+
- 5

Now, from the inverse kinematics we know the possible values of the joint angles which
place the wrist at the start and finish positions. However, this is really too much information.
Which of the possible solutions do we use? Usually the joint angles at the beginning of the

smw
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Figure 7.1 Linear Approximation in Joint Variables to Straight Line Path in Cartesian Variables

motion are given, since the history of how the arm reached the start position will be known.
In general we will have several possible sets of joint angles that achieve the finishing
position. Any of these could be chosen, but normally it is wise to keep to the same posture
as at the start position. This is because on most robots it is not possible to change posture
without encountering a singularity. Usually it is hard to control the robot in the vicinity of
a singularity, thus singularities are to be avoided.

We will choose the following solutions for the start and finish positions:-

8:(0) 7/4\ 8:(1) —n/4
900)=| 6:00) | = =2, 6Q)=1{6:1) | =] n/4
83(0) /2 83(1) /4

The simplest approximation to use would be a linear one. Let us denote the approximation
by 8,(t). It will be given by:-

/4 —n/4
() =1-1)8(0)+t8(1)=(1—t)| 7/2 | +t| =/4
/2 /4

Notice, that when ¢ = 0 this is just 8(0), while at ¢ = 1 the approximation reduces to 6(1).
These are the values we found from the inverse kinematics, so at least at t = O and ¢ = 1
our approximation will be correct.

We can use the forward kinematics to calculate the path of the wrist centre that this
approximation would generate. The difference between this and the desired straight line
path s plotted in fig. 7.1. Not too surprisingly, near the end points we have good agreement,
signified by the difference being near zero. However, around the middle of the path the
error is large.

One way to get a more accurate approximation is to use several short path segments rather
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than one long one. We divide the desired straight line path into several short segments and
use a different linear approximation for each segment. This means that we will have to
use the inverse kinematics for the end points of every segment. Again, there is a trade off
between speed and accuracy.

We may choose the segments to have any length. However, as we shall see later, the
choice of the end points of the segments will affect the accuracy of our approximation. In
robotics, these intermediate points are often called via points, since whatever path the end-
effector actually takes, it will definitely go via these intermediate points. The placement of
these points can be an important consideration when planning a path which is intended to
avoid obstacles in the robot’s work space.

To illustrate this approach we will look again at the straight line example above, but this
time using two segments. The segments will run from¢ =0tot = 1/2 and from ¢t = 1/2
tot = 1. When t = 1/2 the co-ordinates of the wrist centre should be:-

5/v2 -2+ %)
p(1/2)=1/2 | =3/v2 | +1/2| -2+ 35)
—4 \/i§

The inverse kinematics will give us the values for the joint angles here:-

—0.3398
6(1/2) = | 0.6450
2.1650

In the first segment we set:-

and in the second segment we put:-
1
6,(t) =2(1 - t)0(§) +t6(1)

See fig. 7.2. Notice that the error is indeed smaller, the trajectory of the wrist centre is
closer to the target line. However, at the midpoint there is a discontinuity in the velocity,
this is very undesirable.

In general, if we have an interval [a, b] and values f(a) and f(b) at the end points the
linearly interpolation function on the interval is given by:-

ity = £V p(ay - 29

fb), a<t<b

The idea is that the function is linear in ¢, and when t = a the coefficient of f(b) vanishes
and the function reduces to f(a). Then when t = b, the coefficient of f(a) disappears and
the function becomes f(b). So the function is linear on the interval and has the designated
values at the end points.
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Figure 7.2 Approximate Straight Line using Two Linearly Interpolated Segments

7.3 Polynomial Approximations

For a more sophisticated approximation we use higher degree polynomials. Polynomiais
can be evaluated very rapidly: computing a degree n polynomial requires only n multipli-
cations, using Horner’s method. For this we rewrite a degree n polynomial using nested
multiplication:-

a"t" + an—ltn_l R altl +ap = ( .. ((ant + an—l)t + an_2)t PN al)t + ag
As an example let us compute the quadratic approximation to the straight line path of the
previous section. The general quadratic is of the form:-

0,(t)=at’ +bt+c

The coefficients have been written as vectors, since actually we have a polynomial for each
joint. Anything we do to find the coefficients will have to be done for each joint, but as the
procedures will be the same for each joint the vector notation can be used to summarize
the results.
The quadratic must pass through the three points 6(0), 8(1/2) and 6(1). This gives us

three equations which we can use to find the three constants:-

6(0) = c

8(1/2) = a/4+b/2+c

6(1) = a+b+c
This has the solution:-
20(1) — 46(1/2) + 26(0)
b = —6(1)+46(1/2) — 36(0)

P
il



78 Introductory Robotics

e
X
x—error
z
y y—error
Unit on vertical scale
zerror

Figure 7.3 Quadratic Approximation to Straight Line Path

c = 6(0)

Really, we have nine equations here since the coefficients are vectors. In this case the
quadratic approximation gives:-

1.3592 —2.9300 —0.7854
6,=| 21324 Jt*+ | —29178 |t+ | 0.7854
~3.9476 3.1622 0.7854

See fig. 7.3.
In general we get better accuracy with a higher degree polynomial. For a degree n
approximation:-

6,.(t) =cpt"™ + Co 1" P4t eot?t it

we need to find the n + 1 constant vectors ¢;. This means we need n + 1 via points 6(¢;).
These points do not have to be regularly spaced, but they do have to be distinct. Given
these n + 1 via points, to find the degree n polynomial which passes through these points
we must solve the following system of linear equations:-

totgt oty 1 Cn 0(t,)
ot 1 Cn1 0(tn-1)
tnognl ot 1 o 0(to)

This is a classical problem in numerical analysis, usually known as Lagrange interpolation,
and it has an analytic solution. The Lagrange interpolated polynomial would have the
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form:-
8.(t) = 6,
1=0

(t—to)(t —t1) - (t—ti )t —tiga) - (= tn)
(ti —to)(ti — 1)+ (t: — tic)(ti — tig1) -~ (L — tn)

Notice that each term in the sum is a degree n polynomial in t. For some via point ¢; all
the terms in the sum disappear except one, that which does not contain the term (¢ — ¢;).
This term simplifies to just 8;. Hence for each via point we have:-

OL(ti) =6,

as required.

High degree polynomial approximations become increasingly wiggly. Although the
error may be small, this is undesirable when trying to follow a smooth path, since resonant
vibrations of the robot’s links and joints can be excited. Also the higher the degree, the
more computation is needed. In general it is uncommon to use anything higher than cubic
polynomials, but sometimes up to degree five polynomials are used.

We should really say something about the error produced by these approximations. A
great deal is known about the errors made in Lagrange interpolation. The problem was
studied at the end of the last century, by the Russian mathematician Chebyshev. His interest
in this problem stemmed from his study of mechanisms, especially the problem of drawing
curves mechanically; this is usually forgotten by numerical analysis texts. Chebyshev
found where to place the interpolation point so as to minimize the error. Unfortunately this
result is not very useful for us here, since the error minimized would be the joint space
error. That is the difference between the interpolation polynomial and the desired function.
The important error for us would be the error in work space, that is the error in the position
and orientation of the robot’s end-effector. A reasonable rule of thumb would be to space
the via points more closely when the determinant of the jacobian is large, since in these
positions small joint errors will produce large errors in position.

However, in real robots the sensors on the joints only have a finite accuracy. Typically
an angular encoder will have 1,000 divisions per revolution. After a gear reduction of 10 to
1 we will not be able to distinguish joint angles differing by about 10~* radians. So there
is no point in getting the joint space error any smaller than this.

The error made by using a degree n Lagrange interpolated polynomial, 6, (t), to approx-
imate a function 8(¢) on the interval [0, 1], is given by:-

AIVH—I
0r(t) —0(t)| < t—t)t—t1) - (E—1n
00() = 800 < I~ to)(t = 1) o+ (2 = )
The quantity M, depends only on the original function:-
d"+19(§)
M1 = orélga%{l dtn+!

If this quantity can be estimated for the joint angles, the maximum error can be predicted.
In the above formula for the error, the term |(t — to)(t — 1) - - (t — tn)| only depends
on the position of the interpolation points. Hence a good choice of via points will lead to
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Figure 7.4 Linear and Quadratic Matched Segments

a more accurate approximation. The best possible choice for these points is at the zeros of
the degree n + 1 Chebyshev polynomial. They are given by:-
i+ 1
ti=——+-lcosM 1=0,1,...n
2 2 (2n+2)
Notice that these points are not evenly spaced, they bunch up towards the ends of the
interval.

7.4 Matching Derivatives

One way of avoiding the use of high degree polynomials is to use several segments, just
like the several linear approximations we saw in the last section. However, we do not want
the discontinuity in velocity we saw there. This can be done by matching the derivatives
at the end points of the segment. To illustrate this we will look at the straight line example
above again. Suppose in the first segment we use a linear approximation exactly as in
section 7.2:-

01(t) = 2(5 — 18(0) + 206(3)

Now in the second segment we have the following three constraints on the polynomial; the
polynomial must pass through the two points:-

6(1/2) and  6(1)
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The third constraint is that the derivative of the polynomial at ¢t = 1/2 is the same as the
derivative of the preceding approximation at this point. This is given by:-

9.(1/2) = —20(0) + 20(1/2) = 20(%) _ 26(0)

Since we have three pieces of information we will need a quadratic polynomial because
such polynomials have three parameters:-

8,(t)=at’ +bt+c
The three bits of information give us three equations for the coefficients:-

6,(1/2) = la+ib+c = 6(1/2)

0,(1) = a+b+c = 6(1)

6,(1/2) = a+b = 20(})-26(0)
These equations are easily solved to give:-

2.718
a = 46(1)-86(1/2)+46(0) = 4.265
—7.895
4.456
b = —46(1)+100(1/2)—-60(0) = | 12.733
27.933
1.465
c = 6(1)-20(1/2)+26(0) = 2.637
—0.403

The path they describe is illustrated in fig. 7.4.

To specify a polynomial we may require it to pass through certain points or to have a
given slope at specific points. Combinations of both are possible and it is also possible to
look at higher derivatives too. This more general type of interpolation is known as Hermite
interpolation in the literature. The example given above uses only linear and quadratic
polynomials; however, it is more usual to use cubic polynomials as segments. These are
sometimes called splines. The name comes from a mechanical curve fitting device which
uses a stiff wire to represent the curve.

Now we turn to the lift-off and set-down phases of trajectories. Using polynomial
approximations we can say something about the velocities. Recall that for the lift-off phase
of a trajectory the joints must begin with zero speed. This can be achieved with a quadratic
polynomial 85:-

0,(t) = at> +bt + ¢

The joint velocities are now given by the derivative:-
6,(t) =2at +b
and so at the beginning of the time interval we have:-

8,(0)=b=0
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So the coefficients b must be zero, similarly, the coefficient c is the starting position,
c = 6(0). We could find the a coefficient by requiring 8;(1) to be on the desired trajectory.
Alternatively we could demand that the velocity at the end point of the time interval should
be along the desired path. However, it is more usual to find a by choosing the acceleration
of the path; for a quadratic polynomial the joint accelerations are constant:-

65(t) = 2a

In a real robot the motors will have maximum accelerations and also maximum speeds.
We can run the robot at maximum acceleration until we get the maximum velocity. Usually
the robot will accelerate and decelerate along straight line segments. So we know the
direction along which the acceleration must occur. We can increase the magnitude of the
acceleration until the acceleration of one of the joints becomes equal to its maximum value.
We will call the resulting vector of joint accelerations A, and the maximum of the joint
accelerations, that is the largest component of A, will be labelled A,,,;. The joint which
is accelerating most quickly will reach its limiting angular velocity, Wy, after a time ;;
where:-

Wmaz = 2Amazti

So this acceleration phase must end at time ¢, = Wyaz/Amaz. The quadratic is thus given
by:-

0,(t) = %At2 + 6(0) 0<t<ty

Quadratic polynomials can also be used for the set-down stage of the trajectory. Now we
want the velocities to vanish at the end of the path:-

0.(1)=6(1) and 6.1)=0

The final piece of information we need is the deceleration for the path, which we treat
exactly as we did for the acceleration. Let 8.(t) = D be the acceleration vector for the
path and D,,,,. the acceleration of the most rapidly decelerating joint. Not only might this
be a different joint from the one that was accelerating most quickly in the lift-off phase, but
also the maximum deceleration the motors can supply is not necessarily just the negative
of the maximum acceleration.

With this information we can find the three coefficients of the quadratic polynomial:-

1 1
0.(t) = EDtQ -Dt+ ED +6(1) b <t<1

The beginning of the set-down phase, ¢2, can be found in the same way that we found the
end of the lift-off phase. At {, the quadratic will give the maximum velocity of the most
rapidly decelerating joint w},,.. This time is given by t2 = (w/,.,. + Dmaz)/Dmaz-

For the middle section of the trajectory we could use any of the techniques mentioned in
the previous sections. Often, one or more cubic polynomials are used. We would need to
use the inverse kinematics to find intermediate points along the path. So here we will just

look at using a single cubic:-

0(t) = at* + bt> + ct +d
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To find the four coefficients we need four pieces of information, and these are given by the
positions and velocities at the two times ¢; and #3:-

0:.(t1) = Ou(t1) = 3At] +6(0)
8.(t:) = Op(t:) = 3Dt —Diy + ;D +6(1)
0:.(t) = Op(t1) = Aty

0.(t2) = 042(t2) = Dt,

Solving this system of linear equations gives cubic polynomials which connect with the end
points of the lift-off and set-down phases, and, moreover, the derivatives will be continuous
at the end points. The approximate trajectory will be given by:-

0,(t), if 0<t<t
oapproz(t) = Gc(t), if t S t S to
9e(t), if t2 S t S 1

To conclude, there are many different ways to approximate the joint trajectories for any
desired end-effector trajectory. The choice of any particular method will depend on such
factors as the accuracy needed and the time available for the computations.

Exercises

7.1 A two joint planar manipulator has link lengths I} = 2 units and Iz =1 unit. The
end point of the manipulator is required to travel with constant velocity from the
point (1/2+v/3, =1 —+/3/2) to the point (1/2+ v/3, 1+ /3/2), along the straight
line z = 1/2 + v/3. Find:-

(i) The linear approximation to the path in joint space which produces this trajec-
tory.
(i) The quadratic approximation for the trajectory which also passes through the
point (1/2 + /3,0).
Use the elbow down posture.
7.2 Consider the three joint wrist introduced in section 4.2. It is required that the

end-effector rotates uniformly about the z-axis, starting from the position where
(61,82,605) = (0,7/4,0). The path can be described as:-

1 0 0 \/Lf 0 %

K(t)=| 0 cosmt —sinmt 0 1 0 0<t<1
: 1 1
0 sinnwt coswi -5 0 7

Find the linear approximation to the path in joint space and the quadratic approxi-
mation which passes through a via point at t = 1/2.
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Find a degree four polynomial approximation to the uniform straight line trajectory
described in section 7.2. The path must pass through the three points:-

/4 —0.3398 —m/4
60)=|~/2]|, 61/2)=| o650 |, O1)=| n/4
/2 2.1650 7 /4

Also the path must have the same velocities in work space as the straight line path
at the points 8(0) and 8(1).

It well known in numerical analysis that it is often more economical to interpolate
functions using rational approximations; that is, a function that is a ratio of two
polynomials. Find the rational approximation of the form:-

L+ b;
0,(1) ~ B D
C,'t+ 1

which approximates the same path as in exercise 7.3, but is only required to pass
through the same three points.

i=1,2,3




8 Statics

8.1 Forces and Torques

In this chapter we introduce forces, but only static ones. Later we will see how to deal with
moving forces and dynamics. For the moment we content ourselves with static forces and
rigid bodies in equilibrium.

Forces are vector quantities. For a rigid body to be in equilibrium the vector sum of the
forces acting on it must be zero. However, this does not ensure equilibrium: the sum of
the moments of the forces must equal zero. Forces act along lines, and crudely speaking
the moment of a force about a point O is the perpendicular distance from O to the line
multiplied by the magnitude of the force. In fact the moment of a force is also a vector
quantity. Suppose F is a force vector, and r is the position vector of any point on the line
of action of the force. Then the moment of the force about the origin is given by the vector
product:-

M=rAF

Notice that we may take r as any point on the line, since any other point will be of the form
r' = r+ AF. So this would give a moment:-

AF=(r+AF)AF=rAF
because FAF = 0.

. . . - . M
We may combine the force and moment into a single six dimensional vector ( F )

Do not worry too much that the units for the last three components have dimensions of
force while the first three have dimensions force x length; we will not do anything which
will mix quantities with different dimensions. Such a ‘force-moment’ vector is called a
wrench. Now we may say that a rigid body is in equilibrium if and only if the total wrench
acting on it is zero.

Wrenches are very similar to the instantaneous screws we met in section 6.6. Like
instantaneous screws wrenches have a pitch associated with them. For a wrench the ratio
M - F : F-Fis called the pitch of the wrench. If the pitch is 0 : 1, then the wrench is a

85
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F2

Figure 8.1 (a) A Couple of Forces (b) Forces for Holding a Rectangular Block

pure force. This is easy to see, since if the wrench is a pure force the moment has the form
M =rAFand hence M- F = (r AF)-F = 0, using the cyclic properties of the scalar
triple product.

It is possible to have wrenches with other pitches. For example, consider a couple of
forces acting on a rigid body as illustrated in fig. 8.1(a). The total wrench acting on the
body is given by the vector sum:-

(r/};‘F) + ((——r)_/\é—F)) _ (2r(/)\F)

Such a wrench represents a pure torque and its pitch is (by definition) 1 : 0.

In between we may have wrenches of pitch « : 8. In general a wrench is a combination
of a force and a torque about the same axis as the force. So as with the instantaneous
screws, wrenches are associated to lines in space; the axis of the wrench. A general wrench

has the form:-
_ {rAF+pF
w= (")

where p = a/(3 is the pitch of the wrench, and r is the position vector of any point on the
axis.

8.2 Gripping

An immediate application of these ideas is to gripping problems. At the moment most
robot grippers are rather basic in design. Usually they consist of two fingers which are only
able to move parallel to each other. For many industrial applications such designs are quite
adequate. However, dextrous multi-fingered grippers are under development.
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AF1

Fz‘

x vF3

Figure 8.2 Forces Applied to a Unit Cube

Imagine trying to hold a rectangular block with two fingers, see fig. 8.1(b). The weight
W of the block acts through the centre of mass and the finger forces F; and F> are separated
by a small distance . To balance the forces we must satisfy:-

-+ FR=W
and to balance the moments we need:-
(l +1?)F1 - lF2 =0

Here we have taken moments about the centre of mass. These are two simultaneous linear
equations in the unknown finger forces. Their solution is easily found:-

F = (—l_—“’)W, F+ Lw
xr T

Notice that if the distance z was zero then we could only balance the moments by gripping

the block opposite the centre of mass. This is one reason why grippers normally make

contact with the workpiece via flat ‘cheeks’. Another reason, though, is to increase the

friction between the gripper and the workpiece.

If the forces do not all lie in the same plane, then we need to use the concept of wrenches
introduced above. To see how this works we will look at an example. Suppose a robot
gripper applies forces to a unit cube as shown in fig. 8.2. Let us find the total wrench acting
on the cube when the magnitudes of the forces are:-

F1=1, F2:2, F3:1

in some units.
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Let the wrenches be W;, W, and W, then:-

-F 0 iy o

0 0 Fs

0 —F, 0

wmi=1 o |- We=| e Wa=1 o
F i o8 0

0 0 iy

since:-

SN N = OO
>
AN TN
|
o o
%)
~— —ee” N
It
Ioo
3

So the total wrench is:-

-F 0 —-F3 ~(Fy + F3) -2

0 0 ¥ 2 F3 1

0 —F 0 -F -2

W) +Wo + W5 = 0 + 0 2 + 0 = 0 2 = 0
Fy -F; 0 (F1 — F) -1

0 0 —-F3 -F; -1

What are the pitch and axis of this wrench?
The pitch of this wrench is given by:-

1
(FL - BR)F+ BE)/(FL- Ry +F)=FF/(F-FR)?+F)= 5
To find the axis of the wrench we need the direction of the axis and a point on the axis. The

unit vector in the direction of the axis is just:-

0
- 1
F=—1-1
V2 o1
A point on the axis can be found from the first three components of the wrench.
-2 0 0
1 =rA{ -1]+p]| -1
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Rearranging gives:-

0 -2
rA| -1} =] 3/2
-1 -3/2
This gives the three equations:-
—Ty + 7. =2, ry = 3/2, -1, = —-3/2

Certainly this gives us that 7, = 3/2 but we cannot solve for 7, and 7. Remember for
any solution r, to these equations there are always other solutions r + AF. To get a unique
solution we can impose the extra condition r- F = 0, that is the position vector of the point
on the axis must be perpendicular to the axis. The result is two equations:-

—ry + 7. = -2, —ry—=7r.=0
These can now be solved to give:-

3/2

This leads to an interesting question. How many fingers does a gripper need in general?
Consider gripping a solid object without friction. Each finger applies a force normal to
the surface of the object. To hold the object we must balance the object’s weight and any
other disturbing wrenches. If we assume the finger positions are fixed then we have to
be able to solve for the magnitude of the finger forces. This means that six fingers are
needed, to ensure that there are the same number of variables as degrees-of-freedom for
the object. For a gripper with six fingers we would have to solve the following system of
linear equations:-

F

F>
nAfy, roAfs r3Afy ranfy rs Afs rgAfs F; M
< f; f f3 171 fs fs ) Fy ( )

Fs

Fe

Here W and M are the weight and moment of the weight. The F; are the magnitudes of the
finger forces, so we must normalize the columns of the coefficient matrix so that f; - f; = 1
for every finger. Whatever the right-hand side is, we can always solve this equation for the
magnitudes of the finger forces, unless the determinant of the coefficient matrix is zero.
However, the coefficient matrix depends only on the finger positions, and hence the matrix
being singular corresponds to a ‘bad’ choice of finger positions.

On some surfaces every choice of finger positions is ‘bad’. Such surfaces are in fact
exactly the surfaces of the Reuleaux lower pairs that we met in section 3.2. These objects
cannot be grasped effectively; in other words we cannot completely constrain the motion
of the lower Reuleaux pairs without friction. The real use of this result is that it tells us
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Figure 8.3 A ‘Bad’ Choice of Finger Positions

what ‘bad’ choices of finger position look like. For example, suppose the six lines of force
all met some other line, A, in fig. 8.3. Now there will be some surface of revolution with
axis A such that all the force lines are surface normals. So this is a ‘bad’ choice of finger
positions; without friction it is impossible to balance a torque about the axis A, and so we
will not be able to stop the object rotating about A.

Similarly if all the lines are perpendicular to some direction, there will be a surface of
translation normal to all of them. Hence, forces along the given direction will not be able
to be cancelled.

In reality there is friction, and if we are prepared to use friction to help us grip objects
then only two or three fingers are necessary. This works very well for human hands for
example, but be careful when trying to hold a bar of soap!

8.3 Duality Between Wrenches and Screws

In chapter 6 we met another kind of six dimensional vector, the instantancous screw. Here
we show that there is a close relationship between wrenches and instantaneous screws: the
relationship is in the form of a ‘duality’. We begin by considering an arbitrary rigid body
acted on by a wrench W. This wrench causes the body to acquire an instantaneous screw
motion S. The instantaneous power exerted by the wrench is :

w

Te — (mT wT
Ws=M".F )(u/\w+pw

)=M~w+F-(u/\w)+pF~w

This generalizes the expressions for power from ordinary mechanics; F- v for linear motion,
and M - w for rotational motion. Thus we have a pairing operation between wrenches and
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instantaneous screws, the result of which is a scalar; the power.
Given a set of six linearly independent wrenches {W;, Wy, W3, Wy, W5, Ws }, we can
always find a dual set of six linearly independent instantaneous screws {S;, Sz, S3, S4, Ss,

Se}, such that:-
e JO if i#j
Wi'S; = { 1 if i=j

For example, suppose the six wrenches consist of three unit forces along three orthogonal

lines:- N
Ad Aj A
W‘z(ril)’ Wz:(rjj>’ W“z(rk )

together with the unit torques about these directions:-

ne(2) me () me ()

To find the dual set of screws we form the matrix where the columns are the wrenches:-
M= (W1 We Wy W, Wy Wﬁ)

The rows of the inverse of this matrix are then the transposes of the dual screws:-

This works because the relation M ~'M = | summarizes the duality conditions given
above. The fact that the wrenches must be linearly independent guarantees that the inverse
matrix exists, since det M # 0 if and only if the wrenches are linearly independent.

For our example we do not have to perform the matrix inversion since it is simple to
check that the dual screws are given by:-

w=(3): ==(5) =-()
wm (k) o= () == (o)

Now an arbitrary wrench W can always be written in terms of a set of six linearly

independent wrenches:-

W =a Wi+ aWs + azWs + ay Wy + asWs + agWs

and:-

The a; are constant coefficients. These coefficients can be found by simply pairing with

the ith dual screw.
a; = WTS,'
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Tiv1

Ri1

Figure 8.4 The Forces and Torques acting on a General Link

This is very similar to using the dot product to project out components of three dimensional
vectors.

This has immediate applications in robotics. Consider a robot with six revolute joints
arranged serially. If torques are applied to the joints what is the resulting wrench on the
end-effector? We just want to know the effects of the joint torques so we will ignore
the weight of the links and dynamic effects which will also give rise to wrenches at the
end-effector.

Consider the forces and torques acting on a single link, see fig. 8.4. At each joint we
have a torque from the actuator and a reaction wrench caused by the adjacent link. For
equilibriumn we must have:-

Ti+Ri—Tip1 —Rip1 =0
except at the final link where we have:-
Te +Re - W =0

Here W is the wrench at the end-effector that we are trying to find. Manipulating the above
equations we get six equations of the form:-

r+R, =W

Let us separate out the magnitude of the actuator torques by writing them as 7; =
th

v, . !
T ( Ol ) . Now consider the wrenches on the ¢

wrenches, as in the example above, but one must be a unit torque about the joint. So now we

joint, We choose six linearly independent

u; AV,
This screw annuls all possible reaction wrenches on this axis, R7'S; = 0. Hence:-

T; = WTS,'

can find the magnitude of the joint torque by pairing with the dual screw, S; = < Vi > .
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These dual screws are familiar, though; each S; is the instantaneous screw corresponding
to rotations about joint 4, and in turn we saw in section 6.6 that they were the columns in
the robot’s jacobian. Hence we may combine all six equations into the following matrix
equation:-

WTJ = (T1,T2,...,T6) = TT

If the jacobian is non-singular this can be rearranged to give:-
w=WT)'r
This result is extremely useful since it allows us to transfer joint torques to the end-effector,

hence it is important for force control. It can also be derived using the principle of virtual
work.

8.4 Compliance

All robot joints and links are slightly compliant. However, the joint compliance is usually
much greater than the link compliance. This springiness in the joints is mainly due to the
springiness of gears and shafts but there is also some contribution from the control system
and the electric motors themselves. In the simplest model for these processes a deflection
60, inthe ith joint will produce a torque 7; = k;60;, where k; is the joint stiffness; compare
this with Hook’s law from elementary mechanics.

For a serial manipulator this can be written in the matrix form:-

r=KA®8

where K is the diagonal matrix of joint stiffness and is called the stiffness matrix of the
robot.

For a six joint manipulator in equilibrium the wrench at the end-effector W, resuiting
from torques at the joints, is given as we saw in the last section by:-

w=@7)r

with J the manipulator jacobian. Also the displacement of the end-effector in terms of the
joint displacements is:-
Ax =J A8

Putting all this together we get:-
w={dT)'KJ'Aax

This expresses the wrench caused by a small deflection in the position of the end-effector.
Often it is convenient to use the compliance matrix C of the manipulator; this is defined
asC =JK~1J7, sothat:-

W=ClAx
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Figure 8.5 (a) A Single Link (b) Two Robot Links

If the jacobian is singular the compliance matrix is undefined; this corresponds to the arm
being infinitely stiff in at least one direction.

In this chapter we have studied problems of static forces and torques. This is a necessary
prerequisite to the study of dynamics that we undertake in the next chapter. Our main tool
has been the six dimensional vectors called wrenches. These are similar to, but actually dual
to, the instantaneous screws that we met in chapter 6. The study of statics has several direct
applications in robotics, in particular for gripping objects and for studying the compliance
of manipulators.

Exercises

8.1  Consider the rigid body shown in fig. 8.5(a). Calculate the total wrench acting on
the body, when the forces and torques are as shown in the diagram. Also find the
pitch and axis of this total wrench.

8.2 Two robot links are illustrated in fig. 8.5(b). If both links are in equilibrium with
the forces and torques shown, find the reaction wrenches at the joints.

8.3  The Stewart platform is illustrated in fig. 3.6. Assume the centres of the spherical
passive joints are located at:-

P1 = (07 070)7 P2 = (270a0)a P3 = (17 \/—3'70)
for the base link, and:-
p. = (0,2/V3,1), py=(1,-1/V3,1), p.=(2,2/V3,1)

for the movable link.
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(i) Suppose the magnitude of the forces on the prismatic joints, in suitable units,
are:-

Fla:l) Flb:—ly F2b:11 F2C:_l F3C:1) F3a:“1

where F;,, is the magnitude of the force given by the prismatic joint between
the points p; and p,. Calculate the total wrench acting on the movable link,
and find also its pitch and axis.

(ii) It is required that the wrench acting on the movable link must be:-

6/V7
—6v3/VT
0

W= 0
2/
6vV3/VT

Calculate the magnitude of the forces that must be applied to the prismatic
joint to achieve this.

Consider a general parallel manipulator with six prismatic joints connecting the
base link to the movable link; each with a passive spherical joint at either end. Unit
forces along the prismatic joints are given by the wrenches, F1, Fa, .. ., Fe. The
magnitude of the forces exerted by the prismatic joints are fi, f2, ..., fe. Suppose
that when the movable link undergoes a change in position Ax, the corresponding
changes to the joint lengths are ély,6ls,. .., 8ls. By considering the work done
show that the rows of the manipulator jacobian are given by the transposes of the
unit wrenches F;. (Recall that for a parallel manipulator the jacobian is given by
Al =J Ax)



9 Dynamics

9.1 Newtonian Mechanics

In this chapter we want to study the mechanics of manipulator arms. We only consider
the simplest possible model for robots, that is, of several rigid bodies, the links, connected
together. We will ignore such effects as friction in the joints, flexibility of the links and
joints and the dynamics of the motors and drives themselves. To begin, we will review
some of the relevant classical mechanics.

For a single particle the equation of motion is familiar from Newton’s laws of mechanics:-

F=mv

Here, F is the force exerted on the particle m, its mass and v = d’x /dt? its acceleration.
Although this is the most familiar result of Newtonian mechanics it is slightly misleading
for us here. Better is the more general:-

d
F=—
at®
that is applied force is equal to rate of change of momentum p. The two equations are the
same when the mass does not change since the momentum is given by:-
p=mv

Linear momentum is mass times velocity.
The angular momentum J of the particle is defined as:

J=xAp

So its rate of change is given by:-

d d
—J=— =
m T (xAp)=xAF
Since dx/dt A p = mdx/dt Adx/dt = 0. This means that the moment of the applied
force equals the rate of change of angular momentum.

96
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A rigid body is considered as a collection of particles, held together by internal forces.
Luckily, the effects of these internal forces always cancel so they can be ignored. The
total mass M of the body is the sum of the masses of the particles. Usually, the particles
composing the body are taken to be so small that the total mass can be calculated from the

volume integral:-
M= / pdvol
The density of the body here is p.

The centre of mass of the body is a special point in the body where the weight seems to
act. The components of its position vector ¢ are given by the integrals:-

c xp dvol

M

Now the total linear momentum, pyqy, is given by the integrals:-

dx d dc
Prot = | p— dvol = — x dvol = M —
tot / dt dvel dt /p v dt

if we assume the density and hence the mass of the body to be uniform. As far as the forces
on the body are concerned, the body can be replaced by a single particle of mass M located

at the centre of mass, since we have:-
d%c
Fiot = M—
tot de2

by differentiating the total momentum.
At any moment the body will be undergoing an instantaneous screw motion; suppose

the six dimensional vector of this screw is s ) As we saw in section 6.6, the velocity

of any point in the body is given by dx/dt = w A x + s. If we apply this to the centre of
mass, then the total linear momentum is given by:-

Ptot = MwAc+ Ms

In a similar fashion we can write down the total angular momentum as the volume integral:-

dx
Jiot = A —
tot / pPX at dvol

Now, if we use the fact that the body is performing an instantaneous screw, we may replace
dx/dt with w A x + s. The total angular momentum can now be written as:-

Jtotz/{px/\(w/\x)+px/\s}dvol:/pr(wa)dvol+McAs

The integral term we are left with contains the vector triple product x A (w A x). If we let:-

T Wy
x=|y and w=| wy
< CF
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then the triple product can be computed:-
(¥* + 2w, — TYw, — TIW,
XA (wAX) = | —zyw, + (2% + 22wy — yzw,
—zzw, — yzwy + (2% + y)w.
Since the components of w only appear linearly in these expressions we may write the
result in a matrix form:-

(¥?+2%) —zy —zz W
XA (WAX)= —zy (22 +2%)  —yz wy
—Tz -yz  (2®+y?) w;

This means that the total angular momentum can be written as:-
JtOt =Iw+ McAs

The matrix I is called the 3 x 3 inertia matrix of the body: its components only depend
on the mass distribution of the body, and they are given by:-

J p(y* + z*)dvol — [ pxydvol — [ pzzdvol
I=| - [pzydvol J o(z? + 2%)dvol — [ pyzdvol
— [ pxzdvol — [ pyzdvol J p(z® + y?) dvol

From the above we have two three-vector equations of motion for a rigid body:-
d
Tot = a(lw + McA S)

i(M wAc+ Ms)
dt
In robotics we are fortunate in that we usually do not have to solve these differential
equations. More often the desired motion of the rigid body is known and it is the total
forces and torques needed to produce this motion that must be computed. If, as is normal,
the mass of the rigid body is constant, then the equations for the total force can be tidied
up a little; however, the inertia matrix changes as the body moves.

In chapters 6 and 8 we developed a six-vector notation for representing screws and
wrenches. The equations of motion can be written very compactly as a single six-vector
equation:-

Fot =

_d

W_m

(NV)

where W = (;) is the total wrench acting on the body, and V = (‘:) is the

instantaneous screw of the body. The matrix N is the 6 x 6 inertia matrix of the body, and
its components can be written in partitioned form as:-

I MC
N = T
MC Ml
Here, C is the antisymmetric matrix satisfying Cu = ¢ A u for any vector u, see exercise
2.7. And | is just the 3 x 3 identity matrix. Notice that N is in fact a symmetric matrix.
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Figure 9.1 A Rectangular Block in Three Positions

In a real control system for a robot this compact notation would not be of too much help
since all six components would have to be computed separately. But for the algebraic
manipulations that we must perform in the following, the neater the notation the better.

9.2 Moments of Inertia

We will restrict ourselves to a single example for the calculation of the inertia matrix. The
subject of calculating these integrals is well covered in many textbooks on mechanics and
applied mathematics. Consider the rectangular block shown in fig. 9.1. Suppose the block
has sides of length 2a, 2b and 2c. In the first instance we will assume that the sides are
aligned with the x, y and z axes respectively and that the origin is located at the centre of
the block. If the block has uniform density p, its total mass will be:-

M = 8pabc

The first term in the inertia matrix is:-

+a +b +c +b +c
/p(y2 + z%)dvol = p/ dm(/ y? dy/ dz +/ dy/ 22 dz)
—a —b —c —b —c

This is easily computed:-

3 3

b M
/”(y2 +2%) dvol = 8pa(Z-c+ b%) =0+

Clearly the other diagonal terms are very similar and can be found simply by relabelling
the variables.
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The first off-diagonal element in the matrix is given by:-

+a +b +c
/pxydvol:p/ xdz/ ydy/ dz
—a -b —c

The first two integrals in the product both vanish. Again by relabelling the variables it can
be seen that all off-diagonal entries are zero. The 3 x 3 inertia matrix is thus given by:-

M52+ c?) 0 0
I= 0 M (a2 +¢?) 0
0 0 M (a? +b?)

The inertia matrix takes this simple form because we have chosen the origin and axes to be
in a particularly ‘nice’ configuration. What would happen if we were to rotate the block
about the z-axis through an angle ? Rather than compute a lot of integrals again we will
derive a general theorem. Recall that the inertia matrix is defined by:-

Iw = /px/\(w/\x)dvol

Now if we rotate the body using a rotation R, each point x turns into R x so the new inertia
matrix satisfies:-

Tw= /pr/\(w/\Rx)dvol

Since for any three-vectors we have R(a A b) = Ra A Rb, we can rewrite the integral
as:-

I'vw=R /px A (R 'wAx)dvol = RNR ~'w

Hence, the new inertia matrix is given by the similarity transformation:-
I'=RNR!

This result is sometimes referred to as the tensor property of the inertia matrix. I'TT mmber
that rotation matrices are orthogonal, so R -1 = R7.
For the example mentioned above, the rotation matrix is:-

1 0 0
R =10 cos# —sind
0 sinf cosf

and so the inertia matrix in this position is:-

I'=
1 0 0 L +¢?) 0 0 1 0 0
0 cosf —sind 0 M (a2 + ) 0 0 cosf sind
0 sinf cosé 0 0 Y (a? +b?)) \0 —sinf cosf
M b% + c? 0 0
=3 0 a® + b%sin? 0 + ¢*cos? § (c® — b*)cosfsind

0 (2 — b%)cosfsinb a® + b%cos® @ + c?sin’ @
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Next we look at what happens to the inertia matrix if the rigid body undergoes a translation.
Once again we start with the definition of the inertia matrix:-

Iw= /px/\(w/\x) dvol
After a translation by t, the points x become x + t. So the new inertia matrix satisfies:-
o= /p(x +t) A (w A (x + t))dvol
Expanding the triple product gives:-

(x+t)A(w/\(x+t))=x/\(wa)+t/\(w/\x)+xA(w/\t)+t/\(u/\t)

Since t and w are fixed, and remembering that:-

/pxdvol = Mec

performing the integrals gives:-
I'w=Iw+MtA(WAC)+ McA(wAt)+ MtA(wAt)

where c is the position vector of the body’s centre of mass in the original position. Using
the fact that we can use an antisymmetric matrix to represent the effect of taking a vector
product with a fixed vector, we may write the result as:-

I'w=(I1-MTC -MCT - MT?)w
Since w is arbitrary here, the new inertia matrix can be written:-
I"=I-MTC -MCT - MT?

This result is sometimes called the parallel axis theorem. As an example of its use, consider
translating the block of fig. 9.1 by an arbitrary amount, that is:-

t: 0 —t. t,
t=1t, and hence T = t. 0 —t,
t. ~t, t, 0

In this case, the body is originally positioned so that its centre of mass coincides with the
origin, therefore C = 0. The new inertia matrix is thus:-

M B2 + %) 0 0
III — O %’I_(az + C2) 0
0 0 M (a® +b?)
—(E2+12) .ty tots
-M toty —(t2 +t2) tyt.
tot. tyt: —(t2 +12)
L+ ) + (2 +12) —tt, —t,t,
= M —~t.ty La?+ )+ (82 +12) ~tyt.

—t,t, —tyt. 1a? +b%) + (2 +£2)
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If we are prepared to use the six-vector notation introduced above for wrenches and screws,
then the two previous results can be combined into a single neat formula. In exercise 6.6
we found that under a rigid body motion a screw S transforms to H S, where:-

S=(:) and Hz(TRR g)

Actually in exercise 6.6 we only saw this for screws of the form § = (

v
. |, butiti
aA v) ut 1t 1s
not hard to show that the above generalization is true.
Under the same rotation and translation the 6 x 6 inertia matrix N will be transformed
into:-

N'=(HT)"'NH"!

Unlike the rotation matrices the matrix H is not orthogonal, in fact:-

HT) ! = (Ig TRR ) since H!= (—:;T ROT)

We recover the original relations by multiplying out the three partitioned matrices. How-
ever, it must be remembered that this relation is for a rotation followed by a translation
whereas our original second result was for a translation on its own. The relation also gives
us that the new centre of mass becomes:-

C'=RCR7T+T

9.3 Time Derivatives of the Inertia

In the case of a particle with constant mass the linear momentum is easy to differentiate
and so the equation of motion for the particle becomes F = mv. Here, we want to do the
same thing for a rigid body, that is we will assume the body has constant mass and shape.
To begin let us look at the case of pure rotations. At ¢ = 0 the rigid body has a 3 X 3
inertia matrix which we will denote I,. At subsequent times the body will have undergone
a rotation about the origin and so its inertia matrix will be given by:-

I=RIL,RT

where the rotation matrix R will be a function of time. Differentiating this with respect to
time simply gives:-

d ; - T
—I=RI,R” +RIR
dt
So we can write the time derivative of the angular momentum, J = Iw, as:-

=3 = I +RIRTw + RI,R w
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Now as we saw in section 6.5, when ¢ = 0 the matrix R (0) has the same effect as the
vector product with the angular velocity w:-

ROu=wAu

for any vector u. At ¢ = 0 the derivative of the angular momentum is therefore:-
d .
aJ(O) =Iow + w A (Iow)

-T

since R w = —w A w = 0. Using the same arguments as in section 6.5, there is nothing
special about the time ¢ = 0, we could have chosen to begin measuring time at any instant,
so the above equation must be generally true:-

%J=Id:+wA(Iw)

This is now equal to the torque applied to the rigid body, and the result is known as Euler’s
equation:-
T=Iw+wA(lw)

Actually this is not quite true: Euler’s equation is usually written in terms of co-ordinates
at rest with respect to the body; in such co-ordinates the inertia matrix.is constant. We are
only using a single, fixed co-ordinate frame, so for us the inertia matrix varies; however,
the form of the equations is exactly the same.

For a general rigid body motion we can mimic the derivation just given but with the
6 x 6 matrices. First we will need to know about the derivatives of the matrix:-

"=(TRR g)

dy R 0

dt TR+TR R
We have seen that R (0)u = w A w, for any vector u. Since the translation part of the rigid
transformation is Tu = t A u, we must have T (0)u = s A u. For arbitrary u, and where
s = t is the linear velocity component of the body’s instantaneous screw, see section 6.6.

Now whent = 0 we have R =1 and T = 0. Hence, for an arbitrary instantaneous screw
(¢, u)T, we can write:-

0 (2= (36 ) (V)= (2n)

Again this result does not depend on where we begin measuring time, so we can write:-

dH P _ WwAY
dt u/) \sAvY+wAu

this is simply:-
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This is further simplified if we adopt the following notation; for two six-vectors we will

write:-
("/’1)/\(11’2):( Y1 APy )
uy ug uj Ay + 1 Aug

This new operation is the vector product of two instantaneous screws. Although we use the
symbol ‘A’ for the vector products of both three and six component vectors, no confusion
should arise. So now we can write the time derivative of an arbitrary rigid motion as:-

(1) ()°(2)

By similar arguments we find that the time derivative of the matrix (H7)~! acting on

an arbitrary wrench:-
d vrv1 (Y _[wAy+sAE
&(H ) (E)—( wAy

This can be written using another new operation, which will be denoted by curly braces:-

a0 () ={(2)-(2))

This is a new type of operation: we are ‘multiplying’ a wrench by a screw. The result is

another wrench:-
{(1/)) (‘y)} (¢A7+uAE)
u/’'\E Y AE

At last we are able to write down the six-vector equations of motion:-
W= (%(NV) =NV +{V.NV}-N(VAV)
The vector product of an instantaneous screw with itself is zero so the equations reduce to:-
w=NV+{v,NV}

These equations summarize both Newton’s and Euler’s equations and are thus called the
Newton-Euler equations.

It is more usual to use separate equations for the motion of the centre of mass and the
motion about the centre of mass; that is, Euler’s equation for the torque and Newton’s for
the force. The general form of these can be found by looking at the above equation in
partitioned form:-

Tiot | _ I MC w + { w I MC w }
FtOt - M C T M s S "\ M C T Ml S
Which, after a little simplification, becomes:-

Tot = IWw+wA(Iw)+McA(S+wAs)
Fiot = M8+ (w—s8)Ac)
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9.1

9.2

9.3

(i)

(i)

@

(i)

(i)
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I
;o

Figure 9.2 Single Block (a) and Two blocks Joined (b)

Calculate the 3 x 3 inertia matrix of a rectangular block of mass 1 unit and
sides 2, 4 and 6 units, positioned as shown in fig. 9.2(a).

Show that the 3 x 3 inertia matrix of two rigid bodies rigidly joined together
is the sum of their individual inertia matrices. Hence find the inertia matrix
for the body consisting of two rectangular blocks as shown in fig. 9.2(b).

Show that for any rigid body there is a co-ordinate frame in which the inertia

matrix takes the form:-
N = D o
“\Lo Ml

where D is a diagonal matrix with positive entries along the leading diagonal.
Is it possible, for any rigid body, to find a rectangular block with the same
mass and inertia matrix?

Show that for any instantaneous screw S:-
SAS=0

Given a wrench W and two screws S; and S, show that:-

{sl,w}Ts2 = WT(S; ASy)

9.4 OnelLink

In order to see how the rigid body mechanics described above can be used, we will look
at the problem of finding the equations of motion for a single driven link. This simple
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Figure 9.3 A Single Driven Link

example can be approached in many ways and does not really need the powerful techniques
we have developed. However, the following is only intended as an introduction to the more
complicated situation of several rigid bodies jointed together.

To begin, as with all mechanics problems, we must draw a diagram of the forces and
torques involved, see fig. 9.3. Although we are assuming that the joint is a revolute joint,
our techniques work equally well for prismatic and helical joints.

The total wrench acting on the body has three sources: the torque 7, due to the motor,
the weight of the link G and the reaction wrench R at the bearing. The total wrench can be
written:-

W=1+G+R

With the co-ordinates as shown we can write the torque as:-

, = Ti
T 0
with 7 the magnitude of the torque. The weight can also be written as:-
G = —~Mgc Ak
- —Mgk
Here g is the acceleration due to gravity and M the mass of the link. As we saw above the
equation of motion for a rigid body is:-

W:NV+{V,NV}

The difficulty is that we do not know what the reaction wrench is. All we know about the

reaction is that it will be annulled by the joint screw S = ( ! ); see section 8.3. So we

0
can pair the Newton-Euler equation with this instantaneous screw to get rid of the reaction

e e gt
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wrench:-
WIS =7 —MgcAk-i=7—-Mgj-c

Now, since the body is constrained to rotate about the joint, the velocity screw of the body
will simply be:- .
V =S4

with 4, the joint angle. So the right-hand side of the Newton-Euler equations become:-
. T .
WTS = STNS§ + {s,Ns} S §2

From the results of exercise 9.3, we can see that the second term vanishes. The Newton-
Euler equation can now be written:-

T=1-(L)+ Mgj-c

Finally we must take into account the fact that the inertia matrix and the centre of mass
are position dependent. In the initial position, where § = 0, the inertia will be I(0) and
the centre of mass c(0). For simplicity let us assume that ¢(0) only has components in the
y-direction. When the body has undergone a rotation of 6 radians the new inertia matrix
and centre of mass will be:-

I1(6) =RI(O)RT  and  ¢(8) = Rc(0);

where
1 0 0
R=]|0 cosf@ —sinf
0 sinf cosf

Hence, the equations of motion simplify to:-
7 = I11(0)8 + Mg cosfc, (0)

since c(0) has no components in the y-direction.

Although this is a rather cumbersome method for the above example it illustrates the
general approach. The idea is to write down the Newton-Euler equations of motion for each
rigid body, then project out components of the wrenches we are interested in. As another
simple example, suppose we were interested in the reaction forces at the joint. If we were
designing the bearings at a robot’s joint, it would be important to know the loads which the
bearings might be subjected to. Let us compute the reaction force in the z-direction, R..
The Newton-Euler equation is the same as above, but now we must pair with the screw,

p-()-

Since we know how these matrices are partitioned we can simplify the equation:-

- T .
R, =STNP4 + {s,Ns} P + WTP

R, = —Mcy5+ Mclt9'2 — Mg



108 Introductory Robotics

T2

Ry b

G,

Gy
T

Figure 9.4 Two Driven Links

Once again if we assume that initially the centre of mass lies along the y-axis, the equation
becomes:-
R. = —Mc,(0)cosf 8 — Mc,(0)sin§ 6% — Mg

9.5 Two Links

In this section we extend the work already done to two driven links. For the force diagram,
see fig. 9.4. First of all since there are now two links, there will be two Newton-Euler
equations. They are:-

T2+ Re + G

N,V, + {V27N2V2}
T1+R1+Gi—T2—R2 = NV, + {V1,N1V1}

In preparation for pairing these equations with the joint screws we can tidy them up a little
by adding the first to the second:-

T2+ Ry = N2V2+{V2,N2V2}—92
m+R = N1V1+{Vl,N1V1}+N2V2+{V2,N2V2}—g1—92

Now each equation only involves the torque produced by one motor. Thus, pairing with
the joint screws S; and S» gets rid of the reaction wrenches and leaves the magnitude of
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the torques:-

2 = VIN,S, + {Vz,N2V2} S;-G18S,
= Vl lel+{V1,N1V1} Sl+V2 N281+{V2,N2V2} Sl gTsl g2 Sl

These are the equations of motion: they can be made a little neater with the aid of
exercise 9.3:-

T2 = VIN,S, + VIN2(V2AS,) - 678,

n = (VIN;+VIN)S, + VIN{(VIAS) + VINy(V2AS) -GS -GTs,
However, it is more usual to express the equations of motion in terms of the joint angles
rather than the V’s which are the velocity screws of the links. The velocity screw of a link

is givenby V = J 6, and from section 6.6, we know that the columns of the jacobian J
are the joint screws. Using the appropriate jacobian we have:-

Vi=6,S; and V=465, +6:S;
We also need the link acceleration screws, the V’s. Since the first joint is fixed we have:-
V) =68,
But the second joint moves, so:-
Vo = 6;S) + 6255 + 625,
We know how the second joint moves; it simply turns about the first joint:-
Sa(t) = H1(t)S2(0)
So using the results of section 9.3, the derivative of this screw is:-

ad—tSz =V AS; :9151ASQ

The acceleration of the second link is thus:-
VQ = él S, + 9.252 + 919281 A So
So in terms of the joint angles the equations of motion become:-

n = 6,ST(Ny +N2)S; + 6:STNoS; +6,6,ST (N1 — N2)(Sy A S)
— 62STN,(S1 A S2) — (6T +61)8,

7 = 6,;STN;S, + 6,STN,S, + 26,6,STN (S A Sz) + 03STN5(S1 A S2)
-grs,
Unfortunately this is still not exactly the equations of motion in terms of the joint angles,
since the dependence of the S’s, the N ’s and the G’s has not been made explicit. If we

continue this the equations are going to get very long indeed. Such long formulas donot tell
us very much. However in a robot control system it may be necessary to use the formulas
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to calculate the torques. We will see a little later how this can be done efficiently without
the need to derive the equations explicitly.

9.6 Many Links

Now we have all the mathematical tools we need to write down the equations of motion for
a six joint serial manipulator. First we write down the equations of motion for each link:-

T6 + Re + Gs

il

NsVs+{Ves,NsVe}
T5+Rs+Gs— 76— Re = N5V5+{V5,N5V5}
T4+R4+Gs—715—Rs = N4V4+{V4,N4V4}
T3+R3+G3—7T4— Ry = N3V3+{V3,N3V3}
To+Ra+Ga—7T3—Rs = NaVa+ {Vz,szz}

T1+R1+G1 —T2—Ra

N,V + {Vl,N 1V1}
These can now be rearranged by adding each equation to the ones above it:-

76 + R

N6V + {Vs,NGVG} -G

75+ Rs N5V5+N6V6+{V57N5V5}+{V67N6V6}_g6_g5

T+ R = zﬁ:[NjVj—i-{Vj,NjVj}—gj]
j=1

Pairing each equation with the relevant joint screw gives the six joint torques:-
6 .
T"ZZ[VJ'TNJSi+VJTNJ(Vj/\Si)—ngSi] i=1,2,...,6

j=i

The wrench due to gravity on the j™ link is a force acting at the link’s centre of mass. So
if our co-ordinates are aligned with the z-axis pointing up, the gravity wrenches can be

written:-
G = —~Mge; ANk
7 — Mgk

o= ()

Consider the following screw:-
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It is simple to check that this gravity screw has the property:-

gj = NjG
Using this, we can write the equations of motion very compactly as:-
6
=) [(vf_G)TNJ'S""'VJTNJ'(Vj/\Si)] i=1,2,...,6
j=i

Once again, it is more usual and more useful for control purposes to write the equations in
terms of the joint angles. To do this we must use the relations:-

J
V=) 6iSs
k=1
and:-
. ] . k-1 P
Vj = Z [GkSk + Zokels[ A Sk:|
k=1 =1
Substituting these into the equations of motion gives:-
j . J k_l - .
o=y [Z 6:STN;S: + > ) 6,6iSTN;(S1 A Sk)
j=i Lk=1 k=2 1=1
i oJ
+ 573 6BiSTN(SiAS:) - GTNJ-S,]
k=11=1
When using this, it must be remembered that the screws and inertia matrices are position
dependent; we should have written S;(@) and N ;(6), rather than just S; and N; to

emphasize the point.
Sometimes it is useful to write the equations in the form:-

6 6 6
T = ZAijaj +ZZB,'jk0j0k +C;
j=1 j=1 k=1
The matrix A is the inertia matrix of the combined system, while B ;;« contains the
information about the interaction between the links. Finally, C, are the weights of the
links. It is straightforward, but not very illuminating, to find these functions from the
equations above.

9.7 Recursive Equations of Motion

In the previous section we derived the general equations of motion for a robot with six
links connected in series. However, these results are not particularly useful for controlling
a robot since although they look reasonably simple, they are difficult to compute. The
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problem we are faced with is how to calculate the required torques given; the joint angles,
and their first and second derivatives together with the home values of the inertia matrices
and joint screws. The difficulty is that the equations are written in terms of the current
values of the joint screws and the inertia matrices. So we would first have to use the forward
kinematics to find the current values and then substitute into the forrulas. As an algorithm
this is extremely inefficient and in a real system would take far too long to be of any use.

A more efficient algorithm relies on two improvements. To begin with, calculations can
be done in co-ordinates at rest relative to the links, so that the link inertias will be constant
in these co-ordinates. Secondly, the co-ordinate transformations that must be done can be
computed recursively.

This seems to be the only place where it is more convenient to use lots of co-ordinate
frames. It does mean that we must introduce rather a lot of new notation. We already know
that the current values for the joint screws are given by:-

S,(0) =H 1(01)” 2(02) ---H 1(01)51(0)

Here the H matrices are the 6 x 6 analogues of the A matrices of chapter 4. We will
usually assume their dependence on joint angles and simply write them as H;. We will
also abbreviate the home positions of the joint screws to S?. Now the velocity screws of
the links can be written:-

Vi=HH,---HV?

where VY is the velocity of the i™ link expressed in co-ordinates at rest with respect to that
link. Similarly, for the inertia matrices we have:-

Ni=HT)T/(HD) ™ (H))TINJH - HTHT!

Again, N ¢ represents the value of the i link’s inertia matrix in co-ordinates at rest with
respect to the i™ link. The point of all this is that the S? and N? are constants which can
be predetermined.

As we saw in the previous section the torques are given by:-

6
Z[(v - G) N,»s,-+vj.”Nj(vj/\s,-)] i=1,2,....6
j=i

If we write:-

Q; =N;(V;-G)+ {VJ’NJVJ}

then the torques become
6

T = Z Qrs;

=i

1,2,...,6

-.
I

As long as the wrench Q; and the screw S; are calculated in the same co-ordinate system,
the result of the pairing QJTSi will be independent of co-ordinates. So we will calculate

Q09 the value of the wrench in co-ordinates at rest, relative to the 5 link. This is just a
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matter of calculating:-
Q2 = N2(V9 - G) + { V3, NOVS}
Notice that the constant gravity screw G, must also be transformed:-
G=HH,---H,G}
The velocity of the links is given by:-
V= 6:S1 + 655, +"'+éij
In terms of the co-ordinates at rest relative to the j™ link, this becomes:-
V?=6H;'---H;'S) + 6,H ]! . HF1SS 4. +6;8!

It seems that we must multiply many matrices here, but in fact we can reduce the compu-
tational burden considerably by using a recursive procedure:-
0 —1¢70 ) 0 ). @O

This now requires just six multiplications of six component vectors by matrices to get all
six velocities. The accelerations can be treated in a similar fashion. The acceleration of
the j™ link is given by:-

V; =681+ 68+ +6;S; +6:Va AS; + 83V ASz + - +6,V; AS;

Using the co-ordinates at rest relative to the j™ link this becomes:-
VO = GH;' - HF'SY 446, HS'S) +0;8)

+0,H7 - HF (VI ASY) + -+ 6, HT (VI AST_)) +6;(V] AS)
This can be calculated with the recursive scheme:-

VO=H;IVO, +6;8)+06,(VIAS);  VI=6:8}
We can do even better by including the gravity screw:-

(V9-GY) =H; (V2 —GI ) +6;8+6,(VIAS)); Vi-GY=64,8)-G

Again only six matrix multiplications are needed. These results can now be assembled and
the wrenches Q? found. Unfortunately these cannot be simply paired with the joint screws
SY, since they refer to different co-ordinate frames. Let us write:-

6
Pi=3.9
j=i
so that the torques will be:-
7 =PlS; = (P])7S]
Using the co-ordinates at rest relative to the i™ link gives:-

PO = (MY, HT ) (M) Q8+ T HE ) - (HD) 7 Q4+
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These quantities can also be evaluated recursively, this time beginning with the last one:-
0 T \-1p0 0 0 0
P =H, i1+ Q55 P = Q¢

Notice that although this procedure has been derived using co-ordinate frames at rest with
respect to the links, we could view the process as a purely algebraic one, involving the H
matrices; that is, without referring to different co-ordinate frames.

To summarize, the algorithm can be written in stages:-

e Calculate the six link velocities;
VI=H;'VO  +4;8%  V)=68!
e Calculate the six link accelerations;
(VI-GY) =H; ' (V) -G9_))+6;80+6,(VIASY); VI-GY=§,S¢-G
e Calculate the wrench due to each link;
0 _ N0/x70 )} 0 pOys0
Qj =N;(V;-Gj)+ {Vj’NjVj}

o Calculate the total wrench acting on each link;

PO= L)' PY, +Q PRI =0l
Calculate the torques by pairing with the joint screws;

7 = (P))T'S?

The calculations outlined above must be done as efficiently as possible; for example, using
the 6 x 6 matrix N it is best to use the partitioned form:-

NV — ( 1 MC ) (w) _ ( I+ McAs )
MCT Ml s Ms — McAw
This needs only 24 multiplications as opposed to the 216 required for a general 6 x 6
matrix multiplication. Hence, using this scheme a new set of torques can be computed in
something like a millisecond. If this is still too long, the process can be speeded up using
several processors working in parallel.

In this final chapter we have seen how the dynamics of simple open loop robot manip-
ulators can be written down in a fairly straightforward manner. To be useful for practical
applications, however, the elements of the inertia matrices must be found. These numbers
are probably best determined experimentally for each robot. We have also seen how to
speed up the computation of the joint torques using a recursive algorithm,

Exercises

9.4  Consider a door hung on a helical hinge; the hinge is effectively a helical joint of
pitch p, with axis pointing vertically upwards. Find the equation of motion as the
door closes under its own weight.
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9.6
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The kinetic energy of a rigid body can be written:-
1
KE = 5vTN A

where V is the velocity screw of the body and N its inertia matrix. Write down
the kinetic energy for a serial six joint manipulator and find expressions for the
partial derivatives of the kinetic energy with respect to the joint velocities; that is
the differential coefficients:-

dKE O0KE OKE

6, — ey

86, 30

A simple model of friction assumes that the friction at any joint is proportional to
the joint rate; that is, about any joint we should expect a frictional wrench opposing
the motion with magnitude 6. Write down the equations of motions for a six joint
manipulator including this model of friction at each joint.
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Chapter 2
2.1 ()
cosz —sing 0 % - lg 0
siny cosy 0| = 32@ % 0
0 0 1 0o o0 1
2.1 (ii)
1 3 1 3
z -2 0 0 1 -
3 1 — 3
s L olloro|=]¥ |
0 0 1 0 0 0
2.1 (iii)
1 3 1
101 H —3 o\ {10 -1 L
3 1 — 3
011 g 1 olflo1 -1|=]¥
001 0 0 1 00 1 0
2.2 Centre of rotation satisfies (R — 1)p = —t.
2.2 (i)
1 _q L 1
1 A1 L
Vi V2 Py vz
Pz = 1, Dy = 0
2.2 (ii)
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2.2 (iii)
1 _y3 =1-v3
2 ) Pz | _
90
Pz =1, Py=1
-b t,
2.3 Let the unknown matrixbe | b a ¢, |,so that:-
0 1
b t.\ [0 L3
b a i, 1] = 1_23
0o o 1/\1 1
a —b t, /1 2%@\
b a t, 1]= 3
0 0 1 \1 1/

This gives four equations for the unknown matrix entries:-
1-v/3 ]

- b+t = 15
a +ty=1"23 L
a—b+t1—2——23é
a + b+ t, = 3 )

Solving these equations gives:-

1 V3 1 V3
a==, b=-—, t,=2, ty=——F1
2 2 2 2
2.4  Rotating about the z-axis, then the y-axis is given by the following matrix multi-
plication:-
0 01 0 0 1 0
0 10 00 —-1]|= 0 0 -1
-1 00 0 -1 0 0
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The solution of this singular system of equations is:

vy = U, v, = —Up

Hence the unit vector along the axis of rotation is:-

0 0 01
-1 0 10]|=
0 -1 00
So we must solve:-
-1 0 1 v
1 -1 0 vy | =

vy—'U't, V="
1
R 1
v=—11
3
1
2.5@)
1000 1 0 0 O
0100 oﬁ—\%o#
0012 0\%%0
0001 0 0 0 1
2.5 (ii)
1 0 0 O 1000 1
1 1
0 55 -5 0 o1oo=0
1 1
0 5 o5 0 0012 0
0 0 0 1 0001 0

S O o =

o Sh5k ©

o ShSh ©

<o Elr-' %I'— o

SINE < ©

»—A§|$o

—= N o O



2.5 (iii)

2.6

Solutions to Exercises

100 O 1
010 0 0
0 01 -2 0
000 1 0

Suppose the matrix is given by:-

The first point then tells us that:-

Uz
Uy
U,

0
sothatf, =1,

Uy

Sov, = -1, v, =0,

would give det(R) = —1):

The 4 x 4 matrix is thus:-

(2
Uy

V2

0

V.

0 0
1
v V2
1
75 V2
0 1
Uy UV Wy I
u, v, wy ty
u, v, w. i,
0 0 0 1
w,; 1 0
wy 0
w. i, 0
0 1 1

wy, 1 0
wy -1 1
w, 1 0

0 1 1

(== -

119

0 0 0
1 1
v V2
1 1
7o V2-?
0 0 1
1

-1

1

1

ty = —land t. = 1. The next point yields:-

0

|
—

1

= 0. To find the w’s we must invoke the relations
RTR =1 and det(R) = 1. This can be done by setting w = vAu(w =uAv

Vally — Uyl

Vplly — U, Uy

I

Vylly — Vzlly

0 -1 0 1
1 0 0 -1
0 1 1
0 0 1
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The rotation part of this transformation is recognized as a 7/2 rotation about the
z-axis. The pitch is then given by:-

1
27
(7/2)
1
To find a point g on the axis we must solve:-

1 10 qx 1 0 1

-1 10 @ |=]-1]-|0}j=]-1

0 00 q: 1 1 0

¢: =1, g, = 0andg. = anything. The point on the axis satisfying q - v =0is:-

1
q=1]0
0
27Q0)
A=R-RT
So that:-
AT=RT-R =-(R —RT)=—A
2.7 (i)

A=0cR=RT

Now RTR = | in general, here we have RZ = 1. If R = R(6,V) then R? =
R (26, V), and hence 20 = 2n7. The even values of n give # = 0 and odd n yields
0=nm.

2.7 (i) Rv=~vsov = %Rv
Now RTv =RT({R)v = 2(RTR)v = Jv

2.7 (iv) The matrix A is a 3 x 3 antisymmetric matrix, S0 we may write it as:-

0 a. -—a,
A=]| -a. 0 a,
ay -a; O
Uy
For any vectoru = | u, | we have:-
U,

Au=aAu
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ButAv =Rv — RTv = v — v = 0, since the eigenvalue associated with v is 1.
This means that a A v = 0 and hence a = Av. To show that A\ = 2sin §, observe
that:
Tr(A?%) = —2(a2 + az + a?)

where T'r denotes the trace of the matrix, that is the sum of the diagonal elements,
hence:-

—2)2 Tr({R - RT}?)
Tr(R?2 - (RT)2 —2l)
2Tr(R?) -6

Now, if we perform a similarity transformation on R?2, its trace will be unaf-
fected, since for any two matrices Tr(AB) = Tr(BA); that is Tr(BR2B 1)
= Tr(B~!BR?) = Tr(R?). This means that it does not matter which R we
choose to do the calculation; for example a rotation about one of the co-ordinate
axes would give:-

Tr(R?) =14 2cos26

So that:- ]
A= ?(4cos20 —4) =2 —2cos26 = 4sin” 0

Finally, we choose the positive sign for the square root, since we already have a
sign ambiguity for the direction of v.

Chapter 3
3.1 ()
Tiz T2z T3z lz 0 2
( 1 2 3 ¢, 2
le 1"2y T'3y ty 0 _ 0 = ty _
T1: T2: T3: tz 0 0 ¢
\ 0 0 o0 1 1 1 :
( Tiz T2z T3z 2 1 3
Tz
le T'2y 1"3y 0 0 _ 0 = le _
Ty, T2, r3. 0 0 0
T1:
\o 0o o0 1 1 1 b
1 Tor T3x 2 0 2
0 ol |1 0 "2 0
T T
2y 3y = = sz = 0
0 ro., T3- 0 0 1
T2z
0 0 0 1 1 1
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The third column is found by imposing the relations RTR = I and detR = 1.
This can be done by setting r3 = r; Ars

T3z 0
T3y = -1
T3 0

Finally, by inspection, the motion is a screw motion about the z-axis, the angle of
rotation is 7 /2 and the pitch is 8.

3.1 (i)
tz ) ( 0
t, | =10,
t./] \o
Tiz 0 Tox \ { -1 T3z
Ty = 1 ’ T2y = 0 ’ T3y =
Tl 0 r2: \ 0 T3
This is a 7/2 rotation about the z-axis.
3.1 (iii)
i, 0
t, | =10/,
t. 1
Tz 0 Tor -1 T3z
T1y = 1 ’ T2y = 0 ’ T3y =
Tz 0 To: 0 3,

The motion is a screw motion about the z-axis, the angle of rotation is 7 /2 and the

pitch is 4.
3.2 3)
cosf —sinf 0 0O
sinf cosf 0 O
0 0 10
0 0 01
3.2 (ii)
1000
0100
001d
0001
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3.2 (iii)
1001\ cos§ —sind 0 0\ (10 0 —1
0100 sinf cosf 0 O 010 O _
0010 0 0 10 001
000 1) 0 0 01 000
{cos0 —sinf 0 1-cosf
sinf cosf 0 -—sinf
0 0 1 0
\ 0 0 0 1
3.2(3v)
1001 cosf -sinfd 0 0 100 -1
0100 sinf cosf@ 0 O 010 O _
0010 0 0 1 0/7r 001 O
0001 0 0 0 1 000 1
cosf —sinf@ 0 1-cosf
sinf@ cosf 0 —sind
0 0 1 o/r
0 0 0 1
33
T T
A-lA = R I—FI v Rlv
o[ 1 01
_ RTR|RTV—RTV
B 0 | 1
_ o
~lo1
and
T T
A-1A — v R |—R v
1 o] 1
T
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3.4  As wesaw in section 2.6, t = (I — R)u, so that:-
#+RT)t = (1 +RT)1 —R)u
(RT -R)u
= 2sinfuAnv
by the results of exercise 2.7. Now since V, A Vv = v, we have:-
VAV, = ((Ia A Vb) AV, = \Alb(\A'a . \A'a) — \Ala(\A/a . \Alb) =V
VAV, = (\Ala A \Alb) AVy = \71,(\7,1 . \Alb) - \A'a(\hlb . \Alb) = -V,
using the rule for a vector triple product. Therefore:-
VI +RT)t = 2sin6¥;, - uAv
Cycling the scalar triple product gives u- (V A V) = u- V,. Rearranging gives the
result:- 1
Y, = +RT)t
uv 2 smB ( )
Similarly dotting with v, gives the second result:-
5 -1 .7 T
-y = I+R)t
usve 25in9v“( +RY)
Chapter 4
4.1 (i)
x = 2cos(Z)+2cos(§)+cos(3) 1+ V3
y = 2sin(Z)+2sin(§)+sin(3) 2+ V3
@ = srits
4.1 (ii)
z = 2cos(§ ) + 2 cos(HE ) + cos(132) %é
y = 2sin(%)+2sin(14E) +sin(27) 3
@ = 34443 :
4.1 (iii)
r = 2cos(=E)+2cos(§) + cos(§) 3J2@
y = 2sin(3E)+2sin(3) +sin(3) 3
— i3 2 T
e = Tt t3 &

Notice that (i) and (iii) give the same answer, hence they are the two different
postures for this position.



4.2

Solutions to Exercises

125

Suppose the home position has joint 1 aligned along the y-axis, joint 2 lying in
the zy-plane and joint 3 along the z-axis. For rotations about joint 1 we have the

matrix:-
cosfy 0 sinf;

R(61,)) = o 1 0

—sinf; 0 cosé6,
Also for the third joint we have:-

1 0 0
R(65,i)=| 0 cosf; —sinb;

0 sinf;3 cosf;

To find the matrix representing rotations about joint 2 we use a conjugation:-

R(0,%) = R($WR(E.IR(~7 k)
(L - o) (1 o 0 L &
= % % 0 0 cosf, —sinfs %
\0 0 1 0 sinf, cosfs 0
/%(1+c0592) 2(1 — cos 8,) \/Lisineg
= 2(1— cosbs) (14 cos By) ——\}—isinﬂg
\ —\/Li sin 64 \/Lisineg cos 0
So the kinematic matrix is:-
K(61,62,63) = R(61,j)R (62, )R (63,1)
The elements of K are thus:-
K, = %00501(1+00502) sm0151n92
Ky = 3(1—cosfy)
K = —%sin91(1+c0502)—%cosolsin&z
Ky, = %cosGl(l—cosﬁg)c0503+%cos@lsinagsinﬂg
\}_smﬂl sin @3 cos 03 + sin @, cos 03 sin 03
Ky = %(1+00502)00593—Esinﬁgsin%
Ky = —-sin91(1—00502)c0593—%sinﬂlsinazsineg
+\/_00561 sin @ cos @3 + cos 6 cos b, sin 03
K3 = —5c0591(1—00502)sin03+ﬁcosé’lsinﬁzcosﬁg

- ﬁ sin 8 sin 8, sin 83 + sin 01 cos O3 cos O3

=S

= o O
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Ky = —%(1 + cos 62) sinfz — %singz cos 83
Kzz = %sinol(l — cos 03) sinfl3 — ﬁ sin #; sin @5 cos 83

- % cos 0; sin 83 sin 83 + cos 8; cos b2 cos 03

43  Assume the home position for the Scara is when the arm is stretched out along the
z-axis with all the joints parallel to the z-axis. If we pick the origin to be on the
first joint, rotations about this joint are given by:-

cos@; —sinf; 0 O

sinf; cos#; 0 O

M) =1 0o 10
0 0 01

For the second joint the axis is shifted in the z direction a distance [; :-

cosfy —sinfy 0 (1 —cosb)

sin @ cosf, O —1; siné
A8) =1 ’ 0 2 1 1 0 ’
0 0 0 1

Similarly for the third joint we have:-

cosfs —sinfl3 0 (I; +l2)(1 — cosbs)
sinf; cosflz3 0 —(Ij +12)sinfs
0 0 1 0
0 0 0 1

A;(0;) =

The final joint is a prismatic joint along the z-axis:-

100 0
0100
Asd) =100 1 4
4

000 1

For the Stanford manipulator the ‘A’ matrices are as follows. The first joint is
aligned along the z-axis:-

cosf —sinb,
sinf; cosf;
0 0
0 0

Ai(6,) =

o = O O
- O ©
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The second joint is aligned along the x-axis:-

1 0 0 0
As(8;) = 0 cosf, —sinfy O
a2 0 sinf; cosf; O

6 O 0 1

The third joint is prismatic and aligned along the z-axis again:-

1000
010 0
Asds) =10 ¢ 1 4
3

000 1

The fourth joint is a rotation about a line parallel to the z-axis, shifted in the =
direction:-

cosf; —sinfy 0 I1;(1 — cosby)

sin @ cosfy O —1l;siné
Rl =1 " ’ 0 ’ 1 1 0 4
0 0 0 1

In the home position, when d3 = 0 the second and fifth joints line up:-

1 0 0 0
As(8s) = 0 cosfs —sinfs O
0 sinfs cosfs O
0 o 0 1

Again, in the home position, the sixth and fourth joints line up:-

cosflg —sinfg 0 Ilj(1— cosbg)

sin 6 cosflg O —!l;sin @
Aolle) =1 ) 0 ) 1 1 0 '
0 0 0 1

Notice that the point p is the wrist centre of the robot. That is, it lies on the last
three joint axes, and hence will not be affected by rotations about these. The final
position is thus the same as the initial position.

If ¢’ is the home position of the point then the forward kinematics gives us:-
A A A;AAAsr =1
Hence the home position is given by:-
v =AJ'AIATAIAS A
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The inverse matrices of the ‘A’ matrices are easily calculated since:-

A~1(6) = A(-9)
So that:-
0 00 Ly + Dy D3 + Dy
_ 1 00 D3+D4 "L2"‘D4
AN = =
! (2) 0 10 0 0
0 01 1 1
1 0 00 D3+ D, D3+ Dy
0 0 10 —L,— Dy 0
A YOAT = =
2 (2) ! (2) 0 -1 00 0 Ly + D,
0 0 01 1 1
A1 (0)=1
_ ™ _ 1.7 4.7
A41(—§)A3‘(0)A21(5)A11(§)r
0 -1 0 Ds D3+ Dy
|1 0 0 -Ds 0
“lo 1 0 Lo + Dy
0 0 1 1
D;
L2+D4
1
1 0 0 0 D,
0 0 1 —L,—-D D
AT(E) AT = . ‘
2 2 0 =1 0 L+ Dy Lo+ Dy
0 0 0 1 1
D3
L,
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0 1 0 Ds D; D3 — Lo
0 0D -L 0
A;NE) AT S = ’ | =
2 2 0 01 0 L, Ly
0 00 1 1 1

Hence the original position of the point was:-
D3 — L2
r = 0

L,y

Chapter S
5.1 (i) Using the inverse kinematic relations we have:-
V3
coslp = —
2
. 1
sinf, = =+ 3
Hence 0> = :i:ZGr— radians
cosf, = ﬁ or 24 6V3
LT 13
0 1 3+ 43
11 = = _—
s 2 13

Hence 6, = % or 0.869 radians

5.1 (i) This point is unreachable, since z* + y* > (i + Io)2.

5.1 (iii)
1
cosl, = —
V2
10 " 1
sty = r—t
V2
Hence 6, = :t% radians
0 1 or 3
cos = —or——
' V2 4+5V2
sinfy, = L or 5+4v2
' V2 4+5/2

Hence 6, = g or 1.296 radians

129
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5.2 (1) The inverse kinematics gives:-

cos By = 3@, sinf; = £3; 6 = £% radians
cosf, = £1, sinf; = 0; 6, =0o0rm radians
cosfz = :i:%—g, sinf3 = F3; 83 = == or 3 radians
5.2 (ii)
cosfy = %, sinfy = :Hg; 2 = £+ 7 radians
cosf, = :I:%z, sinf, = +3; 8, = % or XX radians
cosf; = +1, sinf3 = 0; 0;s =0o0rm radlans
5.2 (iii)
cosfy = 1, sinfy = +%2; 6= radians
cosf; = :i:lg, sinf; = +; 6: = % or I radians
cosfs = 11, sinf; = 0; results are mconsnstem,

second point cannot be reached
5.3  The forward kinematics gives:-
xz = lycosf) +Ilycos(0) + 02) + I3 cos(fy + 02 + 63)
y Iy sinf; + lpsin(6; + 02) + l3sin(8, + 02 + 63)
® 014+ 0,4 03

By writing:-
=(z—1l3cos®) = I cosb +lycos(f; + 62)
=(y—Il3sin®) = I;sinf; + l>sin(6; + 62)

we may use the results for the two joint planar manipulator given in section 5.1:-

cosfy = 2” —{(X?4+Y) - (B +B)} =X
sinf, = 1-— A2
1
COSgl = W{4x(l1 + le) + le \Y4 1- /\2}
sin01 = (X'2—+-Y2 {:FXlz\/l—‘/\z‘*}'Yll'*'lg }
03 = ¢ - 02 - 01
If we wishtoplace theend pointatz = 0.5,y = 3.0and ¢ = 57, withl; = 2,1, =1

and [3 = 1, then:-
2
X = x—lcos—33:1.0000

2
Y = y—lsin?ﬂ = 2.1340
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So the computations yield:-

cosf, = 0.1385

sinf, = =0.9904

cos 6, 0.7656 or 0.0045
sinf; = 0.6433 or 1.0000

Thus; to four decimal places, the joint angles must be:-

o 0.6989 1.5663
0, | = 1.4319 | or | —1.4319 | radians
03 —0.0364 1.9600

Let us call the two points a and ¢, with the home positions:-

0 0
a=1]01}, c=11
1 0

The forward kinematics gives the general positions of these points:-

Tq \ ( cos 0; sin 6o

Ya = sinf; siné; |,

Za ) \ cos 0,

T, \ ( — cos 0, cos 05 sin 83 — sin f; cos 83
Ye = — sin 8 cos 85 sin 3 + cos 8; cos 63
Ze } sin @, sin 03

Hence the inverse kinematics are given by:-

cosfy = =z,

sinf, = +/1-22

cosfy = z,/sinby

sinfy = y,/sinf,

cosf3 = y.cosb, —z.sinth

sinf3 = z./sinf,
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5.5 (i) The calculations give:-

cosby —-7/17V2 —T/17V2 1/vV2 1/V2
sing, —23/17V2 —23/17V2 1/V2 1/V?2
cos -1 0 0 -1
sin 0 0 -1 1 0
cos 03 0 0 0 0
sin 83 1 -1 1 -1
The four postures are thus given by:-
0, 1.8662 1.8662 /4 /4
0, | = T , -n/2 |, /2 | or 73 radians
03 /2 —m/2 7 /2 —m/2
5.5 (i)
-(31+20v2)  —(31420v72)
cos 0 (32+25\/\/§_) (32+25\/}) V2 1/V2
. (123+90v2)  (123490v?2)
sin (260+189v2) (260+189v/2) —1/\/5 _1/‘/5
cos 0, 0 1/V2 0 1/v2
sin 6, -1 -1/V2 -1 -1/v2
cosfy  1/v/2 1/v2 1/vV2  1/V2
sin 03 1/v2 -1/vV2  1/V2 -1/V2
The four postures are thus given by:-
6 ~2.6470 —2.6470 —n/4 —7/4
0, | = -n/2 |,| -w/4 |,| —-n/2 | or | —x/4 | radians
03 n/4 —r/4 /4 —n/4

5.6  The inverse kinematics of the Stanford manipulator: in the home position the wrist
centre is located at (I,0,0). The general position of this point is given by the

forward kinematics as:-

L

Ye = A1(01)A2(02)A3(d3)

Ze

1

This gives three equations:-

o~
—

11 cos B, + d3 sin6; sin 8,
l1sin#, — d3 cos 8 sin f4
d3 cos B,

1

- o O

. = ljcosfy + dssinb sinfy (A)
Yo = lysinfy — d3cosf;sinby (B)
Zz. = dscosb, ()]
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From these we may form the following equations:-

(A)cosé, + (B)sindy = z.cosf +y.sinth =1 D)
(A)sing; — (B)cosby = z.sinf; — y.cosby = dzsin 0y (E)

Squaring and adding these equations we obtain:-
(CP+ (DY +(EY=22+y+22=0+d5

This yields an expression for the length of the third joint:-

ds = +y\/22 +y2 + 27 -1
Using this result and (C') we have:-

cosfy = z./ds3

sinf, = +4/1— 22/d}

Returning to the equations (D) and (E)) we can find the sine and cosine of 6;:-

and hence:-

z.cosby +y.sinf; = [
T.sinf; —yccosdy = £4/d5— 22
Solving these two equations gives:-
1
costy = ———{liz. Fyc\/di— 22
Gy e F ey E =)
1

sin 6y {lhye £ zcy/d2 — 22}

(% —v2)
The two sign ambiguities introduced produced four postures.
The lengths are given by:-

d,; = |Ra+t—pi|

dyy = |[Rb+t—py|

dyz = |Rb+t—ps|

Now witha = (0,1), b = (1,1) and p;, p2 as given. We get:-

dyy = \/(tz — sin )2 + (¢, + cos6)?

dpy = \/(7ta¢+cos€—sin0)2+(ty+cosﬂ+sin0)2
dyy = \/(1+tz+cos€—sin0)2+(ty+cos€+sin0)2
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Chapter 6

6.1 (i) Choose the home position to be where the first joint lies along the z-axis and the
rest of the amm is stretched along the z-axis. The forward kinematics is then:-

z, = (li +1xcosb; + l3cos(f2 + 63)) cosb,
Yp = (L +1lacosbs + 13cos(f2 + 63))sin b,
2z, = lasinfy + l3sin(f; + 03)

6.1 (ii) The jacobian matrix is given by:-

—Rsiné, g—ﬁcosal g—‘ﬁcosOl

J=| Rcosét g_eRz sin §, g—;: sin #;
0 9z 9z
89, 305

where R = (l; + Iy cos 02 + I3 cos(6; + 63)) is the distance from the point to the
z-axis.

6.1 (iii) Expanding the determinant about the first column gives:-

SR OR

detd = Rdet ggz ges = —ngl;; sin 03
=r v
a0, 003

If l; > Iz + I3 then R # 0 so the singularities are given by sinf; = 0. Since
this does not give a restriction on the other two joints, the singularities define two
concentric tori, one given by 83 = 0, when the last joint is at full stretch. For the
other, 83 = m, so the last joint is doubled back on itself.

6.1 (iv) From the forward kinematics we have:-

i\/mg +y2 =l +lzcos0r+ 13 cos(fy + 03)

If I > I; + I3, then only the positive sign is possible. The problem then reduces to
the two joint planar manipulator of section 5.1.

‘/l‘g + yf, -1l = lycosfy + I3 cos(6y + 03)

zp = lysinfy + I3 sin(02 + 93)

Hence, in general, there are two postures.

6.1(v) However, if [; < I 4 I3 it is possible that there are points with four postures. If
Iy + Iy cos @y + I3 cos(f2 + 03) can be negative, then z, and y, will remain the
same if the signs of cos §; and sin 6, are reversed. This means that ; changes by
7. We get two postures, as before, with §; = tan™'(y,/z,) and then another two
with §; = 7 + tan~!(y,/z,). However, not all points will be reachable in both
these configurations.
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Now it is possible that R = 0, in which case the point p is on the axis of the first
joint. The forward kinematics is then:-

zp =0, yp =0, zp =lasinfy +13 sin(8> + 03)

Since 6, does not appear in these equations it can take any value.

6.2  See exercise 5.7. Elements of the jacobian are given by:-

dd, :
5t L = (t, —sin8)/da
ad,
E_l = (ty + cos 0)/da1
v
dd, .
301 = —(tycosf +t,sind)/da
dqy
%_2 = (t; +cos —sinf)/d.2
ad, .
5t 2 = (ty + cos 8 + sin8)/dq2
Y
8d g ) .
0 - —(tycosf +tz sm0—tycose+tys1n9)/da2
d
%tbz = (141, +cosf —sin6)/dp
d, )
%—Z = (t, +cosf +sinf)/dp>
v
adaZ . . .
0 - ——(cosH+sxn0+t1c050+t,sm9—tycosﬂ-{—tysmﬂ)/dbg
6.3 (i) The position of a general point is given by:-
z(t) 1 0 ad(t) z(0)
yt) | =0 1 8d@) | | 9(0)
1 060 1 1

The derivative of this equation when t = 0 is:-

£(0) 0 0 ad(0) z(0)
g(0) | = 0 0 8d0) | | 40
0 00 0 1

Hence we can write:-

(5)-()
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So the corresponding column in the jacobian is given by ( ; ) .

6.3 (ii) The position of the point Q is given by:-

zg = (1+d)cosé
yo = (1+d)sinb

The jacobian is thus given by:-
J= —(1+d)sinf cosf
"\ (1+d)cosf sin#

6.4  The general positions of the joint vector are given by:-

0
h = 1
0
1/V2 %cosﬂl
o= RO | 1VE|=| &
0 —%Sin&
1 %cosf)l(l + cosbs) — % sin 8 sin 0,
j3 = R(#,))R(02,¥)] 0 | = %(l—coseg)
0 —% sinf, (1 + cosy) — % cos # sin 6>

see exercise 4.2. So the jacobian matrix is:-

0 \/lf cos 0, %cosﬂl(l + cosfy) — \%siné’l sin 05

J=]1 % 2(1 — cosbs)

0 —Lsing; —1sin6(1+ cosb)— - cosf; sinb,
72 2 V2
6.5 Differentiating RRT =1 gives:
ST , T
RR‘+RR =0

Using the fact that R (0) = | means that:-

R(0)+R (0)=0

In other words R (0) is antisymmetric.

6.6  Under the rigid transformation the direction of the axis is rotated:-

v— RV
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but any point on the axis is rotated and translated:-
u— Ru+t
The vector product thus becomes:-
uAv+— (Ru+t)ARv=R(uAv)+tARV

Now, since we may write the operator tA as an antisymmetric matrix T, see exercise
2.7, the transformation can be summarized as:-

()= () k) (e o)

Chapter 7

7.1 (i) The inverse kinematics gives:-

[ —0.869 (/6
8(0)= ( /6 )’ 6(1) = <7r/6>

See also exercise 5.1. So the linear approximation is:-

8:(t) = 0(0)(1 — ) + B(1)t = ( 1.391¢ — 0,869>

0.524

7.1 (ii) The inverse kinematics for the mid-point is given by:-

1 —0.465
03)= ( 1.575 )

So the quadratic approximation is given by:-

0,(t) = 2(1- t)(% —4)8(0) + (1 — t)te(%) + 2(% — 1)t8(1)

1.513t? + 1.618f — 0.869
—1.575t%2 — 0.521¢ + 0.524

7.2 The end points of the path are:-

I O e 1 g L
V2 V2 V2 V2
K(0) = 0 1 0 |, and K()=| 0 -1 0
-1 g 41 L 0 4L
V2 V2 V2 V2
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We have that:-
0
0(0)=| w/4
0

The inverse kinematics gives the joint angles at the other end as:-

0 .
0(1)=| 3n/4 or -3r/4
e 0

Using the second of the solutions would take us through the singularity at 6, =0,
so we use the first answer:-

0 0 0
0t)=(1—-t)| n/a | +t| 3n/4 | = | n/4+1tn/2
0 n wt
The mid-point is given by:-
1 1
1 V2 0 % L 1 /4
K(i) =| 5 0 -Z | with joint angles 0(5) =\ /2
01 0 /2
The quadratic approximation is thus:-
0 —7/4 0
0,() = (1-3t+2%) | n/a | +@-t)| x/2 |+ (262 —1)| 3n/4
0 w2 ™
?n/4—tr /4
= | 3n/2+tx/2+ /4

t?r/2
7.3  The approximating polynomial is a quartic:-
B4y(t) = at* + bt’ +ct> +dt +e

The points and derivatives we must match are given by:-

04)(0) = e

0(4)(%) = a/l6+b/8+c/i+d/2+e
04)(1) = a+b+ct+d+e

8(0) = d

0(4)(1) = 4a+ 3b+ 2c + d
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These values must be the same as those for the desired path. This gives five
linear equations in the five coefficients. The solution can be found by Gaussian
elimination:-

1 . .
a = —86(0)+166(5) - 86(1) — 20(0) + 26(1)
b = 186(0) — 320(%) +146(1) + 56(0) — 36(1)
1 . .
c = 1168(0) + 160(5) —56(1) — 46(0) + 6(1)
= 6(0)
e = 6(0)
These equations are given in terms of 8’s, which are given, but could be found
using the inverse kinematics, and @’s. However, it is the velocity of the path in
work space that we must match; this is given by v = pc(1) — pc(0). To find the
derivatives of the joint angles we must use the jacobian:-

80y =Jd-'0)v, 6(1)=Jd ')V
After some calculation we have that:-

(3/VZ -4/V2-4/V2

J() = | 5/V2 4/V2 -4/V2 |,
0 -4 0
[ (2+5/V?2) -2 0
J(1) = | —(2+3/V2) -2 0
\ 0 —(4 +2V2)
and the velocity is:-
-2 —4V2
v = —2-V2
—4+2V2

Rather than invert the matrices, it is simpler to solve the linear equations. This
gives:-

~1+2v2 -3/2+3/2V2
60)=| 1-1/v2 |, 61 =| 11/8+7/4/2
1/4 +5/V2 —5/4 — 33/8v/2
Putting all this together gives:-
—-9.97 24.48 -17.90 1.83 0.79
0(t)=| —389 |t*+] 1225 |+ ]| —945 |t°+] 0.29 |t+] 1.57

-17.62 27.67 -14.63 3.79 1.57
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7.4  From the three points we have the three linear equations:-

b = 6(0)
a—- 0(%)c = 20(%) —26(0)
a—6(1)c = 6(1) - 6(0)

These are the same for each component, so we have omitted the subscript. Solving
these equations gives:-

008 (3) — 26:(0)6:(1) + B:(DBi(3)

= 6:(1) - 6:(3)

b = 6;(0)

26;(3) — 6:(0) — 6:(1)
6:(1) — 6:(3)

Ci

The coefficients are thus:-

a, = —2.769, a; = 28.399, a3 = —5.486
by = 0.785, by = 1.571, by = 1.571
1 = 1.525, cp = —7.594, c3=—1431

Note that care must be taken with rational approximations, to avoid the denominator
vanishing.

Chapter 8

8.1 The wrenches acting on the link are:-

0) 0 ) ~2\
0 0 0
Ty = (1) , g= g , T2 = g
0 0 0
\ \-1) 0/
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Thus the total wrench is given by:-

0

W= 1

0

0

\ -1

The pitch p is given by:-
-2
p=| o0 |-| o0 /0- 0 |=-1/1=-1
-1 1 -1

The unit vector in the direction of the axis is:-

0
F=1| o
-1

To find a point r on the axis use the fact that:-

-2
rAF+ pF = 0
-2
rA 0 = 0
-1
—Ty -2
T =
0
This has the general solution:-
0

r=|2|+XA]|0

Here X is an arbitrary parameter. The point on the axis whose position vector is
perpendicular to the axis, r - F = 0, is given by the above vector with A = 0.
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First set up a convenient co-ordinate system; the easiest seems have the origin at
the centre of the second joint, with the z-axis along the second joint axis, the y-axis
along the centre line of the second link and the z axis along the axis of the first joint.
With these co-ordinates the wrenches acting on the second link are:-

() (L) o () moms

So the reaction wrench at the second joint is:-

—-i+k

For the first link the wrenches are:-

(2) (%) (3) rrimmon

Hence the reaction wrench on the first joint is:-

—i+2k

8.3 (i) The unit wrenches have components:-

M;, = (pi A p#)/lpi - pulv F,, = (pi — pu)/|pi - Pu'

where i = 1,2, 3 and g = a, b, c. Multiplying by the given magnitudes gives the
six wrenches acting on the movable link:-

0 \ 0
0 0
3 0 3 0
Wi, = 7 0 Wiy = — 7 )
2/V3 ~1/V3
1 1
0\ 0
) —2
3| —2/V3 3| 4/v3
Wap = = ) , Wae =~ z 0
~1/V3 2/V/3
1 1
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[ V3 ) (V3 )
-1 -1
Ws, = 3 ~4/V3 y Wia=— 3 2/V3
7 1 7 -1
1/v3 -1/V3
\ 1 ) \ 1

The total wrench is thus:-

(o)

0
Wtot'_'\/g —120/\/5
2/V3
\ 0 )

This has pitch p = 0, so it is a pure force in the y-direction, and the point (-6,0,0)
is on the axis.

8.3 (ii) To find the magnitude of the forces we must solve:-

[ 0 0 0 0 V3 V3 \ ([ Fu)
0 0 -2 -2 -1 -1 Fuis
3 0 0 -2/v3 4/V3 -4/V3 2/V3 Fa
1 o 1 -1 0 1 -1 Fa.
2/V3 -1/V3 -1/V3 2/v3 1/v3 -1/V3 || Fi
\ 1 1 1 1 1 1 \ Fsa /
[ 6vT )
—6v3/V7
_ 0
B 0
2/V7
\ 6v3/V7

Note, the columns of the first matrix are the axes of the forces found in exercise 8.3
(i). The solution is:-

Filo=1, Fup=1 Fy=1 F.=1 FR.=1 FR,=1
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8.4  The total wrench acting on the movable link is:-
fi
° f2
Frot = 9 fiFi = (f1|f2l“'fs) :
i=1 .
fe
So the work done in moving the link is:-
F
, #
Fiotdx = (f1, fa,- -, f6) : Ax
7
However, the work done can also be expressed as:-
6
Zfiéli = (f17f21 s 7f6)Al
i=1
where A1T = (6l1,6l,,...,6l;). Comparing the two expressions for the work
done we have that:-
il
#
Al = . Ax
Fs
since the calculation is valid for arbitrary f;’s. Hence we have that:-
7
J = 4
7
because Ax is also arbitrary.
Chapter 9

9.1 (i) Taking a = 2, b = 1 and ¢ = 3, then the inertia matrix with respect to the centre of
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mass is:-
3(1+9) 0 0 Lo o
I= 0 i4+9) 0 =10 2o
0 0 f1+4) 0o 0 32

Now translating the block to the given position:-

0 0 -3 7
t=1]171. T= 3 0
3 -7 0
So we must subtract:-
-58 0 0
T2=| 0 -9 21
0 21 —-49

Hence, the inertia matrix is:-

184

184 0 0
I'=1-T?=| 0o % -21

0 -21 132

3

9.1 (ii) For two bodies we have the integrals:-
Liw= / px A (w A x)dvol, Lw = / px A (w A x)dvol
A Va

where V; and V5 are the regions occupied by the first and second bodies respectively.
Since these regions do not overlap we may add the integrals to give:-

/ px A (w Ax)dvol = / px/\(w/\x)dvol+/ px A (w A X)dvol
Vi+Va Vi Va

= (Il + Ig)w

Hence, the combined inertia matrix is the sum of the two component inertia matrices.
The two blocks in the example have inertia matrices:-

B8 o9 0 £0 0
L=| o % -21 L=[o § -3
0o -21 12 0 -3 %
The total inertia matrix is thus:-
20 0
L+L=| 0 % -2
0 -24 1
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I MC
MCT Mi
co-ordinates to the centre of mass of the body:-

I R

since C is antisymmetric. Now rotate the co-ordinate axes so that in the new co-
ordinates RT(I — MC?2)R = D is diagonal; the fact that this is always possible
for a symmetric matrix is known as Sylvester’s theorem. The diagonal entries are
then the eigenvalues of the matrix. These must be positive since the Kinetic energy
of a rigid body is always positive. The diagonal entries are called the principal
moments of inertia.

9.2 (ii) First we can find blocks with any mass. Now suppose that in the co-ordinates
where the inertia matrix is diagonal, the entries are d, d> and d3. Comparing these
with the inertia matrix for the rectangular block we have three equations:-

9.2 (i) Consider a general inertia matrix N = ) , now move the origin of

M

?(b2 +c%) = d
M

?("2 +) = dy
M

—-3—-((12 + bz) = d3
Inverting these relations gives:-

3
a = \/m(—dl +d2 +d3)

3
b = \/m(dl-—dz'f'dfi)

3
c = \/m(dl'f‘dz_dS)

This fails if the quantity under one of the square roots is negative. So we can only
find an equivalent rectangular block if the body’s largest principal moment of inertia
is smaller than the sum of the other two principal moments of inertia.

S/\S:( vAw )
uAY+YPAu

This is zero by the properties of the vector product for vectors in three dimensions.

9.3 (1)

9.3 (ii) From the definitions we have:-

T
{Sl,W} Sy = ¥, (¥, A7)+, (w AE)+u, - (¢, AE)
WT(SI AS2) Y- (), AYy)+E-(ug Ay) +E- (¢, Aug)
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9.5

9.6
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These are equal by the cyclic properties of the scalar triple product of three-vectors.
From section 9.4, the general equation of motion for a single link is:-
WTs = STNS§

Here the wrench is just the force due to gravity and the screw is the joint axis:-

Wege (—Mgc/\k), Sz(k)
—Mgk rk

so the equation of motion is now:-
—Mpg = (Iss + Mp*)6
The 3,3 component of the inertia matrix I3 is independent of the joint angle in this
case.
The total kinetic energy is the sum of the kinetic energies of the individual links:-
1S
KE=2Y VINV;

Now since V; = Z;zl éij, we have:-

av; | S;, ifj<i

99, 0, ifj>i
The inertia matrix depends on the joint angles but not (directly) on their velocities.
Hence, we have:-

OKE _ l(zjj STN,V; + Zj:vTN S = iVTN S,
aéj 2 1=1 1 1 1 1:1 1 1 1 1:1 1 ™~

using the fact that the inertia matrices are symmetric.
Including friction terms gives:-

6
=3 [V]TN]-S,- + VIN;(V; AS) —(]J.TS,»] fpib; i=1,2,...,6

j=i

here p; is the friction coefficient for the " joint.
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A-matrix, 112
Puma, 40-2, 59, 128
Scara robot, 43, 126
Stanford manipulator, 43, 126
acceleration, 82, 96, 109, 114
acceleration due to gravity, 106
acceleration screw, 109
active transformations, 31-2
algebraic equations, 44-5, 57
algorithm, 112
angle of rotation, 15, 21
angular momentum, 96, 97-8, 102
angular velocity, 68-71, 103
anthropomorphic design, 28
(see also Puma)
anticlockwise, 15, 21, 34
antisymmetric matrix, 22, 72, 98, 101, 120, 136, 137,
146
axis
of a rotation, 15, 20, 21, 66, 68,117,118
of a screw motion, 20, 32, 66
of a wrench, 86, 88,94, 141, 143

bearing, 106, 107
bin picking problem, 5

centre of mass, 97, 101-2, 107-8, 110, 144-6
centre of rotation, 1214, 66, 116
Chebyshev, 79
Chebyshev polynomial, 80
Cincinnati Milacron T3, 38, 71
classical mechanics, 96
closed loop structure, 23, 28-9
co-operating arms, 6
collision, 6
commutativity, 16

(see also order of transformations)
compliance, 934
compliance matrix, 93

computer controlled machine tools, 3
conformations, 57

conjugation, 13,17, 19,27

cylinder, 25

degree of a polynomial, 45

degrees-of-freedom, 23, 26, 28, 30, 34, 48, 55, 62, 89
Denavit-Hartenberg parameters, 40

density, 97,99

design parameters, 34, 3940, 47, 48
determinant, 9, 44, 62, 66, 79,89, 119, 122, 134
Devol, George, 3

diagonal matrix, 105, 146

discontinuity, 76, 80

domestic robot, 5

dot product (or scalar product), 92, 124

dual set of screws, 91

duck, 2

eigenvalue, 14, 19,22, 117
eigenvector, 14, 19,22,117
elasticity, 5
(see also flexibility and compliance)
elbow up, 47,53
elbow-down, 47, 53, 83
elephant, 1
embedded co-ordinate frame, 31-2
end-effector, 1, 30, 34, 36,57, 59,92
(see also gripper and tool)
Engelberger, Joe, 3
equations of motion, 98, 102, 104, 114, 147
equilibrium, 85, 93
errors, 61-2, 75, 79
Euler angles, 17-18, 23, 26, 48
Euler’s equation, 103, 104

fingers, 86, 89
flexibility, 5, 7, 96
flip, 49

149
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force, 85-6,91, 95, 96, 104, 106, 110, 143
forward kinematics, 3443, 59, 134-5
3-R wrist, 36-8, 131
planar manipulator, 34-6, 130
planar parallel manipulator, 55-7
Puma, 40-3, 127-8
Stanford manipulator, 43, 126-7, 132-3
four-bar mechanism, 29-30
friction, 87, 89-90, 96, 115, 147

Gauss elimination, 63, 139
gravity, 106, 11011, 113, 147
gravity screw, 11011, 113
gripper, 5, 42,43, 44, 49, 51
(see also end-effector and tool)
gripping problems, 86-90

helicoidal surface, 25
home position, 7, 23, 34, 65, 112, 134
3-R wrist, 37,49
planar manipulator, 36, 62
Puma, 40, 42, 51, 127
Scara robot, 126
Stanford manipulator, 127
Hook’s law, 934
Horner’s method, 77

identity matrix, 8, 10, 42, 98
identity transformation, 11
inertia matrix, 98-115, 144-7
infinity (point at), 14, 45
instantaneous screw, 70-1, 72, 86, 90-3, 97-9, 102,
103, 105-15
interpolation, 73
Hermite, 81
Lagrange, 79-80
linear, 76
rational, 84, 140
inverse kinematics, 28, 4458, 73
3-R wrist, 48-50, 130, 131, 138
numerical method for, 62-5
planar manipulator, 45--7, 52, 129, 130-1, 137
Puma, 51-5, 57, 74, 132, 139
Stanford manipulator, 57, 132-3
inverse matrix, 9, 32, 63,91, 1234, 139
(see also inverse transformation)
inverse transformation, 11, 32, 52

Jacobian, 59-72, 79, 934, 109, 134, 139
3-R wirist, 69
Cincinnati Milacron T3 wrist, 71, 136
parallel manipulator, 144
planar manipulator, 60-1, 64, 67-8
planar parallel manipulator, 65, 135
joint, 23,25-7
cylindric (C), 25
planar (E), 25
prismatic or sliding (P), 25, 27, 32, 71, 95, 106

Index

revolute (R), 25, 27, 28, 32, 34, 38,39, 71, 92, 106
screw or helical (H), 25, 44, 106, 114
spherical (ball and socket - S), 25, 30, 94
joint offset, 39
joint screw, 71, 106, 110-14
joint space, 28
Jjoint stiffness, 93
joint variable (or angle), 27, 28, 34, 44, 59, 60, 734,
107,109, 111, 112, 138-9
numerical solution for, 62-5
errors, 61-2, 79
Jjoint velocity, 66

kinematic equations
3-R wrist, 37
planar manipulator, 36, 60
kinematic transformation matrix
3-R wrist, 37,48, 54
Cincinnati Milacron T3, 38, 125-6
planar manipulator, 36
Puma, 42
kinetic energy, 115, 146-7

left-hand thread, 19
lefty, 53
legged vehicles, 5

(see also walking machine)
lift-off phase, 74, 81-3
linear approximation, 60, 74-6, 137
linear momentum, 97, 102
linear velocity, 66-8, 69-71
link, 23-5, 105-11
link length, 39
link velocity, 66

mass, 96, 102, 106
moment of force, 85, 96
moment of inertia, 99-102
momentum, 96
(see also linear momentum and angular momentum)
motors, 2, 28, 82, 93, 96, 106, 108
multi-fingered hand, 2, 6, 86
(see also gripper)

Newton’s laws, 96

Newton-Euler equation, 104, 107-8
Newton-Raphson method, 62-5

no flip, 49

numerical methods, 55, 62-5, 74

open loop structure, 23, 28
(see also serial manipulator)
order of transformations, 11, 116
(see also commutativity)

paint spraying, 1, 28
pairing, 90-3, 106-8, 110, 113-14
parallel axis theorem, 101
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parameterization, 17, 59
partial derivatives, 60, 68, 71, 115
partitioned matrix (form), 11-14, 18, 66, 98, 102, 104,
107,114
passive transformations, 31-2
pitch
of a joint, 32, 70
of a screw motion, 19, 20,27, 32, 69, 120, 122
of a wrench, 85, 88,94, 141, 143
planar manipulator, 34, 50, 51, 71,83
forward kinematics, 346, 38, 52, 130
inverse kinematics, 45-7, 53, 63, 131
Jacobian, 60-1, 64, 67-8
planar parallel manipulator, 55-7, 58, 133
Jacobian, 65, 135
planar transformations, 7-15
polynomials, 44-5,77, 138
postures, 47-8, 49, 50,53, 55, 57, 65,75, 83,133, 134
power, 90-1
principle moments of inertia, 146
programming, 1, 5
proper rigid transformation, 9
protheses, 5
Puma, 3, 28, 30, 34, 59, 74
A-matrices, 40-2
forward kinematics, 40-3, 128
home position, 40, 42, 43
inverse kinematics, 51-5, 57, 74, 130
kinematic transformation matrix, 42
postures, 53, 55
wrist, 36

rank of a matrix, 62
reaction wrench, 92, 106-7, 142
recursion, 112-14
redundant manipulators, 5
reflection, 9, 17
in 2-D, 10
Reuleaux lower pairs, 25-6, 89
Reuleaux, Franz, 25
right-hand thread, 19
righty, 53
rigid bodies, 7-8, 23, 66, 69-70, 85, 94, 96, 102, 105,
107,115
rigid (body) motion
in 2-D, 10-12, 1415, 66
in 3-D, 18-22, 26-7, 32, 34, 36, 44, 59, 65, 73,
1024
rigid transformations
in 2-D, 10-14, 15,23
in 3-D, 15-22,23-5, 32, 34, 103, 136
rotation
about an arbitrary point, 12
effect on vectors, 8
in 2-D, 8-10
in 3-D, 15-19,72
inverse, 9
matrix, 8, 71, 100, 102

151

successive or composite or combined, 8, 16

scalar product (or dot product), 9, 20, 21
scalar triple product, 21, 86, 147
Scara robot, 4, 34
A-matrices, 43, 126
home position, 126
screw motion, 19, 26, 69, 122
sensor fusion, 5
sensors, 2, 79
serial manipulator (or robot), 6, 44, 55, 57, 59, 70,
92-3,110,115
set-down phase, 74, 81, 82-3
sheep shearing, 5
similarity transformation, 100, 121
singular point (singularity), 48, 50, 57, 62, 75, 134, 138
singular solution of polynomial equations, 45
skew symmetric matrix, 22
soap, 90
spherical manipulator, 34
spherical mechanism, 37
spline, 81
Stanford manipulator
A-matrices, 43, 126-7, 132
forward kinematics, 43, 126-7, 132
home position, 127
inverse kinematics, 57, 132-3
postures, 133
wrist, 36
Stewart platform, 2, 30, 94, 142-3
forward kinematics, 55, 57
inverse kinematics, 55
stiffness, 93
stiffness matrix, 93
surface of revolution, 25, 90
surface of translation, 25, 90
Sylvester’s theorem, 146
symmetric matrix, 98, 146-7

Taylor’s theorem, 60, 63
telechir, 3
tensor property, 100
tool, 1

(see also end-effector and gripper)
topology, 17, 59
torque, 85-6,91-3, 104, 106, 108-9,110, 112, 114
torus, 65, 134
trace of a matrix, 121
trajectory following, 73-84
trajectory planning, 6
translations

in 2-D, 9-10,71

in 3-D, 18-19,72, 101, 103
trigonometry, 36, 47

identities, 8, 45, 49
twist angle, 39

vector product (A), 21,24, 68, 85, 96, 103, 137, 146
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vector product (A) (continued)
of screws, 104-5

vector triple product, 97, 100, 124

velocity screw, 107, 109, 115

via points, 76, 78, 79

vibrations, 5, 79

volume integral, 97

walking machine, 2
(see also legged vehicles)
wall climbing robot, 5

Index

weight, 92,106, 111

welding, 1, 28, 73

work done, 144

work space, 28, 48, 59, 76, 84, 139

wrench, 85,90-3, 98, 102, 104-8, 112-14, 1404

wrench due to gravity, 110

wrist, 18, 28, 34
3-R or spherical, 36-8, 48-50, 51, 66, 83, 130, 131
Cincinnati Milacron T3, 38, 71, 125-6
roll-pitch-yaw, 37-8
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