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Foreword 

Robots have traditionally been used to work in industrial environments, as they 
constitute the most flexible existing automation technology. In the recent years, 
manufacturing systems are becoming more autonomous requiring less operator 
intervention and a higher degree of customization and reconfigurability for 
disparate applications. In this scenario, robot programming is a key factor toward 
building the applications for the factories of the future. 

This book by J. Norberto Pires constitutes a unique and authoritative reference in 
our professional field, as one of the very few books written by an academic with a 
strong industrial cut. The focus is on the software interfaces enabling humans and 
machines to effectively cooperate on the shopfloor. Several sensors and controllers 
are analyzed in detail, leading to the realization of interface devices using e.g. 
speech recognition and CAD models, and their versatility for a number of 
industrial manufacturing systems is enlightened. 

Easy to read, rich in worked out examples and case studies, the book is 
complemented with additional experimental material available on a web site, 
including code and multimedia files, which the author promises to update 
regularly. 

It is my conviction the book will be appreciated by a wide readership, ranging from 
technical engineers wishing to learn the foundations of industrial robotics to 
scholars and researchers wishing to understand the needs and the potential of a new 
generation of advanced industrial robots to be developed in the next decade. 

Bruno Siciliano 
Professor of Control and Robotics at the University of Naples 
President-Elect of the IEEE Robotics and Automation Society 



Preface 

A scientific and technical book is a starting point. A source of information for 
people browsing for details, a guide for others trying to build similar or related 
solutions, or a source of inspiration for yet others wondering about how things 
work. 

This book was written by an engineer and university professor which has been 
active in the field of industrial robotics since 1994. It was planned, designed and 
built to serve engineers looking for better and more efficient systems, but also to 
serve academic readers interested in the robotics area. The book focus mainly on 
industrial robot programming in the beginning of the twentieth first century, 
namely on the important issues related with designing, building and operating 
flexible and agile robotic systems. It explores in detail the issue of software 
interfaces, but also input/output devices and several industrial and laboratory 
examples. In fact, the book uses several types of fully worked out examples to 
illustrate and clarify concepts and ideas, enabling the reader to see them working 
and even to test some of them. Most of the experimental material used in this book 
can be obtained from: 

hup://robotics, dem. uc.pt/indrobprog 

This site will be updated regularly by the author constituting a source of 
information, code and multimedia files which complement the contents of the 
book. 

Finally, the author wants to thank deeply to all the persons that contributed to this 
book, namely all his undergraduate and graduate students, specially his Ph.D. 
students Tiago Godinho and Gennano Veiga, and his M.Sc. student Ricardo 
Araujo for their help and support in building and testing some of the solutions 
presented in the book. 

J. Norberto Pires, Coimbra, Portugal, 2006 
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Introduction to the Industrial Robotics World 

1.1 Introduction 

Robotics is a subject that leaves nobody indifferent. No matter if they are used to 
work in industry or at our homes, mimic some of the human capabilities, or used to 
access dangerous environments, launched to space, or simply used to play with, 
robots are always a source of interest and admiration. Here the focus is in robots 
used to work on industrial environments [1], i.e., robots built to substitute man on 
certain industrial manufacturing tasks being a mechatronic coworker for humans. 

In fact, actual manufacturing setups rely increasingly on technology. It is common 
to have all sources of equipment on the shop floor commanded by industrial 
computers or PLCs connected by an industrial network to other factory resources. 
Also, manufacturing systems are becoming more autonomous, requiring less 
operator intervention in daily operations. This is a consequence of today's market 
conditions, characterized by global competition, a strong pressure for better quality 
at lower prices, and products defined in part by the end-user. This means producing 
in small batches, never risking long stocks, and working to satisfy existing 
customer orders. Consequently, concepts like flexibility and agility are 
fundamental in actual manufacturing plants, requiring much more from the systems 
used on the shop floor. Flexible manufacturing systems take advantage of being 
composed by programmable equipment to implement most of its characteristics, 
which are supported by reconfigurable mechanical parts. 

Industrial robots are good examples of flexible manufacturing systems. Using 
robots in actual manufacturing platforms is, therefore, a decision to improve 
flexibility and to increase the agility of the manufacturing process. If the 
manufacturing processes are complex, with a low cycle time, and have a lot of 
parameterization due to the diversity of products, then using robots is the correct 
decision, although it isn't enough for a complete solution. In fact, engineers need to 
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integrate other technologies with the objective of extracting from robots the 
flexibility they can offer. That means using computers for controlling and 
supervising manufacturing systems, industrial networks, and distributed software 
architectures [2,3]. It also means designing application software that is really 
distributed on the shop floor, taking advantage of the flexibility installed by using 
programmable equipment. Finally, it means taking special care of the human-
machine interfaces (HMI), i.e., the devices, interfaces, and systems that enable 
humans and machines to cooperate on the shop floor as coworkers, taking 
advantage of each other's capabilities. 

1.2 A Brief History of the Industrial Robot 

The word ''robof comes from the Czech ''robota'' which means tireless work It 
was first used in 1921 by the novelist Karel Capek in his novel ''Rossum's 
Universal Robots". Capek's robots (Figure 1.1) are tireless working machines that 
looked like humans and had advanced capabilities even when compared with 
actual robots. The fantasy associated with robotics offered by science fiction 
movies, and printed and animated cartoons is so far from reality that actual 
industrial robots seem primitive compared with the likes of C3P0 and R2-D2 
(from the movie Star Wars), Cyber dyne TIOOO (from the movie Terminator 11) 
Bishop (from the movie Alien II) and Sonny (from the moviQ I Robot), for example. 

Figure 1.1 A robot from Karel Capek's novel ''Rossum 's Universal Robots'' 
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But robotics was a special concern of the most brilliant minds of our common 
history, since many of them took time to imagine, design, and build machines that 
could mimic some human capabilities. It is one of the biggest dreams of man, to 
build obedient and tireless machines, capable of doing man's boring and repetitive 
work; an idea very well explained by Nicola Tesla in his diary [4]: 

''... / conceived the idea of constructing an automaton which would 
mechanically represent me, and which would respond, as I do myself, but, 
of course, in a much more primitive manner, to external influences. Such an 
automaton evidently had to have motive power, organs for locomotion, 
directive organs, and one or more sensitive organs so adapted as to be 
excited by external stimuli...". 

Figure 1.2 Water clocks designed by Ctecibius {11 () B.C.) 

Today's challenge is to consider robots as human coworkers and companions, 
extending human capabilities to achieve more efficient manufacturing and to 
increase the quality of our lives. This book focuses on industrial robotic coworkers. 
The fields of robotics that consider the companion aspects, namely service robotics 
and humanoid robotics, are not covered in this book. Nevertheless, the social 
perspective of using robots not only as coworkers, but also as personal assistants, is 
very promising. In fact, due to several social and economical factors, we are 
required to work until very late in life: It is common in Europe to only allow 
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retirement when a person is near seventy years old. Since our physical and mental 
capabilities decrease with time, the possibility of having mechanical assistants that 
could help us in our normal routine has some valuable interest. 

Robotics can be traced back to 350 B.C., in the ancient Greece, to the fabulous 
philosopher and mathematician Archytas of Tarentum (428-347 B.C.) and a 
demonstration he made in front of the metropolis senators. A strange machine that 
he called "the pigeon'' was capable of flying more the 200m, using some type of jet 
propulsion based on steam and compressed air: a great achievement for the time 
(the invention of the screw and also the pulley are attributed to Archytas). 

-e^a 

im^^ 
Figure 1.3 A Greek design adapted by al-Jazari for a garden hand-washer 

In 270 B.C., also in ancient Greece, the civil engineer Ctecibius was capable of 
building water clocks with moving parts (Figure 1.2). His work had followers like 
Phylo of Byzantium author of the book ''Mechanical Collection'' (200 B.C.), and 
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Hero of Alexandria (85 B.C.), and Marcus Vitruvius (25 B.C.). In the twelfth 
century, the Arabian Badias-zaman al-Jazari (1150-1220) recollected some of the 
Greek developments in the book ''The Science of the Ingenious Devices'' [5] 
(Figure 1.3), and that is how they reached our time. In those early times the 
problem was about mechanics, about how to generate and transmit motion. So it 
was mainly about mechanisms, ingenious mechanical devices [5,6]. 

Then in the fifteenth century, Leonardo da Vinci showed indirectly that the 
problems were the lack of precision and the lack of a permanent power source. He 
designed mechanisms to generate and transmit motion, and even some ways to 
store small amounts of mechanical energy [7]. But he didn't have the means to 
build those mechanisms with enough precision and there was no permanent power 
source available (pneumatic, hydraulic, or electric). Maybe that was why he didn't 
finish his robot project [5,6], a fifteenth century knight robot (Figure 1.4) intended 
to be placed in the ''Salle delle Asse'' of the Sforza family castle in Milan, Italy. It 
wasn't good enough. Or it was so revolutionary an idea for the time that he thought 
that maybe it was better to make it disappear [5,6]. 

Figure 1.4 Leonardo's studies for a humanoid robot 

And then there was the contribution of Nicola Tesla at the turn of the nineteenth 
century. He thought of using Henrich Hertz's discovery of radio waves (following 
the work of James Clerk Maxwell about electromagnetic phenomena) to command 
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an automata. He built one (Figure 1.5) to demonstrate his ideas and presented it in 
New York's Madison Square Garden in 1898 [4,6]. The problem then was that 
machine intelligence was missing. Robots should be able to do pre-programmed 
operations, and show some degree of autonomy in order to perform the desired 
tasks. When that became available, robots developed rapidly, and the first 
industrial one appeared in the early 1970s and spawned a multi-million dollar 
business. 

After that, robotic evolution was not as fantastic as it could have been, since there 
was a lot to do and the available machines were sufficiently powerful to handle the 
requested jobs. Manufacturers were more or less happy with their robots, and 
consequently industrial robots remained position-controlled, somehow difficult to 
program by regular operators, and really not especially exciting machines. Features 
currently common in research laboratories hadn't reached industry yet because of a 
lack of interest from robot manufacturers. Nevertheless, there was a considerable 
evolution that can be summarized as follows. 

Figure 1.5 Nicola Tesla's remote-controlled miniature submarine 

In 1974, the first electrical drive trains were available to use as actuators for robot 
joints. In the same year, the first microprocessor-controlled robots were also 
available commercially. 

Around 1982, things like Cartesian interpolation for path planning were available 
in robot controllers, and many of them were also capable of communicating with 
other computer systems using serial and parallel interfaces. In the same year, some 
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manufacturers introduced joystick control for easier programming, and the teach 
pendant menu interface. 

In 1984, vision guidance was introduced as a general feature for tracking, parts 
identification, and so on. 

In 1986, the first digital control loops were implemented enabling better actuator 
control and enabling the use of AC drives. 

Networking is a feature of the 1990s, with several manufacturers implementing 
networking capabilities and protocols. 

In 1991, there was the implementation of digital torque control loops, which 
enabled, for example, the utilization of full dynamical models; a feature only 
available in the first robots around 1994. 

During the period 1992-1994 several manufacturers introduced features like 
Windows-based graphical interfaces, virtual robot environments for off-line 
programming, andfieldbuses. 

Robot cooperation is a feature introduced from 1995 to 1996. 

.-^Ti'- •_,^ 

Figure 1.6 Actual robot manipulators 

Around 1998, robot manufacturers started introducing collision detection to avoid 
damaging robots, and load identification to optimize robot performance. Since then 
other features include fast pick and place, weight reduction, optimized 
programming languages, object-oriented programming, remote interfaces using 
RPC sockets and TCP/IP sockets, etc.. Figure 1.6 shows some of the robot 
manipulators available currently on the market. 

So how do we define robotics then? Is it a science? Is it a technique or collection of 
techniques? If the reader opens a robotics book something like this appears: 
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''A robot is a re-programmable multi-functional manipulator designed to 
move materials, parts, tools, or specialized devices, through variable 
programmed motions for the performance of a variety of tasks ", from the 
book Robotics - Control, Sensing, Vision and Intelligence, Fu, Gonzalez, 
Lee, MacGrawHill, 1987. 

Although correct, despite being restricted to robot manipulators, this definition 
doesn't give the correct idea. The common sense image of a robot is usually 
associated with strong and superb machines, tireless (like Karel Capek's 
machines), obedient i^'yes, noberto san ..."), but nevertheless, fascinating machines 
that make us dream. And that fascination is not in that definition. 

As with everything, we should look to the past and pick what was fundamental for 
the history of robotics in terms of ideas and dreams. From the Greeks and Arabs 
we should pick their idea of ''ingenious devices''. In fact, robotics is very much 
about mechanics, motion, mechanisms to transmit motion, and having the art and 
the skill to design and build those mechanisms. Yes, "ingenious devices" is really a 
good start. 

Then we should turn to Leonardo (sixteenth century) and look to his quest for "... 
precision ..." and ''...permanentpower source ...". He understood that robots need 
parts built with very high precision and a permanent power source. That was not 
available at his time, i.e., machine tools and a permanent power source (electric, 
hydraulic, or pneumatic). 

Finally, we should read Nicola Tesla and observe his outstanding and visionary 
work. He understood that robots are a consequence of dreams and neat ideas. 
Robots need to be controlled and programmed, distinguish situations, etc., have 
ways of "understanding'', and that means using computers, electronics, software, 
and sensors, in a way to enable machines to be programmed and to sense their 
environment. Those are the elements that enable us scientists, engineers, and robot 
users to try different things and new ideas, being a source of fascination. In his 
own words [4]: 

**... But this element I could easily embody in it by conveying to it my own 
intelligence, my own understanding. So this invention was evolved, and so a 
new art came into existence, for which the name ''teleautomatics " has been 
suggested, which means the art of controlling movements and operations of 
distant automatons. 

Therefore, we can define robotics as a science of generic, ingenious, precise, 
mechatronic devices, powered by a permanent power source; a science that is open 
to new ideas and that stimulates the imagination. A stimulus so strong that it 
attracted many of the best minds of our common history, i.e., authors of the work 
that constitutes the legacy that we humans leave for the future. 
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1.3 Using Robotics to Learn 

Putting robots in space, and in other planets, is a very exciting field of modem 
robotics. This and other fantastic achievements justify the enormous interest about 
robots and robotic applications. Only a few engineering fields are as 
multidisciplinary as robotics, i.e., areas that require knowledge of as many 
different scientific and technical disciplines. Robotics integrates an extensive 
knowledge of physics, mechanics, electronics, computer science, data 
communications, and many other scientific and technical areas important for the 
design, construction, and operation of machines that execute human-like functions. 

Figure 1.7 Robot MER-A {Spirit) sent to Mars in June of 2003 (from NASA) [8] 

In this section a small mobile robot, named Nicola, is presented. The robot is 
constructed, using commonly available industrial equipment, to be commanded 
from a typical personal computer running standard operating systems and software 
development tools. The final goal is to demonstrate what is involved in the 
construction of this type of robot, showing that it is possible to play with science 
and technology and in the process learn and spend a fantastic time. The robot 
Nicola will be presented step-by-step with enough detail for showing what is 
involved. 

NASA initiated in June 2003 a new mission to further explore Mars, the great red 
planet of our solar system [8]. The allure of Mars is based on its proximity to 
Earth, but also on the assumption that it was once like Earth, with water available 
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on the surface and life, before changing gradually to a hot and dusty planet. In this 
mission, NASA used again semi-autonomous mobile robots to explore the planet. 
These Mars exploration rovers (MER - Figure 1.7), named Spirit and Opportunity, 
are capable of navigating the surface of the planet, analyzing rocks and land, and 
sending back pictures, videos, and results from experiments carried out on the 
planet's surface. The spaceship that carried Spirit was launched on June 10, 2003, 
and arrived on Mars on January 4, 2004. In turn, the spaceship that carried 
Opportunity left on July 7, 2003, and arrived on Mars on January 25, 2004. 

The utilization of these robots was also a dream of the great Croatian inventor 
Nicola Tesla (1845-1943), a man that gave a pioneering and visionary contribution 
for the evolution of robotics. He worked with the legendary Thomas Edison and 
was a tireless, dedicated, and bright inventor. Tesla was the archetype of the 
inventor: solitary, absent minded, abstracted of the normal things of life, with an 
exclusive dedication to his work and visionary. At the end of the nineteenth 
century he dreamt (doesn't everything begins like this?!) oiautomatons capable of 
performing tasks only possible to intelligent living creatures. For that, the 
automaton needed an element equivalent to the human brain. Since that seemed 
complicated, he thought about using his own brain for commanding the automaton 
[4]. 

SWITCH 
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Figure 1.8 Heinrich Hertz's first transmitter, 1886 schematic 

That capacity of commanding distant automatons was achieved using Henrich 
Hertz waves (published in 1887 in a treatise named ''Optice Elettrica''), Tesla had 
access to Hertz's publications and saw in his radio transmitters and receivers 
(Figure 1.8) a way to implement his own ideas. To demonstrate the principle, Tesla 
built a model of a submarine (Figure 1.5) controlled remotely using coded hertz 
impulses (controlled by radio, therefore). He could command the boat to turn to the 
right or to the left, submerge and emerge, etc. Despite the enormous interest of the 
new invention, which he demonstrated in the Madison Square Garden of New York 
City (1898), before an overwhelmed audience, he failed to obtain support to 
continue his efforts on the subject. 
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HUB USB 

2 Batteries 
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Laptop 
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Siemens S7200 

Power Unit: DC Motor (24V, 50W), planetaiy gearhead 25:1, velocity control circuitry 

a) 

Solar panels 

b) 

Figure 1.9 The Robot Nicola: a) Nicola I; b) Nicola II 

But it was a fabulous advancement for the time (nineteenth century). How would it 
be building a system with those characteristics today? Using common industrial 
equipment, wireless communications, actual operating systems, and well known 
programming tools? 

That is the goal of our robot Nicola, i.e., to show that Tesla's dream is still actual, 
and that despite the sophistication of those robotic space explorers (Figure 1.8), the 
technology involved and the concepts are simple, accessible, and fun to learn how 
it all basically works. 



12 Industrial Robots Programming 

1.3.1 Constitution of the Robot Nicola 

The robot Nicola is very simple. Basically it is a three-wheel robot with two power 
wheels in front and a free wheel in the back (Figure 1.9). The wheels used are of 
the same type that can be found in office chairs and other office equipment. Each 
of the two power wheels are equipped with a power unit composed of 

1. One 24 V DC motor (max. power 50 W, max. velocity 3650 rpm, max. 
torque 0.17 Nm), model MDLC-58 from Maclennan Ltd. [9] 

2. One 25:1 gear unit, model IP57-M2 from Maclennan Ltd. [9] 

The selected DC motor is equipped with a velocity control loop (Figure 1.10), 
which makes it very simple to linearly control velocity just by feeding the unit with 
a 0-5 V analog signal. The control circuit is a very simple electronic circuit 
composed of a velocity control loop and a power amplifier. The velocity control 
loop makes the motor velocity proportional to the commanding analog signal (0-5 
V in magnitude), and the rotating velocity is defined by a digital input (0 - positive 
direction, 1 - negative direction). 

V elULil^ ^ ^ ^ ^ ^ " ^ 

V elo c ity ^ 
Reference 

Direction ^ ^ ^ ^ ^ " 

Digital 
Control Loop 

i t 
Analog 
Velocity 
Control Loop 

Power 
Amplifier 

DC Motor 
(BLDC 58) 

^^r - •• • • ^ j ^ B 

Figure 1.10 Diagram of the velocity control circuitry [9] 

Using this power unit, attached to each wheel, there is no need for a mechanical 
steering mechanism since the electric differential effect can be used to steer the 
robot, i.e., varying the speed of each independently wheel it is possible to turn to 
the right and to the left with high-precision and several curvature radius. For 
example, if the speed of the left wheel (vi) is equal to the speed of the right wheel 
(Vr), the robot moves forward in a straight line (vi = Vr > 0). If we change the sense 
of rotation of the wheels (vi = Vr < 0), the robot moves backwards also in a straight 
line. Making Vi > Vr, the robot turns to the right, and with vi < Vr it turns to the left. 
Adjusting the value of vi and Vr several curvature radius may be obtained. Finally, 
making vi == -Vi- the robot turns about itself 
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Furthermore, with the objective of using industrial components, the robot uses a 
medium class PLC {Programmable Logic Controller) to interface with sensors and 
actuators. The selected PLC is a Siemens S7-200 (DC model with the 215 CPU), 
equipped with a 12-bit resolution analog module (module EM235, with three 
inputs and one output) [10]. 

To command the robot, a laptop is installed on the robot, connected to the PLC 
using a serial link (RS-232C channel). The software running on the laptop was 
built to work as a TCP/IP socket server, enabling commands by any authorized 
remote client. The operating system running on the PC is the Microsoft Windows 
XP, which makes it easy to add advanced services, attach devices (like network 
devices, Webcams, etc.), and explore them from available software developing 
tools {Visual Basic, C++, C#, etc.). 

1.3.2 Nicola Software 

The software designed to control and operate Nicola is divided into three levels, 
identified with the programmable hardware components that constitute the robot: 

1. The PLC that implements the low-level interface with sensors and 
actuators 

2. The on-board PC used to manage the robot and interface with remote 
users 

3. The commanding PC, i.e., the computer used to command the robot and 
monitor its operation 

In the following sections the software will be presented in detail. The interested 
reader can download the source code from [11]. 

1,3,2.1 PLC Software 
The mission of the PLC is to interface with analog and digital sensors that could be 
used with the robot, and to control the two DC motors that move the robot and any 
other actuator that could be added to the system. Consequently, a PLC is a good 
choice since this is basically what is required from them in industry, i.e., to work as 
local and low-level interfaces with sensors and actuators implementing sequential 
commanding routines. In addition, PLCs are very easy to use and to program, 
which also justifies the solution. The only difficulty with the PLC is the need to 
have it working as a server, executing the commands sent by the on-board PC that 
manages the robot (Figure 1.11). This means that the PLC should implement the 
services required to operate the robot, namely: 

1. The possibility to change any analog or digital output 
2. The possibility to access any analog or digital input 
3. The possibility to command macros, or batches of functions 



14 Industrial Robots Programming 

4. The possibility to receive events with detailed information about the status 
of the robot. 

Command Message 

Answer 

Sup ervision M e ss age 

Figure 1.11 Messages between the on-board PC and the PLC 

Table 1.1 List of PLC command codes 
Command 
159 

160 

200 

201 

253 

Parameter 1 
120 +output 

120 + input 

120 +output 
130 +output 

120 +output 
130 +output 

-

Parameter 2 
Valor 

-

-

Description 
Changes the specified analog 
output. 
Reads the actual value of the 
specified analog input. 
Activates the specified digital 
output of the first output block 
(120) or of the second output 
block (130). 
Deactivates the specified digital 
output of the first output block 
(120) or of the second output 
block (130). 
Supervision message. 

This idea is very simple and not different from what is done in more advanced 
machines, like the industrial robots. From the remote client, properly authorized, 
the user accesses memory zones to change some predefined variables (bytes, word 
or double-word variables). If the value of those variables is used in the 
programmed instructions, it is possible to execute only the intended sequences just 
by comprehensively changing the values of those variables. The PLC answers to 
remote commands sent with a pre-defined format and with a maximum length of 



Introduction to the Industrial Robotics World 15 

100 bytes. The first byte of the commanding message specifies the command, and 
the following bytes are parameters (see Table 1.1). 

The synchronous answer of any command is a copy of the message received, 
which enables the commanding PC to check if the command was well received 
using for example an ACK-NACK (acknowledge - not acknowledge) protocol. 
Besides that, there is a special command (code = 253) used for monitoring the PLC 
state. When the PLC receives this command it should answer by sending the state 
of all its 10 inputs and outputs. This message should be sent frequently to track the 
robot state. In the robot Nicola this message is associated to a 500 ms timer, which 
means that the robot state is updated at a frequency of 2 Hz. 

Any asynchronous answer contains the execution results of one command. For 
easy identification from the serial port interrupt routine, the first byte of the answer 
identifies the code of the executed command. The user commands should be 
associated with user actions like pressing software buttons or keyboard buttons, 
etc. When the PLC receives a command, it transfers the received data into a pre­
defined memory zone starting with register VB90. Consequently, if the command 
contains n bytes, with n <= 100, the following happens: 

Byte VB90 ~ contains the number of byte received 
Byte VB91 - contains the character (code) that identifies the command 
Byte VB92 - contains parameter 1 

Byte VB90 + n -1 - contains parameter n 

The PLC routine designed to handle the serial port initializes the port in the first 
SCAN cycle, entering after that into the listen state. When a message is received, 
the data is transferred to the already mentioned memory zone and a copy is sent 
back to the calling PC. 

For example, the PLC used with Nicola {Siemens 87-200) has 10 digital outputs in 
the basic module, labeled from QO.O to Q0.7 (output block 0), and from Ql.O to 
QLl (output block 1). To access those digital outputs, the command must specify 
the type of access (write or a read access), the signal number, and the signal value 
in the case of a write access (check Table LI). 
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Digital Inputs 

0.0O lOQ 

0.1O 1.10 

0,20 1-20 
0.3O 1.30 

0.40 i- iO 
0.5O 1.50 
0.6O 

0.7O 

^̂ B 

Digital Outputs 

0.1 ^ 1.1 _QJ 

0.3 _QJ 

0 . 4 ^ 

0.5 _oJ 

O.G_QJ 

"̂ ^Oj 

'Activates/deactivates digital outputs from block 0 
Private Sub qO_Click:(Index As Integer) 
If fqO(Index) = False Tlien 
com.Output = Ciir(200)+Chr(120+Index)+Chr(10) 
fqO(Index) = True 

Else 
com.Output = Chr(201)+Clir(120+Index)+Chr(10) 
fqO(Index) = False 

End If 
End Sub 

' Activates/deactivates digital outputs from block 1 
Private Sub ql_Click(Index As Integer) 
If fql (Index) = False Then 
com.Output = Chr(200)+Chr(130+Index)+Chr(10) 
fql(Index) = True 

Else 
com.Output = Chr(201)+Chr(130+Index)+Chr(10) 
fql (Index) = False 

End If 
End Sub 

' Shows 10 state 
Private Sub rio_Click() 
Dim i As Integer 
For i = 0 To 7 
If(bq00And2'^i) = 2'^iThen 
qO(i).Picture = Ion 
fqO(i) - True 

Else 
qO(i).Picture = loff 
fqO(i) = False 

End If 
Next i 
For i = 0 To 1 
If(bqlOAnd2^i) = 2^iThen 
ql(i).Picture = lon 
fql(i) = True 

Else 
ql(i).Picture = loff 
fql(i) = False 

End If 
Nexti 
For i = 0 To 7 
If(bi00And2^i) = 2^iThen 
iO(i),Picture = Ion 

Else 
iO(i).Picture = loff 

End If 
Nexti 
For i = 0 To 5 
If(bilOAnd2^i)==2^iThen 
il(i),Picture = lon 

Else 
il(i).Picture = loff 

End If 
Next i 

End Sub 
Figure 1.12 

The serial port interrupt service routine stores the 
messages received from the PLC in the variables: 
bqOO - digital output signals of block 0 
bqlO - digital output signals of block 0 
biOO - digital input signals of block 0 
bilO - digital input signals of block 0 

The routine rio_click represents the received 
information at the user panel using colors: yellow 
(activated), gray (deactivated). 

Digital Outputs 

Digital Inputs 

When a message arrives, the service routine calls 
"rio_click" to present the information: 

Private Sub com_OnComm() 
get_com_message 
rio_Click 

End Sub 

PC software designed to access 10 signals 
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Consequently, to change the state of Q 1.1 to 1 the following command should be 
sent (Table 1.1): 

200 131 255 255 10 

where ''200'' specifies a digital write access, ' 7 5 7 " specifies the output Q l . l , 
''255'' is a null command/parameter and "10" is the end-of-message character. The 
software for this example, including the both the PLC and the PC side, is presented 
in Figures 1.12 and 1.13 (the PC part was coded using Microsoft Visual Basic 
.NET2003, and the PLC part was coded using the Siemens PLC S7-200 
programming tool called Microwin 3.2). 

VB91 

200 

VB91 
•.-B\ 

201 

VB92 

\=-B\-
120 

VB92 

= -B\-

121 

VB92 

= B | . 

122 

VB92 

120 

VB92 

121 

VB92 

122 

QO.O 

1 

Q0.1 

1 

Q0.2 

1 

Q0.0 

1 

Q0.1 

1 

Q0.2 

1 

NETWORK 5 
LDB= VB91,200 
LPS 
AB= VB92, 120 
S QO.O, 1 
LRD 
AB= VB92, 121 
S QO.l, 1 
LRD 
AB= VB92, 122 
S Q0.2, 1 

NETWORK 6 
LDB= VB91,201 
LPS 
AB= VB92, 120 
R QO.O, 1 
LRD 
AB= VB92, 121 
R QO.l, 1 
LRD 
AB= VB92, 122 
R Q0.2, 1 

F i g u r e 1.13 PLC code to activate/deactivate digital outputs. Due to space limitations, only 
the code for the first three outputs of the digital block 0 is presented. 
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1.3.2.2 Software for the On-board PC 
The software for the on-board PC was designed to control the robot, and to 
interface with the remote user connected to the robot's on-board computer using a 
wireless network connection (Figure 1.14). 

Local 
Network 

wireless 

Figure 1.14 Overview of the system used to operate the robot Nicola 

The on-board user interface software is a TCP/IP socket server that listens on a 
specific port, accepts and validates user connections, and processes the commands 
sent by the remote client. Those commands have the following basic syntax: 

rx command parameter_1 parameter_2 ... parameter_n 

where, rx specifies the robot (for example, rl), command is a string that specifies 
the command to be executed (Table 1.2), and parameter J is the set of parameters 
associated with the particular command. 

Figure 1.15 shows the shell of the TCP/IP server developed for the on-board 
computer. The panel functions enable the user to quickly access the local robot 
functions, and the TCP/IP server included in the application implements the 
interface for remote users. 



Introduction to the Industrial Robotics World 19 

Nicola Control Program 
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Connection with Nicola est-abhshed . 

Figure 1.15 TCP/IP server used to operate the robot Nicola: listens to connections on port 
54321, validates connections, and process commands 

Table 1.2 List of commands available from the on-board TCP/IP server 
Command 
INFO 
VELC 

STOP 
AVAN 

RECU 

FRNT 

DIRT 

ESQD 

DIRD 
DIRE 

Parameter 
-
Valor (0-255) 

-
-

-

-

Valor (0-100) 
Valor (0-100) 

Description 
Supervision message. 
Commands the robot velocity: 0 (min.) to 255 
(max.). 
Stop command. 
Commands the motors to move in the positive 
(forward) direction. 
Commands the motors to move in the negative 
(backward) direction. 
Commands the motors to move straight 
ahead/backward, i.e., clears any steering direction. 
Turns right at 50%, i.e., the actual velocity of the 
left motor is kept and the velocity of the right 
motor is reduced by 50%. 
Turns left at 50%, i.e., the actual velocity of the 
right motor is kept and the velocity of the left 
motor is reduced by 50%). 
Turns right by the specified amount. 
Turns left by the specified amount. 
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TCP/IP Client to Access and Conunand Nicola ZMEl 

r1 veic 30 

Figure 1.16 TCP/IP client used to operate the robot Nicola from any remote PC 

Figure 1.16 shows a simple TCP/IP client example that can be used to command 
remotely the robot Nicola. This example offers to the user the possibility to execute 
simple commands like start and stop, move forward or backward, turn left and 
right (with a specified steering angle), or move straight ahead and regulate the 
robot's speed. 

1.3.2.3 Feedback from the On-board Webcam 
The robot Nicola is equipped with a webcam to register images of it's operation 
and to help the remote user command it in situations were the robot is not in sight. 
It's very easy to get images and video streams from a webcam and there are a lot of 
software packages and tools to do that. Here the Microsoft Visual SDK 1.2 is used 
because it is an open source SDK, and because it integrates well with the 
development environment used to write the software: the Microsoft Visual Studio 
.NET2003. 

Since the video feed is installed on the robot, there's also the problem of sending 
the obtained images from the on-board computer to the remote computer, using the 
data rate more adjusted to the capacity of the wireless link. 
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Again we opted to build a TCP/IP server to work as the image service. Basically 
this server is able to capture images and save those images in the hard disk of the 
on-board computer. These files can then be shared with the remote computer using 
an FTP connection or simply by sharing the directory. Using a mechanism like a 
semaphore it is possible to avoid having the two computers accessing the file at the 
same time, i.e., by the on-board computer that generates the file and by the remote 
computer that reads the file and presents it to the user. The image refresh rate 
depends on the communication speed and availability, but also on the size of the 
image. Nevertheless, it is possible to have rates up to 10 frames per second. Live 
streams, of about 30 to 40 frames per second, are only possible for the on-board 
computer since it was decided to avoid sending streams over the TCP/IP 
connection. This was a decision for simplicity, but also a practical decision: Live 
streams are really not necessary for this application. 

The TCP/IP image server implements the following basic services: 

1. Specify the vision provider, namely the driver that will be used to capture 
the image. In this example the Webcam uses a Video for Windows (VFW) 
driver 

2. Start/stop the acquisition service 
3. Obtain the actual image and save it to the on-board hard disk 

The image server (Figure 1.17) listens at the port 54322 for messages starting with 
the character "@" and ending with the character "#". For example, the command 
message to obtain the actual image is: 

@IMAGE rita beatriz dina# 

where, IMAGE is the command, rita is the usemame, beatriz is the password and 
dina is the name of the file where the image should be saved. The TCP/IP client 
will present the image only if the answer from the server matches exactly the 
command sent. Any other situation is considered an error. 

"m mJM.m \y\ | ^y | . ^ ; ^^ j | ^ i |—gmj^gg jua j j a—^w^——i _ j a\ 
ICnd => IMAGE 

IParl " r i t a 

|Par2 • beatriz 

|par3 = dina 
IlKAGE - Ident i f icat ion Request 
IConnand to UIDEO SOURCE: eiflAGE r i t a beatriz dina 
IKeceived 24 b^tes fron c l i e n t : 
IGIKftGE r i t a beatriz dina 
ICnd » IKftGE 

IParl - r i t a 

|par2 = beatriz 

|Par3 - dina 
llHAGE - Ident i f icat ion Request 
IConnand to UIOEO SOURCE: eiMAGE r i t a baatriz dina 

" = 

3 

Tj 

Figure 1.17 Output window of the on-board TCP/IP image server 
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Basically, the TCP/IP image client (Figure 1.18) has one button for each available 
service and shows the obtained image and the refresh rate. The method used to 
avoid simultaneous access to the image file between the two computers was a 
50ms timer. The timer interrupt service routine performs alternatively the call to 
acquire the image and the call to get the file from the on-board computer, avoiding 
the simultaneous access to the image file. This means that a new image is obtained 
every 100 ms. Consequently, the only limitation to the refresh rate is the 
throughput of the communication link. 

Figure 1.18 TCP/IP image client used on the remote PC 
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This simple example, which explores industrial equipment to build a useful mobile 
robot, shows clearly that robotics is a very interesting subject to learn and play 
with science and technology. It also shows that the concepts are accessible and can 
be explored by any student or engineer. The main objective of this section was to 
motivate readers to explore this book, because it'll show how things work and can 
be implemented in a practical way, with enough detail for those readers who want 
to explore further. 

1.4 Using Robotics to Work 

The industrial robotic system presented in this section was designed to execute the 
task of removing the excess of PVC material from automobile glasses, which 
accumulates during the glass manufacturing cycle. In fact, most of the automobile 
glasses, namely front, rear, and roof glasses, are composed of two sheets of glass 
joined by a layer of PVC. For proper assembly, and to ensure proper joining of the 
PVC to the glass while maintaining transparency, the glass goes through a heating 
process, followed by a considerable period inside a pressure chamber. This process 
generates a very stiff excess of PVC on the borders of the glass that must be 
carefully removed because it alters the dimensions of the glass, causing difficulties 
in assembling it in the car body, not to mention the aesthetic implications. 

Figure 1.19 Robotic glass deburring system 
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Traditionally, this excess of PVC is removed by hand using small cutting devices. 
Nevertheless, for highly efficient plants, this is not desirable since it slows down 
production, and requires very high concentration from operators so they don't 
touch and damage the glass with the cutting device. Consequently, the process is 
very risky for the quality of the final product. Furthermore, with recent car designs, 
some glasses are glued directly in the chassis without any exterior rubber, mainly 
with roof, front, and rear glasses. Here the requirements for perfect PVC removal 
are even higher, which demands an automatic procedure to execute it. 

The system (Figure 1.19) designed to handle the operation described above is 
composed of [12]: 

1. Two industrial robots ABB IRB6400 equipped with the S4C+ controllers 
2. Specially designed electric-pneumatic grippers to hold firmly the glasses 
3. Two automatic deburring belts controlled by the robot's controller 10 

system 
4. One industrial PLC {Siemens S7-300) that manages the cell logic and the 

interface to the adjacent industrial systems, providing to the robot 
controllers the necessary state information and the interface to the factory 
facilities 

5. One personal computer to command, control and monitor the cell operation 

The system works as follows: The first robot verifies if conveyor 1 (Figure 1.19) is 
empty and loads it with a glass picked from the pallet in use. The system uses a 
rotating circular platform to hold three pallets of glasses, enabling operators to 
remove empty pallets and feed new ones without stopping production. After 
releasing the glass, the robot pre-positions to pick another glass, which it does 
when the conveyor is again empty. If the working glass model requires deburring, 
then the centering device existing in the conveyor is commanded to center the glass 
so that the second robot could pick up the glasses in the same position. With the 
glass firmly grasped, the deburring robot takes it to the deburring belts and extracts 
the excess PVC by passing all the glass borders on the surface of the deburring 
belt. When the task is finished, the robot delivers the glass on conveyor 2, and 
proceeds to pick another glass. 

The deburring velocity, pressure, trajectory, etc, is stored in the robot system on a 
database sorted by the glass model, which makes it easy to handle several models. 
Programming a new model into the system is also very simple and executed by an 
authorized operator. There is a collection of routines that take the robot to pre­
defined positions, adjusted by the given dimensions of the glass, allowing the 
operator to adjust and tune positions and trajectories. He can then "p/qy" the 
complete definition and repeat the teaching procedure until the desired behavior is 
obtained. This means being able to control the robot's operation with the controller 
in automatic mode, which is obtained by including some teach-pendant features in 
the process for operator interface. 
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Another important feature of this robotic system is the ability to adjust production 
online, adapting to production variations. This objective is obtained by using a 
client-server architecture, which uses the cell computer (client) to parameterize the 
software running on the robot controller (server). That can be achieved by offering 
the following services from the robot server to the clients: 

1. All planned system functionalities by means of general routines, callable from 
the remote client using variables that can be accessed remotely 

2. Variable access services that can be used remotely to adjust and parameterize 
the operation of the robotic system 
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Figure 1.20 Operator interface for de-palletizing robot 

With these features implemented and with a carefully designed operator interface 
(Figure 1.20 and Figure 1.21) and robot server software, it's possible to achieve a 
system that requires limited human intervention related with adjustment tasks to 
cope with production variations. Since a remote interface is used (Figures 1.20 and 
1.21), the necessary adjustments are executed online without stopping production. 
Those operations include: 

1. Adjusting the deburring angle, i.e., the angle between the border of the glass 
and the deburring belt. The angle introduced is added to the programmed one, 
so that zero degrees means keeping the programmed angle unchanged 
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2. 

3. 
4. 

Adjusting the force on the belt during the deburring operation (adjusted by 
position). The commanded value is entered in millimeters and updates the 
actual position in the direction perpendicular to the belt and parallel to the 
surface of the glass 
Adjusting the deburring speed 
Maintenance procedures necessary to change the belts after the planned 
deburring cycles 

The de-palletizing robot requires less parameterization because it executes a very 
simple operation. Other than that, the gripper adapts to the surface of every model 
of glass, using presence sensors strategically placed near two suction cups (see 
Figure 1.19), with the objective of having an efficient de-palletizing operation. 
Nevertheless, the operator is able to change the velocity of the process by stating a 
slow, fast, or very fast cycle to adjust to production needs, suspend and resume 
operations, adjust the way the robot approaches the surface of the glass, etc.. These 
adjustments are necessary to obtain the most efficient operation in accordance with 
the observed production conditions, to solve daily problems, and to cope with 
production variations. 
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Figure 1.21 Operator interface for deburring robot 

Finally, it is important to mention that the robot is equipped with a force/torque 
sensor mounted on the wrist. The objective is to adjust automatically the model 
setup introduced by the operator, correcting the points where the measured force 



Introduction to the Industrial Robotics World 27 

between the belt and the glass exceeds the recommended values, attempting to 
avoid damage to the glass and to increase the deburring efficiency. This procedure 
is active during the process of applying a new model, and also during production, if 
explicitly activated by the operator, constituting an automatic correcting feature. 

The system has worked for some time and proved to be very simple to operate, 
showing also quick adaptation from operators [12,18]. The adjusting features 
added to the system proved to be very helpful, allowing the company to respond in 
a timely fashion to production changes, avoiding variations in the quality of the 
final product, and to introduce quickly new models into the production database. 
Since the models are identified automatically, using barcode readers placed on the 
pallet platform, the system works continuously without operator intervention. The 
only thing needed is to feed the system with pallets full of glasses, removing the 
empty ones. That operation is done periodically with the help of electro­
mechanical fork lift trucks. 

Most of the features presented in this example will be explored in this book for 
robotic welding applications, namely the capacity to simulate the procedure, the 
capacity to adjust online and change parameterization, the capacity to monitor the 
system, and specify the sequence of operations, and so on. 

This example shows clearly the advantages of using robots with actual 
manufacturing platforms and the importance of carefully designing the 
manufacturing systems, and integrating intelligent sensors, actuators, and the 
human factor. This final aspect related with HMI (human-machine interface) is 
fundamental in any manufacturing system and somehow a measure of its success, 
since these systems need a very efficient way to operate with humans in a way to 
expose system features and allow the users to explore the system capabilities to the 
maximum extent [12-18]. 

1.4.1 Using an Offline Simulation Environment 

Using offline programming and simulation environments may be useful to develop 
and especially to optimize industrial manufacturing systems. Frequently the system 
is not available for online utilization, which calls for the possibility to work with 
graphical models of the manufacturing cell under study. The industrial deburring 
system presented in this section (Figures 1.22 and 1.23) was optimized using a 
graphical offline tool (RobotStudio 5 from ABB Robotics), although the 3D 
drawings of several components of the cell were designed using SolidWorks. 
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Figure 1.23 Analyzing the glass deburring process on the graphical environment 

The utilization of offline packages has some advantages: 

• If carefully designed, the graphical model constitutes a powerful tool to 
continuously develop the system without stopping production 
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• It allows the system engineer to simulate and optimize the solutions 
before testing them on the real cell for final implementation 

• It constitutes a powerful tool to analyze new production scenarios, with 
new products, new production sequences, etc., before testing them or even 
before proposing them to the production team 

• It constitutes a nice environment to demonstrate to customers the viability 
of certain type of production, cycle time, etc 

• Since this type of environment runs a virtual robot controller, it allows the 
user to develop software and try it on the graphical model 

The only disadvantage is the correlation between the graphical model and the real 
system. This means that the system engineer needs to carefully calibrate the system 
using precise data from the cell. This will allow him to export code directly to the 
cell and have it working with only minor calibration and routine checking. 

1.5 Statistics of Robotic Workers 

There are at least 800 000 robots working in industry worldwide (Table 1.3), but 
since statistics are very difficult to obtain in several countries, the real number 
should be over 1 million units operating all over the world [23]. Considering the 
statistics from 2003 [23], the lead country pushing its economy using robots is 
Japan, with around 350 000 robots operating, followed by the European Union, 
with around 250 000 robots in action, and the United States with around 112 000 
robots. In Europe, Germany is the lead country with 112 700 units operating 
(matching the United States), followed by Italy (50 000 robots), France (26 000 
robots) and Spain (20 000 robots). 

Table 1.3 Robot 
period 2004-2007 

Country 
Japan 
USA 
EU 
Germany 
Italy 
France 
Spain 
Portugal 
Source: IFR-Inl 

operational stock at the end of the year (2001-2003) with a forecast for the 

Operational Stock at the End of the Year 
2002 

350 169 
103 515 
233 769 
105 212 
46 881 
24 277 
18 352 
1282 

temational Federati 

2003 
348 734 
112 390 
249 200 
112 693 
50 043 
26 137 
19 847 
1367 

on of Robotics [23 

2004 
352 200 
121 300 
266 100 
121 500 
53 100 
28 400 

2007 1 
349 400 
145 100 
325 900 
151 400 
151 400 
35 900 

In 1990, the installation of new industrial robots in the European Union was only 
20% of the new installations reported from Japan. The USA had only 7% of new 
installations when compared with Japan. Nevertheless, this gap was reduced 
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significantly and currently both EU and USA grow at approximate rates when 
compared with Japan, being sometimes higher than the Japanese rates. For 
example, in the period 2001-2002, the European Union installed more robots than 
Japan, but in 2003 the Japanese recovered the first place. This evolution of the 
European and North American robot installations reveals itself in the operational 
stock. The European stock evolved from 23% of that of Japan in 1990 to almost 
72% in 2003. The figures for the USA show an evolution from 12% in 1990 to 
32%) in 2003, respectively. 

^Japan D United States i Euiop eanUnion QAll other c oimtrie s 

Figure 1.24 New robot installations per year [23] 

The IFR forecast for 2007 expects a steady growth of robot installations in the 
European Union (6.1%) per year) and in the United states (5.8%) per year). 
Although Japan's new installations experienced different growth rates in the period 
1999-2001, a significant recovery started in 2002 and a steady growth rate is 
expected at least until 2007 (5.7% per year). 

Robots are becoming very common in any industrial installation (Figure 1.23 
shows the number of robots per 10 000 workers for the motor vehicle industry, one 
of the most successful areas of robot operation) where they cooperate with human 
workers to achieve better efficiency and productivity. The pressure to invest in 
robots, namely regarding cost savings, increases in productivity and quality, and 
transferring dangerous tasks from humans to machines, i.e., to remain competitive 
in the global market, configures a scenario where humans and robots share the 
working space. In fact, in the beginning of the 2V^ century, robots are already 
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human coworkers and successful installations must consider carefully the human-
robot interaction and handle it as efficiently as possible. 

BJapan DUnitedStates BEwopeanUnion BSAll other coxintties 

Figure 1.25 Operational stocks at the end of the year [23] 
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Figure 1.26 Number of robots per 10 000 workers in the car industry [23] 

Consequently, industrial robots fit well with the two main challenges faced 
currently by modem manufacturing: more quality at lower prices and the need to 
improve productivity. Those are the requirements to keep manufacturing plants in 
developed countries, rather in the low-salary regions of the world. Other very 
important characteristics of manufacturing systems are flexibility and agility since 
companies need to respond to a very dynamic market with products that have low 
life-cycles due to fashion tendencies and worldwide competition. 
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So, manufacturing companies need to respond to market needs efficiently, keeping 
their products competitive. This requires a very efficient and controlled 
manufacturing process, where focus is on automation, computers and software. 

The final objective is to achieve semi-autonomous systems, i.e., highly automated 
systems that require only minor operator intervention. In many industries, 
production is closed tracked in any part of the manufacturing cycle, which is 
composed by several in-line manufacturing systems that perform the necessary 
operations to transform the raw materials into a final product. In many cases, if 
properly designed, those individual manufacturing systems require simple 
parameterization to execute the tasks they are designed to execute. If that 
parameterizafion can be commanded remotely by automatic means from where it is 
available, then the system becomes almost autonomous in that operator 
intervention is reduced to the minimum and essentially needed for error and 
maintenance situations. Human and machines can cooperate doing their own tasks, 
more or less autonomously, and interface more closely when required by the 
manufacturing process. 

A system like this will improve efficiency and agility, since it is less dependent on 
human operators. Also, since those systems are built under distributed frameworks, 
based on client-server software architectures that require a collection of fiinctions 
that implement the system fianctionality, it is easier to change production by 
adjusting parameterization (a software task now) which also contributes to agility. 
Furthermore, since all information about each item produced is available in the 
manufacturing tracking software, it is logical to use it to command some of the 
shop floor manufacturing systems, namely the ones that require simple 
parameterization to work properly. This procedure would take advantage of the 
available information and computing infrastructure, avoiding unnecessary operator 
interfaces to command the system. Also, fiarther potential gains in terms of 
flexibility and productivity are evident. 

1.6 Overview of the rest of the book 

This book is about industrial robot programming in the beginning of twentieth first 
century. It focuses on the important aspects of designing and building robotic 
manufacturing cells, which explore the capabilities of the actual industrial 
equipment, and the available computer and software technologies. Special attention 
will be paid to exploring the available input devices and systems that can be used 
to create more efficient human-machine interfaces, namely to the programming, 
control, and supervision tasks performed by non-technical personnel. 

Chapter Two ("Robot Manipulators and Control Systems") introduces most of the 
industrial robotic equipment currently available, namely aspects related with 
industrial robotic manipulators, their control systems and programming 



Introduction to the Industrial Robotics World 33 

environments. In the process, two specific manipulators will be considered closely 
since both will be used in many examples presented in the rest of the book. 

Chapter Three ("Software Interfaces") discusses software interfaces that can be 
used to develop distributed industrial manufacturing cells. It covers the 
mechanisms and techniques used to interface robots with computers, as well as 
intelligent sensors, actuators, other factory resources, production management 
software, and so on. The software discussed in this chapter is used in all the 
examples presented in the book, and is the core of several industrial and laboratory 
applications. 

Chapter Four ("Interface Devices and Systems") presents an overview of several 
available devices and systems that can be used to program, control, and supervise 
industrial robotic manufacturing cells. The intention here is to show that these 
interfaces and systems are available and to demonstrate, with application examples, 
how they can be explored to design solutions easier to use and program by non­
technical operators. 

Chapter Five ("Industrial Manufacturing Systems") is dedicated to a few 
application examples designed and implemented recently by the author of this 
book. The applications are described in detail to enable the interested reader to 
explore further. Although the selected examples were designed for specific 
applications, and carefully tuned for the industry in which they are currently used, 
the discussion is kept general since most of the problems addressed are common to 
many industries. 

Finally, chapter six ("Final Notes") presents a brief summary of the concepts and 
ideas presented in this book, and lists a few possible actions that the interested 
reader can follow to learn more about this important area of modem engineering. 

A good collection of references is also presented at the end of each chapter to 
enable the reader to explore further. 
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Robot Manipulators and Control Systems 

2.1 Introduction 

This book focuses on industrial robotic manipulators and on industrial 
manufacturing cells built using that type of robots. This chapter covers the current 
practical methodologies for kinematics and dynamics modeling and computations. 
The kinematics model represents the motion of the robot without considering the 
forces that cause the motion. The dynamics model establishes the relationships 
between the motion and the forces involved, taking into account the masses and 
moments of inertia, i.e., the dynamics model considers the masses and inertias 
involved and relates the forces with the observed motion, or instead calculates the 
forces necessary to produce the required motion. These topics are considered very 
important to study and efficient use of industrial robots. 

Both the kinematics and dynamics models are used currently to design, simulate, 
and control industrial robots. The kinematics model is a prerequisite for the 
dynamics model and fundamental for practical aspects like motion planning, 
singularity and workspace analysis, and manufacturing cell graphical simulation. 
For example, the majority of the robot manufacturers and many independent 
software vendors offer graphical environments where users, namely developers and 
system integrators, can design and simulate their own manufacturing cell projects 
(Figure 2.1). 

Kinematics and dynamics modeling is the subject of numerous publications and 
textbooks [1-4]. The objective here is to present the topics without prerequisites, 
covering the fundamentals. Consequently, a real industrial robot will be used as an 
example which makes the chapter more practical, and easier to read. Nevertheless, 
the reader is invited to seek further explanation in the following very good sources: 

1. Introduction to Robotics, JJ Craig, John Willey and Sons, Chapters 2 to 7. 
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2. Modeling and Control of Robotic Manipulators, F. Sciavicco and B. 
Siciliano, Mcgraw Hill, Chapters 2 to 5. 

3. Handbook of Industrial Robotics, 2""̂  edition, Shimon Nof, Chapter 6 
written by A. Goldenberg and M. Emani. 
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Figure 2.1 Aspect of a graphical simulation package {RobotStudio - ABB Robotics) 

Another important practical aspect is the way how these topics are implemented 
and used by actual robot control systems. This chapter also reviews the 
fundamental aspects of robot control systems from the perspective of an engineer 
and of a system integrator. The objective is to introduce the main components and 
modules of modem robot control systems, by examining some of the control 
systems available commercially. 

2.2 Kinematics 

Actual industrial robot manipulators are very advanced machines exhibiting high 
precision and repeatability. It's common to have medium payload robots (16 to 
20kg of payload) offering repeatability up to 0.1 mm, with smaller robots 
exhibiting even better performances (up to 0.01 mm). These industrial robots are 
basically composed by rigid links, connected in series by joints (normally six 
joints), having one end fixed (base) and another free to move and perform useful 
work when properly tooled {end-effector). As with the human arm, robot 
manipulators use the first three joints (arm) to position the structure and the 
remaining joints (wrist, composed of three joints in the case of the industrial 
manipulators) are used to orient the end-effector. There are five types of arms 
commonly used by actual industrial robot manipulators (Figure 2.2): cartesian, 
cylindrical, polar, SCARA and revolution. 
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Polar 

SCARA Revolution 

Figure 2.2 Types of arms used with actual robot manipulators 

In terms of wrist designs, there are two main configurations (Figure 2.3): 

1. pitch-yaw-roll (XYZ) like the human arm 
2. roll-pitch-roll (ZYZ) or spherical wrist 

roU-pitch-roU (ZYZ) or spherical Wrist 

Figure 2.3 Wrist design configurations 

pUch-ym^roU (YXZ) 

The spherical wrist is the most popular because it is mechanically simpler to 
implement. Nevertheless, it exhibits singular configurations that can be identified 
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and consequently avoided when operating with the robot. The trade between 
simplicity of robust solutions and the existence of singular configurations is 
favorable to the spherical wrist design, and that is the reason for its success. 

The position and orientation of the robot's end-effector (tool) is not directly 
measured but instead computed using the individual joint position readings and the 
kinematics of the robot. Inverse kinematics is used to obtain the joint positions 
required for the desired end-effector position and orientation [1]. Those 
transformations involve three different representation spaces: actuator space, joint 
space and cartesian space. The relationships between those spaces will be 
established here, with application to an ABB IRB1400 industrial robot (Figure 
2.4). The discussion will be kept general for an anthropomorphic^ manipulator with 
a spherical wrist^. 

^ Joint 1 

Spherical Wrist 

Joints 

î Vr.Jlr ^ Joint 2 

Figure 2.4 ABB IRB1400 industrial robot 

^ An anthropomorphic structure is a set of three revolute joints, with the first joint 
orthogonal to the other two which are parallel 

A spherical wrist has three revolute joints whose axes intersect at a single point 
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1 Link 
1 
2 
3 
4 
5 

6 

rable 2.1 Denavii 
eiC) 
e, (0") 
02 (90°) 

93(0°) 
94(0°) 
05 (0°) 
06(0°) 

-̂//ar̂ e«Z>erg parameters for the IRB1400 

aM n 
0° 
90° 
0° 
90° 
-90° 
90° 

1 ai.i (mm) 
0 
150 
600 
120 
0 

0 

di (mm) 
475 
0 1 
0 
720 

0 
85+ d 

where d is an extra length associated with the end-effector 

Table 2.2 Workspace and maximum velocities for the IRB1400 
Joint 
1 
2 
3 
4 
5 
6 

Workspace (^) 
+170^0-170^ 
+70^ to -70^ 
+70« to -65« 
+150^0-150^ 
+115^0-115° 
+300° to -300° 

Maximum Velocity (°/s) 
110% 
110% 
110% 
280% 
280% 
280% 1 

Figure 2.5 represents, for simplicity, the robot manipulator axis lines and the 
assigned frames. The Denavit-Hartenberg parameters, the joint range and velocity 
limits are presented in Tables 2.1 and 2.2. The represented frames and associated 
parameters were found using Craig's convention [1]. 

2.2.1 Direct Kinematics 

By simple inspection of Figure 2.5 it is easy to conclude that the last three axes 
form a set of ZFZ Euler angles [1,2] with respect to frame 4. In fact, the overall 
rotation produced by those axes is obtained from: 

1. rotation about Z4 by O4 
2. rotation about Y \=Z '5 by 65 
3. rotation about Z' '4=Z"5 by Oe.̂  

which gives the following rotation matrix. 

^ Y'4 corresponds to axis Y4 after rotation about Z4 by 64 and Z"4 corresponds to Z4 after 
rotation about Y'4=Z'5 by O5 
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Figure 2.5 Link frame assignment 
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^Euler =Rz(^4)-Ry'4(Q5)-Rz"4'(^6) = 

C5 0 S5"irC6 - 8 6 O" 

0 1 0 . S6 C6 0 

-S5 0 C5JLO 0 1 

C4C5C6-S4S6 -C4C5S6-S4C6 C4S5 

S4C5C6+C4S6 -S4C5S6+C4C6 S4S5 

-S5C6 S5S6 C5 

C4 

84 

0 

- 8 4 

C4 

0 

0] 
0 [ 
ij 

(2.1) 

1̂1 ^2 1̂3 

2̂1 2̂2 2̂3 

,̂ 31 3̂2 r33̂  

3 
6 -

(64 

1 0 0 
0 0 - 1 

0 1 0 

= 0) = R^ 

The above rotation matrix R, in accordance with the assigned frame settings, 
should verify the following two equations: 

.R 

(2.2) 

The values of 64, G5 and 06 can be now obtained. Comparing r^ with r23 
(considering S5 ^ 0) results in, 

e4=Atan2(r23,ri3) (2.3) 

Squaring and summing r^ and r23 and comparing the result with r33 gives, 

05 = A tan 2 ( V 4 + r | 3 , r33) (2.4) 

if a positive square-root of rî 3 + r23 is chosen: this assumption limits the range of 05 

to [0,71]. 

Using the same argument now considering elements r3i and r32 the following is 
obtained for 06: 

06 =Atan2(r32,-r3i) 

For 05 G [-7C,0] the solution is: 

04 =Atan2(-r23,-ri3) 

05 = A tan 2(-^jrl2 + T^23 -> 3̂3) 

06=Atan2(-r32,r3i) 

(2.5) 

(2.6) 

The IRB1400 is an anthropomorphic manipulator with spherical wrist. The 
anthropomorphic structure of the first three joints is the one that offers better 
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dexterity to the robot manipulator. The first three joints are used to position the 
wrist. The orientation of the wrist is managed by the wrist spherical structure, 
which is also the one that gives higher dexterity. Using the link transformation 
matrix definition derived at [1], 

T/ i-l 

Cj -S 

SjCaj.i c j c a 

S isa j . i Cjsa 

0 0 

0 a j . i 

_i -saj„i -saj.id} 

_i cai_i cai_idi 

0 1 

(2.7) 

the direct kinematics of the ABB IRB1400 robot manipulator can be easily 
obtained (as presented in Figure 2.6). 

ci - s i 0 0 

si ci 0 0 

0 0 1 di 

0 0 0 1 

T] 

-S2 
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C2 
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-C2 
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-S2 
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-1 
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a i ' 
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1_ 
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T4 _ 

C5C6 

S6 

- S 5 C 6 

0 

- C 5 S 6 

C6 

S5S6 

0 

S5 

0 

C5 

0 

^ 6 8 5 

0 

1 

and TP : 

1̂1 1̂2 1̂3 Px 

^21 ^22 ^23 Py 

131 132 I33 Pz 

0 0 0 1 

with, 

1*11 = ((S1S4 - CiS23C4)C5 - CiC23S5)C6 + (C1S23S4 + SiC4)S6 

ri2 = ((-S1S4 + CiS23C4)C5 + 0102385)85 + (C182384 + 8iC4)C6 

ri3 = (-C1S23C4 + 8184)85 + C1C23C5 

1*21 = ((-81S23C4 - CiS4)C5 - 8102385)05 + (81S23S4 - CiC4)86 

r22 = ((81823C4 + CiS4)C5 + 8102385)85 + (8182384 - CiC4)C5 

r23 = (-81S23C4 - 0184)85 + S1C23C5 

r3i = (C23C4C5 - 82385)05 - C238485 

1*32 = (-C23C4C5 + 82385)85 - C2384C5 

r33 = C23C485 + 823C5 

P ^ = ((-C1S23C4 + 8184)85 + CiC23C5)d6 + d4CiC23 " a3CiS23 -a2Ci82 + RiCi 

p^y = ((-81S23C4 - 0184)85 + 8iC23C5)d5 + d48iC23 " a38iS23 ' a28i82 + a i 8 i 

P^z = d5(C23C4S5 + 823C5) + d4823 + a3C23 + a2C2 + d i 

Figure 2.6 Direct kinematics of an ABB IRB 1400 industrial robot 

Having derived the direct kinematic8 of the IRB 1400, it'8 now po88ible to obtain 
the end-effector position and orientation from the individual joint angles 
(9l,02,O3,04;B55Q6)-

2.2.2 Inverse Kinematics 

Inverse kinematics deals with the problem of finding the required joint angles to 
produce a certain desired position and orientation of the end-effector. Finding the 
inverse kinematics solution for a general manipulator can be a very tricky task. 
Generally they are non-linear equations. Close-form solutions may not be possible 
and multiple, infinity, or impossible solutions can arise. Nevertheless, special cases 
have a closed-form solution and can be solved. 

The sufficient condition for solving a six-axis manipulator is that it must have three 
consecutive revolute axes that intersect at a common point: Pieper condition [5]. 
Three consecutive revolute parallel axes is a special case of the above condition, 
since parallel lines can be considered to intersect at infinity. The ABB IRB 1400 
meets the Pieper condition due to the spherical wrist. 

For these types of manipulators, i.e. manipulators that meet the Pieper condition, it 
is possible to decouple the inverse kinematics problem into two sub-problems: 
position and orientation. A simple strategy [1,2] can then be used to solve the 
inverse kinematics, by separating the position problem from the orientation 
problem. Consider Figure 2.5, where the position and orientation of the end-
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effector is defined in terms of p and R6 = [n s a]. The wrist position (p^) can be 

found using 

Pw = p - d6.a (2.8) 

It is now possible to find the inverse kinematics for 0i,02 and 63 and solve the first 
inverse kinematics sub-problem, i.e, the position sub-problem. Considering Figure 
2.7 it is easy to see that 

e i=Atan2(p^y,p^ , ) ' (2.9) 

Once 01 is known the problem reduces to solving a planar structure. Looking to 
Figure 2.7 it is possible to successively write 

and 

Pwxl =VPlx+Pwy (2.10) 

Pwzl = P w z - d l (2.11) 

Pwxr =Pwxi - a i (2.12) 

Pwyr=Pwyl (2.13) 

Pwzl' = Pwzl (2.14) 

Pwxr=-a2S2 + axC23. (2.15) 

Pwzr=a2C2+axS23' (2.16) 

* Another possibility would be Gj = 71 + A tan 2(p^y, p^^) ^̂  ̂ ^ set 02 -> 71 - 62 
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Squaring and summing equations (2.15) and (2.16) results in 

PIXI'+PWZI' =a2+a^+a2axS3. (2.17) 

which gives 

2 2 2 2 
, _ Pwxl' +Pwzl ' ~^2 ~^x /2 \Q\ 

Setting C3. = ±yi-S3, the solution for G's will be 

e'3=Atan2(s3.,C3.) 

e3=e'3~Atan(a3/d4) 
(2.19) 

Now, using 6'3 in (2,15)-(2.16) resuhs in a system with two equations with S2 and 
C2 unknowns: 

Pwxl' = a2C2 +ax(C2C3. -S2S3.) 

Pwzr=a2S2+ax(s2C3.+S3.C2) (2.20) 

Solving for 82 and C2 gives 

g ^ -(a2 +axS3.)p^xr +^x^yVv^zV .2.21) 
a2+ax+2a2axS3. 

^(a2+axS3')Pwzi'+axC3.p^xi' 
a2+a^+2a2axS3. 

(2.22) 

and the solution for 02 will be 

02=Atan2(s2,C2) (2.23) 

To solve the second inverse kinematics sub-problem (orientation), i.e., to find the 

required joint angles 64, 65 and 06 corresponding to a given end-effector 

orientation R 6 , we simply take advantage of the special configuration of the last 

three joints. Because the orientation of the end-effector is defined by R6, it's 

simple to get R5 from, 

R 3 6 = ( R ? ) " ^ R 6 = ( R 3 ) ^ . R 6 (2.24) 

which gives 



H 

with 

-C1S23 -S1S23 

-C1C32 -S1C23 

Si - C i 

C23 

-S23 

ail 

a2i 

.^31 
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ai2 

a 22 

^32 

13 
a 23 

a33 

1̂1 1̂2 1̂3 

2̂1 2̂2 2̂3 

3̂1 1*32 r33 

(2.25) 

r i l = -ClS23aii - SiS23a2l + C23a31 

r n = -CiS23ai3 - SiS23a23 + C23a33 

r33 = Siai3 - cia23 
1*21 = -ClC23aii - SiC23a2l - S23a3i 
1*31 = Siaii -Cia2i 

ri2 = -CiS23ai2 - SiS23a22 + C23a32 

1*23 = -ClC23ai3 - SiC23a23 " S23a33 

r22 = -CiC23ai2 - SiC23a22 - S23a32 

1*32 = Siai2 - Cia22 

It is now possible to use the previous result for the ZYZ Euler angles to obtain the 
solutions for 64, 65 and 06. 

For 05 G [0, n] the solution is 

64 = Atan2(r33,ri3) 

e 5 = A t a n 2 ( ^ / r ^ + ^ - r 2 3 ) 

06 =Atan2(-r22,r2i) 

For 05 e [-71,0] the solution is 

64 = Atan2(-r33,-ri3) 

(2.26) 

e 5 = A t a n 2 ( - . / i ^ ^ T i ^ , r 2 3 ) 

06 =Atan2(r22,-r2i) (2.27) 

2.3 Jacobian 

In this section, the equations necessary to compute the jacobian of the ABB 
IRB1400 industrial robot are presented and the jacobian is obtained. Nevertheless, 
the discussion will be kept general for an anthropomorphic robot manipulator. In 
the process, the equations that describe the linear and angular velocities, static 
forces, and moments of each of the manipulator links are also presented and the 
corresponding developments applied to the selected robot. 

The jacobian of any robot manipulator structure is a matrix that relates the end-
effector linear and angular Cartesian velocities with the individual joint velocities: 
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V = = j(e).e (2.28) 

where J(0) is the jacobian matrix of the robot manipulator, 9 = [G], 02,.-, ©n J is the 

joint velocity vector, v = [vi,v2,v3]^ is the end-effector linear velocity vector, and 

w = [w 1, w 2, w 3 ]^ is the end-effector angular velocity vector. 

The jacobian is an nxm matrix, where n is the number of degrees of freedom of the 
robot manipulator and m is the number of joints. Considering an anthropomorphic 
robot manipulator with a spherical wrist, the corresponding jacobian will be a 6x6 
matrix. Basically there are two ways to compute the jacobian: 

1. By direct differentiation of the direct kinematics function with respect to 
the joint variables. This usually leads to the so-called analytical jacobian, 

:JA(G).e (2.29) 

where p is the time derivative of the position of the end-effector frame 

with respect to the base frame, (j) is the time derivative of the orientation 
vector expressed in terms of three variables (for instance, ZYZ Euler 
angles). Obviously, p is the translational velocity of the end-effector and 

(j) is the rotational velocity. 

2. By computing the contributions of each joint velocity to the components of 
the end-effector Cartesian linear and angular velocities. This procedure 
leads to the geometric jacobian. 

Generally, the analytical and geometrical jacobian are different from each other. 
Nevertheless, it is always possible to write 

w = T((|)).(t) (2.30) 

where T is a transformation matrix from (j) to w. Once T((|)) is given, the analytical 
jacobian and geometric jacobian can be related by 

V: 
I 0 

0 T(*)_ 
x=Tj((t)).x (2.31) 

which gives 

J--=TJ(«.JA (2.32) 
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Here the geometric jacobian will be calculated, because in the process the linear 
and angular velocities of each link will also be obtained. Nevertheless, the 
analytical jacobian should be used when the variables are defined in the operational 
space. 

First the equations for the link linear and angular velocities and accelerations [1,2] 
will be obtained. Associating a frame to each rigid body, the rigid body motion can 
be described by the relative motion of the associated frames. Consider a frame {B} 
associated with a point D (Figure 2.8). 

Figure 2.8 Describing point D relative to a stationary frame 

The position vector of point D in frame {B} is ^D and the relative velocity of D 
described about an arbitrary stationary frame {A} is [6], 

V D = ^ V B + ^ R ^VD (2.33) 

If the relative motion between {A} and {B} is non-linear then (2.33) is not valid. 
The relative motion between two frames {A} and {B} has generally two 
components: a linear component "̂ VB and a non-linear component (the angular or 
rotational acceleration) ^QB as in (Figure 2.9). 
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Figure 2.9 Relative motion between two frames {A} and {B} 

In that general case it can be written [1,6,7], 

(2.34) 

where ^VD is the linear velocity of the origin of frame {B} about frame {A}, gR 

^VD is the linear velocity of point D about frame {B} expressed in terms of {A} 

(i.e., ^R ^VD = ^ ( V D ) ), ^^B X BR ^ D = ^Q^ x ^^ is the linear velocity of point 

D about {A} expressed in terms of {A} as the result of the angular velocity ^ Q B of 
{B} about {A}. 

If D is stationary in {B} (^VD = 0) and the origins of {A} and {B} are coincident, 
i.e., the relative motion of D about {A} is only due to the rotation motion of {B} 
about {A} described by "^QB , then ^VD = ^ O B X ^ R ^ D . This equation can also be 

obtained by differentiation of 

''D= ^R ^D (2.35) 

which yields 

^ D = ^R ^D+ ^R ^D (2.36) 

or since in this special case gR ^ D = 0, 

A T . _. A 
V D - B 

R ^D (2.37) 
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Substituting in (2.37) ''D = ^R~' ""D results in 

^ V D - ^ R ^ R - ^ ^ D 

Because gR is an orthonormal matrix, we can write [1,7], 

Ap A p -1 _ A Q 

where gS is a skew-symmetric matrix associated with gR • 

Using (2.39) in (2.38) gives 

(2.38) 

(2.39) 

(2.40) 

The skew-symmetric matrix gS defined in (2.39) is called angular velocity matrix. 

Writing S as 

S -

and the vector Q (3x1) as 

0 

" z 

. - " y 

- " z 
0 

" x 

" y 

-a 
0 

(2.41) 

Q = (2.42) 

results in 

SD^ 

0 

" z 

. - " y 

- " z 

0 

" x 

a / 
- Q , 

0 

' D x ' 

Dy 

Dz 

= 
' - n ^ D y + f i y D , 

n,D,-n,D, 
- " y D x + " x D y 

= Q x D (2.43) 

where D =(Dx, Dy, Dz )^ is a position vector. The vector Cl associated with the 
angular velocity matrix is called an angular velocity vector. Using (2.43) and 
(2.40) gives 

X = ^ Q B X ^ D (2.44) 
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Considering now the linear and angular accelerations of each link, it's possible to 
write by direct differentiation of (2.34), 

^ V D = ^ V B + ( ^ R ^Voy + ^ n e x ^R ^ D + ^ Q B X ( ^ R ^ D ) ' (2.45) 

or since, 

( ^ R ' ' V D ) ' = ^ R ^ D + ^ O B X ^ R X 

and 

( ^ R ^ D ) ' = ^ R ^ V D + ^ Q B X ^ R ^ D , 

^ V D = ^ V B + ^ R ^VD + 2^r2BX ^R V D + 

+ ^ Q B X ^R ^D + ^ Q B X (^^B X ^R ^D) (2.46) 

The above equation is the general equation for the linear acceleration of point D 
about {A} and expressed in terms of {A}. If ^D is a constant vector (like in 
robotics applications) then equation (2.46) simplifies to 

^ V D = ^ V B + ^ Q B X ^ R ^ D + ^ Q B X ( ^ Q B X ^ R ^ D ) (2.47) 

because ^VD = ^ V D = 0 . 

If we consider a third frame {C}, with "^QB being the angular velocity of {B} about 
{A} and ^Qc the angular velocity of {B} about {C}, then the angular velocity of 
{C} about {A} is, 

^Qc = ^aB+ ^R ^Qc (2.48) 

Taking the derivative of (2.48) results in 

^ n c = ̂ ^ B + (^R^i:^c)' = ^ ^ B + > ^ ^ c + ^nBX ^ R ^ Q c (2.49) 

This is a very useful equation to compute the angular acceleration propagation 
from link to link. 

Let's apply this to a robot manipulator. As mentioned before we will consider only 
rigid manipulators with revolutionary joints, with the base frame as the reference 
frame. 
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I Axis i 

Figure 2.10 Linear and angular velocity vectors of adjacent links 

The angular velocity of link (i+1), expressed in terms of {i}, is given by^ 

W i = V i + U R ei+i'"^Zi+i (2.50) 

It is equal to the angular velocity of link (i) plus the angular velocity of joint (i+1) 
about Zj+i expressed in terms of {i}. 

Multiplying both sides of (2.50) by "̂̂ JR results in the angular velocity of link 

(i+1) expressed in terms of {i+1}, 

i+lxt.. . = i + l p \xr. . = i+l l? »̂  WHI = '^|R Vi+, = '"-[R V i+ GHI '"^ZH (2.51) 

' Note that wi+1 = OHi+l and that iwi+1 is the same quantity expressed in terms of {i}. 
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The linear velocity of the origin of {i+1}, expressed in terms of {i}, is given by 

VH, = Vi + Vi X Ti+1 (2.52) 

It is equal to the linear velocity of the origin of {i} plus a term that results from the 
rotation of the link (i+1) about Zj+i. The same solution can be obtained from (7) by 
making 'Pi+i constant in {i}, i.e., by making Vi+i = 0. 

Multiplying both sides of (2.52) by '"̂ -R we get the linear velocity of link (i+1) 

expressed in terms of {i+1} 

' " V i = ' ^ l R ( V i + ViX*Pi,0 (2.53) 

Applying (2.51) and (2.53) from link to link, the equations for "wn and "vn (where n 
is the number of joints) will be obtained. The equations for Vn and Vn can be 
obtained by pre-multiplying "wn and "vn by „ R • 

V = ^ R " w „ (2.54) 

' ' V „ = 2 R " V „ (2.55) 

It's also important to know how forces and moments distribute through the links 
and joints of the robot manipulator in a static situation, i.e., how to compute the 
forces and moments that keep the manipulator still in the various operating static 
configurations. Considering the manipulator at some configuration, the static 
equilibrium is obtained by proper balancing of the forces and moments applied to 
each joint and link, i.e., by cancelling the resultant of all the forces applied to the 
center of mass of each link (static equilibrium). The objective is to find the set of 
moments that should be applied to each joint to keep the manipulator in static 
equilibrium for some working configuration (Figure 2.11). 

Considering, 

fi = force applied at link (i) by link (i-1) 
ni = moment in link (i) due to link (i-1) 

the static equilibrium is obtained when 

f̂i - 'fi+i = 0 and % - W i - 'PHI X ̂ fi+i = 0 (2.56) 

i.e., when, 

'fi = 'fHi (2.57) 

and 
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Îli = V l + P̂i-M X 'fi-,, (2.58) 

Figure 2.11 Static equilibrium: force balancing over link (i) 

Writing the above equations in their own reference frame gives 

fi - i+iR fi+i 

Hi-1+1R ^"Vi + ^Pi+ixTi 

(2.59) 

(2.60) 

To compute the set of joint moments that hold the manipulator in static equilibrium 
we must obtain, for each joint (i), the projection of'n, over the joint axis 

Xî ^Ui'̂ ^Zi (2.61) 
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Returning to the jacobian, from (2.54)-(2.55) it's possible to write 

Vi+i - Vi -1- Wi X i'j^i 

(2.62) 

(2.63) 

Using (1) and (2.62)-(2.63) the i* column of the jacobian can be found to be 

zix^pi (2.64) 

Applying (2.62), (2.63), and (2.64) to the IRB1400 industrial robot, the equations 
presented in Figure 2.12 are obtained. 

% o = 0 ^ w o = 0 

"o" 
0 

L^iJ 
\,= 

- a i S i G i 

aiCiOi 

0 
«W2 = 

SiGs 

- 0 1 0 2 

. ^1 

V3 = 

V4 

(^2^182 - a i S | ) 0 | -a2CiC262 

(aiCi-a2CiS2)ei-a2C2Sie2 

—a2S262 

81(02+03) 

-01(62+63) 
6, 

(a2S2 - a i +a3S23 -d4C23)si0i -(a2C2 +d4S23 -a3C23)ci02 -(d4S23 +a3C23)ci03 

(ai -a2S2 +d4C23 -a3S23)ci6i -(a2C2 +d4S23 +a3C23)si62 -(d4S23 +a3C23)si63 

(d4C23 -a3S23 -a2S2)62 +(d4C23 -a3S23)63 

W4 = 

^5 

Si(02+O3) + CiC2304 

-01(62+63) + SiC2364 

61+S2364 

(a2S2 - a i +33823 -d4C23)si0i -(a2C2 +d4S23 -a3C23)c,02 -(d4S23 +a3C23)ci03 

(ai -a2S2 +d4C23 -33823)0161 -(a2C2 +d4823 +33023)8162 -(d4823 +33023)8163 

(d4023 -33823 -3282)62 +(d4023 -33823)63 

0 Si(02 +03)4-0102304 +(0182384 +8104)95 

-01(62 +63) + Si02364 +(8182384 -0104)65 

61+S2364-O238465 

^V6(X) 

^ 6 ( y ) 
^V6(Z) 

%600 = ((a2S2 - ai + a3S23 - d4C23)Si + d6((SiS23C4 + CiS4)S5 " S1C23C5)) 61 + 

+ ((-a2C2 - d4S23 - a3C23) " d6(C23C4S5 + S23C5))Ci 62 + (Ci(-d4S23 " a3C23) " d6(C23C4S5 + 

+ S23C5)) 63 + d6(SiC4S5 + C1S4S5S23) 64 + d6(SiC5S4 - C1C23S5 " C1C4C5S23) 65 
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^V6(y) = ((ai - a2S2 + d4C23 - a3S23)ci +((-cl*s23*c4+sl*s4)*s5+cl*c23*c5)*d6)ei 

((a2C2 + d4S23 + a3C23) + d6(C23C4S5 + S23C5))Si 62 " ((d4S23 + a3C23)Si + 

+ d6Si(C23C4S5+ S23C5)) 63 + d6(S23SiS4S5 - C1C4S5) 64 - d6(C23SiS5 + C1S4C5 + 

+ SiC4C5S23)05 

V C z ) = ((C23C5 - S23C4S5)d6 + d4C23 -a3S23 -a2S2) 62 + ((C23C5 " S23C4S5)d6 +d4C23 

a3S23) Q3 - S5S4C23d6 + (C23C5C4 " S5S23)d6 G5 

Sl(02 + 9 3 ) + CiC23e4 +(0182384 +8104)65 +((-0182304 +8184)85 +0102305)95 

- 0 1 ( 8 2 + 0 3 ) + SiO23e4 +(8182384 - 0 1 0 4 ) 6 5 -((81823O4 +0184)85 -8102305)66 

61 +82364 -O238465 +(0230485 +82305)65 

4J -

( a 2 8 2 - a i + a 3 8 2 3 -

( a i - a 2 8 2 + d 4 0 2 3 
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G 

1 

3 J -

a 2 S i 8 2 - ^ i S i 

a iOi - a 2 0 i 8 2 

6 

G 

6 

1 

- d 4 0 2 3 ) 8 i 

- a 3 S 2 3 ) C l 

- a 2 0 i 0 2 

- a 2 0 2 8 i 

- a 2 8 2 

Si 

- c i 

6 

- ( a 2 0 2 + d 4 S 2 3 - a 3 0 2 3 ) O i 

- ( a 2 0 2 + d 4 8 2 3 + a 3 0 2 3 ) 8 i 

^ 4 ^ 2 3 - ^ 3 8 2 3 

Si 

- c i 

6 

G " 

0 
6 

Sl 

- c i 

G 

6J -

• J l l 

J21 

J31 
J41 

J51 

.J61 

- a 2 S 2 

J12 Jl3 

J22 J23 

J32 J33 

J42 J43 

J52 J53 

hi ^63 

- ( d 4 8 2 3 + a 3 0 2 3 ) 

- ( d 4 8 2 3 + a 3 0 2 3 ) 

^ 4 ^ 2 3 - ^ 3 8 2 3 

Sl 

- c i 

G 

Ji4 hs he 

J24 J25 he 

J34 J35 J36 

J44 J45 J46 

J54 J55 J56 

•̂ 64 ^65 he. 

oi G 

81 G 

G 

C1C23 

S1C23 

S23 . 

Jll = (a2*s2 - al + a3*s23 - d4*c23)*sl + d6*((sl*c4*s23 + cl*s4)*s5 • 
-sl*c23*c5); 

J12 = ((-a2*c2 - d4*s23 - a3*c23) - d6*(c23*c4*s5 + s23*c5))*cl; 
Ji3 = cl*((-d4*s23 - a3*c23) - d6*(c23*c4*s5 + s23*c5)); 
Ji4 = d6*(sl*c4*s5 + cl*s4*s5*s23); 
Ji5 = d6*(sl*c5*s4 - cl*c23*s5 - cl*c4*c5*s23); 
Ji6 = 0; 

J21 = (al - a2*s2 + d4*c23 - a3*s23)*cl + 
+((-cl*s23*c4+sl*s4)*s5+cl*c23*c5)*d6; 

J22 = - ((a2*c2 + d4*s23 + a3*c23) + d6*(c23*c4*s5 + s23*c5))*sl; 
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J23 = - (d4*s23 + a3*c23)*sl - d6*sl*(c23*c4*s5 + s23*c5); 
J24 = d6*(s23*sl*s4*s5 - cl*c4*s5); 
J25 = - d6*(c23*sl*s5 + cl*s4*c5 + sl*c4*c5*s23); 
J26 = 0; 

J3i = 0; 
J32 = (c23*c5 - s23*c4*s5)*d6 + d4*c23 -a3*s23 -a2*s2; 
J33 = (c23*c5 - s23*c4*s5)*d6 +d4*c23 -a3*s23; 
J34 = -s5*s4*c23*d6; 
J35 = (c23*c5*c4 - s5*s23)*d6; 
J36 = 0; 

J41 = 0; 
J42 = s l ; 
J43 = s l ; 
J44 = cl*c23; 
J45 = cl*s23*s4 + sl*c4; 
J46= (- cl*s23*c4 + sl*s4)*s5 + cl*c23*c5; 

J5i = 0; 
J52 = - c l ; 
J53 = - c l ; 
J54 = sl*c23; 
J55 = sl*s23*s4-cl*c4; 
J56 = ' ((sl*s23*c4 + cl*s4)*s5 - sl*c23*c5); 

J6i = l; 
J62 = 0; 
J63 = 0; 
J64 = s23; 
J65 = -c23*s4; 
J66 = c23*c4*s5 + s23*c5; 

Note: These calculations were made in MatLab using the symbolic Toolbox. 

Figure 2.12 Linear and angular velocities, jacobian matrices 3 J , 4 J and 5 J 

2.4 Singularities 

If the objective is to use the differential kinematics equation (2.28) for simplicity 
and efficiency, then it's necessary to deal with the singularities of the jacobian. The 
differential kinematics equation maps the vector of joint velocities 

q = [qi ^2 ^3 ^4 ^5 ^eY with the end-effector twist vector V = [v^ w^J . 

This mapping is seriously affected when the jacobian is rank-deficient (kinematics 
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singularities), because in those situations the mobility of the robot is reduced, the 
inverse kinematics may show infinite solutions, and (because the jacobian 
determinant may take very small values near singularities) small task space 
velocities may cause very large joint velocities [2]. So, to control the robot 
manipulator it is necessary to find all singular configurations and design a scheme 
to identify a singular configuration approach. 

In order to find all the singular points of the ABB IRB 1400 anthropomorphic 
industrial robot, which has a very simple kinematic structure, a scheme will be 
used that separates the arm singularities and the wrist singularities. By dividing the 
jacobian into four 3x3 blocks it can then be expressed as 

6^ -
Jii hi 
h\ hi 

(2.65) 

Now, looking to all the elements of J12 (Figure 2.12) it is clear that det(Ji2) 
vanishes making d6=0. That is equivalent to choosing the origin of the end-effector 
frame coincident with the origin of axis 4 and 5, i.e., making Pw = p. Since 
singularities are a characteristic of the robot structure and do not depend on the 
frames chosen to describe kinematically the robot, this procedure is allowed. It's 
possible then to write 

det(J) = det(Ji i)*det(J22) (2.66) 

The robot's singular configurations are the ones that make det(J) = 0 which means 
from (2.66) 

det(Jn) = 0 or det(J22) = 0 (2.67) 

Solving the first equation leads to the so called arm singularities and solving the 
second leads to the wrist singularities. 

Wrist Singularities 
The wrist singularities can be found just by analyzing the structure of det(J22): 

det(J22) = det(z4 Z5 z^)= 

f C1C23 C1S23S4 - C1C4 (S1S4 - 0182305)85 + C1C23C5 

detl S1C23 S1S23S4 - C1C4 - (S1S23C4 + 0184)85 + 81C23C5 

§23 -C23S4 C23C485+823C5 

(2.68) 

The above determinant is non-null if the column vectors of J22 (which correspond 
to Z4, Z5, and zg) are linearly independent, i.e., the singular configurations are the 
ones that make at least two of them linearly dependent. Now, vectors Z4 and Z5 are 
linearly independent in all configurations, and the same occurs between Z5 and Ze-
This conclusion is easy to understand looking to (2.68) and/or remembering that Z4 
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is perpendicular to Z5, and Z5 is perpendicular to Zg in all possible robot 
configurations. A singular configuration appears when Z4 and Z6 are linearly 
dependent, i.e., when those axis align with each other, which means S5=0 from 
(2.68). Consequently the wrist singular configurations occur when, 

05 = 0 or 05 = 71 (2.69) 

The second condition (05 = 71) is out of joint 5 work range, and because of that is of 
no interest, i.e., the wrist singularities will occur whenever 05 = 0. 

Arm Singularities 
The arm singularities occur when det(Jii) = 0 making again p = p^ => d6 =0, i.e., 
when 

(̂a2S2 -ai + a3S23 -d4C23)si - (a2C2 + d4S23 -a3C23)ci - (d4S23 + a3C23)ci 

detl (ai -a2S2 +d4C23 -a3S23)ci ~(a2C2 +d4S23 +a3C23)ci -(d4S23 +a3C23)ci 

0 ci4C23-a3S23-a2S2 ^4^23-^3823 

= 0 

(2.70) 

Solving (2.70) gives 

-^2(^4^3 -a3S3)(a3S23 -d4C23 +a2S2 - a i ) = 0 (2.71) 

which leads to the following conditions: 

-a3S3 +d4C3 =0 

and/or 

a3S23-d4C23+a2S2-ai =0 (2.72) 

The first condition leads to 03 = arctg — I. The elbow is completely stretched out 
^ 3 . 

and the robot manipulator is in the so called elbow singularity. This value of 03 is 
out of joint 3's work range, so it corresponds to a non-reachable configuration, and 
because of that is of no interest. 

The second condition corresponds to configurations in which the origin of the wrist 
(origin of axis 4) lies in the axis of joint 1, i.e., lies in Z\ (note that Z\ is coincident 
with Zo). In those configurations, the position of the wrist cannot be changed by 
rotation of the remaining free joint 0i (remember that an anthropomorphic 
manipulator with a spherical wrist uses the anthropomorphic arm to position the 
spherical wrist, which is then used to set the orientation of the end-effector). The 
manipulator is in the so called shoulder singularity. 
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In conclusion, the arm singularities of the ABB IRB 1400 industrial robot are 
confined to all the configurations that correspond to a shoulder singularity, i.e., to 
configurations where a3S23 -d4C23 +a2S2 -aj =0. 

2.4.1 Brief Overview: Singularity Approach 

As already mentioned, the solutions of the inverse kinematics problem can be 
computed from 

q = j-i(e)V (2.73) 

solving (2.28) in order to q . With this approach it's possible to compute the joint 
trajectories (q, q ), initially defined in terms of the end-effector wrist vector V and 
of the initial position/orientation. In fact, if q(0) is known it's possible to calculate: 

q(t)from: q(t) = ri(e)V(t) 

and 
t 

q(t) from: q(t) = q(0) + jq(a)da (2.74) 
0 

Nevertheless, this is only possible if the jacobian is full rank, i.e., if the robot 
manipulator is out of singular configurations where the jacobian contains linearly 
dependent column vectors. In the neighborhood of a singularity, the jacobian 
inverse may take very high values, due to small values of det(J), i.e., in the 
neighborhood of a singular point small values of the velocity in the task space (V) 
can lead to very high values of the velocity in the joint space (q ). 

The singular value decomposition (SVD) of the jacobian [3,8-10] is maybe the 
most general way to analyze what happens in the neighborhood of a singular point; 
also it is the only general reliable method to numerically determine the rank of the 
jacobian and the closeness to a singular point. With the inside given by the SVD of 
the jacobian, a Damped Least-Square scheme [9] can be optimized to be used in 
near-singular configurations. The Damped Least-Square (DLS) scheme trades-off 
accuracy of the inverse kinematics solutions with feasibility of those solutions: this 
trade-off is regulated by the damping factor % . To see how this works, let's define 
the DLS inverse jacobian by rewriting (2.28) in the form 

(Jj'̂ +^2l)q = j'̂ V (2.75) 

where ^ is the so-called damping factor. Solving (2.75) in order to q gives 
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q = ( J j ' ^ + ^ V j ^ V = Jd/sV (2.76) 

with J(jis being the damped least-square jsicobmn inverse. The solutions of (2.76) 

are the ones that minimize the following cost function [2,9,11]: 

g(q) = \iy- Jq)^(V - Jq) + | ^ ' q ^ q (2.77) 

resulting from the condition 

minf||V-Jqf+ ^2||qf') (2.78) 

The solutions are a trade-off between the least-square condition and the minimum 
norm condition. It is very important to select carefully the damping factor ^ : small 
values of ^ lead to accurate solutions but with low robustness to the singular or 
near-singular occurrences ( = high degree of failure in singular or near-singular 
configurations), i.e., low robustness to the main reason to use the scheme. High 
values of ^ lead to feasible but awkward solutions. 

To understand how to select the damping factor ^ , in the following the jacobian 
will be decomposed using the SVD technique. The SVD of the jacobian can be 
expressed as 

6 
j = UZV'^=^aiUiv/^ (2.79) 

where ai > a2 > •.. > ar > 0 (r = rank(J)) are the jacobian singular values (positive 
square roots of the eigenvalues of fj), vi (columns of the orthogonal matrix V) are 
the so-called right or input singular vectors (orthonormal eigenvectors of fj) and 
Ui (columns of the orthogonal matrix U) are the so-called left or output singular 
vectors (orthonormal eigenvectors of JJ^). The following properties hold: 

R(J) = span {ui, ...,Ur}^ 
N(J) = span {Vr+i, ...,V6} 

The range of the jacobian R(J) is the set of all possible task velocities, those that 
could result from all possible joint velocities: R(J) = {Ve^i^: V = Jq for all 
possible q e^^}. The first r input singular vectors constitute a base of R(J). So, if 
in a singularity the rank of the jacobian is reduced then one other effect of a 
singularity will be the decrease of dim[R(J)] by eliminating a linear combination of 

^ The span of {ai,.... an} is the set of the linear combinations of ai, 
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task velocities from the space of feasible velocities, i.e., the reduction of the set of 
all possible task velocities. 

The null space of the jacobian N(J) is the set of all the joint velocities that produce 
a null task velocity at the current configuration: N(J) = {q G9?^: Jq = 0 } . The last 
(6-r) output singular vectors constitute a base of N(J). So, in a singular 
configuration the dimension of N(J) is increased by adding a linear combination of 
joint velocities that produce a null task velocity. 

Using the SVD of the jacobian (2.78) in the DLS form of the inverse kinematics 
(2.75) results in 

q = E - ^ V i u ; ^ V (2.80) 
I ^i + S 

The following properties hold: 

R(JMS) - R(J^)' = N-^(J)' = span {ui,..., u^} 
N(J,ds) = R(J^) = R W = span {v^+i,..., V6} (2.81) 

which means that the properties of the damped least-squares inverse solution are 
analogous to those of the pseudoinverse solution (remember that the inverse 
pseudoinverse solution gives a least-square solution with a minimum norm to 
equation (2.28)). 

The damping factor has little influence on the components for which a\ » ^ 
because in those situations 

""' ^ (2.82) 

i.e., the solutions are similar to the pure least-square solutions. 

Nevertheless, when a singularity is approached, the smallest singular value (the r-
th singular value) tend's to zero, the associated component of the solution is driven 

to zero by the factor —^ and the joint velocity associated with the near-degenerate 

components of the commanded velocity V are progressively reduced, i.e., at a 
singular configuration, the joint velocity along Vr is removed (no longer remains in 
the null-space of the jacobian as in the pure Least-Square solution) and the task 

^ y is the pseudoinverse jacobian. 
^ Orthogonal complement of the null space joint velocities. 
^ Orthogonal complement of the feasible space task velocities. 
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velocity along Ur becomes feasible. That is how the damping factor works; as a 
measure or indication of the degree of approximation between the damped and 
pure least-square solutions. Then a strategy [8], initially presented by [12], can be 
used to adjust ^ as a function of the closeness to the singularity. Based on the 
estimation of the smallest singular value of the jacobian, we can define a singular 
region and use the exact solution (^=0) outside the region and a damped solution 
inside the region. In this case, a varying % should be used (increasing as we 
approach the singular point) to achieve better performance (as mentioned the 
damped solutions are different from the exact solutions). The damping factor ^ can 
then be defined using the following law modified from [9] 

%' 

0 0 6 > 8 

^ ^" '^"^^ 2 ^ _ (2.83) '-e] femax <^6 < ^ 

where ^^^x ^^^ ^ ^^^ defined by the user to shape the solution to his needs, 8 

defines the size of the region and a 5 is the estimate of the smallest singular value. 

The estimate is done using a recursive algorithm originally presented at [13] and 
later extended by [14] to estimate not only the smallest singular value but also the 
second smallest singular value. This procedure avoids estimation inaccuracy due to 
the cross of the two smallest singular values, when the manipulator approaches 
both the wrist and the shoulder singularity. The algorithm is as follows: 

Suppose we have estimates of the two last input singular vectors V5 and v^ with 

V5 « V5 and ||v5|| = 1 

V6«V6 and||v6|| = l (2.84) 

The estimate V5 is then use to compute v'̂  from 

(j^J-t-^2jy6 = V6 (2.85) 

Then the estimate a5 is computed from 

^ 6 = ^ r ^ ' (2.86) 

and the initial estimate v^ is updated using 



Robot Manipulators and Control Systems 65 

V 6 = 1 % (2-87) 

The second smallest singular value is computed using the estimate vg from, 

[}^}+ei-(^lH%ylk = ̂ 5 (2.88) 

Then the estimate a5 is computed from 

a | = ^ - ^ 2 (2.89) 

and finally the initial estimate V5 is updated using 

v5 = |r7Tr (2.90) 

Special care should be taken with the numerical implementation of the DLS 
inverse kinematics solutions, to correct the numerical drift. Basically a feedback 
term can be used [2,9,15] by making 

V = VH+K.e = VH+K 
^ Pd-P 

—(nxn^} +sxS(i +axj 
v2 

(2.91) 

where K is a positive definite diagonal 6x6 matrix, pa and p are the desired and 
actual position, and the orientation is defined in terms of the desired and actual (n, 
s, a) vectors of the end-effector frame. 

Due to the increase 0^ end-effector errors [11] in the neighborhood of a singularity 
by means of the near-degenerate components of end-effector velocity, the matrix K 
should be corrected using K=pKo , where Ko is a diagonal constant matrix and p is 
the correcting factor. Now, inside a singular region we should use K=0 because in 
some situations the resulting joint velocities can drive the manipulator to reach the 
joint limits, even if eventually the error will approach zero. When the manipulator 
is sufficiently away from a singularity, we should have p=l. So, generally we 
define p as 
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P = i 

0 G^<S 

^""^'f, 8<a6<n8 (2.92) 
( n - l r e ^ 

1 otherwise 

where n is defined by the user based on self-experience and on test results with a 
particular robotic manipulator setup. 

2,5 Position Sensing 

The IRB1400 uses resolvers [16-19] as position sensors. The drive unit used at this 
robot (manufactured by ELMO AB for ABB Robotics), includes a PM AC 
synchronous motor, both current feedback devices, a brake, and a brushless 
resolver, all assembled at factory ,i.e., they come in one piece [20]. 

A brushless resolver consists of a stator, a rotor and a rotary transformer. The stator 
and rotor windings are distributed in a way that the magnetic flux is distributed as a 
sine wave of the angle of rotation (perfect resolver). The output of a resolver is 
therefore an AC voltage in accordance with the angular position of the shaft. This 
type of position sensor is characterized by its high accuracy output, maintenance 
free brushless design, and immunity to noise, vibration, and shock. Other 
characteristics introduced by highly automated manufacturer production facilities 
include homogeneity in accuracy, transformation ratio, phase-shift, etc. 

These characteristics significantly reduce major sources of error such as: 

1. Amplitude imbalance due to different amplitudes of the resolver output 
signals 

2. Imperfect quadrature due to phase-shift 
3. Inductance harmonic error due to imperfect inductance profiles, i.e., the 

inductance profiles do not follow perfect sine wave as consequence of 
imperfect sinusoidal winding 

Two types of resolvers can be considered (Figure 2.13): Brushless Amplitude 
Output Resolvers (BAOR) and Brushless Phase-Shift Output Resolvers (BPOR)^^. 
Resolvers of type BAOR are excited by an AC voltage to the rotor winding and the 
output is obtained from the stator windings in the form sine and cosine voltages 
proportional to the rotation angle 0. Resolvers of the type BPOR are excited by 
sine and cosine voltages to the stator windings and the output is obtained from the 

^̂  Tamagawa Seiki Co. LTD. names these resolvers as BRX and BRT, respectively. 
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rotor winding in the form of a sine voltage with phase-shifted in proportion to the 
rotation angle 0. 

The IRB 1400 uses BAOR type resolvers from the Japanese manufacturer 
Tamagawa Seiki Co. LTD. [19,20]. 
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Figure 2.13 Types of resolvers 

The use of a resolver implies the availability of a resolver to digital converter 
(RDC) and processing circuit [21-23]. The RDC is used to track and convert 
resolver signals to a digital parallel binary word, generally using a ratiometric 
tracking conversion method that improves noise immunity and tolerance to lead 
length (important when the converter is remote from the resolver). The RDC 
circuit uses an RDC along with the necessary interface and signal conditioning 
circuitry. Because noise can degrade significantly the accuracy of the 
measurement, special care must be taken with the driving lines from and to the 
resolvers: the use of shielded twisted pair cabling and isolation amplifiers may be 
needed. 

The basic functional diagram of an RDC is presented in Figure 2.14, where it is 
used data relative to the Analog Devices RDC model AD2S80A. The converter 
works as a type II closed-loop system with the angle (|) as a control variable (this 
angle is the current converter estimate of the angle 0). 

Generally, the converter's functioning can be described as follows: First the inputs 
(resolver outputs Es2-s4 and Esi-sa) are multiplied by cos((|)) and sin((t)), respectively, 
at the ratio multiplier. Then the difference between the signals is computed giving 
the ratio multiplier output AC error signal Ê c = Ai.K.E.sin(9-(|)).sin(cot), where Ai 
is the ratio multiplier gain (fixed at 14.5 for AD2S80A). Second, this error signal is 
synchronously demodulated at the phase sensitive demodulator (PSD), using the 
resolver excitation frequency as a demodulation reference, leaving the error signal 
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EpsD = Ai.K.Esin(0-(|)). The output of the demodulator is a DC voltage 

proportional to the RMS value of the demodulator input: 

— *De mod ulator_ InputRi^s (̂ ^^ sinusoidal input signals in phase or antiphase 
71 

with the reference signal). Before entering the PSD, the signal passes over an HF 
filter (with components selected by the user) to remove any DC offset voltage. 
Then the PSD output passes through the integrator (with components selected by 
the user), whose output signal (proportional to the velocity of the resolver) is fed to 
the voltage controlled oscillator (VCO). The VCO integrates the velocity signal 
and compares the resulting signal with the minimum DC voltage resolution (uses 
two comparators for positive and negative voltages, meaning rotation in the 
positive direction or in the negative direction) and updates the up/down counter by 
producing the counter clock and direction signal. The value of the internal latch 
used to interface with the user is also updated with the counter value. An RDC 
works similarly to a successive approximation type analog to digital converter. 

k.E.sin(wt).sinC6)̂ | 

k.E.sin(wt).cos(B) J 
Ratio 
Multiplier 

AC HF filter Phase Sensitive 
Demodulator 

Integrator 

Up/Down Counter 
with reset 

clock 
L direction 

Voltage Controlled 
Oscilator 

-•Velocity 

Output to Latch 
Figure 2.14 Resolver to digital converter basic functional diagram 

The RDC returned digital value is generally a 12, 14, or 16-bit binary number 
containing the actual rotation angle. This angle should be mapped to the robot's 
join space. For that, the following guidelines should be used: 

1. Choose an angle data format, i.e., degrees, radians 
2. Account for the resolver offset^\ i.e., the resolver reading when the 

manipulator is in the home position. At that point, we should have 
number_of_rotations = 0 and actual_angle = 0 

A complete RDC circuit implementation should also save the total number of 
rotations in an 8-bit up-down counter/register. In essence, the circuit should give 
the rotation angle of the motor in the actual rotation and the total number of 
rotations already performed. 

Usually these values are measured by the robot manufacturer and printed on the robot or 
in the robot documentation. 
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2.6 Actuators: Motors 

Generally the actuators used to move the joints of any industrial robot are motors, 
usually DC permanent magnet (PM) motors or AC PM motors. Other motors can 
be used, including pneumatic or hydraulic servo motors. The IRB 1400 uses three-
phase synchronous AC PM motors, with six poles (axes 1-3) and four poles (axes 
4-6), manufactured by Elmo AB - Sweden. 

The three-phase synchronous AC PM motor rotating magnetic field is obtained by 
making a three-phase current to flow in the stator coil (Figure 2.15), which has a 
sinusoidal distribution. So, a brushless sine wave PM AC synchronous motor is 
obviously not mechanically commutated (there are no brushes) but instead the 
commutation is done by acting on the three-phase current signals. Nevertheless, the 
commutation position of the motor should be retained, i.e., the resolver reading 
when the motor is at the electrical home position (electrical 0° position) - this value 
is called the commutation offset (COMMOFF). 

The usual procedure to find the commutation offsets is as follows: 
1. Turn the motor to the commutating position by feeding a positive constant 

current to the motor 
2. Feed the resolver with the necessary excitation signal (4kHz and 5 Vrms for 

IRB 1400 drives) 
3. Adjust the resolver to +90'' (± 0,5""), i.e, turn to the maximum value on coil 

Y of the resolver with the same phase as the 5V feeding signal. At that 
point we should have: 

Voltage across coil X = OV 
and 
Voltage across coil Y = input voltage * transformation ratio 

The value of the rotation angle (90 degrees) is the commutation offset. This 
procedure is used with the IRB 1400 drives, so that is why the COMMOFFS are 
constant for all drives (1.570800 radians). For some older robots, like the ABB 
IRB 2000 (up to model M90), the motor and the resolver are separate parts, 
assembled together by the manufacturer without following the above referred 
procedure. So, the COMMOFFS are different for all drives. The values are 
obtained at factory and printed on the robot or in the documentation; nevertheless, 
these values can be updated using the robot controller. 

A full description of a three-phase synchronous sine wave PM motor can be found 
in: 

1. Design of Brushless Permanent-Magnet Motors, Herdershot Jr., Magna 
Physics Publishing and Clarendon Press, Oxford, 1995, Chapters 6 and 7 

2. Electric Drives and their Controls, R.M. Crowder, Clarendon Press, 
Oxford, 1995, Chapter 5, section 5.3 

Nevertheless, a brief overview is presented here. 
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W phase 

U phase 

Figure 2.15 Three-phase synchronous motors and current signals 

Considering p as the angle between rotor magnet north axis and the stator windings 
axis, it can be shown [17] that the motor torque is 

T oc sin(p) (2.93) 

Consequently, the angle P must be kept at 90"" in order to maximize the torque, 
which is done by phasing the current waveforms relative to the actual rotor 
position. To ensure that the ampere-conductor distribution remains in synchronism 
with the rotor's magnetic field, the stator supply frequency (f) must be equal to the 
rotor angular velocity (Wg), Wg = 2.9x.f, which is related to the mechanical angular 
velocity of the motor (Wm) by Wm = Wg/p, where p is the number of the motor pole 
pairs. In order to keep the torque angle constant, i.e., to keep the ampere-
distribution north axis in synchronism with the rotor north axis (displaced by 90°), 
a high-performance and precise sensor should be used (generally a resolver). 

With this type of control action the motor follows the equation 

Torque = Flux * Current (2.94) 

For this type of motors, the flux is constant, sinusoidally distributed in space, and 
the generated EMF varies sinusoidally in each phase. The overall torque-speed 
characteristic is presented in Figure 2.16. The maximum torque can be maintained 
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up to the base speed. After that, it is still possible to increase the velocity by 
changing p but the motor enters the field-weakening mode and any increase in 
speed is done at the expense of the peak torque. 

Torque t 

Base Speed 
Speed 

Figure 2.16 Torque-Speed characteristic of a sine wave motor 

The "natural" relations for the back-EMF (E) and for the torque (T), used for a DC 
square wave motor still hold for a sine wave motor, i.e., 

T = kt * I 
E = k e * w , (2.95) 

k yfi 
but now with —^ = — ^ 1. 

ke 2 

The torque constant (kt) and the back-EMF constant (kg) can be measured using the 
following equations: 

k, =iLL. (v-s/rad) (2.96) 

where CLL is the peak line-line voltage and Wm is the mechanical angular velocity. 

k,=Z (Nm) (2.97) 
i 

where i is the peak line current when the motor is in normal operation, measured 
using a current sensor connected to measure the phase current directly and then 
displayed in an oscilloscope. 

It is also possible to write 



k ^ ^j^i^ - ^ ' — — ivivio " — - R M S 
e 2 2 (2,98) 
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T.w^ = kt * i * - ^ = — * CLL * i = — * V2 * ERMS * V2 * I 
kg 2 2 

ERMS *IRMS = Electrical-Mechanical Power Conversion 

and, 

V3 * ERMS * IRMS U ... T _ 1. V3 * ER T . V . - ^ R M S - ^ R M S , 1 , ^ , 1 ^ ^ ^ ^ , , ^ , ^ ^ ; : r (2-99) 
Wm 2 T C * -

VOIRPM 

60 

2.6.1 Motor Drive System 

In this section, the main circuits necessary to drive a three-phase AC synchronous 
PM motor are briefly presented. As already mentioned, a brushless AC PM motor 
requires alternating sine wave phase currents, because the motor is designed to 
generate sinusoidal back-EMF. The power electronic control circuit is very simple 
and uses some control strategy^^ to achieve torque, smooth speed, and accurate 
control, keeping the current to a safe value. In order to obtain sine wave phase 
currents, the power supply (DC voltage) must be switched on and off at high 
frequency, under the control of a current regulator that forces the power transistors 
to switch on and off in a way that the average current is a sine wave. Basically, the 
sine wave reference signals could just be applied directly to the power transistors, 
after appropriate power amplification. However, that means using the power 
transistors in the proportional or linear region, which will increase the operating 
temperature due to the high power loss. The power loss is reduced by switching the 
transistors on and off by comparing the sine wave reference with a high frequency 
triangular carrier wave (PWM -pulse width modulation circuit). The frequency and 
amplitude of the triangular wave are kept constant. The comparator switches on the 
transistors when the values of the reference sine wave exceed those of the 
triangular wave; and switches them off when the inverse situation occurs (Figure 
2.17). The duty ratio is then increased and decreased by the sine wave, centered by 
50%. This procedure leads to a average sine wave output, because the output of the 
inverter feeding the power transistors is OV when the duty ratio is 50%. 

Special care should be taken in selecting the carrier frequency, because the power 
loss increases with increasing frequency and the motor speed response decreases 
with decreasing frequency. Torque and current ripples appear more frequently at 
higher frequencies as well. 

'̂  A set of rules that determine when the power transistors are switched on and off 



Robot Manipulators and Control Systems 73 

Figure 2.17 PWM basic functioning 

The basic power electronic circuit to control a sine wave three-phase AC PM 
motor is the flill-bridge circuit. The transistors used in the circuit must have very 
low turn-on and turn-off switching times (of the order of nanoseconds) and some 
other properties summarized as follows: 

1. Zero on-state forward voltage drop, to minimize losses and maximize 
available "voltage" to force current into the motor 

2. Zero leakage current in the off state, to minimize losses because a power 
transistor usually has high voltages across it when it is off, so even a small 
leakage current can produce high losses in the transistor's off state 

3. High forward-blocking capability that should be higher than the supply 
voltage by a safety margin (usually 30%). The reverse-blocking capability 
is generally a margin of the forward-blocking, usually because the power 
transistors are reverse-protected by appropriately connected diodes 

4. High dv/dt capability, because modem power transistors are MOS-gated, 
with capacitive input impedance at the gate, which make's them sensitive 
to spurious turn-on when the gate is subjected to a high dv/dt. High dv/dt 
immunity is then desirable, but nevertheless a safe procedure is to drive the 
gate from a low impedance source/sink 

5. High di/dt capability, to prevent current-crowding effects and second 
breakdown the di/dt capability must be high 

6. High-speed switching, from transistors to minimize switching losses and 
also from the power diodes, because the commutation of inductive current 
from a transistor branch to a diode branch is the most important way to 
protect against destructive transient voltages 

The full bridge circuit is presented in Figure 2.18 for two popular phase windings: 
eye and delta [17]. Figure 2.19 shows line current waveforms for three-phase sine 
wave motors, including transistor states and current paths. 
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Figure 2.18 Full bridge circuit for eye and delta connected windings 

Figure 2.19 Line current waveforms for a sine wave motor, including transistor states and 
current paths 
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A general control system for a sine wave three-phase brushless motor is presented 
in Figure 2.20: includes a PWM circuit, over current (due to motor stall or short 
circuits) protection, a filter to damp DAC steps, a current controller (usually a PI 
controller designed to drive the motor current to the desired value) and a sine wave 
generator. Synchronization is achieved by changing current references in 
accordance with motor position. 
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Figure 2.20 Block diagram of a general control system for a brushless synchronous three-
phase sine wave motor 

2.7 Dynamics 

Dynamics deals with mapping forces exerted on the robot's parts as well as with 
the motion of the robot, i.e., its joint positions, velocities, and accelerations. This 
mapping is achieved using a set of mathematical equations, based on some 
specified dynamic formulation that describes the dynamic behavior of the robot 
manipulator, i.e., its motion. Those sets of equations constitute the dynamic model 
of the robot manipulator. The dynamic model can be used to simulate and control 
the robot manipulator, i.e., the dynamic model provides the means to compute the 
joint positions, velocities, and accelerations starting from the joint torques (direct 
dynamics), and the means to compute the joint torques using the joint positions, 
velocities, and accelerations (inverse dynamics). 

The dynamic model is obtained starting from well known physical laws like the 
Newtonian mechanics and the Lagrange mechanics [6,24]. Several different 
dynamic formulations for robot manipulators were developed: Lagrange-Euler, 
Newton-Euler, D'Alembert, ... [1-3,7]. Nevertheless, they are equivalent to each 
other because they define the same physical phenomenon, i.e., the dynamics of 
rigid bodies assembled together to constitute a robot. Obviously, the structure of 
the motion equations is much different because each formulation was developed to 
achieve different objectives such as computation efficiency, simplicity to analyze 
and/or to simulate the structure, etc. 
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In this section, the dynamic model of the ABB IRB 1400 industrial robot will be 
briefly summarized using the Newton-Euler dynamic formulation. In the process, 
the other dynamic formulations are presented and briefly discussed. 

2.7.1 Inertia Tensor and Mass Distribution 

The mass distribution of a rigid body may be characterized by its inertial mass, for 
the case of one degree of freedom motions, and by its first moment of inertia, for 
simple rotations, i.e., rotations about a single axis. If there is more than one axis of 
rotation, the above properties are no longer suitable to characterize the mass 
distribution of the moving rigid body [6,24]. This is the case of a rigid robot 
manipulator, which is made by a series of rigid bodies, whose motion is 3-
dimensional and therefore an infinite number of rotation axes is possible. The 
concept of inertia tensor is used in this case, which can be considered as a 
generalization of the concept of moment of inertia. If p(x,y,z) is the mass density 
of a rigid body, then the inertia tensor may be defined as 

I = jJJp(r2l-rr)dv (2.100) 

where 1 is a unity tensor. The inertia tensor is a 3x3 matrix expressed in terms of 
some frame {A} 

1̂= 
^xx ^yx ^zx 

^xy ^yy ^zy 

^xz ^yz ^zz 

(2.101) 

where the diagonal elements are the moments of inertia about the axes x, y and z of 
frame {A} 

Ixx=jjJp(y'+z'Mv 

Izz=JJJp(x'+y')dv (2.102) 

and the other elements (non-diagonal) are the products of inertia 

x̂y 

yz 

ẑx 

ŷx 

~ ẑy ~ 

= Ixz = 

= -JJ pxydv 

-JJpyzdv 

-Jjpzxdv (2.103) 
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2,7.1.1 Important Results [6] 
Next some important results will be presented, considering that the frame 
associated to the rigid body is {B} and the inertial frame is {A}. 

Suppose that I is the inertia tensor of the rigid body expressed in terms of some 
reference frame. The moment of inertia about any axis of rotation n (different from 
any of the rigid body symmetry axes) with the same origin of the reference frame 
is 

I„=n'^I.n (2.104) 

Extension of the Parallel Axis Theorem This theorem is used here to compute the 
inertia tensor variation with linear motions of the reference frame. Suppose that 
{C} is the frame associated with the rigid body center of mass, {G} is some frame 
obtained from {C} by linear motion, and CP is the position vector of the center of 
mass expressed in terms of {G}. Then 

IG = Ic + M (^P'̂  ^P I3 - ^P ^P'̂ ) (2.105) 

where ^P = (Xc, yc, Zc)̂  and I3 is a 3x3 identity matrix. 

If the rigid body is rotating, the inertia tensor expressed in terms of {A} "̂ I is also 
varying with time, but the inertia tensor expressed in terms o {B} ^I remains 
constant (remember that {B} is the frame associated with the rigid body). If the 

^1= ^ H . ^ I . ^ H ' ^ (2.106) 

where B ^ is the transformation matrix from {B} to {A}. 

The reference frame associated with each rigid body must be set to in a way that 
the products of inertia become null. The axes of that frame are namQd primary axes 
of the rigid body. The eigenvalues of the inertia tensor are the so-called rigid body 
primary moments of inertia. There are some systematic methods to compute the 
primary axis of inertia of any rigid body [6,24]. 

Any rigid body plane of symmetry is perpendicular to one primary axis. 

Each symmetry axis of the rigid body is a primary axis. The plane of symmetry 
perpendicular to that axis is SL primary plane associated with a degenerated primary 
moment of inertia. 
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2.7.2 Lagrange-Euler Formulation 

Here we briefly introduce the Lagrange-Euler formulation. To use this 
formulation, it is required to develop equations for the robot manipulator's kinetic 
energy and potential energy. The kinetic energy of link (i) is given by 

ki=|miVj,Vc,+^'wTC.i.iwi (2.107) 

where the first term results from the linear velocity of the center of mass of link (i), 
and the second term is due to the angular velocity of the same link. The robot 
manipulator's total kinetic energy is then given by 

K = Xki (2.108) 

The potential energy of link (i) may be written as 

Ui=mi.<'gT.»Pc,+Uref, (2.109) 

where ĝ is the gravity acceleration vector, ^ P ,̂ is the position vector of the center 
of mass of link (i) expressed in terms of frame {0} and Uref is a constant that 
expresses the potential energy in terms of an arbitrary origin. The total potential 
energy of the robot manipulator is given by 

U = t u i (2.110) 

i = l 

The Lagrange equation is then 

L = K-U (2.111) 
where K and U are obtained form (2.100) and (2.110). It follows that the motion 
equations of the robot manipulator can then be obtained using the Lagrange 
equation 

dt ae ae 

where x is the joint torque vector. 

Recently [4], recursive equations based on the Lagrange-Euler equations have 
been developed. The resulting equations are computationally more efficient. 
Nevertheless, the recursive nature destroys the equation's structure which is a 
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major drawback for the design and development of new control laws, and the 
Newton-Euler recursive equations remain the most efficient. 

2.7.3 D'Alembert Formulation 

This is basically a Lagrange dynamic formulation based on the D'Alembert 
principle. As mentioned before, the Lagrange-Euler formulation is simple but 
computationally inefficient, and the Newton-Euler formulation is compact with a 
recursive non-structured nature and is computationally very efficient. To obtain a 
recursive and computationally efficient set based on the Lagrange mechanics, a 
vector representation along with the use of rotation matrices is used to develop the 
kinetic and potential energy equations. The same procedure used in the Lagrange-
Euler formulation is then used to compute the motion equations. This procedure is 
known as D 'Alembert formulation, and is a generalization of the Lagrange-Euler 
Sind Newton-Euler formulations [7]. 

2.7.4 Newton-Euler Formulation 

The Newton-Euler formulation will be used to obtain the dynamic equations of the 
ABB IRB 1400 industrial robot and in the process explained in some detail. We 
will also compare this to the other dynamic formulations. 

If the joint positions, velocities, and accelerations of the robot manipulator are 
known, along with the kinematics and mass distribution, then we should be able to 
compute the required joint moments. On the other hand, if the joint torques is 
known, along with the inverse kinematics and the robot mass distribution, we 
should be able to compute the joint positions. 

The Newton-Euler dynamic formulation is a set of recursive equations, divided in 
two groups: forward recursive equations and inverse recursive equations. 

Forward Recursive Equations 
This set of equations is used to compute (''propagate'') link velocities and 
accelerations from link to link, starting from link 1 (the first link). 

Angular Acceleration Computation 
Using equations (2.50) and (2.51) gives 

i^^Wi,i=^^!R.iwiVlR.Vixei,i.'^^Zi,i+ei,i.^^^Zi,i (2.113) 

for the angular acceleration of link (i+1) expressed in terms of (i+1). 
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Linear Acceleration Computation 
Using equations (2.52) and (2.53) gives 

-ivi , i=-!p''' !Rfwixipi^iVwix(VixiPi^i)A) (2.114) 

for the linear acceleration of link (i+1) expressed in terms of (i+1). 

Linear Acceleration Computation at the Link Center of Mass 
Using again equations (20) and (25) results, 

i V(.. =̂ WiX P̂c. Vwi x('wiX^Pc. )Vvi (2.115) 

where {Ci}is the reference frame associated with the center of mass of link (i), and 
having the same orientation of {i}. 

Gravitv effects 
The gravity effects can be included in the above equations by making 

^vo=G (2.116) 

where G = {gx,gy,gz/ is the gravity acceleration vector with |G| = 9,8062 m/s^. 

This is equivalent to consider that the robot manipulator has a linear acceleration of 
one G, pointing up, which produces the same effect on the robot links as the 
gravity acceleration. 

Using the above equations (2.113)-(2.115), the Newton equation (2"^ law) and the 
Euler equation, it's possible to compute the total force and moment at the center of 
mass of each link: 

i^^Fi,i=mi,,^^ivc,^, (2.117) 

^-^^Ni,,=^-Ii,,^^»Wi,,4--»Wi,,xCi..ij,,-iwi,, (2.118) 

Note: 
Newton Equation (2"^ law) - The total force applied to a rigid body of mass m and 
centre of mass acceleration v^ , is given by F = m. v^. 

Euler Equation - Consider a rigid body of mass m, angular velocity w, and angular 
acceleration w. The total moment N starting the body in motion is given by 

N=^Iw + wx^Iw, where ^I is the rigid body inertia tensor expressed in terms of the 
reference frame associated with the body's center of mass. 
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Backward Recursive Equations 
This set of equations is used to compute {''propagate'') link forces and moments 
from link to link, starting at the last link. 

Computation of Links Forces and Moments 
Taking 

fi = force applied at link (i) by link (i-1); 
ni = moment in link (i) due to link (i-1); 

the force balancing on link (i) can be expressed as 

^Fi= f̂i-̂ -̂ !R/-'̂ fi+, (2.119) 

and the moment balancing in the center of mass of link (i) can be expressed as 

%=\Jn;^,^{-'V^.yf-, -('Pî i JPc )̂x'fî i (2.120) 

Using (2.119) in (2.120) gives 

^NiJni-i^{R.^^»ni^l+-'PcxiFi-iPi^lxjR.^fi^i (2.121) 

Figure 2.21 Forces and torques applied to the joints 

Rewriting (2.119) and (2.121) in a way that their recursive nature becomes more 
evident results in 

'ni='Ni+ijR.'+'tii+,+'Pcx'Fi+'Pi^,Xi^|R.'+'fi+, 

(2.122) 

(2.123) 
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To obtain the joint moments we just need to project over the Z axis the already 
computed moment %, i.e., 

Xi= ni . Zi (2.124) 

Contact Forces 
The contact forces and moments (contact wrench) can be included in the model by 
putting, 

N+1 = Contact wrench ?t 0 (2.125) 

where N is the number of degrees of freedom of the robot manipulator. 

2.7.5 Dynamic Parameters 

There is a number of parameters that are needed to compute the dynamic model 
(dynamic parameters). The minimum set of parameters is called the base dynamic 
parameters, and its identification can reduce significantly the computational load of 
the dynamic model (by 50%). If we take a closer look at the equations developed 
for the kinematics energy and for the potential energy of link (i), it is easy to verify 
that they are linear with respect to some dynamic parameters: the link mass, the six 
elements of the link inertia tensor, and the three components of the link's first 
moments of inertia. Some other dynamic parameters must also be included, namely 
the ones related with joint actuation. The joint torque is given by 

X = Tm + '̂ v + 'Cf + Tg + Xa + Te (2.126) 

where Xm = M(6) 6 is the torque due to the inertia of the robot manipulator, Xy is 
the torque due to the centrifugal and coriolis forces, Xf is the torque due to the 
friction forces, Xg is the torque due to the gravity force, Xa is the torque resulting 
from non-modeled forces and Xe is the torque due to external contact forces. 

Now, Xm can be written as Xm = Xmr + Xmm, where x̂ r is the torque due to the robot 
manipulator inertia (not including the motor drive) and Xmm is the torque due to the 
motor inertia itself We may express Xmm as 

mm ^m*^ 

^ 
0 

0 

0 . 

I™, . 

0 . 

.. 0 1 

•• ImJ 

r' 
02 

kn 

(2.127) 
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where Im is the rotor's moment of inertia and n is the number of degrees of 
freedom. 

The friction torque may be given by 

Tf =F3.sgn(e) + F .̂e = 

R 0 ... 0 

0 R ... 

0 0 ... R 

sgn 

0 0 

(2.128) 

where the first term refers to the coulomb friction and the second to the viscous 
friction. 

In conclusion, Ij^. , Fg. and F .̂ are also dynamic parameters to take into account, 

i.e., the all number of dynamic parameters is thirteen: 

^ = (lxxi lyyi Izzi x̂yi ^xz; ŷzj "̂ î ix ^jriy niirj^ Hlj !„,. F̂ . F^,) 

(2.129) 

The basic Newton-Euler recursive algorithm resumed in the following form: 

Forward recursive equations 
Initial conditions 

Wo : 0 ; ^Wo = 0 ; ^vo=^Po=^g = (o 0 gf , with g = - 9,8062 m/sl 

For i = 1 to 5, 

i^Vi,,JlR.iwiV^!R.iwixei,i.-^Z;.,+0i,, .-^Z, 1+1. i+lr 

''^Vi^lJiR[^WixiPi^lVwiX(^WiX^Pi^l)+'vi 

'vq ='wiX^Pc. +Vi x('wiX*Pc. )Vvi 

i+lt7 _ m i+^V 
M + l - " ^ i + l - ^Ci+i 

i+lvr _Ci+iT i+1- J+K^ v^i+iT i+Nx/ 

Backward recursive equations 
Initial conditions 

End-effector wrench = 
N + Ir. A 

N+1 
^N+1 

Fori = 6to 1, 

'fi=i.iR-'^'fi.i+'Fi 
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'ni='Ni+ijR.'+'ni^,+'Pc^x'Fi+'Pi^,xjR.'+'fi^, 

The generalized force at joint (i) is then 

^ii=^n^^Zi + I^^ei + F3̂  sgn(ei) + F,ii +x,^ (2.130) 

2.8 Matlab Examples 

Taking advantage of the preceding discussion, namely the application to the 
specific manipulator used for demonstration, along with the particularities of 
Matlab, a few functions were built to show how the above presented results could 
be used to simulate and operate a robot from Matlab, The functionality of this 
collection of functions is extended by the developments presented in chapter's 3 
and 4 of this book, which enable the user to command the real robot from the 
Matlab shell. 

Several functions were implemented to compute the direct and inverse kinematics, 
any rotation or transformation matrix, the jacobian (using the method presented 
here or the differential method presented in [25]), the DLS jacobian, trajectories in 
the Cartesian or in the joint space, simulate the operation of the robot, etc. The 
functions developed are related with the robot used for demonstration (ABB 
IRB1400), i.e., there was no effort to make them compatible with any other type of 
industrial robot. Consequently, the presented functions were optimized for 
anthropomorphic robots with a spherical wrist, with the direct and inverse 
kinematics obtained symbolically using Matlab and further optimized. 

To demonstrate the functionality of the developed functions, a few examples will 
be given below. 

Jacobian 
Functions: jacobian.m and jacobdls.m 
Parameters: jacobian (dh, q, type) and jacobdls(dh, q, type) where, 
'dh' - Denavit-Hartenberg parameters od the robot 
'q' - vector or array of vectors containing the joint angles representing a 
configuration or a sequence of configurations of the robot 
'type' - method used to compute the jacobian: 
'a' - returns the base jacobian and the end-effector jabobian of using differential 
method presented in [25] 
'b ' - returns the base jacobian using the same method [25] 
*e' - returns the base jacobian using the kinematics developed in this book 
'd' - returns the both jacobians using the kinematics developed in this book 
T - returns the end-effector ]2iOohmn using the kinematics developed in this book 
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Figure 2.22 shows the utilization of the above functions to compute the jacobian of 
the robot for the configuration qi = (0 0 0 0 0 0). 

» flops(O) 
» J=jacobian(dh,q1,'e'} 

J = 

0 -720 -120 0 0 0 
955 0 0 0 0 0 
0 805 805 0 85 0 
0 0 0 1 0 1 
0 - 1 - 1 0 - 1 0 
1 0 0 0 0 0 

» flops 

ans = 

188 

» flops(0} 
» J=jacobian(dh,q1,'b') 

0.0000 -720.0000 -120.0000 0 0.0000 
955.0000 0.0000 0.0000 0 0.0000 
0.0000 805.0000 805.0000 0 85.0000 

0 0 0 1.0000 0 
0.0000 -1.0000 -1.0000 -0.0000 -1.0000 
1.0000 0.0000 0.0000 -0.0000 0.0000 

» flops 

ans = 

3412 

Figure 2.22 Computing the jacobian: note the reduction of floating point operations when 
the optimized kinematics is used. 

Inverse Kinematics 
Function: irbl4ink.m 
Parameters: irbl4ink(dh, t06, quad) where, 
*dh' - Denavit-Hartenberg parameters of the robot 
't06' - Transformation matrix T5 that describes the position/orientation of the 
terminal element in terms of the base frame 
'quad' - indication of the working quadrant. If nothing is given, the routine admits 
that the working quadrant is equal to the quadrant of 0i 

Figure 2.23 shows the function running applied to a singular configuration with 
indication of the working quadrant. 
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» qc 

qc = 

0.7854 1.0472 0.7854 

>̂ t06=irb14mtrCqc' ,0,0,6) 

t06 = 

1.0e+003 * 

-0.0007 
0.0007 -0.0002 -0.4906 

-0.0007 -0.0002 -0.4906 
0.0000 0.0010 1.5215 

0 0 0.0010 

» irb14ink(dh,t06,'q1') 
Singular Point -> sin(q5)=0 
Resoluing Singular Point ... 

ans = 

45. 
60. 
45. 

57. 

.0000 

.0000 

.0000 
0 
0 
0 

.2958 

45.0000 
60.0000 
45.0000 

-90.0000 
0 

90.0000 
57.2958 

45.0000 
60.0000 
45.0000 
90.0000 

0 
-90.0000 
57.2958 

0. 
1, 
0. 

1, 

.7854 

.0472 

.7854 
0 
0 
0 

.0000 

0.7854 
1.0472 
0.7854 

-1.5708 
0 

1.5708 
1.0000 

0.7854 
1.0472 
0.7854 
1.5708 

0 
-1.5708 
1.0000 

Figure 2.23 Computing the inverse kinematics (initial robot configuration expressed in 
radians) 

2,9 Robot Control Systems 

Robot control systems (Figure 2.24) are electronic programmable systems 
responsible for moving and controlling the robot manipulator, providing also the 
means to interface with the environment and the necessary mechanisms to interface 
with regular and advanced users or operators. 

In this section, a brief overview of actual industrial robot control systems is 
presented, pointing out the important factors that must be addressed either by the 
advanced user (programmer or system integrator) or by the simple operator. 
Although the discussion is kept general and valid for any robot controller, a 
particular robot control system (the ABB IRC5 robot controller [26]) will be used 
for demonstration. 

The robot controller has some important tasks it should perform in order to move 
and control the robot manipulator, provide means for inter-controller and computer 
communications, enable a sensor interface, and offer the necessary mechanisms 
and features that allow robot programming, a robot-user interface and program 
execution. 
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Figure 2.24 Basic architecture of a robot control system 

2.9.1 Drive the motors to move the TCP and coordinate the motion for useful 
work 

Motion control involves several different tasks, as already mentioned and resumed 
in Figure 2.25. 

Path Planning 

i 
Interpolation 

^ r 

Path Filtering 

1 k 
Servo Controller 

Figure 2.25 Basic tasks involved in motion control 

The path planner's basic task is to prepare the robot's path and feed the relevant 
data to the path interpolator. Moving a robot means specifying an origin 
position/orientation {Ti} and a final position/orientation {Tf} of the robot's TCP 
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{tool center point). The path interpolator takes the planner data and computes the 
intermediate points in each interpolation interval, using the specified velocity and 
acceleration. The outputs of the interpolator are the basic inputs for the servo 
loops, i.e., they constitute the target points (references) that must be achieved by 
the servo controllers. The data from the interpolator is filtered by the path filter, 
before being passed to the servo controllers, in order to provide smoother 
accelerations/decelerations and keep the motor torques in the range of the servo­
motor. 

A complete definition of the motion parameters, including velocities and 
accelerations, is also necessary. Sometimes it is necessary to define intermediate 
position/orientation points (also called ''via points'') between the initial and final 
configurations. This procedure will better define the requirements and contribute 
for the final path. Furthermore, to obtain smooth paths the path planner must be a 
continuous function, with a continuous first derivative and hopefully also a 
continuous second derivative [1]. For example, the path generator can be 
implemented by a 5*̂  order polynomial. The use of a high-order polynomial here is 
motivated by the fact that a quintic polynomial is needed to be able to specify the 
position, velocity, and acceleration at the beginning and end of each path segment. 

Considering a 5*̂  order polynomial in the form 

e(t) = ao +ait + a2t̂ - +a3t^ +a4t'^ +a5t^ (2.131) 

with the following constraints 

0f = ao + aitf + a2tf + a3tf + a4tf + a5tf 

eo=ai 

Gf = ai • 

% = 2a2 

9f = ai + 2a2tf + 3a3tf + 4a4tf + 5a5tf 

Bf = 2a2 +6a3tf +12a4tf +20a5t? (2.132) 

Results in a linear system of six equations with six unknowns whose solutions are 

ai=0o 

ai=eo 

" 2 

_ 209f -2000 -(SGf +120eo)tf - (39Q -9f)tf 
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_ 309Q-3Qef-f-(149f+16eQ)tf -(SOo-2ef)t? 

"'^ ^, 

^ ^ 12ef -1200 -(6ef + 69o)tf -(9o -9f)t^ ^^ 133) 

' 2t^ 

There are several methods in the literature to compute smooth paths that pass to a 
given set of via points'' [27, 28]. Nevertheless, the function presented above gives 
a good indication and can be used for that objective, running the function between 
the intermediate points. 

The following Matlab functions (Figure 2.26) calculate the robot's trajectory in the 
joint space using the 5̂ ^ order polynomial presented above. As already mentioned, 
with this trajectory planner it is possible to compute the trajectory between two 
configurations, defining the initial and final velocities and accelerations. The 
trajectory is represented using a small function that animates the motion of the 
robot. 

Trajectory generation and robot animation 
Funtions: irbl4trj.m and irbl4plt.m 
Parameters: [qt, qdt, qddt] = irbl4trj(q0, ql , nt, qdO, qdl, qddO, qddl) and 
irbl4plt(dh, q, opt, number, azm, elv, vgax, vgay) where, 
'qO' - initial position 
' q l ' - final position 
'nt' - number of intermediate points of the trajectory to obtain 
'qdO' and 'qdl ' - initial and final values of the velocity 
'qddO' and 'qddl ' - initial and final values of the acceleration 
'dh' - Denavit-Hartenberg pwLWLTiQiQTs of the robot 
*q' - matrix holding the computed trajctory 
'opt' - type of representation of the motion 
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Figure 2.26 Robot's animation using the obtained trajectory 

2.10 Servo Control 

The servo controllers utilize the data from the path planner and interpolator, 
properly filtered, to drive the robot manipulator axis. As already mentioned the 
dynamics of the robot is very complex with a huge number of effects, forces and 
moments to account for, which puts a considerable challenge to the task of 
controlling a servo-motor. A detailed and complete description of a servo-
controller, namely about the control algorithms and circuitry used, is out of the 
scope of this book, but a brief overview will be given. Generally, the control loop 
of an industrial robot joint (or axis) has the components presented in Figure 2.27. 

Position Control 
Loop 

Figure 2.27 Typical robot joint control loop 
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A brief overview of the AC motors used with industrial robots was already 
presented, and a typical current control loop was also already sketched in Figure 
2.20. Basically, the current control loop implements a PI (proportional and 
integral) controller [29], having the I component of the controller (Cc) with the 
objective of eliminating the steady-state error and achieving the best possible 
control. The velocity control loop is built around the current control loop and also 
uses a PI controller (Cv). 

Finally, around both of the previous controllers there is the position control loop. 
This controller takes the position commands as input, generates an error signal by 
subtracting the actual position (obtained from the joint position sensors) from the 
commanded reference, and generates the control signal using some selected control 
law (Cp). Typically, the position controller is a simple proportional controller, 
since the objective is to obtain a good responsive control of the motor position to 
follow the desired joint command with zero steady-state error and zero overshoot. 
And that objective is obtained with the combined effect of the position (generally a 
P controller), velocity (generally a PI controller), and current (generally a PI 
controller) control loops. 

2.11 lO Control 

One of the most basic things that a robot control system must do is to implement 
PLC-like functions. Robots are used in manufacturing cells where digital/analog 
10 and logic controllers govern the way things happen, namely controlling the 
systems responsible for material handling, transportation, detection, etc.. To 
interface with those systems, the robot controller needs to "speak" the same 
language and act as a logic controller, or at least have the same functionality 
available. Consequently, the robot controller must be able to: 

1. Accommodate digital 10 signals with variable and configurable electric 
levels. The robot must be able to read from digital input lines (with different 
electric levels) and implement basic logic functions on the obtained data: 
block reading, logic functions, shifting, counters, timers, edge detection, etc. 
The robot controller must also be able to act on digital 10 outputs changing 
their state (ON/OFF), applying timed pulses, etc. 

2. Accommodate analog 10 signals. The robot must be able to read from analog 
inputs, providing the necessary electronic circuits for multiplexing and 
analog-to-digital conversion, the mathematical functions to handle the results, 
and the necessary circuits and digital-to-analog converters to act on analog 
output signals. 

3. Implement 10 manipulating functions. 

The robot controller programming language must implement advanced 
mathematical functions, and data structures, that can be used within the robot's 
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program to enable the user to coordinate the robot's motion with 10 actions (Figure 
2.28), like reading 10 information or acting on 10 lines (open/close grippers, 
regulate pressure of pneumatic actuators, regulate the velocity of external motors 
driven by power inverters or external servo controllers, start/stop equipment, etc.) 

irbl40 
y j Controllers 

- EJ 5ystem_sockets on ' 172.16.0. 8̂  

+ i ^ Configuration 

* ^ Events 

+ ^ I/O System 

- £ l RAPID Tasks 

-, - ^ j T_R0B1 (Program 'NewF 

- f l Program Modules 

E'l ̂  MainModule 

'•'<t\ main 

+, f I System Modules 

'+ - ^ task2 (Program '<no pre 

•^ Documents 

Figure 2.28 Part of a robot 
language) 

decisionl:=123; 
END IF 
IF decisionl = 96 THEN 
HoveJ p5, v200, z50, toolO; 
decisionl:=123; 

END IF 
IF decisionl = 201 THEN 

SetDO D007,l; 
HoveJ Offs(pick,0,0,100), v300, fine, toolO; 
HoveL pick, vSO, fine, toolO; 
SetDO D007,0; 
WaitTime 2; 
HoveL Offs(pick,0,0,100), v50, z20, toolO; 
HoveJ pickl, v300, z20, toolO; 
decisionl:=123; 

END IF 

program written in RAPID (ABB Robotics programming 

2.12 Communication 

Robots are to used in networks with other robots and computers organized into 
manufacturing cells that also connect to each other constituting manufacturing 
lines. This type of manufacturing organization corresponds to one of the most 
recent developments in the area of industrial automation, i.e., the concept of 
flexible manufacturing systems (FMS). These are highly computerized systems 
composed by several types of equipment, usually connected through a local area 
network (local network using MAP^^ protocols [30]) under some hierarchical 
computer integrated manufacturing (CIM) structure [31-33]. The available factory 
{shop floor) equipment is organized into flexible manufacturing cells (FMCs) with 
transportation devices connecting the FMCs. In some cases, functionally related 
FMCs are organized into flexible manufacturing lines (FMLs). Each FML may 
include several FMCs with different or equal basic capabilities. The organization 
proposed in Figure 2.29 is a hierarchical structure [33,34] where each FMC has its 
own controller. Therefore, if the manufacturing process is conveniently organized 
as a FML, then several controllers will exist on the shop floor level, e.g., one 
controller for each FML. With this setup, an intelligent and distributed job 
dispatching and awarding may be implemented, taking advantage of the installed 
industrial network [33,35-37]. 

^^ Manufacturing automation protocol (MAP). 
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Figure 2.29 Typical CIM hierarchical organization 

The best characteristic of an FMC is its flexibility, i.e., its adaptability to new 
manufacturing requirements that can go from a modified product to a completely 
new product. The flexibility results from the fact that FMC equipment is 
programmable and easily reconfigured: that is the case of industrial robot 
manipulators, mobile robots for parts handling and transportation, programmable 
and logic controllers (PLC), CNC machines, vision systems, conveyors, etc. 

Considering the communication between commanding and supervising computers 
and the robot controllers, and even the communication between robot controllers 
itself, it is usually supported through a TCP/IP Ethernet based network. The 
functions associated with this type of communication include the exchange of files 
and programs, the execution of remote operations like backup and system 
maintenance, etc. In many advanced applications, this network is also used to 
command and supervise each manufacturing cell operation, with several levels of 
functionality depending on the type of access: operator access, supervisor access, 
or information retrieval access from the production planning levels of the network. 
These types of advanced features will be extensively explored in this book. 

Many manufacturers offer robot services through this type of network to support 
these advanced applications, in the form of RPC servers [38], TCP/IP socket 
servers [26], or UDP datagram servers [39]. These servers and associated services 
can be used by the system developer/integrator to provide functionality to the user 
through the application. 
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Furthermore, the communication Hnks between the controller and the 
manufacturing cell can be as follows: 

1. Computer network - to interface with commanding and supervising 
computers, from several levels of the network 

2. Fieldbuses - to interface with other robot controllers, but also with PLCs 
and other cell equipment commanded by programmable controllers. The 
most common options are DeviceNet, ProfiBus, Ethernet IP, etc. Several 
robot controllers also use a fieldbus network (CAN or DeviceNet, for 
example) to connect some of its internal components (the drive boards to 
the main computer, etc.) 

3. Serial lO - to interface with sensors, or with several types of 10 equipment 
or process equipment like welding power sources, to interface locally with 
a computer or laptop using a point-to-point occasional connection, and so 
on 

2.13 Sensor Interface 

Interfacing advanced sensors is a fundamental aspect of any robot control system. 
In fact, to successfully perform several actual industrial tasks, the robots need 
special sensors that could be used to help them get the relevant information and use 
it efficiently through the process. Many of these sensors require high-performance, 
non-perturbed communication links, and/or need to interface directly to the path 
planners and motion controllers so that the robot can be guided and instructed in 
real-time. Consequently, the robot controllers should provide special interfaces for 
these types of sensors, at least for the most common ones, which can be 
programmed and explored by the advanced user. 

2.13.1 Interfacing Laser 3D Sensor for Seam Tracking 

Good examples are the laser sensors used in robotic welding for seam finding and 
tracking during the welding operation. These types of sensors provide signals 
(analog or through high-speed digital interfaces) that can be used to guide the robot 
during the welding operation. These sensors work in a simple way, based on the 
principle of laser triangulation. A low power laser source is used to generate a laser 
beam that is projected onto the surface of the joint to weld. The reflected light is 
picked up by a lens that feeds the imaging system, composed usually of a CCD or 
CMOS sensor. The laser-reflected signals are extracted using filters and image 
processing software, which is a simple task since the laser signal has a very precise 
wave length and power (Figure 2.30). 

In fact, these laser cameras and related processing hardware and software, with 
some customization to the selected application, are useful for evaluating most of 
the geometric parameters other than the mentioned joint detection and seam 
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tracking features. Since they are available with powerful APIs for general use, with 
standard interfaces for robot controllers and current computer hardware, these 
types of sensors constitute a powerful tool for robotic welding. 

Laser source 

Focusing lens 

• Plates to weld 

Figure 2.30 Explanation of the laser vision principle 

Basically, the outputs obtained from these sensors are position accommodations, or 
position corrections, that should be sent to the robot controller to adapt the current 
motion. They can also monitor certain variables and provide the means to generate 
interrupts in the robot controller in order to respond to significant variable changes. 
For example, the seam volume or the welding gap can be monitored by this sensor. 
When changes are detected, the corresponding events can be used to trigger an 
internal interrupt that will adapt the welding parameters (voltage, wire feed and 
velocity) accordingly. For example, the following would be the procedure to adapt 
the welding parameters in function of the measured welding gap: 

Variables 
Matrix Numeric Adapted_voltage = {1, 1.1,1.2, 1.4, 1.6,2,2.2,...}; 
Matrix Numeric Adapted_wire__feed = {2, 2.2, 2.4, 2.6, 2.8, 3, 3.2,...}; 
Matrix Numeric Adapted_velocity = {10, 12, 14,16, 18, 20, 22,...}; 
Numeric gap_value; 
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Numeric index; 

Program 
Set Interrupt 1 when gap_value changes; 
Start Welding, tracking; 
When target point achieved 

Stop welding, tracking; 
EndWhen 

EndProgram 

Interrup Service Routine 
index = scale(gap_value); 
voltage = adapted_voltage(index); 
wire_feed = adapted_wire_feed(index); 
velocity = adapted_velocity (index); 
refresh welding parameters; 

EndRoutine 

The position of the sensor can also be read and used to accommodate the position 
references sent to the motion controller, guiding in this way the robot's motion. 

The next example shows how to interface other type of intelligent sensors for 
which there is no special interface at the robot controller. 

2.13.2 Interfacing a Force/Torque Sensor 

As already mentioned, robot manipulators are good examples of equipment for 
flexible manufacturing systems, due to their flexibility. In fact, flexibility is the 
major reason for robot utilization and popularity in actual manufacturing plants. In 
this framework, the majority of the robot's tasks require contact with the 
surrounding environment, i.e., in the process of fulfilling the task, the robot tool 
interacts physically with the working objects and surfaces. That interaction 
generates contact forces that should be controlled in a way to finish the task 
correctly, not damaging the robot tools and working objects. Those contact forces 
depend on the stiffness of the tool and working objects/surfaces and should be 
properly controlled. The option for a particular control technique depends on 
identifying if [40]: 

1. The contact forces should be controlled to achieve task success, but are 
sufficient to keep them inside some safety domain: passive force control 
[40]. 

2. The contact forces should be controlled because they contribute directly to 
the success of the task: active force control [40-53]. 

In the first case, contact forces are an undesirable effect of the task and it is 
generally sufficient to keep them inside some safety domain. They are not 
necessary for the task, so usually the strategy is adding flexibility to the end-
effector with the object of damping all the possible impacts and increasing the 
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tolerance to positioning errors, complemented with detailed and careful planning of 
flying trajectories and object approach. There are many solutions in the market to 
add flexibility to the end-effector, and in fact this is currently the standard approach 
in industry. 

In the second case, the contact forces are necessary to finish the task correctly, i.e., 
controlling the contact forces to make them assume some particular value or, more 
generally, to follow some force profile. 

For industrial robotics applications, force/torque sensors are usually placed near 
the working tool, generally in the manipulator wrist. This means that the sensor 
must be reasonably small, built in several sizes to adapt to different robot bolt 
patterns and load capacities, and mechanically resistant. Considering these 
restrictions, it is easy to understand why measuring the strain imposed on a 
selected strain gauge material, just by reading the voltage across the resistance of 
the material, is still the most used sensing technique. 

There are several ways and materials to design sensing gauges, metal wire, metal-
foil and semiconductor gauges being the most common. From those, the metal-foil 
gauges show some interesting features. The strain induced change in resistance is 
due to length and sectional area changes as well as a small piezo-resistive effect. 
With the developments in etching processes, metal-foil gauges became a very 
interesting possibility. They are manufactured in very thin foils (less than 10 |am), 
with sizes down to 200 jiim, etched by photographic methods. Consequently, there 
are virtually no limits to the variety of possible geometries. This gives greater 
flexibility to design geometries, but also to the type of stressing at the surface of 
the elastic material component where the gauge will be attached. Metal-foil gauges 
have very high linearity, with very low transverse sensibility (less than 0.3%), and 
great dynamic range. Also, their thermal characteristics are better than their 
semiconductor and metal-wire counterparts. All these arguments explain why 
metal-foil gauges are ideal for force/torque sensing elements. Force/torque sensors 
manufactured by JR3 (the ones we use in this book) use metal-foil gauges bound to 
elastic rings as sensing elements, which explain their superior behavior. Figure 
2.31 shows the composition of these sensors. 

The sensing part. It is composed of elastic rings at the outer perimeter between 
the mounting plates. The monolithic design eliminates hysterisis that would occur 
from slippage at highly stressed internal joints. The use of elastic rings produces a 
very stiff device, resulting in minimal deflection under load and better performance 
at higher frequencies. The rings and their strain gauges are positioned so that the 
local strain measures can be used to deduce the forces and moments, in all 
cartesian directions (X, Y, Z), passing through the sensor. The internal cavity 
between the mounting plates contains the front-end electronics where signals are 
amplified, digitized, and transmitted to the host receiver board. If the amplification 
and digitization electronics are inside the sensor, preferable for noisy or industrial 
environments, there is no analog signal being transmitted and high sampling rates 
can be achieved (8Khz). 
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Table 2.3 Functions available in the MATJR3PCI Matlab Mex file 
Functions 
initJrS 

read 
write 
system_wamings 

system_errors 

command 
get_threshold_status 

reset threshold 
readftdata 
set transforms 
usetransforms 
read offsets 
set offsets 
change offset num 
resetoffsets 

use offset 
peak data 
peak_data_reset 

read_peaks 
I bit set 

set full scales 
get full scales 
get_recommended_ fu 
11 scales 
sensor_info 

Brief description 
This function opens a handle to the JR3PCI driver, 
checks memory, and downloads DSP code to the 
board. 
Reads from a receiver board memory address. 
Writes to a receiver board memory address. 
Reads system saturation warnings (board memory 
address WARNINGS). 
Reads system errors (board memory address 
ERRORS). 
Commands JR3 receiver board. 
Gets the value of the threshold bits (board address 
THRESHOLD). 
Resets the threshold bits. 
Reads force/torque data from receiver board. 
Sets a new transformation definition. 
Selects the transformation to use. ! 
Read offsets in use. 
Sets actual offsets, using the current offset index. 
Changes actual offset index (num). 
Sets actual offsets to the current values read from 
FILTER 2. 
Changes actual offsets to the one defined. 
Sets address to watch for peaks. 
Sets address to watch for peaks and resets internal 
values to current data. 
Reads current peak values. 
Sets bits on defined bit-map. 
Sets JR3 Full Scales. 
Reads actual full scales. 
Reads recommended full_scales. 

Reads information from the sensor and from the 
receiver board. Use this function to test your setup. 

Note: all these functions address a specific sensor, even if a multi-channel board is used. 

DSP receiver board. Based on the same basic architecture, several interfaces can 
be used. If the issue is high access rates, then fast 10 buses must be used and a 
shared memory mechanism must be implemented to exchange data and program 
the sensor. JR3 offers several interface buses like VME, PCI (up to four channels 
per board), CPCI (also up to four channels) and ISA. The receiver boards are 
basically DSP boards that implement digital filters and dispose sensor information 
to users. Also they parameterize readings (offsets, full scales, geometrical 
transformations, etc.) and implement a few interesting functions such as maximum 
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and minimum values (peaks) and, warning and error bits, etc. A full description of 
these functions can be found in [54], and a brief summary can be found in Table 
2.3. 

Interface software and drivers. For Win32-hasQd operating systems, we 
developed a complete set of tools that can be used to build applications using 
force/torque sensors. These tools include kernel drivers designed for Win32 
operating systems, i.e., Windows. Basically, when we want to use some kind of 
equipment from a computer we need to write code and define data structures to 
handle all its functionality. We can then pack the software into libraries, which are 
not easy to distribute being language dependant, or build a software control using 
one of the several standard languages available. Having in mind that force/torque 
sensors can be used by persons with different programming capabilities, and from 
several types of programming languages and environments, the collection of 
functions that access the sensor capabilities are offered in several packages: C++ 
Library, ActiveX software component, Matlab toolbox and LabView Virtual 
Instruments [55]. 

, Matlab EXE application EXE application 

A\ 
Sensor with 
Internal Electronics 

FZ 

\i 
4,. 

shared mennory ^ -̂  ^ '̂  

Hardware access 
PCI bus 

Figure 2.31 Force/torque sensor overview (using PCI receiver board) 
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With this organization, the sensor works like a server, offering a collection of 
services to the advanced user, who can use the available programming tools cited 
above to tailor the sensor behavior. The next section demonstrates the sensor 
capabilities using the popular application Matlab. 
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Figure 2,32 Boards reported by Windows device manager 

2.13,2.1 Using a Force/Torque Sensor 
There are several applications of force/torque sensors, but generally a user just 
wants to install the sensor on his computer (after installing the sensing part on the 
mechanical system he is using), and then be able to parameterize it and get the 
sensor readings at selected rate from within the selected environment he chose to 
use. The basic software [54] was prepared to be used with virtually any application 
or programming language under Win32 operating systems, by any type of user: 
from computer experts to regular users. Here we use two different environments to 
explore the sensor capabilities. In this section, Matlab is used. Matlab is a widely 
used software environment for research and teaching applications on robotics and 
automation, mainly because it is a powerful linear algebra tool, with a very good 
collection of toolboxes that extend its basic functionality, and because it is an 
interactive open environment. So, it is really a good environment to demonstrate 
how to use this type of intelligent sensor. 

From all the available receiver board models, the quad-PCI receiver model was 
used. This board is capable of handling four force/torque sensors at the same time 
on a single PCI slot. It will be used step-by-step. 
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After having the board installed and correctly reported by the operating system 
(Figure 2.32), with sensor cables attached, the user is ready to start using the 
sensor. The first thing to do is open a handle to the sensor receiver board, check if 
the board is OK, and download the DSP code to the receiver's board program 
memory. 

The command is 

» matjr3pci(*initjr3',vendor_ID, device_ID, n_board, n_proc,download); 

where vendor JD and device_ID are the PCI ID's of the selected board, n_board is 
the board number (there can be several in the PCI bus), n_proc is the number of 
DSP units in the board, and download specifies if the user wants to download (1) 
the DSP code to the program memory or not (0). Nevertheless, DSP code must be 
downloaded once after each computer power-up, but after that the command can be 
used simply to open a handle to the board. The command returns zero if successful, 
or an error code [45]. Consequently, to a quad-PCI board, the command with DSP 
code download should be: 

» matjr3pciCinitJr3', 0x1762, 0x3114, 0, 4, 1); 

or without download: 

» matjr3pciCinitJr3', 0x1762, 0x3114, 0, 4, 0); 

If the return value is zero (0) then the user can start using the sensor, otherwise the 
user must solve the problem reported by the software (error code). 

The first command could be a query to the system to find out what sensor is 
attached to each channel. The command is 

» matjr3pci('sensor_info', 2); 

to get information about the force/torque sensor handled by DSP number 2. The 
returned information includes model and serial numbers, software version, number 
of ADC bits, etc. 

To read offsets from the force/torque sensor handled by DSP number zero 
(remember we are using a board with 4 DSP: numbered from 0 to 3), 

» offset_matrix = matjr3pci('read_offsets', 0); 

To set offsets of the force/torque sensor handled by DSP number 2, 

» matjr3pci('set_offsets',matrix_off, 2); 

where matrix_off is a matrix with the offset values. 
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To reset offsets, 

» matjr3pci('reset_offsets', n_dsp); 

where n_dsp is the DSP number. With this function, the offsets are zeroed using 
the actual values reported by FILTER_2 [56]. 

The offsets are stored in the memory available for each DSP. It is possible to store 
16 independent tables of offsets for each DSP. Consequently, before any of the 
previous operations, the user should define the table currently in use. If the 
definition is not performed, all operations are referent to the actual table. To set a 
table for offset reading the command is, 

» matjr3pciCchange_offset_num, 12, 1); 

to specify that all subsequent offset operations for the sensor handled by DSP 
number 1 are to be addressed to Table 12. Table 12 is also used on any subsequent 
force/torque reading for that sensor. 

To specify a table for actual force/torque readings the command is, 

» matjr3pci('use_offset, 10, 2); 

where table 10 was selected for sensor handled by DSP number 2. 

Another important operation on this type of sensor is setting the full-scales to 
properly scale the readings. This operation is similar to the operations of setting 
and reading offsets, so it will not be mentioned explicitly. 

Each DSP has an address space [56]. To read, write, and issue commands relative 
to those address spaces the user should use the read, write, and commandJrS 
commands. For example, to read the serial number (address OxOOfS of each DSP 
address space) of the force/torque sensor attached to DSP number 2 the command 
is, 

» serial_2 = matjr3pci(*readjr3', 248,2); 

Finally, to read data from any sensor the command is, 

» ft_data = matjr3pci('read_ftdata', n_filter, n_dsp); 

where njilter is the filter number (from 0 to 6, where 0 means unfiltered data), and 
n_dsp is the DSP number. 

The collection of functions available from this Matlab toolbox can be found in [54] 
and the correspondent functions of the C++ library ox ActiveX conixoX can be found 
in [57]. The same basic function prototypes have been kept between all the 
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software packages, which makes the above Matlab demonstration a good way to 
show how the other packages work (C++ library, ActiveX conXroX, etc). 

This example demonstrates how to interface an intelligent sensor to a computer. If 
the same facilities were available from the robot controller, then it would be 
equally easy to make the interface available directly from the controller, enabling 
in this way the programmer to directly use its readings to influence the robot's 
motion. Nevertheless, with most of the commercial robot controllers, this type of 
advanced access is not available or isn't accessible. Consequently, these types of 
sensors must be used form personal computers feeding the data to the robot using 
the available communication channels. This type of indirect approach slows down 
the possible performance, but it's an alternative way to implement the interface to 
the force/torque sensors. 

2.14 Programming and Program Execution 

Robot controllers should provide a programming language and a library of 
functions to enable users to explore the functionalities of the robot and of the 
robot's controller. Most of the manufacturers offer advanced PASCAL4ike 
structured programming languages, including a language interpreter within the 
controller. Consequently, users can write code using any ASCII editor, download it 
to the controller, and run it immediately without the need for any type of file 
conversion. Those programming environments also offer simple debugging tools 
that make the process of developing software easy. 

The most advanced manufacturers also offer online and offline PC-based 
programming tools, which enable users to develop code directly in the controller 
(online) using a remote PC. Alternatively, the code can be developed offline and 
downloaded to the controller when ready. 

The Teach Pendant Unit (TPU) can also be used to program and parameterize the 
system. These devices are basically computer units running a local operating 
system {Windows CE, for example) that offer to several types of users the 
possibility to program, parameterize, and operate the robot manipulator. 

The actual robot controllers are also multitasking systems, which enable the user to 
develop and run multiple tasks simultaneously. This allows new levels of 
functionality, offering new possibilities to the system developer. Using the 
available and common inter-task communication mechanisms, along with the 
ability to regulate task priorities (percentage of CPU time), it's possible to set up 
applications to handle all the challenges posed by the industrial manufacturing 
cells. 
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2.15 User Interface 

The user interface is basically defined by the system developer, because there are a 
lot of possibilities. The developer can use the available communication links and 
the robot controller's remote servers to set up a PC interface to command and 
monitor the robot operation (see for example Figures 1.20 and 1.21). Alternatively, 
he can use the controller TPU to design the user interface. Since most of the 
current teach pendants are advanced computers, running powerful operating 
systems, the possibilities for developing advanced interfaces are enormous and 
flexible. 

For example, the TPU that comes with the new ABB IRC5 controller [26] is a 
Windows CE system (Figure 2.33), equivalent to any portable CE based consumer 
device, which can be programmed remotely from a PC using common 
programming tools like the Microsoft Visual Studio .A^̂ T programming suite. 

Figure 2.33 Teach Pendant Unit showing a graphical user interface 

This book explores several examples that use a remote PC to implement the user 
interface, examples that use mainly the TPU, and examples that use both 
possibilities. The idea is to demonstrate that the possibilities are there and that it's 
up to the system developer to pick the best options for the specific application he's 
building. 
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Software Interfaces 

3,1 Introduction 

This chapter explains the basics of remote procedure calling using robot 
manipulators and industrial automation systems in general. The underlying idea 
here is to demonstrate how to set up and explore a basic facility for robot cell 
commanding and supervision operations, using the available network services. 
Consequently, a client-server model is adopted where the robot acts like a server 
exposing to the remote clients its remote services. 

The basic idea is simple. For each equipment we need to design and build a server 
(if it is not yet available) to expose the equipment functionality as remote services. 
The technology to build the server is highly dependent on the equipment resources 
and computing facilities, but if possible some kind of RPC (remote procedure 
calls) [1,2] mechanism should be used. Software controls that explore these 
services should then be available as basic tools to develop remote and distributed 
applications using the selected equipment. 

The OSI (open systems interconnection) reference model [1,2] defines the seven 
basic levels of network communications. The OSI seven layers can be summarized 
as follows (Figure 3.1): 

1. Physical layer - Provides electrical, functional, and procedural 
characteristics to activate, maintain, and deactivate physical links that 
transparently send the bit stream 

2. Data link layer - Provides functional and procedural means to transfer 
data between network entities and eventually correct transmission errors. It 
also provides mechanisms for activation, maintenance, and deactivation of 
data link connections, grouping of bits into characters and message frames. 



110 Industrial Robots Programming 

character and frame synchronization, error control, media access control, 
and flow control 

3. Network layer - Provides independence from data transfer technology and 
relaying and routing considerations; masks peculiarities of data transfer 
media from higher layers and provides switching and routing functions to 
establish, maintain, and terminate network layer connections and transfer 
data between users 

4. Transport layer - Provides transparent transfer of data between systems, 
relieving upper layers from concern with providing reliable and cost 
effective data transfer; provides also end-to-end control and information 
interchange with the quality of service needed by the application program; 
first true end-to-end layer 

5. Session layer - Provides mechanisms for organizing and structuring 
dialogues between application processes; these mechanisms allow for two-
way simultaneous or two-way alternate operation, establishment of major 
and minor synchronization points, and techniques for structuring data 
exchanges 

6. Presentation layer - Provides independence to application processes from 
differences in data representation, i.e., in syntax; syntax selection and 
conversion provided by allowing the user to select a "presentation context" 
with conversion between alternative contexts 

7. Application layer - This layer is dedicated to the requirements of 
application. Consequently, application processes use the service elements 
provided by the application layer. The elements include library routines 
that perform inter-process communication, provide common procedures for 
constructing application protocols and for accessing the services provided 
by servers that reside on the network 

The user/programmer selects the remote procedure calling mechanism to be used 
with the application. Ideally, the libraries used should isolate the user from the 
transport selected, hiding the tricky details about how to handle the communication 
flow. 

This chapter considers the various ways to achieve client-server communication, 
with the objective of commanding remote execution of selected functions. The 
final objective is to achieve semi-autonomous systems, i.e., highly automated 
systems that require only minor operator intervention. In many industries, 
production is closed tracked in many parts of the manufacturing cycle, which is 
composed by several in-line manufacturing systems that perform the operations 
necessary to transform the raw materials into a final product. In many cases, if 
properly designed, those individual manufacturing systems require simple 
parameterization to execute their tasks. If that parameterization can be commanded 
remotely by automatic means from where it is available, then the system becomes 
almost autonomous in the sense that operator intervention is reduced at a minimum 
and essentially needed only for error and maintenance situations. A system like this 
will improve efficiency and agility, since it is less dependent on human operators. 
Also, since those systems are built under distributed frameworks, based on client-
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server software architectures that require a collection of functions to implement the 
system ftinctionality, it is easier to change production by adjusting 
parameterization (a software task now), which also contributes to agility. 
Furthermore, since all information about each item produced is available in the 
manufacturing tracking software, it is logical to use it to command some of the 
shop floor manufacturing systems, namely the ones that require simple 
parameterization to work properly. This procedure would take advantage of the 
available information and computing infrastructure, avoiding unnecessary operator 
interfaces to command the system. Also, further potential gains in flexibility and 
productivity are evident. 

OSILayen 

7 
User Application 

iZ 

Data Representation 

n -
RPC Library 

TCP 

^ 

St 
UDP 

^ -
Network Protocol 

2 
1-2 

Hardware Interface 

<C II 
Network O 

Figure 3.1 OS! reference model, with reference to an RPC library (used in this book) 

3.2 Low Level Interfaces 

3.2.1 lO Digital Signals 

Probably the simplest way to exchange information between two machines, the 
first acting as client and the other as server, is by using 10 digital signals. 
Basically, the client and the server can "agree" to exchange information using a 
predefined number of 10 digital lines and a simple messaging protocol. 
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Let's illustrate this possibility with an example. Consider the setup represented in 
Figure 3.2, composed of a robot manipulator equipped with a vacuum suction cup 
and four fixed pick-place positions defined over a working table. 

Figure 3.2 Simple pick-and-place robotic example 

The user should be able to control the robot from a personal computer (PC), 
commanding it to pick or place a working piece on any of the available four 
positions. The user should also be able to start the robot, send it to the ''home 
position'' and get basic monitoring information. 

The commands needed for this application are: 

Commands Parameters 
Pick piece from position PI to P4 
Place piece at position PI to P4 
Program RUN/STOP 
Motor ON/OFF 
Go home 
Start Vacuum 
Release Vacuum 
Get Robot Status 
Acknowledge Error 

Therefore, considering all the possibilities there are seventeen different commands 
that require at least five bits (signals). Furthermore, to include the system 
commands ''Motor ON"', "Motor OFF\ "Program RUN"', and "Program STOF' 
four new digital input signals are needed (defined in the robot controller as 
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SYSTEM INPUTS). These system commands may be necessary for systems that 
don't support multitasking, and consequently require systems inputs to implement 
those actions; we plan to implement the server routine as a semistatic independent 
task, i.e., a task that runs when the system is in automatic mode. Other systems 
may require to have those commands associated with independent 10 lines. For 
generality we admit here both scenarios. The synchronization signal ''command 
ready is also needed to signal valid commands. 

To add a simple handshaking mechanism to be used to get robot status information 
(like busy, ready, and error status information), and system and program state 
information, another six digital output signals are needed. Consequently, the 
following 10 digital signals should be used: 

so 

SI 

S3 Auto Sys Signal 

Ŝ4.̂ ^MQtorQN̂ .Sys,,S 

S5 PRG RUN Sys Signa| 

DO 

ROBOT 

Dl 

PC 

D3 

D4 

Motor ON 

Motor OFF 

Program RUN 

Program STOP 

Command Ready - f ^ 

i.e., six (6) robot digital outputs for robot status information and ten (10) robot 
digital inputs for system command, data communication, and command validation. 
Consequently, Table 3.1 lists the commands identified for robot command and 
supervision. 

Table 3.1 Commands adopted for this example ~ PLC side 
Command 

Pick from PI 
Pick from P2 
Pick from P3 
Pick from P4 
Place at PI 
Place at P2 

Value of D0-D4 (Hex) 
01 
02 
03 
04 
05 
06 
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Place at P3 
Place at P4 
Go home 

Start Vacuum 
Stop Vacuum 

Acknowledge Error 
Motor ON 
Motor OFF 

Program RUN 
Program STOP 
Get robot status 

07 
08 
09 
OA 
OB 
OC 
OD 
OE 
OF 
10 
IF 

The following procedure should be used to run the presented setup: 

? 
Computer waits robot ready 

1 r 
Computer places command 

} 1̂  
1 Robot waits 
1 command ready 

^ r 
Computer signals command 

ready 

1 r 
Robot reads command 

1 r 
Robot goes busy 

1 r 
Computer removes signal 

command ready 

} r 
Robot executes command 
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with the following exceptions: 

1. The robot only accepts commands when in automatic mode. In manual 
mode or error state the robot ready signal is never activated. 

2. When in manual mode, the system always returns the offline state status. 
3. On an error situation, the system returns error state status and requires the 

user to issue a release error command. 

A simple lO board installed on the PC can be used to support the implementation 
of the ROBOT - PC interface. Nevertheless, in this example, an industrial PLC 
was used to implement the lO interface with the robot controller, being the 
communication between the commanding PC and the PLC done through a serial 
link (RS232C) - see Figure 3.3. The setup (Figure 3.2) is composed of an 
industrial PLC {Siemens S7-200 CPU 15) [2], a personal computer running 
Windows XP and an industrial robot manipulator (ABB IRB 140 equipped with the 
IRC5 robot controller). 

Robot 
Manipulator 

Figure 3.3 Main components of the system: PC (user interface), PLC (lo interface), robot 
controller, and manipulator 

The PLC was designed to operate as a server, offering 10 services to the remote 
computer. Basically, the PLC waits for remote commands, processes them, and 
returns the status of all the 10 signals. The commands have the following format: 

CMD PARJ PARJ ... PAR_N 

where CMD is a code that identifies the command (Table 3.2), and PAR_1 to 
PAR_N are parameters associated with each command. 

Table 3.2 Commands adopted for this example - PC side 
Command 

Pick 
Place 

Go home 
Start Vacuum 
Stop Vacuum 

Acknowledge Error 
Motor ON 
Motor OFF 

Code (decimal) 
200 
201 
202 
203 
204 
205 
206 
207 

Parameters 
l t o4 
l t o4 
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Program RUN 
Program STOP 
Get robot status 

208 
209 
500 

In the following few sections, the developed robot software, the PLC server 
software, and the PC commanding software will be presented and explained. 

3.2.1.1 Robot Controller Software 
In simple terms, the robot software executes the commands defined for the 
application in Tables 3.1 and 3.2, following the protocol sequence specified above. 
Consequently, the code has the basic structure depicted in Figure 3.4 where the 
RAPID programming language (from ABB Robotics) was used. For practical 
reasons the software presented in Figure 3.4 shows only the basic structure of three 
types of services: Pick/Place PI, Go Home, and Start/Stop Vacuum. It is assumed 
here that the robot server routine can run as an independent task, which requires a 
multitasking robot controller. 

MODULE seryer__sock 
VAR Declaration Here 

PROC mainO 
WHILE TRUE DO 

SetDOsO,l; 
WaitUntil cmd_rdy = 1; 
WaitUntil (command > 0 and command < 15); 
SetDO sO = 0; 
WaitUntil command_ready = 0; 
TEST command 
CASEl: • Pick from PI 

MoveL Offs(p 1,0,0,100), vlOO,fme,tool; 
MoveL p i , v50, fine tool; 
Vacuum_ON; 
WaitUntil vacuum_ready=l\Timeout = 2; 
MoveL MoveL Offs(p 1,0,0,100), vlOO,zlO,tool; 
IF timeout=TRUE THEN 

Vacuum_ON; 
SetDO si , 1; 

ELSE 
SetDO si , 0; 

ENDIF 
CASE 5: • Place at PI 

MoveL Offs(p 1,0,0,100), vlOO,fine,tool; 
MoveL pi , v50, fine tool; 
VacuumOFF; 
WaitUntil vacuum_ready=0\Timeout = 2; 
MoveL MoveL Offs(p 1,0,0,100), vlOO,zlO,tool; 
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IF timeout=TRUE THEN 
SetDOsl, 1; 

ELSE 
SetDOsl,0; 

ENDIF 
CASE 9: • Go home 

MoveJ home, vlOO,zlO,tool; 
CASE 10: • Start Vacuum 

SetDO do Vacuum,!; 
WaitUntil vacuum_ready=l\Timeout = 2; 
IF timeout=TRUE THEN 

SetDOsl, 1; 
ELSE 

SetDO si , 0; 
ENDIF 

CASE 11: • Stop Vacuum 
SetDO doVacuum,0; 
WaitUntil vacuum_ready=0\Timeout = 2; 
IF timeout=TRUE THEN 

SetDOsl, 1; 
ELSE 

SetDO si , 0; 
ENDIF 

ENDPROC 

Figure 3.4 Application running on the robot controller (RAPID) 

The application presented in Figure 3.4 uses the following variables: 
• command_ready - this is a digital input signal used to specify that a valid 

command is ready to be read. This variable is defined as a USER 10 
SIGNAL in the robot system parameters 

• command - group of four digital signals (dO, dl , d2 and d3) used to specify 
the command that should be executed. This variable is defined as a 
GROUP OF 10 SIGNALS in the robot system parameters 

• status - group of six digital output signals (sO, si , s2, s3, s4 and s5) used to 
specify the robot status. This variable is also defined as a GROUP OF 10 
SIGNALS in the robot system parameters: sO specifies if the robot is ready 
(1) or busy (0), si specifies if a command was correctly executed (0) or if 
there was any execution error (1), s2 is associated with the system ERROR 
OUTPUT ACTION, s3 is associated with the system AUTO OUTPUT 
action, s4 is associated with the system MOTOR ON OUTPUT action and 
s5 is associated with the system PROGRAM RUN OUTPUT action. 
Signals s2 to s5 are defined as SYSTEM OUTPUTS in the robot system 
parameters 

• There are also four extra robot digital 10 inputs, associated with the 
command of system actions MOTOR ON, MOTOR OFF, PROGRAM 
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RUN, and PROGRAM STOP. These signals were named motor_on, 
motor_ojf, program_run and program_stop, respectively, and are defined 
as SYSTEM INPUTS in the robot system parameters. 

3.2.L2 PLC Software 
The PLC software was designed to operate as a server. Furthermore, the 
application is basically composed of a serial port interrupt and service routine that 
handles the communication with the PC, placing the received string on known 
memory locations. In this example, the received string is copied to the memory 
zone that starts with byte 90. Therefore, the following happens when a message is 
received: 

VB90 - contains the number of bytes received 
VB91 - contains the numeric code associated with that command 
VB92 - contains parameter 1 

VB92+N - contains parameter N 
Note: In this example, the number of possible parameters is limited to 5, i.e., N = 5. 

lllil^jiBllllBlllpiiiiiliiil^^ 
Network 1 PickP! 
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VB91 

200 

VB92 dO 

1 

d1 

R 

1 

d2 

i pH i l i l ^ ^ ^M 
do 
di 
d2 
d3 

^d4 

^ i i i i l i i i 
Q0.0 

QO.I 
Q6.2 

/ Q O . 3 

Q0;4 

l i i i i i l i i l i l i i l i l l l i l iHI^^^^^RH^B^^B^Biii^Bili^^^ 
Digits! 0!j,pu( QO.O [24 Vol^s) •> lo robot 

D igibi 'Ci u'ipLi p i j . 1 [24 Voii's) -> to fobo[ J 

^ Digital Mpl Q0.2 (24 VoLVj -> h. robot ' 

' Digital Oulput Q0.3 (24 V'oii,si -> to robol 

Digital Output Q0.3 (24 Voltj] -> ^.o robot 

a) 



Software Interfaces 119 

[ iMi i i i i^ i i l l i i i^ i i i i i i i i^^ 
Network 1 Pick P1 

r iP i i i i iK i i i i i i i i i i i 
LDB= 
AB= 
S 
R 
R 
R 
R 

VB91, 
VB92, 
dO, 1 
d l , 1 
d2 , 1 
d 3 , 1 
d4, 1 

200 
1 

b) 

Figure 3.5 Equation to activate action ''Pick PT using the SIEMENS programming suite 
for the S7-200 PLC model {Step 7Micro/Win 32 V4) [3]: a - Ladder view, b - STL view 

Furthermore, any PLC action will be triggered by a byte comparison between 
VB91 (byte carrying the received command numeric code) and the particular 
numeric code associated with that action, discriminating also the parameters 
associated with the command. For example, to activate the command ''Pick P7" the 
following command string must be sent to the PLC: 

200 100 00 

which results in making VB91 = 200 and VB92 = 1. 

Consequently, the equation necessary to activate the action ''Pick P7" is 
represented in Figure 3.5. 
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Figure 3.6 Ladder view of the "Get Robot Status" action on the PLC. Bytes VBIOO to 
VB105 constitute an intermediate buffer used by the serial port service routine. Bytes QBO 
and QB1 carry the state of all the digital outputs, and bytes IBO and IB 1 carry the state of all 
the digital inputs. 
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All the remaining actions are implemented in a similar way. Nevertheless, there is 
one special action that should return the robot status. This feature is obtained just 
by packing the actual status of all 10 signals and sending it through the serial 
communication port, as the answer to the monitoring command ''Get Robot Status'' 
(code IF) - Figure 3.6. 

3.2.13 PC Software 
The software developed to run on the PC provides the user interface to this setup. It 
is used to send the user selected commands to the PLC and to receive and present 
to the user the ''status'' information (Figure 3.7). 
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Figure 3.7 PC user interface 

This simple application was coded using Visual Basic .NET2005. In the following 
(Figure 3.8) some aspects of the code associated with a few software buttons 
(actions) are revealed. 

Motor 
On/Off 

If robot_auto = 1 Then 
com.Output = Chr(206) + Chr(O) + Chr(O) + Chr(O) + Chr(O) + Chr(O) 

Else 
com.Output = Chr(207) + Chr(O) + Chr(O) + Chr(O) + Chr(O) + Chr(O) 

End If 

RUN/STOft 
If program_run = 1 Then 

com.Output = Chr(208) + Chr(O) + Chr(O) + Chr(O) + Chr(O) + Chr(O) 
Else 

com.Output = Chr(209) + Chr(O) + Chr(O) + Chr(O) + Chr(O) + Chr(O) 
End If 
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PI 
If pick.Checked = True Then 
com.Output = Chr(200) + Chr(l) + Chr(O) + Chr(O) + Chr(O) + Chr(O) 

End If 
If place.Checked = True Then 
com.Output = Chr(201) + Chr(l) + Chr(O) + Chr(O) + Chr(O) + Chr(O) 

End If 

Figure 3.8 Some actions available from the PC software 

The actions ''Motor ON/OFF' and "Program RUN/STOF' are obtained just by 
introducing a properly temporized lO PULSE on the relevant robot system input, 
which triggers those actions. Consequently, the PLC equation for the above 
mentioned actions is a simple 10 PULSE obtained using the PULSE function or a 
TIMMER function. Figure 3.9 show ŝ the ladder view for the "Motor OlSF' action 
and the corresponding timing. 
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Figure 3.9 - Ladder view of the "Motor ON"' action on the PLC, including a sketch of the 
timing of the obtained PULSE 

To briefly summarize this section so far, a simple example was presented where a 
robot is used to pick-and-place objects from four pre-defined positions. An 
industrial PLC was used to interface the commanding PC with the robot controller. 
This example demonstrates the utilization of 10 digital signals to design a simple 
communication and data interface for commanding and monitoring applications in 
industrial environments. 
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3.2.2 Using Fieldbuses 

A fieldbus [4] is an industrial network used for distributed control, i.e., to use with 
systems in which the control function is distributed among the several components 
of the system. In fact, actual industrial components like sensors, actuators, drive 
systems, programmable controllers, etc., are equipped with powerful computing 
systems that enable the system designer to transfer part of the control software, 
associated with acquisition, control, and actuation tasks, to those systems, 
distributing in this way the overall control function. Consequently, the available 
fieldbuses were developed to provide a reliable platform to transmit 10 data 
(digital and analog) between industrial PLCs and peripheral equipment, like 
sensors and actuators but also to established a low-level network with other PLCs 
and microprocessor-based programmable devices. Consequently, fieldbuses are 
mainly seen by users as a way to have remote lOs, i.e., a way to access remote 
sensors and actuators using a two-wire network, avoiding in this way a huge 
amount of cables and analog transmissions on the field (process) level. 
Furthermore, fieldbuses are also a reliable and convenient way to make 
application-oriented, low-level networks. There are several technical specifications 
available in the market, maintained by international and generally non-profit 
organizations, supported by the big majority of hardware manufacturers. Three of 
the most popular specifications will be covered here: ProfiBus, CAN and 
DeviceNet [4]. 

3.2.2.1 Profibus (Process FieldBus) 
Profibus is probably the most popular type of fieldbus with more than 15 million 
installed devices as of 2006. It was developed in 1989 as a deliverable of a German 
research project, whose consortium was composed by several companies and 
research institutions. 

Based on the real-time capable token-bus principle, Profibus handles multi-master 
and master-slave communications, allowing transfer rates up to 500 Kbits/s. 
Profibus is based on standards (the application, data, and physical layers are all 
standard) and enables reliable communication that distinguishes between 
confirmed and unconfirmed services allowing process communication, broadcast 
and real-time. Since Profibus is a master-slave pooling network with the ability to 
upload/download configuration data, it allows process synchronization of multiple 
devices on the network. 

3.2.2.2 CAN (Controller Area Network) 
CAN is a fast serial bus that was designed to provide an efficient, reliable, and very 
economical link between sensors and actuators. CAN uses a twisted pair cable to 
communicate at speeds up to IMbit/s with up to 40 devices. Originally developed 
to simplify the wiring in automobiles, its use has spread to machine and factory 
automation products. For example, SDS (Smart Distribution System) was 
developed by Bosch for networking most of the distributed electrical devices 
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throughout an automobile, initially for eliminating the large and expensive wiring 
harnesses at Mercedes (car manufacturer from Germany). 

CAN provides standardized communication objects for process data, service data, 
network management, synchronization, time-stamping, and emergency messages. 
It is the basis of several sensor buses, such as DeviceNet {Allen-Bradley), SDS 
{Smart Distribution System) from Honeywell or CAL {Can Application Layer) 
from ''CAN in Automation Group'' (a group of about 300 international users and 
manufacturers). CANOpen is a family of profiles based on CAN which was 
developed within the "CAN in Automation Group'\ The extensive error detection 
and correction features of CAN may easily withstand the harsh physical and 
electrical environment presented by a car. 

3,2,2.3 DeviceNet 
DeviceNet is an extension of CAN adapted for critical factory networking purposes. 
At the next level are the ''contror networks, which include ControlNet, developed 
by Allen-Bradley and also utilized by Honeywell, overlapping with some of the 
functionality provided by Profibus-FMS {FieldBus Message Specification), 
Profibus-FMS uses the same physical layer as Profibus DP {Decentralized 
Peripheral) but allows multi-master, asynchronous, peer-to-peer communication. 
FMS and DP can operate simultaneously on the same network. ControlNet was 
conceived as the ultimate high-level fieldbus network and was designed to meet 
several high performance automation and process control criteria. Of primary 
importance is the ability to communicate with each other being 100% 
deterministic, while achieving faster response than traditional master/slave 
poll/strobe networks. 

Furthermore, DeviceNet is a simple, open networking solution that reduces the cost 
and time required to wire and install industrial automation devices, while providing 
interchangeability of components from multiple vendors. DeviceNet is a cost-
effective solution for low-level industrial device networking and an effective way 
to provide access to the intelligence present in those devices. A DeviceNet network 
lets the user/programmer connect devices directly to shop floor controllers without 
hard-wiring each device into an I/O module. It is also used to: 

• Reduce wiring and installation cost 
• Reduce start-up time 
• Significantly reduce downtime and the total cost of ownership with the aid 

of diagnostics, Auto Device Replacement, and other time- and cost-saving 
features 

• Support standard and safety applications on the same wire 
• Benefit from an open network 
• Control, configure, and collect data on a single network 

Consequently, using a fieldbus is not significantly different if compared to regular 
10, since the same logic of encoding commands and parameters is used, utilizing 
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the lO signals/bits like a data bus. Nevertheless, fieldbuses use high bit rates over a 
reduced number of wires (normally a twisted-pair cable), which is an enormous 
advantage for industrial utiHzation since it allows a considerable reduction in the 
number of wires within the system. Other than that, since a fieldbus can 
accommodate a big number of remote lOs, it is easier to implement a messaging 
protocol to handle the necessary commands and related parameters, events, and 
monitoring tasks. In fact, many of the fieldbus consortiums developed their own 
protocols and consequently the user can choose between his own protocol, or the 
one available from the specific technology adopted. 

Currently there is a debate about using Ethernet with predictable timing 
(deterministic and robust) for "fieldbus type" operations, i.e., penetrating deep into 
the factory network hierarchy, down to the I/O level. This is justified by the fact 
that Ethernet is a network commonly available on the shop floor and used for many 
operations between controllers and computers. A decade ago, no serious design 
engineer would have suggested using Ethernet for networking shop floor devices. 

Ethernet, the technology for office automation, was developed more than three 
decades ago as a high-speed serial data-transfer network. It has become a 
worldwide standard and is now the most widely used Local Area Network (LAN). 
More than 85% of all installed network connections in the world are Ethernet. But 
it was deliberately ignored for industrial applications, and for good reasons: Its 
lack of determinism and robustness made it feeble and not suitable for the shop 
floor. Nevertheless, with time and research things changed, and today the scene is 
considerably different. In fact, over the past few years there have been many 
enhancements to the Ethernet standard, especially in areas of determinism, speed, 
and message prioritization. So there is no longer any reason why Ethernet cannot 
be used to build deterministic fieldbus networks that are cost-effective and open. 
And since Ethernet is already the network choice for business computing, its 
presence at the control level will facilitate the integration of low-level data with 
high-level applications. 

Another good reason why manufacturers are looking at Ethernet is the coming 
explosion of shop floor data traffic. As smart sensors and various devices on the 
shop floor consume the available bandwidth over the next few years, 
manufacturing plant information generated by PLCs and control systems is 
expected to increase from 10 to 30 times the current level. Ethernet, with its 
Internet-friendly TCP/IP protocol, is ideally positioned. It is popular, sinking in 
price and being propelled by utter market demand. 

Nevertheless, this scenario makes some of the PLC manufacturers uncomfortable. 
Even the recently arrived fieldbus systems are beginning to feel threatened by 
Ethernet. Furthermore, the DeviceNet, Profibus and Foundation Fieldbus protocols 
are all available or in development as application layers for Ethernet. And most 
PLCs now offer Ethernet as a standard networking option in addition to their 
fieldbus of choice. High Speed Ethernet (HSE) is a 100 Mbit/s Ethernet standard 
that uses the same protocol and objects as Foundation Fieldbus HI, on TCP/IP. 
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The new generation of Ethernet is called Gigabit Ethernet, which is capable of 1 
Gbits/sec. This will bridge the gap between the necessity of industrially hardened 
wiring capability and the growing need for process data via business LANs and the 
Internet. Most companies cannot afford to have a DeviceNet or Profibus specialist 
on their technical staff. Even if a company could afford such a person, it is unlikely 
that fieldbus would be their specialty. However, almost every company has a 
network administrator who is well versed and specialized in the Ethernet protocol, 
making Ethernet even more attractive for industrial control. 

In this book, Ethernet and TCP/IP network protocols are used extensively for 
several types of tasks: 

1. To command distributed systems from remote computers 
2. To supervise and monitor operation of the manufacturing systems 
3. To exchange data, configuration setup, etc., with peripheral devices 

(sensors and actuators, for example) 
4. To monitor and supervise operation of the remote systems, including 

controllers, sensors, actuator modules, etc 
5. To program peripheral devices (sensors and actuators) and/or adjust their 

behavior 
6. To receive events (asynchronous calls) from peripheral devices with data, 

warnings, or errors 

3.3 Data Protocols and Connections 

The challenges posed by any robotic manufacturing system are similar and 
independent of the particular application under study. Consequently, the software 
architecture [5-7] presented in this book was designed to be used with generic 
robotic manufacturing cells that may include several types of equipment like robot 
manipulators, mobile robots, PLCs (programmable controllers), CNC machines, 
vision systems and several types of sensors, etc. Usually these systems use 
different programming languages, even when the manufacturer is the same. It is 
then very difficult to make adjustments to the cell functionality, or adapt it to new 
requirements posed by the introduction of a new product or by changes introduced 
in existing products. Several research and technical efforts have been carried out to 
overcome these problems. Many of those efforts point to solutions that consider the 
development of general programming languages that could be used with any 
equipment, relying on individual interpreters to generate the specific code for any 
equipment. 

Nevertheless, recent research works show that it is desirable to have a flexible 
environment and still program each machine using its own language. The reason is 
simple: a general syntax means introducing generalizations and simplifications that 
tend to limit the potentiality of the equipment. Consequently, some 
parameterization is not used, special non-grouped functions are not used, and the 
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generated code takes always a uniform structure which may not be the best for all 
machines. 

The idea presented here is rather different, being an alternative to the solutions 
presented in the literature, and also for the software products truly distributed 
available on the market. The basic idea is to define for each individual machine a 
collection of software functions that expose all its basic operational features. That 
objective requires local processing capabilities, availability of communication 
channels, and support for the standard technologies used when implementing the 
services installed on the individual machines. Since the vast majority of the current 
robotics and automation (R&A) equipment meets these requirements fully, this is 
not a serious limitation. Also, the above-mentioned services are to be offered 
through a local network, on a distributed software framework based on the client-
server model. Furthermore, using those services from the remote client computer to 
build controlling and inspection applications can be performed from any platform 
(UNIX, Linux, Win32-DCOM, etc.), using standard programming languages (C, 
C++, C#, Visual Basic, etc.). 

Several approaches can be used and are currently available from various robot 
manufacturers, with specific details and implementations. Nevertheless, the 
following objectives are pursued by any of the above-mentioned software 
architectures: 

1. Be able to represent the robot manipulator's motion based on the kinematic 
and dynamic models, but also based on real-time data coming from the real 
robot. That can be done using available mathematical and graphical 
software packages, like Matlab for example. This latest objective clearly 
indicates the need to access robot motion and status information in real­
time from the mathematical package 

2. Be able to develop applications to explore remotely the entire installation 
(robot and welding application, for example) using standard programming 
languages (C, C++, C#, Visual Basic, etc.) 

3. Be able to integrate and explore intelligent sensors used to obtain 
information from the process under control 

4. Enable users to explore the advanced programming capabilities of actual 
robot controllers, namely the local programming capabilities, based on a 
dedicated programming language complemented by extensive libraries of 
functions, and the optimized manipulation capabilities based on trajectory 
planning software that takes advantages of optimized kinematic and 
dynamic models 

5. Enable users to build flexible manufacturing cells, which leads to the 
ability to explore the available industrial data network, and to distribute 
software to the various components of the system, as well as the capacity to 
build remote software applications to control and monitor industrial 
manufacturing cells 

6. Develop advanced Human Machine Interface (HMI) solutions to operate 
with industrial systems, hiding from the users all the tricky details about 
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implementation, allowing them to focus on the operational details, i.e., to 
focus on how systems work and how they can be explored efficiently 

7. Provide ways that could allow developers to focus on the important things 
about the application they are building: the control algorithm, program 
functionality, and HMI. All the details related to communications, sensor 
integration, etc., should be hidden from the user 

Taking into consideration these objectives, the following programming models are 
required: 

1. Client-server model: There should be server code running on each cell 
equipment, namely on the robot controllers and coordinating PLCs, that 
could receive calls from the remote client computers, execute the 
commands and return the results 

2. Remote procedure calls: This is the most usual method used to implement 
communications between a client and a server on a distributed 
environment. The client makes a call to a non-local function and the 
selected RPC mechanism configures the call so that the proper computer, 
server program and function are addressed, adding the necessary network 
headers. The server program, running on the server machine, receives the 
call, executes the selected function, and returns the results obtained to the 
client computer 

3. IPC socket connections: Another approach is to use TCP or UDP sockets 
to make the interprocess (IPC) and intersystem communication, defining a 
messaging mechanism to send commands and obtain process data 

4. Data sharing: Most of the services require data sharing, files and 
databases between the client and the server. Consequently, the mechanism 
provided by the RPC technology to implement data sharing must be used 

Another important thing to consider is the need to interface intelligent sensors with 
the system. The most easy and portable way to do that is to build software 
components that implement the methods, properties and data structures necessary 
to configure and use the sensor. Consequently, a technology to implement software 
components is also needed. The basic architecture presented in Figure 3.10 details 
all these requirements. 
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Figure 3.10 Software architecture used (depicting several possibilities: using software 
components, using RPC sockets, using TCP/IP sockets and OPC - OLE for Process 
Control) 

Sockets provide point-to-point, two-way communication between two processes. 
Sockets are very versatile and are a basic component of interprocess and 
intersystem communication. A socket is an end point of communication to which a 
name can be bound. It has a type and one or more associated processes. 
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Sockets exist in communication domains (families). A socket domain is an 
abstraction that provides an addressing structure and a set of protocols. Sockets 
connect only with sockets in the same domain. Several domains are identified and 
can be used to communicate between processes on a single system, like other 
forms of IPC. 

Sockets can also be used to communicate between processes on different systems. 
The socket address space between connected systems is called the Internet domain, 
and in that case the communication uses the TCP/IP Internet protocol suite. 

Socket types define the communication properties visible to the application. 
Processes communicate only between sockets of the same type. There are several 
types of socket: 

Stream socket - provides two-way, sequenced, reliable, and unduplicated flow of 
data with no record boundaries. Stream sockets operate much like a telephone 
conversation. The socket type is SOCKJSTREAM, which, in the Internet domain, 
uses Transmission Control Protocol (TCP). 

Datagram socket - supports a two-way flow of messages, not necessarily 
sequenced (messages can appear in a different order), and unreliable flow of data 
with record boundaries. Datagram sockets operate much like passing letters back 
and forth in the mail. The socket type is SOCKDGRAM, which, in the Internet 
domain, uses User Datagram Protocol (UDP). 

Sequential packet socket - provides a two-way, sequenced, reliable, connection, for 
datagrams of a fixed maximum length. The socket type is SOCKSEQPACKET. 
No protocol for this type has been implemented for any protocol family. 

Raw socket - provides access to the underlying communication protocols. 
These sockets are usually datagram-oriented, but their exact characteristics depend 
on the interface provided by the protocol. 

In this book, we use stream sockets (for TCP client-server connections) and 
datagram sockets (for UDP client-server connections. Figure 3.11 shows the code 
used to open a socket on a TCP client application. 
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Private Shared Function C_Sock(ByVal server As String, ByVal port As Integer) As Socket 
Dim s As Socket = Nothing 
Dim hostEntry As System.Net.IPHostEntry = Nothing 
Dim address As IP Address 
address = IPAddress.Parse(server) 
Dim endPoint As New IPEndPoint(address, Integer.Parse(port)) 
Dim tempSocket As New 
Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp) 
Try 

tempSocket.Connect(endPoint) 
If tempSocket.Connected Then 

s = tempSocket 
End If 
Catch e As Exception 
Returns 

End Try 
Return s 

End Function 
Figure 3.11 Code used to open a TCP socket connection (using Visual Basic .NET 2005) 

Admitting that there's a TCP socket server running on the robot controller, as an 
independent task (process), which receives remote commands through the open 
socket, executes them, and returns the correspondent results, Figure 3.12 shows 
what a simple "motor_on" command should look like. 

server_name = ip.Text 
server_port = port.Text 
s = ConnectSocket(server_name, server_port) 
If s i s Nothing Then 

ans_robot.Text() = "Error connecting to robot, master." 
Else 

Dim bytesSent As [Byte]() = Nothing 
bytesSent = ascii.GetBytes("motor_on") 
s.Send(bytesSent, bytesSentLength, 0) 
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0) 
ans_robot.Text() = Encoding.ASCII.GetString(bytesReceived, 0, bytes) 
s.CloseO 
If Encoding. ASCILGetString(bytesReceived, 0, bytes) = "0" Then 

ans_robot.Text() = "Motor on, master." 
cstate.TextO = "Motors ON" 

Else 
ans_robot.Text() = "Error executing, master." 

End If 
End If 

Figure 3.12 Sample code used to command the action "motor_o«" with TCP sockets (using 
Visual Basic .NET2005) 
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This code will be used later in this book with several examples that explore the 
utilization of stream and datagram sockets to command industrial robotic 
applications. 

3.3.1 RPC - Remote Procedure Calls 

A remote procedure call (RPC) is a facility that a software application can use to 
request a service from a program located in another computer of the network 
without having to understand network details. (A procedure call is also sometimes 
known as 2i function call or a subroutine call,) RPC uses the well known client-
server model. The requesting program is the client and the service-providing 
program is the server. Like a regular or local procedure call, an RPC is a 
synchronous operation requiring the requesting program to be suspended until the 
results of the remote procedure are returned. However, the use of lightweight 
processes, or threads that share the same address space, allows multiple RPCs to be 
performed concurrently. 

When the software statements that use RPCs are compiled into an executable 
program, a stub is included in the compiled code that acts as the representative of 
the remote procedure code. When the software is executed and the procedure call is 
issued, the stub receives the request and forwards it to a client runtime program in 
the local computer. The client runtime program knows how to address the remote 
computer and server application, and sends the message across the network that 
requests the remote procedure. Similarly, the server includes a runtime program 
and stub that interface with the remote procedure itself. Results are returned the 
same way. 

There are several RPC models and implementations. A popular model and 
implementation is the Open Software Foundation's Distributed Computing 
Environment (DCE). The Institute of Electrical and Electronics Engineers (IEEE) 
defines RPC in its ISO Remote Procedure Call Specification, ISO/IEC CD 11578 
N6561, ISO/IEC, November 1991. 

RPC is a powerful technique for constructing distributed, client-server based 
applications. It is based on extending the notion of conventional or local procedure 
calling, so that the called procedure need not exist in the same address space as the 
calling procedure. The two processes may be on the same system, or they may be 
on different systems with a network connecting them. By using RPC, programmers 
of distributed applications avoid the details of the interface with the network. The 
transport independence of RPC isolates the application from the physical and 
logical elements of the data communications mechanism and allows the application 
to use a variety of transports. 

RPC makes the client/server model of computing more powerful and easier to 
program. When combined with the ONC RPCGEN protocol compiler, clients 
transparently make remote calls through a local procedure interface. 
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Consequently, the robot controller software works as a server, exposing to the 
client a collection of RPC services that constitute its basic functionality. Those 
services, offered by the RPC servers running on the robot controller, include the 
variable access services, files and programs management services, and robot status 
and controller-state management and information services. To access those 
services, the remote computer (client) issues properly parameterized remote 
procedure calls to the robot controller (server) through the network. 

Considering, for example, the S4CPLUS robot controller from ABB Robotics, it's 
possible to extend the RPC services available in the robot controller adding user 
functionality to the system. The ABB implementation is based on a messaging 
protocol developed by ABB called RAP (remote application protocol) [8], which 
is an application specific protocol (ASP) of the OSI application level. The 
messaging protocol RAP defines the necessary data structures and message syntax 
of the RPC calls used to explore the RPC services available in the controller. 

These services were implemented using the standard and open source RPC 
specificafion SUN RPC 4.0, a collection of tools developed by the SUN 
Microsystems Open Network Group (ONC) [2]. Consequently, to implement the 
client calls, the ONC SUN RPC 4.0 specification and tools were also used. This 
package includes a compiler (rpcgen), a portmaper and a few useful tools like 
rpcinfi). The Microsoft RPC implementation uses another standard defined by 
Digital Corporation named OSF/DCE, which is not compatible with the SUN RPC 
standard. The package used to build the client software was a port to Windows 
NT/2000/XP, equivalent to the original version that was built to UNIX systems, 
although a few functions were slightly changed to better suit the needs without 
compromising compatibility with client and server programs developed with the 
SUN RPC package. The port was compiled using the Microsoft Visual C++ .NET 
2003 compiler. 

From all the RPC services available in the robot controller, the ones really needed 
to implement the software architecture depicted in Figure 3.10 are the variable 
access services. Nevertheless, calls to the other services were implemented for 
completeness. The procedure is simple and based on the XDR (extended data 
representation) file obtained by defining the data structures, the service 
identification numbers, and the service syntax specified by the RAP protocol. That 
file is compiled by the rpcgen tool, generating the basic calls and data structure 
prototypes necessary to invoke the RPC services available from the robot 
controller. The necessary code was added to each basic fimction and packed into an 
ActiveX softwarQ component named PCROBNET2003/5 [5-7]. The complete set of 
fimctions included in this object is listed in Table 3.3. 

Although this software component was built using the DCOM/OLE/ActiveX 
object model, it does not run the Microsoft RPC implementation but instead the 
already menfioned SUN RPC 4.0 port to the Win32 API. 
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Table 3.3 Methods and properties of the software component PCROB NET2003/5 

Function 
open 
close 
motor on 
motor off 
prog stop 
prog run 
prog load 
prog del 
prog_set_mode 
prog get mode 
prog prep 
pgmstate 
ctlstate 
oprstate 
sysstate 
ctlvers 
ctlid 
robpos 
read_xxxx 

read xdata 
write^xxx 

write xdata 
digin 
digout 
anain 
anaout 

Brief description 
Opens a communication line with a robot (RPC client) 
Closes a communication line 
Go to run state 
Go to standby state 
Stop running program 
Start loaded program 
Load named program 
Delete loaded program 
Set program mode 
Read actual program mode 
Prepare program to run (program counter to begin) 
Get program controller state 
Get controller state 
Get operational state 
Get system state 
Get controller version 
Get controller ID 
Get current robot position 
Read variable of type xxxx (there are calls for each type of 
variable defined in RAPID) 
Read user-defined variables 
Write variable of type xxxx (there are calls for each type of 
variable defined in RAPID) 
Write user-defined variables 
Read digital input 
Set digital output 
Read analog input 
Set analog output 

To use a remote service, the computer running the client application needs to make 
properly parameterized calls to the server computer, and receive the execution 
result. Two types of services may be considered: synchronous and asynchronous. 
The synchronous services return the execution result as the answer to the call. 

Consequently, the general prototype of this type of call is: 

short status calljservicej (struct parameters _i, struct answer J) 

where status returns the service error codes (zero if the service returns without 
errors, and a negative number identifying the error otherwise), parametersj is the 
data structure containing the service parameters and answerj is the data structure 
that returns the service execution results. 
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The asynchronous services, when activated, return answers/results asynchronously, 
i.e., the remote system should also make remote procedure calls to the client 
system when the requested information becomes available or when the specified 
event occurs (system and controller state changes, robot program execution state 
change, 10 and variable events, etc.). Those calls may be named events or 
spontaneous messages, and are remote procedure calls issued to all client 
computers that made the correspondent subscription, i.e., made a call to the 
subscription service properly parameterized specifying the information wanted. To 
receive those calls, any remote client must run RPC servers that implement a 
service to receive them (Figure 3.13). The option adopted was to have that server 
broadcast registered messages inside the operating system, enabling all open 
applications to receive and process that information by filtering its message queue. 

RPC Call 

Asynchronous answer Message to the screen 

LOG* file 

* The writing operation is done only on idlQ 

periods. 

Win32 registered message 

(broadcast) 

Figure 3.13 Functionality of the RPC server necessary to receive spontaneous messages 

As mentioned already, the variable access services allow access to all types of 
variables defined in the robot controller. Using this service, and developing the 
robot controller software in a convenient way, it is possible to add new services to 
the system. In fact, that possibility may be achieved by using a simple SWITCH-
CASE-DO cycle driven by a variable controlled from the calling (client) remote 
computer: 

switch (decision_l) 

{ 
case 0: call service_0; break; 
case 1: call service_l; break; 
case 2: call service_2; break; 

case n: call service_n; break; 
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This server runs on the robot controller, making the process of adding a new 
service a simple task. The programmer should build the procedure (routine) that 
implements the new functionality, and include the call to that procedure in the 
server cycle by identifying it with the specific number of the control variable. 

This is not far from what is done with any RFC server; the svc_run function, used 
in those programs is a SWITCH-CASE-DO cycle that implements calls to the 
functions requested by the remote client. With this type of structure it is 
straightforward to build complex and customer functions that can be offered to the 
remote client. Furthermore, with this approach it's still possible to use the 
advanced capabilities offered by the robot controller, namely the advanced 
functions designed to control and setup the robot motion and operation. Examples 
exploring this facility are presented and discussed in this chapter (sections 3.4 to 
3.6). 

3.3.2 TCP/IP Sockets 

One of the most interesting ways to establish a network connection between 
computer systems is by using TCP/IP sockets. This is a standard client-server 
procedure, not dependent on the operating system technology used on any of the 
computer systems, requiring only the definition of a proper messaging syntax to be 
reliable and safe. The user-defined messaging protocol should specify the 
commands and data structures adapted to the practical situation under study. 

The TCP/IP protocol suite is based on a four-layer reference model. All protocols 
that belong to the TCP/IP protocol suite are located in the top three layers of this 
model. 

As shown in Figure 3.14, each layer of the TCP/IP model corresponds to one or 
more layers of the seven-layer Open Systems Interconnection (OSI) reference 
model proposed by the International Standards Organization (ISO). 



136 Industrial Robots Programming 

OSI Model 

Application layer 

Presentation layer 

Session layer 

Transport layer 

Network layer 

Data Link layer 

Physical layer 

TCP/IP Model 

Application layer 

Transport layer 

Internet layer 

Network 
Interface 

layer 

Figure 3.14 Correspondence between the OSI Model and the TCP/IP Model in terms of 
layers. 

Table 3.4 Services performed at each layer of the TCP/IP Model 
Layer 
Application 

Transport 

Internet 

Network interface 

Description 
Defines the TCP/IP application protocols and how the host 
programs interface with transport layer services to use the 
network 
Provides communication session management between host 
computers. Defines the level of service and the status of the 
connection used when transporting data 
Packages data into IP datagrams, which contain source and 
destination address information that is used to forward the 
datagrams between hosts and across networks. Performs 
routing of IP datagrams 
Specifies details of how data is physically sent through the 
network, including how bits are electrically signaled by 
hardware devices that interface directly with a network 
medium, such as coaxial cable, optical fiber, or twisted-pair 
copper wire 
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The types of services performed at each layer within the TCP/IP model are 
described in more detail in Table 3.4. 

Transmission control protocol (TCP) is a required TCP/IP standard defined in RFC 
793, ^^Transmission Control Protocol (TCP)'' that provides a reliable, connection-
oriented packet delivery service. The transmission control protocol, 

• Guarantees delivery of IP datagrams 
• Performs segmentation and reassembly of large blocks of data sent by 

programs 
• Ensures proper sequencing and ordered delivery of segmented data 
• Performs checks on the integrity of transmitted data by using checksum 

calculations 
• Sends positive messages depending on whether data was received 

successfully. By using selective acknowledgments, negative 
acknowledgments for data not received are also sent 

• Offers a preferred method of transport for programs that must use rehable 
session-based data transmission, such as client/server database and e-mail 
programs 

TCP is based on point-to-point communication between two network hosts. TCP 
receives data from programs and processes this data as a stream of bytes. Bytes are 
grouped into segments that TCP then numbers and sequences for delivery. 

Before two TCP hosts can exchange data, they must first establish a session with 
each other. A TCP session is initiahzed through a process known as a three-way 
handshake. This process synchronizes sequence numbers and provides control 
information that is needed to establish a virtual connection between both hosts. 

I IP datagram i 

IP header 

1 

IP payload 

^ TCP segment J 

TCP header segment 

Figure 3.15 TCP segment within an IP datagram 

Once the initial three-way handshake completes, segments are sent and 
acknowledged in a sequential manner between both the sending and receiving 
hosts. A similar handshake process is used by TCP before closing a connection to 
verify that both hosts are finished sending and receiving all data. 
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TCP segments are encapsulated and sent within IP datagrams, as shown in Figure 
3.15 

3.3.2.1 TCP Ports 
TCP ports use a specific program port for delivery of data sent by using the 
transmission controlpProtocol. TCP ports are more complex and operate 
differently from UDP ports. 

While a UDP port operates as a single message queue and the network endpoint for 
UDP-based communication, the final endpoint for all TCP communication is a 
unique connection. Each TCP connection is uniquely identified by dual endpoints. 
Each single TCP server port is capable of offering shared access to multiple 
connections because all TCP connections are uniquely identified by two pairs of IP 
address and TCP ports (one address/port pairing for each connected host). 

The server side of each program that uses TCP ports listens for messages arriving 
on their well-known port number. All TCP server port numbers less than 1024 (and 
some higher numbers) are reserved and registered by the Internet Assigned 
Numbers Authority (lANA). 

3.3.3 UDP Datagrams 

The User Datagram Protocol (UDP) is a TCP/IP standard defined in RFC 768, 
''User Datagram Protocol (UDPy\ UDP is used by some programs instead of TCP 
for fast, lightweight, unreliable transportation of data between TCP/IP hosts. 

UDP provides a connectionless datagram service that offers best-effort delivery, 
which means that UDP does not guarantee delivery or verify sequencing for any 
datagrams. A source host that needs reliable communication must use either TCP 
or a program that provides its own sequencing and acknowledgment services. 

UDP messages are encapsulated and sent within IP datagrams, as shown in 3.16. 
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IP datagram 

IP header 

1 

IP payload 

^ UDP message J 

UDP header message 

Figure 3.16 UDP message within an IP datagram 

3J.3J UDP Ports 
UDP ports provide a location for sending and receiving UDP messages. A UDP 
port functions as a single message queue for receiving all datagrams intended for 
the program specified by each protocol port number. This means UDP-based 
programs can receive more than one message at a time. 

The server side of each program that uses UDP listens for messages arriving on 
their well-known port number. All UDP server port numbers less than 1024 (and 
some higher numbers) are reserved and registered by the Internet Assigned 
Numbers Authority (lANA). 

Each UDP server port is identified by a reserved or well-known port number. 

3.4 Simple Example: Interfacing a CCD Camera 

The example presented in this section demonstrates the utilization of TCP/IP 
sockets (stream type or TCP sockets) to command an industrial robot and to 
interface with a CCD camera (a common USB Webcam). The example will be 
presented in detail with the objective of allowing the reader to explore further from 
the concepts and ideas presented. 

Basically the system is composed of the following components (Figure 3.17): 

Industrial robot manipulator ABB IRB140 equipped with the new IRC5 
robot controller 
Pneumatic tool equipped with a vacuum cup 
Working table and several working pieces 
Webcam used to obtain the number of pieces present in the scene and 
their respective positions 
Pocket PC running the Windows Mobile 2005 operating system 
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Figure 3.17 Setup for this example showing: Robot manipulator. Webcam, laptop running 
the Webcam TCP/IP server, and the commanding Pocket PC 

The user is supposed to control the setup using the Pocket PC, namely: 
• Change the robot state and start/stop program execution 
• Interface with the Webcam, request the camera to identify the number of 

objects present in the scene and return their actual positions (Figure 3.18) 
• Command the robot to pick-and-place the selected objects 
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Figure 3.18 Returning the position of the objects present in the working scene based on the 
computed Cartesian position (x,y) 

To build a solution to execute the above specified functions, it is necessary to 
handle several different subjects: 

• Build a TCP/IP socket server to run on the robot controller. The server 
should implement a collection of services equivalent to the ones listed in 
Table 3.3 

• Build an application to handle the webcam permitting to use it as a sensor 
and return the number of objects in the scene and their position. That 
application must run on a machine accessible from the network 

• Build an application to command the setup offering a human-machine 
interface (HMI) facility 

The following section provides a closer look at these three software packages. 

3.4.1 Robot Controller Software 

The robot controller runs two very different types of applications: 
• The socket server used to implement the remote services and offer them to 

the remote clients 
• The application that executes the commanded pick-and-place operations 
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EJ £ ] RAPID Tasks 

B 3 ] T_R0B1 (Program) • Task 1 

El "̂ g Program Modules 

EJ ^ MainModule 
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L+J ^^ System Modules 

B 3 ] task2 (Program) • Task 2 

El ^^ Program Modules 

El ^ server_sock 

r ^ sock_srv — • TCP/IP socket server running on task 2 
L+J ^^ System Modules 

Figure 3.19 View of the tasks available on the system using RobotStudio Online 
(ABB) 

The above mentioned applications are different applications in terms of objectives 
and requirements. Consequently, since the robot control system is a multitasking 
system, each of them was designed to run in their own task (process) - see Figure 
3.19. 

A TCP/IP socket server can work like a switch-case-do cycle driven by the 
received message. The first word of the received message, named ''command', can 
be used to drive the cycle and discriminate the option to execute, implementing in 
this way the services it was designed to offer. Consequently, the TCP/IP server 
(sockjsrv, running on task 2) should have a basic structure like the one represented 
in Figure 3.20. 

PROC sock_srv() 
SocketCreate serversocket; 
SocketBind server_socket, "172.16.0.89", 2004; 
SocketListen serversocket; 
WHILE TRUE DO 

SocketAccept serversocket, clientsocket; 
SocketReceive clientsocket \Str := receive_string; 
extract_INFO_from_message (command, parameter{i}); 
TEST command 

Case "motor_on" 
motor_on(result); 
SocketSend clientsocket, result; 

Case "motor_off' 
motor_off(result); 
SocketSend client_socket, result; 

Case "write num" 
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write_num(parameterl, parameter2, result); 
SocketSend client_socket, result; 

Case "read_num" 
read_num(parameterl, result); 
SocketSend client_socket, result; 

ENDTEST 
SocketClose client_socket; 

ENDWHILE 
ERROR_HANDLER; 

ENDPROC 

Figure 3.20 Basic structure of the TCP/IP socket server running on the robot controller 

The server briefly presented in Figure 3.20 implements basically the same 
functionality listed in Table 3.3. Furthermore, the command strings have a simple 
structure: 

command parameter_l parameter_2 ... parameterJ^ 

i.e., the command string starts with a word representing the ''command" (used by 
the server to discriminate what is the service the user wants to execute), followed 
by other words corresponding to the ''parameters'' associated with the "command". 
For example: 

Action Command String 
Motor_ON "motorjon" 
Motor_OFF "motor_off 
Read_num "readjium variablejiame'' 
Write_num "writejium variablejiame value" 
Program_start "program _start module"" 
Program_stop "programjstop module'' 

where "variable_name" is the name of the variable to read, "value" is the new 
value to assign to the variable, and "module" is the name of the module to start or 
stop. 

3.4.2 Webcam Software 

The application designed to handle the Webcam (Figure 3.17) also works as a 
TCP/IP server. The reason is simple, the Webcam works here as a sensor used to 
obtain two types of information: the number of objects and their respective 
position. Consequently, it is important to be able to address the sensor as an 
independent entity on the network, and simply command it to return the required 
information. One simple way to do that is to also adopt a client-server model for 
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the Webcam software, using TCP/IP sockets to implement it. The software 
development package used here to add image processing capabilities to the 
developed software was LabView from National Instruments. Consequently, the 
complete application was built on Labview, including the TCP/IP socket 
implementation (Figure 3.21). 
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Snap 

mm 

Figure 3.21 Labview Vi of the Webcam software (using IMAQ for LabView): a - complete 
VI; b - detail of part of the VI (feature computation) 

The Webcam used here is a simple commercial USB Webcam (Figure 3.22) which 
must be installed on the machine running the above Labview mentioned Webcam 
application. 
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Figure 3.22 Webcam used in this application (i-C@AMfrom Liftech Inc.) 

The TCP/IP server handling the Webcam software listens for commands on a 
specified IP address and port number. When a connection is accepted, the server 
responds to the following command: 

Command - '^camera get objects^' 

After receiving the command correctly the server acquires a frame from the 
Webcam and runs the image processing routine developed for this application. The 
routine identifies the objects in the captured frame, and for each object computes 
the center of mass. The TCP/IP client receives the following information: 

• Number of objects identified 

• Center of mass of each of the identified obj ects 

The answer is sent through the open socket on a string with the following syntax: 

number_#xl _yl#x2_y2#.,. UxN_yM 

where ''number'' is the number of objects identified and (xi, yi) is the position of 
each of the objects. For example, for the scene presented in Figure 3.18: 

command from client: ''camera get objects'' 
answer from server: 4_#xl_yl#x2_y2#x3_y3#x4_y41i 
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3.4.3 Remote Client 

The objective of this appHcation is to implement the human-machine interface with 
the user, providing the resources to enable the user/programmer to command the 
robot to pick-and-place the existing objects identified by the software associated 
with the Webcam. Basically, the application can run on any machine with access to 
the network. For this particular application, a Pocket PC (PPC) running Windows 
Mobile 2005 was chosen since the PPC platform is powerful and very interesting 
for portable HMI applications, namely when a wireless network is available 
(Figure 3.23). 

Controller 

Figure 3.23 Overview of the setup used in this application 

In the following material, the code of the client application will be briefly 
presented, showing in detail a few selected and representative functions. Figure 
3.24 shows the screen of the developed PPC application used to connect to the 
TCP/IP server running on the robot controller and change the robot operating state. 
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Program Run̂  master. 1 

Figure 3.24 PPC screen to initialize robot operation and select program option 

This is the code associated with the action "Motors ON" (Figure 3.24): 

server_name = ip.Text 
server_port = port.Text 
sock = ConnectSocket(server_name, server_port) 
If sock Is Nothing Then 

ans_robot.Text() = "Error connecting to robot, master." 
Else 

Dim bytesSent As [Byte]() = Nothing 
bytesSent = ascii.GetBytes("motor_oii") 
sock.Send(bytesSent, bytesSent.Length, 0) 
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0) 
ans_robot.Text() = Encoding.ASCILGetString(bytesReceived, 0, bytes) 
moff.Enabled = True 
mon.Enabled = False 
prun.Enabled = True 
pstop.Enabled = True 
sel.Enabled = True 
sock.CloseO 
If Encoding. ASCII.GetString(bytesReceived, 0, bytes) = "0" Then 

ans_robot.Text() = "Motor on, master." 
cstate.TextO - "Motors ON" 

Else 
ans_robot.Text() = "Error executing, master." 

End If 
End If 
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The code presented above simply opens the socket, sends the commanding string, 
and processes the answer. This code is associated with the software button ''Motor 
OA^'in Figure 3.24. 

To give another example, the code associated with the action ''Program RUISF' 
(Figure 3.24) is presented below: 

Server_name = ip.Text 
server_port = port.Text 
sock = ConnectSocket(server_name, serverjport) 
If s Is Nothing Then 

ans_robot.Text() = "Error connecting, master." 
Else 

Dim bytesSent As [Byte]() = Nothing 
bytesSent = ascii.GetBytes("program_start_main") 
sock.Send(bytesSent, bytesSent.Length, 0) 
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0) 
ans_robot.Text() = Encoding.ASCII.GetString(bytesReceived, 0, bytes) 
sock.CloseO 
If Encoding. ASCII.GetString(bytesReceived, 0, bytes) = "0" Then 

ans_robot.Text() = "Program Run, master." 
pstate.TextO = "Program RUN" 

Else 
ans_robot.Text() = "Error executing, master." 

End If 
End If 

The interface with the Webcam is done through the screen window represented in 
Figure 3.25. Using this window, the user can command the camera to return the 
information about the objects in the scene. All the returned positions are listed in 
the list-box present in the interface (Figure 3.25) for the user to select the one he 
wants to use for the pick-and-place operation. 

The code below details the implementation of the action "Get Webcam Picture" 
(Figure 3.25): 

Dim msg_received As String 
Dim indx As Integer 
Dim num_obj As Integer 
Dim index As Integer 
sock = ConnectSocket(ip2.TextToString, port2.Text.ToString) 
If sock Is Nothing Then 

ans_robot_3,Text() = "Error connecting to CCD, master." 
Else 

Dim bytesSent As [Byte]() = Nothing 
bytesSent = ascii.GetBytes("camera get objects") 
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Ifs .AvailableoOThen 
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0) 
MsgBox("ok, buffer cleared.") 

End If 
sock.Send(bytesSent, bytesSent.Length, 0) 
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0) 
list_cam.Items.Clear() 
msgreceived = Encoding. ASCII. GetString(bytesReceived, 0, bytes) 
If msg_received <> "0_#no objects" Then 

indx = msg_received.IndexOf("#") 
num_obj = msg_received.Substring(0, indx - 1) 
n_obj.Text() = num_obj 
msg_received = msg_received.Substring(indx +1) 
For index = 1 To (numobj - 1) Step 1 

indx = msg_received.IndexOf("#") 
object_cam(index) = msg_received.Substring(0, indx - 1) 
list_cam.Items.Item(index -1) = object_cam(index) 
msg_received = msg_received.Substring(indx + 1) 

Next 
index = num_obj 
indx = msg_received.IndexOf("#") 
object_cam(index) =^ msg_received.Substring(0, indx - 1) 
list_cam.Items.Item(index - 1) = object_cam(index) 

Else 
ans_robot_3.Text() = "no objects" 

End If 
sock.CloseO 

End If 

In the code above, the information about the number and position of the identified 
objects is extracted from the returned string and listed in the list-box and other 
output textboxes. The user can then select one of the obtained positions and 
command the robot to pick that object and place it on the output container box. The 
code below is the implementation of the "Picl^' action (Figure 3.25): 

sock = ConnectSocket(ip2.TextToString, port2.Text.ToString) 
Pick.Enabled = False 
If sock Is Nothing Then 

ans_robot_3.Text() = "Error connecting, master." 
Else 

Dim bytesSent As [ByteJO = Nothing 
bytesSent = ascii.GetBytes("command_str 5000_" + 

object_cam(list_cam.SelectedIndex +1)) 
sock.Send(bytesSent, bytesSent.Length, 0) 
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0) 
ans_robot.Text() = Encoding.ASCII.GetString(bytesReceived, 0, bytes) 
sock.CloseO 
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If Encoding. ASCILGetString(bytesReceived, 0, bytes) = "0" Then 
ans_robot_3.Text() = "Pick command, master." 
list_cam.Items.Item(list_cam.SelectedIndex) = "no object" 

Else 
ans_robot_3.Text() = "Error executing, master." 

End If 
End If 

The ''Pick'' action is associated with a robot subroutine driven by the variable 
''command_str'\ The action is identified with the number 5000, and requires the 
user to specify also the parameters X and Y, referring to the position of the object. 
Consequently, the command from the client application to successfully trigger the 
"Pick" action is, 

bytesSent = ascii,GetBytes("command_str 5000_" + 
object_cam(list_cam.SelectedIndex + 1)) 

which translates to. 

command str 5000 X Y 

-y PDA SCRIPTS 

Access] Cartesian I Joint Cam | 

p e t C A M P I C I Num.Obj.: 6 

91.40_32.00 
171.59_54.84 
12G.43_91.64 
69.40J19.00 
178.95_136,14 
113.62 159.72 

Sel. Obj.: 
2 

Pick 

100K100 

CALIB 

Home 

IP/Port: )l72.16.3.151 |2005 

Figure 3.25 PPC screen designed to interface the Webcam 
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The robot subroutine handles these commands in the way presented below: 

IF index = receive_len+l THEN 
command_str: =receivejstringl; 

ENDIF 
IF (index > 1) and (index < receive_len) THEN 

command_str:=StrPart(receive_stringl,l,index-l); 
str_aux 1 :=StrPart(receive_string 1 ,index+1 ,receive_len-index); 
receive_len:=StrLen(str_aux 1); 
index:=StrMatch(str_aux 1,1,"_"); 
IF index = (receivelen + 1) THEN 

parameter 1 a:=str_aux 1; 
ENDIF 
IF (index > 1) and (index < receive_len) THEN 

parameterla:=StrPart(str_auxl,l,index-l); 
str_aux2:=StrPart(str_auxl ,index+l ,receive_len-index); 
receive_len:=StrLen(str_aux2); 
index:=StrMatch(str_aux2,1,"_"); 
IF index = (receive_len + 1) THEN 

parameter2a:=str_aux2; 
ENDIF 

ENDIF 
IF (index > 1) and (index < receivelen) THEN 
parameter2a:=StrPart(str_aux2,l,index-l); 
str_aux3 :=StrPart(str_aux2,index+1 ,receive_len-index); 
receive_len:=StrLen(str_aux3); 
index:=StrMatch(str_aux3,!,"_"); 
IF index = (receive_len + 1) THEN 

parameters a:=str_aux3; 
ENDIF 
IF (index > 1) and (index < receive_len) THEN 

parameter3a:=StrPart(str_aux3,l,index-l); 
ENDIF 

ENDIF 
ENDIF 
TEST command_str 
case "190": movecontact; 
case "200": open_g; 
case "201": close_g; 
case "301": move__Pl; 
case "401": go_home; 
case "501": movejlp; 
case "502": movejlm; 
case "503": movej2p; 
case "504": movej2m; 
case "505": movej3p; 
case "506": movej3m; 
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case "507": movej4p; 
case "508": movej4m; 
case "509": movej5p; 
case "510": movej5m; 
case "511": movej6p; 
case "512": movej6m; 
case "520": jammountl; 
case "530": cammountl; 
case "540": pick_pen; 
case "550": release_pen; 
case "1000": save_pos; 
case "2000": movejable; 
case "3000": exe_script; 
case "5000": camjpick; 
case "5001": cam_go; 

ENDTEST 

Basically, the routine extracts the information from the command string sent 
through the socket connection, and feeds the controlling variables with the 
commanded values. The TEST cycle (similar to a switch-case-do cycle) 
discriminates the function to call, which executes the functionality commanded by 
the user. 

This example shows in some detail the procedure to explore TCP/IP socket servers 
for industrial manufacturing systems. It also shows that there are several platforms 
available to simplify the HMI and the setup, making the overall application easier 
to use. 

3.4.4 Using UDP Datagrams 

Using UDP datagrams (socket datagrams) is not fundamentally different than using 
TCP sockets (stream datagrams). Consequently, a simple implementation is 
mentioned here with the objective of pointing out the practical. The selected 
implementation uses a MOTOMAN robot (model HP6) equipped with the new 
NX 100 robot controller. This controller offers remote services available from a 
UDP socket server, which are similar in functionality to the ones listed in Table 
3.3. Several client applications were developed by the author to access those 
services, including the secondary services built based on those available from the 
UDP server, using the Microsoft Visual Studio .NET 2005 programming suite. In 
the following, a simple application developed to run on Pocket PC (running 
Windows Mobile 2005) will be briefly introduced. 

When using UDP datagrams, which are unreliable connections, the user should not 
use blocking calls, i.e., connections that block the application while waiting on the 
socket for the answer to the call. Consequently, after opening a socket and sending 
a UDP datagram, the user program shouldn't wait forever for an answer on the 
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socket or thread. Instead, it should close the socket based on a timeout event. The 
following application (Figure 3.26) runs on PPC and makes a few UDP datagram 
calls to the UDP socket server running on the robot controller. 

jT 

•S PPC_MOTOMAN 

! • Init 

MON 1 
S 

Vv̂ riteVar | f 

1 ReadVar | ' 

r 
[Robot Initiated! 

1 

art Pre 

Qsa] 
Disable | | 

Hold ON 1 

iJ — •"'• HoldUhh 1 

Variable Type 

Variable Number 

Variabie Value 

Exe Instr 1 

j^HHI^^ZZILI 
Figure 3.26 PPC application designed for a Motoman robot to explore UDP services from 
its NX 100 controller 

The program running on the robot controller, to implement operational (or 
secondary) services, is a switch-case-do type cycle driven by a numeric variable 
(type 1, index 0 - in the motoman notation). The simple server for this application 
moves the robot to five fixed positions, depending on the value of the above 
mentioned variable: 

WHILE neverend 
WAIT BOO <> 0; 
TEST BOO 

Case 399 
MOVEP1,VEL,0,TO 

Case 499 
MOVE P2, VEL, 0, TO 

Case 599 
MOVE P3, VEL, 0, TO 

Case 699 
MOVE P4, VEL, 0, TO 

Case 799 
MOVE P5, VEL, 0, TO 

ENDTEST 
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BOO = 0; 
RETURN 

Writing, for example, the value 399 in the variable BOO makes the robot move to 
position PI. The code associated with requesting that action remotely is: 

Dim remotelP As New IPEndPoint(IPAddress.Parse(" 172.16.0.93"), 10006) 
Dim Socket_send As New Socket(remoteIP.AddressFamily, SocketType.Dgram, 
ProtocolType.Udp) 
Dim Socket_receive As New UdpClieiit(10006) 
Dim ENQO As Byte = {&H6, &H0, &H1, &H0, &H5} 
Dim EOTO As Byte = {&H6, &H0, i&Hl, &H0, &H4} 
Dim ACKOO As Byte = {&H6, &H0, &H2, &H0, &H10, &H30} 
Dim ACKIO As Byte = {&U6, &H0, &H2, &H0, &H10, i&H31} 
Soclcet__send.Connect(remoteIP) 
Socket_receive.Connect(remoteIP) 
Dim str_temp As String 
Socket_send.Send(ENQ) 
Dim receiveBytes As [Byte]() = Socket_receive.Receive(remoteIP) 
recb = receiveBytes.LengthO 
For i As Integer = 0 To recb - 1 

str_temp = str_temp + Hex(receiveBytes(i)) 
Next i 
If str_temp <> "60201030" Then 

MessageBox.Show("Erro na resposta ao ENQ: " + str_temp) 
Socket_send.Close() 
Socket_receive.Close() 
Return 

End If 

Dim str_temp As String 
Socket__send.Send(Comando) 
Dim receiveBytes As [Byte]() = Socket_receive.Receive(remoteIP) 
recb = receiveBytes.LengthO 
For i As Integer = 0 To recb - 1 

str_temp = str_temp + Hex(receiveBytes(i)) 
Nexti 
If strjemp <> "60201031" Then 

MessageBox.Show("Erro na resposta ao comando: " + str_temp) 
Socket_send.Close() 
Socket_receive.Close() 
Return 

End If 

Send End Of Transmission 
Send ACKO 
Send ACKl 
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Socketsend.CloseO 
Socket_receive.Close() 
This code is rather complex, since all the details about the protocol, including the 
negotiation phases, are explicitly programmed in the function. Basically, to send a 
command the protocol adopted by Motoman requires a command start, followed by 
the command itself, and then an end-of-command sequence. 

The reader should remember that the sockets named "socket_receive'' have a pre­
defined timeout that prevents the application from blocking. When a timeout 
occurs, the routine returns immediately. 
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Figure 3.27 Control panel application events (^'messages'') received from the robot 
controller 

3.5 Simple Example: Control Panel 

The ''Control Paner is rather different from the previous examples. First, it uses 
remote procedure calls (RPCs) to access the services available from the remote 
server, which is a standard way to offer services and to support client-server 
programming environments. Other than that, the application works also as an RPC 
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server, because it is capable of receiving events from the robot controller. The 
events are RPC calls made by the controller to the machines that made 
subscriptions to receive those events. 
The application was built using PCROBNET2003/5 [5-7], an ActiveX software 
component that offers the methods, properties, and data structures necessary to 
explore the RPC services from the robot controller (ABB S4 robot controllers).The 
code for some selected actions is briefly explored below. For example, the code 
(developed in C++ using methods from the above mentioned ActiveX component) 
for the actions ''MOTOR 01^% ''MOTOR OFF\ "PROGRAM RUM\ and 
"PROGRAM STOF' is presented below: 

void CCtrpanelDlg::Onmotoron() 
{ 
nresult = m_pon.MotorON(); < Call method 
if (nresult == -8999) no_comms = TRUE; 

} 

void CCtrpanelDlg::Onmotoroff() 
{ ^ 
nresult = mjpon.MotorOFF(); "^ Call method 
if (nresult =- -8999) no_comms = TRUE; 

} 

void CCtrpanelDlg: :Onrunprogramcon() 
{ 
long cycles = -1; 
long mode = 1; 
nresult = m_pon.ProgStart("main",&cycles, &mode); ^^— Call method 
if (nresult == -8999) no_comms = TRUE; 

} 

void CCtrpanelDlg: :Onhaltprogramim() 
{ 
short mode = 3; 
nresult = m_pon.ProgStop(&mode); < Call method 
if (nresult == -8999) no_comms = TRUE; 

} 

To receive events, a specially developed RPC server must be running on the client 
computer to receive those RPC calls. That server broadcasts the received events as 
registered operating system user messages (Figure 3.13). Consequently, to be able 
to receive those events, each application just needs to watch its message queue and 
filter the relevant messages. The code below was designed to operate on the 
message queue to identify events and present the information to the user (see 
"messages" in Figure 3.27). 
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void CCtrpanelDlg::OnSponMsgPcroB.C.trll(long FAR* msg_number, long 
FAR* msg_lParam, long FAR* msgwParam) 
{ 
BSTR msg; 
m_pon.ReadMsg(&msg, msglParam, msgwParam); 
CString Msg(msg); 
m_logtext.SetWmdowText(Msg); 
SysFreeString(msg); 
switch (*msg_lParam) 
{ 

case 1: m_description.SetWindowText("State Changed."); break; 
case 2: m_description.SetWindowText("Warning."); break; 
case 3: m_description.SetWindowText("Error."); break; 
default: m_description.SetWindowText(" Invalid logtype."); break; 

} 
Msg.Format("%d",*msg_wParam); 
m_error.SetWindowText(Msg); 
CCtrpanelDlg::info(); 

} 

Using software components (ActiveX, JAVA, etc.) is a way to hide from the user 
the tricky details about how to make RFC calls (for example, compare this code 
with the one presented for the UDP datagram example), allowing her to focus 
immediately on the application. 

3.6 Simple Example: S4Misc - Data Access on a Remote 
Controller 

The "S4Misc'' application (Figure 3.28) also uses RFC to access the robot services. 
Like the previous example, it was designed to be used with the ABB S4 robot 
controllers (running option RAP [8]). 
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Figure 3.28 S4Misc application designed to access program and system variables from a 
remote computer 

This application enables the user to access program and system variables from a 
remote computer online, i.e., even when the robot is in automatic mode and the 
loaded program is executing. The user can utiHze this software for debugging 
purposes, checking and changing (when needed) the actual value of any variable. 
In the following, the code for the actions READ/WRITE a numeric variable, WRITE 
a speed variable, and READ the actual robot position is showed (C# .Net 2005 was 
used here): 

private void OnReaNum() 

{ 
String msg; 
msg = txt_VarName.Text; 
if (msg.Length > 0) 
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{ 
nresult = PcRob.ReadNum(msg, ref val); ^ Call method 
if(nresult<0) 
{ 

MessageBox.Show("Error Reading Num!"); 
} 
else 
{ 

msg = Convert.ToString(val); 
txt_VarValue.Text = msg; 

} 
} 
else MessageBox.Show("Error: You must specify variable name!"); 

} 

private void OnWriteNumQ 
{ 

String msg; 
String msg 1; 
msg = txt_VarName.Text; 
msgl = txt_VarValue.Text; 
if (msg.Length > 0 || msgl.Length > 0) 
{ 

val = Convert.ToSingle(msgl); 
nresult = PcRob.WriteNum(msg, ref val); M Call method 
if (nresult < 0) MessageBox.Show("Error Wrinting Num!"); 

} 
else MessageBox.Show("Error: You must specify variable name and value!"); 

private void OnWriteSpeed() 
{ 

String msg; 
msg = txt_VarName.Text; 
if(msg.Length>0) 
{ 

RobVelocity.vtcp = Convert.ToSingle(txt_VTcp.Text); 
Rob Velocity .vori = Convert.ToSingle(txt_VOri.Text); 
RobVelocity.vleax = Convert.ToSingle(txt_VLeax.Text); 
Rob Velocity .vreax = Convert.ToSingle(txt_VReax.Text); 
PcRob.vtcp = RobVelocity.vtcp; 
PcRob.vori = Rob Velocity .vori; 
PcRob.vleax = RobVelocity.vleax; 
PcRob.vreax = RobVelocity.vreax; 
nresult = PcRob.WriteSpeedDataVB(msg); -4 Call method 
if (nresult<0) MessageBox.Show("Error: You must specify variable name"); 

} 
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else MessageBox.Show("Error: You must specify variable name"); 
} 

private void OnReadCurrRoboTarget() 
{ 

nresult =PcRob.ReadCurrRobTVBO; -* Call method 
if(nresult<0) 
{ 

MessageBox.Show("Error Reading Current RobT"); 
} else 
{ 

RobT_Read.x = PcRob.x; 
RobT_Read.y = PcRob.y; 
RobT_Read.z = PcRob.z; 
RobT_Read.ql = PcRob.ql; 
RobT_Read.q2 = PcRob.q2; 
RobT_Read.q3 = PcRob.q3; 
RobT_Read.q4 = PcRob.q4; 
RobT_Read.exa = PcRob.exa; 
RobT_Read.exb = PcRob.exb; 
RobT_Read.exe = PcRob.exc; 
RobTRead.exd = PcRob.exd; 
RobT_Read.exe = PcRob.exe; 
RobT_Read.exf = PcRob.exf; 
txt_x.Text = RobT_Read.x.ToString(); 
txt_y.Text = RobT_Read.y.ToStringO; 
txt_z.Text = RobT_Read.z,ToString(); 
txt_ql.Text = RobT_Read.ql.ToString(); 
txt_q2.Text = RobT_Read.q2.ToStringO; 
txt_q3.Text = RobT_Read.q3.ToString(); 
txt_q4.Text = RobT_Read.q4.ToStringO; 
txt_exa.Text = RobT_Read.exa.ToString(); 
txt_exb.Text = RobT_Read.exb.ToString(); 
txt_exc.Text = RobT_Read.exc.ToString(); 
txt_exd.Text = RobT_Read.exd.ToString(); 
txt_exe.Text = RobT_Read.exe.ToString(); 
txt_exf.Text = RobT_Read.exf.ToString(); 

} 
} 

This application demonstrates the usefulness of having remote services that can 
communicate with the running applications. With it, users can influence the 
behavior of rurming applications for controlling, monitoring, or debugging 
purposes. It also demonstrates the usefulness of software components for the 
process of developing distributed applications that necessarily use several types of 
radically different equipment. With these components, users and programmers can 
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focus on the applications under development without worrying about the technical 
details of remote procedure calling, network communications, and so on. 

3.7 Industrial Example: Semi-autonomous Labeling System 

In this section, an industrial example that explores the previous material is 
presented and discussed. This example corresponds to an actual implementation 
resulting from a cooperation effort between the author and a Portuguese company. 
The system presented here was designed to operate almost without operator 
intervention, showing that concepts like flexibility and agility are fundamental to 
manufacturing plants and require much more from the systems used on the shop 
floor. Flexible manufacturing systems take advantage of being composed of 
programmable equipment to implement most of its characteristics, which are 
supported by reconfigurable mechanical parts. Industrial robots are, consequently, 
good examples of flexible manufacturing systems. 

The robotic industrial system presented here was designed to execute 
parameterized labeling tasks on paper rolls. The system is commanded directly 
from the manufacturing tracking and control software. This software is based on 
dynamic databases that register the situation of each item produced in the factory, a 
simple way to track them see what is happening on the shop floor. Since all 
information about each item is available in the manufacturing tracking software, it 
is logical to use it to command some of the shop floor manufacturing systems, 
namely the ones that require only simple parameterization to work properly. This 
procedure would take advantage of the available information and infrastructure, 
avoiding unnecessary operator interfaces to command the system. Also, potential 
gains in terms of flexibility and productivity are evident. 
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Figure 3.29 Labeling system 

3.7.1 Robotic Labeling System 

The industrial system introduced here is a labeling system (Figure 3.29) composed 
of: 

• One robot manipulator ABB IRB4400, with the S4C+ controller [ 10] 
• One electro-pneumatic gripper, properly equipped to grab one or two A4-

size paper sheets 
• One office laser printer, with several trays of paper 
• One gluing machine with spray injectors controlled from the robot 

controller 10 system 
• One industrial PLC (Siemens S7-300) that controls the rolls conveyer 

belt, providing information to the robot controller about its state 

In general, the labeling robotic system works as follows: When a roll is released 
from the previous system (wrapping machine), one or two labels are printed on the 
laser printer. At the same time, the robot receives the order to pick those labels 
from the ramp placed at the end of the printer, and immediately prepositions near 
the printer. The picking operation happens when the required number of sheets are 
available at the ramp (two optical sensors detect the presence of paper). After that, 
the robot waits for the roll to enter the working zone, i.e., waits for the 
corresponding optical sensor, named sensor 1 in Figure 3.29, to detect the roll. 
When the roll is detected, the robot moves to the gluing machine to add glue on the 
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side of each label. When the operation is finished, the roll should be already 
stopped, waiting for the robot to insert the labels on the top and on the right side of 
the roll. The robot performs that operation when the roll is detected by sensor 2 
(Figure 3,29) and when the PLC confirms that the conveyor has stopped. When the 
operation is finished, the robot signals it using a flag, accessible remotely, and 
moves to a neutral position to wait for a new command. 

3.7,2 System Software 

Designing software for the system, which needed to be commanded from the 
network, was an interesting challenge. The industrial robot is the central element of 
the manufacturing cell, and is connected to the factory network, which makes it 
easily accessible from the UNIX station running the manufacturing tracking 
software. 

To exchange information between computer systems, in a safe and guaranteed 
way, a client-server approach using TCP/IP sockets may be used. That is a simple 
and straightforward thing to do, with the UNIX computer acting as the client. A 
TCP/IP server should then be available to receive client calls, and a properly 
designed messaging protocol must be used. The decision here was to make the 
TCP/IP server the only interface to the robotic manufacturing cell, so that any 
command or request of information is done by connecting to the server and 
sending the appropriate messages. Since there is a network on the shop floor, the 
TCP/IP server can be installed in any shop floor computer, making it really easy to 
install the interface and have it running. In the factory under consideration, the 
majority of the shop floor computers are running the Windows NT4 and Windows 
2000 operating systems. Consequently, we decided to use BSD compatible TCP/IP 
sockets, which are also compatible with the Microsoft TCP/IP implementation 
(winsock2). 

The next challenge was how to manage the communication with the robot 
controller, since it is well known that actual robot controllers are closed industrial 
systems not allowing installation of any user software apart from robot programs. 
ABB robot controllers [10] have internal Remote Procedure Call (RPC) [2,8] 
servers that can be used to exchange variables, files, etc. Those servers are SUN 
RPC 4.0 [2] compatible, and can be used to our purposes if the TCP/IP server 
interface can issue RPC calls to the robot controller. Consequently, a library of 
functions implementing calls for all the services on the ABB robot controller was 
built [5,7], along with a port of the SUN RPC 4.0 to operating systems based on the 
Win32 API. This environment enables a complete access to the robot controller 
RPC services making it possible to command the robot from the network. The 
robot controller software must then be built in a way to expose all system 
capabilities to the remote client. This means building it like a SWITCH-CASE-DO 
server, with the switching variable controlled by the remote client. 
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Robot Control System 

Industrial Robot 

Figure 3.30 Software interface to the industrial robotic system 

The basic idea, depicted in Figure 3.30, is simple. The interface to the industrial 
robotic cell is a TCP/IP server running on a specified IP and port number. The 
following procedure is used in a way to guarantee safety and avoid data loss: 

• The server should respond to ID-calls with a pre-determined string, which 
is used to identify the TCP/IP server with name, version, and date. The 
string is actually ''robot_server@v21mlly03'\ The ID-call is the first call 
issued by the client after establishing a new connection. A wrong answer 
to the ID-call should tell the client to send a reset-call and close the 
connection 

• The client makes frequent A-calls, in periods of two seconds, to find out if 
the server is alive and healthy, and to get its actual state (busy or ready) 

• The client uses B-calls to send execution commands, properly 
parameterized, to the robotic labeling system. When a B-call is received 
and accepted by the server, the system enters the busy state and any 
subsequent A-call will return that the system is busy 

• When the robotic labeling system completes a task, i.e., when it inserts the 
requested number of labels on the roll in use, the system enters the ready 
state and any subsequent A-call will return that state 

The TCP/IP server is the only operational interface to the robotic system. 
Basically, it is a simple single channel TCP/IP server, completely coded in C++, 
which waits for connections on a pre-determined port, accepting only the ones 
coming from only a few IPs (the ones where the manufacturing tracking software 
may be running). Connection is established only if the calling machine makes an 
ID-call, properly parameterized, including a password. The server is a state 
machine that implements answers to the four different messages that can be sent by 
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the connected client (Figure 3.30). The connection between the TCP/IP server and 
the industrial robot is handled using RPC sockets, compatible with the SUN RPC 
4.0 definition. 

In the following section, the developed software will be further explained, starting 
with the software designed to run on the robot controller. 

3.7.3 Robot Controller Software 

Considering that the system was designed to be commanded remotely using the 
factory computer network, it was decided to have the robot controller software 
working as a server, exposing to the remote client all of its operational 
functionalities. This capability is very interesting also for other applications, and 
because of that it will be discussed in a general way. 

When building an industrial robotic cell, it is certainly possible, and very useful, to 
identify all the system capabilities and requirements, i.e., the system engineer 
should state clearly all the functions it is supposed to perform and write the code 
necessary to implement them. If that code is developed as general as possible, and 
used to build a server that can be explored remotely with properly parameterized 
calls, then the complete system functionality can be requested remotely from the 
network. 

Technically, to implement the remote calls, it was decided to use remote procedure 
calls (RPC) compatible with the SUN RPC 4.0 suite, an open standard in the public 
domain. The ABB S4 robot control system implements a collection of RPC 
services that enable users to access programs, system data, and robot configuration, 
as well as to share files, etc. These services are part of the robot controller's 
operating system. Using those services from the TCP/IP server designed to 
interface the system [2, 5-8], it is certainly possible to set up an RPC-driven server 
like: 

switch service_decision_variable 
case 1: call function_l; break; 
case 2: call function_2; break; 
case 3: call function_3; break; 

case n: call function_n; break; 
default: call invalid_function; break; 

end_switch 

where the service_decision_yariable is a numerical variable whose value can be 
changed remotely, making an RPC call to the changejiumerical_value service. In 
this way, the robot's operation is completely controlled from the remote client. 
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Since the robotic system is to be operated without human intervention, a few 
services were added to allow maintenance and error recovery operations. 
Sometimes, due to errors in the manufacturing tracking database (usually 
introduced by human intervention), invalid or badly parameterized commands are 
sent to the robot. In those situations, depending on the dimensions of the roll in 
use, the robot may crash with the surface of the roll, because it uses the 
commanded dimensions to approach the surface of the roll in a more efficient way. 
Also, failure in the conveyor sensors or actuators may cause problems with roll 
placement. In any case, an operator is required to solve the problems and put the 
system in production again. The program shown in Figure 3.31 is used to put the 
robot in a known position and resume automatic operation. 
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Figure 3.31 Operator interface used to solve error situations 

Basically, the operator interface makes RFC calls to the above mentioned services 
designed to solve erroneous situations. Those services enable the operator to 
resume local program execution from an actual point or from the beginning, move 
the robot to well-known positions, enter maintenance routines, and so on. The 
program usually runs on a laptop that maintenance personnel carry to the setup 
when a problem arises, plugging it to the network. 

3.7.4 TCP/IP Server 

As already explained, this TCP/IP server (Figure 3.32) was developed as the only 
interface to the robotic labeling system. It is a simple TCP/IP server that accepts 
connections coming from the machine that runs the manufacturing tracking 
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software (client). After connecting, it implements a state-machine that listens for 
messages coming from the client, acting accordingly. The TCP/IP server monitors 
the connection to the robot and the robot state, so that proper answers are given to 
every A-call received from the client. Also, the server does not accept any 
command in the periods where the robot state is busy, forcing the client to wait 
until the previous commanded operation finishes. 
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3.7.5 Discussion 

The example presented in this section explores the use of software interfaces for 
remote command of shop floor industrial robotic cells. This involves network 
interfaces based on the TCP/IP protocol and remote procedure calls, enabling 
direct command of shop floor manufacturing setups from anywhere in the factory. 
This idea is particularly useful with systems that require minor parameterization to 
perform a predefined task. This can easily be done from the manufacturing 
tracking software, used to follow and manage production, where the require 
information is available. 

In many industries, like the one presented in this example, production is closely 
tracked in any part of the manufacturing cycle. The manufacturing cycle can be 
interpreted as a collection of operations and processes that transform the raw 
materials into finished products. This journey of products between the raw 
materials warehouse and the finished products warehouse, is composed of several 
manufacturing systems that perform the necessary operations on the product under 
processing, and intermediate buffers used to temporarily store semi-finished 
products in several stages of their production cycle. These buffers are fundamental 
for a well balanced production planning, achieving high rates of efficiency and 
agility. In many cases, the manufacturing systems require only minor 
parameterization to execute their tasks. If that parameterization can be commanded 
remotely from where it is available (using manufacturing tracking software), then 
the system becomes almost autonomous in the sense that operator intervention is 
minimal and related only with maintenance and error situations. A system like this 
will improve manufacturing efficiency and agility, since the operation becomes 
less dependent on operators. Also, because the system was built to be explored 
remotely, which requires a collection of general software routines designed to 
implement all of the system functionalities, it is easier to change production by 
changing parameterization, a software task, which also contributes to agility. 

This robotic manufacturing system uses a simple TCP/IP server as the 
commanding interface. The server sends remote procedure calls to the robot 
control system, which is the system main computer. The robot controller interfaces 
with the system PLC that controls the conveyor, and manages the information 
coming from manual controls and sensors. Consequently, any client connected to 
the TCP/IP server is able to command the system and get production information. 
This feature adds flexibility and agility to the manufacturing setup. This setup was 
installed in a Portuguese paper factory and is being used without problems for 
almost three years, which demonstrates its robustness and simplicity. 

Finally it is worthwhile to stress that: 
• The system interface was implemented in C++ using available 

programming tools: Visual C++ 6.0 first, and Visual .NET 2003 when an 
update was necessary [11] 
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• The system was implemented using standard operating systems, namely, 
UNIX from Digital to run the manufacturing tracking software, and 
Windows 2000 to run the robotic cell TCP/IP interface 

• The Microsoft TCP/IP socket implementation was used to program the 
TCP/IP server, since it is BSD-compatible 

• The system uses RPC's compatible with SUN RFC 4.0, an open standard 
not compatible with the Microsoft implementation, which required a 
complete port to Windows 2000 (the operating system used on the shop 
floor of the partner factory). That effort was completely done by the 
author 

Consequently, no special tools were used to build the presented solution, which 
proves that these techniques are available to build smart interfaces enabling more 
efficient applications, or at least to build other ways to exploit shop floor 
equipment. In fact, actual manufacturing systems have a lot of flexibility inside 
because they rely on programmable equipment, like robots and PLCs, to 
implement their functions. System engineers need to find ways to explore that 
flexibility when designing manufacturing systems, exposing it to the advanced user 
in more efficient ways. 

In terms of operational results, it is important that a system like the one presented 
here does not add any production delay to the manufacturing system, or become a 
production bottleneck. This means that the cycle time should be lower than the 
cycle time of the previous station. In our example, the system takes around 11 
seconds to perform the labeling operation, which is at least 20 seconds lower than 
the previous roll wrapping operation. 

3.7.6 Conclusion 

In describing an industrial application designed for labeling applications, this 
section discussed and detailed a software interface designed to command shop 
floor manufacturing systems remotely from the manufacturing tracking software. 
This interface added flexibility and agility to the manufacturing system, since all 
available operations were implemented in a very general way requiring only simple 
parameterization to specify the individual operations. The interface to the system is 
a simple TCP/IP server installed in one of the shop floor computers. To command 
the system, the client needs to connect to the server and, if allowed, send properly 
parameterized commands as simple messages over the open socket. The server 
uses SUN RFC 4,0 compatible sockets to access the robotic system, place the 
received commands, and monitor the system operation. Since the TCP/IP server is 
a general implementation, using the BSD compatible TCP/IP socket 
implementation from Microsoft, it can receive commands from virtually any client. 
This makes the presented robotic cell interface an interesting way to command 
shop floor manufacturing systems. 
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Interface Devices and Systems 

4.1 Introduction 

The success of using robots with flexible manufacturing systems especially 
designed for small and medium enterprises (SME) depends on the human-machine 
interfaces (HMI) and on the operator skills. In fact, although many of these 
manufacturing systems are semi-autonomous, requiring only minor 
parameterization to work, many other systems working in SMEs require heavy 
parameterization and reconfiguration to adapt to the type of production that 
changes drastically with time and product models. Another difficulty is the average 
skill of the available operators, who usually have difficulty adapting to robotic 
and/or computer-controlled, flexible manufacturing systems. 

SMEs are special types of companies. In dimension (with up to 250 permanent 
collaborators), in economic strength (with net sales up to 50M€) and in installed 
technical expertise (not many engineers). Nevertheless, the European economy 
depends on these types of company units since roughly they represent 95% of the 
European companies, more than 75% of the employment, and more than 60% of 
the overall net sales [1]. This reality configures a scenario in which flexible 
automation, and robotics in particular, play a special and unique role requiring 
manufacturing cells to be easily used by regular non-skilled operators, and easier to 
program, control and monitor. One way to this end is the exploitation of the 
consumer market's input-output devices to operate with industrial robotic 
equipment. With this approach, developers can benefit from the availability, and 
functionality of these devices, and from the powerful programming packages 
available for the most common desktop and embedded platforms. On the other 
hand, users could benefit from the operational gains obtained by having the normal 
tasks performed using common devices, and also from the reduction in prices due 
to the use of consumer products. 
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Industrial manufacturing systems would benefit greatly from improved interaction 
devices for human-machine interface even if the technology is not so advanced. 
Gains in autonomy, efficiency, and agility would be evident. The modem world 
requires better products at lower prices, requiring even more efficient 
manufacturing plants because the focus is on achieving better quality products, 
using faster and cheaper procedures. This means having systems that require less 
operator intervention to work normally, better human-machine interfaces, and 
cooperation between humans and machines sharing the same workspace as real 
coworkers. 

Also, the robot and robotic cell programming task would benefit very much from 
improved and easy-to-use interaction devices. This means that availability of SDKs 
and programming libraries supported under common programming environments is 
necessary. Application development depends on that. 

Working on future SMEs means considering humans and machines as coworkers, 
in environments where humans have constant access to the manufacturing 
equipment and related control systems. 

Several devices are available for the user interface (several types of mice, 
joysticks, gamepads and controls, digital pens, pocket PCs and personal assistants, 
cameras, different types of sensors, etc.) with very nice characteristics that make 
them good candidates for industrial use. Integrating these devices with current 
industrial equipment requires the development of a device interface, which exhibits 
some basic principles in terms of software, hardware and interface to commercial 
controllers. 

This scenario can be optimized in the following concurrent ways: 

1. Develop user-friendly and highly graphical HMI applications to run on the 
available interface devices. Those environments tend to hide the complexity of 
the system from operators, allowing them to focus on controlling and 
operating the system. Figure 4.1 shows the main window of an application 
used to analyze force/torque data coming from a robotic system that uses a 
force/torque sensor to adjust the programmed trajectories (this system will not 
be further explored in this book) 

2. Explore the utilization of consumer input/output devices that could be used to 
facilitate operator access to the system. In fact, there is a considerable amount 
of different devices on the market developed for personal computers on 
different input/output tasks. Such devices are usually programmable, with the 
manufacturers providing suitable SDKs to make them suitable for integrating 
with industrial manufacturing systems. Figure 4.2 shows a few of these 
devices, some of them covered in this book 
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Figure 4.1 HMI interface used with an industrial robotic system to further analyze 
force/torque sensor data 

3 Explore the functionality of the available software packages commonly used 
for engineering. Good examples of those packages are the CAD packages used 
by engineers to develop, optimize, and improve their designs (Figure 4.3). 
Since the vast majority of companies use CAD software packages to design 
their products, it would be very interesting if the information from CAD files 
could be used to generate robot programs. That is, the CAD application could 
be the environment used for specifying how robots should execute the required 
operations on the specified parts. Furthermore, since most engineers are 
familiar with CAD packages, exploring CAD data for robot programming and 
parameterization seems a good way to proceed [2]. 
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Figure 4.2 Input/output devices used for HMl applications: (from top to bottom) joystick, 
headset with noise reduction, pocket PC and digital pen 
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Figure 4.3 Using 3D CAD software packages to project and design mechanical parts: a -
welding torch and laser camera (SolidWorks); b - welding trajectories specified using 
AutoCad 

This chapter uses industrial and laboratory test-cases to provide the necessary 
details and insight to complement the above presented claims and design options. 



178 Industrial Robots Programming 

4.2 Speech Interfaces 

4.2.1 Introduction 

Talking to machines is a thing normally associated with science fiction movies and 
cartoons and less with current industrial manufacturing systems. In fact, most of 
the papers about speech recognition start with something related to artificial 
intelligence, a science fiction movie, or a robot used in a movie, etc., where 
machines talk like humans, and understand the complex human speech without 
problems. Nevertheless, industrial manufacturing systems would benefit very much 
from speech recognition for human-machine interface (HMI) even if the 
technology is not so advanced. Gains in terms of autonomy, efficiency and agility 
seem evident. The modem world requires better products at lower prices, requiring 
even more efficient manufacturing plants because the focus is in achieving better 
quality products, using faster and cheaper procedures. This means autonomy, 
having systems that require less operator intervention to operate normally, better 
human-machine interfaces and cooperation between humans and machines sharing 
the same workspace as real coworkers. 

The final objective is to achieve, in some cases, semi-autonomous systems [3], i.e., 
highly automated systems that require only minor operator intervention. In many 
industries, production is closed tracked in any part of the manufacturing cycle, 
which is composed by several in-line manufacturing systems that perform the 
necessary operations, transforming the raw materials in a final product. In many 
cases, if properly designed, those individual manufacturing systems require simple 
parameterization to execute the tasks they are designed to execute. If that 
parameterization can be commanded remotely by automatic means from where it is 
available, then the system becomes almost autonomous in the sense that operator 
intervention is reduced to the minimum and essentially related with small 
adjustments, error and maintenance situations [3]. In other cases, a close 
cooperation between humans and machines is desirable although very difficult to 
achieve, due to limitations of the actual robotic and automation systems. 

The above described scenario puts focus on HMI, where speech interfaces play an 
important role because manufacturing system efficiency will increase if the 
interface is more natural or similar to how humans command things. Nevertheless, 
speech recognition is not a common feature among industrial applications, 
because: 

• The speech recognition and text-to-speech technologies are relatively 
new, although they are already robust enough to be used with industrial 
applications 

• The industrial environment is very noisy which puts enormous strain on 
automatic speech recognition systems 

• Industrial systems weren't designed to incorporate these types of features, 
and usually don't have powerful computers dedicated to HMI 
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Automatic speech recognition (ASR) is commonly described as converting speech 
to text. The reverse process, in which text is converted to speech (TTS), is known 
as speech synthesis. Speech synthesizers often produce results that are not very 
natural sounding. Speech synthesis is different from voice processing, which 
involves digitizing, compressing (not always), recording, and then playing back 
snippets of speech. Voice processing results are natural sounding, but the 
technology is limited in flexibility and needs more disk storage space compared to 
speech synthesis. 

Speech recognition developers are still searching for the perfect human-machine 
interface, a recognition engine that understands any speaker, interprets natural 
speech patterns, remains impervious to background noise, and has an infinite 
vocabulary with contextual understanding. However, practical product designers, 
OEMs, and VARs can indeed use today's speech recognition engines to make 
major improvements to today's markets and applications. Selecting such an engine 
for any product requires understanding how the speech technologies impact 
performance and cost factors, and how these factors fit in with the intended 
application. 

Using speech interfaces is a big improvement to HMI systems, because of the 
following reasons: 

• Speech is a natural interface, similar to the "interface'' we share with other 
humans, that is robust enough to be used with demanding applications. 
That will change drastically the way humans interface with machines 

• Speech makes robot control and supervision possible from simple multi-
robot interfaces. In the presented cases, common PCs were used, along 
with a normal noise-suppressing headset microphone 

• Speech reduces the amount and complexity of different HMI interfaces, 
usually developed for each appHcation. Since a PC platform is used, 
which carry currently very good computing power, ASR systems become 
affordable and simple to use 

In this section, an automatic speech recognition system is selected and used for the 
purpose of commanding a generic industrial manufacturing cell. The concepts are 
explained in detail and two test case examples are presented in a way to show that 
if certain measures are taken, ASR can be used with great success even with 
industrial applications. Noise is still a problem, but using a short command 
structure with a specific word as pre-command string it is possible to enormously 
reduce the noise effects. The system presented here uses this strategy and was 
tested with a simple noiseless pick-and-place example, but also with a simple 
welding application in which considerable noise is present. 
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4.2.2 Evolution 

As already mentioned, the next level is to combine ASR with natural language 
understanding, i.e., making machines understand our complex language, coping 
with the implementations, and providing contextual understanding. That capability 
would make robots accessible to people who don't want to learn the technical 
details of using them. And that is really the aim, since a common operator does not 
have the time or the immediate interest to dig into technical details, which is, in 
fact, neither required nor an advantage. 

Speech recognition has been integrated in several products currently available: 

• Telephony applications 
• Embedded systems (Telephone voice dialing system, car kits, PDAs, 

home automation systems, general use electronic appliances, etc.) 
• Multimedia applications, like language learning tools 
• Service robotics 

Speech recognition has about 75 years of development. Mechanical devices to 
achieve speech synthesis were first devised in the early 19th century, but imagined 
and conceived for fiction stories much earlier. 

The idea of an artificial speaker is very old, an aspect of the human long-standing 
fascination with humanoid automata, Gerbert (d. 1003), Albertus Magnus (1198-
1280), and Roger Bacon (1214-1294) are all said to have built speaking heads. 
However, historically attested speech synthesis begins with Wolfgang von 
Kempelen (1734-1804), who published his findings of twenty years of research in 
1791. Wolfgang ideas gain another interest with the invention of the telephone in 
the late 19th century, and the subsequent efforts to reduce the bandwidth 
requirements of transmitting voice. 

On March 10, 1876, the telephone was bom when Alexander Graham Bell called 
to his assistant, "Mr. Watson! Come here! I want your He was not simply making 
the first phone call. He was creating a revolution in communications and 
commerce. It started an era of instantaneous information-sharing across towns and 
continents (on a planetary level) and greatly accelerated economic development. 

In 1922, a sound-activated toy dog named "î ex" (from Elmwood Button Co.) could 
be called by name from his doghouse. 

In 1936, U.K, Tel introduced a ''speaking clock' to tell time. In the 1930s, the 
telephone engineers at Bell Labs developed the famous Voder, a speech synthesizer 
that was unveiled to the public at the 1939 World's Fair, but that required a skilled 
human operator to operate with it. 

Small vocabulary recognition was demonstrated for digits over the telephone by 
Bell Labs in 1952. The system used a very simple frequency splitter to generate 
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plots of the first two formants. The identification was achieved by matching them 
with a pre-stored pattern. With training, the recognition accuracy of spoken digits 
was 97%. 

Fully automatic speech synthesis came in the early 1960s, with the invention of 
new automatic coding schemes, such as adaptive predictive coding (APC). With 
those new techniques in hand, the Bell Labs engineers again turned their attention 
to speech synthesis. By the late 1960s, they had developed a system for internal use 
in the telephone system, a machine that read wiring instructions to Western 
Electric telephone wirers, who could then keep eyes and hands on their work. 

At the Seattle World's Fair in 1962, IBM demonstrated the "Shoebox" speech 
recognizer. The recognizer was able to understand 16 words (digits plus 
command/control words) interfaced with a mechanical calculator for performing 
arithmetic computations by voice. Based on mathematical modeling and 
optimization techniques learned at IDA (now the Center for Communications 
Research, Princeton), Jim Baker introduced stochastic processing with hidden 
markov models (HMM) to speech recognition while at Carnegie-Mellon University 
in 1972. At the same time, Fred Jelinek, coming from a background of information 
theory, independently developed HMM techniques for speech recognition at IBM. 
HMM provides a powerful mathematical tool for finding the invariant information 
in the speech signal. Over the next 10-15 years, as other laboratories gradually 
tested, understood, and applied this methodology, it became the dominant speech 
recognition methodology. Recent performance improvements have been achieved 
through the incorporation of discriminative training (at Cambridge University, 
LIMSI, etc.) and large databases for training. 

Starting in the 1970s, government funding agencies throughout the world (e.g. 
Alvey, ATR, DARPA, Esprit, etc.) began making a major impact on expanding and 
directing speech technology for strategic purposes. These efforts have resulted in 
significant advances, especially for speech recognition, and have created large 
widely-available databases in many languages while fostering rigorous 
comparative testing and evaluation methodologies. 

In the mid-1970s, small vocabulary commercial recognizers utilizing expensive 
custom hardware were introduced by Threshold Technology and NEC, primarily 
for hands-free industrial applications. In the late 1970s, Verbex (division of Exxon 
Enterprises), also using custom special-purpose hardware systems, was 
commercializing small vocabulary applications over the telephone, primarily for 
telephone toll management and financial services (e.g. Fidelity fund inquiries). By 
the mid-1990s, as computers became progressively more powerful, even large 
vocabulary speech recognition applications progressed from requiring hardware 
assists to being mainly based on software. As performance and capabilities 
increased, prices dropped. 

Further progress led to the introduction, in 1976, of the Kurzweil Reading 
Machine, which, for the first time allowed the blind to ^^read^ plain text as opposed 
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to Braille. By 1978, the technology was so well established and inexpensive to 
produce that it could be introduced in a toy, Texas Instruments Speak-and-SpelL 
Consequently, the development of this important technology from inception until 
fruition took about 15 years, involved practitioners from various disciplines, and 
had a far-reaching impact on other technologies and, through them, society as a 
whole. 

Although existing for at least as long as speech synthesis, automatic speech 
recognition (ASR) has a shorter history. It needed much more the developments of 
digital signal processing (DSP) theory and techniques of the 1960s, such as 
adaptive predictive coding (APC), to even come under consideration for 
development. 

Work in the early 1970s was again driven by the telephone industry, which hoped 
for both voice-activated dialing and also for security procedures based on voice 
recognition. Through gradual development in the 1980s and into the 1990s, error 
rates in both these areas were brought down to the point where the technologies 
could be commercialized. 

In 1990, Dragon Systems (created by Jim and Janet Bailer) introduced a general-
purpose discrete dictation system (i.e. requiring pauses between each spoken 
word), and in 1997, Dragon started shipping general purpose continuous speech 
dictation systems to allow any user to speak naturally to their computer instead of, 
or in addition to, typing. IBM rapidly followed the developments, as did Lernout & 
Hauspie (using technology acquired yrow Kurzweil Applied Intelligence), Philips, 
and more recently, Microsoft. Medical reporting and legal dictation are two of the 
largest market segments for ASR technology. Although intended for use by typical 
PC users, this technology has proven especially valuable to disabled and physically 
impaired users, including many who suffer from repetitive stress injuries (RSI). 
Robotics is also a very promising area. 

AT&T introduced its automated operator system in 1992. In 1996, the company 
Nuance supplied recognition technology to allow customers of Charles Schwab to 
get stock quotes and to engage in financial transactions over the telephone. Similar 
recognition applications were also supplied by Speech Works. Today, it is possible 
to book airline reservations with British Airways, make a train reservation for 
Amtrak, and obtain weather forecasts and telephone directory information, all by 
using speech recognition technology. In 1997, Apple Computer introduced 
software for taking voice dictation in Mandarin Chinese. 

Other important speech technologies include speaker verification/identification and 
spoken language learning for both literacy and interactive foreign language 
instruction. For information search and retrieval applications (e.g. audio mining) 
by voice, large vocabulary recognition preprocessing has proven highly effective, 
preserving acoustic as well as statistical semantic/syntactic information. This 
approach also has broad applications for speaker identification, language 
identification, and so on. 
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Today, 65 years after the Voder and just 45 years after APC, both ASR and TTS 
technologies can be said to be fully operational, in a case where a very convoluted 
technological history has had a modest and more or less anticipated social impact. 

4.2.3 Technology 

Speech recognition systems can be separated into several different classes 
depending on the types of utterances they have the ability to recognize. These 
classes are based on the fact that one of the difficulties of ASR is the ability to 
determine ŵ hen a speaker starts and finishes an utterance. Most packages can fit 
into more than one class, depending on which mode they're using. 

Isolated words: Isolated word recognizers usually require each utterance to have 
quiet (lack of an audio signal) on both sides of the sample window. It doesn't mean 
that it accepts single words, but does require a single utterance at a time. Often, 
these systems have ^^listen/not-listen^^ states, where they require the speaker to wait 
between utterances (usually doing processing during the pauses). Isolated utterance 
might be a better name for this class. 

Connected words: Connected word systems (or more correctly "connected 
utterances") are similar to isolated words, but allow separate utterances to be run-
together with a minimal pause between them. 

Continuous speech: Continuous recognition is the next step. Recognizers with 
continuous speech capabilities are some of the most difficult to create because they 
must utilize special methods to determine utterance boundaries. Continuous speech 
recognizers allow users to speak almost naturally, while the computer determines 
the content. Basically, it's computer dictation and commanding. 

Spontaneous speech: There appears to be a variety of definitions for what 
spontaneous speech actually is. At a basic level, it can be thought of as speech that 
is natural sounding and not rehearsed. An ASR system with spontaneous speech 
ability should be able to handle a variety of natural speech features such as words 
being run together, pauses, "ums" and "ahs", slight stutters, etc. 

Voice verification/identification: Some ASR systems have the ability to identify 
specific users. This book doesn't cover verification or security systems, because 
user validation is done using other means. 

Speech recognition, or speech-to-text, involves capturing and digitizing the sound 
waves, converting them to basic language units or phonemes, constructing words 
from phonemes, and contextually analyzing the words to ensure correct spelling for 
words that sound alike (such as ''write'' and ''righf'). 
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Recognizers (also referred to as speech recognition engines) are the software 
drivers that convert the acoustic signal to a digital signal and deliver recognized 
speech as text to the application. Most recognizers support continuous speech, 
meaning the user can speak naturally into a microphone at the speed of most 
conversations. Isolated or discrete speech recognizers require the user to pause 
after each word, and are currently being replaced by continuous speech engines. 

Continuous speech recognition engines currently support two modes of speech 
recognition: 

• Dictation, in which the user enters data by reading directly to the 
computer 

• Command and control, in which the user initiates actions by speaking 
commands or asking questions 

Dictation mode allows users to dictate memos, letters, and e-mail messages, as 
well as to enter data using a speech recognition dictation engine. The possibilities 
for what can be recognized are limited by the size of the recognizer's "gramwar" or 
dictionary of words. Most recognizers that support dictation mode are speaker-
dependent, meaning that accuracy varies based on the user's speaking patterns and 
accent. To ensure accurate recognition, the application must create or access a 
'^speaker profile'' that includes a detailed map of the user's speech patterns captured 
in the matching process during recognition. 

Command and control mode offers developers the easiest implementation of a 
speech interface in an existing application. In command and control mode, the 
grammar (or list of recognized words) can be limited to the list of available 
commands (a much more finite scope than that of continuous dictation grammars, 
which must encompass nearly the entire dictionary). This mode provides better 
accuracy and performance, and reduces the processing overhead required by the 
application. The limited grammar also enables speaker-independent processing, 
eliminating the need for speaker profiles or ''training'' the recognizer. 

The command and control mode is the one most adapted for speech commanding 
of robots. 

4.2.4 Automatic Speech Recognition System and Strategy 

From the several continuous speech ASR technologies available, based on personal 
computers, the Microsoft Speech Engine [4] was selected because it integrates very 
well with the operating systems we use for HMI, manufacturing cell control, and 
supervision (Windows XP/NT/2000). The Microsoft Speech Application 
Programming Interface (SAPI) was also selected, along with the Microsoft's 
Speech SDK (version 5.1), to develop the speech and text-to-speech software 
applications [4]. This API provides a nice collection of methods and data structures 
that integrate very well in the .NET 2003 framework [5], providing an interesting 
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developing platform that takes advantage of the computing power available from 
actual personal computers. Finally, the Microsoft's SAPI 5J works with several 
ASR engines, which gives some freedom to developers to choose the technology 
and the speech engine. 

Grammars define the way the ASR recognizes speech from the user. When a 
sequence included in the grammar is recognized, the engine originates an event 
that can be handled by the application to perform the planned actions. The SAPI 
provides the necessary methods and data structures to extract the relevant 
information from the generated event, so that proper identification and details are 
obtained. 

There are three ways to define grammars: using XML files, using binary 
configuration files (CFG), or using the grammar builder methods and data 
structures. XML files are a good way to define grammars if a compiler and 
converter is available, as in the SDK 5.1. In the examples provided in this chapter, 
the grammar builder methods were used to programmatically construct and modify 
the grammar. 

The strategy used here takes into consideration that there should be several robots 
in the network, running different applications. In that scenario, the user needs to 
identify the robot first, before sending the command. The following strategy is 
used, 

• All commands start with the word ''Robof 
• The second word identifies the robot by a number: one, two, etc 
• The words that follow constitute the command and the parameters 

associated with a specific command 

Consequently, the grammar used is composed of a ''TopLevelRule'' with a 
predetermined initial state, i.e., the ASR system looks for the pre-command word 
''Robof as a precondition to any recognizable command string. The above 
mentioned sequence of words constitutes the second level rules, i.e, they are used 
by the TopLevelRule and aren't directly recognizable. A rule is defined for each 
planned action. As a result, the following represents the defined syntax of 
commands: 

robot number command parameter J 

where ''robof is the pre-command word, number represents the robot number, 
command is the word representing the command to send to the robot, and 
parameter J are / words representing the parameters associated with the command. 

Another thing considered was safety. Each robot responds to "hello'' commands, 
and when asked to ''initialize'' the robots require voice identification of usemame 
and password to give the user the proper access rights. Since the robots are 
connected to the calling PC using an RPC socket [2, 6-7] mechanism, the user must 
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'Hnitialize" the robot to start using its remote services, which means that an RPC 
connection is open, and must ''terminate" the connection when no more actions are 
needed. A typical session would look like. 

User: Robot one hello. 
Robot: I am listening my friend. 
User: Robot one initialize. 
Robot: You need to identify to access my functions. 
Robot: Your usemame please? 
User: Robot one <username>. 
Robot: Correct. 
Robot: Your password please? 
User: Robot one <password>. 
Robot: Correct. 
Robot: Welcome again <usemame>. I am robot one. Long time no see. 

Sequence of commands here. Robot is under user control. 

User: Robot one terminate. 
Robot: See you soon <usemame>. 

In the following sections, two simple examples are given to demonstrate how this 
voice command mechanism is implemented, and how the robot controller software 
is designed to allow these features. 

4.2.5 Pick-and-Place and Robotic Welding Examples 

The following examples take advantage of developments done in the Industrial 
Robotics Laboratory, of the Mechanical Engineering Department of the University 
ofCoimbra on robot remote access for command and supervision [2, 6-7]. Briefly, 
two industrial robots connected to an Ethernet network are used. The robot 
controllers (ABB S4CPlus) are equipped with RPC servers that enable user access 
from the network, offering several interesting services like variable access, 10 
access, program and file access and system status services [7]. The new versions of 
the ABB controller, named IRC5, are equipped with a TCP/IP sockets API [8], 
enabling users to program and setup TCP/IP sockets servers in the controller. For 
that reason, the ideas presented here can be easily transported to the new IRC5 
controller with no major change. 

If calls to those services are implemented in the client PC, it is fairly easy to 
develop new services. The examples presented here include the ActiveX 
PCROBNET2003 [9] that implement the necessary methods and data structures 
(see Table 3.3) to access all the services available from the robot controller. 
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The basic idea is simple and not very different from the concept used w ĥen 
implementing any remote server. If the system designer can access robot program 
variables, then he can design his ovv̂ n services and offer them to the remote clients. 
A simple SWITCH-CASE-DO cycle, driven by a variable controlled from the 
calling client, w^ould do the job: 

switch (decision_l) 

{ 
case 0: call service_0; break; 
case 1: call service_l; break; 
case 2: call service_2; break; 

case n: call service_n; break; 
} 

4.2.6 Pick-and-Place Example 

For example, consider a simple pick-and-place application. The robot, equipped 
w îth a tw^o-finger pneumatic gripper, is able to pick a piece from one position 
(named ''origin'') and deliver it to other position (named ''finar). Both positions 
are placed on top of a working table (Figure 4.4). 

Figure 4.4 Working table for the simple pick-and-place application 

The robot can be commanded to open/close the gripper, approach origin/final 
position (positions 100mm above origin/final position, respectively), move to 
origin/fmal position, and move to ''home'' (a safe position away from the table). 
This is a simple example, but sufficient to demonstrate the voice interface. Figure 
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4.5 shows a simplified version of the server software running on the robot 
controller. 

To be able to send any of those commands using the human voice, the following 
grammar was implemented: 

TopLevelRule = "Robor 
Rule 0 = ''one hello'' 
Rule 1 = ''one initialize'' 
Rule 2 = "one master" 
Rule 3 = "one masterxyz" 
Rule 4 = "one open" 
Rule 5 = "one close" 
Rule 6 = "one motor on" 
Rule 7 = "one motor off 
Rule 8 = "one program run" 
Rule 9 = "one program stop" 
Rule 10 = "one approach origin" 
Rule 11 = "one approach final" 
Rule 12 = "one origin" 
Rule 13 = "one final" 
Rule 14 = "one home" 
Rule 15 = "one terminate" 

pre-command word 
check if robot is there 
ask robot to initialize {open client) 
rule defining usemame "master" 
password of usemame "master" 
open the gripper 
close the gripper 
put robot in run state 
put robot in stand-by state 
start program 
stop program 
call service 94 
call service 93 
call service 91 
call service 92 
call service 90 
release robot access (close client) 

PROC mainO 
TPErase; TPWrite "Example Server..."; 
pl:=CRobT(\Tool:=trj_tool\WObj:=trj_wobj); 
MoveJ p 1 ,v 100,fine,trj_tool\WObj :=trj_wobj; 
decision! :=123; 
WHILE TRUE DO 

TEST decisionl 
CASE 90: 

MoveJ home,v200,fine,tool0; decisionl:=123; 
CASE 91: 

MoveL final,v200,fine,tool0; decisionl :=123; 
CASE 92: 

MoveL origin,v200,fine,tool0; decisionl :=123; 
CASE 93: 

MoveJ Offs(final, 0,0,100),v200,fine,tool0; decisionl :=123; 
CASE 94: 

MoveJ Offs(origin, 0,0,100),v200,fme,tool0; decisionl :=123; 
ENDTEST 

END WHILE 
ENDPROC 

Figure 4.5 Simple pick-and-place server implemented in RAPID 
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The presented rules were introduced into a new grammar using the grammar 
builder included in the Microsoft Speech API (SAPI) [4]. The following (Figure 
4.6) shows how that can be done, using the Microsoft Visual Basic .NET2003 
compiler. 

TopRule = Grammar.Rules.Add('TopLevelRule", 
SpeechLib.SpeechRuleAttributes.SRATopLevelOr 
SpeechLib.SpeechRuleAttributes.SRADynamic, 1) 

ListltemsRule = Grammar.RulesAdd("ListItemsRule", 
SpeechLib.SpeechRuleAttributes.SRADynamic, 2) 

AflerCmdState = TopRule.AddState 
m_PreCommandString = "Robot" 
TopRule.InitialStateAddWordTransition(AfterCmdState, m_PreCommandString,"",,"", 
0,0) 

AfterCmdState.AddRuleTransition(Nothing, ListltemsRule,"", 1,1) 
ListltemsRule.ClearO 

ListItemsRule.InitialState.AddWordTransition(Nothing, "one hello","",, "one hello", 0, 0) 

Grammar. Rules. Commit() 
Grammar.CmdSetRuleState("TopLevelRule",SpeechLib.SpeechRuleState.SGDSActive) 
RecoContext.StateO = SpeechLib.SpeechRecoContextState.SRCS_Enabled 

Figure 4.6 Adding grammar rules and compiling the grammar using SAPI in Visual Basic 
.NET2003 

After committing and activating the grammar, the ASK listens for voice commands 
and generates speech recognition events when a programmed command is 
recognized. The corresponding event service routines execute the commanded 
strings. Figure 4.7 shows the shell of the application built in Visual Basic .NET 
2003 to implement the voice interface for this simple example. Two robots are 
listed in the interface. The robot executing the simple pick-and-place example is 
robot one (named Rita). 
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Figure 4.7 Shell of the voice interface application used to command the robot 

With this interface activated, the following sequence of commands (admitting that 
the logging procedure was already executed) will take the robot from the ''home'' 
position, pick the work object at the origin position, deliver it to the final position, 
return to ''home'' and release the robot control. 

User: Robot one approach origin. 
Robot: Near origin, master. 
User: Robot one open. 
Robot: Tool open master. 
User: Robot one origin. 
Robot: In origin position master. 
User: Robot one close. 
Robot: Tool close master. 
User: Robot one approach origin. 
Robot: Near origin, master. 
User: Robot one approach final. 
Robot: Near final, master. 
User: Robot one final. 
Robot: In final position, master. 
User: Robot one approach final. 
Robot: Near final, master. 
User: Robot one home. 
Robot: In home position, master. 
User: Robot one terminate. 
Robot: See you soon master. 
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The speech event routine, running on the voice interface appHcation, is called when 
any of the rules defined in the working grammar are recognized. For example, 
when the ''motor orC' rule is identified, the following routine is executed: 

If ok_command_l = 1 And (strText = "Robot one motor on") Then 
resultl = Pcrobnet2003.MotorON2(l) 
Ifresultl>=OThen 

Voice.Speak("Motor on, master.") 
ans_robot_l.Text() = "Motor ON, master." 

Else 
Voice.Speak("Error executing, master.") 
ans_robot_l .TextQ = "Error executing, master." 

End If 
End If 

To give another example, when the move to "origin" rule is recognized, the 
following routine is executed: 

If ok_command_l = 1 And (strText = "Robot one origin") Tiien 
Dim valor As Integer 
valor = 92 
resultl = Pcrobnet2003.WriteNum2("decisionl", valor, 1) 
If resultl >=OThen 

Voice.Speak("In origin position, master.") 
ans_robot_l.TextQ = "In origin position, master." 

Else 
Voice. Speak("Error executing, master.") 
ans_robot_l .Text() = "Error executing, master." 

End If 
End If 

4.2.7 Robotic Welding Example 

The welding example presented here extends slightly the functionality of the 
simple server presented in Figure 4.5, just by adding another service and the 
necessary routines to control the welding power source. The system used for this 
demonstration is composed of an industrial robot ABB IRB1400 equipped with the 
robot controller ABB S4CPlus, and a MIG/MAG welding power source (ESAB 
LUA 315A). The work-piece is placed on top of a welding table, and the robot must 
approach point 1 (named ''origin'") and perform a linear weld from that point until 
point 2 (named "final''). The system is presented in Figure 4.8. The user is able to 
command the robot to 

• Approach and reach the point origin (PI) 
• Approach and reach the point final (P2) 
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• Move to ''home'' position 
• Perform a linear weld from point PI (origin) to point P2 (final) 
• Adjust and read the value of the welding velocity 

These actions are only demonstration actions selected to show further details about 
the voice interface to industrial robots. To implement the simple welding server, it 
is enough to add the following welding service to the simple server presented in 
Figure 4.5: 

CASE 94: 
weld_on; 
MoveL fmal,v200,fme,tool0; 
weld_off; 
decision 1:=123; 

where the routine ''weld_on" makes the necessary actions to initiate the welding 
arc [2], and the routine ''weld_off performs the post welding actions to finish the 
welding and terminate the welding arc [2]. 

The welding server is running in robot 2 (named babylon), and is addressed by that 
number from the voice interface application (Figure 4.9). To execute a linear weld 
from PI to P2, at lOmm/s, the user must command the following actions (after 
logging to access the robot, and editing the velocity value in the voice interface 
application - Figure 4.9) using the human voice: 

User: Robot two approach origin. 
Robot: Near origin master. 
User: Robot two origin. 
Robot: In origin position master. 
User: Robot two velocity. 
Robot: Velocity changed master. 
User: Robot two weld. 
Robot: I am welding master. 
User: Robot two approach final. 
Robot: Near final master. 

Figure 4.9 shows the voice interface when robot two is actually welding along with 
a user equipped with a handset microphone to send voice commands to the robot. 
The code associated with the welding command is. 

If ok_command_2 = 1 And (strText = "Robot two weld") Then 
Dim valor As Integer 
valor = 95 
resultl = Pcrobnet2003.WriteNum2("decisionl", valor, 2) 
Ifresultl>=OThen 

Voice.Speak("I am welding, master.") 
ans_robot_2.Text() = "I am welding, master." 
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Else 
Voice.Speak("Error executing, master,") 
ans_robot_2.Text() = "Error executing, master." 

End If 
End If 

The code above writes the value 95 to the variable ''decision^, which means that 
the service ''weld' is executed (check Figure 4.5). 

corner V 

• > — / 
1 ^ ^torch 

Working table 

Pi P2 

Work-piece 
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Figure 4.8 Simple welding application used for demonstration 

^Robot-by-Vaice Command using SAPI 5.1 and PCROB6NET2003 

-Robot 1: Rita (Pick-and-place Application) 

Robot State Q 

answer_txt: Near finaL master. 

Recojxt: Robot one approach final 

Variable decision; 123 

"Robot 2: Babylon [Welding Application) 

Robot Stale Q ^efocity |l0.0 

ansvver_txt: I am welding, mast( 

RecojKt: Robot two weld 

Variable decision: 95 

0,00 

De-activate Reco Terminate Robot two weld 

& bttD:/Aobotics.dem.uc.ptynorberto/ 
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Figure 4.9 Shell of the voice interface application showing the welding operation, and a 
user (author of this book) commanding the robot using a headset microphone 

4.2.8 Adjusting Process Variables 

During the welding process, it may be necessary to adjust process variables such as 
the welding velocity, welding current, the welding points, and so on. This means 
that the voice interface must allow users to command numerical values that are 
difficult to recognize with high accuracy. Furthermore, it is not practical to define 
fixed rules for each possible number to recognize, which means that dictation 
capabilities must be active when the user wants to command numbers. To avoid 
noise effects, and consequently erroneous recognition, a set of rules were added to 
enable dictation only when necessary, having the rule strategy defined above 
always active. Consequently, the following rules were added for robot two (the one 
executing the welding example): 

Rule VI = "two variables" 
Rule V2 = "two variables out" 
Rule V3 = "two <variable_name>'' 
Rule V4 = "two <variable_name> lock" 
Rule V5 = "two <variable_name> read" 

enables access to variables 
ends access to variables 
enables access to <variable_name> 
ends access to <variablejiame> 
reads from <variable name> 
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Rule V6 = "two <variable name> write" writes to <variable name> 

Rules VI and V2 are used to activate/deactivate the dictation capabilities, which 
will enable the easy recognition of numbers in decimal format (when the feature is 
activated, a white dot appears in the program shell - Figure 4.10). Rules V3 and 
V4 are used to access a specific variable. When activated, each number correctly 
recognized is added to the text box associated with the variable (a blinking LED 
appears in the program shell - Figure 4.10). Deactivating the access, the value is 
locked and can be written to the robot program variable under consideration. The 
rules V5 and V6 are used to read/write the actual value of the selected variable 
from/to the robot controller. 

^Robot-by-Voice Command using SAPI 5.1 and PCROB6rSET2003 

•Robot 1: Rita {Pick-and-ptaceApplication] 

Robot State 

|n| xj 

answef_txt: Initializing SAPI reco context ob|ect... 

Recojxt; 

Variable decision: 

'Robot 2: Babylon [Welding Application) 

Robot State Q Velocity jio.5 

answer_txt: Near origin, master. 

Recojxt: Robot two velocity 

Variable decision: 123 

10.5 

15 httD:MQbotics.denn.uc.pt/'nofbertoy 

Figure 4.10 Accessing variables in the robot controller 

As an example, to adjust the welding velocity the following code is executed after 
the corresponding rule is recognized: 

If ok_command_2 = 1 And (strText = "Robot two velocity write") Then 
Dim valor as Double 
Dim velocity as Integer 
valor = velocity.TextO 
resultl = Pcrobnet2003.WriteSpeed("velocity", valor, 2) 
IfResultll>=OThen 

Voice.Speak("Welding velocity changed, master.") 
ans_robot_2.Text() = "Welding velocity changed, master." 

Else 
Voice. Speak("Error executing, master.") 
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ans_robot_2.Text() = "Error executing, master." 
End If 

End If 

Because the voice interface was designed to operate with several robots, two in the 
present case, the user may send commands to both robots using the same interface 
which is potentially interesting. 

Using speech interfaces is a big improvement to HMI systems, for the following 
reasons: 

• Speech is a natural interface, similar to the "interface'' we share with other 
humans, that is robust enough to be used with demanding applications. It 
will change drastically how humans interface with machines 

• Speech makes robot control and supervision possible from simple multi-
robot interfaces. In the presented cases, common PC's were used, along 
with a quite normal noise-suppressing headset microphone 

• Speech reduces the amount and complexity of different HMI interfaces, 
usually developed for each application. Since a PC platform is used, and 
they carry very good computing power, ASR systems become affordable 
and user-friendly 

The experiments performed with this interface worked extremely well, even when 
high noise was involved (namely during welding applications), which indicates 
clearly that the technology is suitable to use with industrial applications where 
human-machine cooperation is necessary or where operator intervention is 
minimal. 

4.2.9 Conclusion 

In this section, a voice interface to command robotic manufacturing cells was 
designed and presented. The speech recognition interface strategy used was briefly 
introduced and explained. Two selected industrial representative examples were 
presented to demonstrate the potential interest of these human-machine interfaces 
for industrial applications. 

Details about implementation were presented to enable the reader to immediately 
explore from the discussed concepts and examples. Because a personal computer 
platform is used, along with standard programming tools {Microsoft Visual Studio 
.NET2003 and Speech SDK 5.1) and an ASR system freely available (SAPI 5.1), 
the whole implementation is affordable even for SME utilization. 

The presented code and examples, along with the fairly interesting and reliable 
results, indicate clearly that the technology is suitable for industrial utilization. 
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4.3 VoiceRobCam: Speech Interface for Robotics 

The example presented in this section extends the example in section 3.2, namely 
adding extra equipment and implementing a simple manufacturing cell-like system 
composed of a robot, a conveyor, and several sensors. It also includes a 
voice/speech interface developed to allow the user to command the system using 
his voice. The reader should consider the presented example as a demonstration of 
functionality because many of the options were taken with that objective in mind, 
rather than trying to find the most efficient solutions but instead the ones that suit 
better the demonstrating purpose. 

The system (Figure 4.11) used in this example is composed of: 

• An industrial robot ABB IRB140 [8] equipped with the new IRC5 robot 
controller 

• An industrial conveyor, fully equipped with presence sensors, and 
actuated by an electric AC motor managed through a frequency inverter. 
To control the conveyor, an industrial PLC {Siemens S7-200) [12] is used 

• A Webcam used to acquire images from the working place and identify 
the number and position of the available objects. The image processing 
software runs on a PC offering remote services through a TCP/IP sockets 
server 
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Figure 4.11 Manufacturing cell-like setup: picture and Solidworks model 

In the following, a brief explanation of how the various subsystems work is 
provided. In the process, the relevant details about each subsystem and their 
respective construction are also given. 

4.3.1 Robot Manipulator and Robot Controller 

The ABB IRB140 (Figure 4.12) is an anthropomorphic industrial robot 
manipulator designed to be used with applications that require high precision and 
repeatability on a reduced working place. Examples of those types of applications 
are welding, assembly, deburring, handling, and packing. 

ABB IRB 140 Basic Details 

Year of release: 1999 
Repeatability: +/- 0.03mm 
Payload: 5kg 
Reach: 810mm 
Max. TCP Velocity: 2,5m/s 
Max. TCP Acceleration: 20m/s2 
Acceleration time 0-lm/s: 0.15 seconds 

Figure 4.12 Details about the industrial robot manipulator ABB IRB 140 

This robot is equipped with the new IRC5 robot controller from ABB Robotics 
(Figure 4.13). This controller provides outstanding robot control capabilities, 
programming environment and features, along with advanced system and human 
machine interfaces. 
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IRC5 Basic Details 

Year of release: 2005 
Multitask system 
Multiprocessor system 
Powerful programming language: RAPID 
FieldBus scanners: Can, DeviceNet, ProfiBus, 
Interbus 
DeviNet Gateway: Allen-Bradley remote 10 
Interfaces: Ethernet, COM ports 
Protocols: TCP/IP, FTP, Sockets 
Pendant: WinCE based teach-pendant 
PLC-like capabilities for 10 

Figure 4.13 Details about the industrial robot controller IRC5 

The robot is programmed in this application to operate in the same way as 
explained in section 3.3.1, i.e., a TCP/IP socket server is available that offers 
services to the remote clients (see Table 3.3). This server is independent of the 
particular task designed for the robot, and allows only the remote user to send 
commands and influence the running task. In this case, the task is basically to pick 
objects from the conveyor and place them on a box. The robot receives complete 
commands specifying the position of the object to pick. Furthermore, since the 
relevant robot lO signals are connected to the PLC, the robot status and any lO 
action, like "MOTOR ON/OFF\ "PROGRAMRUN/STOF\ "EMERGENCY', etc., 
are obtained through the PLC interface. 

4.3.2 PLC Siemens S7-200 and Server 

The PLC (Figure 4.14) plays a central role in this application, as it is common in a 
typical industrial manufacturing setup where the task of managing the cell is 
generally done by a PLC. In this example, to operate with the PLC, a server was 
developed to enable users to request PLC actions and to obtain information from 
the setup. To make the interface simple and efficient, the server accepts TCP/IP 
socket connections, offering the necessary services to the client's applications. The 
list of available services is presented in Table 4.1. The client application just needs 
to cormect to the PLC server software application to be able to control the setup 
and obtain status and process information. 

The server application (Figure 4.15) runs on a computer that is connected to the 
PLC through the RS232C serial port, and to the local area network (LAN) for 
client access. 
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Table 4.1 Services available from the PLC TCP/IP server 
Service 
Init Auto 
Init Manual 
Stop 
Read_Mode 

Manual Forward 
ManualStop 
Force_Forward 

lO 
Status 

Motor On 
Motor Off 
Prg Run 
Prg Stop 

Answer 
<Init Auto 
<Init Auto 
<Stop> 
Auto, Manual e 
Stop 
Manual Forward 
Manual Stop 
<Force_Forward 

Bit stream* 
Bit stream** 

<Motor On> 
<Motor Off> 
<Prg Run> 
<Prg Stop> 

Description 
Conveyor in Automatic Mode 
Conveyor in Manual Mode 
Conveyor in STOP Mode 
Returns the conveyor operating mode 

Conveyor starts in Manual Mode 
Conveyor stops in Manual Mode 
Forces the conveyor to Start, although 
in Automatic Mode 
Returns the status of alllO signals 
Returns the status of all 10 signals 
and the conveyor operating mode 
Robot Motor ON 
Robot Motor OFF 
Robot Program RUN 
Robot Program STOP 

* The 10 bit stream is formated in the following format: 
BQ0.0:xxxxxxxxBQ1.0:xxxxxxxxBI0.0:xxxxxxxx:BI1.0:xxxxxxxx 

where ''BQO.O'.'TBIOM:'' is string followed by 8 bits corresponding to the first block of 
digital outputs/inputs of the PLC, ''BQlOrTBILO:" is a string followed by the 8 bits 
corresponding to the second block of digital outputs/inputs. For example, the following 
answer is obtained when BQ0.2, BQl.O, BQ1.4, BQ1.6, BIO.l, BIl.O, BIl.l and BI1.2 are 
activated: 

BQ0.0:00100000BQ1.0:10001010BI0.0:01000000:BI1.0:11100000 
Note: The bit assignment is as follows: 

1 BQO 

BQl 

BIO* 

BIl 

0.0 
Conv F 
1.0 
user 
0.0 
Auto 
1.0 
Sensor 1 

0.1 
Conv B 
1.1 
user 
0.1 
Manual 
1.1 
Sensor2 

0.2 
user 
1.2 
user 
0.2 
M on 
1.2 
SensorS 

0.3 
M on 
1.3 
user 
0.3 
M off 
1.3 
User 

0.4 
user 
1.4 
user 
0.4 
P run 
1.4 
user 

0.5 
P run 
1.5 
user 
0.5 
P stop 
1.5 
user 

0.6 
P stop 
1.6 
user 
0.6 
EMS 
1.6 
user 

0.7 
M off 
1.7 
User 
0.7 
Busy 
1.7 
user 

*BIO contains robot status information as listed. 

** Similar to the above bit stream, but with the string ''Auto'\ ''ManuaP\ or ''Stop'' added in 
the end of the stream in accordance with the state of the conveyor. For example, for the 
above mentioned 10 state and with the conveyor in Automatic Mode, the answer to the 
Status call is, 

BQ0.0:00100000BQ1.0:10001010BI0.0:01000000:BI1.0:11100000_Auto 
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Figure 4.14 Electrical panel showing the PLC, the frequency inverter and the electrical 
connections 
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Figure 4.15 Shell of the PLC TCP/IP socket server 

The PLC works as a server, as explained in Section 3.2.1.2, offering the 10 
services and actions necessary to control the system and obtain status information. 

4.3.3 Webcam and Image Processing Software 

This setup uses a simple USB Webcam to obtain images from the working area and 
compute the number of objects present and their respective positions. The camera 
is connected to a PC that runs the image processing software developed in 
Lab View from National Instruments using the IMAQ Vision toolbox. The software 
works in the same way as explained in Section 3.3.2. Nevertheless, two more 
messages were added to the TCP/IP server, which return's the information 
necessary to calibrate the camera and to compute the object position in the robot's 
cartesian space (Table 4.2). 

Table 4.2 Services from the Webcam TCP/IP server 
Service 
camera get objects 
calibration pixels 
cam to pos X_Y 

Description 
Gets a frame from the Webcam 
Correlation between pixels and millimeters 
Offset to add to the (x, y) position obtained from the 
image to compute the position of the object in the robot 
Cartesian space 
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The image processing software waits for a ''camera acquire objects'' message from 
the user client. When a message arrives, the server acquires a frame (image) from 
the camera and performs a binary operation, i.e., from a color image, or with 
several levels of gray, a back-and-white image is obtained with only two colors: 
black (0) or white (1). This type of procedure is necessary to identify the working 
objects in the scene and remove the unnecessary light effects. 

The next task is to remove all the objects that are out of the working range. Those 
correspond to the parts of the conveyor belt, light effects, shadows, etc., and need 
to be removed before identifying the objects and computing their position. 

Figure 4.16 Frame obtained from the camera after being processed 

Because the objects used with this application are small discs without holes (Figure 
4.16), the image processing software uses a procedure to fill all the holes resulting 
from the binary operation. After that, a valid object should have a number of pixels 
between certain limits. This will allow users to identify unknown objects or objects 
that are overlapped. Only objects that pass this identification are considered, and 
for those the center of mass is computed: All other objects are ignored. From that 
the (x, y) position is computed and returned to the client application that issued the 
call. 



Interface Devices and Systems 205 

4.3.4 User Client Application 

It is now easy to understand the software architecture designed for this appHcation 
(Figure 4.17): distributed and based on a client-server model. The user client 
application just need's to implement calls to the available services, track the 
answers, and monitor the robot and conveyor operations with the objective of 
controlling the setup. 

Figure 4.17 Basic distributed software architecture and connections between the different 
software modules 

Figure 4.18 shows the shell of a PC client application developed using C# .NET 
2005 to access the above mentioned TCP/IP services from the various servers, and 
control the manufacturing cell-like system. With this application, the user can 
operate the setup in ''Manual Mode'\ i.e., issue all the actions independently, and at 
a time. The user can also have the conveyor in ''Automatic Mode" and command 
the pick-and-place operation manually, i.e., require "camera get objects'' to obtain 
the number of objects and their respective positions, selecting from the obtained 
list of objects the ones to pick. 

Finally, the user can command the setup to work in fully "Automatic Mode", i.e., to 
start the conveyor when objects are detected by sensor 1 (Figure 4.11), stop the 
conveyor when objects are detected by sensor 2, acquire an image of the working 
space and identify the number of objects and their positions, and then pick-and-
place all of them and resume the conveyor operation. 
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For example, the ''Read lO" and "Motor OTV" actions are implemented with the 
following code: 

Read 10 Send the message "lO" to the PLC TCP/IP socket 
server and process the returned answer 

private void bt_ReadIO_Click(object sender, EventArgs e) 
{ 

int rec_num; string str_temp; 
msocClientl = new Socket(AddressFamiIyJnterNetwork, SocketType.Stream, 

ProtocolType.Tcp); 
IPEndPoint remoteEP_PLC - new IPEndPoint(IPAddress.Parse(" 172.16.63.9"), 2006); 
m_socClientl.Connect(remoteEP_PLC); 
m_socCIientl.Send(System.Text.Encoding.ASCII.GetBytes("IO<E>")); 
byte[] recData = new byte[256]; 
recnum = m_socClientl.Receive(recData); 
msocClientl.CloseO; 
if(recData[6]==48) 

tapete = false; 

Tapete_ON. Checked = false; 

else 

conveyor = true; conveyor_ON.Checked = true: 

f(recData[34]==48) 

sensorl = false; sensor 1.Checked = false; 

else 

sensorl = true; sensorl.Checked = true; 

f(recData[35]==48) 

sensor2 = false; sensor2.Checked = false; 

else 

sensor2 = true; sensor2.Checked = true; 

f(recData[36]==48) 

sensor3 = false; sensor3.Checked = false; 

else 

sensor3 = true; sensor3.Checked = true; ^ 
} 

strtemp = System.Text.Encoding.ASCII.GetString(recData, 0, rec_num); 

} 

Presenting the 
received information 
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Mobr ON Send the message that commands the robot ''Motor 
OAT' action 

private void bt_Motor_ON_CHck(object sender, EventArgs e) 
{ 

msocClientl = new Socket(AddressFamily.InterNetwork, SocketType.Stream, 
ProtocolType.Tcp); 

IPEndPoint remoteEP_PLC = new IPEndPoint(IPAddress.Parse(" 172.16.63.9"), 2006); 
m_socClientl.Connect(remoteEP_PLC); 
in_socClientl.Send(System.Text.Encoding.ASCII.GetBytes("Motor_On<E>")); 
byte[] recData = new byte[256]; 

m_socClientl.Receive(recData); 
msocClientl.CloseO; 

Voice RobCam 
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Figure 4.18 Shell of a client application developed in C# to control the setup (Sensor 1 
''Input Sensor", Sensor2 = "Cam Sensor"" and Sensor3 = "Output Sensor") 
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The client code is very simple and is composed of five main parts: 
Established socket client connection 
Send the command message 
Receive the answer 
Process and present the returned information 
Close the socket 

When operating in fully ^'Automatic Mode" follows the sequence represented in 
Figure 4.19, which corresponds to the normal (or production-like) operation of the 
system. Considering a real production setup, it could be interesting to have more 
portable solutions. Consequently, a client application (Figure 4.20) was also 
developed to run on a Pocket PC (PPC). This application has the same basic 
functionality of the PC application (Figure 4.18). 

^ r 
f 'Torce Forward'* 
1 Conveyor Forwards 

^ r 
1 Sensor 1 Is "'ON" 
1 Conveyor Stops 

^ r 
1 ''Qet Objects" 
1 Cama-a Aqulre N Objects 

y r 
1 N ObjeclB Goordltates listaJ^ 
1 In Client Aplicatlon 

y r 
Object #1 Coordinates Sent 

to Robot 

^ r 
Robot Goes "'Busy" 

\ r 
Robot Pick Object #1 

\ r 
Robot Goes ''Free'' 

f 
Object #2 Coordinates Sent 

to Robot 

f 
Robot Goes '"Busy" 

1 r 
Robot Pick Object #2 

\ r 
Robot Goes ""Free" 

Robot Pick Object #N 

y r 
Robot Goes ""Free" 

Figure 4.19 Sequence for the fiilly ''Automatic Mode" 
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Figure 4.20 Aspects of the PPC client application developed in C# to control the 
manufacturing cell-like setup (Sensor 1 = ''Input Sensor'\ Sensor2 = "Cam Sensor'' and 
Sensor3 = ''Output Sensor") 
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4.3.5 Speech Interface 

The current example is an interesting platform to demonstrate the potential of 
developing speech recognition systems for human-machine interfaces in industrial 
manufacturing systems. This statement is based on the following arguments: 

• The system is constituted exclusively of industrial equipment, which 
makes it representative of a typical robotic manufacturing cell 

• The software architecture developed to handle the system is distributed 
and based on a client-server model. This is a current trend in actual 
manufacturing plants 

• The system uses industrial standards for network communications 
(Ethernet and TCP/IP) 

• The system software was developed using commonly available software 
tools: Microsoft Visual Studio .NET 2005 

• The concepts and technologies used in the system, for software, 
communications system organization, etc., are commonly accessible and 
most of them are currently defined as standards 

As explained earlier, the system can be commanded manually, i.e., the various 
subsystems that compose the system can be directly commanded by the user. That 
perspective, or mode of operation, is explored in this section to introduce and 
demonstrate the enormous potential of current speech recognition (ASR) and text-
to-speech (TTS) engines. In the presented implementation, the Microsoft Speech 
API 5.1 (SAPI 5.1) is used to add speech recognition features (speech commands) 
to any of the above presented applications. 

The strategy used to build the speech recognition grammar is simple and based on 
the concepts already presented in section 4.2. Since the system used here is 
composed of three different subsystems, a pre-command string per each piece of 
equipment is needed in the speech grammar. This allows the user to address each 
subsystem by its name, 

m_PreCommandStringl = ''Robot" 
mJPreCommandStringl = ''Conveyor" 
m_PreCommandString3 = "Camera " 

These three words (''Robof\ ''Conveyor'', and ''Camera'') are added to the speech 
recognition grammar as TopLevelRules, i.e., those words need to be identified to 
start the recognition of a command string. This means that the speech recognition 
grammar is built considering that the user commands have the following structure: 

name jofjsubsystem command parameters 

where "name_of_subsystem" is one of the TopLevelRules, i.e., one of the words 
that identify each of the subsystems, "command" is a string identifying the 
command, and "parameters" is a string containing the parameters associated with 
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the specified command. Consequently, to have the system responding to speech 
commands, it is necessary to first identify the commands of interest and their 
associated parameters (Table 4.3). 

Table 4.3 Commands associated with the speech command interface 
TopRule 
Command 
Hello 

Initialize 

Terminate 
<username> 
<password> 
Motor 

Program 

Program Option 

Pick 

TopRule 
Command 
Auto 

Manual 

TopRule 
Command 
Get Objects 

Calibration Pixels 
CamtoPosX_Y 

Robot 
Parameters 
— 

— 
— 
— 
On 
Off 
Run 

Stop 
Run from point 

Root 

<Number> 

<Number> 

Conveyor 
Parameters 
~ 
Start 
— 
Start 
Stop 

Camera 
Parameters 
— 

Description 
Checks if the speech recognition system 
is ready 
Initializes the interface and starts the 
login procedure, requesting username 
and password 
Terminates the speech interface. 
Validates the "username'' 
Validates the '^password" 
Robot in Motors On state 
Robot in Motors Off state 
Starts loaded program from the 
beginning 
Stops loaded program 
Starts loaded program from the actual 
program point 
Selects program option "roof: start 
menu 
Selects program option defined by 

"number'' 

Pick object defined by "number" 

Description 
Places conveyor in Automatic Mode 
Forces the conveyor to start moving 
Places conveyor in Manual Mode 
Conveyor starts moving 
Conveyor stops moving 

Description 
Returns the number of objects in the 
scene and their respective positions 
Returns the pixel to millimeters ratio 
Returns the offset that should be added 1 
to the computed positions to obtain the 
position in the robot Cartesian space 
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Therefore, adding the above presented rules to the speech recognition grammar 
(using an XML file or directly in the code), the ASR mechanism fires events when 
a rule is correctly identified. Consequently, the client application should just track 
the ASR generated events, discriminate the rule that was identified, and execute the 
associated actions. To perform those tasks, the ASR API provides functions that 
return the identified rule as a string. The application just needs to compare the 
string with the relevant possibilities, activating the associated actions when a match 
is obtained. Figure 4.21 shows some detail about the code associated with adding a 
speech commanding interface to the current application. Only the relevant parts of 
the code are listed, taking, as example, a few selected functions. 

Speech Recognition Event Routine 

strText = Result.PhraseInfo.GetText(0, -1, True) 

If ok_command_l = 0 And (strText = "Robot initialize") Then 
Voice. Speak(" Your Usemame please?") 
ans_robot_l.Text() = "Your Usemame please?" 
ok_command_l = -1 
asr_state.Text() = "Usemame." 

End If 

If ok_command_l = -1 And (strText = "Robot master") Then 
Voice.Speak("Correct. And your password please?") 
ans_robot_l .Text() = "Correct. And your password please?" 
ok_command_l = -2 
asr_state.Text() = "Password." 

End If 

If ok_command_l = -2 And (strText = "Robot access level three") Then 
Voice.Speak("Correct. Welcome again master. Long time no see.") 
ans_robot_l.Text() = "Correct. Welcome again, master. Long time no see." 
ok_command_l = 1 
If(resultl>=0)Then 

robot l_on.Visible() = Tme 
asr_state.Text() = "Login OK." 

End If 
End If 

If ok_commandl = 1 And (strText = "Robot terminate") Then 
Voice.Speak("See you soon, master.") 
ans_robot_l .Text() = "See you soon, master." 
s.CloseO 
ok_command_l = 0 
If (robot l_on. Visible = Tme) Then 

robot l_on. Visible = False 
asr_state.Text() = "Logout." 
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End If 
End If 

If ok_command_l = 1 And (strText = "Robot motor on") Then 
s = ConnectSocket(server_name, server_port) 
If s Is Nothing Then 

ans_robot.Text() = "Error connecting to robot, master" 
Voice.Speak("Error connecting to robot, master") 

Else 
Dim bytesSent As [Byte]() = Nothing 
bytesSent = ascii.GetBytes("motor_on") 
s.Send(bytesSent, bytesSent.Length, 0) 
'Voice.Speak("Motor on command received, master.") 
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0) 
If Encoding. ASCII.GetString(bytesReceived, 0, bytes) = "0" Then 

Voice.Speak("Motor on, master.") 
ans_robot_l.Text() = "Motor on, master." 

Else 
Voice.Speak("Error executing, master.") 
ans_robot_l.Text() = "Error executing, master." 

End If 
End If 

End If 

If ok_command_l = 1 And (strText = "Robot pick eight") Then 
s = ConnectSocket(server_name, server__port) 
If s Is Nothing Then 

ans_robot.Text() = "Error connecting to robot, master" 
Voice.Speak("Error connecting to robot, master") 

Else 
Dim bytesSent As [Byte]() = 
ascii.GetBytes("command_str 5000" + object_cam(8)) 
s.Send(bytesSent, bytesSent.Length, 0) 
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0) 
ans_robot.Text() = Encoding.ASCII.GetString(bytesReceived, 0, bytes) 
's.CloseQ 
If Encoding. ASCII.GetString(bytesReceived, 0, bytes) = "0" Then 

Voice.Speak("Robot pick, master.") 
ans_robot_l.Text() = "Robot pick, master." 

Else 
Voice.Speak("Error executing, master.") 
ans_robot_l .Text() = "Error executing, master." 

End If 
End If 

End If 
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If ok_command_l = 1 And (strText = "Conveyor manual start") Then 
s = CoiinectSocket(server_name_plc, server_port_plc) 
If s Is Nothing Then 

ans_robot.Text() = "Error connecting to conveyor, master" 
Voice. Speak("Error connecting to conveyor, master") 

Else 
Dim bytesSent As [ByteJO = ascii.GetBytes("Manual_Forward<E>") 
s.Send(bytesSent, bytesSent.Length, 0) 
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0) 
pdata.TextO = Encoding.ASCII.GetString(bytesReceived, 0, bytes) 
Voice.Speak("Conveyor manual start, master.") 
ans_robot_l .TextQ = "Conveyor manual start, master." 

End If 
End If 

If okcommandl = 1 And (strText = "Conveyor auto start") Then 
s = ConnectSocket(server_name__plc, server_port_plc) 
If sis Nothing Then 

ans_robot.Text() = "Error connecting to conveyor, master" 
Voice.Speak("Error connecting to conveyor, master") 

Else 
Dim bytesSent As [Byte]() = ascii.GetBytes("Force_Forward<E>") 
s.Send(bytesSent, bytesSent.Length, 0) 
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0) 
pdata.TextO = Encoding.ASCII.GetString(bytesReceived, 0, bytes) 
Voice.Speak("Conveyor automatic start, master.") 
ans_robot_l .Text() = "Conveyor automatic start, master." 

End If 
End If 

Figure 4.21 Detail about the code used in the ASR event routine 

With this type of procedure, it is fairly simple add speech recognition features to 
the client applications described in this section. In general terms, the following is 
necessary (or desirable) to use speech commanding with industrial manufacturing 
systems: 

• The system must be distributed in terms of software and based on a client-
server model 

• All the necessary subsystems must implement some type of mechanism 
for remote access from remote clients: RFC, TCP/IP sockets, etc 

• A clear definition of the commanding strings must be available for easy 
implementation in different environments 

• The speech recognition grammar developed for the application must 
reflect the above definitions. The routines associated with the recognition 
events must implement the service calls (using the defined commanding 
strings) and process the answers 
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• Some type of access mechanism must be implemented for security and 
safety reasons 

• Critical commands should require some type of confirmation to avoid 
damaging persons and parts 

• A careful selection of the headset used to implement the speech interface 
must be done, namely selecting devices with noise reduction electronics 
and with a press-to-speak switch 

With these basic guidelines, speech recognition can be successfully added to 
industrial systems, resulting in a speech-enabled human-machine interface that 
could be a valuable improvement in terms of operator adaptation to the system. 
This would then improve operator productivity and efficiency, which would then 
impact the overall competitiveness of the company. 

4.4 CAD Interfaces 

Since the vast majority of companies use CAD software packages to design their 
products, it would be very interesting if the information from CAD files could be 
used to generate robot welding programs. That is, the CAD application could be 
the environment used for specifying how the welding robots should execute the 
welding operation on the specified parts. 

Furthermore, because most welding engineers are familiar with CAD packages, 
this could be a nice way to proceed. An application presented elsewhere [2, 13-14] 
enables the user to work on the CAD file, defining both the welding path and the 
approach/escape paths between two consecutive welds, and organize them into the 
desired welding sequence. When the definition is complete, a small program, 
written in Visual Basic, extracts motion information from the CAD file and 
converts it to robot commands that can be immediately tested for detailed tuning. A 
set of tools is then available to speed up the necessary corrections, which can be 
made online with the robot moving. After a few simulations (with the robot 
performing all the programmed motions without welding) the program is ready for 
production. The whole process can be completed in just some minutes to a few 
hours, depending on the size and complexity of the component to be welded, 
representing a huge reduction of programming and set up time. Besides, most of 
the work is really easy offline programming. 

These issues are further researched elsewhere [2, 13-14]. The objective here is to 
focus on the CAD interface and on adding more functionality to the human-
machine interface of welding robots. Here the parameterization approach will be 
used. With this approach, the welding information, extracted from the CAD model, 
is used to parameterize a generic existing robot program, i,e., the welding routines 
are implemented as general as possible enabling the accommodation of the planned 
welding tasks. In the case presented here, the information extracted from the CAD 
file, and adjusted using the presented software tools, is stored in a '\wdf' file and 
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sent to the robot controller using the option ''Send to Robof of the software tool. 
The information is sent in the form of single column matrices serialized by the 
sequence that must be followed, i.e., each line of any matrix contains the 
information corresponding to a certain welding point. As already mentioned, the 
robot controller is organized as a server, offering a collection of services to the 
remote computer. Therefore, the following are examples of services implemented 
in the welding server, running on a ABBIRB1400 industrial robot equipped with 
the S4C+ robot controller (the same robot used in Section 4.2). 

Service 9100 (Move_CRobot): this service is used to move the robot in the 
Cartesian space with the specified TOOL frame, in accordance with the 
commanded offsets: x, y, z, rx, ry, and rz, where (x, y, z) are the Cartesian offsets 
and (rx, ry, rz) are the rotation offsets about the tool axis x, y and z, respectively. 

Service 9401 (Welding): this service is used to execute the welding sequence 
commanded to the robot. 

Service 9301 (Simulation): this service is used to execute the welding sequence 
without igniting the arc, i.e., the welding power source is not activated. 

Service 9101 (Move_JRobot): this service is used to move the robot in the joint 
space in accordance with absolute joint angles commanded from the remote 
computer. 

Consequently, the main routine of the welding server may be implemented as a 
simple SWITCH-CASE'DO cycle, driven by a variable controlled from the remote 
computer (Figure 4.22). 

Looking into the code in more detail, it's easy to find out how it works and how it 
can be explored, but also how new functions can be added to the system. Let's 
consider for example the Move_CRobot service (Figure 4.22) that corresponds to 
the value 9100 of the variable decision!. To move the robot in the cartesian space, 
the following must be commanded from the remote computer. 

1. Enter the service routine: to do that, the user must write the value 9100 to the 
numeric variable decisionl. The method from the PCROBNET2003/2005 software 
component used to command that task is: 

pcrob.WriteNumC'decisionl", 9100, channel); 

where channel identifies the RFC socket open between the robot controller and the 
remote computer. 
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PROC mainO 
TPErase; TPWrite "Welding Server ..,"; 
reset_signals; 
p 1 :=CRobT(\Tool:=trj_tool\WObj :=trj_wobj); 
MoveJ p 1 ,v 100,fine,trj_tool\WObj :=trj_wobj; 
joints_now:=CJointT(); 
decision 1:=123; varmove:=0; 
WHILE TRUE DO 

TEST decisionl 
CASE 9100: 

x:=0; y:=0; z:=0; rx:=0; ry:=0; rz:=0; move:=0; 
pi :=CRobT(\Tool:=trj_tool); 
WHILE (decisionl =9100) DO 

IF (move <> 0) THEN 
p 1 :=RelTool(p 1 ,x,y,z\Rx:=rx\Ry :=ry\Rz:=rz); 
x:=0; y:=0; z:=0; rx:=0; ry:=0; rz:=0; move:=0; 

ENDIF 
IF varmove <> 198 THEN 

MoveJ p 1 ,v 100,fine,trj_tool\WObj :=trj_wobj; 
ELSE 

MoveL p 1 ,v 100,fme,trj_tool\WObj :=trj_wobj; 
ENDIF 

END WHILE 
decisionl :=123; vannove:=0; 

CASE 9101: 
joints_now:=CJointT(); 
WHILE decisionl=9101 DO 

MoveAbs J joints_now,v 100,fine,trj_tool\WObj :=trj_wobj; 
ENDWHILE 
decisionl :=123; 

CASE 9401: 
weld; 
decisionl :=123; 
p 1 :=CRobT(\Tool:=trj_tool); 
MoveJ RelTool(p 1,0,0r200),v 100,fine,trj_tool\WObj :=trj_wobj; 

CASE 9301: 
weld_sim; 
decisionl :=123; 

ENDTEST 
ENDWHILE 

ENDPROC 

Figure 4.22 Simple welding server running on the robot controller 
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2. Define the type of motion: the user must specify what type of motion to 
perform to achieve the target point, Le., Hnear motion or coordinated joint motion. 
This is specified writing to the variable varmove (198 for joint coordinated motion 
and any other value for linear motion). For example, the command 

pcrob.WriteNum("varmove", 198, channel); 

specifies joint coordinated motion, using the open RFC socket identified by the 
parameter channel. 

3. Command the Cartesian and rotational offsets: the user must write the offsets 
to the corresponding variables. After that, when the user signals that the offsets are 
available (writing a value different than zero to the variable move), the robot moves 
to the position/orientation obtained by adding those offsets to the actual position, 
and waits for another motion command. For example, the sequence of commands 
necessary to move the robot 20 mm in the positive X direction and 10 mm in the 
negative Z direction should be: 

pcrob.WriteNum("x", 20, channel); 
pcrob.WriteNum("y", -10, channel); 
pcrob.WriteNum("move", 1, channel); < robot moves now! 

where again channel identifies the open RFC socket. 

4. Leave the service: to leave this service the user must write any value different 
from 9100 to the variable decision 1, For example, the following command writes 
the value -1 to the numeric variable decision 1 and makes the robot program quit 
the MovejCRobot service: 

pcrob.WriteNumC'decisionl", -1 , channel); 

Finally, let's consider the service Welding (Figure 4.22) that corresponds to the 
value 9401 of the variable decision!. The simplified version of the code is 
presented in Figure 4.23. 

It is clear from the presented code (Figure 4.23) that the user should command the 
Welding service to execute, after sending the matrices defining the welding 
sequence. This service commands the robot to follow exactly the command 
sequence, moving the robot and igniting or stopping the welding arc whenever in 
the presence of a welding or approach/escape trajectory, respectively. 

The example shows clearly that there are considerable gains in terms of flexibility 
and agility when using distributed client-server software architecture to assist 
industrial welding operations [2], namely taking advantage of the powerful 
programming tools developed for personal computers. It also shows that actual 
CAD packages can be used for robot programming tasks with great advantage, 
which extend the interest of already largely utilized software tools. 
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PROC weldO 
weldon:=0; i:=l; 
WHILE ((decisionl=9401) AND (i<=numberpoints) AND (i>=l)) DO 

weldpoint:=i; 
wd_iref:=trj_voltage{i}; feed_iref:=trj_current{i}; 
wd_href:=trj_voltage {i}; feed_href:=trj_current {i}; 
wd_ref:=trj_voltage{i}; feed_ref:=trj_current{i}; 
IF (trj_type{i}=0) THEN 

weld_on; 
weldon:= 1; " ^ ^ Welding definition 

ENDIF 
ppos:=trj {i}; pvel:=trj_vel {i}; 
pzone:=trj^rec{i}; ptype:=trj_mode{i}; ^^^^ ^^^ ^^^^^ 
move_gen; M ^ ' 
IF (weldon=l) AND ((i+l>numberpoints) OR (trj_type{i+l}=l)) THEN 

weld_off; 
weldon:=0; 

ENDIF 
i:=i+l; 

ENDWHILE 
IF(weldon=l)THEN 

weld_off; 
weldon:=0; 

ENDIF 
ENDPROC 

PROC move_genO 
IF ptype=0 THEN 

MoveL ppos,pvel,pzone,trj_tool\WObj :=trj_wobj; 
ENDIF 
IFptype=lTHEN 

Move J ppos,pvel,pzone,trj_tool\WObj :=trj_wobj; 
ENDIF 
IF ptype=2 THEN 

TPWrite "[MOVE_GEN]: MoveC not implemented,"; 
ENDIF 

ENDPROC 

Figure 4.23 Code for the Welding service 
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Figure 4.24 Definition of the simple welding example using A UTOCAD 

To clarify further, let's consider the simple welding example already used in 
section 4.2.7. In that example, the robot is commanded to execute a linear welding 
on a work piece placed on a welding table. To demonstrate how this simple task is 
completely specified and programmed using a CAD package, the welding table and 
work piece were modeled in A UTOCAD. The same strategy used before is again 
utilized to specify points/orientations and trajectories, Le., they are all defined 
relative to a work object point/orientation (or reference system) named Pcomer- In 
this way, when exporting points/orientations and trajectories to the robot, the only 
thing needed is a good calibration procedure of the robot TCP relative to Pcomer, 
which can be done automatically using sensors (for example, laser position 
sensors) and special alignment routines, or manually using the robot joystick. 

To execute the welding operation it is necessary to specify four points/orientations 
(Po to P3) and the trajectories between them (Figure 4.24). The following 
procedures should be used: 

1. Po should be defined as the approach point/orientation, i.e., a 
point/orientation that could permit the robot to reach safely the work-
piece from the "home'' position. PQ is consequently a non-welding 
point/orientation and the trajectory to PQ should be free of obstacles (the 
user should guarantee adjusting PQ accordingly). The precision to reach PQ 
should be specified as low. 
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2. The trajectory from PQ to Pi should be defined as an approach linear 
trajectory, with point Pi reached with the highest precision at low/medium 
velocity (let say lOOmm/s, for example). As defined in [2], the weld layers 
in AUTOCAD are named for easy identification using a string that starts 
with the word 'WELD'\ The next information is the type of trajectory, to 
distinguish between welding trajectories and approach/escape trajectories. 
After that should be specified the welding current, and then the welding 
voltage. Finally, the welding speed is specified. All these parameters are 
separated by spaces, constituting a definition string. Consequently, the 
label associated with that trajectory [2, 13-14] should be 

WELD I 000 100 0 

for an approach/escape trajectory, done at lOOmm/s with highest precision 
in the endpoint. 

3. The trajectory from Pi to P2 should be defined as a welding trajectory with 
the required welding parameters. For example, the following label could 
be associated with this trajectory: 

WELD 0 150.0 2L3 10 0 

for a welding trajectory executed at lOmm/s, with highest precision in the 
end-point, associated with a welding current of 150.0 A and a welding 
voltage of 21.3 V. 

4. The trajectory from P2 to P3 should be defined as an approach/escape 
trajectory done with low/medium velocity without any special precision in 
the endpoint. The following label could be associated with this trajectory: 

WELD 1 0 00100 50 

to specify a trajectory done at lOOmm/s, with low precision (50 mm 
sphere around the selected point). 

This information is saved in the CAD file and can be extracted to a '\wdf' 
definition file, which is used for simulation and final tuning using the available 
tools [2, 13-14]. Finally, all of the information is sent to the robot using the already 
presented procedures, based on the routines developed for the robot controller and 
the ''write variable'' services (see Table 3.3) available from the ^c^/v^X software 
[9] component used. 

4.4.1 Speech Interface for Welding 

Considering the linear weld case presented in Figure 4.24, a simple application was 
developed to command the welding procedure using a speech commanding 
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interface. This is particularly relevant because the welding cells are usually very 
noisy and not attractive to operators, namely the younger ones. Consider that the 
trajectories were planned in AUTOCAD and transferred to the robot using the 
above mentioned applications. To operate the robot, the speech commands 
presented in Table 4.4 are necessary. 

Table 4.4 Speech commands for the simple welding application 
TopLevelRule 
Command 
Hello 

Initialize 

Terminate 
<username> 
<password> 
Motor 

Program 

Approach 

Origin 
Final 
Weld 

Robot 
Parameters 
— 

— 
— 
— 
On 
Off 
Run 

Stop 
Run from point 

Origin 
Final 
— 
— 

Number = Two 
Description 
Checks if the speech recognition system 
is ready 
Initializes the interface and starts the 
login procedure, requesting username 
and password. 
Terminates the speech interface. 
Validates the ''username" 
Validates the ''password" 
Robot in Motors On state 
Robot in Motors Off state 
Starts loaded program from the 
beginning 
Stops loaded program 
Starts loaded program from the actual 
program point 
Approach "Origin" position 
Approach "Finar position 
Move to "Origin'' position 
Move "Final" position 
Perform a weld operation from "Origin" 
position to "Final" position 

. a ^ f i ^ ^ r , A ^ A o v , ^ /I 0 '7 

The application presented in Figure 4.10 implements a speech interface that 
recognizes those commands and executes the appropriate actions [2,13-14]. The 
user can command a welding operation just by saying: 

User: Robot two approach origin. 
Robot: Near origin, master. 
User: Robot two origin. 
Robot: In origin position, master. 
User: Robot two weld. 
Robot: I am welding, master. 
User: Robot two approach final. 
Robot: Near final, master. 
User: Robot two home. 
Robot: In final position, master. 
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That 's easy, isn't it? 
And it makes robotic welding a fun task. Like a computer game. 

4.5 References 

[I] Observatory of European SMEs 2002, European Commission, 2002 
[2] Pires, JN, et al, "Welding Robots, Technology, System Issues and Applications", 

Springer, London, 2006 
[3] Pires, JN, "Semi-autonomous manufacturing systems: the role of the HMI software and 

of the manufacturing tracking software", Elsevier and IFAC Journal Mechatronics, to 
appear 2005. 

[4] Microsoft Speech Application Programming Interface (API) and SDK, Version 5.1, 
Microsoft Corporation, http://www.microsoft.com/speech 

[5] Microsoft Studio .NET 2003/2005, TechNet On-line Documentation, Microsoft 
Corporation, http://www.microsoft.com, 2003/2005. 

[6] Bloomer J., "Power Programming with RPC", O'Reilly & Associates, Inc., 1992. 
[7] RAP, Service Protocol Definition, ABB Flexible Automation, 1996 - 2004. 
[8] ABB IRC5 Documentation, ABB Flexible Automation, 2005. 
[9] Pires, JN, "PCROBNET2003, an ActiveX Control for ABB S4 Robots", Internal 

Report, Robotics and Control Laboratory, Mechanical Engineering Department, 
University of Coimbra, April 2004. 

[10] Pires, JN, "Complete Robotic Inspection Line using PC based Control, Supervision and 
Parameterization Software", Elsevier and IFAC Journal Robotics and Computer 
Integrated Manufacturing, Vol. 21, N^l, 2005 

[II] Pires, JN, "Handling production changes on-line: example using a robotic palletizing 
system for the automobile glass industry". Assembly Automation Journal, MCB 
University Press, Volume 24, Number 3, 2004. 

[12] Siemens, "S7-2000 Programmable Controller Programming Manual", Siemens 
Automation, Edition 08/2005, 2005. 

[13] Pires, JN, Godinho, Tiago, and Ferreira, Pedro, "CAD interface for Automatic Robot 
Welding Programming ", Volume 31, n^l. Industrial Robot, An International Journal, 
MCB University Press, 2004. 

[14] Pires, JN, and Loureiro, A, et al, "Welding Robots", IEEE Robotics and Automation 
Magazine, June, 2003 



Industrial Manufacturing Systems 

5.1 Introduction 

Industrial small and medium (SME) manufacturing companies face complex and 
challenging market conditions that may impact their organization and economic 
strength. In fact, for a manufacturing SME to remain competitive in the global 
economy, it must cope with the following basic characteristics of the market: 

• Global competition - actual companies compete on a global scale and 
with products from all over the world, i.e., coming from very different 
economic realities in terms of organization, labor, social protection and 
security, etc. Their competitors are global companies that address the 
markets with specific objectives and strategies, making the competition 
very unpredictable. 

• Demand for more quality at lower prices - customers want the continuous 
improvement of quality at lower prices, i.e., customers tend to evaluate 
the quality of the product/service obtained for the money spent in buying 
it. This puts big pressure on companies since the market offers other 
options for the same product or service, and customers are used to making 
comparisons using the quality/price ratio. 

• Very complex products - many of the modem high-technology products 
are very complex to manufacture since they often are composed of many 
mechanical parts, electronic components, software modules, etc. This 
poses new challenges to manufacturing systems. 

• Very short life-cycles and time-to-market periods - competition and 
continuous innovation tends to reduce the life-cycle of products, forcing 
companies to evolve their line of products more often and with higher 
levels of agility. 
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This scenario poses very difficult challenges to manufacturing SMEs, namely on 
the quality of their manufacturing systems, in terms of flexibility and agility, and 
on their overall competitiveness. In fact, production plants based on human labor 
aren't competitive with equivalent companies located in low-salary countries. 
Consequently, these types of production plants tend to move their facilities to those 
countries or economical regions trying to take advantage of the low obligations to 
human labor, social security and protection, safety regulations, etc., and remain 
competitive in the global market. This logic has negative effects on western 
economies because important production sectors and jobs tend to move to low-
salary countries. Consequently, the impact on the economic and social welfare is 
significant, working against our civilization model. 

The only way to fight this trend is to focus on science and technology, developing 
manufacturing solutions that are flexible and agile, and that integrate efficiently 
with human operators. Flexibility is important to face the constant product change 
due to competition, fashion trends, quality requirements, and so on. But the time to 
market is also fundamental, which requires flexible systems that are easy to use 
and simple and fast to reconfigure, i.e., the modem world requires far more than 
flexibility and puts the focus on agility, which is a very interesting concept. 
Another important factor is the efficiency of the human-robot interfaces, which 
should allow humans and machines to operate as coworkers taking advantage of 
each other's abilities. 

This chapter detail's a few industrial examples, with the objective of demonstrating 
how the concepts and ideas presented in this book can help to build manufacturing 
systems that are flexible, agile, and easy to use. All the systems presented were 
developed and built by the author of this book in cooperation with partner 
companies operating in Portugal. 

5.2 Helping Wrapping Machines for the Paper Industry 

In this section, a remote software environment developed to monitor and control 
robotic manufacturing cells is presented and discussed. It was used with an 
industrial system developed to wrap, label, and assist the storage of paper rolls 
coming from highly efficient paper machines. The system is also briefly introduced 
pointing out its main advantages. Special attention is given to the software 
architecture used to develop the remote services available from the system: 

• Services for system monitoring 
• Services for system maintenance 
• Services for file and database handling 
• Services for production monitoring 
• Services for operator interface and system parameterization from the 

system control panel 
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The advantages of using distributed and object-oriented software approaches are 
also discussed, using some inside from the presented implementation. Finally, the 
utilization of electronic messaging services with industrial manufacturing systems 
is introduced and discussed. 

5.2.1 Layout of the System 

The system presented here was mainly designed to be used at the end of a paper 
machine to help with the wrapping and labeling operations of the paper rolls. 
Briefly, paper is produced in cylindrical rolls of several dimensions (with 
diameters ranging from 800mm up to 1600mm, and lengths ranging from a few 
centimeters to 2-3 meters) and weights. Figure 5.1 represents a diagram of the 
system showing its basic stations, i.e., places where robots are used to perform the 
required operations. 

Station 1 
1 

Figure 5.1 Basic organization of the of the robotic wrapping and labeling system 
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Paper rolls coming from the paper machine are labeled by a human operator using 
barcode sticks. The assigned code constitutes a unique identification of each roll. 
In the first station, the paper rolls are measured and weighted and that information 
is automatically inserted into the factory production database for further use, 
namely on the subsequent stations to pre-position the subsystems used in each 
station and to adapt the behavior of the local software. The system is controlled 
using industrial PLCs, which are accessible through Profibus by the PC that run's 
the human-machine interface software. The fieldbus network connecting the 
various system resources is also Profibus. 

5.2.1.1 Station One - Dimensions and Weight 
In this station, each roll is measured and weighted automatically and 
autonomously. The obtained values are introduced into the production database 
using the ID number in the barcode (barcode readers are used here). The rolls are 
serialized starting from this point and consequently there is no need to keep track 
of the rolls in the rest of the process, i.e., after this station there is no way to 
remove the rolls manually. The barcode numbers will be checked again at the end 
of the wrapping process when the rolls enter the automatic warehouse. 

5.2.1.2 Station Two - Roll Wrapping and Inner Header 
Rolls are wrapped using a wrapping machine assisted by two industrial robots 
ABB IRB6400 (equipped with the S4C+ robot controller) [1]. The robots are 
commanded to pick two headers, one per robot, of the appropriate dimensions 
(there are six piles of different headers available) and hold them against the two 
bases of the roll (Figure 5.2). The dimension of the header to pick is a parameter of 
the pick command, which is sent to each robot through Profibus. Consequently, a 
client-server software architecture is used, having the robots operating as servers. 
Synchronization and messaging (including error handling) with the station PLC, 
which also handles the wrapping machine, is done by Profibus using a simple 10 
protocol. The system is able to wrap rolls in cycles of less than 20 seconds. 
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a) 

b) 
Figure 5.2 Operation in station two: a) holding the headers, b) picking a header 

5.2.1.3 Station Three - External Header 
External headers are applied on the rolls to finish the roll wrapping process and 
hold the wrapping paper. Operation is assisted using one industrial robot (ABB 
IRB6400 equipped with the S4C+ robot controller) [1]. The robot is commanded to 
pick two headers (gripper holds two headers) and put them, properly centered in 
accordance with its diameter, on the plates of a heated press. The headers are made 
from a type of paper that has glue impregnated in its structure. The heat makes the 
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glue emerge at the surface of the header, enabling the press to glue them to the 
rolls just by applying pressure (Figure 5.3). Due to the cycle time requirements 
(less than 20 seconds per roll), the command sent to the robot to pick a pair of 
headers includes the diameter of the actual roll (like in the previous station) but 
also the actual position of the press plates (to speed up the wrapping process, the 
press is independently commanded to pre-position its plates as a function of roll 
length). Since the press is hydraulic, the position of its plates is confirmed by the 
robot just before entering the press workspace to place the headers. This presents 
robot collisions with press plates, which would eventually destroy the robot and 
gripper. 

5.2.1.4 Station Four - Labeling 
In this station (Figure 5.4), two labels are applied to the wrapped rolls (one on the 
top and the other on the right side of the roll) with the information about the roll 
printed in the label (dimensions, weight, customer, production date, etc.). Each 
label also has a barcode that will be used by the automatic warehouse to process 
the roll. Labels are printed by an office laser printer, and outputted to a small ramp. 
The robot picks the labels when commanded to do it, waits for the ''glue labels'' 
command, puts glue on the surface of the labels (using the gluing machine), waits 
for the roll in position, and finally places the labels on the roll. After each basic 
operation, the execution status is checked and the next operation is commanded 
only if the previous one finished successfully. If an error occurs, the current 
process is aborted and the error is issued back to the commanding machine (in this 
case a PLC). 

a) 
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Figure 5.3 Operation in station three: a) picking a pair of lieaders, b) placing the headers on 
the surface of the heated plates of the hydraulic press 

This same procedure is used in any of the other stations. All commands are 
acknowledged when they finish, i.e., a message specifying that the command 
executed correctly is sent back to the commanding machine. Communication runs 
over Profibus using a simple 10 protocol. 

Another version of this labeling station was built for another paper machine (see 
section 3.6), at the same company, that uses an Ethernet network and a PC to 
interface with the production database. The PC is also used to command the 
station, using remote procedure calls (RPC) sent to the robot controller. It is 
important to discuss here the basic differences between the two systems. 

Considering the brief description made above and in section 3.6, and considering 
that robots used in industrial applications are commanded to execute very precise 
tasks, it is clear that in both cases there's the need for a collection of services 
properly designed to execute those tasks. Both systems implement a collection of 
services designed to execute every task available from the system. The services are 
implemented as generally as possible and require parameters to be properly 
requested by the remote client. A simple ''switch-case-do'' loop, driven by the word 
or number that defines the command, can be used to implement the server. 

The difference resides in the way those services are requested. In the example 
presented in section 3.6, the services are requested using RPC calls, and in the 
example presented in this section the services are requested using a simple 10 
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protocol (see section 3.2.1). Furthermore, the version presented in section 3.6 
includes an intermediate server used to connect the factory production software 
and the robot controller (Figure 5.5). This server listens for TCP/IP calls and 
simply translates the calls to robot commands, collecting the answers and sending 
them back to the calling machine (the production software computer). 

Figure 5.4 Labeling system: a) tool and gluing machine, b) Robot placing label 
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Figure 5.5 Connection between robots and factory production software: using TCP/IP 
sockets and SUN RPC 4.0 compatible RPCs 

5.2.2 EmailWare 

In every station presented, any error is logged and sent to the commanding 
computer as part of the answer: error codes are used to identify each type of error. 
Consequently, on an error situation the calling machine can decide what to do 
based on the received error code, for example, repeat the command. 

Furthermore, every system has a checklist of basic conditions it needs to operate. 
For example, the labeling system needs to verify the following conditions to enter 
the ready mode: 

• Air pressure at the appropriate working level 
• Printing machine at the ready mode 
• Glue machine at the ready mode 

If a system is experiencing some type difficulty and one of the above conditions is 
not met, then the system enters the ''error mode'' and rejects all the incoming 
commands until the problem is solved. 

At this point several things can be done. Let's discuss it a little bit more with an 
example. Suppose that there was a vacuum failure in the gripper, caused by air 
pressure failure (venturi devices are used to generate vacuum for suction cups). 
The system is then unable to pick and hold labels. If the problem appears during 
task execution, then an event may be fired (if an event firing mechanism is 
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available) and an error code is issued back when the command finishes (0 -
success, < 0 means an error identified by the error code). The simple way to 
proceed and to warn operators is to act on local warning devices (a bell, a flashing 
light, etc), on flashing warnings on system panels, etc. 

This scenario was the motivation to develop the EmailWare application, which 
was then extended to enable a more general task of supervising and monitoring the 
complete system. With those ideas in mind, a server was built to monitor an 
installation of robots (networked robots using TCP/IP over Ethernet or a serial 
channel) inside a factory or in a research environment. The server uses the already 
mentioned ^c//veJr component (PCROBNET2003/2005) and is capable of checking 
the robots available on the nework for selected interesting information, logging all 
events, and warning the user immediately when a selected event actually occurs. 
Operators are not always near the system control computer, but can be reached by 
beeper, mobile phone, or e-mail. In fact, they can be in an office doing some 
desktop job, somewhere in the plant or at home after hours. A manufacturing 
system should be able to reach them to send urgent information. The same situation 
happens with developers. They need to recollect information about their systems 
and sometimes, on debugging situations, they need information when certain 
conditions are met. 

One good solution is to use short e-mail messages sent to selected accounts with 
brief information about events. Those accounts could be regular e-mail accounts, 
SMS services, beepers, etc. The application should also accept e-mail messages, 
coming from authorized users requesting more details about any subject (see 
Tables 5.1 and 5.2). 

Using this application, the user may define for each robot in the installation the 
type of events he wants to receive. The user can also request the system to send 
complete reports daily, weekly, or monthly. When one of the selected events 
actually occurs, the application sends a short e-mail to the defined e-mail accounts. 
The user also selects the accounts that can receive reports, log files, or long e-mails 
(long e-mail should not be sent to SMS accounts or beepers). 

Type of event 
10 DIGITAL 
10 ANALOG 
VAR NUM 
VAR BOOL 
STATE SYS 
STATE PRG 
ERROR 
LOGS D 
LOGS W 
LOGS M 

Table 5.1 Type of events 
Parameter 1 
name 
name 
name 
name 
TA/TM 
TR/TS 

type 

type 

Parameter 2 
TO/Tl 
H/L 
H / L / C 
TO/Tl 

type 

type 

Parameter 3 

Value 
Value 

Type 

Type 

Parameter 4 

where the symbols have the following meaning: 
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IO_DIGITAL - digital 10 events. 
IO_ANALOG - analog 10 events. 
VARJSfUM- events related with RAPID <num> variables. 
VARJBOOL - events related with RAPID <bool> variables. 
STATE_SYS-sysXQm state events. 
STATE_PRG - program state events. 
ERROR - error events (any type of error). 
LOGSJD - send logs daily. 
LOGS_W- send logs weekly. 
LOGSM- sends logs monthly. 
name - name of variable or signal (string). 
TO - transition to zero. 
77 - transition to 1. 
H- Higher than value. 
L - Lower than value. 
C - When variable changes. 
TA - transition to auto mode. 
TM- transition to manual mode. 
TR - transition to program running. 
ZS* - transition to program stop. 
type - type of log. 

Command 
LOGS 
SYSTEM 
PROGRAM 
10 DIGITAL 
10 ANALOG 
10 ALL 
VAR NUM 
VAR BOOL 
STOP PRG 
START PRG 
UNLOAD 
LOAD 
MOTOR ON 
MOTOR OFF 
X CMD 

Table 5.2 Type of commands 
Parameter 1 
type 

all / signal 
all / signal 

name 
name 
password 
password 
password 
password 
password 
password 
password 

Parameter 2 
type 

signal 
signal 

A P / F B 
name 
name 

par 1 

Parameter 3 

where the symbols have the following meaning: 
Z0G5-send log files. 
SYSTEM- send system state information. 
PROGRAM- send program state information. 
lODIGITAL - send information about digital 10 as specified. 
lOANALOG - send information about analog 10 as specified. 
lOALL - send information about all 10. 
STOPPRG - stops current program. 
START_PRG - starts current program. 
UNLOAD - unload module specified (name). 
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LOAD - load module specified (name). 
MOTORJDN- motors ON state. 
MOTOR_OFF-motors OFF state. 
X_CMD - any command implemented in RAPID. 
all - all signals of this type. 
password - password to execute this command (if password fails, then user is removed 
from list of allowed users and an e-mail to administrator is issued). 

EMAILWARE 

Figure 5.6 EmailWare: selecting a robot 

Another important feature is the possibility to send e-mail commands to the 
application asking for more details on several aspects (see Table 5.2 for the types 
of commands that can be issued). The user can issue commands to any robot in the 
installation. The application checks if the sender is allowed and then processes the 
command. Those commands are e-mail messages sent to emailware@company 
with subject ''command' and with the following syntax: 

# robot_dns_name command parameters 

where ''robot_dns_name'' is the registered DNS name of the robot and ''command' 
is a command, using the required "parameters'' from Table 5.2. The e-mail 
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message can hold any number of commands (one per line starting with character 
'#') addressed to several robots. 

The application cycle polls all robots for any change (it does not keep open clients, 
just opens a client connection, makes a survey, and closes the connection), fires e-
mails if there is any change, and then processes commands (Figure 5.6). Since 
there is an RPC server working in parallel receiving asynchronous messages from 
any robot, any urgent event is immediately attended and information is issued to 
the user (the information is sent once when it happens, i.e., when the event is fired 
from the robot, and a second time when the polling process detects the change). 
The polling frequency of the robots can be adjusted to avoid overloading the 
system, ranging from 1/10 Hz (higher frequency) to 1/60 Hz (lowest frequency). 

5.2.2.1 EmailWare Application Example 
To show the potential of this tool, lets give a simple example. Suppose that at some 
industrial installation there is a robot (named ''babylonS'') doing arc-welding 
operations. Suppose also that the welding software keeps information on the 
number of pieces that have been welded (num_pieces), on the amount of time in 
operation (opr_time), and on the idle time (idlejime). There is also information on 
how many errors were encountered during operation {num_error); it is considered 
here that the system can handle and maybe automatically recover from certain 
operational errors (consequently, for each error the num_error variable is 
incremented and an operational message is issued like: bad or no piece in place, no 
gas, no air pressure, etc), which is normally the case. There are also some lO 
inputs and outputs like: gas information (digital input, gas_on), air pressure 
information (digital input, air_on), wire information (digital input, wirejDn), etc. 
Finally, suppose that the user wants to have daily reports about the system, 
including the state of some of variables. 
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Figure 5.7 Email Ware: selecting a robot 

To configure Email Ware for the welding application, the user starts by selecting 
the robot from the available robots (Figure 5.7). After that, the user selects the 10 
signals, the variables, and the type of system states of interest. 
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ERASE ALL OK 

ADD Cancel 

CHANGE 

Figure 5.8 EmailWare: dialog to define e-mail accounts 

Then the user e-mail accounts (Figure 5.8) must be defined (up to five accounts) 
and the ones that can receive long e-mails (the user should identify at least one 
normal e-mail account and one SMS account) must be specified. All the 
configurations are stored in a configuration file (robjconf.cfg) that can be accessed 
using any text editor {Notepad, Wordpad, Word, etc). For the above-mentioned 
example, the file could look like the one in Figure 5.9. 

As mentioned already, the application was tested on the industrial installation, 
presented in this section which uses four robots, but the interested reader can make 
his own test using our laboratory robots. Just visit the EmailWare web site located 
at http://robotics.dem.uc.pt/emailware/ and sign up to receive warnings about the 
operation of one of our robots. Interested readers can also send commands to it. 
The site is a demonstration site, so only a few features are demonstrated and users 
cannot customize them. Finally, a demo version that is fully operational for one 
robot only (robot serial number is needed) may also be requested. 
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* EmailWare Header 
* (C) J. Norberto Plres 2000-2006 
* norberto@robotics.dem.uc.pt 

* USER DEFINITION 
norberto@robotics.dem.uc.pt 
norberto@company_name.com 
968975423@mail.tmn.pt SMS 
* ROBOT DEFINITION 
name = babylonS 
domain = dem.uc.pt 
IP = 193.136.213.69 
l^odel = ABB_IRB_1400 
@ 
IO_DIGITAL 3 
gas_on TO 
wire_on TO 
air_on TO 
IO_ANALOG 0 
VAR_NUM 3 
error C 
opr_time H 100 
idle_time H 50 
STATE_SYS TM 
STATE_SYS TA 
STATE_PRG TS 
STATE_PRG TR 
LOGS_D all 
& 
* ROBOT DEFINITION 
name = perseus 
domain = dem.uc.pt 
I P = 193.136.213.61 
Model = ABB_IRB_2400 

& 
*End of configuration file 

Figure 5.9 Example of configuration file {rob_conf.cfg) 

Consequently, any of the specified users receive messages (by e-mail or SMS) 
about the programmed events that can look like: 

Babylon 5: Ei guys, I'm stopped, no air-pressure or air-pressure too low. 
Babylon 5: Ei guys, I'm stopped, no wire. 
Babylon 5: Ei guys, wire is running out. 
Babylon 5: OK, air-pressure is on again. 
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5.2.3 Conclusions and Discussion 

The system presented in this section is commanded remotely from the PLC used to 
manage the operation of the cell. The system also uses a PC to interface with the 
operator, and updates and retrieves information from the factory production 
software. The system was designed to operate almost autonomously, i.e., with 
minor operator intervention limited to error and maintenance situations. 
Consequently, a client-server software architecture was used, with the robots 
working as servers allowing remote clients to explore and operate the system. This 
proved to be a nice solution capable of providing a good performance and high 
levels of flexibility, because the system's basic operation is defined by the 
operating software. Adding new functions or changing the operation is an easy task 
and in fact was done several times to adjust to new requirements. 

Finally, a simple e-manufacturing solution was introduced in this section. It 
enables operators to receive operation events when they occur, allowing a more 
efficient supervision of the system, reducing down time due to errors or 
unavailability of certain operating conditions. This idea of having automation 
equipment sending messages to users with relevant information about its current 
status, and enabling users to request more details and sending a few commands, 
also by e-mail, can be extended to other areas: monitoring warehouse systems that 
could inform users about critical points, smart houses informing users about 
current situations and enabling some remote commands, remote maintenance, and 
so on. 

5.3 Complete Robotic Inspection Line for the Ceramic Industry 

Non-flat ceramic products, like toilets and bidets, are fiilly inspected at the end of 
the production process to search for structural, surface, and ftinctional defects. 
Ceramic pieces are transported to the inspection lines assembled in pallets, carried 
by electro-mechanical fork-lifters or automatic guided vehicles (AGV). Pallets 
need to be disassembled, feeding the inspection lines where human operators 
execute the inspection tasks. Also, the pieces that pass inspection need to be 
palletized again in the final pallets used for product distribution. Those de-
palletizing and palletizing operations are physically demanding so they are good 
candidates for robots. 

This section is a case study on the development of a collection of prototype 
manufacturing cells, designed to perform automatic palletizing and de-palletizing 
operations of non-flat ceramic pieces such as toilets and bidets. The factories of 
these types of products show an impressive mixture of human and automatic labor, 
meaning that special attention must be taken with regard to human machine 
interfaces (HMI), safety, mode of operation, etc. 
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Non-flat ceramic products are commonly used in our homes and are mainly 
associated with personal care tasks. The industrial production of these ceramic 
products poses several problems to industrial automation, especially if robots are to 
be used. Basically, these problems arise from the characteristics of the ceramic 
pieces: non-flat objects with high reflective surfaces, very difficult to grasp and 
handle due to the external configuration, heavy and fragile, extensive surface 
sensitive to damage, high demand for quality on surface smoothness, etc. Also, the 
production setups for these types of products require high quality and low cycle 
times, since this is a large scale industry that will remain competitive only if 
production rates are kept high. Another restriction is that this industry changes 
products frequently, due to fashion tendencies in home decoration, etc. Also, there 
is the mixture of automatic and human labor production, which is a difficult 
problem since HMI are very demanding and a key issue in modem industrial 
automation systems. 

It was proposed by the partner company to build several de-palletizing and 
palletizing solutions, with a simple graphic operator interface, to install in their 
final inspection lines. In those lines human operators inspect all pieces by hand to 
find functional and surface defects (computer vision solutions for inspection). The 
challenge was to build highly efficient systems, capable of handling more pieces a 
day than its human counterparts, that could be easy to set up and start up at the 
beginning of the day. So, there is a robotic challenge and a software challenge, 
namely, in designing human-machine interfaces for operators. 

The system presented here (Figure 5.10) was designed to take advantage of 
computers and available tools to parameterize and monitor an industrial robotic 
cell, i.e., to make human-machine interface. In the process of describing and 
discussing the system a few available, a few technical details are highlighted. This 
is also important due to the fact that all the software was built from the scratch [2], 
without using any of the available commercial software packages (Section 3.2). 

5.3.1 Motivation and Goals 

The problem addressed in this example is the construction of a complete system to 
assist humans in the task of inspecting non-flat ceramic pieces. Those pieces 
(bidets and toilets, mainly) reach the inspecting site directly from the high 
temperature oven, organized in pallets (input-pallets), using fork-lifters. A few 
operators placed along two inspecting lines (15 meters long each), inspect all the 
pieces by hand, searching for pieces with functional and surface defects, removing 
from the inspection lines the pieces rejected [3, 4]. Consequently, in this system 
there is the need to de-palletize the input-pallets, feeding continuously the two 
inspection lines. The system must also pick the accepted pieces from the end of the 
inspection line, palletizing them again into the pallets (output-pallets) used for 
product distribution (Figure 5.10). 
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The system should work also as autonomously as possible, requiring only minor 
parameterization at the beginning of the work day or production cycle. The system 
should be able to work with input-pallets composed of four levels of ceramic 
pieces, eight pieces per level placed in a special order to keep pallet equilibrium, 
and with levels separated with pieces of hard paper. It should also be able to work 
with output-pallets up to five levels of ceramic pieces, eight pieces per level placed 
in the same order as in the input-pallets, with levels also separated by hard paper. 
The rule used to arrange the pieces in the pallet is to place them alternatively one 
up - one down, starting from the ground level, then swap to one down - one up in 
the next level (Figure 5.11), and keep the procedure in the proceeding levels. 
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Figure 5.10 Components of the system 

Actually, input-pallets are assembled manually by operators at the end of the high 
temperature oven. This means that the robotic system must be tolerant with 
possible medium-large palletizing errors, coming from misplaced pieces both in 
position and orientation, and also showing significant variations from level to 
level. Another important factor is that pallets are fed into the system by human 
operators using electro-mechanic fork-lifters, which also introduces some variation 
in the pallets. Sometime in the future, AGVs will be use to fulfill the task, reducing 
considerably the variations introduced and increasing the efficiency of the system. 
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a) 

b) 
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Figure 5.11 Pallets and view of the system: a) input pallets and de-palletizing robot; b) 
aspect of the de-palletizing gripper; c) view of the complete system 

The main objectives for this system are summarized as follows: 

Build a complete robotic system capable of performing de-palletizing and 
palletizing operations to assist inspection lines 
The system must perform each of these operations in less than 12 seconds 
per piece 
The system should cope with high palletizing errors on the input-pallets, 
since they are assembled by human operators which permits to anticipate 
small-medium placement errors (up to 5 cm in position and up to 5° 
around the vertical axis) 
The system should cope with deviations on the dimensions of the pieces 
of up to ±1 cm in each direction. Ceramic pieces grow inside the high 
temperature oven, making these deviations expected due to temperature 
deficiencies, variation of time inside the oven, variations in the ceramic 
mixture, etc. These deviations are not necessarily errors, but instead a 
characteristic of this type of production 
The system must work with pallets, both input and output, with variable 
numbers of pieces, ranging from any number of pieces, in the case of the 
input pallets, to 8, 16, 24 or 40 pieces, in the case of the output pallets 
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• The system should maintain information about its surroundings, so as to 
warn about inconsistencies between what is ordered and what is available 

• The system must be parameterized easily, using a graphical interface 
implemented with a touch-screen. A few commercial software packages 
are available in the market. Nevertheless, our option was to build our own 
solution since the human-machine interface plays a crucial role in the 
performance of the system, including operator acceptance. It is therefore 
very important to have full control over the developed software 

• The system must be optimized for each model of ceramic pieces. This 
means that there should be the option of introducing new models using a 
teach strategy 

Considering these above mentioned objectives, the following challenges were 
identified: 

• To build a human-machine interface, easy to use and capable of handling 
production needs. System warnings and errors must be issued to the 
operator's attention in an efficient way. All operations and messages must 
be logged for future analysis; 

• To build a system capable of meeting the planned requirements; 
• To explore the capabilities of the current personal computers, operating 

systems, and related tools on a very demanding industrial environment; 

Taking the above objectives and challenges, and considering the fact that this is an 
industrial project, meaning it is supposed to work 24 hours a day without problems, 
it was decided to distribute the software to all the components of the system. A 
client-server architecture [2-8], based on remote procedure calls (RFC) [9], was 
adopted, with the PC as the client of the rest of the components of the system, 
including the robot controllers, and also as the interface to the operator. 

5.3.2 Approach and Results 

The objectives and requirements of this project necessitated a robotic cell that 
could handle the ceramic pieces under consideration. Proper grippers and layouts 
were designed and built. It was also necessary to operate the system through an 
external personal computer, using the teach pendant of the robot only for a few 
special routines not performed in every day normal operations. The robots work as 
slaves to that central PC, where all the parameterization is performed. The PC also 
monitors the operation, being of guidance when something wrong happens. The 
operator is able to solve problems from the PC. There is one PC for each robot, 
which was done for practical reasons, but it is not a requirement. 

A client-server software architecture was adopted. The robot controller software 
works as a server, exposing to the client a collection of services that constitute its 
basic functionality. A collection of services was designed to fulfill all the tasks 
required of the system, so that they could be called from the PC (Figure 5.12). The 
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software architecture used in this work was presented in detail elsewhere [2 -8] 
(see also Section 3.2), and is distributed using a client-server model based on 
software components {ActiveX controls) [10-11] developed to handle equipment 
functionality. 

The system is completely operated using a graphical panel running on the PC, built 
using the above mQniionQd ActiveX controls in Visual C++ .NET 2003 [12]. When 
the system is started, the operator needs only to specify what product model will be 
used in each pallet, and if first pallets are fully assembled. This need is only for the 
de-palletizing subsystem, because there is no identification on the pieces (they are 
coming from the high temperature oven). On the palletizing subsystem, there is no 
need to specify the model, because the pieces carry barcodes, inserted by the 
inspecting operator, that are used by the subsystem with the help of barcode 
readers. 

Figure 5.12 Software architecture used in this example 

Sometimes, there are some non-fully assembled input-pallets on the shop floor that 
need to be introduced into the system. To do that, the software allows the operator 
to specify the position and level of the first piece. That is, however, only possible 
on the first pallet, because the system resets definitions to the next pallets to avoid 
accidents, i.e., proceeding pallets are assumed to be fully assembled. The same 
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happens with output-pallets, since the system must be able to fill a pallet not 
completely filled on the last production cycle for that model. 

5,3.2.1 Basic Functioning of the De-palletizing System 
When the operator commands "automatic mode'' the robot approaches the selected 
input-pallet in the direction of the actual piece, searchers the piece border using 
optical sensors placed on the gripper, and fetches the ceramic piece. After that, the 
robot places the piece in the first available inspection line, alternating inspection 
lines if they are both available, i.e., the robot tries to alternate between them, but if 
the selected one is not available then the other is used if available. If both 
inspection lines are occupied, the robot waits for the first to become available. 

Figure 5.13 shows the interface used by the operator to command the system and 
monitor production. It shows the commands available, and the online production 
data that enables operators to follow production. All commands and events are 
logged into a log file, so that production managers can use it for production 
monitoring, planning, debugging, etc. The system also uses a database, organized 
in function of the model number, where all the data related to each model is stored. 
That data includes type of piece, dimensions, height where the gripper should grab 
the piece, average position of the first piece of the pallet, height of the pallet, and 
so on. Accessing and updating the database is done in ''manual mode'', selected in 
the PC interface. 

There is a ''teaching" option that enables operators to introduce new models and 
parameterize the database for that model, where a "teach by showing" strategy is 
used. When that option is commanded, the robot pre-positions near the input-pallet 
and the operator can jog the robot using function keys to the desired 
position/orientation. Basically the de-palletizing operation is preformed step-by-
step and the necessary parameters acquired in the process, asking the operator to 
correct and acknowledge when necessary. The operator is asked to enter only the 
"model number" to teach, the height, and the width of the piece. The rest is 
automatic. After finishing this routine the model is introduced into the database, 
and the system can then work with that model number. 

The system is able to check for errors such as: wrong pallet for model, presence of 
pallet, model not known, no piece in place, wrong level, etc. Proper warnings are 
sent to the PC for operator information, and displayed using software icons and 
short messages. 

5.3.2.2 Basic Functioning of the Palletizing System 
A similar approach was used for the palletizing operation. Two inspection lines are 
also used, with the robot trying to alternate between them. But the first available 
piece is removed not slowing down production. A similar approach to the one used 
in the de-palletizing sub-system is used to "teach" models to the robot. Also, the 
system identifies the model number from the piece barcode when "automatic 
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mode" is commanded, fetches the piece, and inserts it in the pallet compatible for 
that model. The operator is able to select what pallet to use first, how many pieces 
are already there, and how many pieces it should carry (Figure 5.14). Do to the 
required dimensions of the output-pallets, the robot was placed on the top of a 
linear axis, controlled by the robot control system (robot external axis), so that a 
wider area could be reached. The system is also able to check for errors such as: 
wrong pallet for model, presence of pallet, model not known, no piece in place, etc. 
Proper warnings are sent to the PC for operator information, and displayed using 
software icons and short messages. 
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Figure 5.13 Example of an interface used by operators (de-palletizing system) 



250 Industrial Robots Programming 

a Final IJO - Leiria n (C) : i . Xtorberto Piref & S^nrio Paido, 2002 (PCRt» 2.1) • ^ 

1 
Opefa^Sc 

5 

r^TTT] 

@ 

Cot*obdoRob6 Infofma^aaVtsual -

I T T i n flgyffT ^ ^ 

Infotmaffo ON-Line (Progiama] 
Conbotadot 

i ? ? ? 7 " " " • " 

ContioladordePGM 

- ConUote do Rojpama -• • 
ModotJoftograma 

Nunero do Rtvama 

1???? 

p Irrfoimafdo ON-Litie (Paletes) 

! Palete Actual BalcaoActuaf 

I I????"" ,???? 

j D^ddor de Pe9as Lado Actual 

I f???? " ^ ^ ? ? 

j pnta Actual DkecfSo Actual 

1 fffff 0V~ 

C N a l !* 

42300 1 

^2301 ! 

51304 ! 

51324 1 

CinlaZi 

42300 1 

42301 1 

51304 1 

51324 1 

Modslo 

1 
Posi^Io na 1 ' P^^e 

3 1 11 
IE - ^ • • • 

•Slafc * ^ t 5 ^ 

-DEFiNtCSOdePALETES-

• BHH 
[ETT] [^r3 f̂ TT] 

j - PALETE 2-

Mode)o 
ii 

PtoictonaliPaMe 

1 dl J 
I's - ^ • • • :, 

Tempo deCkHo 

:???? 

EMBniaQoni 

Vacuo Paiele 1 Palete 2 Pwla 1 Pata 2 Potta 3 Praia 4 

• • • • • # # 

Crda 1 Crrta 2 

• • 5d) 

Figure 5.14 Example of an interface used by operators (palletizing system) 

5.3.3 Operational Results and Discussion 

The system achieved the required operational results and is flexible enough when 
introducing new models. Currently it works two shifts a day, almost autonomously, 
making around 1400 pieces per shift (one shift is seven and-a-half hours). 
Operators adapted easily to the system, and found the touch-screen interface easy 
to use. 

The company improved production quality and reduced production costs: fewer 
operators are needed and production is more efficient (more pieces are handled a 
day). This can be demonstrated by operational results, and also by the fact that new 
systems followed this one to handle other type of pieces and other types of 
operations, creating a strong connection between our university and this company. 

A few innovations and technology transfers were successfully introduced with this 
project and others are ongoing with the same company [2-5]. An interesting 
human-machine interface for robotic manufacturing cells was introduced with 
good results [2-5]. The solution has been developed from the scratch using Visual 
C++ .NET 2003, constituting a software platform that can be used with other 
applications. Experience with operators is positive, showing that they adapted well 
and really enjoy using it. Nevertheless, new developments are necessary so as to 
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guide operators and reduce operator training. This means that advanced help 
should be available to guide the operator when inconsistencies are detected. Such 
inconsistencies include, for example: 

• Commanding ''automatic mode" without reviewing the pallets 
parameterization. That could be correct in some situations and 
consequently, allowed. At the moment only a visible warning is issued, 
but in the future only some sequence of operations will allow ''automatic 
mode'' 

• Ordering a "RSTART\ i.e., proceed with current configuration and from 
the same program position, after a system stop due to an error or operator 
manual stop. Actually this situation is permitted, after confirming the 
password, because we still rely on operator training and judgment. 
Nevertheless, in the future, operators should be guided to follow a certain 
procedure, reviewing actual status, so as to avoid mistakes. This can 
certainly be done, for example, using an inference mechanism based on 
fuzzy logic 

The two presented situations are good examples of needed future developments. 
For a certain industrial robotic cell characterized by a set of available operations, a 
collection of routes should be defined considering all possible operational 
situations. Consequently, an operator can command the robotic cell if he follows 
one of those routes. This will increase safety, avoid errors, and improve efficiency. 
At the moment, critical operations require operator confirmation with a password, 
and visible warnings issued to the screen. 

Another interesting innovation was the utilization of a client-server architecture, 
explained elsewhere [2-5] (see Section 3.2), developed by the first author, to be 
used with robotic cells. Using this architecture implies the clear intention to 
distribute functions to all "intelligent components of the robotic cell, leaving to 
the central PC (the client) the tasks of making the service request calls, properly 
parameterized, and displaying system information to the user. The PC is the user's 
commanding interface, and his window to the system. 

5.4 Handling Production Changes Online 

In this section, the problem of handling production variations online, i.e., during 
actual production, is addressed. These variations may occur when it isn't possible 
to exactly guarantee working conditions during a production cycle or between two 
consecutive cycles. These variations are common in some types of industries, like 
the glass and ceramic industry, where the products may change slightly during the 
production cycle. Also, these industries are multi-model industries in which the 
production equipment is required to handle several different models of products 
that have their own production requirements. Since it is common to have two or 
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more different model campaigns during a working day, it should be possible to 
easily parameterize the production system when a new campaign is started. 

Consequently, this section uses a highly efficient robotic palletizing system, 
developed for a partner company, to introduce and explain how these problems 
may be addressed. It includes details about practical implementation, along with a 
discussion of options and obtained operational results, which show the system to 
be a good example of human-machine cooperation. 

As is common in several industries, the intermediate products need to be palletized 
in several stages of the production cycle, to circulate between manufacturing cells, 
be sold to other companies (white-line or undifferentiated products) that finish the 
production cycle adding their own characteristics, or to be stored inside the 
company in accordance with the defined production planning and company needs. 

This case, the products are several models of automobile side-window glass. The 
palletizing system is placed after the glass cutting and washing cells. The obtained 
pallets are to be used in the manufacturing line that introduces the characteristic 
curvature of the glass. This line, which includes a high-temperature oven and an 
incurving system, is shared by all models of side-window glass produced by the 
company, which makes the task of automatically feeding the line from all cutting 
and washing lines very difficult to manage. Consequently, the glass is palletized 
using a robot manipulator and de-palletized near the incurving manufacturing line 
by another robot. This enables the company to handle all types of models in a very 
simple and efficient way. 

5.4.1 Robotic Palletizing System 

The system used in this example was developed to pick side-window glass from 
the production line and palletize it into pre-configured pallets. The system, 
depicted in Figures 5.15 and 5,16, is made of the following components: 

• An industrial robot ABB IRB 4400, equipped with the 2002 version of the 
ABB S4C+ robot controller 

• A PLC Siemens S7-300, to control all the systems peripheral to the robot. 
• A centering system, placed on the production line, that guarantees that 

glasses are centered and placed in a known position before being picked 
by the robot 

• A pneumatic gripper with retractile contact sensors and suction cups, 
capable of picking glasses and measuring the pallet characteristics 

• A rotating system that supports two pallets, ensuring that a new empty 
pallet is immediately fed into the system when the previous one is full 

• A computer for supervision and control, and for implementing also the 
human-machine interface 
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Figure 5.15 Components of the palletizing system for the automobile industry 

The cycle executed by the system (Figure 5.17) is composed of the following 
principal tasks: 

5.4.1.1 Identify Empty Pallets and Measure Parameters of an Empty Pallet 
An empty pallet needs verification to measure the following pallet parameters: 
angle of the back of the pallet with the vertical axis, angle of the base of the pallet 
with the horizontal axis, height of the base of the pallet relative to the robot world 
reference system, and the pallet dimension. These four values change significantly 
from pallet to pallet and need to be obtained each time an empty pallet is 
introduced in the system. This task is fundamental for the success of the palletizing 
task, because it enables the system to place the glass always in the same 
conditions: at the same height relative to the pallet base and at the same distance 
from the previous glass. This avoids adding defects to the glass, namely small 
scratches on the surface of the glass (due to slipping between consecutive glasses), 
or on the edges that contact with the surface of the pallets (due to releasing the 
glass more than l-2mm high from the surface of the pallet). 

Any empty pallet needs to be measured for the above mentioned parameters that 
will be used during the palletizing process using that pallet. Every time the rotating 
base introduces a new pallet, optical sensors, placed behind the back of the pallet, 
detect if the pallet is empty and trigger the measuring process. 
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Figure 5.16 General view of the palletizing cell 

5.4.1.2 Pick a Glass from the Production Line 
After getting information from the PLC that there is a glass available in the 
production line, properly centered and in position, the robot is commanded to pick 
the glass from the predefined picking position (based on the glass model) and take 
it to a position near the entrance of the pallet. 

5.4.1.3 Palletize the Glass 
The glass must be placed in the row in use, taking into consideration the number of 
glasses already palletized and the pallet parameters. This operation means also 
knowing the thickness of the glass in a way to maintain the same palletizing 
conditions for all glasses. At the end, when a pallet is full, the robot signals the 
PLC that the pallet is full and places itself in a non-collision situation with the 
pallet, enabling the PLC to start the rotating motion that will exchange the pallets 
(Figure 5.18). 
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5.4.2 System Software 

Considering that the above presented system was developed to work with several 
models of glass (up to 128 different models), that require their own configuration 
in the tasks of picking and palletizing each glass, i.e., these tasks are model 
dependent, the operating software should explore the teach-pendant capabilities in 
the phase of teaching a new glass model to the system. Consequently, the software 
was designed to have two operating modes: manual and automatic. 

Manual Mode - In this mode, all subsystem testing and maintenance routines are 
allowed (Figure 5.19). The user is also allowed to teach a new model to the system. 
This means that the robot will follow pre-determined motions, asking the operator 
to adjust positions using function keys. In the process, the software acquires the 
necessary data to completely handle that model of glass. In this mode, the 
production line is not operational, because production is deactivated. The robot is 
commanded from the robot teach-pendant (or console), using local software 
designed to assist the selected functions. For practical reasons, this ''manual mode'' 
software will not be explained further here. 

ROTINAS EM MODO MAMUAL 
(C) J. Norberto Pires 2002 
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Figure 5.19 Pallet main shell presented to the user in "Manual Mode" on the robot console 
(original software with Portuguese interface) 

Automatic Mode - The production line is placed in automatic mode and the robot 
should follow the cycle presented briefly in Figure 5.17. The robot uses the 
definitions stored in the database to handle the model selected by the operator, 
using the parameterizations he chooses. 
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The software developed to interface with the operator runs on a remote computer, 
connected to the robot controller by Ethernet. The software was developed in 
Visual C++ .NET 2003 [12], using an ActiveX control [10-11] designed by the 
author to work with industrial robots [2-5] (see Section 3.2). The shell presented in 
Figure 5.20 is the operator interface to the system. 

To initiate the system, the user must run the robot program using the operator 
interface. A ''start_progranC' remote procedure call (RPC) [9] is issued, launching 
a computer program that implements a collection of services that can be requested 
from the PC using RPCs. After being initiated, the robot program waits for the 
selection of the operating mode, i.e., waits the user to command ''Automatic 
Mode"", where the robot is controlled by the system PLC using the parameterization 
selected by the user, or ''Manual Mode'' where the robot is commanded from the 
robot teach-pendant. Both operating modes may be considered as services that the 
robot {server) offers to the PC/operator {client). During the "mode selection state'', 
where the robot waits for the user to select the operating mode, it is possible to 
access the system database where the definitions for each model are stored. Access 
to database is not allowed in any other situation, for safety reasons. Consequently, 
before selecting the operating mode, the user should select the model he wants to 
produce and parameterize the production: thickness of the model, number of pieces 
per row and per pallet, and the dimension of the glass. The thickness and 
dimension of the glass are characteristics of the model registered in the database, 
and consequently are not to be changed by the user. A password is required to 
change them. 
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Figure 5.20 - Operator interface running on the PC (original software with Portuguese 
interface) 

Using the interface presented in Figure 5.20, the operator is allowed to command 
three types of operations: Access the glass model definition database, control the 
robot program, and online monitoring. 
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Figure 5.21 Accessing the database 

Figure 5.21 shows the place where the user can change the glass model definition 
database. This operation is only possible, nevertheless, when the robot is waiting 
for operating mode selection. This procedure was implemented done for safety 
reasons, in a way to avoid corrupting the working database. 
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Example: Manual mode commanding routine (Visual C++ :NET 2003) 
void CFomoDlg::Onmanual() 
{float valor; 

fprintf(log,"%s - Comando de MANUAL.\n",tbuffer); 
if (m__pon.InitClient("babylon",5) >= 0) 
{valor=1236; 
nresult = m_pon.WriteNum("decisionr',&valor); 
if (nresult <0) {m_log.SetWindowText("Error in the MANUAL command."); 
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^rintf(log,"%s - Error in the MANUAL command.\n",tbuffer);erro=l; 
m_erro. Show Windo w( 1);} 

else m_log.SetWindowText("MANUAL command."); 
m_pon.DestroyClient(); 

} else 
{m_log. Set Windo wText("Robot didn't answer ... operation cancelled."); 
m_comms.SetIcon(AfxGetApp()->LoadIcon(IDI_smile2)); 
m_erro. ShowWindow( 1); 

} 
} 

Figure 5.22 Controlling the robot program 

As already mentioned, commanding automatic or manual mode means accessing to 
a different set of functionalities. This operating mode change procedure is 
implemented in RAPID (ABB programming language) with the following 
simplified code (database access removed for simplicity): 

WHILE never_end=FALSE DO 
WaitUntil (decision 1=1235) OR (decisionl=1236)\MaxTime:=l\TimeFlag:=timeout; 
IF timeout=TRUE THEN 
ENDIF 
IF(decisionl=1235)THEN 
automode; ^̂  Module that implements the ''Automatic Mode^^ 
decision 1:=0; 

ENDIF 
IF (decisionl = 1236) THEN 
manual_mode; A 
decision 1:=0; 

ENDIF 
ENDWHILE 

Module the implements the ''Manual Mode^^ 

5.4.3 On-line monitoring 
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Figure 5.23 Online monitoring data 

This feature (Figure 5.23) allows the user to quickly observe production data, such 
as: model in use, pallet row in use, number of cycles (pieces) performed since the 
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last counter erase, number of glasses palletized in the current pallet, last cycle time, 
robot working modes, and so on. This information is obtained directly from the 
robot, making monitoring calls to the relevant services. These calls are triggered by 
a timer interrupt routine, programmed to monitor the system in cycles of five 
seconds. A complete cycle, i.e., the operation of picking and palletizing a glass, 
takes about nine seconds, which justifies the polling monitoring option and the 
choice of a monitoring cycle of five seconds. 

Glass placement adjustment Glass centering adjustment. 

Note - The green and red indicators show permitted and error situations, respectively. 
Consequently, when a red indicator is present, the operator should interpret the warning and 
act accordingly. 

Figure 5.24 - Adjusting online 

Many times, due to operational difficulties in the production line, or centering 
errors, etc., it is necessary to make small adjustments in the palletizing process 
without stopping production. The operator may perform those adjustments using 
only a mouse (Figure 5.24), observe results, and correct the problem without 
stopping production. This type of procedure is fundamental for production 
environments characterized by high production rates and very tight quality control, 
as is the case of the automobile components industry. 

Finally, another important operation under "Automatic Mode'' is the operation of 
measuring the pallet parameters. That is done, as already mentioned, when a new 
empty pallet is introduced. This measurement must be done in every pallet, since 
they differ from each other significantly. Without this procedure, the palletizing 
process would fail. The robot is commanded to extend the precision contact 
sensors and use them to measure the pallet parameters. The robot uses three contact 
sensors, placed in the vertices of a triangle, to orient itself parallel to each surface 
and compute the angles around the robot's world reference system (Figure 5.25). 
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Figure 5.25 Getting pallet parameters: di, da, Q and p 

The routine associated with this process is very simple and is presented below in a 
simplified form: 

PROC checkj3al() 
WaitUntil (divazial=0) AND (divazia2=0)\MaxTime:=5\TimeFlag:=timeout; 
IF timeout=TRUE THEN f 
TPWrite "Pallet not empty ..."; / 
PulseDOdoerros; Empty pallet?? 
EXITj 

ENDIF 
MoveJ pal_app,velocity,zlOO,toolt; Contact sensors in position 
sensores_on; ^ ^ •—' 
MoveLRelTool(pal_up,0,0,250),velocity_app,fme,toolt; 

// Angle of the back of the pallet with the vertical axis 

SearchL\PStop,disenl,temp,RelTool(pal_up,0,0,500),velocity_search,toolt; 
MoveL temp,vlO,fme,toolt; 
temp:=CRobT(\Tool:=tool_senl); 
WHILE (disen2=0) AND ((disen3=0)) DO 
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MoveJ RelTool(temp,0,0,0\Ry:=-0. l),velocity_search,fine,tool_senl; 
temp:=CRobT(\Tool:=tool_sen 1); 

ENDWHILE 
pal_actual:=CRobT(\Tool:=toolt); 
anglel:=Abs(90-Abs(EulerZYX(\Y,pal_actual.rot))); 
TPWrite "Back Angle = "\Num:=anglel; 

// Angle of the base of the pallet with the horizontal axis 

MoveJ pal_up,velocity_app,fine,toolt; 
MoveJ pal_down,velocity_app,fine,toolt; 
SearchL\PStop,disenl,temp,RelTool(pal_down,0,0,500),velocity_search,toolt; 
MoveL temp,vlO,fine,toolt; 
temp:=CRobT(\Tool:=tool_senl); 
WHILE (disen2=0) AND ((disen3=0)) DO 
MoveJ RelTool(temp,0,0,0\Ry:=-0. l),velocity_search,fine,tool_senl; 
temp :=CRobT(\Tool:=tool_sen 1); 

ENDWHILE 
WaitTime 0.2; 
temp:=CRobT(\Tool:=toolt); 
angle:=Abs(EulerZYX(\Y,temp.rot)); 
TPWrite "Base Angle "\Num:=angle; 
tempi :=RelTool(pal_actual,-(dim{modelo}/2-(pal_actual.trans.z-temp.trans.z)),0,0); 
pal_actual:=temp 1; 
MoveJ pal_down,velocity_app,z50,toolt; "---
MoveJ pal_app,velocity,z 100,toolt; Height and dimension of the pallet 
sensores_off; 

ENDPROC 

Retract contact sensors 

5.4.4 Discussion and Results 

The system (Figure 5.26) presented in this section is a good example of a flexible 
robotic industrial system, capable of handling any production situation. The system 
relies on operator command and judgment, enabling him to fully parameterize 
production and introduce nev^ production models. Besides of that, the operator may 
also introduce adjustments and change v^orking conditions online, without stopping 
production, which is a powerful tool to handle production variations and 
difficulties. These features were obtained just by implementing a collection of 
services capable of handling all the anticipated production requirements, exposing 
them to the remote computer {client) where the operator interface is implemented. 
In this way, production may be tailored in a very flexible way, enabling the 
operator to solve virtually any operational situation. 

Operational results are promising: 
• Operators adapted easily to the system, which is always a good result 

considering their average skills 
• Achieved production cycle is of aboutnine seconds per glass, which is 

more than is required 



264 Industrial Robots Programming 

• The pallet measuring procedure takes about 25 seconds to complete, 
which is compensated by the very fast cycle time. The average overhead 
introduced by this procedure in the cycle time is about 25/280 = 0,089 ~ 
0,1s (taking an average number of 280 glasses per pallet), which has no 
meaning 

• The system works 24 hours a day without any need for operator 
supervision 

It is worthwhile to point out that this system uses a client-server architecture, 
explained elsewhere [2-5] (see Section 3.2), developed to be used with robotic 
cells. Using this architecture implies the clear intention to distribute functions to all 
'Hntelligenf components of the robotic cell, leaving to the central PC {the client) 
the tasks of making the service request calls, properly parameterized, and 
displaying system information to the user. The PC is the user's commanding 
interface, and his window to the system. The developed software was built from 
scratch and the authors didn't use any commercial software, apart from operating 
systems (for example, ABB Baseware 4.0 for the industrial robots, and Microsoft 
Windows 2000 with Service Pack 4 for the PC) and developing tools {Visual C++ 
.NET 2003 [12] from Microsoft). A port of the SUNRPC 4.0 [9] package for 
Windows NT/2000/Xp, a free open package originally developed for WV/X systems, 
was also used. The porting effort was, nevertheless, completely done by the author. 
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Figure 5.26 General view of the system 

5.4.5 Conclusion 

The system presented in this section is an implementation of a distributed software 
architecture developed to work with industrial robotic cells. The main objective 
was to be able to change production conditions online, and make adjustments to the 
working parameters so as to cope with production variations. The system was 
presented in some detail, giving special attention to the software designed to 
parameterize, monitor, and adjust the production setup enabling online adjustments 
to the working conditions. Obtained operational results demonstrate the interest of 
these types of systems for multi-model production environments, where high 
production rates and quality demands are a key factor. Finally, the obtained system 
is also a good example of man-machine cooperation, demonstrating the advantages 
of mixing human and automatic labor in actual manufacturing plants. 
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6.1 Introduction 

Dear reader, I hope you had fun reading and exploring this book, because in my 
opinion that is a fundamental outcome of a technical book. Furthermore, a book 
about robotics and automation must stimulate the reader curiosity and interest to 
explore further on its own. 

This book is a practical guide about industrial robotics and related subjects. My 
primary objective was to introduce you to the fantastic world of robotics and ride 
with you through ideas, examples, and industrial solutions showing how things can 
be done, what are the available alternatives and challenges. Robotics and 
automation is a multidisciplinary subject that calls for creativity and innovation. It 
poses a permanent challenge for performance and practical results and 
consequently is a perfect subject for inventive and dedicated people, for whom this 
book was written. For that reason, the book presents a considerable amount of 
examples and solutions, allowing readers to see, from time-to-time, the complete 
picture of building a robotic manufacturing system, which constitutes also an 
invitation to maintain the focus. That is important. Robotics is an interesting 
subject and people are naturally attracted by its applications and achievements. 
Nevertheless, due to its multidisciplinary nature, robotics is also a very demanding 
field requiring knowledge of physics, electronics, mechanics, computer science, 
and engineering. Consequently, a book in the field gains by having examples and 
practical implementations. That was the ''design option^' followed when planning 
and writing the book. You can find the code of several of the presented examples 
along with pictures, videos, and other material at: 

hup://robotics, dem, uc.pt/indrobprog 

The access to the site is restricted and requires a login ''username'' and 
''password"'. Visit the web site for details on how to obtain a valid login. As author 
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of this book, I'll keep the website updated so that it is a good source of information 
on: 

New developments 
Interesting solutions 
Interesting scientific and technical papers 
Interesting books 
Industrial trends in terms of technology 

Most of these issues are related to new developments that result from R&D 
projects done in universities, research institutes, and companies, or in cooperation 
between academia and industry, resulting in technical papers, books, and new 
products. Robotics and automation is perhaps one of the most interesting cases of 
industry-academia cooperation since most of the developments require scientific, 
technical, and operational advances from both worlds to reach higher levels in 
terms of manufacturing flexibility and agility. 

To be faithful to the basic ''design option'' adopted in this book, we will finish with 
another example. This final case is about a technical solution designed to 
reconfigure an old industrial robot, making it accessible through a local area 
network (LAN), and allowing programmers and system engineers to offer remote 
services to users. 

6.2 Operation "Albert 

Albert is the name of an old robot that we acquired for our laboratory (Figure 6.1). 
The primary objective behind the acquisition was to obtain a nice industrial 
machine dedicated to teaching activities and to be included in laboratory classes of 
the discipline of ''Industrial Robotics'' (4̂ ^ year of the Mechanical Engineering 
course). Albert worked for a few years in industry doing several types of tasks: 
manipulation, gluing, and labeling. After retiring from industry it is now starting a 
promising career in academia. Technically, Albert is an anthropomorphic robot 
manipulator (from 1992, build year) manufactured by ABB Robotics (model 
IRB1500) and equipped with an ABB S3 robot controller [1], i.e., it is a robot from 
1992 but carrying technology from the mid eighties. Consequently, it is a rather old 
system with the following basic characteristics: 

• Anthropomorphic manipulator (model ABB IRB1500): 5kg of payload, 6 
axis, 0.1mm of repeatability and a fairly interesting workspace area 
(--HOOmm) 

• ABB S3 robot controller: This is the main disadvantage of Albert^ since 
the S3 system is old and not carrying much of the interfaces required by 
actual industrial manufacturing systems. The controller is programmed 
using the programming language ARLA and has 16 digital inputs, 16 
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digital outputs, a serial port for data communication, and a very basic 
teach pendant (Figure 6.2). 

Figure 6.1 Albert is an ABB IRB1500 manipulator 

Figure 6.2 S3 robot controller 

Consequently, this is mechanically a very interesting machine, very similar to its 
successor, the IRB1400 model. In fact, they share the same wrist design, which 
gives to the arm an excellent maneuverability. Nevertheless, because it is an old 
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system with very deficient communication interfaces, without any LAN interface, 
an old programming language (although sufficiently powerful) and a very basic 
user interface, Albert needs to be upgraded to be useful for teaching and training 
tasks. 

Figure 6.3 S3 cabinet with the extra hardware 

To provide the system with a LAN interface, and the ability to offer programmed 
services to remote clients, while keeping the available system functionalities, the 
following actions were performed to upgrade the old Albert (Figure 6.3): 

• A PLC {S7-266 from Siemens) was added to the system, connected to the 
robot using the 10 digital boards available in the S3 system. 
Consequently, a very simple parallel interface was added to transfer data 
between the PLC and the robot controller 

• An Ethernet board {CP 243-1 from Siemens) was also added to the 
system, connected to the PLC, to enable the system to interface with the 
LAN available in the laboratory. Consequently, remote users interface 
with the robot controller through the PLC, which means that a basic data 
protocol must be defined to exchange information between remote users 
and the running robot programs. That is a very simple task and was 
already used in Chapter 3 

• An extra 10 module was also added to the PLC to provide a supplemental 
set of 10 digital line to use with applications. 
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The PLC is accessed using the Ethernet board and a simple UDP messaging 
system. To simplify the access, we used the Siemens S7-200 OPC Data Access 
(OPC DA) Server for the S7-200 (a server that is part of the Siemens S7-200 PC 
Access package). This server provides a means to access the PLC memory 
allowing the user to execute read/write operations on the entire PLC memory 
spaces (includes program variables, 10 variables, special memory bits, etc.). 

Figure 6.4 OPC client-server connection 

Basically, OPC {OLE for Process Automation) [2, 3] was designed to allow client 
applications to access data from shop floor devices in a consistent and transparent 
way. Therefore, the OPC client applications interface with software modules (the 
OPC servers) and not with the hardware directly. This means that they rely on 
software components provided by the hardware manufacturer to efficiently access 
and explore the hardware features. Consequently, changes and hardware upgrades 
will not affect the user applications. 

With OPC, whose specifications [3] include a set of custom COM interfaces [4] 
(used when building client applications) and a collection of OLE automation 
interfaces [5] to support clients built using high-level languages and applications 
(Visual Basic and Excel, for example), users can take advantage of the nice 
features of DCOM to facilitate client access to the system features. An OPC client 
can connect to OPC servers provided by any vendor that followed the OPC 
specification [3] (Figure 6.4). 

Basically there are three types of OPC servers [2, 6]: 

1. OPC Data Access Servers (OPC DA Servers) - This type of server is used 
to offer read/write data services to the client application. OPC DA servers 
constitute a powerful and efficient way to access automation and process 
control devices 
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2. OPC Alarm and Event Handling Servers (OPC AE) - This type of server 
is used to implement alarm and event notifications services to be used 
with client applications 

3. OPC Historical Data Access Servers (OPC HDA) - This type of server is 
used to access (read/write) data from an historian engine 

In this project to upgrade and reconfigure Albert an OPC DA server [7] is used to 
access the PLC. An OPC DA client application designed to access the PLC 
resources needs to deal with three types of objects: 

1. OPC DA Servers - maintains information about the server and operates as 
a group container 

2. OPC DA Groups - provides the mechanisms for containing and 
organizing items. Every OPC group has a particular update rate that must 
be set by the OPC client 

3. OPC DA Items - the items are the real connections to the system 
resources. An item could represent a bit (like a memory bit or 10 digital 
signal, etc.), a byte, a word, etc 

Consequently, to access data from the hardware resource through the OPC server, 
the client should follow the following procedure: 

• Connect to the OPC server 
• Create an OPC group to perform synchronous reads/write operations 
• Add the necessary items to the group 
• Monitor the actual state of the items, or make asynchronous read/write 

operations 

With Albert, twelve digital 10 inputs and twelve digital 10 outputs are used as data 
bus for robot-PLC communication. Some of those 10 lines will be use to control 
the information flow between the robot and PLC. The remaining four digital inputs 
and four digital outputs will be used for special operations (Table 6.1). 

To demonstrate how this can be used to command Albert from a remote PC, 
consider that the robot "knows" five positions, which are available for user request. 
The idea is to build a simple OPC client application to set up an OPC connection to 
the Siemens S7-200 OPC Server, and implement the necessary actions to command 
the robot to move to the user-selected positions. 
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Table 6.110 assignment for robot-PLC communication 
Robot 
DIl toDI12 
D 0 1 t o D 0 1 2 
DI13 
DI14 
DI15 
DI16 
D013 
DOM 
D015 
D016 

PLC 
QO.OtoQl.3 
10,0 to 11.3 
Q1.4 
Q1.5 
Q1.6 
Q1.7 
11.4 
11.5 
11.6 
11.7 

Description 
Data IN 
Data OUT 
Motor ON 
Motor OFF 
Program RUN 
Program STOP 
Motor State 
Program State 
System State 
Emergency State 

With that objective in mind, the following items were defined in the OPC server 
(Figure 6.5): 

qO - byte that contains the digital outputs QO.O to Q0.7 
q l - byte that contains the digital outputs Ql.O to Q1.7 
iO - byte that contains the digital inputs iO.O to iO.7 
il - byte that contains the digital inputs il.O to il.7 

File Edit View Status 

B ^ Project 

Tools 

X 

Help 

'''''S9SSSSI 

L?l What's New 
3 ^ MicroWin(TCP/IP) 

Name Item ID 

. a 10 

.BqO 

.Oq l 

MicroWin.albert.iO 

Micro Win. albert. qO 

MicroV '̂in. albert, ql 

MicroWin.albert.il 

Figure 6.5 Items defined in the OPC server for this simple example 

To implement the possibility of moving the robot using the OPC server, the 
following sequence is adopted: 

• The robot waits for Q0.7 = DI8 = 1; means that a valid command is ready 
• The commanded position is specified through bits QO.O (DIl) to Q0.4 

(DI5), i.e., QO.O (DIl) is associated with PI, QO.l (DI2) with P2, ..., Q0.4 
(DI5) with P5 

• The robot program jumps to "MOVE PI" routine and acknowledges the 
received command by making DOS = 10.7 = 1 

• The commanding PC should confirm the motion just by making qO = DIl-
DIS = 0 

• Robot makes DOS = 10.7 = 0 and moves to the commanded position. 
• Robot program jumps to the beginning and waits for a new command 
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Consequently, the program running on the robot controller (coded using ARLA) 
looks like the generic code presented in Figure 6.6. 

while never_end; 
waitDI8 = l; 
switch (byte DI1-DI8) 

case 1: DOS = 1; wait (word DI1-DI8) = 0; DOS = 0; Move PI; 
case 2: DOS = 1; wait (word DIl-DIS) = 0; DOS = 0; Move P2; 
case 4: DOS = 1; wait (word DIl-DIS) = 0; DOS = 0; Move P3; 
case 8: DOS = 1; wait (word DIl-DIS) = 0; DOS = 0; Move P4; 
case 16: DOS = 1; wait (word DIl-DIS) = 0; DOS = 0; Move P5; 

ends witch; 
endwhile; 

Figure 6.6 - Generic code running on Albert's controller 

The OPC client application designed to connect to the OPC server, monitor the 
selected items and interface with the PLC (and through it to the robot controller) is 
represented in Figure 6.7. 

& OPC Client Connection to Albert 

OPC Server: 

|S7200.0PCSefver 

Group: 

jnorberlo 

Conntcs Disoortnecf 1 AddC 

QO.O lo Q0.7 

[ivIicioWin.aibert.qO 

1 Write Value; | 

Read Value: | 
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Go Position 3, Albe 
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asai 
Terminate 

Position 4 

3. 1 

Figure 6.7 OPC client application designed to command the robot 

The client application creates a group named "norbertd" and enables the user to 
add the items of interest. In this, case the selected items are Microwin.albert.qO and 
Microwin.albertAO. The default group updated rate is 100ms. 

When a command is selected (using the software buttons ''Position 7" to "Position 
5"), the client application follows the above sequence just by monitoring the robot 
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response (through the PLC interface), and acting accordingly. Figure 6.8 reveals 
the code associated with the action of commanding the robot to move to PI. 

Private Sub pl_Click() 
If txtChangeVal(l).Text = "0" Then 
txtWriteVal 1 .Text = " 129" ^ Command valid + MOVE to PI 
lpl = l 
cmdWriteAsync '^ Call to WriteAsynchronous 
cmd_sent.Caption = "Go Position 1, Albert" 

Else 
cmd_sent.Caption = "Albert: I'm not ready!" 

End If 
End Sub 

Robot received the command 

Call to WriteAsynchronous 

Private Sub Timerl_Timer() 
If(lpl = l)Then 
If (txtChangeVal(l).Text) = "128" Then <-

txtWriteVall.Text = "0" 
cmdWriteAsync A 
lp l=0 
answer.Caption = "Albert: moving to PI." 

End If 
End If 

If(lp5 = l)Then 
If (txtChangeVal(l).Text) = "128" Then —' 

txtWriteVall.Text="0" 
cmdWriteAsync M Call to WriteAsynchronous 
lp2 = 0 
answer.Caption = "Albert: moving to P5." 

End If 
End If 

End Sub 
Figure 6.8 Code associated with the command action move to PI 

This example shows clearly the usefulness of the updated Albert for teaching and 
training tasks. In the update process a PLC was added to the robot controller 
cabinet, including an extra 10 board and an Ethernet card (on the PLC bus), which 
can work in parallel with the application running on the robot controller. These 
new features can be explored when building applications, and since the user needs 
to deal with the robot controller software, the PLC software, and the protocol to 
manage the robot-PLC communication (as shown in the presented example), it is 
fair to say that the new Albert constitutes a very nice platform to learn about 
robotics and automation. 

6.2.1 And "Alberr Speaks 

From the material presented in Chapter 4, the task of adding a speech interface to 
Albert is straightforward. Nevertheless, it will be done in this section, step-by-step. 
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because in the process a few details about the human-robot interface will be further 
clarified. For simplicity, we'll use the same setup presented above. 

The first thing to decide is the structure of the voice commands. The best option is 
the ''command and control mode'' (see Section 4.2.3) because it is more adapted to 
industrial situations that require a clear and safe identification of commands. With 
this operation mode, the software needs to identify the sequence of words and 
strings that compose the command, and generate the appropriate action to the robot 
controller. Consequently the selected command structure is 

name_ofjnachine command parameters 

where ''name_of_machine'' is the name attributed to the machine (in our case 
''Albert or ''robof'), "command' is a word identifying the command and 
''parameters" are words or strings identifying the parameters associated with the 
particular command. 

In the presented example, there are four commands available: 

"hello" - enables the user to query if the interface is available 
"initiate" - initiates the speech interface 
"terminate" - suspends the speech interface 
"move" - commands the robot to move to a position 

These commands are associated to the machine "Albert" (or "robot"), which means 
that they are associated with the pre-command string "Albert" (or "robot"). 

The next step is to write the above defined grammar using a standard format that 
can be understood by our software. There are two ways to achieve that: 

• Include grammar specific instructions in the body of the software (hard-
coded grammar). This means that any change in the grammar structure, or 
a simple update in the command list, requires another compilation of the 
application software. 

• Specify the grammar using XML files. This is straightforward and flexible 
to changes and updates. 

In the presented example, an XML file is used to specify the grammar (Figure 6.9). 
Since we use English and Portuguese recognizers, two XML grammars were built 
to allow the user to select the language. The application reads the grammar from 
the XML file, selects the recognizer to use based on the language ID tag, commits 
the rules, and handles the recognition events. When a certain rule is identified, an 
event is fired by the recognition engine and catch by our application that executes 
the appropriate actions (Figure 6.10). 
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<GRAMMAR LANGID="409"> 
<DEFINE> 
<ID NAME="test" VAL="17> 
<ID NAME="move" VAL="27> 
<ID NAME="position" VAL="37> 
<ID NAME="init" VAL="4"/> 

</DEFINE> 
<RULE NAME="ROOT" TOPLEVEL="ACTIVE"> 
<L> 
<P>albert</P> 
<P>robot</P> 

</L> 
<RULEREF PROPNAME="move" PROPID="move" NAME="move7> 
<P>to</P> 
<RULEREF PROPNAME="position" PROPID="position" NAME="position7> 
<0>please</0> 

</RULE> 
<RULE NAME="START" TOPLEVEL="ACTIVE"> 
<L> 
<P>albert</P> 
<P>robot</P> 

</L> 
<RULEREF PROPNAME="init" PROPID="init" NAME="init7> 
<0>please</0> 

</RULE> 
<RULE NAME="move"> 
<LN PROPNAME="move" PROPID="move"> 
<PN VAL=" 1 ">move</PN> 
<PN VAL="2">go</PN> 

</LN> 
</RULE> 
<RULE NAME="init"> 
<LN PROPNAME="init" PROPID="init"> 
<PN VAL=" 1 ">initialize</PN> 
<PN VAL="2">terminate</PN> 
<PN VAL="3">hello</PN> 

</LN> 
</RULE> 
<RULE NAME="position"> 
<LN PROPNAME="position" PROPID="position"> 
<PN VAL="l">position one</PN> 
<PN VAL="2">position two</PN> 
<PN VAL="3">position three</PN> 
<PN VAL="4">position four</PN> 
<PN VAL="5">position five</PN> 

</LN> 
</RULE> 

</GRAMMAR> 

Figure 6.9 XML file containing the speech grammar (English version) 
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Figure 6.10 OPC client application with the speech interface included 

Figure 6.11 show the code associated with the rules that command the robot to 
move to position one: 

move to 

position one > 
position two 
position three 
position four 
position five 

^ please 

nprop = Result.Phraselnfo.Properties.Count 
If nprop = 1 Then 
If Result.PhraseInfo.Properties(0).Children(0). Value = 1 Then 
answer.Caption = "initialize" 

End If 
If Result.PhraseInfo.Properties(0).Children(0).Value = 2 Then 
answer.Caption = "terminate" 

End If 
If Result.PhraseInfo.Properties(0).Children(0).Value = 3 Then 
answer.Caption = "hello" 
If Result.PhraseInfo.LanguageId= 1033 Then • 
Voice.Speak ("Hello, I am albert.") 

End If 
If Resuh.Phraselnfo.Languageld = 2070 Then • 
Voice.Speak ("Ola, eu sou o alberto.") 

English 

Portuguese 
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End If 
End If 

End If 
If(nprop = 2)Then 
If Result.PhraseInfo.Properties(l).Name = "position" Then 
If (Result.Phraselnfo.Properties(l).Children(O). Value = 1) Then 
speech_out.Caption = speech_out.Caption + " (1)" 
If Result.PhraseInfo.LanguageId= 1033 Then 
Voice.Speak ("Position one, master.") 

End If 
If Result.Phraselnfo.Languageld = 2070 Then 
Voice. Speak ("Posi9ao um, mestre.") 

End If 
pi Click • Routine that commands the robot to move to PI 

End If 
(...) 

Figure 6.11 Visual Basic code associated with handling speech events: aspects related with 
the "move to position" command 

When an event is received, the application needs to query the speech API for the 
property that was identified, and take the appropriate actions based on the returned 
values. It's a straightforward procedure based on the selected command structure 
defined in the XML file containing the speech grammar. 

With this example, I finish this book. My sincere hope is that it could constitute a 
nice and useful resource of information and inspiration, but also a ''platfornC' to 
stimulate your curiosity to proceed further in the area. 

Because... Robotics is Fun! 
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