INDUSTRIAL ROBOTS PROGRAMMING:
BUILDING APPLICATIONS FOR THE FACTORIES
OF THE FUTURE

INDUSTRIAL ROBOTS PROGRAMMING:
BUILDING APPLICATIONS FOR THE FACTORIES
OF THE FUTURE

J. Norberto Pires
Mechanical Engineering Department
University of Coimbra, Portugal

@ Springer

J. Norberto Pires

Mechanical Engineering Department
University of Coimbra

Portugal

Industrial Robots Programming: Building Applications for the Factories of the Future

Library of Congress Control Number: 2006932582

ISBN 0-387-23325-3 e-ISBN 0-387-23326-1
ISBN 9780387233253

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LL.C

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

987654321

springer.com

Dedicated to the memory of my father Joaquim
and to Dina, Rita, Beatriz and Olimpia.

Foreword

Robots have traditionally been used to work in industrial environments, as they
constitute the most flexible existing automation technology. In the recent years,
manufacturing systems are becoming more autonomous requiring less operator
intervention and a higher degree of customization and reconfigurability for
disparate applications. In this scenario, robot programming is a key factor toward
building the applications for the factories of the future.

This book by J. Norberto Pires constitutes a unique and authoritative reference in
our professional field, as one of the very few books written by an academic with a
strong industrial cut. The focus is on the software interfaces enabling humans and
machines to effectively cooperate on the shopfloor. Several sensors and controllers
are analyzed in detail, leading to the realization of interface devices using e.g.
speech recognition and CAD models, and their versatility for a number of
industrial manufacturing systems is enlightened.

Easy to read, rich in worked out examples and case studies, the book is
complemented with additional experimental material available on a web site,
including code and multimedia files, which the author promises to update
regularly.

It is my conviction the book will be appreciated by a wide readership, ranging from
technical engineers wishing to learn the foundations of industrial robotics to
scholars and researchers wishing to understand the needs and the potential of a new
generation of advanced industrial robots to be developed in the next decade.

Bruno Siciliano
Professor of Control and Robotics at the University of Naples
President-Elect of the IEEE Robotics and Automation Society

Preface

A scientific and technical book is a starting point. A source of information for
people browsing for details, a guide for others trying to build similar or related
solutions, or a source of inspiration for yet others wondering about how things
work.

This book was written by an engineer and university professor which has been
active in the field of industrial robotics since 1994. It was planned, designed and
built to serve engineers looking for better and more efficient systems, but also to
serve academic readers interested in the robotics area. The book focus mainly on
industrial robot programming in the beginning of the twentieth first century,
namely on the important issues related with designing, building and operating
flexible and agile robotic systems. It explores in detail the issue of software
interfaces, but also input/output devices and several industrial and laboratory
examples. In fact, the book uses several types of fully worked out examples to
illustrate and clarify concepts and ideas, enabling the reader to see them working
and even to test some of them. Most of the experimental material used in this book
can be obtained from:

http://robotics.dem.uc.pt/indrobprog

This site will be updated regularly by the author constituting a source of
information, code and multimedia files which complement the contents of the
book.

Finally, the author wants to thank deeply to all the persons that contributed to this
book, namely all his undergraduate and graduate students, specially his Ph.D.
students Tiago Godinho and Germano Veiga, and his M.Sc. student Ricardo
Aratijo for their help and support in building and testing some of the solutions
presented in the book.

J. Norberto Pires, Coimbra, Portugal, 2006

Contents

1. Introduction to the Industrial Robotics World 1
1.1 IETOAUCHION vttt cr et et eb et esb b reebeesaeanearenseereraens 1
1.2 A Brief History of the Industrial RODOL..........ccvvvniricinerenniniiinrneeneseeenens 2
1.3 Using Robotics to Learncoceuecivirieieieneereenenrncsresreesicieesiesteesieseene e

1.3.1 Constitution of the Robot Nicola
1.3.2 NiICOIa SOTEWATE.....ccvviiviiiirieieiiiie et earer e eeree e e e s ennrneee
1.3.2.1 PLC SOtWATIE ..eooovvveieeiiee e cceie ettt ettt eenvteesessean e e e anaees
1.3.2.2 Software for the On-board PC
1.3.2.3 Feedback from the On-board Webcam..........ooceevvrivevveinienvinnienne 20
1.4 Using Robotics t0 WOTKcccovvreeniiieiirinieiieniecesec e e raens 23
1.4.1 Using an Offline Simulation Environment..............ccoceevverieirrerrennn 27
1.5 Statistics Of RODOtIC WOIKEISc.covvvvivririiereriieiinnreninresinireesieceessersesssens 29
1.6 Overview of the rest of the BOOKcoovvvvvicrivviieereeren e, 32
L7 RELEIEICES ..vvvvenve ittt ettt resr st sr sttt essear b e esesbasvesanis 33

2. Robot Manipulators and Control Systems 35
2.1 INEPOAUCHION ...vecvvivievreicir ettt e st s b vt ene e vesabsessesabeerassaseernsse 35
2.2 KINEIMALICS ©1ovvivsiriiviieiiieire s ereeresseisesressesrietsersereessiaesssssssssesssansersessennes 36

2.2.1 Direct KINEMEALICS ..vvvvviriirieeireerreeierisneresreerisneereereeeessesssensoreesenssnes 39
2.2.2 InVerse KiNEIMAtICS......covvviviienreeriitiiiireirectrireniestessesnsersereesesssssssenees 43
2.3 JACODAAN.......cooviieeerecieecreceee e e re et ssene st ssetansabeerarsersebensens 47
2.4 SINGUIATIEIES 1vveviririeveririererietsreeiinieestssereseessiesaetosesesssseresesaesesarsesesessssesens 58
2.4.1 Brief Overview: Singularity Approach........ccocvcevevrievevrereernrinieeinen 61
2.5 POSItION SENSING....veviriereriiririeeiiiieainieieesisreiniiessssssssesesessssessssesossasssesens 66
2.6 ACKUALOTS: IMOLOIS ..vivviiriiivireiserrienirereestisorsesseseressssesresrsssstossressessrsessssorsessens 69
2.6.1 Motor Drive SYStEIM......c.ovrireeiriiereerieeeiniesreereneienereveseeeneseseeeecs 72
2.7 DYNAMICS .virveveririrreiisireneriseseesmsssesemssosesessssesenssosssnssssesisesessesssnesesssnssesens 75
2.7.1 Inertia Tensor and Mass Distributioncccevveiveeviviniienienneencenens 76
2.7.1.1 Important ReSUltsccoceveriimniriinienireniencieieeininene e e 77

2.7.2 Lagrange-Euler FOrmulation........o.cvieverenrinninnineiesenesennnennnenes 78

xii Industrial Robots Programming

2.7.3 D’ Alembert FOrmulationcccovvvieecirnnreniirerennnininssrereneeeennns 79
2.7.4 Newton-Euler FOrmulationcccovcrveenrnrirrerinririneccrnenccnnenns 79
2.7.5 Dynamic Parametersc.cvvveviveerveririerierierecinrnsnntnssenreesssnessrssasensens 82
2.8 Matlab EXaMPIES ...ocvcieeiririiiceirinrrieeere st ererssesisiesessesesens 84
2.9 Robot Control SYSTEMS ...c.cocoveerrreirirnerrrieriesienicesieesesreneesaereresescenesens 86
2.9.1 Drive the motors to move the TCP and coordinate the motion for
useful work
2.10 Servo Control........o.cveereeirieniennienieersienieenierieaseneee s
2,11 TO CONLIOL ..ttt ettt s st sreseose st eseeseseenees
2.12 COMMUIICALION . .c.covereurrienieerienieeriereres et srereerereeereaneseoseseosenssanosensssrsires 92
2.13 SensOr INtErfacecvcvrenecrierrriern et sessesessenersecsessesereesesnanes 94
2.13.1 Interfacing Laser 3D Sensor for Seam Tracking.........ccceerrvecrnene 94
2.13.2 Interfacing a Force/Torque Sensorc.vvrvnircneenenniencneeneens 96
2.13.2.1 Using a Force/Torque Sensor........cocovicrniernnrercrnnnerirenneennns 100
2.14 Programming and Program EXecutionccccocvviemerercicennnnnnionecnnes 103
2.15 USer INtEITace ..c..cueiveriiriiirrirercricncrtn ettt sneen b e er e neene 104
2.16 RETCICINCES ... verviniiiiiereirereet ettt et ereet ettt besse s sr e snesnesesbenene 105
3. Software Interfaces
3.1 INtEOAUCTION oottt re e bbb s st eseseesennenesessseneone
3.2 Low Level INterfacesocoveveveeeericeeeiieinreeeicnisesiesreeseeseerensenesseseneene
3.2.1 IO Digital Signals........coceverinineririniiceniccne e
3.2.1.1 Robot Controller SOftwarecccccoevencnennrneccneniene e
3.2. 1.2 PLC SOIWALE .c..eeiiiiiiiiiiiiie et cts et v
3.2.1.3 PC SOftWAIC....coveiieiceerce et
3.2.2 Using Fieldbusesccocovuverviienieniieneerecreeres
3.2.2.1 Profibus (Process FieldBus).......cocooerccecrunnee
3.2.2.2 CAN (Controller Area Network)
3.2.2.3 DEVICENECE ...eovivveviiriirierreniiicrerieteiesreesresaesenesessesesenseesesseoseonoses
3.3 Data Protocols and Connections............eceverurrivereeerererereseerennenesnesseseesenens
3.3.1 RPC — Remote Procedure Calls.........ccocvvrereerermnmnricnnenerenreecnnenne
332 TCP/IP SOCKELS .cvvviveveeriereiirerieerisisiseessseresesseserasssesesassesesessssesenens
3320 TCP POIES..ucireiiriirrereeniiieennrereeiesresessseresasssssssesseesesasnerersasseens
3.3.3 UDP Datagrams
3.3.3.1 UDP POILS .ottt sesesnacessenenesens
3.4 Simple Example: Interfacing a CCD Cameraccevvcircrrerrinernnsennene 139
3.4.1 Robot Controller SOftWare........coecvcerrenvcenneercrin e 141
3.4.2 Webcam SOftWAre.......ccooviveriieeienieireienrensrenrereniaesenieesiesiesessenceneens 143
3.4.3 ReMOLE CHEM.....ovoveeicieiiercrcreircrercine et ssecsces 147
3.4.4 Using UDP Datagrams.c.ccceoeeecveerrerrcrrerenmercsesessseseessmsnesesens 153
3.5 Simple Example: Control Paneloeccevmeereinoiccniencncencreneneneneas 156
3.6 Simple Example: S4Misc — Data Access on a Remote Controller.......... 158
3.7 Industrial Example: Semi-autonomous Labeling System.........c.cocovvvenene 162
3.7.1 Robotic Labeling SyStem.......ccceivvirivireriniivericenerncernerennnnecseeeens
3.7.2 System SOftware........cco.ccceevevirerrervnsivrireninriens

3.7.3 Robot Controller Software
3.7.4 TCP/IP SEIVET wuvievviireiiviitioniionreisireveeieosesisiessscseosssesssesseessesssaessenses

Contents xiii

3.7.5 DISCUSSION ...veeevirmceceerereneeeeerisineeceseiaerereseeenenerencnetensmencaescasaescscecs 169
3.7.6 CONCIUSION. ...ocrieriiriciccircrrine ettt e 170
3.8 REfETENCES ... euiieiieiiiiieecie sttt ettt bbb et 171
4. Interface Devices and Systems 173
4.1 INTOQUCHIONcocevit vttt ettt 173
4.2 Speech INEITACEScciiiereriirie ettt ettt re s e ne b estesaneresreesns 178
4.2.1 TNOAUCHION ..ovvencrecrerirreieicrtrie et srereesee s beeeses oo e b snsnssssesesseresennes 178
422 EVOIULON ...ttt e eesesesesresasnasosssesessenennes 180
4.2.3 TEChNOIOBY c.cvvvviiririeiireirereirrieiriescriees s eieeasese e sesiesensesstsessessesens 183
4.2.4 Automatic Speech Recognition System and Strategyc.ccuernne 184
4.2.5 Pick-and-Place and Robotic Welding Examples.......ccoceevrvierienrnenns 186
4.2.6 Pick-and-Place EXamplec..cccecvrirrrirnincrecienienneeenieinnseneenens
4.2.7 Robotic Welding EXample.........ccovivirernnnniinrsesnseiernenionaresserennans
4.2.8 Adjusting Process Variables
4.2.9 COnCIUSION. c.c.itriereieetentcireieirieeierieetsiesreresiesbeteseesesreaeereseesessesseseosens
4.3 VoiceRobCam: Speech Interface for Robotics........ccccocrrneneireerencnes 198
4.3.1 Robot Manipulator and Robot Controller........ccvvvrvirreerereriiernnnan 199
4.3.2 PLC Siemens S7-200 and Server.........cococvvemmvvcirivneecnencenes 200
4.3.3 Webcam and Image Processing SOftwarec.covecvvevenrenrenannes 203
4.3.4 User Client APPlICAtIONcovvererirvicererisisiereenernenrsseerssseresessssnsorens 205
4.3.5 Speech Interface
4.4 CAD INLEITACES cveverrecrrececrircrre e rcstcetsiee e sbesnesenreneeresresesneneencsnenens
4.4.1 Speech Interface for Weldingccoccovveeveeiiernnninonneniecnercnrennennnenns 221
4.5 RETEIENCES ...vviirieieriirereieiereiet sttt reeresersene s seseesesesrenennanons 223
5. Industrial Manufacturing Systems 225
5.1 INEOAUCHION ...ttt et e 225
5.2 Helping Wrapping Machines for the Paper Industryccoevenvicnnnnn. 226
5.2.1 Layout of the SYStemcccverrviiretinicrnnicnnirieeesesseesesennies 227
5.2.1.1 Station One — Dimensions and Weight............ccccoovrmrervnirnrennns 228
5.2.1.2 Station Two — Roll Wrapping and Inner Headerc.coeuvn.n. 228
5.2.1.3 Station Three — External Header..............cocvvevecevervrncrnnnenenes 229
5.2.1.4 Station Four — Labeling.........cocvvevcererirneenieresirnierereniereenenrerens 230
522 EMAIIWALE....c.ociiicirtrrcrr et 233
5.2.2.1 EmailWare Application EXamplec.cocvvrercvereereeccrevncnes 237
5.2.3 Conclusions and DiSCUSSIONcevevererirerrreieiinieeeiniereeneeeicreresneenes 241
5.3 Complete Robotic Inspection Line for the Ceramic Industry.................. 241
5.3.1 Motivation and Goals..........cccvcrvrirrirencniieininieoreseesreecenenens 242
5.3.2 Approach and ReSUSceecvvviririnieienineiinieeenrennsnsrensesnenens 246
5.3.2.1 Basic Functioning of the De-palletizing Systemc.coevevennn. 248
5.3.2.2 Basic Functioning of the Palletizing System.........ccocoeerrerreennnn 248
5.3.3 Operational Results and DiSCUSSIONccvecererererrererennieerennerennnnns 250
5.4 Handling Production Changes Onling.............ccocvvvrnrereeirnrvereeresenens 251
5.4.1 Robotic Palletizing System......c.cccoiverevirericcnninnniceinreirineeesens 252

5.4.1.1 Identify Empty Pallets and Measure Parameters of an Empty Pallet
.. 253

xiv Industrial Robots Programming

5.4.1.2 Pick a Glass from the Production Lingccccevvvenerirrireenneennen 254
5.4.1.3 Palletize the Glassccccvvevieiiiniiiiiiieire s ereesieenses 254
5.4.2 SyStem SOFtWATE......ccvcvviiriieciec e vres et neans 256
5.4.3 On-line MONITOTING....cceveererrirerrirerereirerrererersererrmereseeseenmserssessesenes 260
5.4.4 Discussion and RESUILSc...coieivieevienininienieninrereveeeresresssnenens 263
5.4.5 CONCIUSION.ovirvirieririiiiiereereerisreetr et erecressssresreserserseasessesresensesnnes 265
5.5 RELEIEICES ..ivvicviirrerieie it este et et estr st srr e be s bt e svassssabtearsenbesersenresansenses 265
6. Final Notes 267
6.1 INErOAUCHION ... ovviiriiiricie ettt teesae s reeesrrsssneenessnnesrrnsans 267
6.2 OPEration “AIDErL”ccvvveirrerecririccririairseerereriseaesearesesnnsssissessesenes 268
6.2.1 And “AIBert” SPEAKS.....cevririreeirinriieiiiniiseresesisssisiessevesesseresseseens 275
6.3 RETEIENCES ...c.vieviicriericicrc vttt ssteseer s esbe b b sreresss s bsstsereereeseeasenns 280

Index 281

Introduction to the Industrial Robotics World

1.1 Introduction

Robotics is a subject that leaves nobody indifferent. No matter if they are used to
work in industry or at our homes, mimic some of the human capabilities, or used to
access dangerous environments, launched to space, or simply used to play with,
robots are always a source of interest and admiration. Here the focus is in robots
used to work on industrial environments [1], i.e., robots built to substitute man on
certain industrial manufacturing tasks being a mechatronic coworker for humans.

In fact, actual manufacturing setups rely increasingly on technology. It is common
to have all sources of equipment on the shop floor commanded by industrial
computers or PLCs connected by an industrial network to other factory resources.
Also, manufacturing systems are becoming more autonomous, requiring less
operator intervention in daily operations. This is a consequence of today’s market
conditions, characterized by global competition, a strong pressure for better quality
at lower prices, and products defined in part by the end-user. This means producing
in small batches, never risking long stocks, and working to satisfy existing
customer orders. Consequently, concepts like flexibility and agility are
fundamental in actual manufacturing plants, requiring much more from the systems
used on the shop floor. Flexible manufacturing systems take advantage of being
composed by programmable equipment to implement most of its characteristics,
which are supported by reconfigurable mechanical parts.

Industrial robots are good examples of flexible manufacturing systems. Using
robots in actual manufacturing platforms is, therefore, a decision to improve
flexibility and to increase the agility of the manufacturing process. If the
manufacturing processes are complex, with a low cycle time, and have a lot of
parameterization due to the diversity of products, then using robots is the correct
decision, although it isn’t enough for a complete solution. In fact, engineers need to

2 Industrial Robots Programming

integrate other technologies with the objective of extracting from robots the
flexibility they can offer. That means using computers for controlling and
supervising manufacturing systems, industrial networks, and distributed software
architectures [2,3]. It also means designing application software that is really
distributed on the shop floor, taking advantage of the flexibility installed by using
programmable equipment. Finally, it means taking special care of the human-
machine interfaces (HMI), i.e., the devices, interfaces, and systems that enable
humans and machines to cooperate on the shop floor as coworkers, taking
advantage of each other’s capabilities.

1.2 A Brief History of the Industrial Robot

The word “robot” comes from the Czech “robota” which means tireless work It
was first used in 1921 by the novelist Karel Capek in his novel “Rossum'’s
Universal Robots™. Capek’s robots (Figure 1.1) are tireless working machines that
looked like humans and had advanced capabilities even when compared with
actual robots. The fantasy associated with robotics offered by science fiction
movies, and printed and animated cartoons is so far from reality that actual
industrial robots seem primitive compared with the likes of C3PO and R2-D2
(from the movie Star Wars), Cyberdyne T1000 (from the movie Terminator II)
Bishop (from the movie Alien II) and Sonny (from the movie I Robot), for example.

Figure 1.1 A robot from Karel Capek’s novel “Rossum's Universal Robots”

Introduction to the Industrial Robotics World 3

But robotics was a special concern of the most brilliant minds of our common
history, since many of them took time to imagine, design, and build machines that
could mimic some human capabilities. It is one of the biggest dreams of man, to
build obedient and tireless machines, capable of doing man’s boring and repetitive
work; an idea very well explained by Nicola Tesla in his diary [4]:

“... I conceived the idea of constructing an automaton which would
mechanically represent me, and which would respond, as I do myself, but,
of course, in a much more primitive manner, to external influences. Such an
automaton evidently had to have motive power, organs for locomotion,
directive organs, and one or more sensitive organs so adapted as to be
excited by external stimuli ...".

- G
D
N

Lo

Figure 1.2 Water clocks designed by Crecibius (270 B.C.)

Today’s challenge is to consider robots as human coworkers and companions,
extending human capabilities to achieve more efficient manufacturing and to
increase the quality of our lives. This book focuses on industrial robotic coworkers.
The fields of robotics that consider the companion aspects, namely service robotics
and humanoid robotics, are not covered in this book. Nevertheless, the social
perspective of using robots not only as coworkers, but also as personal assistants, is
very promising. In fact, due to several social and economical factors, we are
required to work until very late in life: It is common in Europe to only allow

4 Industrial Robots Programming

retirement when a person is near seventy years old. Since our physical and mental
capabilities decrease with time, the possibility of having mechanical assistants that
could help us in our normal routine has some valuable interest.

Robotics can be traced back to 350 B.C., in the ancient Greece, to the fabulous
philosopher and mathematician Archytas of Tarentum (428-347 B.C.) and a
demonstration he made in front of the metropolis senators. A strange machine that
he called “the pigeon™ was capable of flying more the 200m, using some type of jet
propulsion based on steam and compressed air: a great achievement for the time
(the invention of the screw and also the pulley are attributed to Archytas).

Figure 1.3 A Greek design adapted by al-Jazari for a garden hand-washer

In 270 B.C,, also in ancient Greece, the civil engineer Ctecibius was capable of
building water clocks with moving parts (Figure 1.2). His work had followers like
Phylo of Byzantium author of the book “Mechanical Collection™ (200 B.C.), and

Introduction to the Industrial Robotics World 5

Hero of Alexandria (85 B.C.), and Marcus Vitruvius (25 B.C.). In the twelfth
century, the Arabian Badias-zaman al-Jazari (1150-1220) recollected some of the
Greek developments in the book “The Science of the Ingenious Devices” [5]
(Figure 1.3), and that is how they reached our time. In those early times the
problem was about mechanics, about how to generate and transmit motion. So it
was mainly about mechanisms, ingenious mechanical devices [5,6].

Then in the fifteenth century, Leonardo da Vinci showed indirectly that the
problems were the lack of precision and the lack of a permanent power source. He
designed mechanisms to generate and transmit motion, and even some ways to
store small amounts of mechanical energy [7]. But he didn’t have the means to
build those mechanisms with enough precision and there was no permanent power
source available (pneumatic, hydraulic, or electric). Maybe that was why he didn’t
finish his robot project [5,6], a fifteenth century knight robot (Figure 1.4) intended
to be placed in the “Salle delle Asse” of the Sforza family castle in Milan, Italy. It
wasn’t good enough. Or it was so revolutionary an idea for the time that he thought
that maybe it was better to make it disappear [5,6].

Figure 1.4 Leonardo’s studies for a humanoid robot

And then there was the contribution of Nicola Tesla at the turn of the nineteenth
century. He thought of using Henrich Hertz's discovery of radio waves (following
the work of James Clerk Maxwell about electromagnetic phenomena) to command

6 Industrial Robots Programming

an automata. He built one (Figure 1.5) to demonstrate his ideas and presented it in
New York’s Madison Square Garden in 1898 [4,6]. The problem then was that
machine intelligence was missing. Robots should be able to do pre-programmed
operations, and show some degree of autonomy in order to perform the desired
tasks. When that became available, robots developed rapidly, and the first
industrial one appeared in the early 1970s and spawned a multi-million dollar
business.

After that, robotic evolution was not as fantastic as it could have been, since there
was a lot to do and the available machines were sufficiently powerful to handle the
requested jobs. Manufacturers were more or less happy with their robots, and
consequently industrial robots remained position-controlled, somehow difficult to
program by regular operators, and really not especially exciting machines. Features
currently common in research laboratories hadn’t reached industry yet because of a
lack of interest from robot manufacturers. Nevertheless, there was a considerable
evolution that can be summarized as follows.

Figure 1.5 Nicola Tesla’s remote-controlled miniature submarine

In 1974, the first electrical drive trains were available to use as actuators for robot
joints. In the same year, the first microprocessor-controlled robots were also
available commercially,

Around 1982, things like Cartesian interpolation for path planning were available
in robot controllers, and many of them were also capable of communicating with
other computer systems using serial and parallel interfaces. In the same year, some

Introduction to the Industrial Robotics World 7

manufacturers introduced joystick control for easier programming, and the teach
pendant menu interface.

In 1984, vision guidance was introduced as a general feature for tracking, parts
identification, and so on.

In 1986, the first digital control loops were implemented enabling better actuator
control and enabling the use of AC drives.

Networking is a feature of the 1990s, with several manufacturers implementing
networking capabilities and protocols.

In 1991, there was the implementation of digital torque control loops, which
enabled, for example, the utilization of full dynamical models; a feature only
available in the first robots around 1994,

During the period 1992-1994 several manufacturers introduced features like
Windows-based graphical interfaces, virtual robot environments for off-line
programming, and fieldbuses.

Robot cooperation is a feature introduced from 1995 to 1996.

Figure 1.6 Actual robot manipulators

Around 1998, robot manufacturers started introducing collision detection to avoid
damaging robots, and load identification to optimize robot performance. Since then
other features include fast pick and place, weight reduction, optimized
programming languages, object-oriented programming, remote interfaces using
RPC sockets and TCP/IP sockets, efc.. Figure 1.6 shows some of the robot
manipulators available currently on the market.

So how do we define robotics then? Is it a science? Is it a technique or collection of
techniques? If the reader opens a robotics book something like this appears:

8 Industrial Robots Programming

“A robot is a re-programmable multi-functional manipulator designed to
move materials, parts, tools, or specialized devices, through variable
programmed motions for the performance of a variety of tasks”, from the
book Robotics — Control, Sensing, Vision and Intelligence, Fu, Gonzalez,
Lee, MacGraw Hill, 1987.

Although correct, despite being restricted to robot manipulators, this definition
doesn’t give the correct idea. The common sense image of a robot is usually
associated with strong and superb machines, tireless (like Karel Capek’s
machines), obedient (“yes, noberto san ...””), but nevertheless, fascinating machines
that make us dream. And that fascination is not in that definition.

As with everything, we should look to the past and pick what was fundamental for
the history of robotics in terms of ideas and dreams. From the Greeks and Arabs
we should pick their idea of “ingenious devices”. In fact, robotics is very much
about mechanics, motion, mechanisms to transmit motion, and having the art and
the skill to design and build those mechanisms. Yes, “ingenious devices” is really a
good start.

Then we should turn to Leonardo (sixteenth century) and look to his quest for ...
precision ...” and “...permanent power source ...”. He understood that robots need
parts built with very high precision and a permanent power source. That was not
available at his time, i.e., machine tools and a permanent power source (electric,
hydraulic, or pneumatic).

Finally, we should read Nicola Tesla and observe his outstanding and visionary
work. He understood that robots are a consequence of dreams and neat ideas.
Robots need to be controlled and programmed, distinguish situations, efc., have
ways of “understanding”, and that means using computers, electronics, software,
and sensors, in a way to enable machines to be programmed and to sense their
environment. Those are the elements that enable us scientists, engineers, and robot
users to try different things and new ideas, being a source of fascination. In his
own words [4]:

“... But this element I could easily embody in it by conveying to it my own
intelligence, my own understanding. So this invention was evolved, and so a
new art came into existence, for which the name “teleautomatics” has been
suggested, which means the art of controlling movements and operations of
distant automatons.

Therefore, we can define robotics as a science of generic, ingenious, precise,
mechatronic devices, powered by a permanent power source; a science that is open
to new ideas and that stimulates the imagination. A stimulus so strong that it
attracted many of the best minds of our common history, i.e., authors of the work
that constitutes the legacy that we humans leave for the future.

Introduction to the Industrial Robotics World 9

1.3 Using Robotics to Learn

Putting robots in space, and in other planets, is a very exciting field of modern
robotics. This and other fantastic achievements justify the enormous interest about
robots and robotic applications. Only a few engineering fields are as
multidisciplinary as robotics, i.e., areas that require knowledge of as many
different scientific and technical disciplines. Robotics integrates an extensive
knowledge of physics, mechanics, electronics, computer science, data
communications, and many other scientific and technical areas important for the
design, construction, and operation of machines that execute human-like functions.

Figure 1.7 Robot MER-A (Spirif) sent to Mars in June of 2003 (from NASA) [8]

In this section a small mobile robot, named Nicola, is presented. The robot is
constructed, using commonly available industrial equipment, to be commanded
from a typical personal computer running standard operating systems and software
development tools. The final goal is to demonstrate what is involved in the
construction of this type of robot, showing that it is possible to play with science
and technology and in the process learn and spend a fantastic time. The robot
Nicola will be presented step-by-step with enough detail for showing what is
involved.

NASA initiated in June 2003 a new mission to further explore Mars, the great red
planet of our solar system [8]. The allure of Mars is based on its proximity to
Earth, but also on the assumption that it was once like Earth, with water available

10 Industrial Robots Programming

on the surface and life, before changing gradually to a hot and dusty planet. In this
mission, NASA used again semi-autonomous mobile robots to explore the planet.
These Mars exploration rovers (MER — Figure 1.7), named Spirit and Opportunity,
are capable of navigating the surface of the planet, analyzing rocks and land, and
sending back pictures, videos, and results from experiments carried out on the
planet’s surface. The spaceship that carried Spirit was launched on June 10, 2003,
and arrived on Mars on January 4, 2004, In turn, the spaceship that carried
Opportunity left on July 7, 2003, and arrived on Mars on January 25, 2004.

The utilization of these robots was also a dream of the great Croatian inventor
Nicola Tesla (1845-1943), a man that gave a pioneering and visionary contribution
for the evolution of robotics. He worked with the legendary Thomas Edison and
was a tireless, dedicated, and bright inventor. Tesla was the archetype of the
inventor: solitary, absent minded, abstracted of the normal things of life, with an
exclusive dedication to his work and visionary. At the end of the nineteenth
century he dreamt (doesn’t everything begins like this?!) of automatons capable of
performing tasks only possible to intelligent living creatures. For that, the
automaton needed an element equivalent to the human brain. Since that seemed
complicated, he thought about using his own brain for commanding the automaton

(4).

SWITCH CAPACITOR
PLATES —+
- SPARKBALLS MICROMETER
RRUPTER AIR GAP
[L0
BATT = '
PRI SEC 3
mmcno{
coiL

Figure 1.8 Heinrich Hertz's first transmitter, 1886 schematic

That capacity of commanding distant automatons was achieved using Henrich
Hertz waves (published in 1887 in a treatise named “Optice Elettrica”). Tesla had
access to Hertz's publications and saw in his radio transmitters and receivers
(Figure 1.8) a way to implement his own ideas. To demonstrate the principle, Tesla
built a model of a submarine (Figure 1.5) controlled remotely using coded hertz
impulses (controlled by radio, therefore). He could command the boat to turn to the
right or to the left, submerge and emerge, etc. Despite the enormous interest of the
new invention, which he demonstrated in the Madison Square Garden of New York
City (1898), before an overwhelmed audience, he failed to obtain support to
continue his efforts on the subject.

Introduction to the Industrial Robotics World 11

HUB USB WebCam Wireless ethernet card

2 Batteries
(+12V)
Laptop

Industrial PLC
Siemens S7200

b)
Figure 1.9 The Robot Nicola: a) Nicola I; b) Nicola II

But it was a fabulous advancement for the time (nineteenth century). How would it
be building a system with those characteristics today? Using common industrial
equipment, wireless communications, actual operating systems, and well known
programming tools?

That is the goal of our robot Nicola, i.e., to show that Tesla’s dream is still actual,
and that despite the sophistication of those robotic space explorers (Figure 1.8), the

technology involved and the concepts are simple, accessible, and fun to learn how
it all basically works.

12 Industrial Robots Programming

1.3.1 Constitution of the Robot Nicola

The robot Nicola is very simple. Basically it is a three-wheel robot with two power
wheels in front and a free wheel in the back (Figure 1.9). The wheels used are of
the same type that can be found in office chairs and other office equipment. Each
of the two power wheels are equipped with a power unit composed of:

1. One 24 V DC motor (max. power 50 W, max. velocity 3650 rpm, max.
torque 0.17 Nm), model MDLC-58 from Maclennan Ltd. [9]
2. One 25:1 gear unit, model IP57-M2 from Maclennan Ltd. [9]

The selected DC motor is equipped with a velocity control loop (Figure 1.10),
which makes it very simple to linearly control velocity just by feeding the unit with
a 0-5 V analog signal. The control circuit is a very simple electronic circuit
composed of a velocity control loop and a power amplifier. The velocity control
loop makes the motor velocity proportional to the commanding analog signal (0-5
V in magnitude), and the rotating velocity is defined by a digital input (0 — positive
direction, 1 - negative direction).

Velocity < g:,gx::lgll.onp

y 1
Velocity

Reference Analog
Velocity

Direction wpp Control Loop

Power DC Motor

Figure 1.10 Diagram of the velocity control circuitry [9]

Using this power unit, attached to each wheel, there is no need for a mechanical
steering mechanism since the electric differential effect can be used to steer the
robot, i.e., varying the speed of each independently wheel it is possible to turn to
the right and to the left with high-precision and several curvature radius. For
example, if the speed of the left wheel (v)) is equal to the speed of the right wheel
(v;), the robot moves forward in a straight line (v, = v, > 0). If we change the sense
of rotation of the wheels (v, = v, < 0), the robot moves backwards also in a straight
line. Making v, > v,, the robot turns to the right, and with v; < v, it turns to the left.
Adjusting the value of v, and v, several curvature radius may be obtained. Finally,
making v, = -v, the robot turns about itself.

Introduction to the Industrial Robotics World 13

Furthermore, with the objective of using industrial components, the robot uses a
medium class PLC (Programmable Logic Controller) to interface with sensors and
actuators. The selected PLC is a Siemens S7-200 (DC model with the 215 CPU),
equipped with a 12-bit resolution analog module (module EM235, with three
inputs and one output) [10].

To command the robot, a laptop is installed on the robot, connected to the PLC
using a serial link (RS-232C channel). The software running on the laptop was
built to work as a TCP/IP socket server, enabling commands by any authorized
remote client. The operating system running on the PC is the Microsoft Windows
XP, which makes it easy to add advanced services, attach devices (like network
devices, Webcams, etc.), and explore them from available software developing
tools (Visual Basic, C++, C#, etc.).

1.3.2 Nicola Software

The software designed to control and operate Nicola is divided into three levels,
identified with the programmable hardware components that constitute the robot:

1. The PLC that implements the low-level interface with sensors and
actuators

2. The on-board PC used to manage the robot and interface with remote
users

3. The commanding PC, i.e., the computer used to command the robot and
monitor its operation

In the following sections the software will be presented in detail. The interested
reader can download the source code from [11].

1.3.2.1 PLC Software

The mission of the PLC is to interface with analog and digital sensors that could be
used with the robot, and to control the two DC motors that move the robot and any
other actuator that could be added to the system. Consequently, a PLC is a good
choice since this is basically what is required from them in industry, i.e., to work as
local and low-level interfaces with sensors and actuators implementing sequential
commanding routines. In addition, PLCs are very easy to use and to program,
which also justifies the solution. The only difficulty with the PLC is the need to
have it working as a server, executing the commands sent by the on-board PC that
manages the robot (Figure 1.11). This means that the PLC should implement the
services required to operate the robot, namely:

1. The possibility to change any analog or digital output
2. The possibility to access any analog or digital input
3. The possibility to command macros, or batches of functions

14 Industrial Robots Programming

4. The possibility to receive events with detailed information about the status
of the robot.

PC

Supervision Message

Command Message

Figure 1.11 Messages between the on-board PC and the PLC

Table 1.1 List of PLC command codes

Command | Parameter 1 | Parameter 2 | Description
159 120 + output | Valor Changes the specified analog
output.
160 120 + input - Reads the actual value of the
specified analog input.
200 120 + output Activates the specified digital
130 + output output of the first output block
(120) or of the second output
block (130).
201 120 + output Deactivates the specified digital
130 + output output of the first output block
(120) or of the second output
block (130).
253 - - Supervision message.

This idea is very simple and not different from what is done in more advanced
machines, like the industrial robots. From the remote client, properly authorized,
the user accesses memory zones to change some predefined variables (bytes, word
or double-word variables). If the value of those variables is used in the
programmed instructions, it is possible to execute only the intended sequences just
by comprehensively changing the values of those variables, The PLC answers to
remote commands sent with a pre-defined format and with a maximum length of

Introduction to the Industrial Robotics World 15

100 bytes. The first byte of the commanding message specifies the command, and
the following bytes are parameters (see Table 1.1).

The synchronous answer of any command is a copy of the message received,
which enables the commanding PC to check if the command was well received
using for example an ACK-NACK (acknowledge — not acknowledge) protocol.
Besides that, there is a special command (code = 253) used for monitoring the P1.C
state. When the PLC receives this command it should answer by sending the state
of all its IO inputs and outputs. This message should be sent frequently to track the
robot state. In the robot Nicola this message is associated to a S00 ms timer, which
means that the robot state is updated at a frequency of 2 Hz.

Any asynchronous answer contains the execution results of one command. For
easy identification from the serial port interrupt routine, the first byte of the answer
identifies the code of the executed command. The user commands should be
associated with user actions like pressing software buttons or keyboard buttons,
etc. When the PLC receives a command, it transfers the received data into a pre-
defined memory zone starting with register VB90. Consequently, if the command
contains n bytes, with n <= 100, the following happens:

Byte VB90 — contains the number of byte received
Byte VB91 — contains the character (code) that identifies the command
Byte VB92 — contains parameter 1

Byte VB90 + n -1 — contains parameter n

The PLC routine designed to handle the serial port initializes the port in the first
SCAN cycle, entering after that into the listen state. When a message is received,
the data is transferred to the already mentioned memory zone and a copy is sent
back to the calling PC.

For example, the PLC used with Nicola (Siemens S7-200) has 10 digital outputs in
the basic module, labeled from Q0.0 to Q0.7 (output block 0), and from Q1.0 to
Q1.1 (output block 1). To access those digital outputs, the command must specify
the type of access (write or a read access), the signal number, and the signal value
in the case of a write access (check Table 1.1).

16 Industrial Robots Programming

' Shows 10 state
Private Sub rio_Click()
Dim i As Integer
Fori=0To7
If (bq00 And 2~ i)=2"i Then
q0(i).Picture = lon
fqO(i) = True
Else
qO(i).Picture = loff
fq0(i) = False
End If
Next i
Fori=0Tol
If(bql0 And 2~ i)=2"iThen
ql(i).Picture = lon
fql(i) = True
Else
ql(i).Picture = loff
fql(i) = False
End If
Next i
Fori=0To7
If (bi00 And 2 #i)=2" i Then
i0(i).Picture = lon
Else
i0(i).Picture = loff
End If
Next i
Fori=0To 5
1f(bil0 And221)=2"iThen
il(i).Picture = lon
Else
il(i).Picture = loff
End If
Next i
End Sub

‘Activates/deactivates digital outputs from block 0
Private Sub q0_Click(Index As Integer)
1f fq0(Index) = False Then
com.Output = Chr(200)+Chr(120+Index)+Chr(10)
fq0(Index) = True
Else
com.Output = Chr(201)+Chr(120+Index)+Chr(10)
fqO(Index) = False
End If
End Sub

' Activates/deactivates digital outputs from block 1
Private Sub q1_Click(Index As Integer)
If fq1(Index) = False Then
com.Output = Chr(200)+Chr(130+Index)+Chr(10)
fql(Index) = True
Else
com.Output = Chr(201)+Chr(130+Index)+Chr(10)
fql(Index) = False
End If
End Sub

The serial port interrupt service routine stores the
messages received from the PLC in the variables:
bq00 — digital output signals of block 0

bq10 - digital output signals of block 0

bi00 — digital input signals of block 0

bil0 - digital input signals of block 0

The routine rio_eclick represents the received
information at the user panel using colors: yellow
(activated), gray (deactivated).

Digital Outputs

Digital Inputs

When a message arrives, the service routine calls
“rio_click™ to present the information:

Private Sub com_OnComm()
get_com_message
rio_Click

End Sub

Figure 1.12 PC software designed to access 10 signals

Introduction to the Industrial Robotics World 17

Consequently, to change the state of Q1.1 to | the following command should be
sent (Table 1.1):

200131255255 10

where “200” specifies a digital write access, “131” specifies the output Ql.1,
“255” is a null command/parameter and “10” is the end-of-message character. The
software for this example, including the both the PL.C and the PC side, is presented
in Figures 1.12 and 1.13 (the PC part was coded using Microsoft Visual Basic
NET2003, and the PLC part was coded using the Siemens PLC S7-200
programming tool called Microwin 3.2).

VBT VB2 Q00
—oxl I__nl ¢
—==5| {==B} {s)
200 120 1
VBS2 Q0.1
o—s)
121 1
VB2 Q0.2
—l:: S)
122 1
vBg1 VBa2 Q0.0
b I-_wl ’
—==5] 1==B] (r)
20 120 1
VB2 Qo1
L {o—(®)
121
VB2 Q0.2
(o)
122 1
NETWORK 5 NETWORK 6
LDB= VB9I, 200 LDB= VB9l, 201
LPS LPS
AB= VB92, 120 AB= VB92, 120
S Q00,1 R Q00,1
LRD LRD
AB= VB92, 121 AB= VB92, 121
S Qi R Qo1
LRD LRD
AB= VB92,122 AB= VB92, 122
S Q21 R Q021

Figure 1.13 PLC code to activate/deactivate digital outputs. Due to space limitations, only
the code for the first three outputs of the digital block 0 is presented.

18 Industrial Robots Programming

1.3.2.2 Software for the On-board PC

The software for the on-board PC was designed to control the robot, and to
interface with the remote user connected to the robot’s on-board computer using a
wireless network connection (Figure 1.14).

Local
Network

commands

Figure 1.14 Overview of the system used to operate the robot Nicola

The on-board user interface software is a TCP/IP socket server that listens on a
specific port, accepts and validates user connections, and processes the commands
sent by the remote client. Those commands have the following basic syntax:

rx command parameter_1 parameter_2 ... parameter_n

where, rx specifies the robot (for example, r1), command is a string that specifies
the command to be executed (Table 1.2), and parameter_i is the set of parameters
associated with the particular command.

Figure 1.15 shows the shell of the TCP/IP server developed for the on-board
computer. The panel functions enable the user to quickly access the local robot
functions, and the TCP/IP server included in the application implements the
interface for remote users.

Introduction to the Industrial Robotics World 19

| Nicola Conixol Program

Figure 1.15 TCP/IP server used to operate the robot Nicola: listens to connections on port
54321, validates connections, and process commands

Table 1.2 List of commands available from the on-board TCP/IP server

Command | Parameter Description

INFO - Supervision message.

VELC Valor (0-255) | Commands the robot velocity: 0 (min.) to 255
(méx.).

STOP - Stop command.

AVAN - Commands the motors to move in the positive
(forward) direction. '

RECU - Commands the motors to move in the negative
(backward) direction.

FRNT - Commands the motors to move straight
ahead/backward, i.e., clears any steering direction.

DIRT - Turns right at 50%, i.e., the actual velocity of the
left motor is kept and the velocity of the right
motor is reduced by 50%.

ESQD - Turns left at 50%, i.e., the actual velocity of the
right motor is kept and the velocity of the left
motor is reduced by 50%.

DIRD Valor (0-100) | Turns right by the specified amount.

DIRE

Valor (0-100)

Turns left by the specified amount.

20 Industrial Robots Programming

TCP/P Client fo Access and Command Nicola Hi=] E3

1 vele 30

Send connect | Close |

Connection estabished... port 54321

Stop Ahead

Lt | ment |

Forward ==

<< Backward

Figure 1.16 TCP/IP client used to operate the robot Nicola from any remote PC

Figure 1.16 shows a simple TCP/IP client example that can be used to command
remotely the robot Nicola. This example offers to the user the possibility to execute
simple commands like start and stop, move forward or backward, turn left and
right (with a specified steering angle), or move straight ahead and regulate the
robot’s speed.

1.3.2.3 Feedback from the On-board Webcam

The robot Nicola is equipped with a webcam to register images of it’s operation
and to help the remote user command it in situations were the robot is not in sight.
It’s very easy to get images and video streams from a webcam and there are a lot of
software packages and tools to do that. Here the Microsoft Visual SDK 1.2 is used
because it is an open source SDK, and because it integrates well with the
development environment used to write the software: the Microsoft Visual Studio
.NET2003.

Since the video feed is installed on the robot, there’s also the problem of sending
the obtained images from the on-board computer to the remote computer, using the
data rate more adjusted to the capacity of the wireless link.

Introduction to the Industrial Robotics World 21

Again we opted to build a TCP/IP server to work as the image service. Basically
this server is able to capture images and save those images in the hard disk of the
on-board computer. These files can then be shared with the remote computer using
an FTP connection or simply by sharing the directory. Using a mechanism like a
semaphore it is possible to avoid having the two computers accessing the file at the
same time, i.e., by the on-board computer that generates the file and by the remote
computer that reads the file and presents it to the user. The image refresh rate
depends on the communication speed and availability, but also on the size of the
image. Nevertheless, it is possible to have rates up to 10 frames per second. Live
streams, of about 30 to 40 frames per second, are only possible for the on-board
computer since it was decided to avoid sending streams over the TCP/IP
connection. This was a decision for simplicity, but also a practical decision: Live
streams are really not necessary for this application.

The TCP/IP image server implements the following basic services:

1. Specify the vision provider, namely the driver that will be used to capture
the image. In this example the Webcam uses a Video for Windows (VFW)
driver

2. Start/stop the acquisition service

Obtain the actual image and save it to the on-board hard disk

L

The image server (Figure 1.17) listens at the port 54322 for messages starting with
the character “@" and ending with the character “#”. For example, the command
message to obtain the actual image is:

@IMAGE rita beatriz dinat

where, IMAGE is the command, rita is the username, beatriz is the password and
dina is the name of the file where the image should be saved. The TCP/IP client
will present the image only if the answer from the server matches exactly the
command sent. Any other situation is considered an error.

Image Socket Server - 10| %/

Cnd = IHAGE
Parl = rita

Par2 = bheatriz

Pard = dina
IMAGE = ldentification Request
BINAGE

D 2 rita beatriz dina
d 24 hyt

rita beatriz

HAGE

= rita
= bheatriz

T,
IHAGE - Identification Request
Command to UIDEO SOURCE: PIMAGE rita beatriz dina

Figure 1.17 Output window of the on-board TCP/IP image server

22 Industrial Robots Programming

Basically, the TCP/IP image client (Figure 1.18) has one button for each available
service and shows the obtained image and the refresh rate. The method used to
avoid simultaneous access to the image file between the two computers was a
50ms timer. The timer interrupt service routine performs alternatively the call to
acquire the image and the call to get the file from the on-board computer, avoiding
the simultaneous access to the image file. This means that a new image is obtained
every 100 ms. Consequently, the only limitation to the refresh rate is the
throughput of the communication link.

: TCP/AIP Image Client

Figure 1.18 TCP/IP image client used on the remote PC

Introduction to the Industrial Robotics World 23

This simple example, which explores industrial equipment to build a useful mobile
robot, shows clearly that robotics is a very interesting subject to learn and play
with science and technology. It also shows that the concepts are accessible and can
be explored by any student or engineer. The main objective of this section was to
motivate readers to explore this book, because it’ll show how things work and can
be implemented in a practical way, with enough detail for those readers who want
to explore further.

1.4 Using Robotics to Work

The industrial robotic system presented in this section was designed to execute the
task of removing the excess of PVC material from automobile glasses, which
accumulates during the glass manufacturing cycle. In fact, most of the automobile
glasses, namely front, rear, and roof glasses, are composed of two sheets of glass
joined by a layer of PVC. For proper assembly, and to ensure proper joining of the
PVC to the glass while maintaining transparency, the glass goes through a heating
process, followed by a considerable period inside a pressure chamber. This process
generates a very stiff excess of PVC on the borders of the glass that must be
carefully removed because it alters the dimensions of the glass, causing difficulties
in assembling it in the car body, not to mention the aesthetic implications.

Figure 1.19 Robotic glass deburring system

24 Industrial Robots Programming

Traditionally, this excess of PVC is removed by hand using small cutting devices.
Nevertheless, for highly efficient plants, this is not desirable since it slows down
production, and requires very high concentration from operators so they don’t
touch and damage the glass with the cutting device. Consequently, the process is
very risky for the quality of the final product. Furthermore, with recent car designs,
some glasses are glued directly in the chassis without any exterior rubber, mainly
with roof, front, and rear glasses. Here the requirements for perfect PVC removal
are even higher, which demands an automatic procedure to execute it.

The system (Figure 1.19) designed to handle the operation described above is
composed of {12]:

1. Two industrial robots ABB IRB6400 equipped with the S4C+ controllers

2. Specially designed electric-pneumatic grippers to hold firmly the glasses

3. Two automatic deburring belts controlled by the robot’s controller IO
system

4. One industrial PLC (Siemens S7-300) that manages the cell logic and the
interface to the adjacent industrial systems, providing to the robot
controllers the necessary state information and the interface to the factory
facilities

5. One personal computer to command, control and monitor the cell operation

The system works as follows: The first robot verifies if conveyor 1 (Figure 1.19) is
empty and loads it with a glass picked from the pallet in use. The system uses a
rotating circular platform to hold three pallets of glasses, enabling operators to
remove empty pallets and feed new ones without stopping production. After
releasing the glass, the robot pre-positions to pick another glass, which it does
when the conveyor is again empty. If the working glass model requires deburring,
then the centering device existing in the conveyor is commanded to center the glass
so that the second robot could pick up the glasses in the same position. With the
glass firmly grasped, the deburring robot takes it to the deburring belts and extracts
the excess PVC by passing all the glass borders on the surface of the deburring
belt. When the task is finished, the robot delivers the glass on conveyor 2, and
proceeds to pick another glass.

The deburring velocity, pressure, trajectory, efc., is stored in the robot system on a
database sorted by the glass model, which makes it easy to handle several models.
Programming a new model into the system is also very simple and executed by an
authorized operator. There is a collection of routines that take the robot to pre-
defined positions, adjusted by the given dimensions of the glass, allowing the
operator to adjust and tune positions and trajectories. He can then “play” the
complete definition and repeat the teaching procedure until the desired behavior is
obtained. This means being able to control the robot’s operation with the controller
in automatic mode, which is obtained by including some teach-pendant features in
the process for operator interface.

Introduction to the Industrial Robotics World 25

Another important feature of this robotic system is the ability to adjust production
online, adapting to production variations. This objective is obtained by using a
client-server architecture, which uses the cell computer (client) to parameterize the
software running on the robot controller (server). That can be achieved by offering
the following services from the robot server to the clients:

1. All planned system functionalities by means of general routines, callable from
the remote client using variables that can be accessed remotely

2. Variable access services that can be used remotely to adjust and parameterize
the operation of the robotic system

S AUTO]

{ PRUN

Figure 1.20 Operator interface for de-palletizing robot
With these features implemented and with a carefully designed operator interface
(Figure 1.20 and Figure 1.21) and robot server software, it’s possible to achieve a
system that requires limited human intervention related with adjustment tasks to
cope with production variations. Since a remote interface is used (Figures 1.20 and

1.21), the necessary adjustments are executed online without stopping production.
Those operations include:

1. Adjusting the deburring angle, i.e., the angle between the border of the glass
and the deburring belt. The angle introduced is added to the programmed one,
so that zero degrees means keeping the programmed angle unchanged

26 Industrial Robots Programming

2. Adjusting the force on the belt during the deburring operation (adjusted by
position). The commanded value is entered in millimeters and updates the
actual position in the direction perpendicular to the belt and parallel to the
surface of the glass

3. Adjusting the deburring speed

4. Maintenance procedures necessary to change the belts after the planned
deburring cycles

The de-palletizing robot requires less parameterization because it executes a very
simple operation. Other than that, the gripper adapts to the surface of every model
of glass, using presence sensors strategically placed near two suction cups (see
Figure 1.19), with the objective of having an efficient de-palletizing operation.
Nevertheless, the operator is able to change the velocity of the process by stating a
slow, fast, or very fast cycle to adjust to production needs, suspend and resume
operations, adjust the way the robot approaches the surface of the glass, efc.. These
adjustments are necessary to obtain the most efficient operation in accordance with
the observed production conditions, to solve daily problems, and to cope with
production variations.

$% Rebarbagem 1.0 (C) J. Nobesto Pites. 2004 (PCROB 5.0) HEEB

Dmmm ——— ~ControlodoFobd | |~ Conlrolo do Progiama - Operaglo
BB
— 8§ EmE EEE=
|| Em |
Modelo em Usa . — i
-0 W -

rnlumaczoml-tn —_——
FACA { || Cokoladox .~ TempodeGio . . |
£ict El e o |
ol | | Modo Dperagio Modedo em Uzo | |
I e PN e rirpi I {
Y as | | Controlador de PGM Cital Cinta2 FACA
|| o . mn T
| Estado doPrograma Humeso lotal Vidios
| o = |
: Pietdo N_Cral N_Cinta2
e T on 1
elocidada = 7?
0 100
o CINTA ESGOTADA .
H“m CESTNR e T AN e T O N N T e
LT g ey o - IV AT T T R SR MRS T
:Il:] . |

Figure 1.21 Operator interface for deburring robot

Finally, it is important to mention that the robot is equipped with a force/torque
sensor mounted on the wrist. The objective is to adjust automatically the model
setup introduced by the operator, correcting the points where the measured force

Introduction to the Industrial Robotics World 27

between the belt and the glass exceeds the recommended values, attempting to
avoid damage to the glass and to increase the deburring efficiency. This procedure
is active during the process of applying a new model, and also during production, if
explicitly activated by the operator, constituting an automatic correcting feature.

The system has worked for some time and proved to be very simple to operate,
showing also quick adaptation from operators [12,18]. The adjusting features
added to the system proved to be very helpful, allowing the company to respond in
a timely fashion to production changes, avoiding variations in the quality of the
final product, and to introduce quickly new models into the production database.
Since the models are identified automatically, using barcode readers placed on the
pallet platform, the system works continuously without operator intervention. The
only thing needed is to feed the system with pallets full of glasses, removing the
empty ones. That operation is done periodically with the help of electro-
mechanical fork lift trucks.

Most of the features presented in this example will be explored in this book for
robotic welding applications, namely the capacity to simulate the procedure, the
capacity to adjust online and change parameterization, the capacity to monitor the
system, and specify the sequence of operations, and so on.

This example shows clearly the advantages of using robots with actual
manufacturing platforms and the importance of carefully designing the
manufacturing systems, and integrating intelligent sensors, actuators, and the
human factor. This final aspect related with HMI (human-machine interface) is
fundamental in any manufacturing system and somehow a measure of its success,
since these systems need a very efficient way to operate with humans in a way to
expose system features and allow the users to explore the system capabilities to the
maximum extent [12-18].

1.4.1 Using an Offline Simulation Environment

Using offline programming and simulation environments may be useful to develop
and especially to optimize industrial manufacturing systems. Frequently the system
is not available for online utilization, which calls for the possibility to work with
graphical models of the manufacturing cell under study. The industrial deburring
system presented in this section (Figures 1.22 and 1.23) was optimized using a
graphical offline tool (RobotStudio 5 from ABB Robotics), although the 3D
drawings of several components of the cell were designed using SolidWorks.

28 Industrial Robots Programming

Figure 1.23 Analyzing the glass debﬁrﬁ.r-tg pr-ocess on the

The utilization of offline packages has some advantages:

e If carefully designed, the graphical model constitutes a powerful tool to
continuously develop the system without stopping production

Introduction to the Industrial Robotics World 29

o It allows the system engineer to simulate and optimize the solutions
before testing them on the real cell for final implementation

o It constitutes a powerful tool to analyze new production scenarios, with
new products, new production sequences, etc., before testing them or even
before proposing them to the production team

e [t constitutes a nice environment to demonstrate to customers the viability
of certain type of production, cycle time, etc

¢ Since this type of environment runs a virtual robot controller, it allows the
user to develop software and try it on the graphical model

The only disadvantage is the correlation between the graphical model and the real
system. This means that the system engineer needs to carefully calibrate the system
using precise data from the cell. This will allow him to export code directly to the
cell and have it working with only minor calibration and routine checking.

1.5 Statistics of Robotic Workers

There are at least 800 000 robots working in industry worldwide (Table 1.3), but
since statistics are very difficult to obtain in several countries, the real number
should be over 1 million units operating all over the world [23]. Considering the
statistics from 2003 [23], the lead country pushing its economy using robots is
Japan, with around 350 000 robots operating, followed by the European Union,
with around 250 000 robots in action, and the United States with around 112 000
robots. In Europe, Germany is the lead country with 112 700 units operating
(matching the United States), followed by Italy (50 000 robots), France (26 000
robots) and Spain (20 000 robots).

Table 1.3 Robot operational stock at the end of the year (2001-2003) with a forecast for the
period 2004-2007

Operational Stock at the End of the Year

Country 2002 2003 2004 2007
Japan 350 169 348 734 352 200 349 400
USA 103 515 112 390 121 300 145 100
EU 233 769 249 200 266 100 325900
Germany 105212 112 693 121 500 151 400
Italy 46 881 50 043 53100 151 400
France 24277 26 137 28 400 35900
Spain 18 352 19 847

Portugal 1282 1367

Source: IFR — International Federation of Robotics [23]

In 1990, the installation of new industrial robots in the European Union was only
20% of the new installations reported from Japan. The USA had only 7% of new
installations when compared with Japan. Nevertheless, this gap was reduced

30 Industrial Robots Programming

significantly and currently both EU and USA grow at approximate rates when
compared with Japan, being sometimes higher than the Japanese rates. For
example, in the period 2001-2002, the European Union installed more robots than
Japan, but in 2003 the Japanese recovered the first place. This evolution of the
European and North American robot installations reveals itself in the operational
stock. The European stock evolved from 23% of that of Japan in 1990 to almost
72% in 2003. The figures for the USA show an evolution from 12% in 1990 to
32% in 2003, respectively. ’

45000

40000

35000 +--

30000

16000

10000 -

5000 4

2003 2004 2005 2008 2007

| B Japan B United States SEuropean Union o All other countries |

Figure 1.24 New robot installations per year [23]

The IFR forecast for 2007 expects a steady growth of robot installations in the
European Union (6.1% per year) and in the United states (5.8% per year).
Although Japan’s new installations experienced different growth rates in the period
1999-2001, a significant recovery started in 2002 and a steady growth rate is
expected at least until 2007 (5.7% per year).

Robots are becoming very common in any industrial installation (Figure 1.23
shows the number of robots per 10 000 workers for the motor vehicle industry, one
of the most successful areas of robot operation) where they cooperate with human
workers to achieve better efficiency and productivity. The pressure to invest in
robots, namely regarding cost savings, increases in productivity and quality, and
transferring dangerous tasks from humans to machines, i.e., to remain competitive
in the global market, configures a scenario where humans and robots share the
working space. In fact, in the beginning of the 21% century, robots are already

Introduction to the Industrial Robotics World 31

human coworkers and successful installations must consider carefully the human-
robot interaction and handle it as efficiently as possible.

400000

350000

300000

250000

200000 4

N° Units

150000

100000 -

50000 4

2002 2003 2004 2005 2008 2007

| @lapen OUnitedStates MEuropeanUnion S Al other countries |

Figure 1.25 Operational stocks at the end of the year [23]

ENTYY ETT] B - momeeeeee e mme e e e e
EP{ms. : T a1 R [0 1 RPN
Desay 70 1000
o
iy Lo e 140

: 1300¢ 14 100 --mn e

@ -
Fweden s50: 360K Lrils
-) o)
nited Kingdom 0 L]
Unsted States : 640 740 am

france Oreemany raly Japen Spsin Sweden Urded Lnied
Kngdom States

oI exn

Figure 1.26 Number of robots per 10 000 workers in the car industry [23]

Consequently, industrial robots fit well with the two main challenges faced
currently by modern manufacturing: more quality at lower prices and the need to
improve productivity. Those are the requirements to keep manufacturing plants in
developed countries, rather in the low-salary regions of the world. Other very
important characteristics of manufacturing systems are flexibility and agility since
companies need to respond to a very dynamic market with products that have low
life-cycles due to fashion tendencies and worldwide competition.

32 Industrial Robots Programming

So, manufacturing companies need to respond to market needs efficiently, keeping
their products competitive. This requires a very efficient and controlled
manufacturing process, where focus is on automation, computers and software.

The final objective is to achieve semi-autonomous systems, i.e., highly automated
systems that require only minor operator intervention. In many industries,
production is closed tracked in any part of the manufacturing cycle, which is
composed by several in-line manufacturing systems that perform the necessary
operations to transform the raw materials into a final product. In many cases, if
properly designed, those individual manufacturing systems require simple
parameterization to execute the tasks they are designed to execute. If that
parameterization can be commanded remotely by automatic means from where it is
available, then the system becomes almost autonomous in that operator
intervention is reduced to the minimum and essentially needed for error and
maintenance situations, Human and machines can cooperate doing their own tasks,
more or less autonomously, and interface more closely when required by the
manufacturing process.

A system like this will improve efficiency and agility, since it is less dependent on
human operators. Also, since those systems are built under distributed frameworks,
based on client-server software architectures that require a collection of functions
that implement the system functionality, it is easier to change production by
adjusting parameterization (a software task now) which also contributes to agility.
Furthermore, since all information about each item produced is available in the
manufacturing tracking software, it is logical to use it to command some of the
shop floor manufacturing systems, namely the ones that require simple
parameterization to work properly. This procedure would take advantage of the
available information and computing infrastructure, avoiding unnecessary operator
interfaces to command the system. Also, further potential gains in terms of
flexibility and productivity are evident.

1.6 Overview of the rest of the book

This book is about industrial robot programming in the beginning of twentieth first
century. It focuses on the important aspects of designing and building robotic
manufacturing cells, which explore the capabilities of the actual industrial
equipment, and the available computer and software technologies. Special attention
will be paid to exploring the available input devices and systems that can be used
to create more efficient human-machine interfaces, namely to the programming,
control, and supervision tasks performed by non-technical personnel.

Chapter Two (“Robot Manipulators and Control Systems”) introduces most of the
industrial robotic equipment currently available, namely aspects related with
industrial robotic manipulators, their control systems and programming

Introduction to the Industrial Robotics World 33

environments. In the process, two specific manipulators will be considered closely
since both will be used in many examples presented in the rest of the book.

Chapter Three (“Software Interfaces”) discusses software interfaces that can be
used to develop distributed industrial manufacturing cells. It covers the
mechanisms and techniques used to interface robots with computers, as well as
intelligent sensors, actuators, other factory resources, production management
software, and so on. The software discussed in this chapter is used in all the
examples presented in the book, and is the core of several industrial and laboratory
applications.

Chapter Four (“Interface Devices and Systems”) presents an overview of several
available devices and systems that can be used to program, control, and supervise
industrial robotic manufacturing cells. The intention here is to show that these
interfaces and systems are available and to demonstrate, with application examples,
how they can be explored to design solutions easier to use and program by non-
technical operators.

Chapter Five (“Industrial Manufacturing Systems”) is dedicated to a few
application examples designed and implemented recently by the author of this
book. The applications are described in detail to enable the interested reader to
explore further. Although the selected examples were designed for specific
applications, and carefully tuned for the industry in which they are currently used,
the discussion is kept general since most of the problems addressed are common to
many industties.

Finally, chapter six (“Final Notes™) presents a brief summary of the concepts and
ideas presented in this book, and lists a few possible actions that the interested
reader can follow to learn more about this important area of modern engineering.

A good collection of references is also presented at the end of each chapter to
enable the reader to explore further.

1.7 References

[1] Pires, JN, “Welding Robots. Technology, systems issues and applications”, Springer,
2005.

[2] Kusiak, A, “Computational Intelligence in Design and Manufacturing”, John Wiley &
Sons, 2000.

{31 Halsall F., "Data Communications, Computer Networks and Open Systems", Third
Edition, Addison-Wesley, 1992.

[4] Tesla, N, “My Inventions: Autobiography of Nicola Tesla”, Willinston, VT: Hart
Brothers, 1983.

[S] Rosheim, M, “Robot Evolution: The Development of Anthrobots”, New York: John
Willey & Sons, 1994.

34

(6]
(7]
(8]
(10]

(11}
[12]

[13]

(14]

[15]

[16]
[17]
(18]
[19]
[20]
[21]
f22]

(23]

Industrial Robots Programming

Rosheim, M, “In the Footsteps of Leonardo”, IEEE Robotics and Automation
Magazine, June 1997.

Pedretti, C, “Leonardo Architect”, Rizzoli International Publications, New York,
1981.

Mars Exloration WebSite (NASA), http://mars.jpl.nasa.gov

Mclennan Ltd., Precision Motion Control, http://www.mclennan.co.uk/

Siemens, Micro Automation SIMATIC S7-200, www.siemens.com/s7-200

Robot Nicola WebSite, http://robotics.dem.uc.pt/norberto/nova/nicola.htm

Pires, JN, "Semi-autonomous Manufacturing Systems: the role of the HMI software
and of the manufacturing tracking software", IFAC Journal on Mechatronics, accepted
for publication on Vol. 15, to appear in 2003,

Pires, JN, Sa da Costa JMG, “Object Oriented and Distributed Approach for
Programming Robotic Manufacturing Cells”, IFAC Journal on Robotics and
Computer Integrated Manufacturing, February 2000.

Pires, JN, Paulo, S, “High-efficient de-palletizing system for the non-flat ceramic
industry”, Proceedings of the 2003 IEEE International Conference on Robotics and
Automation, Taipei, 2003,

Pires, IN, “Object-oriented and distributed programming of robotic and automation
equipment”, Industrial Robot, An International Journal, MCB University Press, July
2000.

Pires, JN, “Interfacing Robotic and Automation Equipment with Matlab”, IEEE
Robotics and Automation Magazine, September 2000.

Pires, JN, “Force/torque sensing applied to industrial robotic deburring”, Sensor
Review Journal, MCB University Press, July 2002.

Pires, JN, Godinho, T, Ferreira, P, “CAD interface for automatic robot welding
programming”, Sensor Review Journal, MCB University Press, July 2002.

Bloomer, J, "Power Programming with RPC", O'Reilly & Associates, Inc., 1992.

Box, D, "Essential COM", Addison-Wesley, 1998

Rogerson, D, "Inside COM", Microsoft Press, 1997.

Visual C++ NET 2003 Programmers Reference, Microsoft, 2003 (reference can be
found at Microsoft’s Web site in the Visual C++ NET location)

“World Robotics 2004 — Statistics, Market Analysis, Forecasts, Case Studies and
Profitability of Robot Investment”, International Federation of Robotics and the
United Nations, 2004,

2

Robot Manipulators and Control Systems

2.1 Introduction

This book focuses on industrial robotic manipulators and on industrial
manufacturing cells built using that type of robots. This chapter covers the current
practical methodologies for kinematics and dynamics modeling and computations.
The kinematics model represents the motion of the robot without considering the
forces that cause the motion. The dynamics model establishes the relationships
between the motion and the forces involved, taking into account the masses and
moments of inertia, i.e., the dynamics model considers the masses and inertias
involved and relates the forces with the observed motion, or instead calculates the
forces necessary to produce the required motion. These topics are considered very
important to study and efficient use of industrial robots.

Both the kinematics and dynamics models are used currently to design, simulate,
and control industrial robots. The kinematics model is a prerequisite for the
dynamics model and fundamental for practical aspects like motion planning,
singularity and workspace analysis, and manufacturing cell graphical simulation.
For example, the majority of the robot manufacturers and many independent
software vendors offer graphical environments where users, namely developers and
system integrators, can design and simulate their own manufacturing cell projects
(Figure 2.1).

Kinematics and dynamics modeling is the subject of numerous publications and
textbooks [1-4]. The objective here is to present the topics without prerequisites,
covering the fundamentals. Consequently, a real industrial robot will be used as an
example which makes the chapter more practical, and easier to read. Nevertheless,
the reader is invited to seek further explanation in the following very good sources:

1. Introduction to Robotics, JJ Craig, John Willey and Sons, Chapters 2 to 7.

36 Industrial Robots Programming

2. Modeling and Control of Robotic Manipulators, F. Sciavicco and B.
Siciliano, Mcgraw Hill, Chapters 2 to 5.

3. Handbook of Industrial Robotics, 2™ edition, Shimon Nof, Chapter 6
written by A. Goldenberg and M. Emani.

e Frogam MtMove Frocess Tools \edow Hep
L Z g RONN YD L R e RGadRbA-p
6 =) P 500 = Detauts Mo = catd A G

ovel E]

oe T_F q_500
St Fage Ascweld PowerPac | View] L__"

2 -.. S‘. T

Figure 2.1 Aspect of a graphical simulation package (RobotStudio — ABB Robotics)

Another important practical aspect is the way how these topics are implemented
and used by actual robot control systems. This chapter also reviews the
fundamental aspects of robot control systems from the perspective of an engineer
and of a system integrator. The objective is to introduce the main components and
modules of modemn robot control systems, by examining some of the control
systems available commercially.

2.2 Kinematics

Actual industrial robot manipulators are very advanced machines exhibiting high
precision and repeatability. It’s common to have medium payload robots (16 to
20kg of payload) offering repeatability up to 0.1 mm, with smaller robots
exhibiting even better performances (up to 0.01 mm). These industrial robots are
basically composed by rigid links, connected in series by joints (normally six
joints), having one end fixed (base) and another free to move and perform useful
work when properly tooled (end-effector). As with the human arm, robot
manipulators use the first three joints (arm) to position the structure and the
remaining joints (wrist, composed of three joints in the case of the industrial
manipulators) are used to orient the end-effector. There are five types of arms
commonly used by actual industrial robot manipulators (Figure 2.2): cartesian,
cylindrical, polar, SCARA and revolution.

Robot Manipulators and Control Systems 37

SCARA

Figure 2.2 Types of arms used with actual robot manipulators
In terms of wrist designs, there are two main configurations (Figure 2.3):

1. pitch-yaw-roll (XYZ) like the human arm
2. roll-pitch-roll (ZYZ) or spherical wrist

roll-pitch-roli (ZYZ) or spherical Wrist pitch-yaw-roll (YXZ)
Figure 2.3 Wrist design configurations

The spherical wrist is the most popular because it is mechanically simpler to
implement. Nevertheless, it exhibits singular configurations that can be identified

38 Industrial Robots Programming

and consequently avoided when operating with the robot. The trade between
simplicity of robust solutions and the existence of singular configurations is
favorable to the spherical wrist design, and that is the reason for its success.

The position and orientation of the robot’s end-effector (tool) is not directly
measured but instead computed using the individual joint position readings and the
kinematics of the robot. Inverse kinematics is used to obtain the joint positions
required for the desired end-effector position and orientation [1]. Those
transformations involve three different representation spaces: actuator space, joint
space and cartesian space. The relationships between those spaces will be
established here, with application to an ABB IRB1400 industrial robot (Figure
2.4). The discussion will be kept general for an anthropomorphic' manipulator with
a spherical wrist’.

| 3

5/ Joint 1

Spherical Wrist

Joint 3
Y

Joint 8

iy siydiowodoiyuy

Figure 2.4 ABB IRB1400 industrial robot

' An anthropomorphic structure is a set of three revolute joints, with the first joint
orthogonal to the other two which are parallel
ZA spherical wrist has three revolute joints whose axes intersect at a single point

Robot Manipulators and Control Systems

Table 2.1 Denavit-Hartenberg parameters for the JRB1400

Link | 6;(9) ai; () a; (mm) di (mm)
1 0, (0°) 0° 0 475

2 0, (90°) 90° 150 0

3 05 (0°) 0° 600 0

4 04 (0°) 90° 120 720

5 05 (0%) -90° 0 0

6 86 (0°) 90° 0 85+d

where d is an extra length associated with the end-effector

Table 2.2 Workspace and maximum velocities for the IRB1400

Joint | Workspace (°) Maximum Velocity (%/s)
1 +170° to -170° 110%s
2 +70° to -70° 110%s
3 +70° to -65° 110%s
4 +150° to -150° 280%s
5 +115%°t0 -115° 280%s
6 +300° to -300° 280%s

39

Figure 2.5 represents, for simplicity, the robot manipulator axis lines and the
assigned frames. The Denavit-Hartenberg parameters, the joint range and velocity
limits are presented in Tables 2.1 and 2.2. The represented frames and associated
parameters were found using Craig’s convention [1].

2.2.1 Direct Kinematics

By simple inspection of Figure 2.5 it is easy to conclude that the last three axes
form a set of ZYZ Euler angles [1,2] with respect to frame 4. In fact, the overall
rotation produced by those axes is obtained from:

1. rotation about Z4 by 6,

2. rotation about Y ';=Z's by 05

3. rotation about Z'';=Z""s by 0.2

which gives the following rotation matrix,

3 Y’, corresponds to axis Y, after rotation about Z, by 0, and Z’*, corresponds to Z, after
rotation about Y'4=Z'5 by 65

40 Industrial Robots Programming

g

{6}

Ay

{4}

(O T —

{0}

Figure 2.5 Link frame assignment

Robot Manipulators and Control Systems 41

Ruter =Rz (84)R 4 (B5).R 14 (86) =

Cq4 =S4 0 Cs 0 S5 [|[Cs —Sg 0
S4 Cyq ol 0 1 0 Sg Cg 0 (21)
_0 0 1 —Sg 0 Cs 0 0

If

C4Cs5C6 —5486 —C4Cs56 =54C¢ C455 otz I3
84C5Ce TC48g —84C586 +C4Cq SyS85 | =Ty TIpyp Ipg =R

~85C¢ 85S¢ Cs I3;p I3yp TI33

The above rotation matrix R, in accordance with the assigned frame settings,
should verify the following two equations:

1 0 0
Ri={0 0 -1|R
01 0
R(0; =0)=R¢ (2.2)

The values of 65, 65 and 64 can be now obtained. Comparing r;3 with 1y
(considering ss # 0) results in,

04 =Atan2(ry;,113) 2.3)
Squaring and summing r;3 and ry; and comparing the result with r3; gives,

05 = Atan2(yr5 +15,133) (2.4)
if a positive square-root of 13 +r%; is chosen: this assumption limits the range of 85
to [0,x].

Using the same argument now considering elements r3; and r3; the following is
obtained for O4:

0¢ = Atan2(r3y,—13;) 2.5)

For 05 e [-x,0] the solution is:

04 = Atan 2(~1p3,-1y3)

85 = A tan 2(—y/rf3 +133 ,133)
96 =Atan 2(—r32,r31) (26)

The IRB1400 is an anthropomorphic manipulator with spherical wrist. The
anthropomorphic structure of the first three joints is the one that offers better

42 Industrial Robots Programming

dexterity to the robot manipulator. The first three joints are used to position the
wrist. The orientation of the wrist is managed by the wrist spherical structure,
which is also the one that gives higher dexterity. Using the link transformation
matrix definition derived at [1],

¢ -8 0 8
it 2| i CiCCi Sy —said; @7
Si{S0Lj. CiSOliy Coy 6 d;
0 0 0 1

the direct kinematics of the ABB IRB1400 robot manipulator can be easily
obtained (as presented in Figure 2.6).

’—CI =51

0 0 —S53 —C3 0 ay C3 —S3 0 as
S c 0 0 0 0 -1 0 s [¢ 0 0
Tl0 (51 1 T21 - T32 _|93 3
0 1 4, ¢, -s, 0 O 0 0 1 0
[0 0 0 1 0 0 0 1 0 0 0 1
(¢4 —s4 0 ag] cs -85 0 0
0 0 -1 -d 0 0 1 0
T} = Al oTd =
S4 Cq 0 0 —85 —Cg 0 0
10 0 0 1 | 0 0 01
—06 —56 0 0 1 —Cy8) —C1C2 Sy alcl
0 0 -1 -d —81S9 —8$1Cy —C{ a;s
T65 _ 6 T20 | 78182 12 1 218
S6 C6 0 0 Cy —85 0 dl
L0 0 0 1] 0 0 0 1
—Ci823 —C€C3 S| —aCS3 +3,Cy
TO | 7S1523 7S1C23 —C1 —as8iSy a8
3 Co3 =853 0 a,Cy +d1
0 0 0 1
—C1823C4 +8184 €32384 +51C4 C1Cp3 d4C1Co3 —a3C 823 —aC 8y +2(C
T = —81823C4 €184 $1S2384 —C1Cq 8123 d481Cp3 —2381893 —2,815y +28)
€23C4 2384 $23 dgsp3 +a3cp3 +ascy +d;
0 0 0 1
-C4CSC6 —S4S6 '—040556—3406 C4SS d6C455 +33
T = 85C6 —858¢ —cs —dges—dy
6 S4C5C6 +C456 '—S4C536 +C4C6 5455 d65485
| 0 0 0 1

Robot Manipulators and Control Systems 43

0
cscg ~Cs8g S5 dgss Ny ny O3 Py
S c 0 0 Iy I r: 0 .
Té=| ¢ 6 and T = 21 2 B pg with,
—85Cs S58¢ Cs d6c5 B I3 NIy D,
0 0 0 1 0 0 0 1

111 = ((5154 - C1523C4)Cs - ©1€2355)C6 T (C152384 T 51C4)S6

T2 = ((~8154 1 €1823C4)Cs + C1C2385)S6 + (C(52384 + 51C4)C6

113 = (-C1523C4 + 5184)85 + C1C23C5

121 = ((-51523C4 - C184)Cs - 81C2385)Cs + (5152354 - €1C4)S6

r22 = {(S1523C4 + €154)Cs + 51C2385)56 + (8182384 - C1C4)Cs

T3 = (~81523C4 - €184)85 + 81€23Cs

131 = (C23C4Cs - 52385)Cg - C235486

I3y = (-C23C4Cs T 8385)S6 - €2354Cs

r303 = 30485 1 823Cs

P x = ((-C1823C4 T 5184)85 + C1€23Cs)ds + daCiC23 - 831823 -85€182 + A€y
Poy = ((-51523C4 - C154)55 + 51C23C5)ds + a8 Ca3 - 238183 - @88 + ;8

0’ _
Pz = ds(C23C4Ss + 823Cs) + dySa3 + a3Cas + Ay + d;

Figure 2.6 Direct kinematics of an ABB IRB 1400 industrial robot

Having derived the direct kinematics of the IRB 1400, it’s now possible to obtain
the end-effector position and orientation from the individual joint angles
(61,02,03,04;05,66).

2.2.2 Inverse Kinematics

Inverse kinematics deals with the problem of finding the required joint angles to
produce a certain desired position and orientation of the end-effector. Finding the
inverse kinematics solution for a general manipulator can be a very tricky task.
Generally they are non-linear equations. Close-form solutions may not be possible
and multiple, infinity, or impossible solutions can arise. Nevertheless, special cases
have a closed-form solution and can be solved.

The sufficient condition for solving a six-axis manipulator is that it must have three
consecutive revolute axes that intersect at a common point: Pieper condition [5].
Three consecutive revolute parallel axes is a special case of the above condition,
since parallel lines can be considered to intersect at infinity. The ABB IRB 1400
meets the Pieper condition due to the spherical wrist.

For these types of manipulators, i.e. manipulators that meet the Pieper condition, it
is possible to decouple the inverse kinematics problem into two sub-problems:
position and orientation. A simple strategy [1,2] can then be used to solve the
inverse kinematics, by separating the position problem from the orientation
problem. Consider Figure 2.5, where the position and orientation of the end-

44 Industrial Robots Programming

effector is defined in terms of p and RY =[n s a]. The wrist position (p,,) can be
found using

pPw=p-dsa (2.8)
It is now possible to find the inverse kinematics for 6,0, and 8, and solve the first
inverse kinematics sub-problem, i.e, the position sub-problem. Considering Figure

2.7 it is easy to see that

0) =Atan 2(pwyapwx)4 (2.9)

Once 0, is known the problem reduces to solving a planar structure. Looking to
Figure 2.7 it is possible to successively write

Pwxi :vp\zsvx +p%vy (2.10)

Pwal =Pwz —4d) (211)

Pwxl' =Pwxl — 31 (212)

Pwyl' = Pwyt (2.13)

Pwzt' =Pwzl (214)
and

Pwxl' = —878) +8xCy3 (2.15)

Pwazl' =82C) tay8s3 (216)

* Another possibility would be 0 =n+Atan2(py,,pyx)if weset0,->n-6,

Robot Manipulators and Control Systems 45

p(wy Y%
Zo'zj » }’ﬂl
95 (14 P
x3 WA .
2
y3 62 x f
a 2 0
1 Pty .
!
f 1
! Y.
oo

Figure 2.7 Anthropomorphic structure

46 Industrial Robots Programming

Squaring and summing equations (2.15) and (2.16) results in
paxl' +p%)vzl’ = a% +a)2(tajsaysy
which gives

2 2 2 2
_ Pwxl' TPwap —233 —8x
2aja,

83

Setting cy = #4/1-s3 the solution for 8’5 will be

0'y = Atan2(sy,cy)
93 = 6'3-Atan(a3 /d4)

@.17)

(2.18)

(2.19)

Now, using 6’; in (2.15)-(2.16) results in a system with two equations with s, and

¢, unknowns:

Pwxl! = 85 +a, (€203 —$783:)

Puwztr =828 +a,(s5C3 +5363)
Solving for s, and ¢, gives

- _(32 +axs?s')l:’wxl' T35C3Dwal!

a% +a,2(+2a5a,83

S2

. (ap +2553)Pwal' +85C3Puxl'
a% +a,2(+2a5a,53

€2

and the solution for 6, will be

92 :Atan2(82,02)

(2.20)

@.21)

(2.22)

(2.23)

To solve the second inverse kinematics sub-problem (orientation), i.e., to find the
required joint angles 64, 05 and 6¢ corresponding to a given end-effector

orientation R} , we simply take advantage of the special configuration of the last

three joints. Because the orientation of the end-effector is defined by RY, it’s

simple to get R} from,
R§=R$TRG =R R

which gives

(2.24)

Robot Manipulators and Control Systems 47

—C1823 —S8Sp3 Co3 ||a1p a2 a3 hy T2 nh3
3_ -

Rg=|-cic3n —siCy3 —sy3fay axp an (= In Iy (2.25)
8 —c 0 flas; ax azx| |3y I3 I

with
1) = -C182381; - S182382) T Co3831)y = -C18238)7 - 81823872 T+ C2383;
13 = -C1S238)3 - S1823823 T 23833 I3 = -C1C3a13 - §1C23a23 - §23a33
I33 = 81d13 - C1az3
Iy1 = -C1Cy3a11 - 51C23a2] - 82331 Iy = =C1Cp3dy2 = 81C2382 - S23832
I3 = 81ay1 -~ C1dy I3; = 81d52 - €122

It is now possible to use the previous result for the ZYZ Euler angles to obtain the
solutions for 0,4, 05 and 05 .

For 05 e [0, =] the solution is

94 = Atan 2(r33,r13)

85 = A tan 2(y/r + 18 ,—123)
96 = Atan 2(—1'22 5T) (226)

For 05 € [-n,0] the solution is

94 = Atan 2(—1'33 ,—r13)
05 =Atan2(- r]23 +r323 ,13)
06 = Atan2(ry;,—T;) 2.27)

2.3 Jacobian

In this section, the equations necessary to compute the jacobian of the ABB
IRB1400 industrial robot are presented and the jacobian is obtained. Nevertheless,
the discussion will be kept general for an anthropomorphic robot manipulator. In
the process, the equations that describe the linear and angular velocities, static
forces, and moments of each of the manipulator links are also presented and the
corresponding developments applied to the selected robot.

The jacobian of any robot manipulator structure is a matrix that relates the end-
effector linear and angular Cartesian velocities with the individual joint velocities:

48 Industrial Robots Programming

\ {V} =1(0)6 (2.28)
w

where J(0) is the jacobian matrix of the robot manipulator, 6 = [él 05,00,]T is the
joint velocity vector, v= [vl,v2,v3]r is the end-effector linear velocity vector, and

w=[w,,wy,w3]|" is the end-effector angular velocity vector.

The jacobian is an nxm matrix, where n is the number of degrees of freedom of the
robot manipulator and m is the number of joints. Considering an anthropomorphic
robot manipulator with a spherical wrist, the corresponding jacobian will be a 6x6
matrix. Basically there are two ways to compute the jacobian:

1. By direct differentiation of the direct kinematics function with respect to
the joint variables. This usually leads to the so-called analytical jacobian,

x= m =1 (0)8 (2.29)

where p is the time derivative of the position of the end-effector frame

with respect to the base frame, ¢ is the time derivative of the orientation
vector expressed in terms of three variables (for instance, ZYZ Euler
angles). Obviously, p is the translational velocity of the end-effector and

¢ is the rotational velocity.
2. By computing the contributions of each joint velocity to the components of
the end-effector Cartesian linear and angular velocities. This procedure

leads to the geometric jacobian.

Generally, the analytical and geometrical jacobian are different from each other.
Nevertheless, it is always possible to write

w =T($).0 (2.30)

where T is a transformation matrix from ¢ to w. Once T(9) is given, the analytical
jacobian and geometric jacobian can be related by

1 o], .
v=[0 T((p)}.x-”[}(d)).x 2.31)

which gives

I=Ty @) A (232)

Robot Manipulators and Control Systems 49

Here the geometric jacobian will be calculated, because in the process the linear
and angular velocities of each link will also be obtained. Nevertheless, the
analytical jacobian should be used when the variables are defined in the operational
space.

First the equations for the link linear and angular velocities and accelerations [1,2]
will be obtained. Associating a frame to each rigid body, the rigid body motion can
be described by the relative motion of the associated frames. Consider a frame {B}
associated with a point D (Figure 2.8).

{B}
(At
///v
AP, — /
/// }\»D
‘/—,777>

Figure 2.8 Describing point D relative to a stationary frame

The position vector of point D in frame {B} is D and the relative velocity of D
described about an arbitrary stationary frame {A} is [6],

AVp ="V + 4R BV (2.33)

If the relative motion between {A} and {B} is non-linear then (2.33) is not valid.
The relative motion between two frames {A} and {B} has generally two
components: a linear component Vg and a non-linear component (the angular or
rotational acceleration) “Qj as in (Figure 2.9).

50 Industrial Robots Programming

A}

Figure 2.9 Relative motion between two frames {A} and {B}

In that general case it can be written [1,6,7],
"Vo="Va+ 4R "Vp+Qnx 4R "D .34

where #V), is the linear velocity of the origin of frame {B} about frame {A}, 4R
BV, is the linear velocity of point D about frame {B} expressed in terms of {A}
(i.e., 4R PVp="(BVp)), *Qp x 4R PD =*Q x “D is the linear velocity of point

D about {A} expressed in terms of {A} as the result of the angular velocity *Qy of
{B} about {A}.

If D is stationary in {B} (®°V}, = 0) and the origins of {A} and {B} are coincident,
i.e., the relative motion of D about {A} is only due to the rotation motion of {B}
about {A} described by *Qy , then *Vp, =*Qp x 4R PD. This equation can also be
obtained by differentiation of

AD= 4R ®D (2.35)
which yields

AD= AR D+ 4R BD (2.36)
or since in this special case §R B D =0,

AVp= 4R °D 2.37)

Robot Manipulators and Control Systems 51

Substituting in (2.37) ®D = §R ™" AD results in

AVp=48R AR 4D (2.38)
Because fR is an orthonormal matrix, we can write [1,7],

s8R §R7' =38 (2.39)
where §S is a skew-symmetric matrix associated with 4R .
Using (2.39) in (2.38) gives

AVvp =4S 4D (2.40)
The skew-symmetric matrix §S defined in (2.39) is called angular velocity matrix.

Writing S as

0 -9, Q
S=|@q, o -0, (2.41)
-Q, Q0
and the vector Q (3x1) as
QX
Q= 1q, (2.42)
QZ
results in
o -9, Q,|[p, -Q,D, +Q.D,
SD=1{ qQ, 0 ~Q.|.[Dy|=| Q,D-D, | =QxD (2.43)
-9, Q, 0 ||D, -Q,D, +Q,D,

where D =(D,, Dy, D, Y is a position vector. The vector Q associated with the
angular velocity matrix is called an angular velocity vector. Using (2.43) and
(2.40) gives

M =40 x *D (2.44)

52 Industrial Robots Programming

Considering now the linear and angular accelerations of each link, it’s possible to
write by direct differentiation of (2.34),

AVL="Vg+ (4R BVp) +20p x 4R BD + 20y x (4R EDY (2.45)
or since,
(4R Bvpy = 4R® L+%Qpx 4R BVp
and
(8R°D) = R *Vp +*Qp x 3R "D,
AVp="Vg+ 4R BVp+2205 x 4R BVp +
+4 Qpx AR BD+40Q5 x (*Q x 4R ED) (2.46)

The above equation is the general equation for the linear acceleration of point D
about {A} and expressed in terms of {A}. If ®D is a constant vector (like in
robotics applications) then equation (2.46) simplifies to

AVp="Vp+2Qpx §R PD+40 x (*Qp x 4R °D) (2.47)
because BVp =B V , =0.
If we consider a third frame {C}, with “Qjg being the angular velocity of {B} about
{A} and ®Qc the angular velocity of {B} about {C}, then the angular velocity of
{C} about {A} is,

AQC = AQB + ‘QR BQC (248)

Taking the derivative of (2.48) results in

AQce="Qp+ (AR BQ0y =g+ 4R B Q¢+ x 4R B (2.49)

This is a very useful equation to compute the angular acceleration propagation
from link to link.

Let’s apply this to a robot manipulator. As mentioned before we will consider only
rigid manipulators with revolutionary joints, with the base frame as the reference
frame.

Robot Manipulators and Control Systems 53

Axis i+1

| Axis i
Figure 2.10 Linear and angular velocity vectors of adjacent links
The angular velocity of link (i+1), expressed in terms of {i}, is given by’
Wit ='Wi+ [y R 0 " Zi (2.50)

It is equal to the angular velocity of link (i) plus the angular velocity of joint (i+1)
about Z;;, expressed in terms of {i}.

Multiplying both sides of (2.50) by "*!R results in the angular velocity of link
(i+1) expressed in terms of {i+1},

Hwir = MR 'wiy = MR 'wi+ 650 M Z (2.51)

3 Note that wi+1 = 0Qi+1 and that iwi+1 is the same quantity expressed in terms of {i}.

54 Industrial Robots Programming

The linear velocity of the origin of {i+1}, expressed in terms of {i}, is given by
Wit = i+ wi x Piy (2.52)

It is equal to the linear velocity of the origin of {i} plus a term that results from the
rotation of the link (i+1) about Z;;,. The same solution can be obtained from (7) by
making 'P;;; constant in {i}, i.e., by making 'vi; = 0.

Multiplying both sides of (2.52) by IR we get the linear velocity of link (i+1)
expressed in terms of {i+1}

i = MR (it iw x Piyy) (2.53)

Applying (2.51) and (2.53) from link to link, the equations for "w, and "v, (where n
is the number of joints) will be obtained. The equations for °w, and %, can be

obtained by pre-multiplying "w, and v, by °R:

%, = IR "w, (2.54)

Oy, = IR ", (2.55)
It’s also important to know how forces and moments distribute through the links
and joints of the robot manipulator in a static situation, i.e., how to compute the
forces and moments that keep the manipulator still in the various operating static
configurations. Considering the manipulator at some configuration, the static
equilibrium is obtained by proper balancing of the forces and moments applied to
each joint and link, i.e., by cancelling the resultant of all the forces applied to the
center of mass of each link (static equilibrium). The objective is to find the set of

moments that should be applied to each joint to keep the manipulator in static
equilibrium for some working configuration (Figure 2.11).

Considering,

f; = force applied at link (i) by link (i-1)
n; = moment in link (i) due to link (i-1)

the static equilibrium is obtained when

ifi - ifi+| =0 and ini - inm - iPi+1 X ifi+1 =0 (2.56)
i.e., when,

=" 2.57)

and

Robot Manipulators and Control Systems 55

= "njsy + Piy x 'finy (2.58)

Axis i+1

Figure 2.11 Static equilibrium: force balancing over link (i)

Writing the above equations in their own reference frame gives

fi= 4R Ty (2.59)
=1 R gy + Py x (2.60)

To compute the set of joint moments that hold the manipulator in static equilibrium
we must obtain, for each joint (i), the projection of 'n; over the joint axis

=Tz @2.61)

56 Industrial Robots Programming

Returning to the jacobian, from (2.54)-(2.55) it’s possible to write

wist =i+ LR (0141 ' Zi0) (2.62)

0Vi+1 = OVi + oWi X OPii+1 (263)

Using (1) and (2.62)-(2.63) the i column of the jacobian can be found to be

Opi
i {Zix P"} (2.64)

Zi

Applying (2.62), (2.63), and (2.64) to the IRB1400 industrial robot, the equations
presented in Figure 2.12 are obtained.

0 —alslél Sléz
OV():O OW():O 0V1=0 OWI—: 0 0V2= alclel OW2= —C192
6, 0 8,
(azs157 —ai81)0; —a,01¢,6, 51(82 +63)
0 . X 0 27T
vy =|(ajc; —a;¢182)0; —a,¢,8;0, wy =|=0(6; +03)
23870, 0,
Oy, =

(agsy —a; +a3503 —d4023)810) —(azcy +dy53 —a3¢93)c10; —(d4523 +a3¢93)c 05
(a) —aps; +d4cy3 —23593)c10) = (a0, +dyS93 +23623)8105 —(dsS23 +33¢23)503
(dg93 —a3593 ~a25)0; +(dg23 —a3593)03

$1(8 +03)+cie3by
Owy =] —c;(8; +03)+s1c5304
él +Sz3é4

OVS:

(agsy —a) +a3sy3 ~d4cp3)810; —(azCy +dgsp3 —23C3)c10y —(d4sy3 +a3c)O3
(aj —apsy +d4c93 —a3893)10) —(a¢y +d4s3 +a3023)8187 —(d4s23 +a3023)80;
(dgc3 —a38y3 —a287)0y +(d4C3 —a3823)0;

. . . 0
81(87 +83) +ciC304 +(C182384 +81C4)05 vg(x)
0 A A : N o, _|o
W =|—C (82 +03)+5C230, +(5152384 —€1¢4)05 ve =| "ve(y)
. : : o
B1 +52304 —€238485 ve(2)

0 .
ve(x) = ((a28; - @) + 23823 - d4C23)s) + do((51523C4 1 €154)85 - 51C23C5)) 0 +
+ ((-a265 - das23 - 83¢23) - de(Ca3Ca8s + $2305))C1 05 + (€1(-daSas - 85023) - d(Ca3Ca8s +

+523C5)) B3 + dg(51C4S5 + ©15485523) 04 + dg(S1C584 = C1C2385 - €1C4C5823) O

Robot Manipulators and Control Systems 57

0vé(y) = ((a1 - B8y + daCas - As8x)C; H((-c1*s23*cd+s1*s4)*s5+cl *c23*c5)*dg) 6, -
(230 + dysps + a3623) + dg(C230a85 + 523¢5))81 05 - ((dass + ascaz)sy +
+ dgs1(C23CaSs+ 823C5)) O3 + do(523515455 - €1€485) B4 - d(Ca38185 + C184C5 +

-+ 510405523) 95

o .
ve(z) = ((Ca3Cs - S23C485)ds + dacas -23823 -2252) 0, + ((C23Cs - $23C485)dg +dacos -

a3823) 05 - 5534023d6_ ot (€23C5C4 - $5823)ds 05

Oy =

$1(8 +03)+¢1C3084 +(c1852384 +5104)085 +((—01823¢4 +5154)85 +¢1C23C5)06

—Cy (92 +e3)+81023e4 +(SIS23S4 —CIC4)65 —((51523C4 +Cls4)85 "5102305)66
0 +82384 —c235405 +(c30485 +523¢5)0

§1=
(apsy —ajp+azsyy ~dgcr)sy —(axcy +d4sp3 —azcaz)e; —(dgspy+azep)e, 0
(a;—apsy +d4cp3 —agsyz)e; —(apCy +d4sp3 +azeps)sy —(dgsy3 +azeyslsy 0

0 dgcp3 —a38y; a8 dgcay —a3sy3 0
0 S1 S C1Ca3
0 -¢ -C 1823
L 1 0 0 $23
[agsisy —ays; —azeic, 0] RSTRRR TR T VI PR P
a10; —a2018y —axcysy 0 Jor T2 I3 Jog Jos Jas
0= 0 —azs; 0 0y - Jat Iz I3z Jss Jas Uz
0 5| 8] oo oo Ja3 Jag Jas Jas
0 —¢ —c Jsi Yso Ts3 Jsa Jss Jse
L 1 0 0] et Je2 Yoz Jea o5 g6

Ji1 = (a2%s2 - al + a3*s23 - d4*c23)*s1 + d6*((s1*c4*s23 + c1¥s4)*s5 —
- s1*¢23%*c5),

Jip= ((-a2*c2 - d4*s23 - a3*c23) - d6*(c23*cd*s5 + s23*c5))*cl;

Ji3=cl*((-d4*s23 - a3*¢23) - d6*(c23*c4*s5 + s23%c5));

Jia = d6*(s1*c4*sS5 + c1*s4*s5%523);

Jis = d6*(s1*c5*s4 - c1*c23%s5 - c1*cd*c5%s23);

Jis=0;

Jy = (al - a2*s2 + d4*c23 - a3*s23)*cl +
+{(-c1*s23*cd+s1*s4)*s5+cl*c23*c5)*d6;
Jpp = - ((a2%c2 + d4*s23 + a3*c23) + d6*(c23*cd*sS5 + s23*cS5))*s1;

58 Industrial Robots Programming

J23 = - (d4*s23 + a3*c23)*s1 - d6*s1*(c23*cd*s5 + s23*cS);
J24 = d6*(s23%s1*s4%*s5 - c1¥c4*s5);

J25 = - d6*(c23*s1*s5 + cl1*sd*cS + s1¥c4*c5%523);

Jz6=0;

J31=0;

J3y = (c23%c5 - 523*c4*s5)*d6 + d4*c23 -a3*s23 -a2*s2;
Ja3 = (€23%c5 - $23*c4*s5)*d6 +d4*c23 -a3%s23;

J3q = - s5%s4*¢23*d6,

J3s = (c23*c5%c4 - s5%523)*d6;

J36 =0,
Ja=0;
Jup =sl;
Jy3 =sl;
J44 = CI*C23,

Jas = c1*s23*s4 + s1*c4;
Ju6= (- c1%523*c4 + s1*s4)*s5 + c1#c23%c5;

J51=0;

sy =-cl;
J53 = - Cl,
Jsq =s1*¢23;

Jss = s1*s23%s4 - ¢cl*c4,
Js6 = - ((s1*s23%*c4 + c1*s4)*s5 - s1*c23*c5);

Ja=1;
Jo2=0;

Joa = 0;

J64 = 823,
Jos = -€23%s4;

Jo6 = c23*c4*sS5 + s23*cS;

Note: These calculations were made in MatLab using the symbolic Toolbox.

Figure 2.12 Linear and angular velocities, jacobian matrices $J, 3J and J

2.4 Singularities

If the objective is to use the differential kinematics equation (2.28) for simplicity
and efficiency, then it’s necessary to deal with the singularities of the jacobian. The
differential kinematics equation maps the vector of joint velocities
qa=[q @ 43 s s qeJf with the end-effector twist vector V= [VT wT]T .
This mapping is seriously affected when the jacobian is rank-deficient (kinematics

Robot Manipulators and Control Systems 59

singularities), because in those situations the mobility of the robot is reduced, the
inverse kinematics may show infinite solutions, and (because the jacobian
determinant may take very small values near singularities) small task space
velocities may cause very large joint velocities [2]. So, to control the robot
manipulator it is necessary to find all singular configurations and design a scheme
to identify a singular configuration approach.

In order to find all the singular points of the ABB IRB 1400 anthropomorphic
industrial robot, which has a very simple kinematic structure, a scheme will be
used that separates the arm singularities and the wrist singularities. By dividing the
jacobian into four 3x3 blocks it can then be expressed as

J J
0 TRV
J= (2.65)
6 [sz Jzz}

Now, looking to all the elements of J;, (Figure 2.12) it is clear that det(J;,)
vanishes making dg=0. That is equivalent to choosing the origin of the end-effector
frame coincident with the origin of axis 4 and 5, i.e., making p, = p. Since
singularities are a characteristic of the robot structure and do not depend on the
frames chosen to describe kinematically the robot, this procedure is allowed. It’s
possible then to write

det(J) = det(J;)*det(J,,) (2.66)

The robot’s singular configurations are the ones that make det(J) = 0 which means
from (2.66)

det(J,)=0 or det(Jp)="0 (2.67)

Solving the first equation leads to the so called arm singularities and solving the
second leads to the wrist singularities.

Wrist Singularities
The wrist singularities can be found just by analyzing the structure of det(Jp,):

det(Ipy) = detlz, 25 2

CiCo3 €182384 —CiCq (8184~ C1S23C5)S5 +C1C23Cs (2.68)
det 81Co3 5189384 —CiCy — (5182304 + C]S4)SS +81C93Cs

523 —C2384 ©€23C485 +823C5

The above determinant is non-null if the column vectors of Jy, (which correspond
to z4, z5, and zg) are linearly independent, i.e., the singular configurations are the
ones that make at least two of them linearly dependent. Now, vectors z, and zs are
linearly independent in all configurations, and the same occurs between zs and zg.
This conclusion is easy to understand looking to (2.68) and/or remembering that z,

60 Industrial Robots Programming

is perpendicular to zs, and zs; is perpendicular to z in all possible robot
configurations. A singular configuration appears when z, and zs are linearly
dependent, i.e., when those axis align with each other, which means ss=0 from
(2.68). Consequently the wrist singular configurations occur when,

0;=0 or 65=n (2.69)

The second condition (05 = 1) is out of joint 5 work range, and because of that is of
no interest, i.e., the wrist singularities will occur whenever 0s = 0.

Arm Singularities
The arm singularities occur when det(J;;) = 0 making again p = p, = ds =0, i.e.,
when

(ag8y —ay +a38y3 —dyco3)s) —(agcy +dysp3 ~asep)e; —(dysys +ascy3)e
detf (a; —ap8y +ds03 —a3sp3)e; —(ag0) +dyso3 +a3¢p3)0p —(dgs23 +2a3ep3)e; |=0

0 dgco3 —a38p3 —ags; d4co3 —a3sy3
(2.70)

Solving (2.70) gives

—a,(dsc; —a353)(a35,3 —dsCy3 +ay8,—2,)=0 2.71)
which [eads to the following conditions:

—a383 +dyc; =0

and/or

23893 —d4Cp3 +a38; —a; =0 (2.72)

The first condition leads to 6, = arctg [—:—i] . The elbow is completely stretched out
3

and the robot manipulator is in the so called elbow singularity. This value of 9; is
out of joint 3’s work range, so it corresponds to a non-reachable configuration, and
because of that is of no interest.

The second condition corresponds to configurations in which the origin of the wrist
(origin of axis 4) lies in the axis of joint 1, i.e., lies in z; (note that z; is coincident
with zy). In those configurations, the position of the wrist cannot be changed by
rotation of the remaining free joint 0, (remember that an anthropomorphic
manipulator with a spherical wrist uses the anthropomorphic arm to position the
spherical wrist, which is then used to set the orientation of the end-effector). The
manipulator is in the so called shoulder singularity.

Robot Manipulators and Control Systems 61

In conclusion, the arm singularities of the ABB IRB 1400 industrial robot are
confined to all the configurations that correspond to a shoulder singularity, i.e., to
configurations where ajsy; —d4cos +a5s, —a; =0.

2.4.1 Brief Overview: Singularity Approach

As already mentioned, the solutions of the inverse kinematics problem can be
computed from

q=IYoVv (2.73)

solving (2.28) in order to q . With this approach it’s possible to compute the joint
trajectories (q, q), initially defined in terms of the end-effector wrist vector V and
of the initial position/orientation. In fact, if g(0) is known it’s possible to calculate:

q (t) from: a) =T ©Vv(©

and

t
q(t) from: a(t) = 4(0) + [(a)da (2.74)
0

Nevertheless, this is only possible if the jacobian is full rank, i.e., if the robot
manipulator is out of singular configurations where the jacobian contains linearly
dependent column vectors. In the neighborhood of a singularity, the jacobian
inverse may take very high values, due to small values of det(J), i.e., in the
neighborhood of a singular point small values of the velocity in the task space (V)
can lead to very high values of the velocity in the joint space (q).

The singular value decomposition (SVD) of the jacobian [3,8-10] is maybe the
most general way to analyze what happens in the neighborhood of a singular point;
also it is the only general reliable method to numerically determine the rank of the
jacobian and the closeness to a singular point. With the inside given by the SVD of
the jacobian, a Damped Least-Square scheme [9] can be optimized to be used in
near-singular configurations. The Damped Least-Square (DLS) scheme trades-off
accuracy of the inverse kinematics solutions with feasibility of those solutions: this
trade-off is regulated by the damping factor & . To see how this works, let’s define

the DLS inverse jacobian by rewriting (2.28) in the form

01T+ g ="V (2.75)

where & is the so-called damping factor. Solving (2.75) in order to q gives

62 Industrial Robots Programming

G=@T+2n v = 3ky (2.76)

with Jy, being the damped least-square jacobian inverse. The solutions of (2.76)
are the ones that minimize the following cost function [2,9,11]:

. 1 . .o 1loa.T.
8@ =2 (V=1 (V-39 +-E4q 2.77)
resulting from the condition
m;n("v_muz +&2J4f) 2.78)

The solutions are a trade-off between the least-square condition and the minimum
norm condition. It is very important to select carefully the damping factor & : small
values of & lead to accurate solutions but with low robustness to the singular or
near-singular occurrences (= high degree of failure in singular or near-singular
configurations), i.e., low robustness to the main reason to use the scheme. High
values of & lead to feasible but awkward solutions.

To understand how to select the damping factor &, in the following the jacobian

will be decomposed using the SVD technique. The SVD of the jacobian can be
expressed as

6
J=uzvT = Zciuiv? (2.79)
1

where o, > 6, > ... > g, > 0 (r = rank(J)) are the jacobian singular values (positive
square roots of the eigenvalues of J'J), v; (columns of the orthogonal matrix V) are
the so-called right or input singular vectors (orthonormal eigenvectors of J'J) and
u; (columns of the orthogonal matrix U) are the so-called left or output singular
vectors (orthonormal eigenvectors of JJ'). The following properties hold:

R(J) =span {uy, ..., u;}®
N(J) = span {vi., ..., Ve}

The range of the jacobian R(J) is the set of all possible task velocities, those that
could result from all possible joint velocities: R(J) = {Ve®R% V = Jq for all
possible q eR®}. The first r input singular vectors constitute a base of R(J). So, if
in a singularity the rank of the jacobian is reduced then one other effect of a
singularity will be the decrease of dim{R(J)] by eliminating a linear combination of

% The span of {a,, a,} is the set of the linear combinations of a,, ... a,.

Robot Manipulators and Control Systems 63

task velocities from the space of feasible velocities, i.e., the reduction of the set of
all possible task velocities.

The null space of the jacobian N(J) is the set of all the joint velocities that produce
a null task velocity at the current configuration: N(J) = { g €R% Jq = 0}. The last
(6-r) output singular vectors constitute a base of N(J). So, in a singular
configuration the dimension of N(J) is increased by adding a linear combination of
joint velocities that produce a null task velocity.

Using the SVD of the jacobian (2.78) in the DLS form of the inverse kinematics
(2.75) results in

6

. O T

q= _— v V (280)
Zchaz o

The following properties hold:

R(Jis) = RATY = N*(3)® = span {uj, ..., u;}
NQus) = RO =R*(3) = span {vi, ..., e} (2.81)

which means that the properties of the damped least-squares inverse solution are
analogous to those of the pseudoinverse solution (remember that the inverse
pseudoinverse solution gives a least-square solution with a minimum norm to
equation (2.28)).

The damping factor has little influence on the components for which o; >> §
because in those situations

i L 2.82)
of+&? o (

i.e., the solutions are similar to the pure least-square solutions.

Nevertheless, when a singularity is approached, the smallest singular value (the r-
th singular value) tend’s to zero, the associated component of the solution is driven
to zero by the factor %i— and the joint velocity associated with the near-degenerate
g

components of the commanded velocity V are progressively reduced, i.e., at a
singular configuration, the joint velocity along v, is removed (no longer remains in

the null-space of the jacobian as in the pure Least-Square solution) and the task

7 1% is the pseudoinverse jacobian.,
¥ Orthogonal complement of the null space joint velocities.

? Orthogonal complement of the feasible space task velocities.

64 Industrial Robots Programming

velocity along u, becomes feasible. That is how the damping factor works; as a
measure or indication of the degree of approximation between the damped and
pure least-square solutions. Then a strategy [8], initially presented by [12], can be
used to adjust & as a function of the closeness to the singularity. Based on the
estimation of the smallest singular value of the jacobian, we can define a singular
region and use the exact solution (§=0) outside the region and a damped solution
inside the region. In this case, a varying & should be used (increasing as we
approach the singular point) to achieve better performance (as mentioned the
damped solutions are different from the exact solutions). The damping factor & can
then be defined using the following law modified from [9]

Gg 2 &

0
Y
R AT
&

where &2, and n are defined by the user to shape the solution to his needs, &

defines the size of the region and G is the estimate of the smallest singular value.

The estimate is done using a recursive algorithm originally presented at [13] and
later extended by [14] to estimate not only the smallest singular value but also the
second smallest singular value. This procedure avoids estimation inaccuracy due to
the cross of the two smallest singular values, when the manipulator approaches
both the wrist and the shoulder singularity. The algorithm is as follows:

Suppose we have estimates of the two last input singular vectors v5 and v¢ with

{’5 & Vs and “\75“ =]
{/6 ~ Vg and ”{’6” =1 (284)

The estimate ¥ is then use to compute ¥ from
(T + €20 = 9 (2.85)
Then the estimate 6¢ is computed from

82 =L g2 (2.86)

Il

and the initial estimate ¥¢ is updated using

Robot Manipulators and Control Systems 65

g =t (2.87)
[l
The second smallest singular value is computed using the estimate v, from,
bTyee2i-(62 + 2ol s = s (2.88)
Then the estimate 6% is computed from
6% = -2 (2.89)
2
and finally the initial estimate V5 is updated using
Vg = —15— (2.90)

Special care should be taken with the numerical implementation of the DLS
inverse kinematics solutions, to correct the numerical drift. Basically a feedback
term can be used [2,9,15] by making

Pg—P
V=Vd+K'e=Vd+K[é(nxnd+sxsd+axad)] (291)

where K is a positive definite diagonal 6x6 matrix, ps and p are the desired and
actual position, and the orientation is defined in terms of the desired and actual (n,
s, a) vectors of the end-effector frame.

Due to the increase of end-effector errors [11] in the neighborhood of a singularity
by means of the near-degenerate components of end-effector velocity, the matrix K
should be corrected using K=pK, , where K, is a diagonal constant matrix and p is
the correcting factor. Now, inside a singular region we should use K=0 because in
some situations the resulting joint velocities can drive the manipulator to reach the
joint limits, even if eventually the error will approach zero. When the manipulator
is sufficiently away from a singularity, we should have p=1. So, generally we
define p as

66 Industrial Robots Programming

0 Cg<¢€
2

= %1—)%7 €< 0g < NE (2.92)
1 otherwise

where n is defined by the user based on self-experience and on test results with a
particular robotic manipulator setup.

2.5 Position Sensing

The IRB1400 uses resolvers [16-19] as position sensors. The drive unit used at this
robot (manufactured by ELMO AB for ABB Robotics), includes a PM AC
synchronous motor, both current feedback devices, a brake, and a brushless
resolver, all assembled at factory ,i.e., they come in one piece [20].

A brushless resolver consists of a stator, a rotor and a rotary transformer. The stator
and rotor windings are distributed in a way that the magnetic flux is distributed as a
sine wave of the angle of rotation (perfect resolver). The output of a resolver is
therefore an AC voltage in accordance with the angular position of the shaft. This
type of position sensor is characterized by its high accuracy output, maintenance
free brushless design, and immunity to noise, vibration, and shock. Other
characteristics introduced by highly automated manufacturer production facilities
include homogeneity in accuracy, transformation ratio, phase-shift, etc.

These characteristics significantly reduce major sources of error such as:

1. Amplitude imbalance due to different amplitudes of the resolver output
signals

2. Imperfect quadrature due to phase-shift

3. Inductance harmonic error due to imperfect inductance profiles, i.e., the
inductance profiles do not follow perfect sine wave as consequence of
imperfect sinusoidal winding

Two types of resolvers can be considered (Figure 2.13): Brushless Amplitude
Output Resolvers (BAOR) and Brushless Phase-Shift Output Resolvers (BPOR)'.
Resolvers of type BAOR are excited by an AC voltage to the rotor winding and the
output is obtained from the stator windings in the form sine and cosine voltages
proportional to the rotation angle 6. Resolvers of the type BPOR are excited by
sine and cosine voltages to the stator windings and the output is obtained from the

' Tamagawa Seiki Co. LTD. names these resolvers as BRX and BRT, respectively.

Robot Manipulators and Control Systems 67
rotor winding in the form of a sine voltage with phase-shifted in proportion to the
rotation angle 0.

The IRB 1400 uses BAOR type resolvers from the Japanese manufacturer
Tamagawa Seiki Co. LTD. [19,20].

BAOR
Excltation : Ert-re=Esin wt

RED/WHT
R T Output : Est1-s3=K Eni-r2 Cos 6
ER‘M?YEL AVHT % Iy TES‘-SS Es2.s4=K Ert-r2 Sin 8 (Normal Type)
Rg o Eszs4= —K Eri-r2 Sin 8 (Reverse Type)
(BLKAWHT) K : Transformation Ratio
2
BLU YEL
PRIMARY SECONDARY
BPOR
RED C;[,," SED/WHT Excitation : Est-sa=Esin ot
St) - R Esz-s4=E Cos wt
Pid ! >
y e o i . : Ens.fo= E - 2
Es1 saT BLK (Lz =52 o ,/ @ g YELNVHT?ER‘ a2 Output : Ens.re=K Est.s3 Cos 8 —K Es2.s4 Sin 6
Ss T g Rz =KE 8in (»t-8) (Normal Type)
SLEM-S«S (BLKAWHT) ERt-2=K Est-53 Cos & + K Esz-s4 Sin ¢
2 | "
BU YEL =KE Sin (wt+8) (Revarse Type)
: formati i
PRIMARY SECONDARY K : Transformation Ratio

Figure 2.13 Types of resolvers

The use of a resolver implies the availability of a resolver to digital converter
(RDC) and processing circuit {21-23]. The RDC is used to track and convert
resolver signals to a digital parallel binary word, generally using a ratiometric
tracking conversion method that improves noise immunity and tolerance to lead
length (important when the converter is remote from the resolver). The RDC
circuit uses an RDC along with the necessary interface and signal conditioning
circuitry. Because noise can degrade significantly the accuracy of the
measurement, special care must be taken with the driving lines from and to the
resolvers: the use of shielded twisted pair cabling and isolation amplifiers may be
needed.

The basic functional diagram of an RDC is presented in Figure 2.14, where it is
used data relative to the Analog Devices RDC model AD2S80A. The converter
works as a type II closed-loop system with the angle ¢ as a control variable (this
angle is the current converter estimate of the angle 0).

Generally, the converter’s functioning can be described as follows: First the inputs
(resolver outputs Esj g4 and Eg,.g3) are multiplied by cos(¢) and sin(9), respectively,
at the ratio multiplier. Then the difference between the signals is computed giving
the ratio multiplier output AC error signal E,; = A} K.E.sin(8 - ¢).sin(wt) , where A,
is the ratio multiplier gain (fixed at 14.5 for AD2S80A). Second, this error signal is

synchronously demodulated at the phase sensitive demodulator (PSD), using the
resolver excitation frequency as a demodulation reference, leaving the error signal

68 Industrial Robots Programming

Epsp = A;K.Esin(06—¢). The output of the demodulator is a DC voltage
proportional to the RMS value of the demodulator input:

£42
T

with the reference signal). Before entering the PSD, the signal passes over an HF'
filter (with components selected by the user) to remove any DC offset voltage.
Then the PSD output passes through the integrator (with components selected by
the user), whose output signal (proportional to the velocity of the resolver) is fed to
the voltage controlled oscillator (VCO). The VCQO integrates the velocity signal
and compares the resulting signal with the minimum DC voltage resolution (uses
two comparators for positive and negative voltages, meaning rotation in the
positive direction or in the negative direction) and updates the up/down counter by
producing the counter clock and direction signal. The value of the internal latch
used to interface with the user is also updated with the counter value. An RDC
works similarly to a successive approximation type analog io digital converter.

k.E.sin(wt).sin(6) AC —
Ratio W’{ml_’ Phase Sensitive
k.E.sin(wt).cos(®) | Multiplier Demodulator

TT{{) Integrator

clock ———e Velocity

* Demodulator _Inputpyg (for sinusoidal input signals in phase or antiphase

Up/Down Counter [Voltage Controlled]
with reset ¢ direction Oscilator
Output to Latch

Figure 2.14 Resolver to digital converter basic functional diagram

The RDC returned digital value is generally a 12, 14, or 16-bit binary number
containing the actual rotation angle. This angle should be mapped to the robot’s
join space. For that, the following guidelines should be used:

1. Choose an angle data format, i.e., degrees, radians

2. Account for the resolver offset'', i.e., the resolver reading when the
manipulator is in the home position. At that point, we should have
number_of rotations = 0 and actual_angle =0

A complete RDC circuit implementation should also save the total number of
rotations in an 8-bit up-down counter/register. In essence, the circuit should give
the rotation angle of the motor in the actual rotation and the total number of
rotations already performed.

" Usually these values are measured by the robot manufacturer and printed on the robot or
in the robot documentation.

Robot Manipulators and Control Systems 69

2.6 Actuators: Motors

Generally the actuators used to move the joints of any industrial robot are motors,
usually DC permanent magnet (PM) motors or AC PM motors. Other motors can
be used, including pneumatic or hydraulic servo motors. The IRB 1400 uses three-
phase synchronous AC PM motors, with six poles (axes 1-3) and four poles (axes
4-6), manufactured by Elmo AB — Sweden.

The three-phase synchronous AC PM motor rotating magnetic field is obtained by
making a three-phase current to flow in the stator coil (Figure 2.15), which has a
sinusoidal distribution. So, a brushless sine wave PM AC synchronous motor is
obviously not mechanically commutated (there are no brushes) but instead the
commutation is done by acting on the three-phase current signals. Nevertheless, the
commutation position of the motor should be retained, i.e., the resolver reading
when the motor is at the electrical home position (electrical 0° position) - this value
is called the commutation offset (COMMOFF),

The usual procedure to find the commutation offsets is as follows:

1. Turn the motor to the commutating position by feeding a positive constant
current to the motor

2. Feed the resolver with the necessary excitation signal (4kHz and 5 V,y, for
IRB 1400 drives)

3. Adjust the resolver to +90° (0,5°), i.e, turn to the maximum value on coil
Y of the resolver with the same phase as the 5V feeding signal. At that
point we should have:

Voltage across coil X =0V
and
Voltage across coil Y = input voltage * transformation ratio

The value of the rotation angle (90 degrees) is the commutation offset. This
procedure is used with the IRB 1400 drives, so that is why the COMMOFFS are
constant for all drives (1.570800 radians). For some older robots, like the ABB
IRB 2000 (up to model M90), the motor and the resolver are separate parts,
assembled together by the manufacturer without following the above referred
procedure. So, the COMMOFFS are different for all drives. The values are
obtained at factory and printed on the robot or in the documentation; nevertheless,
these values can be updated using the robot controller.

A full description of a three-phase synchronous sine wave PM motor can be found
in:

1. Design of Brushless Permanent-Magnet Motors, Herdershot Jr., Magna
Physics Publishing and Clarendon Press, Oxford, 1995, Chapters 6 and 7

2. FElectric Drives and their Controls, RM. Crowder, Clarendon Press,
Oxford, 1995, Chapter 5, section 5.3

Nevertheless, a brief overview is presented here.

70 Industrial Robots Programming

Figure 2.15 Three-phase synchronous motors and current signals

Considering f as the angle between rotor magnet north axis and the stator windings
axis, it can be shown [17] that the motor torque is

T o sin(B) (2.93)

Consequently, the angle 3 must be kept at 90° in order to maximize the torque,
which is done by phasing the current waveforms relative to the actual rotor
position. To ensure that the ampere-conductor distribution remains in synchronism
with the rotor’s magnetic field, the stator supply frequency (f) must be equal to the
rotor angular velocity (w), w, = 2.7.f, which is related to the mechanical angular
velocity of the motor (w,,) by w,, = w/p, where p is the number of the motor pole
pairs. In order to keep the torque angle constant, i.e., to keep the ampere-
distribution north axis in synchronism with the rotor north axis (displaced by 90°),
a high-performance and precise sensor should be used (generally a resolver).

With this type of control action the motor follows the equation
Torque = Flux * Current (2.94)
For this type of motors, the flux is constant, sinusoidally distributed in space, and

the generated EMF varies sinusoidally in each phase. The overall torque-speed
characteristic is presented in Figure 2.16. The maximum torque can be maintained

Robot Manipulators and Control Systems 71

up to the base speed. After that, it is still possible to increase the velocity by
changing 3 but the motor enters the field-weakening mode and any increase in
speed is done at the expense of the peak torque.

Torque

Base Speed
Speed
Figure 2.16 Torque-Speed characteristic of a sine wave motor

The “natural” relations for the back-EMF (E) and for the torque (T), used for a DC
square wave motor still hold for a sine wave motor, i.¢.,

Tzkt*l
E=k, *w, (2.95)
but now with h=3/——?i;atl.

€

The torque constant (k;) and the back-EMF constant (k.) can be measured using the
following equations:

k, =—LL (V-s/rad) (2.96)

Wm

where e is the peak line-line voltage and w, is the mechanical angular velocity.
T

ki == (Nm) (2.97)
i

where i is the peak line current when the motor is in normal operation, measured
using a current sensor connected to measure the phase current directly and then
displayed in an oscilloscope.

It is also possible to write

72 Industrial Robots Programming

e, _ 3

T.WmZkl*’i‘*—=——*éLL*fi\=£* 2*ERMS* 2*IRMS
ke 2 2 (2.98)

= 43 * Egps * Ipmg = Electrical - Mechanical Power Conversion

and,
V3*E *] V3+E
T= RMS "IRMS -k #Ippe =k, = _ﬁMS (2.99)
W 2k O RPM
60

2.6.1 Motor Drive System

In this section, the main circuits necessary to drive a three-phase AC synchronous
PM motor are briefly presented. As already mentioned, a brushless AC PM motor
requires alternating sine wave phase currents, because the motor is designed to
generate sinusoidal back-EMF. The power electronic control circuit is very simple
and uses some control strategy12 to achieve torque, smooth speed, and accurate
control, keeping the current to a safe value. In order to obtain sine wave phase
currents, the power supply (DC voltage) must be switched on and off at high
frequency, under the control of a current regulator that forces the power transistors
to switch on and off in a way that the average current is a sine wave. Basically, the
sine wave reference signals could just be applied directly to the power transistors,
after appropriate power amplification. However, that means using the power
transistors in the proportional or linear region, which will increase the operating
temperature due to the high power loss. The power loss is reduced by switching the
transistors on and off by comparing the sine wave reference with a high frequency
triangular carrier wave (PWM - pulse width modulation circuit). The frequency and
amplitude of the triangular wave are kept constant. The comparator switches on the
transistors when the values of the reference sine wave exceed those of the
triangular wave; and switches them off when the inverse situation occurs (Figure
2.17). The duty ratio is then increased and decreased by the sine wave, centered by
50%. This procedure leads to a average sine wave output, because the output of the
inverter feeding the power transistors is 0V when the duty ratio is 50%.

Special care should be taken in selecting the carrier frequency, because the power
loss increases with increasing frequency and the motor speed response decreases
with decreasing frequency. Torque and current ripples appear more frequently at
higher frequencies as well.

12 A set of rules that determine when the power transistors are switched on and off

Robot Manipulators and Control Systems 73

|
! II
1 1
1 'I
[n h ‘i
! i 1" by
! i" " b
! 1" i "
! i I by
) vy |
! Tt i
! " 1
! t |
! by 1
! " 1

innanaliliE RN R

Figure 2.17 PWM basic functioning

I

[

1 I

f) 1

! |) I

!] o 1
N) y Tl
() | L) | 0t
niy ' L)) i
1y . R LI 1
ey (P! !) i
[, por e by
[| ! | I o
[, L [

[l
1
I
I
t
+

1
1

(
1

|
i

|
|

|
|

|
I

I
1

The basic power electronic circuit to control a sine wave three-phase AC PM
motor is the full-bridge circuit. The transistors used in the circuit must have very
low turn-on and turn-off switching times (of the order of nanoseconds) and some
other properties summarized as follows:

1.

2.

Zero on-state forward voltage drop, to minimize losses and maximize
available “voltage” to force current into the motor

Zero leakage current in the off state, to minimize losses because a power
transistor usually has high voltages across it when it is off, so even a small
leakage current can produce high losses in the transistor’s off state

High forward-blocking capability that should be higher than the supply
voltage by a safety margin (usually 30%). The reverse-blocking capability
is generally a margin of the forward-blocking, usually because the power
transistors are reverse-protected by appropriately connected diodes

High dv/dt capability, because modern power transistors are MOS-gated,
with capacitive input impedance at the gate, which make’s them sensitive
to spurious turn-on when the gate is subjected to a high dv/dt. High dv/dt
immunity is then desirable, but nevertheless a safe procedure is to drive the
gate from a low impedance source/sink

High di/dt capability, to prevent current-crowding effects and second
breakdown the di/dt capability must be high

High-speed switching, from transistors to minimize switching losses and
also from the power diodes, because the commutation of inductive current
from a transistor branch to a diode branch is the most important way to
protect against destructive transient voltages

The full bridge circuit is presented in Figure 2.18 for two popular phase windings:
eye and delta [17]. Figure 2.19 shows line current waveforms for three-phase sine
wave motors, including transistor states and current paths.

74 Industrial Robots Programming

Vs

Q1
D1
1A 1B
4
Q ic
D4
0
A B C
1
i 12 13

—*!:

Eye connected

Vs

Q1
D1
iA 18
Q4
D4
0
A ol
1
i1 i3

Figure 2.18 Full bridge circuit for eye and delta connected windings

Delta connected

oe 300 iA 1200 iB iC
\\r/ ML
Q4 Q1 Q4 |
1 Q6 | Q3 | @5
Q5 Q2 Q5
ABC|{ABC |ABC|ABC | ABC|{ABC!{ABC
s NERARRRSARAEARA RN AN AR

Figure 2.19 Line current waveforms for a sine wave motor, including transistor states and
current paths

Robot Manipulators and Control Systems 75

A general control system for a sine wave three-phase brushless motor is presented
in Figure 2.20: includes a PWM circuit, over current (due to motor stall or short
circuits) protection, a filter to damp DAC steps, a current controller (usually a PI
controller designed to drive the motor current to the desired value) and a sine wave
generator. Synchronization is achieved by changing current references in
accordance with motor position.

Trlangular
Wave
In(u) Fie } Current e
Filter Regulator %- 2
Comparator

Comparator

Rectlfler Bridge

Power Stage

Sincronous
Motor
Reader

Comparator

Torque

Sinewave Ref. o Position
Generator ["Speed

Ref. Speed

Figure 2.20 Block diagram of a general control system for a brushless synchronous three-
phase sine wave motor

2.7 Dynamics

Dynamics deals with mapping forces exerted on the robot’s parts as well as with
the motion of the robot, i.e., its joint positions, velocities, and accelerations. This
mapping is achieved using a set of mathematical equations, based on some
specified dynamic formulation that describes the dynamic behavior of the robot
manipulator, i.e., its motion. Those sets of equations constitute the dynamic model
of the robot manipulator. The dynamic model can be used to simulate and control
the robot manipulator, i.e., the dynamic model provides the means to compute the
joint positions, velocities, and accelerations starting from the joint torques (direct
dynamics), and the means to compute the joint torques using the joint positions,
velocities, and accelerations (inverse dynamics).

The dynamic model is obtained starting from well known physical laws like the
Newtonian mechanics and the Lagrange mechanics [6,24]. Several different
dynamic formulations for robot manipulators were developed: Lagrange-Euler,
Newton-Euler, D’Alembert, ... [1-3,7]. Nevertheless, they are equivalent to each
other because they define the same physical phenomenon, i.e., the dynamics of
rigid bodies assembled together to constitute a robot. Obviously, the structure of
the motion equations is much different because each formulation was developed to
achieve different objectives such as computation efficiency, simplicity to analyze
and/or to simulate the structure, etc.

76 Industrial Robots Programming

In this section, the dynamic model of the ABB IRB 1400 industrial robot will be
briefly summarized using the Newton-Euler dynamic formulation. In the process,
the other dynamic formulations are presented and briefly discussed.

2.7.1 Inertia Tensor and Mass Distribution

The mass distribution of a rigid body may be characterized by its inertial mass, for
the case of one degree of freedom motions, and by its first moment of inertia, for
simple rotations, i.e., rotations about a single axis. If there is more than one axis of
rotation, the above properties are no longer suitable to characterize the mass
distribution of the moving rigid body [6,24]. This is the case of a rigid robot
manipulator, which is made by a series of rigid bodies, whose motion is 3-
dimensional and therefore an infinite number of rotation axes is possible. The
concept of inertia tensor is used in this case, which can be considered as a
generalization of the concept of moment of inertia. If p(x,y,z) is the mass density
of a rigid body, then the inertia tensor may be defined as

1= j j p(r24=rr)dv (2.100)

where 1 is a unity tensor. The inertia tensor is a 3x3 matrix expressed in terms of
some frame {A}

Ixx Iyx sz
M=l Iy I (2.101)
Ixz Iyz Izz

where the diagonal elements are the moments of inertia about the axes x, y and z of
frame {A}

L = I'Up(yz + zz)dv

Ly = [[[p@* +x*)dv

I, =J.'Up(x2 +y2)dv (2.102)

and the other elements (non-diagonal) are the products of inertia

Ly =Ty =—prydv
Iyz = Izy = ——H pyzdv
L=l =—szxdv (2.103)

Robot Manipulators and Control Systems 77

2.7.1.1 Important Results [6]
Next some important results will be presented, considering that the frame
associated to the rigid body is {B} and the inertial frame is {A}.

Suppose that I is the inertia tensor of the rigid body expressed in terms of some
reference frame. The moment of inertia about any axis of rotation n (different from
any of the rigid body symmetry axes) with the same origin of the reference frame
is

1 TIn (2.104)

n =1

Extension of the Parallel Axis Theorem This theorem is used here to compute the
inertia tensor variation with linear motions of the reference frame. Suppose that
{C} is the frame associated with the rigid body center of mass, {G} is some frame
obtained from {C} by linear motion, and CP is the position vector of the center of
mass expressed in terms of {G}. Then

Ig=Ic+MPTPL, - P °Ph) (2.105)
where °P = (x., V.,)" and I; is a 3x3 identity matrix.

If the rigid body is rotating, the inertia tensor expressed in terms of {A} I is also
varying with time, but the inertia tensor expressed in terms o {B} ®I remains
constant (remember that {B} is the frame associated with the rigid body). If the
inertia tensor ®I is known then

Al= 4HBL4HT (2.106)
where ’EH is the transformation matrix from {B} to {A}.

The reference frame associated with each rigid body must be set to in a way that
the products of inertia become null. The axes of that frame are named primary axes
of the rigid body. The eigenvalues of the inertia tensor are the so-called rigid body
primary moments of inertia. There are some systematic methods to compute the
primary axis of inertia of any rigid body [6,24].

Any rigid body plane of symmetry is perpendicular to one primary axis.
Each symmetry axis of the rigid body is a primary axis. The plane of symmetry

perpendicular to that axis is a primary plane associated with a degenerated primary
moment of inertia.

78 Industrial Robots Programming

2.7.2 Lagrange-Euler Formulation

Here we briefly introduce the Lagrange-Euler formulation. To use this
formulation, it is required to develop equations for the robot manipulator’s kinetic
energy and potential energy. The kinetic energy of link (i) is given by

K, =%mivg Ve %*W;.Ci Liw, (2.107)

where the first term results from the linear velocity of the center of mass of link (i),

and the second term is due to the angular velocity of the same link. The robot
manipulator’s total kinetic energy is then given by

K=Yk (2.108)

The potential energy of link (i) may be written as

v =m; g 0P +uper (2.109)

where ‘g is the gravity acceleration vector, ° P, is the position vector of the center
of mass of link (i) expressed in terms of frame {0} and u is a constant that

expresses the potential energy in terms of an arbitrary origin. The total potential
energy of the robot manipulator is given by

6
U=>y (2.110)
i=l

The Lagrange equation is then
L=K-U (2.111)

where K and U are obtained form (2.100) and (2.110). It follows that the motion
equations of the robot manipulator can then be obtained using the Lagrange
equation

o4 2.112)
&t B o

where 7 is the joint torque vector.

Recently [4], recursive equations based on the Lagrange-Euler equations have
been developed. The resulting equations are computationally more efficient.
Nevertheless, the recursive nature destroys the equation’s structure which is a

Robot Manipulators and Control Systems 79

major drawback for the design and development of new control laws, and the
Newton-Euler recursive equations remain the most efficient.

2.7.3 D’Alembert Formulation

This is basically a Lagrange dynamic formulation based on the D ’dlembert
principle. As mentioned before, the Lagrange-Euler formulation is simple but
computationally inefficient, and the Newfon-Euler formulation is compact with a
recursive non-structured nature and is computationally very efficient. To obtain a
recursive and computationally efficient set based on the Lagrange mechanics, a
vector representation along with the use of rotation matrices is used to develop the
kinetic and potential energy equations. The same procedure used in the Lagrange-
Euler formulation is then used to compute the motion equations. This procedure is
known as D’4lembert formulation, and is a generalization of the Lagrange-Euler
and Newton-Euler formulations [7].

2.7.4 Newton-Euler Formulation

The Newton-Euler formulation will be used to obtain the dynamic equations of the
ABB IRB 1400 industrial robot and in the process explained in some detail. We
will also compare this to the other dynamic formulations.

If the joint positions, velocities, and accelerations of the robot manipulator are
known, along with the kinematics and mass distribution, then we should be able to
compute the required joint moments. On the other hand, if the joint torques is
known, along with the inverse kinematics and the robot mass distribution, we
should be able to compute the joint positions.

The Newton-Euler dynamic formulation is a set of recursive equations, divided in
two groups: forward recursive equations and inverse recursive equations.

Forward Recursive Equations
This set of equations is used to compute (“propagate”) link velocities and
accelerations from link to link, starting from link 1 (the first link).

Angular Acceleration Computation
Using equations (2.50) and (2.51) gives

i+l itlp ig, L itlp i A i+l A, i+l
Wi =" {ROW TR Wy x0T Ziy 014y Zigy (2.113)

for the angular acceleration of link (i+1) expressed in terms of (i+1).

80 Industrial Robots Programming

Linear Acceleration Computation
Using equations (2.52) and (2.53) gives

i+lvi+1:i+%R[iWiXiPi+l+iWi X(iWiXiPi+1)+i"/iJ (2.114)
for the linear acceleration of link (i+1) expressed in terms of (i+1).

Linear Acceleration Computation at the Link Center of Mass
Using again equations (20) and (25) results,

i\'/Ci :iv'vixiPci iy x(wxd Pe, Y (2.115)

where {C;}is the reference frame associated with the center of mass of link (i), and
having the same orientation of {i}.

Gravity effects
The gravity effects can be included in the above equations by making

%% =G (2.116)

where Gz{gx,gy,gz}T is the gravity acceleration vector with |G|=9,8062 m/s%,

This is equivalent to consider that the robot manipulator has a linear acceleration of
one G, pointing up, which produces the same effect on the robot links as the
gravity acceleration.

Using the above equations (2.113)-(2.115), the Newton equation (2" law) and the
Euler equation, it’s possible to compute the total force and moment at the center of
mass of each link:

i+l i+l
By =my Ve, (2.117)
i+l Ciay i+l it I i+l
Nigr=" T Wi Wi O T Wiy (2.118)
Note:

Newton Equation (2" law) - The total force applied to a rigid body of mass m and
centre of mass acceleration v¢ ,isgivenby F=m. v;.

Euler Equation - Consider a rigid body of mass m, angular velocity w, and angular
acceleration w . The total moment N starting the body in motion is given by
N=CIw + wx®1w, where “T is the rigid body inertia tensor expressed in terms of the
reference frame associated with the body’s center of mass.

Robot Manipulators and Control Systems 81

Backward Recursive Equations
This set of equations is used to compute (“propagate”) link forces and moments
from link to link, starting at the last link.

Computation of Links Forces and Moments
Taking

f; = force applied at link (i) by link (i-1);
n; = moment in link (i) due to link (i-1);

the force balancing on link (i) can be expressed as
BRI (2.119)
and the moment balancing in the center of mass of link (i) can be expressed as
N=ng-tng g o (P K (PP X £y (2.120)
Using (2.119) in (2.120) gives

N R g = P X B P R g (2.121)

{it+1} ! ;

i}
>)

— >

Eéf

Figure 2.21 Forces and torques applied to the joints

Rewriting (2.119) and (2.121) in a way that their recursive nature becomes more
evident results in

= R+ R (2.122)

U= Ny {R g P K B P Ry (2.123)

82 Industrial Robots Programming

To obtain the joint moments we just need to project over the Z axis the already
computed moment 'n;, i.e.,

n='n{. 7, (.124)

Contact Forces
The contact forces and moments (contact wrench) can be included in the model by
putting,

N+1

N+l
[fN”] = Contact wrench # 0 (2.125)
N4

where N is the number of degrees of freedom of the robot manipulator.

2.7.5 Dynamic Parameters

There is a number of parameters that are needed to compute the dynamic model
(dynamic parameters). The minimum set of parameters is called the base dynamic
parameters, and its identification can reduce significantly the computational load of
the dynamic model (by 50%). If we take a closer look at the equations developed
for the kinematics energy and for the potential energy of link (i), it is easy to verify
that they are linear with respect to some dynamic parameters: the link mass, the six
elements of the link inertia tensor, and the three components of the link’s first
moments of inertia. Some other dynamic parameters must also be included, namely
the ones related with joint actuation. The joint torque is given by

T= T+ Ty + Tt Ty + Tg + Te (2.126)

where 1, = M(O)é is the torque due to the inettia of the robot manipulator, T, is
the torque due to the centrifugal and coriolis forces, tr is the torque due to the
friction forces, 1, is the torque due to the gravity force, 1, is the torque resulting
from non-modeled forces and 7. is the torque due to external contact forces.

Now, 1,, can be written as T, = Ty + Tom , Where Ty, is the torque due to the robot
manipulator inertia (not including the motor drive) and 1, is the torque due to the
motor inertia itself. We may express Tpy as

| P U 0 él
.. 0 I 0
T = In 0= " ! %2 (2.127)
0 0 Imn én

Robot Manipulators and Control Systems 83

where I, is the rotor’s moment of inertia and n is the number of degrees of
freedom.

The friction torque may be given by

T = Fs.sgn(é) + Fv.é =

0 .. 0 618, 0 . 0]
0 F, .. an %2 |+ 0 F, .. | 6 (2.128)
0 0 E, 6,] |0 © . |16,

where the first term refers to the coulomb friction and the second to the viscous
friction.

In conclusion, I, , E, and F, are also dynamic parameters to take into account,

i.e., the all number of dynamic parameters is thirteen:

n:(lxxi Iyyi IZZi Ixyi Ixzi Iyzi m; 1 mjLy Ml M Im- Fsi Fvi)
(2.129)

The basic Newton-Euler recursive algorithm resumed in the following form:

Forward recursive equations
Initial conditions

Owp=0; Owg=0; %v="p="=(0 0 g),withg="-9,8062 m/s’.

Fori=1to5,

i+l _iHlp i itlpi A i+l A i+t
Wi = (ROW T RIW X 03, Zigy +050 Zigy

i+l TN o i

Vig= Ry W B wixCwix P)+ Vij

s oo P s (e P V4t

Ve, = Wix Po +wi xCwix Pe)4V

i+l _ i+l
Fpp=mi " Ve, |

i+l G i+l i+l C; i+l
Nip =" L Wit Wi L 7wy

Backward recursive equations
Initial conditions

N+l

N+l f,
End-effector wrench = N+1
AN+

Fori=6to 1,
= R R

84 Industrial Robots Programming

i in il ip in i i+l
0= Ny R0+ Pe OB+ Py xR iy

T =i niT i Z;
The generalized force at joint (i) is then

ui=in;r.i Zi + Imiéi + Fsi sgn(éi) + FVi éi + Tvi (2 1 30)

2.8 Matlab Examples

Taking advantage of the preceding discussion, namely the application to the
specific manipulator used for demonstration, along with the particularities of
Matlab, a few functions were built to show how the above presented results could
be used to simulate and operate a robot from Matlab. The functionality of this
collection of functions is extended by the developments presented in chapter’s 3
and 4 of this book, which enable the user to command the real robot from the
Matlab shell.

Several functions were implemented to compute the direct and inverse kinematics,
any rotation or transformation matrix, the jacobian (using the method presented
here or the differential method presented in [25]), the DLS jacobian, trajectories in
the Cartesian or in the joint space, simulate the operation of the robot, etc. The
functions developed are related with the robot used for demonstration (ABB
IRB1400), i.e., there was no effort to make them compatible with any other type of
industrial robot. Consequently, the presented functions were optimized for
anthropomorphic robots with a spherical wrist, with the direct and inverse
kinematics obtained symbolically using Matlab and further optimized.

To demonstrate the functionality of the developed functions, a few examples will
be given below.

Jacobian

Functions: jacobian.m and jacobdls.m

Parameters: jacobian (dh, g, type) and jacobdls(dh, q, type) where,

‘dh’ - Denavit-Hartenberg parameters od the robot

‘q’ - vector or array of vectors containing the joint angles representing a
configuration or a sequence of configurations of the robot

‘type’ - method used to compute the jacobian:

‘a’ - returns the base jacobian and the end-effector jabobian of using differential
method presented in [25]

‘b’ - returns the base jacobian using the same method [25]

‘e’ - returns the base jacobian using the kinematics developed in this book

‘d’ - returns the both jacobians using the kinematics developed in this book

‘f” - returns the end-effector jacobian using the kinematics developed in this book

Robot Manipulators and Control Systems 85

Figure 2.22 shows the utilization of the above functions to compute the jacobian of
the robot for the configuration q; = (0000 0 0).

» Flops{B)
» J=jacobian(dh,qt,’e")

J =
8 -728 -128 6] 8 a
955 a a 8] 8 a
8 865 805 8 85 s}
]] <] 1] 1
] -1 -1 5] -1 a
1 a a LS} i [:]
» flops
ans =
188

» fleps(@)
» J=jacobian{dh,q1,'b")

J =
8.0008 -720.60000 -120. 08086 8] 0.0880 S}
955.0808 0.08080 a.a800 a 0.060080 a
8.0800 805.0000 865.0080 [§] 85.0080]
a] [¢] 1.0080 a 1.80088
0.08000 -1.8008 -1.8600 -8.p808 -1.8000 -8.0008
1.06008 6.0888 06.080¢ -0.08006 9.0008 ~-0.0808
» flops
ang =

3412

Figure 2.22 Computing the jacobian: note the reduction of floating point operations when
the optimized kinematics is used.

Inverse Kinematics

Function: irb14ink.m

Parameters: irb14ink(dh, t06, quad) where,

‘dh’ - Denavit-Hartenberg parameters of the robot

‘t06 - Transformation matrix T that describes the position/orientation of the

terminal element in terms of the base frame
‘quad’ — indication of the working quadrant. If nothing is given, the routine admits

that the working quadrant is equal to the quadrant of 6,

Figure 2.23 shows the function running applied to a singular configuration with
indication of the working quadrant.

86 Industrial Robots Programming

» qQC
qc =
8.7854 1.08472 0.7854 [¢] a 8]
» tB6=irbiumtr(qc’,0,0,6)
tos =
1.8e+083 =
-0.0007 0.0887 -0.0002 -0.4906
-0.0807 ~0.0007 -9.00802 -0.4906
-0.08003 0.6000 0.0018 1.5215
[¢] a 4] 6.0010
» irb14ink{dh,t86,'q1"')
Singular Point -> sin(q5)=0
Resolving Singular Point ...
ans =
45,9060 45 .0008 u5.48080 0.7854 8.7854 8.7854

60.08080 60.0086 606.06080 1.0472 1.8472 1.0472
45.80008 45.0080 45,0000 8.7854 8.785%4 0.7854

@ -96.8000 96.0000 8 -1.5708 1.5768
0 S} [§] 0 a a
9 90.0000 -98.00600] 1.5708 -1.57688

57.2958 57.2958 57.2958 1.0080 1.6800 1.00008

Figure 2.23 Computing the inverse kinematics (initial robot configuration expressed in
radians)

2.9 Robot Control Systems

Robot control systems (Figure 2.24) are electronic programmable systems
responsible for moving and controlling the robot manipulator, providing also the
means to interface with the environment and the necessary mechanisms to interface
with regular and advanced users or operators.

In this section, a brief overview of actual industrial robot control systems is
presented, pointing out the important factors that must be addressed either by the
advanced user (programmer or system integrator) or by the simple operator.
Although the discussion is kept general and valid for any robot controller, a
particular robot control system (the ABB IRCS5 robot controller [26]) will be used
for demonstration.

The robot controller has some important tasks it should perform in order to move
and control the robot manipulator, provide means for inter-controller and computer
communications, enable a sensor interface, and offer the necessary mechanisms
and features that allow robot programming, a robot-user interface and program
execution.

Robot Manipulators and Control Systems 87

Teach l T
Pendant 10
t Computer
) User Sensor
Serial Interface Interface
, : 4 '
) Communication| Robot Motion
Fieldbuses ™ Computer < ™ Computer Computer
Y
y y
Ethernet
USB User Program System

Memory Memory Memory

Figure 2.24 Basic architecture of a robot control system

2.9.1 Drive the motors to move the TCP and coordinate the motion for useful
work

Motion control involves several different tasks, as already mentioned and resumed
in Figure 2.25.

Path Planning

Y

Interpolation

A\ 4
Path Filtering

v

Servo Controller

Figure 2.25 Basic tasks involved in motion control

The path planner’s basic task is to prepare the robot’s path and feed the relevant
data to the path interpolator. Moving a robot means specifying an origin
position/orientation {T;} and a final position/orientation {T;} of the robot’s TCP

88 Industrial Robots Programming

(tool center point). The path interpolator takes the planner data and computes the
intermediate points in each interpolation interval, using the specified velocity and
acceleration. The outputs of the interpolator are the basic inputs for the servo
loops, i.e., they constitute the target points (references) that must be achieved by
the servo controllers. The data from the interpolator is filtered by the path filter,
before being passed to the servo controllers, in order to provide smoother
accelerations/decelerations and keep the motor torques in the range of the servo-
motor.

A complete definition of the motion parameters, including velocities and
accelerations, is also necessary. Sometimes it is necessary to define intermediate
position/orientation points (also called “via points”) between the initial and final
configurations. This procedure will better define the requirements and contribute
for the final path. Furthermore, to obtain smooth paths the path planner must be a
continuous function, with a continuous first derivative and hopefully also a
continuous second derivative [1]. For example, the path generator can be
implemented by a 5" order polynomial. The use of a high-order polynomial here is
motivated by the fact that a quintic polynomial is needed to be able to specify the
position, velocity, and acceleration at the beginning and end of each path segment.

Considering a 5™ order polynomial in the form
8(t) = ag +a;t +at? +ast’ +aytt +ast] (2.131)
with the following constraints

8 =a

Gf =4ag + altf + azt% + a3t% + a4t? + a5tg

B =ay

N, — 2 3 4

Gf =ap+ 23.2tf + 3a3tf + 4a4tf + 535tf

éo = 232

B¢ = 2a, +6a3t; +12a4t% +20ast} (2.132)

Results in a linear system of six equations with six unknowns whose solutions are

a1=90
a1=éo
ay =20

2

2 = 208; —208, - (86 +1206;)ts — (36 — Op)t
3= 3
2t}

Robot Manipuiators and Control Systems 89

3000 300 + (140, +1680)te — (30, —20,)t
2t
ac = 129f ~1260 —(Géf + 6éo)tf - (60 - éf)t%
57 5
2t7

ay

(2.133)

There are several methods in the literature to compute smooth paths that pass to a
given set of “via points” [27, 28]. Nevertheless, the function presented above gives
a good indication and can be used for that objective, running the function between
the intermediate points.

The following Matlab functions (Figure 2.26) calculate the robot’s trajectory in the
joint space using the 5™ order polynomial presented above. As already mentioned,
with this trajectory planner it is possible to compute the trajectory between two
configurations, defining the initial and final velocities and accelerations. The
trajectory is represented using a small function that animates the motion of the
robot.

Trajectory generation and robot animation

Funtions: irbl4trj.m and irb14plt.m

Parameters: [qt, qdt, qddt] = irbl4trj(q0, ql, nt, qd0, qdl, qdd0, gddl) and
irb14plt(dh, q, opt, number, azm, elv, vgax, vgay) where,

‘q0’ — initial position

‘ql’ — final position

‘nt’ — number of intermediate points of the trajectory to obtain
‘qd0’ and ‘qd1’ — initial and final values of the velocity
‘qdd0’ and ‘qdd1’ — initial and final values of the acceleration
‘dh’ — Denavit-Hartenberg parameters of the robot

‘q’ — matrix holding the computed trajctory

‘opt’” — type of representation of the motion

90 Industrial Robots Programming

TR0 -

1400

R]
400

Figure 2.26 Robot’s animation using the obtained trajectory

2.10 Servo Control

The servo controllers utilize the data from the path planner and interpolator,
properly filtered, to drive the robot manipulator axis. As already mentioned the
dynamics of the robot is very complex with a huge number of effects, forces and
moments to account for, which puts a considerable challenge to the task of
controlling a servo-motor. A detailed and complete description of a servo-
controller, namely about the control algorithms and circuitry used, is out of the
scope of this book, but a brief overview will be given. Generally, the contro! loop
of an industrial robot joint (or axis) has the components presented in Figure 2.27.

Velocity Torque
Command Command

Velocity Control Current Control

Position Control

..........................

Velodity position

» 1/s

v

Figure 2.27 Typical robot joint control loop

Robot Manipulators and Control Systems 91

A brief overview of the AC motors used with industrial robots was already
presented, and a typical current control loop was also already sketched in Figure
2.20. Basically, the current control loop implements a PI (proportional and
integral) controller [29], having the 1 component of the controller (Cc) with the
objective of eliminating the steady-state error and achieving the best possible
control. The velocity control loop is built around the current control loop and also
uses a PI controller (Cv).

Finally, around both of the previous controllers there is the position control loop.
This controller takes the position commands as input, generates an error signal by
subtracting the actual position (obtained from the joint position sensors) from the
commanded reference, and generates the control signal using some selected control
law (Cp). Typically, the position controller is a simple proportional controller,
since the objective is to obtain a good responsive control of the motor position to
follow the desired joint command with zero steady-state error and zero overshoot.
And that objective is obtained with the combined effect of the position (generally a
P controller), velocity (generally a PI controller), and current (generally a PI
controller) control loops.

2.11 10 Control

One of the most basic things that a robot control system must do is to implement
PLC-like functions. Robots are used in manufacturing cells where digital/analog
10 and logic controllers govern the way things happen, namely controlling the
systems responsible for material handling, transportation, detection, etc.. To
interface with those systems, the robot controller needs to “speak” the same
language and act as a logic controller, or at least have the same functionality
available. Consequently, the robot controller must be able to:

1. Accommodate digital IO signals with variable and configurable electric
levels. The robot must be able to read from digital input lines (with different
electric levels) and implement basic logic functions on the obtained data:
block reading, logic functions, shifting, counters, timers, edge detection, etc.
The robot controller must also be able to act on digital IO outputs changing
their state (ON/OFF), applying timed pulses, etc.

2. Accommodate analog IO signals. The robot must be able to read from analog
inputs, providing the necessary electronic circuits for multiplexing and
analog-to-digital conversion, the mathematical functions to handle the results,
and the necessary circuits and digital-to-analog converters to act on analog
output signals.

3. Implement IO manipulating functions.

The robot controller programming language must implement advanced
mathematical functions, and data structures, that can be used within the robot’s

92 Industrial Robots Programming

program to enable the user to coordinate the robot‘s motion with IO actions (Figure
2.28), like reading IO information or acting on IO lines (open/close grippers,
regulate pressure of pneumatic actuators, regulate the velocity of external motors
driven by power inverters or external servo controllers, start/stop equipment, etc.)

@

3 irb140

decisionl:=123;
ENDIF
IF decisionl = 96 THEN
Moved pS, v200, z50, toolO:
decisionl:=123;
ENDIF
IF decisionl = 201 THEN
SetDO DOO7,1:
MoveJd Offs(pick,0,0,100}, w300, fine, toolQ;
Movel pick, w50, fine, toolO:;
SetDO DOO7,0:;
WaitTime 2;
Novel Offs(pick,0,0,100}, w50, z20, tooclO:;
Moved pickl, w300, z20, toolO;
decizsionl:=123;
ENDIF

Figure 2.28 Part of a robot program written in RAPID (4BB Robotics programming
language)

4 Controllers
¢ s B2 System_sockets on '172.16.0
gk configuration
Events
&a 1/O System
=9 RAPID Tasks

= :.,3._}, T_ROBI (Program 'NewF:
4 Program Madules
s @ MainModule

ﬁ] main
g Systemn Modules
H e Q_}, taskz (Program '<no
L j{j Dacurents

2.12 Communication

Robots are to used in networks with other robots and computers organized into
manufacturing cells that also connect to each other constituting manufacturing
lines. This type of manufacturing organization corresponds to one of the most
recent developments in the area of industrial automation, i.e., the concept of
fexible manufacturing systems (FMS). These are highly computerized systems
composed by several types of equipment, usually connected through a local area
network (local network using MAP" protocols [30]) under some hierarchical
computer integrated manufacturing (CIM) structure {31-33], The available factory
(shop floor) equipment is organized into flexible manufacturing cells (FMCs) with
transportation devices connecting the FMCs. In some cases, functionally related
FMCs are organized into flexible manufacturing lines (FMLs). Each FML may
include several FMCs with different or equal basic capabilities. The organization
proposed in Figure 2.29 is a hierarchical structure [33,34] where each FMC has its
own controller. Therefore, if the manufacturing process is conveniently organized
as a FML, then several controllers will exist on the shop floor level, e.g., one
controller for each FML. With this setup, an intelligent and distributed job
dispatching and awarding may be implemented, taking advantage of the installed
industrial network [33,35-37].

1 Manufacturing automation protocol (MAP).

Robot Manipulators and Control Systems 93

- Economic and Finantial,

5 Managment

£

2B

g~ Market Surveys and

> Marketing f
: .

£3 Production Managment Project

B and Planning

[+9

Process
Level

I
e
1
1
i
1
|
|
i
\
I
|
|
|
I
I
1
I
|
I
1
1
1
1
1
1
1
1
1
i
i
i
1
1
|
1
|
1
T
l
1
I
1
1
(
|
|
|

53
SE
cC 1
E_
i3 CFM_1 CFM_N
g Equipments Equipments

Figure 2.29 Typical CIM hierarchical organization

The best characteristic of an FMC is its flexibility, i.e., its adaptability to new
manufacturing requirements that can go from a modified product to a completely
new product. The flexibility results from the fact that FMC equipment is
programmable and easily reconfigured: that is the case of industrial robot
manipulators, mobile robots for parts handling and transportation, programmable
and logic controllers (PLC), CNC machines, vision systems, conveyors, etc.

Considering the communication between commanding and supervising computers
and the robot controllers, and even the communication between robot controllers
itself, it is uvsually supported through a TCP/IP Ethernet based network. The
functions associated with this type of communication include the exchange of files
and programs, the execution of remote operations like backup and system
maintenance, etc. In many advanced applications, this network is also used to
command and supervise each manufacturing cell operation, with several levels of
functionality depending on the type of access: operator access, supervisor access,
or information retrieval access from the production planning levels of the network.
These types of advanced features will be extensively explored in this book.

Many manufacturers offer robot services through this type of network to support
these advanced applications, in the form of RPC servers [38], TCP/IP socket
servers [26], or UDP datagram servers [39]. These servers and associated services
can be used by the system developer/integrator to provide functionality to the user
through the application.

94 Industrial Robots Programming

Furthermore, the communication links between the controller and the
manufacturing cell can be as follows:

1. Computer network — to interface with commanding and supervising
computers, from several levels of the network

2. Fieldbuses — to interface with other robot controllers, but also with PLCs
and other cell equipment commanded by programmable controllers. The
most common options are DeviceNet, ProfiBus, Ethernet IP, etc. Several
robot controllers also use a fieldbus network (CAN or DeviceNet, for
example) to connect some of its internal components (the drive boards to
the main computer, etc.)

3. Serial IO - to interface with sensors, or with several types of IO equipment
or process equipment like welding power sources, to interface locally with
a computer or laptop using a point-to-point occasional connection, and so
on

2.13 Sensor Interface

Interfacing advanced sensors is a fundamental aspect of any robot control system.
In fact, to successfully perform several actual industrial tasks, the robots need
special sensors that could be used to help them get the relevant information and use
it efficiently through the process. Many of these sensors require high-performance,
non-perturbed communication links, and/or need to interface directly to the path
planners and motion controllers so that the robot can be guided and instructed in
real-time. Consequently, the robot controllers should provide special interfaces for
these types of sensors, at least for the most common ones, which can be
programmed and explored by the advanced user.

2.13.1 Interfacing Laser 3D Sensor for Seam Tracking

Good examples are the laser sensors used in robotic welding for seam finding and
tracking during the welding operation. These types of sensors provide signals
(analog or through high-speed digital interfaces) that can be used to guide the robot
during the welding operation. These sensors work in a simple way, based on the
principle of laser triangulation. A low power laser source is used to generate a laser
beam that is projected onto the surface of the joint to weld. The reflected light is
picked up by a lens that feeds the imaging system, composed usually of a CCD or
CMOS sensor. The laser-reflected signals are extracted using filters and image
processing software, which is a simple task since the laser signal has a very precise
wave length and power (Figure 2.30).

In fact, these laser cameras and related processing hardware and software, with
some customization to the selected application, are useful for evaluating most of
the geometric parameters other than the mentioned joint detection and seam

Robot Manipulators and Control Systems 95

tracking features. Since they are available with powerful APIs for general use, with
standard interfaces for robot controllers and current computer hardware, these
types of sensors constitute a powerful tool for robotic welding.

Laser source

Imaging system (i.e., CCD) Focusing lens

Collecting lens Joint

Laser strip

AN Plates to weld el

Figure 2. 30 Explanation of the laser vision principle

Basically, the outputs obtained from these sensors are position accommodations, or
position corrections, that should be sent to the robot controller to adapt the current
motion. They can also monitor certain variables and provide the means to generate
interrupts in the robot controller in order to respond to significant variable changes.
For example, the seam volume or the welding gap can be monitored by this sensor.
When changes are detected, the corresponding events can be used to trigger an
internal interrupt that will adapt the welding parameters (voltage, wire feed and
velocity) accordingly. For example, the following would be the procedure to adapt
the welding parameters in function of the measured welding gap:

Variables
Matrix Numeric Adapted voltage= {1,1.1,1.2,1.4,1.6,2,2.2,...};
Matrix Numeric Adapted wire feed = {2,2.2,2.4,2.6,2.8,3,3.2, ...};
Matrix Numeric Adapted velocity = {10, 12, 14, 16, 18,20, 22, ...},
Numeric gap value;

96 Industrial Robots Programming

Numeric index;

Program
Set Interrupt | when gap value changes;
Start Welding, tracking;
When target point achieved
Stop welding, tracking;
EndWhen
EndProgram

Interrup Service Routine
index = scale(gap_value);
voltage = adapted_voltage(index);
wire_feed = adapted_wire_feed(index);
velocity = adapted_velocity(index);
refresh welding parameters;
EndRoutine

The position of the sensor can also be read and used to accommodate the position
references sent to the motion controller, guiding in this way the robot’s motion.

The next example shows how to interface other type of intelligent sensors for
which there is no special interface at the robot controller.

2.13.2 Interfacing a Force/Torque Sensor

As already mentioned, robot manipulators are good examples of equipment for
Aexible manufacturing systems, due to their flexibility. In fact, flexibility is the
major reason for robot utilization and popularity in actual manufacturing plants. In
this framework, the majority of the robot’s tasks require contact with the
surrounding environment, i.e., in the process of fulfilling the task, the robot tool
interacts physically with the working objects and surfaces. That interaction
generates contact forces that should be controlled in a way to finish the task
correctly, not damaging the robot tools and working objects. Those contact forces
depend on the stiffness of the tool and working objects/surfaces and should be
properly controlled. The option for a particular control technique depends on
identifying if [40];:

1. The contact forces should be controlled to achieve task success, but are
sufficient to keep them inside some safety domain: passive force control
[40].

2. The contact forces should be controlled because they contribute directly to
the success of the task: active force control [40-53].

In the first case, contact forces are an undesirable effect of the task and it is
generally sufficient to keep them inside some safety domain. They are not
necessary for the task, so usually the strategy is adding flexibility to the end-
effector with the object of damping all the possible impacts and increasing the

Robot Manipulators and Control Systems 97

tolerance to positioning errors, complemented with detailed and careful planning of
flying trajectories and object approach. There are many solutions in the market to
add flexibility to the end-effector, and in fact this is currently the standard approach
in industry.

In the second case, the contact forces are necessary to finish the task correctly, i.e.,
controlling the contact forces to make them assume some particular value or, more
generally, to follow some force profile.

For industrial robotics applications, force/torque sensors are usually placed near
the working tool, generally in the manipulator wrist. This means that the sensor
must be reasonably small, built in several sizes to adapt to different robot bolt
patterns and load capacities, and mechanically resistant. Considering these
restrictions, it is easy to understand why measuring the strain imposed on a
selected strain gauge material, just by reading the voltage across the resistance of
the material, is still the most used sensing technique.

There are several ways and materials to design sensing gauges, metal wire, metal-
foil and semiconductor gauges being the most common. From those, the metal-foil
gauges show some interesting features. The strain induced change in resistance is
due to length and sectional area changes as well as a small piezo-resistive effect.
With the developments in etching processes, metal-foil gauges became a very
interesting possibility. They are manufactured in very thin foils (less than 10 um),
with sizes down to 200 um, etched by photographic methods. Consequently, there
are virtually no limits to the variety of possible geometries. This gives greater
flexibility to design geometries, but also to the type of stressing at the surface of
the elastic material component where the gauge will be attached. Metal-foil gauges
have very high linearity, with very low transverse sensibility (less than 0.3%), and
great dynamic range. Also, their thermal characteristics are better than their
semiconductor and metal-wire counterparts. All these arguments explain why
metal-foil gauges are ideal for force/torque sensing elements. Force/torque sensors
manufactured by JR3 (the ones we use in this book) use metal-foil gauges bound to
elastic rings as sensing elements, which explain their superior behavior. Figure
2.31 shows the composition of these sensors.

The sensing part. It is composed of elastic rings at the outer perimeter between
the mounting plates. The monolithic design eliminates hysterisis that would occur
from slippage at highly stressed internal joints. The use of elastic rings produces a
very stiff device, resulting in minimal deflection under load and better performance
at higher frequencies. The rings and their strain gauges are positioned so that the
local strain measures can be used to deduce the forces and moments, in all
cartesian directions (X, Y, Z), passing through the sensor. The internal cavity
between the mounting plates contains the front-end electronics where signals are
amplified, digitized, and transmitted to the host receiver board. If the amplification
and digitization electronics are inside the sensor, preferable for noisy or industrial
environments, there is no analog signal being transmitted and high sampling rates
can be achieved (8Khz).

98 Industrial Robots Programming

Table 2.3 Functions available in the MATIR3PCI Matlab Mex file

Functions Brief description

init_jr3 This function opens a handle to the JR3PCI driver,
checks memory, and downloads DSP code to the
board.

read Reads from a receiver board memory address.

write Writes to a receiver board memory address.

system_warnings

Reads system saturation warnings (board memory
address WARNINGS).

system_errors

Reads system errors address

ERRORS).

(board memory

command

Commands JR3 receiver board.

get_threshold_status

Gets the value of the threshold bits (board address
THRESHOLD).

reset threshold

Resets the threshold bits.

read fidata

Reads force/torque data from receiver board.

set transforms

Sets a new transformation definition.

use transforms

Selects the transformation to use.

read offsets

Read offsets in use.

set offsets

Sets actual offsets, using the current offset index.

change offset num

Changes actual offset index (num).

reset_offsets

Sets actual offsets to the current values read from
FILTER 2.

use offset

Changes actual offsets to the one defined.

peak_data

Sets address to watch for peaks.

peak data_reset

Sets address to watch for peaks and resets internal
values to current data.

read_peaks

Reads current peak values.

bit set

Sets bits on defined bit-map.

set full scales

Sets JR3 Full Scales.

get full scales

Reads actual full scales.

get_recommended_fu
11 scales

Reads recommended full_scales.

sensor_info

Reads information from the sensor and from the
receiver board. Use this function to test your setup.

Note: all these functions address a specific sensor, even if a multi-channel board is used.

DSP receiver board. Based on the same basic architecture, several interfaces can
be used. If the issue is high access rates, then fast IO buses must be used and a
shared memory mechanism must be implemented to exchange data and program
the sensor. JR3 offers several interface buses like VME, PCI (up to four channels
per board), CPCI (also up to four channels) and ISA. The receiver boards are
basically DSP boards that implement digital filters and dispose sensor information
to users. Also they parameterize readings (offsets, full scales, geometrical
transformations, etc.) and implement a few interesting functions such as maximum

Robot Manipulators and Control Systems 99

and minimum values (peaks) and, warning and error bits, etc. A full description of
these functions can be found in [54], and a brief summary can be found in Table
2.3.

Interface software and drivers. For Win32-based operating systems, we
developed a complete set of tools that can be used to build applications using
forceftorque sensors. These tools include kernel drivers designed for Win32
operating systems, i.e., Windows. Basically, when we want to use some kind of
equipment from a computer we need to write code and define data structures to
handle all its functionality. We can then pack the software into libraries, which are
not easy to distribute being language dependant, or build a software control using
one of the several standard languages available. Having in mind that force/torque
sensors can be used by persons with different programming capabilities, and from
several types of programming languages and environments, the collection of
functions that access the sensor capabilities are offered in several packages: C++
Library, ActiveX software component, Matlab toolbox and LabView Virtual
Instruments [55].

EXE application EXE application

JR3PCI
C++ library

ActiveX
component

MATIR3
functions

handle
handle
handle
Kernel Mode
4 k 4 quad ~ PCI receiver board
Digital Signal Processors
JR3PCI Kernel Driver [DSpP DS DSP DSP - b
T— -g
r
l ——— §
FX | 5
l v 0
Sensor with
Internal Electronics shared memory | O 1 2 3

PCI bus
Hardware access

Figure 2.31 Force/torque sensor overview (using PCI receiver board)

100 Industrial Robots Programming

With this organization, the sensor works like a server, offering a collection of
services to the advanced user, who can use the available programming tools cited
above to tailor the sensor behavior. The next section demonstrates the sensor
capabilities using the popular application Matlab.

& DVDCD-ROM drives

B i —
B Performance Logs and Alerts tq 2wﬁc“'*’
-5 Shared Folders -@B Floppy dek drives
o e [Y 1DE ATAJATAPI controliers
Device Manager 5w W
S %65 Lol bec ond G B NP 3pdi : Description of ¥r3pc
=3 g’;’: 9 NP yr3apci : Description of r3apci
Management *
&§ Disk Defragmenter) @ Keyboards
Lodkcal Drt -7y Mice and other pointing devices
S # Monitors
| @ & Removable Storage Quad-PCl board

WY Network adapters

[Y Ports (COM & LPT)

B SCS1 and RAID controlers

<}~ Sound, video and game controllers
4 ED Storage volumes

= System devices

B Universal Serial Bus controlers

H s ik AR

Figure 2.32 Boards reported by Windows device manager

2.13.2.1 Using a Force/Torque Sensor

There are several applications of force/torque sensors, but generally a user just
wants to install the sensor on his computer (after installing the sensing part on the
mechanical system he is using), and then be able to parameterize it and get the
sensor readings at selected rate from within the selected environment he chose to
use. The basic software [54] was prepared to be used with virtually any application
or programming language under Win32 operating systems, by any type of user:
from computer experts to regular users. Here we use two different environments to
explore the sensor capabilities. In this section, Matlab is used. Matlab is a widely
used software environment for research and teaching applications on robotics and
automation, mainly because it is a powertul linear algebra tool, with a very good
collection of toolboxes that extend its basic functionality, and because it is an
interactive open environment. So, it is really a good environment to demonstrate
how to use this type of intelligent sensor.

From all the available receiver board models, the quad-PCI receiver model was
used. This board is capable of handling four force/torque sensors at the same time
on a single PCI slot. It will be used step-by-step.

Robot Manipulators and Control Systems 101

After having the board installed and correctly reported by the operating system
(Figure 2.32), with sensor cables attached, the user is ready to start using the
sensor. The first thing to do is open a handle to the sensor receiver board, check if
the board is OK, and download the DSP code to the receiver’s board program
memory.

The command is

>>matjr3pci(‘init_jr3’,vendor ID, device ID, n_board, n_proc,download);

where vendor_ID and device_ID are the PCI ID’s of the selected board, n_board is
the board number (there can be several in the PCI bus), n_proc is the number of
DSP units in the board, and download specifies if the user wants to download (1)
the DSP code to the program memory or not (0). Nevertheless, DSP code must be
downloaded once after each computer power-up, but after that the command can be
used simply to open a handle to the board, The command returns zero if successful,
or an error code [45]. Consequently, to a quad-PCI board, the command with DSP
code download should be:

>> matjr3pci(‘init_jr3’, 0x1762, 0x3114, 0, 4, 1);

or without download:

>> matjr3pci(‘init_jr3°, 0x1762, 0x3114, 0, 4, 0);

If the return value is zero (0) then the user can start using the sensor, otherwise the
user must solve the problem reported by the software (error code).

The first command could be a query to the system to find out what sensor is
attached to each channel. The command is

>> matjr3pci(‘sensor_info’, 2);
to get information about the force/torque sensor handled by DSP number 2. The
returned information includes model and serial numbers, software version, number

of ADC bits, etc.

To read offsets from the force/torque sensor handled by DSP number zero
(remember we are using a board with 4 DSP: numbered from 0 to 3),

>> offset_matrix = matjr3pci(‘read_offsets’, 0);
To set offsets of the force/torque sensor handled by DSP number 2,
>> matjr3pci(‘set_offsets’,matrix_off, 2);

where matrix_off is a matrix with the offset values.

102 Industrial Robots Programming

To reset offsets,
>> matjr3pci(‘reset_offsets’, n_dsp);

where n_dsp is the DSP number. With this function, the offsets are zeroed using
the actual values reported by FILTER 2 [56].

The offsets are stored in the memory available for each DSP. It is possible to store
16 independent tables of offsets for each DSP. Consequently, before any of the
previous operations, the user should define the table currently in use. If the
definition is not performed, all operations are referent to the actual table. To set a
table for offset reading the command is,

>> matjr3pci(‘change_offset_num, 12, 1);

to specify that all subsequent offset operations for the sensor handled by DSP
number 1 are to be addressed to Table 12. Table 12 is also used on any subsequent
force/torque reading for that sensor.

To specify a table for actual force/torque readings the command is,

>> matjr3pci(‘use_offset, 10, 2);

where table 10 was selected for sensor handled by DSP number 2.

Another important operation on this type of sensor is setting the full-scales to
properly scale the readings. This operation is similar to the operations of setting
and reading offsets, so it will not be mentioned explicitly.

Each DSP has an address space [56]. To read, write, and issue commands relative
to those address spaces the user should use the read, write, and command_jr3
commands. For example, to read the serial number (address 0x00f8 of each DSP
address space) of the force/torque sensor attached to DSP number 2 the command
is,

>> serial 2 = matjr3pci(‘read j13’, 248, 2);

Finally, to read data from any sensor the command is,

>> ft data = matjr3pci(‘read_ftdata’, n_filter, n_dsp);

where n_filter is the filter number (from O to 6, where 0 means unfiltered data), and
n_dsp is the DSP number.

The collection of functions available from this Matlab toolbox can be found in {54]
and the correspondent functions of the C++ library or ActiveX control can be found
in [57]). The same basic function prototypes have been kept between all the

Robot Manipulators and Control Systems 103

software packages, which makes the above Matlab demonstration a good way to
show how the other packages work (C++ library, ActiveX control, etc).

This example demonstrates how to interface an intelligent sensor to a computer. If
the same facilities were available from the robot controller, then it would be
equally easy to make the interface available directly from the controller, enabling
in this way the programmer to directly use its readings to influence the robot’s
motion. Nevertheless, with most of the commercial robot controllers, this type of
advanced access is not available or isn’t accessible. Consequently, these types of
sensors must be used form personal computers feeding the data to the robot using
the available communication channels. This type of indirect approach slows down
the possible performance, but it’s an alternative way to implement the interface to
the force/torque sensors.

2.14 Programming and Program Execution

Robot controllers should provide a programming language and a library of
functions to enable users to explore the functionalities of the robot and of the
robot’s controller. Most of the manufacturers offer advanced PASCAL-like
structured programming languages, including a language interpreter within the
controller. Consequently, users can write code using any ASCII editor, download it
to the controller, and run it immediately without the need for any type of file
conversion. Those programming environments also offer simple debugging tools
that make the process of developing software easy.

The most advanced manufacturers also offer online and offline PC-based
programming tools, which enable users to develop code directly in the controller
(online) using a remote PC. Alternatively, the code can be developed offline and
downloaded to the controller when ready.

The Teach Pendant Unit (TPU) can also be used to program and parameterize the
system. These devices are basically computer units running a local operating
system (Windows CE, for example) that offer to several types of users the
possibility to program, parameterize, and operate the robot manipulator.

The actual robot controllers are also multitasking systems, which enable the user to
develop and run multiple tasks simultaneously. This allows new levels of
functionality, offering new possibilities to the system developer. Using the
available and common inter-task communication mechanisms, along with the
ability to regulate task priorities (percentage of CPU time), it’s possible to set up
applications to handle all the challenges posed by the industrial manufacturing
cells.

104 Industrial Robots Programming

2.15 User Interface

The user interface is basically defined by the system developer, because there are a
lot of possibilities. The developer can use the available communication links and
the robot controller’s remote servers to set up a PC interface to command and
monitor the robot operation (see for example Figures 1.20 and 1.21). Alternatively,
he can use the controller TPU to design the user interface. Since most of the
current teach pendants are advanced computers, running powerful operating

systems, the possibilities for developing advanced interfaces are enormous and
flexible.

For example, the TPU that comes with the new ABB IRC5 controller [26] is a
Windows CE system (Figure 2.33), equivalent to any portable CE based consumer
device, which can be programmed remotely from a PC using common
programming tools like the Microsoft Visual Studio .NET programming suite.

Figure 2.33 Teach Pendant Unit showing a graphical user interface

This book explores several examples that use a remote PC to implement the user
interface, examples that use mainly the TPU, and examples that use both
possibilities. The idea is to demonstrate that the possibilities are there and that it’s
up to the system developer to pick the best options for the specific application he’s
building.

Robot Manipulators and Control Systems 105

2.16 References

[11 Craig, J.J., “Introduction to Robotics, Mechanics and Control”, 2* Edition, Addison-
Wesley, 1989.

[2] Sciavicco, L., and Siciliano, B., “Modeling and Control of Robot Manipulators”-Z““l
Edition, McGraw-Hill, 1996.

[3] De Wit, C.C,, Siciliano, B., Bastin B., “Theory of Robot Control”, Springer-Verlag,
London, 1996.

[4] Hollerbach, J.M., “A Recursive Lagrangian Formulation of Manipulator Dynamics and
a Comparative Study of Dynamics Formulation Complexity”, IEEE Transactions on
Systems, Man and Cybernetics, Novembro de 1980.

[5] Pieper, D.L., “The Kinematics of Manipulators Under Computer Control”, memo.
AIM72, Stanford Artificial Intelligence Laboratory, 1968.

[6] Symon, K.R., “Mechanics”, 3* Edition, Addison-Wesley, 1971.

[7] Fu, K., Gonzalez, R., Lee, C.S.G., “Robotics: Control, Sensing, Vision and
Intelligence”, McGraw-Hill, 1987.

[8] Klema, V.C., Laub, AJ., “The Singular Value Decomposition: Its Computation and
Some Applications”, IEEE Transactions on Automatic Control, Vol. AC-25, N° 2,
April 1980.

[9] Chiaverini, S., Siciliano, B., Egeland, O., “Review of the Damped Least-Squares
Inverse Kinematics with Experiments on an Industrial Robot Manipulator”, IEEE
Transactions on Control Systems Technology, Vol.2, N°2, June 1994.

[10] Golub, G.H., Van Loan, C.F., “Matrix Computations”, The Johns Hopkins University
Press, Baltimore, Maryland, 1983,

[11] Wampler, C.W., Leifer, L.J., “Applications of Damped Least-Squares Methods to
Resolved-Rate and Resolved-Acceleration Control of Manipulators”, Journal of
Dynamical Systems, Measurement and Control, Vol.110, January of 1988.

[12] Golub, G.H., Klema, V.C., Stewart, G.W., “Rank Degeneracy and Least Squares
Problems”, Department of Computer Science, Stanford University, Technical Report
STAN-CS-76-559, August 1976,

[13] Maciejewski, A.A., Klein, C.A., “Numerical Filtering for the Operation of Robotic
Manipulators through Kinematically Singular Configurations”, Journal Robotics
Systems, Vol.5, 1988.

[14] Chiaverini, S., “Estimate of the Two Smallest Singular Values of the Jacobian Matrix:
Application to Damped Least-Squares Inverse Kinematics”, Journal of Robotic
Systems, Vol.10, N°§, 1993.

[15] Luh, 1.Y.S., Walker, M.W., Paul, R.P.C.,, “Resolved-Acceleration Control of
Mechanical Manipulators”, IEEE Transactions on Automatic Control, Vol.AC-25,
1980.

[16] Dote, Y., “Servo Motor and Motion Control using Digital Signal Processors”, Texas
Instruments and Prentice-Hall, 1990.

[17] Herdershot Jr., J.R., and Miller, T.J.E., “Design of Brushless Permanent-Magnet
Motors”, Magna Physics Publishing and Clarendon Press, Oxford, 1995.

[18] Crowder, R.M., “Electric Drives and their Controls”, Clarendon Press, Oxford, 1995.

[19] Tamagawa Seiki Co. Ltd, “SmartSyn Brushless Resolvers, General Catalog”,
Tamagawa Seiki, Japan, 2005.

[20] ABB Robotics, “S4-IRB1400 Product Manual” - M94A, ABB Flexible Automation,
1994,

[21] Hanselman, D.C., “Techniques for Improving Resolver-to-Digital Conversion
Accuracy”, IEEE Transactions on Industrial Electronics, Vol.38, No. 6, December
1991.

106 Industrial Robots Programming

[22] Boyes, G., “Synchro and Resolver Conversion”, Analog Devices Inc. (Norwood, MA),
1980.

[23] Analog Devices, “AD2S80A Resolver to Digital Converter - Data Sheet”, Data
Conversion Manual, 1995,

[24] Goldstein, H., “Classical Mechanics”, 2* Edi¢éio, Adison-Wesley, 1980.

[25] Paul, Shimano and Mayer, “Differential Kinematic Control for Simple Manipulators”,
IEEE Trans. SMC Vol.11, n.6 Junho de 1981.

[26] ABB Robotics, “IRCS documentation CD”, ABB Robotics, 2005

[27] Deboor, C., “A Practical Guide to Splines”, Springer, New-York, 1979

[28] Rogers, D., Adams, J.A., “Mathematical Elements for Computer Graphics”, McGraw-
Hill, 1976.

[29] Ogata, K., “Modern Control Engineering” Prentice-Hall Inc., 1970.

[30] Halsall F., "Data Communications, Computer Networks and Open Systems", Third
Edition, Addison-Wesley, 1992.

[31] Kusiak A., "Modelling and Design of Flexible Manufacturing Systems", Elsevier
Science Publishers, 1986.

[32] Ou-Yang C. and Lin JS., "The Development of a Hybrid Hierarchical/ Heterarchical
Shop Floor Control System Applying Bidding Method in Job Dispatching”, Robotics
and Computer-Integrated Manufacturing, 1998;14(3):199-217.

[33] Waldner JB., "CIM, Principles of Computer Integrated Manufacturing", John Wiley &
Sons, 1992,

[34] Liang GR., "A Hybrid Model of Hierarchical Control Architecture in Automated
Manufacturing Systems", in Advances in Factories of the Future, CIM and Robotics,
Elsevier Science Publishers, 1993:277-286.

[35] Baker AD., "Complete Manufacturing Control Using a Contract Net: A Simulation
Study", Proceedings of the IEEE International Conference on Computer Integrated
Manufacturing, 1988: 100-9.

[36] Shaw M., "A Distributed Scheduling Method for Computer Integrated Manufacturing;
the use of Local Area Networks in Cellular Systems", International Journal on
Production Research, 1987;25(9):1285-1303.

{37] Zhang Y., Kameda H. and Shimizu K., "Adaptive Bidding Load Balance Algorithms in
Heterogeneous Distributed Systems", Proceedings of the IEEE Second International
Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, 1994:250-254.

[38] RAP, Service Protocol Definition, ABB Flexible Automation, 1996.

[39] Remote Connection Manual for the NX100 Controller, Motoman Robotics, 2005

[40] Siciliano B., Villani L., Robot Force Control, Kluwer Academic Publishers
International Series in Engineering and Computer Science, Boston, MA, 1999

[41] Pires, JN, and Sa da Costa JIMG, "A Real Time System for Position/Force Control of
Mechanical Manipulators", Proceedings of the 7th International Machine Design
Conference, Ankara, Turkey, 1996.

[42] De Schutter, J., and Van Brussel H., "Compliant Robot Motion 1. A Formalism for
Specifying Compliant Motion Tasks", The International Journal of Robotics Research,
August de 1988.

[43] De Schutter, J. and Van Brussel, H., "Compliant Robot Motion II. A Control Approach
Based on External Control Loops", The International Journal of Robotics Research,
August, 1988.

{44] Craig JJ, and M.H Raibert MH, "A Systematic Method of Hybrid Position/Force
Control of a Manipulator", IEEE Computer Software Applications Conference,
November, 1979.

[45] Nilsson K., "Industrial Robot Programming", Ph.D. Thesis, Department of Automatic
Control, Lund Institute of Technology, May of 1996.

Robot Manipulators and Control Systems 107

[46] Hogan N., "Impedance Control: An Approach to Manipulation: Part I-Theory, Part II-
Implementation, Part IlI-Applications”, ASME Journal of Dynamic Systems,
Measurement, and Control", March, 1985.

[47] Khatib O., "A unified Approach for Motion and Force Control of Robotic
Manipulators; The Operational Space Formulation", IEEE Journal of Robotics and
Automation, February 1987.

[48] Volpe R. and Khosla P., "A theorical and Experimantal Investigation of Explicit Force
Control Strategies for Manipulators”", IEEE Transactions on Automatic Control,
November, 1993.

[49] Volpe R. and Khosla P., "An Analysis of Manipulator Force Control Strategies Applied
to an Experimentally Derived Model", IEEE/RSJ International Conference on
Intelligent Robots and Systems, Raleigh, July, 1992.

[50] Volpe R. and Khosla P., "Computational Considerations in the Implementation of
Force Control Strategies”, Journal of Intelligent and Robotic Systems, 9-1994

[51] Volpe R. and Khosla P., "On the Equivalence of Second Order Impedance Control and
Proportional Gain Explicit Force Control", to appear in The International Journal of
Robotics Research, 1994.

[52] Siciliano B., "Parallel Force/Position Control of Robot Manipulators”, Proceedings of
the 7th International Symposium of Robotics Research, Springer-Verlag, London, UK,
1996:79-89.

[53] Chiaverini, S., "Force/Position Regulation of Compliant Robot Manipulators", IEEE
Transactions on Automatic Control, Margo de 1994.

[54] Pires, JN, “MATIR3PCI”, Users Manual of the JR3PCI Matlab Toolbox,
http://robotics.dem.uc.pt/norberto/jr3pci/, 2001.

[55] Pires, JN, "Using Matlab to Interface Industrial Robotic & Automation Equipment”,
IEEE Robotics and Automation Magazine, September 2000.

[56] JR3 Force/Torque Sensor Users Manual, JR3 Inc. Woodland, California, 2001.

[57] JR3 PCI Web Site, http://robotics.dem.uc.pt/norberto/jr3pci/, 2001.

3

Software Interfaces

3.1 Introduction

This chapter explains the basics of remote procedure calling using robot
manipulators and industrial automation systems in general. The underlying idea
here is to demonstrate how to set up and explore a basic facility for robot cell
commanding and supervision operations, using the available network services.
Consequently, a client-server model is adopted where the robot acts like a server
exposing to the remote clients its remote services.

The basic idea is simple. For each equipment we need to design and build a server
(if it is not yet available) to expose the equipment functionality as remote services.
The technology to build the server is highly dependent on the equipment resources
and computing facilities, but if possible some kind of RPC (remote procedure
calls) {1,2] mechanism should be used. Software controls that explore these
services should then be available as basic tools to develop remote and distributed
applications using the selected equipment.

The OSI (open systems interconnection) reference model [1,2] defines the seven
basic levels of network communications. The OSI seven layers can be summarized
as follows (Figure 3.1):

1. Physical layer - Provides electrical, functional, and procedural
characteristics to activate, maintain, and deactivate physical links that
transparently send the bit stream

2. Data link layer - Provides functional and procedural means to transfer
data between network entities and eventually correct transmission errors. It
also provides mechanisms for activation, maintenance, and deactivation of
data link connections, grouping of bits into characters and message frames,

110 Industrial Robots Programming

character and frame synchronization, error control, media access control,
and flow control

3. Network layer - Provides independence from data transfer technology and
relaying and routing considerations; masks peculiarities of data transfer
media from higher layers and provides switching and routing functions to
establish, maintain, and terminate network layer connections and transfer
data between users

4. Transport layer - Provides transparent transfer of data between systems,
relieving upper layers from concern with providing reliable and cost
effective data transfer; provides also end-to-end control and information
interchange with the quality of service needed by the application program;
first true end-to-end layer

5. Session layer - Provides mechanisms for organizing and structuring
dialogues between application processes; these mechanisms allow for two-
way simultaneous or two-way alternate operation, establishment of major
and minor synchronization points, and techniques for structuring data
exchanges

6. Presentation layer - Provides independence to application processes from
differences in data representation, i.e., in syntax; syntax selection and
conversion provided by allowing the user to select a "presentation context”
with conversion between alternative contexts

7. Application layer — This layer is dedicated to the requirements of
application. Consequently, application processes use the service elements
provided by the application layer. The elements include library routines
that perform inter-process communication, provide common procedures for
constructing application protocols and for accessing the services provided
by servers that reside on the network

The user/programmer selects the remote procedure calling mechanism to be used
with the application. Ideally, the libraries used should isolate the user from the
transport selected, hiding the tricky details about how to handle the communication
flow.

This chapter considers the various ways to achieve client-server communication,
with the objective of commanding remote execution of selected functions. The
final objective is to achieve semi-autonomous systems, i.e., highly automated
systems that require only minor operator intervention. In many industries,
production is closed tracked in many parts of the manufacturing cycle, which is
composed by several in-line manufacturing systems that perform the operations
necessary to transform the raw materials into a final product. In many cases, if
properly designed, those individual manufacturing systems requite simple
parameterization to execute their tasks. If that parameterization can be commanded
remotely by automatic means from where it is available, then the system becomes
almost autonomous in the sense that operator intervention is reduced at a minimum
and essentially needed only for error and maintenance situations. A system like this
will improve efficiency and agility, since it is less dependent on human operators.
Also, since those systems are built under distributed frameworks, based on client-

Software Interfaces 111

server software architectures that require a collection of functions to implement the
system functionality, it is easier to change production by adjusting
parameterization (a software task now), which also contributes to agility.
Furthermore, since all information about each item produced is available in the
manufacturing tracking software, it is logical to use it to command some of the
shop floor manufacturing systems, namely the ones that require simple
parameterization to work properly. This procedure would take advantage of the
available information and computing infrastructure, avoiding unnecessary operator
interfaces to command the system. Also, further potential gains in flexibility and
productivity are evident.

OS1Layers User Application
: i
Daia Representation
: i
s RPC Library
TCP UDP
4 &
Network Protocol

Hardware Interface
< Network >

Figure 3.1 OSI reference model, with reference to an RPC library (used in this book)

3.2 Low Level Interfaces

3.2.1 10 Digital Signals

Probably the simplest way to exchange information between two machines, the
first acting as client and the other as server, is by using IO digital signals,
Basically, the client and the server can “agree” to exchange information using a
predefined number of IO digital lines and a simple messaging protocol.

112 Industrial Robots Programming

Let’s illustrate this possibility with an example. Consider the setup represented in
Figure 3.2, composed of a robot manipulator equipped with a vacuum suction cup
and four fixed pick-place positions defined over a working table.

_'{:-J.'.‘:n =¥/ I
Figure 3.2 Simple pick-and-place robotic example

The user should be able to control the robot from a personal computer (PC),
commanding it to pick or place a working piece on any of the available four
positions. The user should also be able to start the robot, send it to the “home
position” and get basic monitoring information.

The commands needed for this application are:

Commands Parameters
Pick piece from position P1 to P4
Place piece at position P1 to P4
Program RUN/STOP

Motor ON/OFF

Go home

Start Vacuum

Release Vacuum

Get Robot Status

Acknowledge Error

Therefore, considering all the possibilities there are seventeen different commands
that require at least five bits (signals). Furthermore, to include the system
commands “Motor ON”, “Motor OFF”, “Program RUN", and “Program STOP”
four new digital input signals are needed (defined in the robot controller as

Software Interfaces 113

SYSTEM INPUTS). These system commands may be necessary for systems that
don’t support multitasking, and consequently require systems inputs to implement
those actions; we plan to implement the server routine as a semistatic independent
task, i.e., a task that runs when the system is in automatic mode. Other systems
may require to have those commands associated with independent IO lines. For
generality we admit here both scenarios. The synchronization signal “command
ready” is also needed to signal valid commands.

To add a simple handshaking mechanism to be used to get robot status information
(like busy, ready, and error status information), and system and program state
information, another six digital output signals are needed. Consequently, the
following IO digital signals should be used:

S0

>

51 N

S2 Error Sys Signal
S3 Auto st Signal
S4 MotoroN st Signa’
S5 PRG RUN st Signal

DO

D1

ROBOT “ Dz pc

D3

D4

Motor ON

Motor OFF

Program RUN

o

Program STOP
Command Ready

+

*

i.e., six (6) robot digital outputs for robot status information and ten (10) robot
digital inputs for system command, data communication, and command validation.
Consequently, Table 3.1 lists the commands identified for robot command and
supervision.

Table 3.1 Commands adopted for this example - PLC side

Command Value of D0-D4 (Hex)
Pick from P1 01
Pick from P2 02
Pick from P3 03
Pick from P4 04
Place at P1 05
Place at P2 06

114 Industrial Robots Programming

Place at P3 07
Place at P4 08
Go home 09
Start Vacuum 0A
Stop Vacuum 0B
Acknowledge Error 0C
Motor ON 0D
Motor OFF 0E
Program RUN OF
Program STOP 10
Get robot status IF

The following procedure should be used to run the presented setup:

Y

Computer waits robot ready

Y

Computer places command

Y
Robot waits
command ready

Y

Computer signals command
ready

Y

Robot reads command

Y
Robot goes busy

Y

Computer removes signal
command ready

Y

Robot executes command

Software Interfaces 115

with the following exceptions:

1. The robot only accepts commands when in automatic mode. In manual
mode or error state the robot ready signal is never activated.

2. When in manual mode, the system always returns the offline state status.

3. On an error situation, the system returns error state status and requires the
user to issue a release error command.

A simple IO board installed on the PC can be used to support the implementation
of the ROBOT - PC interface. Nevertheless, in this example, an industrial PLC
was used to implement the IO interface with the robot controller, being the
communication between the commanding PC and the PLC done through a serial
link (RS232C) - see Figure 3.3. The setup (Figure 3.2) is composed of an
industrial PLC (Siemens S7-200 CPUIS5) [2], a personal computer running
Windows XP and an industrial robot manipulator (ABB IRB 140 equipped with the
IRCS5 robot controller).

Robot

Controller
3

[Y
) 4
&
b

PC PLC

Robot
Manipulator

Figure 3.3 Main components of the system: PC (user interface), PLC (lo interface), robot
controller, and manipulator

The PLC was designed to operate as a server, offering IO services to the remote
computer. Basically, the PLC waits for remote commands, processes them, and
returns the status of all the 10 signals. The commands have the following format:

CMD PAR 1 PAR 2 ... PAR N

where CMD is a code that identifies the command (Table 3.2), and PAR [to
PAR_N are parameters associated with each command.

Table 3.2 Commands adopted for this example — PC side

Command Code (decimal) Parameters

Pick 200 1to4

Place 201 1to4
Go home 202
Start Vacuum 203
Stop Vacuum 204
Acknowledge Error 205
Motor ON 206
Motor OFF 207

116 Industrial Robots Programming

Program RUN 208
Program STOP 209
Get robot status 500

In the following few sections, the developed robot software, the PLC server
software, and the PC commanding software will be presented and explained.

3.2.1.1 Robot Controller Software

In simple terms, the robot software executes the commands defined for the
application in Tables 3.1 and 3.2, following the protocol sequence specified above.
Consequently, the code has the basic structure depicted in Figure 3.4 where the
RAPID programming language (from ABB Robotics) was used. For practical
reasons the software presented in Figure 3.4 shows only the basic structure of three
types of services: Pick/Place P1, Go Home, and Start/Stop Vacuum. It is assumed
here that the robot server routine can run as an independent task, which requires a
multitasking robot controller.

MODULE server_sock
VAR Declaration Here

PROC main()
WHILE TRUE DO
SetDO s0,1;
WaitUntil cmd_rdy = 1;
WaitUntil (command > 0 and command < 15),
SetDO s0 = 0;
WaitUntil command_ready = 0;
TEST command
CASE 1: » Pick from P1
MoveL Offs(p1,0,0,100), v100,fine,tool;
MoveL pl, v50, fine tool;
Vacuum_ON;
WaitUntil vacuum_ready=1\Timeout = 2;
MoveL MoveL Offs(p1,0,0,100), v100,z10,tool;
IF timeout=TRUE THEN

Vacuum_ON;
SetDO 51, 1;
ELSE
SetDO s1, 0;
ENDIF
CASE 5: » Place at P1

MoveL Offs(p1,0,0,100), v100,fine,tool;
MoveL pl, v50, fine tool;

Vacuum_OFF;

WaitUntil vacuum_ready=0\Timeout = 2;
MoveL MovelL Offs(p1,0,0,100), v100,z10,to0l;

Software Interfaces 117

IF timeout=TRUE THEN

SetDO s1, 1;

ELSE

SetDO s1, 0;

ENDIF
CASE 9: » Go home
Movel home, v100,z10,tool,

CASE 10:

Start Vacuum

\4

SetDO doVacuum,1;
WaitUntil vacuum_ready=1\Timeout = 2;
IF timeout=TRUE THEN

SetDO s1, 1;

ELSE

SetDO s1, 0;

ENDIF

CASE 11:

v

Stop Vacuum

SetDO doVacuum,0;
WaitUntil vacuum_ready=0\Timeout = 2;
IF timeout=TRUE THEN

SetDO s1, 1,

ELSE

SetDO s1, 0;

ENDIF
ENDPROC

Figure 3.4 Application running on the robot controller (RAPID)

The application presented in Figure 3.4 uses the following variables:

command_ready — this is a digital input signal used to specify that a valid
command is ready to be read. This variable is defined as a USER IO
SIGNAL in the robot system parameters

command - group of four digital signals (d0, d1, d2 and d3) used to specify
the command that should be executed. This variable is defined as a
GROUP OF 10 SIGNALS in the robot system parameters

status — group of six digital output signals (s0, s1, s2, 53, s4 and s5) used to
specify the robot status. This variable is also defined as a GROUP OF 10
SIGNALS in the robot system parameters: sO specifies if the robot is ready
(1) or busy (0), sl specifies if a command was correctly executed (0) or if
there was any execution error (1), s2 is associated with the system ERROR
OUTPUT ACTION, s3 is associated with the system AUTO OUTPUT
action, s4 is associated with the system MOTOR ON OUTPUT action and
s5 is associated with the system PROGRAM RUN OUTPUT action.
Signals s2 to s5 are defined as SYSTEM OUTPUTS in the robot system
parameters

There are also four extra robot digital 10 inputs, associated with the
command of system actions MOTOR ON, MOTOR OFF, PROGRAM

118 Industrial Robots Programming

RUN, and PROGRAM STOP. These signals were named motor on,
motor_off, program_run and program_stop, respectively, and are defined
as SYSTEM INPUTS in the robot system parameters.

3.2.1.2 PLC Software

The PLC software was designed to operate as a server. Furthermore, the
application is basically composed of a serial port interrupt and service routine that
handles the communication with the PC, placing the received string on known
memory locations. In this example, the received string is copied to the memory
zone that starts with byte 90. Therefore, the following happens when a message is
received:

VB90 — contains the number of bytes received
VBO91 — contains the numeric code associated with that command
VB92 — contains parameter 1

VB92+N - contains parameter N
Note: In this example, the number of possible parameters is limited to 5, i.e., N = 5.

[lndustial Robot Protramming Example; section 3.2.1 o ey e v g g |
Network 1 Fick F1
[Bchivate Pick PT7-Code =1 - T T

VB3l VBS2 dd
—— = 5)
dl
—(")
1
dz2
—(R)
H
d3
—(R)
1
dd
—(")
1
‘Symboldin T] Addiess i Comment:
d0 Q0.0 Drigtal Outpast 300 obzol
dl Q01 Cigital Dutpat (0.1 [2 :
dz2 00.2 Crigital Dutput (0.2 {24 Volts] - 1o obaot
d3 Q0.3 Diigitad Outpng 003 |- bocrobiot
d4 Q0.4 Uigital Guiped Q03 {24 0ls] > to robot

a)

Software Interfaces

119

[Hrdustrial Robot Progrsmming Esample. section 3.2.1

Network 1 Pick P1

[Actvale "Fik PT" - Cads et 7

1bB= VBS1, 240

AB= VB2, 1
S do, i
R 1. 1
R dz; 1
R a3, 1
R dd. 1
b)

Figure 3.5 Equation to activate action “Pick PI” using the SIEMENS programming suite

for the S7-200 PLC model (Step 7 Micro/Win 32 V4) [3]: a — Ladder view, b — STL view

Furthermore, any PLC action will be triggered by a byte comparison between
VB91 (byte carrying the received command numeric code) and the particular
numeric code associated with that action, discriminating also the parameters
associated with the command. For example, to activate the command “Pick PI” the

following command string must be sent to the PLC:

which results in making VB91 =200 and VB92 = 1.

20010000

Consequently, the equation necessary to activate the action “Pick PI” is

represented in Figure 3.5.

[Get10 Status < Code=1F. o

_nl
==B I EN

QBO4IN

MOV_B

ENO

ouT

—

/102

EN

AB1-IN

MOV_B

ENO

ouT

-

FVB103

EN

IBO4IN

MOV_B

END

ouTt

R

|vB104

EN

1B14IN

MOV_B

END

ouT

-

FVB105

Figure 3.6 Ladder view of the “Get Robot Status” action on the PLC. Bytes VB100 to
VB105 constitute an intermediate buffer used by the serial port service routine. Bytes QB0
and QB1 carry the state of all the digital outputs, and bytes IB0O and IB1 carry the state of all

the digital inputs.

120 Industrial Robots Programming

All the remaining actions are implemented in a similar way. Nevertheless, there is
one special action that should return the robot status. This feature is obtained just
by packing the actual status of all IO signals and sending it through the serial
communication port, as the answer to the monitoring command “Get Robot Status”
(code 1F) — Figure 3.6.

3.2.1.3 PC Sofiware

The software developed to run on the PC provides the user interface to this setup. It
is used to send the user selected commands to the PLC and to receive and present
to the user the “status™ information (Figure 3.7).

on | N
. BRI

(O Motot ON/OFF

D3

D4

(O Program RUN/STOP

Figure 3.7 PC user interface

This simple application was coded using Visual Basic .NET2005. In the following
(Figure 3.8) some aspects of the code associated with a few software buttons
(actions) are revealed.

If robot_auto = 1 Then

com.Qutput = Chr(206) + Chr(0) + Chr(0) + Chr(0) + Chr({]) + Chr(0)
Else

com.Qutput = Chr(207) + Chr(0) + Chr(0) + Chr(0) + Chr(0) + Chr(0)
End If

If program_run = 1 Then
com.Output = Chr(208) + Chr(0) + Chr(0) + Chr(0) + Chr(0) + Chr(0)
Else

com.Qutput = Chr(209) + Chr(0) + Chr(0) + Chr(0) + Chr(0) + Chr(0)
End If

Software Interfaces 121

If pick.Checked = True Then

com.Output = Chr(200) + Chr(1) + Chr(0) + Chr(0) + Chr(0) + Chr(0)
End If
If place.Checked = True Then

com.Output = Chr(201) + Chr(1) + Chr(0) + Chr(0) + Chr(0) + Chr(0)
End If

Figure 3.8 Some actions available from the PC software

The actions “Motor ON/OFF” and “Program RUN/STOP” are obtained just by
introducing a properly temporized IO PULSE on the relevant robot system input,
which triggers those actions. Consequently, the PLC equation for the above
mentioned actions is a simple /O PULSE obtained using the PULSE function or a
TIMMER function. Figure 3.9 shows the ladder view for the “Motor ON” action
and the corresponding timing.

setivale Mator ON - Code = D700 : ;
VBS1 137 4

I] i
=8 | N TON ' ;
13 lL
14PT 100 ms |
VB9l == 13 S O
t]
V. 00ms |
motor_off .
——(R”)
1
10r OfL |~ - = - - - - - -
motor_on motor_on : :
) o
1 | i
137 mator_on H i

— (")

Symbal
motor_off § Diigital Dutput (0.6 {24 Yalta] -5 toyobot i
motor_on Q05 | Dgital Dudpit Q0.5 {24 Valts] - tarobot |
Figure 3.9 — Ladder view of the “Motor ON” action on the PLC, including a sketch of the
timing of the obtained PULSE

To briefly summarize this section so far, a simple example was presented where a
robot is used to pick-and-place objects from four pre-defined positions. An
industrial PLC was used to interface the commanding PC with the robot controller.
This example demonstrates the utilization of IO digital signals to design a simple
communication and data interface for commanding and monitoring applications in
industrial environments.

122 Industrial Robots Programming

3.2.2 Using Fieldbuses

A fieldbus [4] is an industrial network used for distributed control, i.e., to use with
systems in which the control function is distributed among the several components
of the system. In fact, actual industrial components like sensors, actuators, drive
systems, programmable controllers, etc., are equipped with powerful computing
systems that enable the system designer to transfer part of the control software,
associated with acquisition, control, and actuation tasks, to those systems,
distributing in this way the overall control function. Consequently, the available
fieldbuses were developed to provide a reliable platform to transmit IO data
(digital and analog) between industrial PLCs and peripheral equipment, like
sensors and actuators but also to established a low-level network with other PLCs
and microprocessor-based programmable devices. Consequently, fieldbuses are
mainly seen by users as a way to have remote 10s, i.e., a way to access remote
sensors and actuators using a two-wire network, avoiding in this way a huge
amount of cables and analog transmissions on the field (process) level.
Furthermore, fieldbuses are also a reliable and convenient way to make
application-oriented, low-level networks. There are several technical specifications
available in the market, maintained by international and generally non-profit
organizations, supported by the big majority of hardware manufacturers. Three of
the most popular specifications will be covered here: ProfiBus, CAN and
DeviceNet [4].

3.2.2.1 Profibus (Process FieldBus)

Profibus is probably the most popular type of fieldbus with more than 15 million
installed devices as of 2006. It was developed in 1989 as a deliverable of a German
research project, whose consortium was composed by several companies and
research institutions.

Based on the real-time capable token-bus principle, Profibus handles multi-master
and master-slave communications, allowing transfer rates up to 500 Kbits/s.
Profibus is based on standards (the application, data, and physical layers are all
standard) and enables reliable communication that distinguishes between
confirmed and unconfirmed services allowing process communication, broadcast
and real-time. Since Profibus is a master-slave pooling network with the ability to
upload/download configuration data, it allows process synchronization of multiple
devices on the network.

3.2.2.2 CAN (Controller Area Network)

CAN is a fast serial bus that was designed to provide an efficient, reliable, and very
economical link between sensors and actuators. CAN uses a twisted pair cable to
communicate at speeds up to 1Mbit/s with up to 40 devices. Originally developed
to simplify the wiring in automobiles, its use has spread to machine and factory
automation products. For example, SDS (Smart Distribution System) was
developed by Bosch for networking most of the distributed electrical devices

Software Interfaces 123

throughout an automobile, initially for eliminating the large and expensive wiring
harnesses at Mercedes (car manufacturer from Germany).

CAN provides standardized communication objects for process data, service data,
network management, synchronization, time-stamping, and emergency messages.
It is the basis of several sensor buses, such as DeviceNet (Allen-Bradley), SDS
(Smart Distribution System) from Honeywell or CAL (Can Application Layer)
from “CAN in Automation Group” (a group of about 300 international users and
manufacturers). CANOpen is a family of profiles based on CAN which was
developed within the “CAN in Automation Group”. The extensive error detection
and correction features of CAN may easily withstand the harsh physical and
electrical environment presented by a car.

3.2.2.3 DeviceNet

DeviceNet is an extension of CAN adapted for critical factory networking purposes.
At the next level are the "control" networks, which include ControiNet, developed
by Allen-Bradley and also utilized by Honeywell, overlapping with some of the
functionality provided by Profibus-FMS (FieldBus Message Specification).
Profibus-FMS uses the same physical layer as Profibus DP (Decentralized
Peripheral) but allows multi-master, asynchronous, peer-to-peer communication.
FMS and DP can operate simultaneously on the same network. ControlNet was
conceived as the ultimate high-level fieldbus network and was designed to meet
several high performance automation and process control criteria. Of primary
importance is the ability to communicate with each other being 100%
deterministic, while achieving faster response than traditional master/slave
poll/strobe networks.

Furthermore, DeviceNet is a simple, open networking solution that reduces the cost
and time required to wire and install industrial automation devices, while providing
interchangeability of components from multiple vendors. DeviceNet is a cost-
effective solution for low-level industrial device networking and an effective way
to provide access to the intelligence present in those devices. A DeviceNet network
lets the user/programmer connect devices directly to shop floor controllers without
hard-wiring each device into an I/O module. It is also used to:

¢ Reduce wiring and installation cost

e Reduce start-up time

o Significantly reduce downtime and the total cost of ownership with the aid
of diagnostics, Auto Device Replacement, and other time- and cost-saving
features

o Support standard and safety applications on the same wire

e Benefit from an open network

¢ Control, configure, and collect data on a single network

Consequently, using a fieldbus is not significantly different if compared to regular
10, since the same logic of encoding commands and parameters is used, utilizing

124 Industrial Robots Programming

the 1O signals/bits like a data bus. Nevertheless, fieldbuses use high bit rates over a
reduced number of wires (normally a twisted-pair cable), which is an enormous
advantage for industrial utilization since it allows a considerable reduction in the
number of wires within the system. Other than that, since a fieldbus can
accommodate a big number of remote IOs, it is easier to implement a messaging
protocol to handle the necessary commands and related parameters, events, and
monitoring tasks. In fact, many of the fieldbus consortiums developed their own
protocols and consequently the user can choose between his own protocol, or the
one available from the specific technology adopted.

Currently there is a debate about using Ethernet with predictable timing
(deterministic and robust) for “fieldbus type” operations, i.e., penetrating deep into
the factory network hierarchy, down to the I/O level. This is justified by the fact
that Ethernet is a network commonly available on the shop floor and used for many
operations between controllers and computers. A decade ago, no serious design
engineer would have suggested using Ethernet for networking shop floor devices.

Ethernet, the technology for office automation, was developed more than three
decades ago as a high-speed serial data-transfer network. It has become a
worldwide standard and is now the most widely used Local Area Network (LAN).
More than 85% of all installed network connections in the world are Ethernet. But
it was deliberately ignored for industrial applications, and for good reasons: Its
lack of determinism and robustness made it feeble and not suitable for the shop
floor. Nevertheless, with time and research things changed, and today the scene is
considerably different. In fact, over the past few years there have been many
enhancements to the Ethernet standard, especially in areas of determinism, speed,
and message prioritization. So there is no longer any reason why Ethernet cannot
be used to build deterministic fieldbus networks that are cost-effective and open.
And since Ethernet is already the network choice for business computing, its
presence at the control level will facilitate the integration of low-level data with
high-level applications.

Another good reason why manufacturers are looking at Ethernet is the coming
explosion of shop floor data traffic. As smart sensors and various devices on the
shop floor consume the available bandwidth over the next few years,
manufacturing plant information generated by PLCs and control systems is
expected to increase from 10 to 30 times the current level. Ethernet, with its
Internet-friendly TCP/IP protocol, is ideally positioned. It is popular, sinking in
price and being propelled by utter market demand.

Nevertheless, this scenario makes some of the PLC manufacturers uncomfortable.
Even the recently arrived fieldbus systems are beginning to feel threatened by
Ethernet. Furthermore, the DeviceNet, Profibus and Foundation Fieldbus protocols
are all available or in development as application layers for Ethernet. And most
PLCs now offer Ethernet as a standard networking option in addition to their
fieldbus of choice. High Speed Ethernet (HSE) is a 100 Mbit/s Ethernet standard
that uses the same protocol and objects as Foundation Fieldbus HI, on TCP/IP,

Software Interfaces 125

The new generation of Ethernet is called Gigabit Ethernet, which is capable of 1
Gbits/sec. This will bridge the gap between the necessity of industrially hardened
wiring capability and the growing need for process data via business LANs and the
Internet. Most companies cannot afford to have a DeviceNet or Profibus specialist
on their technical staff. Even if a company could afford such a person, it is unlikely
that fieldbus would be their specialty. However, almost every company has a
network administrator who is well versed and specialized in the Ethernet protocol,
making Fthernet even more attractive for industrial control.

In this book, Ethernet and TCP/IP network protocols are used extensively for
several types of tasks:

1. To command distributed systems from remote computers
. To supervise and monitor operation of the manufacturing systems

3. To exchange data, configuration setup, etc., with peripheral devices
(sensors and actuators, for example)

4. To monitor and supervise operation of the remote systems, including
controllers, sensors, actuator modules, etc

5. To program peripheral devices (sensors and actuators) and/or adjust their
behavior

6. To receive events (asynchronous calls) from peripheral devices with data,
warnings, or errors

3.3 Data Protocols and Connections

The challenges posed by any robotic manufacturing system are similar and
independent of the particular application under study. Consequently, the software
architecture [5-7] presented in this book was designed to be used with generic
robotic manufacturing cells that may include several types of equipment like robot
manipulators, mobile robots, PLCs (programmable controllers), CNC machines,
vision systems and several types of sensors, efc. Usually these systems use
different programming languages, even when the manufacturer is the same. It is
then very difficult to make adjustments to the cell functionality, or adapt it to new
requirements posed by the introduction of a new product or by changes introduced
in existing products. Several research and technical efforts have been carried out to
overcome these problems. Many of those efforts point to solutions that consider the
development of general programming languages that could be used with any
equipment, relying on individual interpreters to generate the specific code for any
equipment,

Nevertheless, recent research works show that it is desirable to have a flexible
environment and still program each machine using its own language. The reason is
simple: a general syntax means introducing generalizations and simplifications that
tend to limit the potentiality of the equipment. Consequently, some
parameterization is not used, special non-grouped functions are not used, and the

126 Industrial Robots Programming

generated code takes always a uniform structure which may not be the best for all
machines.

The idea presented here is rather different, being an alternative to the solutions
presented in the literature, and also for the software products truly distributed
available on the market. The basic idea is to define for each individual machine a
collection of software functions that expose all its basic operational features. That
objective requires local processing capabilities, availability of communication
channels, and support for the standard technologies used when implementing the
services installed on the individual machines. Since the vast majority of the current
robotics and automation (R&A) equipment meets these requirements fully, this is
not a serious limitation. Also, the above-mentioned services are to be offered
through a local network, on a distributed software framework based on the client-
server model. Furthermore, using those services from the remote client computer to
build controlling and inspection applications can be performed from any platform
(UNIX, Linux, Win32-DCOM, etc.), vsing standard programming languages (C,
C++, C#, Visual Basic, etc.).

Several approaches can be used and are currently available from various robot
manufacturers, with specific details and implementations. Nevertheless, the
following objectives are pursued by any of the above-mentioned software
architectures:

1. Be able to represent the robot manipulator’s motion based on the kinematic
and dynamic models, but also based on real-time data coming from the real
robot. That can be done using available mathematical and graphical
software packages, like Matlab for example. This latest objective clearly
indicates the need to access robot motion and status information in real-
time from the mathematical package

2. Be able to develop applications to explore remotely the entire installation
(robot and welding application, for example) using standard programming
languages (C, C++, C#, Visual Basic, etc.)

3. Be able to integrate and explore intelligent sensors used to obtain
information from the process under control

4. Enable users to explore the advanced programming capabilities of actual
robot controllers, namely the local programming capabilities, based on a
dedicated programming language complemented by extensive libraries of
functions, and the optimized manipulation capabilities based on trajectory
planning software that takes advantages of optimized kinematic and
dynamic models

5. Enable users to build flexible manufacturing cells, which leads to the
ability to explore the available industrial data network, and to distribute
software to the various components of the system, as well as the capacity to
build remote software applications to control and monitor industrial
manufacturing cells

6. Develop advanced Human Machine Interface (HMI) solutions to operate
with industrial systems, hiding from the users all the tricky details about

Software Interfaces 127

implementation, allowing them to focus on the operational details, i.e., to
focus on how systems work and how they can be explored efficiently
Provide ways that could allow developers to focus on the important things
about the application they are building: the control algorithm, program
functionality, and HMI. All the details related to communications, sensor
integration, efc., should be hidden from the user

Taking into consideration these objectives, the following programming models are
required:

1.

Client-server model: There should be server code running on each cell
equipment, namely on the robot controllers and coordinating PLCs, that
could receive calls from the remote client computers, execute the
commands and return the results

Remote procedure calls: This is the most usual method used to implement
communications between a client and a server on a distributed
environment. The client makes a call to a non-local function and the
selected RPC mechanism configures the call so that the proper computer,
server program and function are addressed, adding the necessary network
headers. The server program, running on the server machine, receives the
call, executes the selected function, and returns the results obtained to the
client computer

IPC socket connections: Another approach is to use TCP or UDP sockets
to make the interprocess (IPC) and intersystem communication, defining a
messaging mechanism to send commands and obtain process data

Data sharing: Most of the services require data sharing, files and
databases between the client and the server. Consequently, the mechanism
provided by the RPC technology to implement data sharing must be used

Another important thing to consider is the need to interface intelligent sensors with
the system. The most easy and portable way to do that is to build software
components that implement the methods, properties and data structures necessary
to configure and use the sensor. Consequently, a technology to implement software
components is also needed. The basic architecture presented in Figure 3.10 details
all these requirements.

128 Industrial Robots Programming

Robot Controller

Figure 3.10 Software architecture used (depicting several possibilities: using software
components, using RPC sockets, using TCP/IP sockets and OPC - OLE for Process
Control)

Sockets provide point-to-point, two-way communication between two processes.
Sockets are very versatile and are a basic component of interprocess and
intersystem communication. A socket is an end point of communication to which a
name can be bound. It has a type and one or more associated processes.

Software Interfaces 129

Sockets exist in communication domains (families). A socket domain is an
abstraction that provides an addressing structure and a set of protocols. Sockets
connect only with sockets in the same domain. Several domains are identified and
can be used to communicate between processes on a single system, like other
forms of IPC.

Sockets can also be used to communicate between processes on different systems.
The socket address space between connected systems is called the Internet domain,
and in that case the communication uses the TCP/IP Internet protocol suite.

Socket types define the communication properties visible to the application.
Processes communicate only between sockets of the same type. There are several
types of socket:

Stream socket - provides two-way, sequenced, reliable, and unduplicated flow of
data with no record boundaries. Stream sockets operate much like a telephone
conversation. The socket type is SOCK_STREAM, which, in the Internet domain,
uses Transmission Control Protocol (TCP).

Datagram socket - supports a two-way flow of messages, not necessarily
sequenced (messages can appear in a different order), and unreliable flow of data
with record boundaries. Datagram sockets operate much like passing letters back
and forth in the mail. The socket type is SOCK_DGRAM, which, in the Internet
domain, uses User Datagram Protocol (UDP).

Sequential packet socket - provides a two-way, sequenced, reliable, connection, for
datagrams of a fixed maximum length. The socket type is SOCK_SEQPACKET.
No protocol for this type has been implemented for any protocol family.

Raw socket - provides access to the underlying communication protocols.
These sockets are usually datagram-oriented, but their exact characteristics depend
on the interface provided by the protocol.

In this book, we use stream sockets (for TCP client-server connections) and
datagram sockets (for UDP client-server connections. Figure 3.11 shows the code
used to open a socket on a TCP client application.

130 Industrial Robots Programming

Private Shared Function C_Sock(ByVal server As String, ByVal port As Integer) As Socket
Dim s As Socket = Nothing
Dim hostEntry As System.Net.IPHostEntry = Nothing
Dim address As IPAddress
address = IPAddress.Parse(server)
Dim endPoint As New IPEndPoint(address, Integer.Parse(port))
Dim tempSocket As New
Socket(AddressFamily InterNetwork, SocketType.Stream, ProtocolType. Tep)
Try
tempSocket.Connect(endPoint)
If tempSocket.Connected Then
s = tempSocket
End If
Catch e As Exception
Return s
End Try
Return s
End Function

Figure 3.11 Code used to open a TCP socket connection (using Visual Basic NET 2005)

Admitting that there’s a TCP socket server running on the robot controller, as an
independent task (process), which receives remote commands through the open
socket, executes them, and returns the correspondent results, Figure 3.12 shows
what a simple “motor_on” command should look like.

server_name = ip.Text
server_port = port. Text
s = ConnectSocket(server_name, server_port)
If s Is Nothing Then
ans_robot. Text() = "Error connecting to robot, master."
Else
Dim bytesSent As {Byte]() = Nothing
bytesSent = ascii.GetBytes("'motor_on')
s.Send(bytesSent, bytesSent.Length, 0)
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)
ans_robot.Text() = Encoding. ASCIL GetString(bytesReceived, 0, bytes)
s.Close()
If Encoding. ASCIL GetString(bytesReceived, 0, bytes) = "0" Then
ans_robot. Text() = "Motor on, master."
cstate. Text() = "Motors ON"
Else
ans_robot. Text() = "Error executing, master."
End If
End If

Figure 3.12 Sample code used to command the action “motor_on” with TCP sockets (using
Visual Basic NET 2005)

Software Interfaces 131

This code will be used later in this book with several examples that explore the
utilization of stream and datagram sockets to command industrial robotic
applications.

3.3.1 RPC - Remote Procedure Calls

A remote procedure call (RPC) is a facility that a software application can use to
request a service from a program located in another computer of the network
without having to understand network details. (A procedure call is also sometimes
known as a function call or a subroutine call.) RPC uses the well known client-
server model. The requesting program is the client and the service-providing
program is the server. Like a regular or local procedure call, an RPC is a
synchronous operation requiring the requesting program to be suspended until the
results of the remote procedure are returned. However, the use of lightweight
processes, or threads that share the same address space, allows multiple RPCs to be
performed concurrently.

When the software statements that use RPCs are compiled into an executable
program, a stub is included in the compiled code that acts as the representative of
the remote procedure code. When the software is executed and the procedure call is
issued, the stub receives the request and forwards it to a client runtime program in
the local computer. The client runtime program knows how to address the remote
computer and server application, and sends the message across the network that
requests the remote procedure. Similarly, the server includes a runtime program
and stub that interface with the remote procedure itself. Results are returned the
same way.

There are several RPC models and implementations. A popular model and
implementation is the Open Software Foundation's Distributed Computing
Environment (DCE). The Institute of Electrical and Electronics Engineers (IEEE)
defines RPC in its ISO Remote Procedure Call Specification, ISO/IEC CD 11578
N6561, ISO/IEC, November 1991.

RPC is a powerful technique for constructing distributed, client-server based
applications. It is based on extending the notion of conventional or local procedure
calling, so that the called procedure need not exist in the same address space as the
calling procedure. The two processes may be on the same system, or they may be
on different systems with a network connecting them. By using RPC, programmers
of distributed applications avoid the details of the interface with the network. The
transport independence of RPC isolates the application from the physical and
logical elements of the data communications mechanism and allows the application
to use a variety of transports.

RPC makes the client/server model of computing more powerful and easier to
program. When combined with the ONC RPCGEN protocol compiler, clients
transparently make remote calls through a local procedure interface.

132 Industrial Robots Programming

Consequently, the robot controller software works as a server, exposing to the
client a collection of RPC services that constitute its basic functionality. Those
services, offered by the RPC servers running on the robot controller, include the
variable access services, files and programs management services, and robot status
and controller-state management and information services. To access those
services, the remote computer (client) issues properly parameterized remote
procedure calls to the robot controller (server) through the network.

Considering, for example, the S4CPLUS robot controller from ABB Robotics, it’s
possible to extend the RPC services available in the robot controller adding user
functionality to the system. The ABB implementation is based on a messaging
protocol developed by ABB called RAP (remote application protocol) [8], which
is an application specific protocol (ASP) of the OSI application level. The
messaging protocol RAP defines the necessary data structures and message syntax
of the RPC calls used to explore the RPC services available in the controller.

These services were implemented using the standard and open source RPC
specification SUN RPC 4.0, a collection of tools developed by the SUN
Microsystems Open Network Group (ONC) [2]. Consequently, to implement the
client calls, the ONC SUN RPC 4.0 specification and tools were also used. This
package includes a compiler (rpcgen), a portmaper and a few useful tools like
rpcinfo. The Microsoft RPC implementation uses another standard defined by
Digital Corporation named OSF/DCE, which is not compatible with the SUN RPC
standard. The package used to build the client software was a port to Windows
NT/2000/XP, equivalent to the original version that was built to UNIX systems,
although a few functions were slightly changed to better suit the needs without
compromising compatibility with client and server programs developed with the
SUN RPC package. The port was compiled using the Microsoft Visual C++ .NET
2003 compiler.

From all the RPC services available in the robot controller, the ones really needed
to implement the software architecture depicted in Figure 3.10 are the variable
access services. Nevertheless, calls to the other services were implemented for
completeness. The procedure is simple and based on the XDR (extended data
representation) file obtained by defining the data structures, the service
identification numbers, and the service syntax specified by the RAP protocol. That
file is compiled by the rpcgen tool, generating the basic calls and data structure
prototypes necessary to invoke the RPC services available from the robot
controller. The necessary code was added to each basic function and packed into an
ActiveX software component named PCROBNET2003/5 [5-7]. The complete set of
functions included in this object is listed in Table 3.3.

Although this software component was built using the DCOM/OLE/ActiveX
object model, it does not run the Microsoft RPC implementation but instead the
already mentioned SUN RPC 4.0 port to the Win32 APL

Software Interfaces 133

Table 3.3 Methods and properties of the software component PCROB NET2003/5

Function Brief description

open Opens a communication line with a robot (RPC client)
close Closes a communication line

motor_on Go to run state

motor_off Go to standby state

prog_stop Stop running program

prog_run Start loaded program

prog load Load named program

prog_del Delete loaded program

prog set mode

Set program mode

prog_get mode

Read actual program mode

prog_prep Prepare program to run (program counter to begin)

pgmstate Get program controller state

ctistate Get controller state

oprstate Get operational state

sysstate Get system state

ctlvers Get controller version

ctlid Get controller ID

robpos Get current robot position

read_xxxx Read variable of type xxxx (there are calls for each type of
variable defined in RAPID)

read_xdata Read user-defined variables

write_xxx Write variable of type xxxx (there are calls for each type of

variable defined in RAPID)

write xdata

Write user-defined variables

digin Read digital input
digout Set digital output
anain Read analog input
anaout Set analog output

To use a remote service, the computer running the client application needs to make
properly parameterized calls to the server computer, and receive the execution
result. Two types of services may be considered: synchronous and asynchronous.
The synchronous services return the execution result as the answer to the call.

Consequently, the general prototype of this type of call is:

short status call_service_i (struct parameters_i, struct answer_i)

where status returns the service error codes (zero if the service returns without
errors, and a negative number identifying the error otherwise), parameters i is the
data structure containing the service parameters and answer_i is the data structure
that returns the service execution results.

134 Industrial Robots Programming

The asynchronous services, when activated, return answers/results asynchronously,
i.e., the remote system should also make remote procedure calls to the client
system when the requested information becomes available or when the specified
event occurs (system and controller state changes, robot program execution state
change, IO and variable events, efc.). Those calls may be named events or
spontaneous messages, and are remote procedure calls issued to all client
computers that made the correspondent subscription, e, made a call to the
subscription service properly parameterized specifying the information wanted. To
receive those calls, any remote client must run RPC servers that implement a
service to receive them (Figure 3.13). The option adopted was to have that server
broadcast registered messages inside the operating system, enabling all open
applications to receive and process that information by filtering its message queue.

RPC Call

Message to the screen
Asynchronous answer g

™~

Win32 registered message

* The writing operation is done only on idle
) (broadcast)
periods.

Figure 3.13 Functionality of the RPC server necessary to receive spontaneous messages

As mentioned already, the variable access services allow access to all types of
variables defined in the robot controller. Using this service, and developing the
robot controller software in a convenient way, it is possible to add new services to
the system. In fact, that possibility may be achieved by using a simple SWITCH-
CASE-DO cycle driven by a variable controlled from the calling (client) remote
computer:

switch (decision_1)

{
case 0: call service 0; break;
case 1: call service_1; break;
case 2: call service 2; break;

case n; call service_n; break;

Software Interfaces 135

This server runs on the robot controller, making the process of adding a new
service a simple task. The programmer should build the procedure (routine) that
implements the new functionality, and include the call to that procedure in the
server cycle by identifying it with the specific number of the control variable.

This is not far from what is done with any RPC server; the svc_run function, used
in those programs is a SWITCH-CASE-DO cycle that implements calls to the
functions requested by the remote client. With this type of structure it is
straightforward to build complex and customer functions that can be offered to the
remote client. Furthermore, with this approach it’s still possible to use the
advanced capabilities offered by the robot controller, namely the advanced
functions designed to control and setup the robot motion and operation. Examples
exploring this facility are presented and discussed in this chapter (sections 3.4 to
3.6).

3.3.2 TCP/IP Sockets

One of the most interesting ways to establish a network connection between
computer systems is by using TCP/IP sockets. This is a standard client-server
procedure, not dependent on the operating system technology used on any of the
computer systems, requiring only the definition of a proper messaging syntax to be
reliable and safe. The user-defined messaging protocol should specify the
commands and data structures adapted to the practical situation under study.

The TCP/IP protocol suite is based on a four-layer reference model. All protocols
that belong to the TCP/IP protocol suite are located in the top three layers of this
model.

As shown in Figure 3.14, each layer of the TCP/IP model corresponds to one or
more layers of the seven-layer Open Systems Interconnection (OSI) reference
model proposed by the International Standards Organization (ISO).

136 Industrial Robots Programming

OS5I Model TCF/IP Model
Application layer
Presentation layer Application layer
Session layer
Transpott layer Transpott layer
Network layer Internet layer
Data Link layer Network
Intetface
Physical layer layer
Figure 3.14 Correspondence between the OSI Model and the TCP/IP Model in terms of
layers.
Table 3.4 Services performed at each layer of the TCP/IP Model
Layer Description
Application Defines the TCP/IP application protocols and how the host
programs interface with transport layer services to use the
network
Transport Provides communication session management between host
computers. Defines the level of service and the status of the
connection used when transporting data
Internet Packages data into IP datagrams, which contain source and

destination address information that is used to forward the
datagrams between hosts and across networks. Performs
routing of IP datagrams

Network interface

Specifies details of how data is physically sent through the
network, including how bits are electrically signaled by
hardware devices that interface directly with a network
medium, such as coaxial cable, optical fiber, or twisted-pair
copper wire

Software Interfaces 137

The types of services performed at each layer within the TCP/IP model are
described in more detail in Table 3.4.

Transmission control protocol (TCP) is a required TCP/IP standard defined in RFC
793, "Transmission Control Protocol (TCP)” that provides a reliable, connection-
oriented packet delivery service. The transmission control protocol:

¢ Guarantees delivery of IP datagrams
Performs segmentation and reassembly of large blocks of data sent by
programs
Ensures proper sequencing and ordered delivery of segmented data

e Performs checks on the integrity of transmitted data by using checksum
calculations

e Sends positive messages depending on whether data was received
successfully. By using selective acknowledgments, negative
acknowledgments for data not received are also sent

e Offers a preferred method of transport for programs that must use reliable
session-based data transmission, such as client/server database and e-mail
programs

TCP is based on point-to-point communication between two network hosts. TCP
receives data from programs and processes this data as a stream of bytes. Bytes are
grouped into segments that TCP then numbers and sequences for delivery.

Before two TCP hosts can exchange data, they must first establish a session with
each other. A TCP session is initialized through a process known as a three-way
handshake. This process synchronizes sequence numbers and provides control
information that is needed to establish a virtual connection between both hosts.

L IP datagram N

[~ 'l

IP header IP payioad

TCP segment

B
;

TCP header segment

Figure 3.15 TCP segment within an IP datagram

Once the initial three-way handshake completes, segments are sent and
acknowledged in a sequential manner between both the sending and receiving
hosts. A similar handshake process is used by TCP before closing a connection to
verify that both hosts are finished sending and receiving all data.

138 Industrial Robots Programming

TCP segments are encapsulated and sent within IP datagrams, as shown in Figure
3.15

3.3.2.1 TCP Ports

TCP ports use a specific program port for delivery of data sent by using the
transmission controlpProtocol. TCP ports are more complex and operate
differently from UDP ports.

While a UDP port operates as a single message queue and the network endpoint for
UDP-based communication, the final endpoint for all TCP communication is a
unique connection. Each TCP connection is uniquely identified by dual endpoints.
Each single TCP server port is capable of offering shared access to multiple
connections because all TCP connections are uniquely identified by two pairs of IP
address and T'CP ports (one address/port pairing for each connected host).

The server side of each program that uses TCP ports listens for messages arriving
on their well-known port number. All TCP server port numbers less than 1024 (and
some higher numbers) are reserved and registered by the Internet Assigned
Numbers Authority (IANA).

3.3.3 UDP Datagrams

The User Datagram Protocol (UDP) is a TCP/IP standard defined in RFC 768,
"User Datagram Protocol (UDP)". UDP is used by some programs instead of TCP
for fast, lightweight, unreliable transportation of data between TCP/IP hosts.

UDP provides a connectionless datagram service that offers best-effort delivery,
which means that UDP does not guarantee delivery or verify sequencing for any
datagrams. A source host that needs reliable communication must use either TCP
or a program that provides its own sequencing and acknowledgment services.

UDP messages are encapsulated and sent within IP datagrams, as shown in 3.16,

Software Interfaces 139

IP datagram

IP header IP payload

UDP message

¥

e
v

UDP header message

Figure 3.16 UDP message within an IP datagram

3.3.3.1 UDP Ports

UDP ports provide a location for sending and receiving UDP messages. A UDP
port functions as a single message queue for receiving all datagrams intended for
the program specified by each protocol port number. This means UDP-based
programs can receive more than one message at a time.

The server side of each program that uses UDP listens for messages arriving on
their well-known port number. All UDP server port numbers less than 1024 (and
some higher numbers) are reserved and registered by the Internet Assigned
Numbers Authority 1ANA).

Each UDP server port is identified by a reserved or well-known port number.

3.4 Simple Example: Interfacing a CCD Camera

The example presented in this section demonstrates the utilization of TCP/IP
sockets (stream type or TCP sockets) to command an industrial robot and to
interface with a CCD camera (a common USB Webcam). The example will be
presented in detail with the objective of allowing the reader to explore further from
the concepts and ideas presented.

Basically the system is composed of the following components (Figure 3.17):

¢ Industrial robot manipulator ABB IRB140 equipped with the new IRCS
robot controller
Pneumatic tool equipped with a vacuum cup
Working table and several working pieces

o Webcam used to obtain the number of pieces present in the scene and
their respective positions

e Pocket PC running the Windows Mobile 2005 operating system

140 Industrial Robots Programming

e b A

Figure 3.17 Setup for this example showing: Robot manipulator, Webcam, laptop running
the Webcam TCP/IP server, and the commanding Pocket PC

The user is supposed to control the setup using the Pocket PC, namely:
e Change the robot state and start/stop program execution
e Interface with the Webcam, request the camera to identify the number of
objects present in the scene and return their actual positions (Figure 3.18)
e Command the robot to pick-and-place the selected objects

Software Interfaces 141

Figure 3.18 Returning the position of the objects present in the worki scene based on the
computed Cartesian position (x,y)

To build a solution to execute the above specified functions, it is necessary to
handle several different subjects:

e Build a TCP/IP socket server to run on the robot controller. The server
should implement a collection of services equivalent to the ones listed in
Table 3.3

* Build an application to handle the webcam permitting to use it as a sensor
and return the number of objects in the scene and their position. That
application must run on a machine accessible from the network

e Build an application to command the setup offering a human-machine
interface (HMI) facility

The following section provides a closer look at these three software packages.

3.4.1 Robot Controller Software

The robot controller runs two very different types of applications:
e The socket server used to implement the remote services and offer them to
the remote clients
e The application that executes the commanded pick-and-place operations

142 Industrial Robots Programming

-5 RAPID Tasks
rj E’l_, T_ROBI (Program) — Task 1
& Program Modules
L_} %j MainMaodule
; ‘. main ———» Main module running on task 1
[;3 a System Madules
L’j Q task2 (Program) ——— Task 2
‘—1 Program Modules
- %‘j server_sock

sock_srv —— TCP/IP socket server running on task 2
[J‘E}mg System Modules

Figure 3.19 View of the tasks available on the system using RobotStudio Online
(ABB)

The above mentioned applications are different applications in terms of objectives
and requirements. Consequently, since the robot control system is a multitasking

system, each of them was designed to run in their own task (process) — see Figure
3.19.

A TCP/P socket server can work like a switch-case-do cycle driven by the
received message. The first word of the received message, named “command”, can
be used to drive the cycle and discriminate the option to execute, implementing in
this way the services it was designed to offer. Consequently, the TCP/IP server
(sock_srv, running on task 2) should have a basic structure like the one represented
in Figure 3.20.

PROC sock_srv()
SocketCreate server_socket;
SocketBind server_socket, '"172.16.0.89", 2004;
SocketListen server_socket;
WHILE TRUE DO
SocketAccept server_socket, client_socket;
SocketReceive client_socket \Str := receive_string;
extract_INFO_from_message (command, parameter{i});
TEST command
Case “motor_on”
motor_on(result);
SocketSend client_socket, result;
Case “motor_off”
motor_off(result);
SocketSend client_socket, result;
Case “write_num”

Software Interfaces 143

write_num(parameterl, parameter2, result);
SocketSend client_socket, result;
Case “read_num”
read_num(parameterl, result);
SocketSend client_socket, result;

ENDTEST
SocketClose client_socket;
ENDWHILE
ERROR_HANDLER;
ENDPROC

Figure 3.20 Basic structure of the TCP/IP socket server running on the robot controller

The server briefly presented in Figure 3.20 implements basically the same
functionality listed in Table 3.3. Furthermore, the command strings have a simple
structure:

command parameter_1 parameter 2 ... parameter N

i.e., the command string starts with a word representing the “command” (used by
the server to discriminate what is the service the user wants to execute), followed
by other words corresponding to the “parameters™ associated with the “command”.
For example:

Action Command String

Motor_ON “motor_on”

Motor_OFF “motor_off”

Read num “read_num variable_name”
Write_num “write_num variable_name value”
Program_start “program_start module”
Program_stop “program_stop module”

where “variable_name” is the name of the variable to read, “value” is the new
value to assign to the variable, and “module” is the name of the module to start or
stop.

3.4.2 Webcam Software

The application designed to handle the Webcam (Figure 3.17) also works as a
TCP/IP server. The reason is simple, the Webcam works here as a sensor used to
obtain two types of information: the number of objects and their respective
position. Consequently, it is important to be able to address the sensor as an
independent entity on the network, and simply command it to return the required
information. One simple way to do that is to also adopt a client-server model for

144 Industrial Robots Programming

the Webcam software, using TCP/IP sockets to implement it. The software
development package used here to add image processing capabilities to the
developed software was LabView from National Instruments. Consequently, the
complete application was built on Labview, including the TCP/IP socket

implementation (Figure 3.21).

e BN Comus Lo eme grde tey 2
TR .
-

I

L

={H]

Bl

Software Interfaces 145

T TR PPTIPPP P77 PIPPITPIRI7]
d SO OO OO0 OO OO LT

=il

I OO 00000 EIQOQIMIE{-LIE-!-‘;IE;;

Snap

N A A

Center of Mass X ¥
Center of Mass ¥ ¥

Orientation ¥

y) AR
1,38 9 “
7

MR

]

SO

AN

i —

SRR

R

Figure 3.21 Labview Vi of the Webcam software (using IMAQ for LabView): a — complete
VI, b — detail of part of the VI (feature computation)

The Webcam used here is a simple commercial USB Webcam (Figure 3.22) which
must be installed on the machine running the above Labview mentioned Webcam
application,

146 Industrial Robots Programming

Figure 3.22 Webcam used in this application (i-C@AM from Liftech Inc.)

The TCP/IP server handling the Webcam software listens for commands on a
specified IP address and port number. When a connection is accepted, the server
responds to the following command:

Command - “camera get objects”
After receiving the command correctly the server acquires a frame from the
Webcam and runs the image processing routine developed for this application. The

routine identifies the objects in the captured frame, and for each object computes
the center of mass. The TCP/IP client receives the following information:

e Number of objects identified
o Center of mass of each of the identified objects

The answer is sent through the open socket on a string with the following syntax:
number_#x1_yl#x2 y2#. #xN_yN#

where “number” is the number of objects identified and (xi, yi) is the position of
each of the objects. For example, for the scene presented in Figure 3.18:

command from client: “camera get objects”
answer from server: 4_thx]_yl#x2_y2#x3_y3#xd_y4#

Software Interfaces 147

3.4.3 Remote Client

The objective of this application is to implement the human-machine interface with
the user, providing the resources to enable the user/programmer to command the
robot to pick-and-place the existing objects identified by the software associated
with the Webcam. Basically, the application can run on any machine with access to
the network. For this particular application, a Pocket PC (PPC) running Windows
Mobile 2005 was chosen since the PPC platform is powerful and very interesting
for portable HMI applications, namely when a wireless network is available
(Figure 3.23).

k\t\\w Computer ——@

\\\\ Wireless AP WebCem

D8 | pocket PC

Robot
Manipulator

Controller

Figure 3.23 Overview of the setup used in this application

In the following material, the code of the client application will be briefly
presented, showing in detail a few selected and representative functions. Figure
3.24 shows the screen of the developed PPC application used to connect to the
TCP/IP server running on the robot controller and change the robot operating state.

148 Industrial Robots Programming

‘o poASCRPTS Joe
Init | seiipt | Joint | Cam |10 | PLC |

IP/Port: I 172.16.0.89 |ZDD4

Prog. RUN

[0 _rros 5 |

Program State: Program RUN
Controller State: Motors ON

Options:
{Option 2: PDA Demo ~| Select I
Answer Robot:

Program Run, master.

Figure 3.24 PPC screen to initialize robot operation and select program option

This is the code associated with the action “Motors ON” (Figure 3.24):

server_name = ip.Text
server_port = port. Text
sock = ConnectSocket(server_name, server_port)
If sock Is Nothing Then
ans_robot.Text() = "Error connecting to robot, master."
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("motor_on")
sock.Send(bytesSent, bytesSent.Length, 0)
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0)

ans_robot.Text() = Encoding. ASCIL.GetString(bytesReceived, 0, bytes)

moff.Enabled = True

mon.Enabled = False

prun.Enabled = True

pstop.Enabled = True

sel.Enabled = True

sock.Close()

If Encoding.ASCIL GetString(bytesReceived, 0, bytes) = "0" Then
ans_robot.Text() = "Motor on, master."
cstate. Text() = "Motors ON"

Else
ans_robot.Text() = "Error executing, master."

End If

End If

Software Interfaces 149

The code presented above simply opens the socket, sends the commanding string,
and processes the answer. This code is associated with the software button “Motor
ON” in Figure 3.24.

To give another example, the code associated with the action “Program RUN”
(Figure 3.24) is presented below:

Server_name = ip.Text
server_port = port. Text
sock = ConnectSocket(server_name, server_port)
If s Is Nothing Then
ans_robot.Text() = "Error connecting, master."
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("program_start_main")
sock.Send(bytesSent, bytesSent.Length, 0)
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0)
ans_robot. Text() = Encoding. ASCII. GetString(bytesReceived, 0, bytes)
sock.Close()
If Encoding. ASCIIL.GetString(bytesReceived, 0, bytes) = "0" Then
ans_robot. Text() = "Program Run, master."
pstate. Text() = "Program RUN"
Else
ans_robot.Text() = "Error executing, master."
End If
End If

The interface with the Webcam is done through the screen window represented in
Figure 3.25. Using this window, the user can command the camera to return the
information about the objects in the scene. All the returned positions are listed in
the list-box present in the interface (Figure 3.25) for the user to select the one he
wants to use for the pick-and-place operation.

The code below details the implementation of the action “Get Webcam Picture”
(Figure 3.25):

Dim msg_received As String
Dim indx As Integer
Dim num_obj As Integer
Dim index As Integer
sock = ConnectSocket(ip2.Text.ToString, port2.Text.ToString)
If sock Is Nothing Then
ans_robot_3.Text() = "Error connecting to CCD, master."
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("camera get objects')

150 Industrial Robots Programming

If s.Available <> 0 Then
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0)
MsgBox("ok, buffer cleared.")
End If
sock.Send(bytesSent, bytesSent.Length, 0)
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0)
list_cam.Items.Clear()
msg_received = Encoding. ASCIL GetString(bytesReceived, 0, bytes)
If msg_received <> "0_#no objects" Then
indx = msg_received.IndexOf("#")
num_obj = msg_received.Substring(0, indx - 1)
n_obj.Text() = num_obj
msg_received = msg_received.Substring(indx + 1)
For index = 1 To (num_obj - 1) Step 1
indx = msg_received.IndexOf("#")
object_cam(index) =msg_received.Substring(0, indx - 1)
list_cam.Jtems.Item(index - 1) = object_cam(index)
msg_received = msg_received.Substring(indx + 1)
Next
index = num_obj
indx = msg_received.IndexOf("#")
object_cam(index) = msg_received.Substring(0, indx - 1)
list_cam.Items.Item(index - 1) = object_cam(index)
Else
ans_robot_3.Text() = "no objects"
End If
sock.Close()
End If

In the code above, the information about the number and position of the identified
objects is extracted from the returned string and listed in the list-box and other
output textboxes. The user can then select one of the obtained positions and
command the robot to pick that object and place it on the output container box. The
code below is the implementation of the “Pick” action (Figure 3.25):

sock = ConnectSocket(ip2.Text.ToString, port2.Text.ToString)
Pick.Enabled = False
If sock Is Nothing Then
ans_robot_3.Text() = "Error connecting, master."
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("'command_str 5000_" +
object_cam(list_cam.SelectedIndex + 1))
sock.Send(bytesSent, bytesSent.Length, 0)
bytes = sock Receive(bytesReceived, bytesReceived.Length, 0)
ans_robot.Text() = Encoding. ASCIL GetString(bytesReceived, 0, bytes)
sock.Close()

Software Interfaces 151

If Encoding. ASCIILGetString(bytesReceived, 0, bytes) = "0" Then
ans_robot_3.Text() = "Pick command, master."
list_cam.Items.Item(list_cam.SelectedIndex) = "no object"

Else
ans_robot_3.Text() = "Error executing, master."

End If

End If

The “Pick” action is associated with a robot subroutine driven by the variable
“command_str”. The action is identified with the number 5000, and requires the
user to specify also the parameters X and Y, referring to the position of the object.
Consequently, the command from the client application to successfully trigger the
“Pick” action is,

bytesSent = ascii.GetBytes("command _str 5000_" +
object_cam(list_cam.SelectedIndex + 1))

which translates to,

command_str 5000 XY

Access] Catkesian] Joint Cam l__

SRR . 0 ©

91.40_32.00
171.53_54.84
{12643 8184
69.40_119.00
178.95_136.14
113.62_159.72

|

IP/Port: [172.16.3.151 [2005

Figure 3.25 PPC screen designed to interface the Webcam

152 Industrial Robots Programming

The robot subroutine handles these commands in the way presented below:

IF index = receive_lent+1 THEN
command_str:=receive_stringl;
ENDIF
IF (index > 1) and (index < receive_len) THEN
command_str:=StrPart(receive_stringl,1,index-1);
str_aux1:=StrPart(receive_stringl,index+1,receive_len-index);
receive_len:=StrLen(str_aux1);
index:=StrMatch(str_aux1,1," "),
IF index = (receive_len + 1) THEN
parameterla:=str_auxl;
ENDIF
IF (index > 1) and (index < receive len) THEN
parameterla:=StrPart(str_aux1,1,index-1);
str_aux2:=StrPart(str_aux1,index+1,receive_len-index);
receive_len:=StrLen(str_aux2);
index:=StrMatch(str_aux2,1," ");
IF index = (receive_len + 1) THEN
parameter2a:=str_aux2;
ENDIF
ENDIF
IF (index > 1) and (index < receive_len) THEN
parameter2a:=StrPart(str_aux2,1,index-1);
str_aux3:=StrPart(str_aux2,index+1,receive_len-index);
receive_len:=StrLen(str_aux3);
index:=StrMatch(str_aux3,1," ");
IF index = (receive_len + 1) THEN
parameter3a:=str_aux3;
ENDIF
IF (index > 1) and (index < receive_len) THEN
parameter3a:=StrPart(str_aux3,1,index-1);
ENDIF
ENDIF
ENDIF
TEST command_str
case "190": movecontact;
case "200": open_g;
case "201"™ close_g;
case "301": move_P1;
case "401": go_home;
case "501": movejlp;
case "502": movejlm;
case "503": movej2p;
case "504": movej2m;
case "505": movej3p;
case "506": movej3m;

Software Interfaces 153

case "507": movejdp;
case "508": movej4m,;
case "509": movejSp;
case "510": movejSm;
case "511": movej6p;
case "512": movejém,;
case "520": jammountl;
case "530"; cammountl;
case "540": pick pen;
case "550": release_pen;
case "1000": save_pos;
case "2000": move_table;
case "3000": exe_script;
case "5000": cam_pick;
case "5001": cam_go;
ENDTEST

Basically, the routine extracts the information from the command string sent
through the socket connection, and feeds the controlling variables with the
commanded values. The TEST cycle (similar to a switch-case-do cycle)
discriminates the function to call, which executes the functionality commanded by
the user.

This example shows in some detail the procedure to explore TCP/IP socket servers
for industrial manufacturing systems. It also shows that there are several platforms
available to simplify the HMI and the setup, making the overall application easier
to use.

3.4.4 Using UDP Datagrams

Using UDP datagrams (socket datagrams) is not fundamentally different than using
TCP sockets (stream datagrams). Consequently, a simple implementation is
mentioned here with the objective of pointing out the practical. The selected
implementation uses a MOTOMAN robot (model HP6) equipped with the new
NX100 robot controller. This controller offers remote services available from a
UDP socket server, which are similar in functionality to the ones listed in Table
3.3. Several client applications were developed by the author to access those
services, including the secondary services built based on those available from the
UDP server, using the Microsoft Visual Studio .NET 2005 programming suite. In
the following, a simple application developed to run on Pocket PC (running
Windows Mobile 2005) will be briefly introduced.

When using UDP datagrams, which are unreliable connections, the user should not
use blocking calls, i.e., connections that block the application while waiting on the
socket for the answer to the call. Consequently, after opening a socket and sending
a UDP datagram, the user program shouldn’t wait forever for an answer on the

154 Industrial Robots Programming

socket or thread. Instead, it should close the socket based on a timeout event, The
following application (Figure 3.26) runs on PPC and makes a few UDP datagram
calls to the UDP socket server running on the robot controller.

' Flol Initiated!

Figure 3.26 PPC application designed for a Motoman robot to explore UDP services from
its NX100 controller

The program running on the robot controller, to implement operational (or
secondary) services, is a switch-case-do type cycle driven by a numeric variable
(type 1, index 0 — in the motoman notation). The simple server for this application
moves the robot to five fixed positions, depending on the value of the above
mentioned variable:

WHILE never_end
WAIT B00 <> 05
TEST B00
Case 399
MOVE P1, VEL, 0, TO;
Case 499
MOVE P2, VEL, 0, T0;
Case 599
MOVE P3, VEL, 0, TO0;
Case 699
MOVE P4, VEL, 0, T0;
Case 799
MOVE P35, VEL, 0, T0;
ENDTEST

Software Interfaces 155

B00 =0;
RETURN

Writing, for example, the value 399 in the variable BOO makes the robot move to
position P1. The code associated with requesting that action remotely is:

Dim remotelP As New IPEndPoint(IPAddress.Parse("172.16.0.93"), 10006)
Dim Socket send As New Socket(remotelP.AddressFamily, SocketType.Dgram,
Protocol Type.Udp)
Dim Socket_receive As New UdpClient(10006)
Dim ENQ() As Byte = {&H6, &H0, &H1, &H0, &H5}
Dim EOT() As Byte = {&H6, &H0, &H1, &HO, &H4}
Dim ACKO0() As Byte = {&H6, & H0, &H2, &H0, &H10, &H30}
Dim ACKI1() As Byte = {&H6, &HO0, &H2, &H0, &H10, &H31}
Socket_send.Connect(remotelP)
Socket_receive.Connect(remotelP)
Dim str_temp As String
Socket_send.Send(ENQ)
Dim receiveBytes As {Byte]() = Socket_receive.Receive(remotelP)
recb = receiveBytes.Length()
Fori As Integer = 0 To recb - 1
str_temp = str_temp + Hex(receiveBytes(i))
Next i
If str_temp <> "60201030" Then
MessageBox.Show("Erro na resposta ao ENQ: " + str_temp)
Socket_send.Close()
Socket_receive.Close()
Return
End If

Dim str_temp As String
Socket_send.Send(Comando)
Dim receiveBytes As [Byte]() = Socket_receive.Receive(remotelP)
recb = receiveBytes.Length()
For1 As Integer = 0 To recb - 1
str_temp = str_temp + Hex(receiveBytes(i))
Next i
If str_temp <> "60201031" Then
MessageBox.Show("Erro na resposta ao comando: " + str_temp)
Socket_send.Close()
Socket_receive.Close()
Return
End If

Send End Of Transmission
Send ACKO0
Send ACKI1

156 Industrial Robots Programming

Socket_send.Close()

Socket_receive.Close()

This code is rather complex, since all the details about the protocol, including the
negotiation phases, are explicitly programmed in the function. Basically, to send a
command the protocol adopted by Motoman requires a command start, followed by
the command itself, and then an end-of-command sequence.

The reader should remember that the sockets named “socket_receive” have a pre-
defined timeout that prevents the application from blocking. When a timeout
occurs, the routine returns immediately.

e e e i M 1 5
B I e et (I HODOLC Bl
i | Robot Delected Init/Disable

|

Il

Ii || MotorON R | Aun Progam Continuousy | IRB1400-1428 Bre |

|| RS |
|

! I | Ibabylon :_'J

. Motor DFF Halt Program Imediatly I ;
Program Contral——————— |

Iflp'l //program.prg

Delete Prog | Loadeg_] . _;

Run Piograim Cycle SR

Halt Program After Cycle

(9] X
P Prepare Program 3 | Halt Program After Instruction
R X

“SystemState—— [Messages —
OPERATION Auto Mode. | DESCRIPTION Siate Changed |

ROBOT CONTROLLER Run. ERROR NUMBER 10011 |
PGM CONTROLLER Stopped State. LOG_TEXT Motors On State. |
| PAOGRAM Iridaled :

[C)J. Morberto Pres
Running undes WinNT

Figure 3.27 Control panel application events (“messages™) received from the robot
controller

3.5 Simple Example: Control Panel

The “Control Panel” is rather different from the previous examples. First, it uses
remote procedure calls (RPCs) to access the services available from the remote
server, which is a standard way to offer services and to support client-server
programming environments, Other than that, the application works also as an RPC

Software Interfaces 157

server, because it is capable of receiving events from the robot controller. The
events are RPC calls made by the controller to the machines that made
subscriptions to receive those events.

The application was built using PCROBNET2003/5 [5-7], an ActiveX software
component that offers the methods, properties, and data structures necessary to
explore the RPC services from the robot controller (ABB S4 robot controllers).The
code for some selected actions is briefly explored below. For example, the code
(developed in C++ using methods from the above mentioned ActiveX component)
for the actions “MOTOR ON”, “MOTOR OFF”, “PROGRAM RUN”, and
“PROGRAM STOP” is presented below:

void CCtrpanelDlg::Onmotoron()

{
nresult = m_pon.MotorON(); < Call method
if (nresult == -8999) no_comms = TRUE;

}

void CCtrpanelDlg::Onmotoroff()

{
nresult = m_pon.MotorOFF(); < Call method
if (nresult == -8§999) no_comms = TRUE;

}

void CCtrpanelDlg::Onrunprogramcon()

long cycles = -1;

long mode = 1;

nresult = m_pon.ProgStart("main",&cycles, &mode); 4 Call method
if (nresult == -8999) no_comms = TRUE,;

}

void CCtrpanelDlg::Onhaltprogramim()

{
short mode = 3;
nresult = m_pon.ProgStop(&mode); < Call method
if (nresult == -8999) no_comms = TRUE;

b

To receive events, a specially developed RPC server must be running on the client
computer to receive those RPC calls. That server broadcasts the received events as
registered operating system user messages (Figure 3.13). Consequently, to be able
to receive those events, each application just needs to watch its message queue and
filter the relevant messages. The code below was designed to operate on the
message queue to identify events and present the information to the user (see
“messages” in Figure 3.27).

158 Industrial Robots Programming

void CCtrpanelDlg::OnSponMsgPcroB.C.trl1(long FAR* msg number, long
FAR* msg_lParam, long FAR* msg_wParam)

BSTR msg;
m_pon.ReadMsg(&msg, msg_IParam, msg_wParam);
CString Msg(msg);
m_logtext.SetWindowText(Msg);
SysFreeString(msg);
switch (*msg_IParam)
{
case 1: m_description.SetWindowText("State Changed."); break;
case 2: m_description.SetWindowText('""Warning."); break;
case 3: m_description.SetWindowText("Error."); break;
default: m_description.SetWindowText("Invalid log_type."); break;
}
Msg.Format("%d",*msg_wParam);
m_error.SetWindowText(Msg);
CCltrpanelDig::info(};
}

Using software components (ActiveX, JAVA, etc.) is a way to hide from the user
the tricky details about how to make RPC calls (for example, compare this code
with the one presented for the UDP datagram example), allowing her to focus
immediately on the application.

3.6 Simple Example: S4Misc — Data Access on a Remote
Controller

The “S4Misc” application (Figure 3.28) also uses RPC to access the robot services.
Like the previous example, it was designed to be used with the ABB S4 robot
controllers (running option RAP [8]).

Software Interfaces

159

o 2000

[Lwite | [Read | |

| Ry
om2 [0 | [|| |y [3115:3 | exd (83993390
o3 o Tl e 2 e
Joint4 [0 | | | i ql [0.2610524 | exd |8.993339E+0 |
Joint5 [0 | | | | ‘ g2 |-0.01814172 | exe |8.933999E+0 |
Jont6 (g |] | | | 3[03643432 | e [8339399+0 |
|
|

L

(Joinl Eontrol Sty | Pasition Control — S
Joint1 (o x (6250535 | exa |8.999999E+0 |

[._R¢¢#Speﬂd_] | Wite Speed] ' | vtop |5
(__Readéndog] [Witeandog] | o 500
' F v_leax @

[Read Digtal][Wiite Digtal]:

| ReadBool | [wiiteBool

e st T i |
[ResRobTaget | [wite obTaget | || vy valse [123 |

. £ nd v ——

< b et ST ~Velacity Control ———

] .l [v_reax |0

Variable Control —————

Running under Win XP | | babylan [se] | Disable] ;'_ Ciuse

Figure 3.28 S4Misc application designed to access program and system variables from a

remote computer

This application enables the user to access program and system variables from a
remote computer online, i.e., even when the robot is in automatic mode and the
loaded program is executing. The user can utilize this software for debugging
purposes, checking and changing (when needed) the actual value of any variable.
In the following, the code for the actions READ/WRITE a numeric variable, WRITE
a speed variable, and READ the actual robot position is showed (C# .Net 2005 was

used here):

private void OnReaNum()

{
String msg;
msg = txt_VarName.Text;
if (msg.Length > 0)

160 Industrial Robots Programming

{
nresult = PcRob.ReadNum(msg, ref val); €————— Call method
if (nresult < 0)
{
MessageBox.Show("Error Reading Num!");
}
else
{
msg = Convert. ToString(val);
txt_VarValue.Text = msg;
}

else MessageBox.Show("Error: You must specify variable name!");

}

private void OnWriteNum()
{
String msg;
String msg1;
msg = txt_VarName.Text;
msgl = txt_VarValue.Text;
if (msg.Length > 0 || msgl.Length > 0)

val = Convert. ToSingle(msg1);
nresult = PcRob.WriteNum(msg, ref val); <«——— Call method
if (nresult < 0) MessageBox.Show("Error Wrinting Num!");

}

else MessageBox.Show("Error: You must specify variable name and value!™);

private void OnWriteSpeed()
{
String msg;
msg = txt_VarName.Text;
if (msg.Length > 0)

RobVelocity.vtep = Convert. ToSingle(txt VTcp.Text);

RobVelocity.vori = Convert. ToSingle(txt_VOri.Text),

RobVelocity.vleax = Convert. ToSingle(txt_VLeax.Text);
RobVelocity.vreax = Convert. ToSingle(txt VReax.Text);

PcRob.vtep = RobVelocity.vtcp;

PcRob.vori = RobVelocity.vori;

PcRob.vleax = RobVelocity.vleax;

PcRob.vreax = RobVelocity.vreax;

nresult = PcRob.WriteSpeedDataVB(msg); <«—— Call method

if (nresult<0) MessageBox.Show("Error: You must specify variable name");

Software Interfaces 161

else MessageBox.Show("Error: You must specify variable name");

}

private void OnReadCurrRoboTarget()
{

nresult =PcRob.ReadCurrRobTVB(); <——— Call method

if (nresult < 0)

{
MessageBox.Show("Error Reading Current RobT");

} else

{
RobT_Read.x = PcRob.x;
RobT_Read.y = PcRob.y;
RobT_Read.z = PcRob.z;
RobT_Read.ql = PcRob.ql;
RobT Read.q2 = PcRob.q2;
RobT_Read.q3 = PcRob.q3;
RobT_Read.q4 = PcRob.g4;
RobT_Read.exa = PcRob.exa;
RobT_Read.exb = PcRob.exb;
RobT_Read.exc = PcRob.exc;
RobT_Read.exd = PcRob.exd,
RobT_Read.exe = PcRob.exe;
RobT_Read.exf = PcRob.exf;
txt_x.Text = RobT_Read.x.ToString();
txt_y.Text = RobT Read.y.ToString();
txt_z.Text=RobT Read.z.ToString();
txt_ql.Text = RobT_Read.ql.ToString();
txt_q2.Text=RobT_ Read.q2.ToString();
txt_q3.Text = RobT_Read.q3.ToString();
txt_q4.Text = RobT_Read.q4.ToString();
txt_exa.Text=RobT Read.exa.ToString();
txt_exb.Text = RobT_Read.exb.ToString();
txt_exc.Text = RobT Read.exc. ToString(),
txt_exd.Text = RobT Read.exd.ToString();
txt_exe.Text = RobT_Read.exe.ToString();
txt_exf.Text = RobT_ Read.exf. ToString();

!
}

This application demonstrates the usefulness of having remote services that can
communicate with the running applications. With it, users can influence the
behavior of running applications for controlling, monitoring, or debugging
purposes. It also demonstrates the usefulness of software components for the
process of developing distributed applications that necessarily use several types of
radically different equipment. With these components, users and programmers can

162 Industrial Robots Programming

focus on the applications under development without worrying about the technical
details of remote procedure calling, network communications, and so on.

3.7 Industrial Example: Semi-autonomous Labeling System

In this section, an industrial example that explores the previous material is
presented and discussed. This example corresponds to an actual implementation
resulting from a cooperation effort between the author and a Portuguese company.
The system presented here was designed to operate almost without operator
intervention, showing that concepts like flexibility and agility are fundamental to
manufacturing plants and require much more from the systems used on the shop
floor. Flexible manufacturing systems take advantage of being composed of
programmable equipment to implement most of its characteristics, which are
supported by reconfigurable mechanical parts. Industrial robots are, consequently,
good examples of flexible manufacturing systems.

The robotic industrial system presented here was designed to execute
parameterized labeling tasks on paper rolls. The system is commanded directly
from the manufacturing tracking and control software. This software is based on
dynamic databases that register the situation of each item produced in the factory, a
simple way to track them see what is happening on the shop floor. Since all
information about each item is available in the manufacturing tracking software, it
is logical to use it to command some of the shop floor manufacturing systems,
namely the ones that require only simple parameterization to work properly. This
procedure would take advantage of the available information and infrastructure,
avoiding unnecessary operator interfaces to command the system. Also, potential
gains in terms of flexibility and productivity are evident.

Software Interfaces 163

3.7.1 Robotic Labeling System

The industrial system introduced here is a labeling system (Figure 3.29) composed
of:
e One robot manipulator ABB IRB4400, with the S4C+ controller [10]
e One electro-pneumatic gripper, properly equipped to grab one or two A4-
size paper sheets
s One office laser printer, with several trays of paper
e One gluing machine with spray injectors controlled from the robot
controller IO system
® One industrial PLC (Siemens S7-300) that controls the rolls conveyer
belt, providing information to the robot controller about its state

In general, the labeling robotic system works as follows: When a roll is released
from the previous system (wrapping machine), one or two labels are printed on the
laser printer. At the same time, the robot receives the order to pick those labels
from the ramp placed at the end of the printer, and immediately prepositions near
the printer. The picking operation happens when the required number of sheets are
available at the ramp (two optical sensors detect the presence of paper). After that,
the robot waits for the roll to enter the working zone, i.e., waits for the
corresponding optical sensor, named sensor 1 in Figure 3.29, to detect the roll.
When the roll is detected, the robot moves to the gluing machine to add glue on the

164 Industrial Robots Programming

side of each label. When the operation is finished, the roll should be already
stopped, waiting for the robot to insert the labels on the top and on the right side of
the roll. The robot performs that operation when the roll is detected by sensor 2
(Figure 3.29) and when the PL.C confirms that the conveyor has stopped. When the
operation is finished, the robot signals it using a flag, accessible remotely, and
moves to a neutral position to wait for a new command.

3.7.2 System Software

Designing software for the system, which needed to be commanded from the
network, was an interesting challenge. The industrial robot is the central element of
the manufacturing cell, and is connected to the factory network, which makes it
easily accessible from the UNIX station running the manufacturing tracking
software.

To exchange information between computer systems, in a safe and guaranteed
way, a client-server approach using TCP/IP sockets may be used. That is a simple
and straightforward thing to do, with the UNIX computer acting as the client. A
TCP/IP server should then be available to receive client calls, and a properly
designed messaging protocol must be used. The decision here was to make the
TCP/IP server the only interface to the robotic manufacturing cell, so that any
command or request of information is done by connecting to the server and
sending the appropriate messages. Since there is a network on the shop floor, the
TCP/IP server can be installed in any shop floor computer, making it really easy to
install the interface and have it running. In the factory under consideration, the
majority of the shop floor computers are running the Windows NT4 and Windows
2000 operating systems. Consequently, we decided to use BSD compatible TCP/IP
sockets, which are also compatible with the Microsoft TCP/IP implementation
(winsock2).

The next challenge was how to manage the communication with the robot
controller, since it is well known that actual robot controllers are closed industrial
systems not allowing installation of any user software apart from robot programs.
ABB robot controllers [10] have internal Remote Procedure Call (RPC) [2,8]
servers that can be used to exchange variables, files, etc. Those servers are SUN
RPC 4.0 [2] compatible, and can be used to our purposes if the TCP/IP server
interface can issue RPC calls to the robot controller, Consequently, a library of
functions implementing calls for all the services on the ABB robot controller was
built [5,7], along with a port of the SUN RPC 4.0 to operating systems based on the
Win32 API This environment enables a complete access to the robot controller
RPC services making it possible to command the robot from the network. The
robot controller software must then be built in a way to expose all system
capabilities to the remote client. This means building it like a SWITCH-CASE-DO
server, with the switching variable controlled by the remote client.

Software Interfaces 165

Robot Control System

Resat-call Operation
UNIX Station request
Signals
Production Answer
tracking software Industrial Robot
1D-call
Answer
Charge of state event
A-calf
sete Win 2k Station
TCP/IP Server
(Robot_server)
&-call
Y
Answer

Figure 3.30 Software interface to the industrial robotic system

The basic idea, depicted in Figure 3.30, is simple. The interface to the industrial
robotic cell is a TCP/IP server running on a specified IP and port number. The
following procedure is used in a way to guarantee safety and avoid data loss:

e The server should respond to ID-calls with a pre-determined string, which
is used to identify the TCP/IP server with name, version, and date. The
string is actually “robot_server@v2Iml1y03™. The ID-call is the first call
issued by the client after establishing a new connection. A wrong answer
to the ID-call should tell the client to send a reset-call and close the
connection

o The client makes frequent A-calls, in periods of two seconds, to find out if
the server is alive and healthy, and to get its actual state (busy or ready)

e The client uses B-calls to send execution commands, properly
parameterized, to the robotic labeling system. When a B-call is received
and accepted by the server, the system enters the busy state and any
subsequent A-call will return that the system is busy

e When the robotic labeling system completes a task, i.e., when it inserts the
requested number of labels on the roll in use, the system enters the ready
state and any subsequent A-cal/ will return that state

The TCP/IP server is the only operational interface to the robotic system.
Basically, it is a simple single channel TCP/IP server, completely coded in C++,
which waits for connections on a pre-determined port, accepting only the ones
coming from only a few IPs (the ones where the manufacturing tracking software
may be running). Connection is established only if the calling machine makes an
ID-call, properly parameterized, including a password. The server is a state
machine that implements answers to the four different messages that can be sent by

166 Industrial Robots Programming

the connected client (Figure 3.30). The connection between the TCP/IP server and
the industrial robot is handled using RPC sockets, compatible with the SUN RPC
4.0 definition.

In the following section, the developed software will be further explained, starting
with the software designed to run on the robot controller.

3.7.3 Robot Controller Software

Considering that the system was designed to be commanded remotely using the
factory computer network, it was decided to have the robot controller software
working as a server, exposing to the remote client all of its operational
functionalities. This capability is very interesting also for other applications, and
because of that it will be discussed in a general way.

When building an industrial robotic cell, it is certainly possible, and very useful, to
identify all the system capabilities and requirements, i.e., the system engineer
should state clearly all the functions it is supposed to perform and write the code
necessary to implement them. If that code is developed as general as possible, and
used to build a server that can be explored remotely with properly parameterized
calls, then the complete system functionality can be requested remotely from the
network.

Technically, to implement the remote calls, it was decided to use remote procedure
calls (RPC) compatible with the SUN RPC 4.0 suite, an open standard in the public
domain. The ABB S4 robot control system implements a collection of RPC
services that enable users to access programs, system data, and robot configuration,
as well as to share files, etc. These services are part of the robot controller’s
operating system. Using those services from the TCP/IP server designed to
interface the system [2, 5-8], it is certainly possible to set up an RPC-driven server
like:

switch service decision_variable
case 1: call function_1; break;
case 2: call function_2; break;
case 3: call function_3; break;

case n: call function_n; break;
default: call invalid_function; break;
end_switch

where the service_decision_variable is a numerical variable whose value can be
changed remotely, making an RPC call to the change_numerical_value service. In
this way, the robot’s operation is completely controlled from the remote client.

Software Interfaces 167

Since the robotic system is to be operated without human intervention, a few
services were added to allow maintenance and error recovery operations.
Sometimes, due to errors in the manufacturing tracking database (usually
introduced by human intervention), invalid or badly parameterized commands are
sent to the robot. In those situations, depending on the dimensions of the roll in
use, the robot may crash with the surface of the roll, because it uses the
commanded dimensions to approach the surface of the roll in a more efficient way.
Also, failure in the conveyor sensors or actuators may cause problems with roll
placement. In any case, an operator is required to solve the problems and put the
system in production again. The program shown in Figure 3.31 is used to put the
robot in a known position and resume automatic operation.

S Painel de Controlo - Robé de Etiquetas, (C) 3, Norberto Pires 2001 gg;

~ Controlador ABB 54 2000——— —Programa——————————— ~Funces

b 4

Normal
MOTORS ON @
I o AIAA HOME+STOP
| 0 MOTORS OFF @ RE-START ﬁ

MODOD RE-IMPRESSA0
Manual reduced Speed. e sTop
| | Esteno — ?g
Guaid Stop. PGMC R
Stopped State.

v PROGRAMA
|j ‘ Initiated.

et Estado das comunicagfes . Estado GERAL

Mensagens

Erro na Unidade de Cola. Verificarl SAIR

Figure 3.31 Operator interface used to solve error situations

Basically, the operator interface makes RPC calls to the above mentioned services
designed to solve erroneous situations. Those services enable the operator to
resume local program execution from an actual point or from the beginning, move
the robot to well-known positions, enter maintenance routines, and so on. The
program usually runs on a laptop that maintenance personnel carry to the setup
when a problem arises, plugging it to the network.

3.7.4 TCP/IP Server

As already explained, this TCP/IP server (Figure 3.32) was developed as the only
interface to the robotic labeling system. It is a simple TCP/IP server that accepts
connections coming from the machine that runs the manufacturing tracking

168 Industrial Robots Programming

software (client). After connecting, it implements a state-machine that listens for
messages coming from the client, acting accordingly. The TCP/IP server monitors
the connection to the robot and the robot state, so that proper answers are given to
every A-call received from the client. Also, the server does not accept any
command in the periods where the robot state is busy, forcing the client to wait
until the previous commanded operation finishes.

Wait for
on port.

ID_done =0

| Listen for messages

Close
Connection

A-Call J0-Cadl Fasat-Call

10_done = 17 Check Password
— NOX
oK oK WOK

[check Robot state | | 1D_done =1 || 1D_done =0 |

Compose
Answer

Compose
Answer

| send
Answer
ev C\robot_server.exe

Robot Server U2.1, <c> J. Norberto Pires
Looking for robot ... robot Found.
Server ready ...

>Connection request ... ready state.
>1D-Call received correcl .« ready state.

b a cei state.
Wideh=2318nn; i Labels=2; Number=18821932

»A-Call recei

Figure 3.32 TCP/IP server operation

Software Interfaces 169

3.7.5 Discussion

The example presented in this section explores the use of software interfaces for
remote command of shop floor industrial robotic cells. This involves network
interfaces based on the TCP/IP protocol and remote procedure calls, enabling
direct command of shop floor manufacturing setups from anywhere in the factory.
This idea is particularly useful with systems that require minor parameterization to
perform a predefined task. This can easily be done from the manufacturing
tracking software, used to follow and manage production, where the require
information is available.

In many industries, like the one presented in this example, production is closely
tracked in any part of the manufacturing cycle. The manufacturing cycle can be
interpreted as a collection of operations and processes that transform the raw
materials into finished products. This jourmney of products between the raw
materials warehouse and the finished products warehouse, is composed of several
manufacturing systems that perform the necessary operations on the product under
processing, and intermediate buffers used to temporarily store semi-finished
products in several stages of their production cycle. These buffers are fundamental
for a well balanced production planning, achieving high rates of efficiency and
agility. In many cases, the manufacturing systems require only minor
parameterization to execute their tasks. If that parameterization can be commanded
remotely from where it is available (using manufacturing tracking software), then
the system becomes almost autonomous in the sense that operator intervention is
minimal and related only with maintenance and error situations. A system like this
will improve manufacturing efficiency and agility, since the operation becomes
less dependent on operators. Also, because the system was built to be explored
remotely, which requires a collection of general software routines designed to
implement all of the system functionalities, it is easier to change production by
changing parameterization, a software task, which also contributes to agility.

This robotic manufacturing system uses a simple TCP/IP server as the
commanding interface. The server sends remote procedure calls to the robot
control system, which is the system main computer. The robot controller interfaces
with the system PLC that controls the conveyor, and manages the information
coming from manual controls and sensors. Consequently, any client connected to
the TCP/IP server is able to command the system and get production information,
This feature adds flexibility and agility to the manufacturing setup. This setup was
installed in a Portuguese paper factory and is being used without problems for
almost three years, which demonstrates its robustness and simplicity.

Finally it is worthwhile to stress that:
e The system interface was implemented in C++ using available
programming tools: Visual C++ 6.0 first, and Visual .NET 2003 when an
update was necessary [11]

170 Industrial Robots Programming

e The system was implemented using standard operating systems, namely,
UNIX from Digital to run the manufacturing tracking software, and
Windows 2000 to run the robotic cell TCP/IP interface

o The Microsoft TCP/IP socket implementation was used to program the
TCP/IP server, since it is BSD-compatible

o The system uses RPC’s compatible with SUN RPC 4.0, an open standard
not compatible with the Microsoft implementation, which required a
complete port to Windows 2000 (the operating system used on the shop
floor of the partner factory). That effort was completely done by the
author

Consequently, no special tools were used to build the presented solution, which
proves that these techniques are available to build smart interfaces enabling more
efficient applications, or at least to build other ways to exploit shop floor
equipment. In fact, actual manufacturing systems have a lot of flexibility inside
because they rely on programmable equipment, like robots and PLCs, to
implement their functions. System engineers need to find ways to explore that
flexibility when designing manufacturing systems, exposing it to the advanced user
in more efficient ways.

In terms of operational results, it is important that a system like the one presented
here does not add any production delay to the manufacturing system, or become a
production bottleneck. This means that the cycle time should be lower than the
cycle time of the previous station. In our example, the system takes around 11
seconds to perform the labeling operation, which is at least 20 seconds lower than
the previous roll wrapping operation.

3.7.6 Conclusion

In describing an industrial application designed for labeling applications, this
section discussed and detailed a software interface designed to command shop
floor manufacturing systems remotely from the manufacturing tracking software.
This interface added flexibility and agility to the manufacturing system, since all
available operations were implemented in a very general way requiring only simple
parameterization to specify the individual operations. The interface to the system is
a simple TCP/IP server installed in one of the shop floor computers. To command
the system, the client needs to connect to the server and, if allowed, send properly
parameterized commands as simple messages over the open socket. The server
uses SUN RPC 4.0 compatible sockets to access the robotic system, place the
received commands, and monitor the system operation. Since the TCP/IP server is
a general implementation, using the BSD compatible TCP/IP socket
implementation from Microsoft, it can receive commands from virtually any client.
This makes the presented robotic cell interface an interesting way to command
shop floor manufacturing systems.

Software Interfaces 171

3.8 References

(1]

(2]
B3]
(4]

Halsall F., "Data Communications, Computer Networks and Open Systems", Third
Edition, Addison-Wesley, 1992.

Bloomer J., "Power Programming with RPC”, O'Reilly & Associates, Inc., 1992.
Siemens, “S7-200 System and Programming Manual”, Siemens Automation, 2003.
Mahalik, NP, “FieldBus Technology, Industrial Network Standards for Real-Time
Distributed Control”, Springer, 2003.

Pires, JN, and Loureiro, Altino et al, “Welding Robots”, IEEE Robotics and
Automation Magazine, June, 2003

Pires, JN, "Using Matlab to Interface Industrial Robotic & Automation Equipment”,
IEEE Robotics and Automation Magazine, September 2000

Pires, IN, S& da Costa, JMG, "Object-Oriented and Distributed Approach for
Programming Robotic Manufacturing Cells", IFAC Journal Robotics and Computer
Integrated Manufacturing, Volume 16, Number 1, pp. 29-42, March 2000.

ABB Robotics, “RAP Service Specification, ABB Robotics, 2000.

ABB Robotics, “S4C+ documentation CD” and “IRC5 documentation CD”, ABB
Robotics, 2000 and 2005

[10]ABB IRB140, IRB1400, IRB1400 & IRB6400 System Manual, ABB Robotics,

Vasteras, Sweden, 2005.

[11]Visual Studio.NET 2003 Programmers Reference, Microsoft, 2003 (reference can be

found at Microsoft’s web site in the Visual C++ NET location)

[12]Visual Studio.NET 2005 Programmers Reference, Microsoft, 2005 (reference can be

found at Microsoft’s web site in the Visual C-++ NET location)

4

Interface Devices and Systems

4.1 Introduction

The success of using robots with flexible manufacturing systems especially
designed for small and medium enterprises (SME) depends on the human-machine
interfaces (HMI) and on the operator skills. In fact, although many of these
manufacturing systems are semi-autonomous, requiring only minor
parameterization to work, many other systems working in SMEs require heavy
parameterization and reconfiguration to adapt to the type of production that
changes drastically with time and product models. Another difficulty is the average
skill of the available operators, who usually have difficulty adapting to robotic
and/or computer-controlled, flexible manufacturing systems.

SMEs are special types of companies. In dimension (with up to 250 permanent
collaborators), in economic strength (with net sales up to SOM€) and in installed
technical expertise (not many engineers). Nevertheless, the European economy
depends on these types of company units since roughly they represent 95% of the
European companies, more than 75% of the employment, and more than 60% of
the overall net sales [1]. This reality configures a scenario in which flexible
automation, and robotics in particular, play a special and unique role requiring
manufacturing cells to be easily used by regular non-skilled operators, and easier to
program, control and monitor. One way to this end is the exploitation of the
consumer market’s input-output devices to operate with industrial robotic
equipment. With this approach, developers can benefit from the availability, and
functionality of these devices, and from the powerful programming packages
available for the most common desktop and embedded platforms. On the other
hand, users could benefit from the operational gains obtained by having the normal
tasks performed using common devices, and also from the reduction in prices due
to the use of consumer products.

174 Industrial Robots Programming

Industrial manufacturing systems would benefit greatly from improved interaction
devices for human-machine interface even if the technology is not so advanced.
Gains in autonomy, efficiency, and agility would be evident. The modern world
requires better products at lower prices, requiring even more efficient
manufacturing plants because the focus is on achieving better quality products,
using faster and cheaper procedures. This means having systems that require less
operator intervention to work normally, better human-machine interfaces, and
cooperation between humans and machines sharing the same workspace as real
coworkers.

Also, the robot and robotic cell programming task would benefit very much from
improved and easy-to-use interaction devices. This means that availability of SDKs
and programming libraries supported under common programming environments is
necessary. Application development depends on that.

Working on future SMEs means considering humans and machines as coworkers,
in environments where humans have constant access to the manufacturing
equipment and related control systems.

Several devices are available for the user interface (several types of mice,
Jjoysticks, gamepads and controls, digital pens, pocket PCs and personal assistants,
cameras, different types of sensors, etc.) with very nice characteristics that make
them good candidates for industrial use. Integrating these devices with current
industrial equipment requires the development of a device interface, which exhibits
some basic principles in terms of software, hardware and interface to commercial
controllers.

This scenario can be optimized in the following concurrent ways:

1. Develop user-friendly and highly graphical HMI applications to run on the
available interface devices. Those environments tend to hide the complexity of
the system from operators, allowing them to focus on controlling and
operating the system. Figure 4.1 shows the main window of an application
used to analyze force/torque data coming from a robotic system that uses a
force/torque sensor to adjust the programmed trajectories (this system will not
be further explored in this book)

2. Explore the utilization of consumer input/output devices that could be used to
facilitate operator access to the system. In fact, there is a considerable amount
of different devices on the market developed for personal computers on
different input/output tasks. Such devices are usually programmable, with the
manufacturers providing suitable SDKs to make them suitable for integrating
with industrial manufacturing systems. Figure 4.2 shows a few of these
devices, some of them covered in this book

Interface Devices and Systems 175

= [Force, t tant, all, coumt] = FEEataiZ(e:\ftoata, oat’,"n');
= FtplatS{force. " . a" 1028 768)

:--II'- 3 e e e T e Pt 8 5 P R B S P LA

[res e ey Iwﬁv«_mw;—uhmr'“ = i%‘%%«ﬁ%rﬁ“
IE. A I"“—‘—‘—.,_ lrl—'—. s s s
(e o F
| el ar 1 : _. l.““-_
| |
rﬁ-—"— - SrctDewntluce

~ _I L e e T |__£|_"T“
! e ST T
| S| ;________[I ___||"— l—“_“[‘-'-“-“T n.]
' e

Figure 4.1 HMI interface used with an industrial robotic system to further analyze
force/torque sensor data

3 Explore the functionality of the available software packages commonly used
for engineering. Good examples of those packages are the CAD packages used
by engineers to develop, optimize, and improve their designs (Figure 4.3).
Since the vast majority of companies use CAD software packages to design
their products, it would be very interesting if the information from CAD files
could be used to generate robot programs. That is, the CAD application could
be the environment used for specifying how robots should execute the required
operations on the specified parts. Furthermore, since most engineers are
familiar with CAD packages, exploring CAD data for robot programming and
parameterization seems a good way to proceed [2].

176 Industrial Robots Programming

Figure 4.2 Input/output devices used for HMI applications: (from top to bottom) joystick,
headset with noise reduction, pocket PC and digital pen

Interface Devices and Systems 177

b)

Figure 4.3 Using 3D CAD software packages to project and design mechanical parts: a —
welding torch and laser camera (SolidWorks),; b — welding trajectories specified using
AutoCad

This chapter uses industrial and laboratory test-cases to provide the necessary
details and insight to complement the above presented claims and design options.

178 Industrial Robots Programming

4.2 Speech Interfaces

4.2.1 Introduction

Talking to machines is a thing normally associated with science fiction movies and
cartoons and less with current industrial manufacturing systems. In fact, most of
the papers about speech recognition start with something related to artificial
intelligence, a science fiction movie, or a robot used in a movie, etc., where
machines talk like humans, and understand the complex human speech without
problems. Nevertheless, industrial manufacturing systems would benefit very much
from speech recognition for human-machine interface (HMI) even if the
technology is not so advanced. Gains in terms of autonomy, efficiency and agility
seem evident. The modern world requires better products at lower prices, requiring
even more efficient manufacturing plants because the focus is in achieving better
quality products, using faster and cheaper procedures. This means autonomy,
having systems that require less operator intervention to operate normally, better
human-machine interfaces and cooperation between humans and machines sharing
the same workspace as real coworkers.

The final objective is to achieve, in some cases, semi-autonomous systems [3], i.e.,
highly automated systems that require only minor operator intervention. In many
industries, production is closed tracked in any part of the manufacturing cycle,
which is composed by several in-line manufacturing systems that perform the
necessary operations, transforming the raw materials in a final product. In many
cases, if properly designed, those individual manufacturing systems require simple
parameterization to execute the tasks they are designed to execute. If that
parameterization can be commanded remotely by automatic means from where it is
available, then the system becomes almost autonomous in the sense that operator
intervention is reduced to the minimum and essentially related with small
adjustments, error and maintenance situations [3]. In other cases, a close
cooperation between humans and machines is desirable although very difficult to
achieve, due to limitations of the actual robotic and automation systems.

The above described scenario puts focus on HMI, where speech interfaces play an
important role because manufacturing system efficiency will increase if the
interface is more natural or similar to how humans command things. Nevertheless,
speech recognition is not a common feature among industrial applications,
because:

o The speech recognition and text-to-speech technologies are relatively
new, although they are already robust enough to be used with industrial
applications

¢ The industrial environment is very noisy which puts enormous strain on
automatic speech recognition systems

¢ Industrial systems weren’t designed to incorporate these types of features,
and usually don’t have powerful computers dedicated to HMI

Interface Devices and Systems 179

Automatic speech recognition (ASR) is commonly described as converting speech
to text. The reverse process, in which text is converted to speech (TTS), is known
as speech synthesis. Speech synthesizers often produce results that are not very
natural sounding. Speech synthesis is different from voice processing, which
involves digitizing, compressing (not always), recording, and then playing back
snippets of speech. Voice processing results are natural sounding, but the
technology is limited in flexibility and needs more disk storage space compared to
speech synthesis.

Speech recognition developers are still searching for the perfect human-machine
interface, a recognition engine that understands any speaker, interprets natural
speech patterns, remains impervious to background noise, and has an infinite
vocabulary with contextual understanding. However, practical product designers,
OEMs, and VARs can indeed use today's speech recognition engines to make
major improvements to today's markets and applications, Selecting such an engine
for any product requires understanding how the speech technologies impact
performance and cost factors, and how these factors fit in with the intended
application.

Using speech interfaces is a big improvement to HMI systems, because of the
following reasons:

e Speech is a natural interface, similar to the “interface” we share with other
humans, that is robust enough to be used with demanding applications.
That will change drastically the way humans interface with machines

e Speech makes robot control and supervision possible from simple multi-
robot interfaces. In the presented cases, common PCs were used, along
with a normal noise-suppressing headset microphone

e Speech reduces the amount and complexity of different HMI interfaces,
usually developed for each application. Since a PC platform is used,
which carry currently very good computing power, ASR systems become
affordable and simple to use

In this section, an automatic speech recognition system is selected and used for the
purpose of commanding a generic industrial manufacturing cell. The concepts are
explained in detail and two test case examples are presented in a way to show that
if certain measures are taken, ASR can be used with great success even with
industrial applications. Noise is still a problem, but using a short command
structure with a specific word as pre-command string it is possible to enormously
reduce the noise effects. The system presented here uses this strategy and was
tested with a simple noiseless pick-and-place example, but also with a simple
welding application in which considerable noise is present.

180 Industrial Robots Programming

4.2.2 Evolution

As already mentioned, the next level is to combine ASR with natural language
understanding, i.e., making machines understand our complex language, coping
with the implementations, and providing contextual understanding. That capability
would make robots accessible to people who don't want to learn the technical
details of using them. And that is really the aim, since a common operator does not
have the time or the immediate interest to dig into technical details, which is, in
fact, neither required nor an advantage.

Speech recognition has been integrated in several products currently available:

o Telephony applications

e Embedded systems (Telephone voice dialing system, car kits, PDAs,
home automation systems, general use electronic appliances, etc.)

e Multimedia applications, like language learning tools

e Service robotics

Speech recognition has about 75 years of development. Mechanical devices to
achieve speech synthesis were first devised in the early 19th century, but imagined
and conceived for fiction stories much earlier.

The idea of an artificial speaker is very old, an aspect of the human long-standing
fascination with humanoid automata. Gerbert (d. 1003), Albertus Magnus (1198-
1280), and Roger Bacon (1214-1294) are all said to have built speaking heads.
However, historically attested speech synthesis begins with Wolfgang von
Kempelen (1734-1804), who published his findings of twenty years of research in
1791. Wolfgang ideas gain another interest with the invention of the telephone in
the late 19th century, and the subsequent efforts to reduce the bandwidth
requirements of transmitting voice.

On March 10, 1876, the telephone was born when Alexander Graham Bell called
to his assistant, "Mr. Watson! Come here! I want you!" He was not simply making
the first phone call. He was creating a revolution in communications and
commerce. It started an era of instantaneous information-sharing across towns and
continents (on a planetary level) and greatly accelerated economic development.

In 1922, a sound-activated toy dog named "Rex" (from Elmwood Button Co.) could
be called by name from his doghouse.

In 1936, UK. Tel introduced a "speaking clock" to tell time. In the 1930s, the
telephone engineers at Bell Labs developed the famous Voder, a speech synthesizer
that was unveiled to the public at the 1939 World’s Fair, but that required a skilled
human operator to operate with it.

Small vocabulary recognition was demonstrated for digits over the telephone by
Bell Labs in 1952, The system used a very simple frequency splitter to generate

Interface Devices and Systems 181

plots of the first two formants. The identification was achieved by matching them
with a pre-stored pattern. With training, the recognition accuracy of spoken digits
was 97%.

Fully automatic speech synthesis came in the early 1960s, with the invention of
new automatic coding schemes, such as adaptive predictive coding (APC). With
those new techniques in hand, the Bell Labs engineers again turned their attention
to speech synthesis. By the late 1960s, they had developed a system for internal use
in the telephone system, a machine that read wiring instructions to Western
Electric telephone wirers, who could then keep eyes and hands on their work.

At the Seattle World's Fair in 1962, IBM demonstrated the "Shoebox" speech
recognizer. The recognizer was able to understand 16 words (digits plus
command/control words) interfaced with a mechanical calculator for performing
arithmetic computations by voice. Based on mathematical modeling and
optimization techniques learned at IDA (now the Center for Communications
Research, Princeton), Jim Baker introduced stochastic processing with hidden
markov models (HMM) to speech recognition while at Carnegie-Mellon University
in 1972. At the same time, Fred Jelinek, coming from a background of information
theory, independently developed HMM techniques for speech recognition at IBM.
HMM provides a powerful mathematical tool for finding the invariant information
in the speech signal. Over the next 10-15 years, as other laboratories gradually
tested, understood, and applied this methodology, it became the dominant speech
recognition methodology. Recent performance improvements have been achieved
through the incorporation of discriminative training (at Cambridge University,
LIMSI, etc.) and large databases for training,

Starting in the 1970s, government funding agencies throughout the world (e.g.
Alvey, ATR, DARPA, Esprit, etc.) began making a major impact on expanding and
directing speech technology for strategic purposes. These efforts have resulted in
significant advances, especially for speech recognition, and have created large
widely-available databases in many languages while fostering rigorous
comparative testing and evaluation methodologies.

In the mid-1970s, small vocabulary commercial recognizers utilizing expensive
custom hardware were introduced by Threshold Technology and NEC, primarily
for hands-free industrial applications. In the late 1970s, Verbex (division of Exxon
Enterprises), also using custom special-purpose hardware systems, was
commercializing small vocabulary applications over the telephone, primarily for
telephone toll management and financial services (e.g. Fidelity fund inquiries). By
the mid-1990s, as computers became progressively more powerful, even large
vocabulary speech recognition applications progressed from requiring hardware
assists to being mainly based on software. As performance and capabilities
increased, prices dropped.

Further progress led to the introduction, in 1976, of the Kurzweil Reading
Machine, which, for the first time allowed the blind to "read" plain text as opposed

182 Industrial Robots Programming

to Braille. By 1978, the technology was so well established and inexpensive to
produce that it could be introduced in a toy, Texas Instruments Speak-and-Spell.
Consequently, the development of this important technology from inception until
fruition took about 15 years, involved practitioners from various disciplines, and
had a far-reaching impact on other technologies and, through them, society as a
whole.

Although existing for at least as long as speech synthesis, automatic speech
recognition (ASR) has a shorter history. It needed much more the developments of
digital signal processing (DSP) theory and techniques of the 1960s, such as
adaptive predictive coding (APC), to even come under consideration for
development.

Work in the early 1970s was again driven by the telephone industry, which hoped
for both voice-activated dialing and also for security procedures based on voice
recognition. Through gradual development in the 1980s and into the 1990s, error
rates in both these areas were brought down to the point where the technologies
could be commercialized.

In 1990, Dragon Systems (created by Jim and Janet Bailer) introduced a general-
purpose discrete dictation system (i.e. requiring pauses between each spoken
word), and in 1997, Dragon started shipping general purpose continuous speech
dictation systems to allow any user to speak naturally to their computer instead of,
or in addition to, typing. /BM rapidly followed the developments, as did Lernout &
Hauspie (using technology acquired from Kurzweil Applied Intelligence), Philips,
and more recently, Microsoft. Medical reporting and legal dictation are two of the
largest market segments for ASR technology. Although intended for use by typical
PC users, this technology has proven especially valuable to disabled and physically
impaired users, including many who suffer from repetitive stress injuries (RSI).
Robotics is also a very promising area.

AT&T introduced its automated operator system in 1992, In 1996, the company
Nuance supplied recognition technology to allow customers of Charles Schwab to
get stock quotes and to engage in financial transactions over the telephone. Similar
recognition applications were also supplied by SpeechWorks. Today, it is possible
to book airline reservations with British Airways, make a train reservation for
Amtrak, and obtain weather forecasts and telephone directory information, all by
using speech recognition technology. In 1997, Apple Computer introduced
software for taking voice dictation in Mandarin Chinese.

Other important speech technologies include speaker verification/identification and
spoken language learning for both literacy and interactive foreign language
instruction. For information search and retrieval applications (e.g. audio mining)
by voice, large vocabulary recognition preprocessing has proven highly effective,
preserving acoustic as well as statistical semantic/syntactic information. This
approach also has broad applications for speaker identification, language
identification, and so on.

Interface Devices and Systems 183

Today, 65 years after the Voder and just 45 years after APC, both ASR and TTS
technologies can be said to be fully operational, in a case where a very convoluted
technological history has had a modest and more or less anticipated social impact.

4.2.3 Technology

Speech recognition systems can be separated into several different classes
depending on the types of utterances they have the ability to recognize. These
classes are based on the fact that one of the difficulties of ASR is the ability to
determine when a speaker starts and finishes an utterance. Most packages can fit
into more than one class, depending on which mode they're using.

Isolated words: Isolated word recognizers usually require each utterance to have
quiet (lack of an audio signal) on both sides of the sample window. It doesn't mean
that it accepts single words, but does require a single utterance at a time. Often,
these systems have "listen/not-listen" states, where they require the speaker to wait
between utterances (usually doing processing during the pauses). Isolated utterance
might be a better name for this class.

Connected words: Connected word systems {or more correctly ‘“connected
utterances”) are similar to isolated words, but allow separate utterances to be run-
together with a minimal pause between them.

Continuous speech: Continuous recognition is the next step. Recognizers with
continuous speech capabilities are some of the most difficult to create because they
must utilize special methods to determine utterance boundaries. Continuous speech
recognizers allow users to speak almost naturally, while the computer determines
the content. Basically, it's computer dictation and commanding.

Spontaneous speech: There appears to be a variety of definitions for what
spontaneous speech actually is. At a basic level, it can be thought of as speech that
is natural sounding and not rehearsed. An ASR system with spontaneous speech
ability should be able to handle a variety of natural speech features such as words
being run together, pauses, "ums" and "ahs", slight stutters, etc.

Voice verification/identification: Some ASR systems have the ability to identify
specific users. This book doesn't cover verification or security systems, because
user validation is done using other means.

Speech recognition, or speech-to-text, involves capturing and digitizing the sound
waves, converting them to basic language units or phonemes, constructing words
from phonemes, and contextually analyzing the words to ensure correct spelling for
words that sound alike (such as “write” and “right”).

184 Industrial Robots Programming

Recognizers (also referred to as speech recognition engines) are the software
drivers that convert the acoustic signal to a digital signal and deliver recognized
speech as text to the application. Most recognizers support continuous speech,
meaning the user can speak naturally into a microphone at the speed of most
conversations. Isolated or discrete speech recognizers require the user to pause
after each word, and are currently being replaced by continuous speech engines.

Continuous _speech recognition_engines currently support two modes of speech
recognition:

e Dictation, in which the user enters data by reading directly to the
computer

e Command and control, in which the user initiates actions by speaking
commands or asking questions

Dictation mode allows users to dictate memos, letters, and e-mail messages, as
well as to enter data using a speech recognition dictation engine. The possibilities
for what can be recognized are limited by the size of the recognizer's "grammar" or
dictionary of words. Most recognizers that support dictation mode are speaker-
dependent, meaning that accuracy varies based on the user's speaking patterns and
accent. To ensure accurate recognition, the application must create or access a
"speaker profile" that includes a detailed map of the user's speech patterns captured
in the matching process during recognition.

Command and control moede offers developers the easiest implementation of a
speech interface in an existing application. In command and control mode, the
grammar (or list of recognized words) can be limited to the list of available
commands (a much more finite scope than that of continuous dictation grammars,
which must encompass nearly the entire dictionary). This mode provides better
accuracy and performance, and reduces the processing overhead required by the
application. The limited grammar also enables speaker-independent processing,
eliminating the need for speaker profiles or "training" the recognizer.

The command and control mode is the one most adapted for speech commanding
of robots.

4.2.4 Automatic Speech Recognition System and Strategy

From the several continuous speech ASR technologies available, based on personal
computers, the Microsoft Speech Engine [4] was selected because it integrates very
well with the operating systems we use for HMI, manufacturing cell control, and
supervision (Windows XP/NT/2000). The Microsoft Speech Application
Programming Interface (SAPI) was also selected, along with the Microsoft’s
Speech SDK (version 5.1), to develop the speech and text-to-speech software
applications [4]. This API provides a nice collection of methods and data structures
that integrate very well in the .NET 2003 framework [5], providing an interesting

Interface Devices and Systems 185

developing platform that takes advantage of the computing power available from
actual personal computers. Finally, the Microsoft's SAPI 5.1 works with several
ASR engines, which gives some freedom to developers to choose the technology
and the speech engine.

Grammars define the way the ASR recognizes speech from the user. When a
sequence included in the grammar is recognized, the engine originates an event
that can be handled by the application to perform the planned actions. The SAPI
provides the necessary methods and data structures to extract the relevant
information from the generated event, so that proper identification and details are
obtained.

There are three ways to define grammars: using XML files, using binary
configuration files (CFG), or using the grammar builder methods and data
structures. XML files are a good way to define grammars if a compiler and
converter is available, as in the SDK 5.1. In the examples provided in this chapter,
the grammar builder methods were used to programmatically construct and modify
the grammar.

The strategy used here takes into consideration that there should be several robots
in the network, running different applications. In that scenario, the user needs to
identify the robot first, before sending the command. The following strategy is
used,

e All commands start with the word “Robot”

e The second word identifies the robot by a number: one, two, etc

o The words that follow constitute the command and the parameters
associated with a specific command

Consequently, the grammar used is composed of a “TopLevelRule” with a
predetermined initial state, i.e., the ASR system looks for the pre-command word
“Robot” as a precondition to any recognizable command string. The above
mentioned sequence of words constitutes the second level rules, i.e, they are used
by the TopLevelRule and aren’t directly recognizable. A rule is defined for each
planned action. As a result, the following represents the defined syntax of
commands:

robot number command parameter_i

where “robot” is the pre-command word, number represents the robot number,
command is the word representing the command to send to the robot, and
parameter_i are { words representing the parameters associated with the command.

Another thing considered was safety. Each robot responds to “hello” commands,
and when asked to “initialize” the robots require voice identification of username
and password to give the user the proper access rights. Since the robots are
connected to the calling PC using an RPC socket [2, 6-7] mechanism, the user must

186 Industrial Robots Programming

“initialize” the robot to start using its remote services, which means that an RPC
connection is open, and must “terminate” the connection when no more actions are
needed. A typical session would look like,

User: Robot one hello.

Robot: I am listening my friend.

User: Robot one initialize.

Robot: You need to identify to access my functions.
Robot: Your username please?

User: Robot one <username>.

Robot: Correct.

Robot: Your password please?

User: Robot one <password>.

Robot: Correct.

Robot: Welcome again <username>. I am robot one. Long time no see.

Sequence of commands here. Robot is under user control.

User: Robot one terminate.
Robot: See you soon <username>.

In the following sections, two simple examples are given to demonstrate how this
voice command mechanism is implemented, and how the robot controller software
is designed to allow these features.

4.2.5 Pick-and-Place and Robotic Welding Examples

The following examples take advantage of developments done in the Industrial
Robotics Laboratory, of the Mechanical Engineering Department of the University
of Coimbra on robot remote access for command and supervision [2, 6-7]. Briefly,
two industrial robots connected to an Ethernet network are used. The robot
controllers (ABB S4CPlus) are equipped with RPC servers that enable user access
from the network, offering several interesting services like variable access, 10
access, program and file access and system status services [7]. The new versions of
the ABB controller, named IRCS, are equipped with a TCP/IP sockets API {§],
enabling users to program and setup TCP/IP sockets servers in the controller. For
that reason, the ideas presented here can be easily transported to the new IRCS5
controller with no major change.

If calls to those services are implemented in the client PC, it is fairly easy to
develop new services. The examples presented here include the ActiveX
PCROBNET2003 [9] that implement the necessary methods and data structures
(see Table 3.3) to access all the services available from the robot controller.

Interface Devices and Systems 187

The basic idea is simple and not very different from the concept used when
implementing any remote server. If the system designer can access robot program
variables, then he can design his own services and offer them to the remote clients.
A simple SWITCH-CASE-DO cycle, driven by a variable controlled from the
calling client, would do the job:

switch (decision_1)

{
case 0: call service_0; break;
case 1: call service 1; break;
case 2: call service_2; break;

case n: call service_n; break;

}

4.2.6 Pick-and-Place Example

For example, consider a simple pick-and-place application. The robot, equipped
with a two-finger pneumatic gripper, is able to pick a piece from one position
(named “origin™) and deliver it to other position (named “final”). Both positions
are placed on top of a working table (Figure 4.4).

J

Final position

Figure 4.4 Working table for the simple pick-and-place application

The robot can be commanded to open/close the gripper, approach origin/final
position (positions 100mm above origin/final position, respectively), move to
origin/final position, and move to “home” (a safe position away from the table).
This is a simple example, but sufficient to demonstrate the voice interface. Figure

188 Industrial Robots Programming

4.5 shows a simplified version of the server software running on the robot

controller.

To be able to send any of those commands using the human voice, the following

grammar was implemented:

TopLevelRule = “Robot”

Rule 0 = “one hello”

Rule 1 = “one initialize”

Rule 2 = “one master”

Rule 3 = “one masterxyz”

Rule 4 = “one open”

Rule 5 = “one close”

Rule 6 = “one motor on”

Rule 7 = “one motor off”

Rule 8 = “one program run”
Rule 9 = “one program stop”
Rule 10 = “one approach origin”
Rule 11 = “one approach final”
Rule 12 = “one origin”

Rule 13 = “one final”

Rule 14 = “one home”

Rule 15 = “one terminate”

pre-command word

check if robot is there

ask robot to initialize (open client)
rule defining username “master”
password of username “master”
open the gripper

close the gripper

put robot in run state

put robot in stand-by state

start program

stop program

call service 94

call service 93

call service 91

call service 92

call service 90

release robot access (close client)

PROC main()

TPErase; TPWrite "Example Server ...";

p1:=CRobT(\Tool:=trj_too\WObj:=trj_wobj);
Move] p1,v100,fine,trj too\WObj:=trj wobj;

decisionl:=123;
WHILE TRUE DO
TEST decisionl
CASE 90:

Movel home,v200,fine,tool0; decisionl:=123;

CASE 91:

MoveL final,v200,fine,tool0; decisionl:=123;

CASE 92:

MoveL origin,v200,fine,tool0; decisionl:=123;

CASE 93:

MovelJ Offs(final, 0,0,100),v200,fine,tool0; decision1:=123;

CASE 94:

Move) Offs(origin, 0,0,100),v200,fine,tool0; decisionl:=123;

ENDTEST
ENDWHILE
ENDPROC

Figure 4.5 Simple pick-and-place server implemented in RAPID

Interface Devices and Systems 189

The presented rules were introduced into a new grammar using the grammar
builder included in the Microsoft Speech API (SAPI) [4]. The following (Figure
4.6) shows how that can be done, using the Microsoft Visual Basic .NET2003
compiler.

TopRule = Grammar.Rules.Add("TopLevelRule",
SpeechLib.SpeechRuleAttributes.SRATopLevel Or
SpeechLib.SpeechRuleAttributes.SRADynamic, 1)

ListltemsRule = Grammar.Rules.Add("ListItemsRule",
SpeechLib.SpeechRuleAttributes. SRADynamic, 2)

AfterCmdState = TopRule.AddState

m_PreCommandString = "Robot"

TopRule.InitialState. AddWordTransition(AfterCmdState, m_PreCommandString, " ", , "",
0,0)

AfterCmdState. AddRuleTransition(Nothing, ListitemsRule, "", 1, 1)
ListItemsRule.Clear()

ListItemsRule.InitialState. AddWordTransition(Nothing, "one hello", " ", , "one hello", 0, 0)
Grammar.Rules.Commit()

Grammar.CmdSetRuleState("TopLevelRule",SpeechLib.SpeechRuleState. SGDSActive)
RecoContext.State() = SpeechLib.SpeechRecoContextState. SRCS_Enabled

Figure 4.6 Adding grammar rules and compiling the grammar using SAPI in Visual Basic
.NET2003

After committing and activating the grammar, the ASR listens for voice commands
and generates speech recognition events when a programmed command is
recognized. The corresponding event service routines execute the commanded
strings. Figure 4.7 shows the shell of the application built in Visual Basic .NET
2003 to implement the voice interface for this simple example. Two robots are
listed in the interface. The robot executing the simple pick-and-place example is
robot one (named Rita).

190 Industrial Robots Programming

Figure 4.7 Shell of the voice interface application used to command the robot

With this interface activated, the following sequence of commands (admitting that
the logging procedure was already executed) will take the robot from the “home”
position, pick the work object at the origin position, deliver it to the final position,
return to “home” and release the robot control.

User: Robot one approach origin.
Robot: Near origin, master.
User: Robot one open.

Robot: Tool open master.

User: Robot one origin.

Robot: In origin position master.
User: Robot one close.

Robot: Tool close master.

User: Robot one approach origin.
Robot: Near origin, master.
User: Robot one approach final.
Robot: Near final, master.

User: Robot one final.

Robot: In final position, master.
User: Robot one approach final.
Robot: Near final, master.

User: Robot one home.

Robet: In home position, master.
User: Robot one terminate.
Robot: See you soon master.

Interface Devices and Systems 191

The speech event routine, running on the voice interface application, is called when
any of the rules defined in the working grammar are recognized. For example,
when the “motor on” rule is identified, the following routine is executed:

If ok_command_1 =1 And (strText = "Robot one motor on') Then
resultl = Pcrobnet2003.MotorON2(1)
If resultl >= 0 Then
Voice.Speak('""Motor on, master.")
ans_robot_1.Text() = "Motor ON, master."
Else
Voice.Speak("Error executing, master.")
ans_robot_1.Text() = "Error executing, master."
End If
End If

To give another example, when the move to “origin” rule is recognized, the
following routine is executed:

If ok_command_1 =1 And (strText = "Robot one origin') Then
Dim valor As Integer
valor =92
resultl = Pcrobnet2003. WriteNum2("decision1", valor, 1)
If result] >= 0 Then
Voice.Speak("In origin position, master.")
ans_robot_1.Text() = "In origin position, master."
Else
Voice.Speak("Error executing, master.")
ans_robot_1.Text() = "Error executing, master."
End If
End If

4.2.7 Robotic Welding Example

The welding example presented here extends slightly the functionality of the
simple server presented in Figure 4.5, just by adding another service and the
necessary routines to control the welding power source. The system used for this
demonstration is composed of an industrial robot ABB IRB1400 equipped with the
robot controller ABB S4CPlus, and a MIG/MAG welding power source (ESAB
LUA 3154). The work-piece is placed on top of a welding table, and the robot must
approach point [(named “origin”) and perform a linear weld from that point until
point 2 (named “final”). The system is presented in Figure 4.8. The user is able to
command the robot to

e Approach and reach the point origin (P1)
e Approach and reach the point final (P2)

192 Industrial Robots Programming

e Move to “home” position
e Perform a linear weld from point P1 (origin) to point P2 (final)
¢ Adjust and read the value of the welding velocity

These actions are only demonstration actions selected to show further details about
the voice interface to industrial robots. To implement the simple welding server, it
is enough to add the following welding service to the simple server presented in
Figure 4.5:

CASE 94:
weld_on;
Movel. final,v200,fine,tool0;
weld_off;
decisionl:=123;

where the routine “weld_on” makes the necessary actions to initiate the welding
arc [2], and the routine “weld off” performs the post welding actions to finish the
welding and terminate the welding arc [2].

The welding server is running in robot 2 (named babylon), and is addressed by that
number from the voice interface application (Figure 4.9). To execute a linear weld
from P1 to P2, at 10mmy/s, the user must command the following actions (after
logging to access the robot, and editing the velocity value in the voice interface
application — Figure 4.9) using the human voice:

User: Robot two approach origin.
Robot: Near origin master.

User: Robot two origin.

Robot: In origin position master.
User: Robot two velocity.
Robot: Velocity changed master.
User: Robot two weld.

Robeot: I am welding master.
User: Robot two approach final.
Robot: Near final master.

Figure 4.9 shows the voice interface when robot two is actually welding along with
a user equipped with a handset microphone to send voice commands to the robot.
The code associated with the welding command is,

If ok_command_2 =1 And (strText = "Robot two weld") Then
Dim valor As Integer
valor = 95
resultl = Pcrobnet2003.WriteNum2("decision1", valor, 2)
If resultl >= 0 Then
Voice.Speak("] am welding, master.')
ans_robot_2.Text() = "I am welding, master."

Interface Devices and Systems 193

Else
Voice.Speak("Error executing, master.")
ans_robot_2.Text() = "Error executing, master."
End If
End If

The code above writes the value 95 to the variable “decision!”, which means that
the service “weld” is executed (check Figure 4.5).

194

Industrial Robots Programming

=10

—Robot 1: Rita [Pick-and-place Application]

Robot State

O

answer_txt: Mear final, master.
Aeco_tst: Robot one approach final
Varniable decision: 123

— Robot 2: Babylon [Welding Application)
Robot State () Velocity [10.0
answer_tst: | am welding, master.
Reco_txt: Robot two weld

Variable decision: 95

0.00

Robot two weld

5 http://robatics. dem. uc.pt/norberto/

Interface Devices and Systems 195

Figure 4.9 Shell of the voice interface application showing the welding operation, and a
user (author of this book) commanding the robot using a headset microphone

4.2.8 Adjusting Process Variables

During the welding process, it may be necessary to adjust process variables such as
the welding velocity, welding current, the welding points, and so on. This means
that the voice interface must allow users to command numerical values that are
difficult to recognize with high accuracy. Furthermore, it is not practical to define
fixed rules for each possible number to recognize, which means that dictation
capabilities must be active when the user wants to command numbers. To avoid
noise effects, and consequently erroneous recognition, a set of rules were added to
enable dictation only when necessary, having the rule strategy defined above
always active. Consequently, the following rules were added for robot two (the one
executing the welding example):

Rule V1 = “two variables” enables access to variables

Rule V2 = “two variables out” ends access to variables

Rule V3 = “two <variable_name>" enables access to <variable_name>
Rule V4 = “two <variable_name> lock” ends access to <variable_name>

Rule V5 = “two <variable_name> read” reads from <variable_name>

196 Industrial Robots Programming

Rule V6 = “two <variable_name> write” writes to <variable_name>

Rules V1 and V2 are used to activate/deactivate the dictation capabilities, which
will enable the easy recognition of numbers in decimal format (when the feature is
activated, a white dot appears in the program shell — Figure 4.10). Rules V3 and
V4 are used to access a specific variable. When activated, each number correctly
recognized is added to the text box associated with the variable (a blinking LED
appears in the program shell — Figure 4.10). Deactivating the access, the value is
locked and can be written to the robot program variable under consideration. The
rules V5 and V6 are used to read/write the actual value of the selected variable
from/to the robot controller.

[Robot-by-Yoice Command using SAPI 5.1 and PCROBGNET2! JiF (ol x|

—Robot 1: Rita (Pick-and-place Application)
Robot State

answer_tzt: Initializing SAPI reco contest object...
Heco_tzt:
Variable decision:

—Hobat 2: Babylon [Welding Application]
RobotState (O Velociy [105 0.00 O

answer_tst: Near origin, master.
Reco_tst: Robot two velocity
Variable decisionn 123

(it

5 hitp://robotics.dem. uc. pt/norberto/

Figure 4.10 Accessing variables in the robot controller

As an example, to adjust the welding velocity the following code is executed after
the corresponding rule is recognized:

If ok_command_2 =1 And (strText = "Robot two velocity write") Then

Dim valor as Double

Dim velocity as Integer

valor = velocity. Text()

resultl = Pcrobnet2003.WriteSpeed("velocity", valor, 2)

If Resultl1 >= 0 Then
Voice.Speak(""Welding velocity changed, master.")
ans_robot_2.Text() = "Welding velocity changed, master."

Else
Voice.Speak("Error executing, master.")

Interface Devices and Systems 197

ans_robot_2.Text() = "Error executing, master."
End If
End If

Because the voice interface was designed to operate with several robots, two in the
present case, the user may send commands to both robots using the same interface
which is potentially interesting.

Using speech interfaces is a big improvement to HMI systems, for the following
reasons:

* Speech is a natural interface, similar to the “interface” we share with other
humans, that is robust enough to be used with demanding applications. It
will change drastically how humans interface with machines

¢ Speech makes robot control and supervision possible from simple multi-
robot interfaces. In the presented cases, common PC’s were used, along
with a quite normal noise-suppressing headset microphone

e Speech reduces the amount and complexity of different HMI interfaces,
usually developed for each application. Since a PC platform is used, and
they carry very good computing power, ASR systems become affordable
and user-friendly

The experiments performed with this interface worked extremely well, even when
high noise was involved (namely during welding applications), which indicates
clearly that the technology is suitable to use with industrial applications where
human-machine cooperation is necessary or where operator intervention is
minimal.

4.2.9 Conclusion

In this section, a voice interface to command robotic manufacturing cells was
designed and presented. The speech recognition interface strategy used was briefly
introduced and explained. Two selected industrial representative examples were
presented to demonstrate the potential interest of these human-machine interfaces
for industrial applications.

Details about implementation were presented to enable the reader to immediately
explore from the discussed concepts and examples. Because a personal computer
platform is used, along with standard programming tools (Microsoft Visual Studio
.NET2003 and Speech SDK 5.1) and an ASR system freely available (SAPI 5.1),
the whole implementation is affordable even for SME utilization.

The presented code and examples, along with the fairly interesting and reliable
results, indicate clearly that the technology is suitable for industrial utilization.

198 Industrial Robots Programming

4.3 VoiceRobCam: Speech Interface for Robotics

The example presented in this section extends the example in section 3.2, namely
adding extra equipment and implementing a simple manufacturing cell-like system
composed of a robot, a conveyor, and several sensors. It also includes a
voice/speech interface developed to allow the user to command the system using
his voice. The reader should consider the presented example as a demonstration of
functionality because many of the options were taken with that objective in mind,
rather than trying to find the most efficient solutions but instead the ones that suit
better the demonstrating purpose.

The system (Figure 4.11) used in this example is composed of:

e An industrial robot ABB IRB140 [8] equipped with the new IRCS5 robot
controller

e An industrial conveyor, fully equipped with presence sensors, and
actuated by an electric AC motor managed through a frequency inverter.
To control the conveyor, an industrial PLC (Siemens S§7-200) [12] is used

e A Webcam used to acquire images from the working place and identify
the number and position of the available objects. The image processing
software runs on a PC offering remote services through a TCP/IP sockets

server

Interface Devices and Systems 199

Figure 4.11 Manufacturing cell-like setup: picture and Solidworks model

In the following, a brief explanation of how the various subsystems work is
provided. In the process, the relevant details about each subsystem and their
respective construction are also given.

4.3.1 Robot Manipulator and Robot Controller

The ABB IRB140 (Figure 4.12) is an anthropomorphic industrial robot
manipulator designed to be used with applications that require high precision and
repeatability on a reduced working place. Examples of those types of applications
are welding, assembly, deburring, handling, and packing.

ABB IRB 140 Basic Details

Year of release: 1999

Repeatability: +/- 0.03mm

Payload: Skg

Reach: 810mm

Max. TCP Velocity: 2.5m/s

Max. TCP Acceleration: 20m/s2
Acceleration time 0-1m/s: 0.15 seconds

Figure 4.12 Details about the industrial robot manipulator ABB IRB140

This robot is equipped with the new IRCS robot controller from ABB Robotics
(Figure 4.13). This controller provides outstanding robot control capabilities,
programming environment and features, along with advanced system and human
machine interfaces.

200 Industrial Robots Programming

IRC5 Basic Details

Year of release: 2005

Multitask system

Multiprocessor system

Powerful programming language: RAPID
FieldBus scanners: Can, DeviceNet, ProfiBus,
Interbus

DeviNet Gateway: Allen-Bradley remote 10
Interfaces: Ethernet, COM ports

Protocols: TCP/IP, FTP, Sockets

Pendant: WinCE based teach-pendant
PLC-like capabilities for 10

Figure 4.13 Details about the industrial robot controller IRC5

The robot is programmed in this application to operate in the same way as
explained in section 3.3.1, i.e.,, a TCP/IP socket server is available that offers
services to the remote clients (see Table 3.3). This server is independent of the
particular task designed for the robot, and allows only the remote user to send
commands and influence the running task. In this case, the task is basically to pick
objects from the conveyor and place them on a box. The robot receives complete
commands specifying the position of the object to pick. Furthermore, since the
relevant robot IO signals are connected to the PLC, the robot status and any 10
action, like “MOTOR ON/OFF”, “PROGRAM RUN/STOP”, “EMERGENCY”, etc.,
are obtained through the PLC interface.

4.3.2 PLC Siemens S7-200 and Server

The PLC (Figure 4.14) plays a central role in this application, as it is common in a
typical industrial manufacturing setup where the task of managing the cell is
generally done by a PLC. In this example, to operate with the PLC, a server was
developed to enable users to request PLC actions and to obtain information from
the setup. To make the interface simple and efficient, the server accepts TCP/IP
socket connections, offering the necessary services to the client’s applications. The
list of available services is presented in Table 4.1. The client application just needs
to connect to the PLC server software application to be able to control the setup
and obtain status and process information.

The server application (Figure 4.15) runs on a computer that is connected to the
PLC through the RS232C serial port, and to the local area network (LAN) for
client access.

Interface Devices and Systems 201

Table 4.1 Services available from the PL.C TCP/IP server

Service Answer Description

Init_Auto <Init Auto Conveyor in Automatic Mode

Init Manual <Init_Auto Conveyor in Manual Mode

Stop <Stop> Conveyor in STOP Mode

Read _Mode Auto, Manual e | Returns the conveyor operating mode

Stop

Manual Forward | Manual Forward Conveyor starts in Manual Mode

Manual_Stop Manual_Stop Conveyor stops in Manual Mode

Force_Forward <Force_Forward Forces the conveyor to Start, although
in Automatic Mode

10 Bit stream* Returns the status of all 10 signals

Status Bit stream™** Returns the status of all IO signals
and the conveyor operating mode

Motor On <Motor_On> Robot Motor ON

Motor _Off <Motor_Off> Robot Motor OFF

Prg Run <Prg_Run> Robot Program RUN

Prg Stop <Prg_Stop> Robot Program STOP

* The IO bit stream is formated in the following format:

BQO.0:xxxxxxxxBQ1.0:xxxxxxxx BI0.0:xxxxxxxx:BI1.0:xxxxXXXX
where “BQ0.0:”/”BI0.0:” is string followed by 8 bits corresponding to the first block of
digital outputs/inputs of the PLC, “BQ1.0.”/”BI1.0:” is a string followed by the 8 bits
corresponding to the second block of digital outputs/inputs. For example, the following
answer is obtained when BQO0.2, BQ1.0, BQ1.4, BQL1.6, BI0.1, BI1.0, BIl.1 and BI1.2 are
activated:

BQ0.0:00100000BQ1.0:10001010BI10.0:01000000:BI1.0: 11100000
Note: The bit assignment is as follows:

BQO | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Conv_F | Conv_B | user M on | user Prun | Pstop | M off
BQ1 | 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
user user user user user user user User
BIO* | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Auto Manual [M_on M off | Prun | P stop | EMS Busy
BI1 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Sensor]l | Sensor2 | Sensor3 | User user user user user

*BIO0 contains robot status information as listed.

** Similar to the above bit stream, but with the string “Aduto”, “Manual”, or “Stop” added in
the end of the stream in accordance with the state of the conveyor. For example, for the
above mentioned 10 state and with the conveyor in Automatic Mode, the answer to the
Status call is,

BQ0.0:00100000BQ1.0:10001010B10.0:01000000:B11.0:11100000_Auto

202 Industrial Robots Programming

VTt

- PLC
~ Siemens 87-200

Figure 4.14 Electrical panel showing the PLC, the frequency inverter and the electrical
connections

Interface Devices and Systems 203

¥ TCP/IP Async Server
IP

[17216.63.9 Tt — Serial Port Control

IFZ'E'EI‘E— Close I LI
Msg Disable |

IStatus
172.16.1.10-» Conected ﬂ -
172.16.1.10-> Read_Mode BQO.0 IUUDOGUUU

172.16.1.10-> Conected

172.16.1.10-> Status BA1.0 IDDUDGDUU

172.16.1.10-> Conected

172.16.1.10-> Status BID.0 |01000000
172.16.1.10-> Conected
172.16.1.10-> Status BI1.0 |11100000

172.16.1.10-> Conected
172.16.1.10-> Motor_On
172.16.1.10> Conected IAU‘O

172.16.1.10-> Status =

‘W aiting for a connection...

Figure 4.15 Shell of the PLC TCP/IP socket server

The PLC works as a server, as explained in Section 3.2.1.2, offering the 10
services and actions necessary to control the system and obtain status information.

4.3.3 Webcam and Image Processing Software

This setup uses a simple USB Webcam to obtain images from the working area and
compute the number of objects present and their respective positions. The camera
is connected to a PC that runs the image processing software developed in
LabView from National Instruments using the IMAQ Vision toolbox. The software
works in the same way as explained in Section 3.3.2. Nevertheless, two more
messages were added to the TCP/IP server, which return’s the information
necessary to calibrate the camera and to compute the object position in the robot’s
cartesian space (Table 4.2).

Table 4.2 Services from the Webcam TCP/IP server

Service Description

cameraq get objects Gets a frame from the Webcam

calibration pixels Correlation between pixels and millimeters

camto pos X Y Offset to add to the (x, y) position obtained from the
image to compute the position of the object in the robot
Cartesian space

204 Industrial Robots Programming

The image processing software waits for a “camera acquire objects” message from
the user client. When a message arrives, the server acquires a frame (image) from
the camera and performs a binary operation, i.e., from a color image, or with
several levels of gray, a back-and-white image is obtained with only two colors:
black (0) or white (1). This type of procedure is necessary to identify the working
objects in the scene and remove the unnecessary light effects.

The next task is to remove all the objects that are out of the working range. Those
correspond to the parts of the conveyor belt, light effects, shadows, etc., and need
to be removed before identifying the objects and computing their position.

Figure 4.16 Frame obtained from the camera after being processed

Because the objects used with this application are small discs without holes (Figure
4.16), the image processing software uses a procedure to fill all the holes resulting
from the binary operation. After that, a valid object should have a number of pixels
between certain limits. This will allow users to identify unknown objects or objects
that are overlapped. Only objects that pass this identification are considered, and
for those the center of mass is computed: All other objects are ignored. From that
the (x, y) position is computed and returned to the client application that issued the
call.

Interface Devices and Systems 205

4.3.4 User Client Application

It is now easy to understand the software architecture designed for this application
(Figure 4.17): distributed and based on a client-server model. The user client
application just need’s to implement calls to the available services, track the
answers, and monitor the robot and conveyor operations with the objective of
controlling the setup.

Figure 4.17 Basic distributed software architecture and connections between the different
software modules

Figure 4.18 shows the shell of a PC client application developed using C# .NET
2005 to access the above mentioned TCP/IP services from the various servers, and
control the manufacturing cell-like system. With this application, the user can
operate the setup in “Manual Mode”, i.e., issue all the actions independently, and at
a time. The user can also have the conveyor in “Automatic Mode” and command
the pick-and-place operation manually, i.e., require “camera get objects™ to obtain
the number of objects and their respective positions, selecting from the obtained
list of objects the ones to pick.

Finally, the user can command the setup to work in fully “Automatic Mode”, i.e., to
start the conveyor when objects are detected by sensor 1 (Figure 4.11), stop the
conveyor when objects are detected by sensor 2, acquire an image of the working
space and identify the number of objects and their positions, and then pick-and-
place all of them and resume the conveyor operation.

206 Industrial Robots Programming

For example, the “Read IO and “Motor ON” actions are implemented with the
following code:

Read |0 Send the message “I0” to the PLC TCP/IP socket

server and process the returned answer

private void bt_ReadlO_Click(object sender, EventArgs e)
{
int rec_num; string str_temp;
m_socClient] = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);
IPEndPoint remoteEP_PLC = new IPEndPoint(IPAddress.Parse("172.16.63.9"), 2006);
m_socClientl.Connect(remoteEP_PLC);
m_socClientl.Send(System.Text.Encoding.ASCIL.GetBytes("I0<E>"));
byte[] recData = new byte[256];
rec_num = m_socClientl.Receive(recData);
m_socClientl.Close();
if (recData[6] == 48)

{ \
tapete = false;

Tapete_ON.Checked = false;
}

else

{

conveyor = true; conveyor_ON.Checked = true;

}
if (recData[34] == 48)
{

sensorl = false; sensorl.Checked = false;

}

else

{

sensor] = true; sensorl.Checked = true; Presenting the

} received information
if (recData[35] == 48)
{

sensor2 = false; sensor2.Checked = false;

}

else

{

sensor2 = true; sensor2.Checked = true;

}
if (recData[36] == 48)
{

sensor3 = false; sensor3.Checked = false;

}

else
{ /
sensor3 = true; sensor3.Checked = true;

}
str_temp = System.Text.Encoding. ASCILGetString(recData, 0, rec_num);

Interface Devices and Systems 207

Motor ON Send tht?: message that commands the robot “Motor
; T ON” action

private void bt_Motor ON_Click(object sender, EventArgs e)
{
m_socClientl = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tep);
IPEndPoint remoteEP_PLC = new IPEndPoint(IPAddress.Parse("172.16.63.9"), 2006);
m_socClientl.Connect(remoteEP_PLC);
m_socClientl.Send(System.Text.Encoding.ASCIL.GetBytes('""Motor_On<E=>"));
byte[] recData = new byte[256];

m_socClientl.Receive(recData);
m_socClient1.Close();

f® ¥YoiceRobCam

|
=

[,

27243 140.92 i FLC

319.05_185.41 _
241.44_199.71 Read Mode @ Auto Mode
176.43_232.42 O Manual Mode
247.29_260.03 Stop Mode
315.31_271.63 Change Mode

202.15_301.03 e C] Convepor ON

[] Input Sensor
Cam Sensor
Force Forward [] Output Sensor

Stop Forward

Robo

Auto Mode [Pick Select |
Motor ON e [MotorOFF_]

v| Program Run —

[] Emergency (®) Pick All Auto L@[ﬂ]
[] Busy O Pick All Manual Program Stop
m
Figure 4.18 Shell of a client application developed in C# to control the setup (Sensorl =
“Input Sensor”, Sensor2 = “Cam Sensor” and Sensor3 = “Output Sensor”)

208

Industrial Robots Programming

The client code is very simple and is composed of five main parts:

When operating in fully “Automatic Mode” follows the sequence represented in
Figure 4.19, which corresponds to the normal (or production-like) operation of the
system. Considering a real production setup, it could be interesting to have more
portable solutions. Consequently, a client application (Figure 4.20) was also
developed to run on a Pocket PC (PPC). This application has the same basic

Established socket client connection
Send the command message

Receive the answer

Process and present the returned information

Close the socket

functionality of the PC application (Figure 4.18).

y

“Force Forward”
Conveyor Forwards

Y

Sensor 2 is "ON”
Conveyor Stops

Y

A J

Object #2 Coordinates Sent
to Robot

"Get Objects”
Camera Aquire N Objects

Y

A\

Robot Goes “Busy”

N Objects Coorditates Listed
in Client Aplication

Y

Y

Robot Pick Object #2

Object #1 Coordinates Sent
to Robot

Y

\

Robot Goes “Free”

Robot Goes "Busy”

Y

Robot Pick Object #1

Y

Raobot Pick Object #N

Robot Goes “Free”

Y

L

Robot Goes “Free”

Figure 4.19 Sequence for the fully “Automatic Mode”

Interface Devices and Systems 209

t® voiceRobCam Q@@

CAM | PLC / Robot |

Get Objects | [Nepieces

195.07_141.50

250.54 165.31 Pick Select |
322.42 203.70
227.43_235.65
336.03_247.64
287.67_274.80
221.76_326.55

¥ voiceRobCam Q@[E

CAM PLC/Robot |
Read Mode I «

" Manual Mode

Change Mode] ¢ SiopMode

&l I~ Conveyor ON

i S

Auto Mode

v Cam Sensor
I~ Dutput Sensor
V¥ Auto Mode

Motor ON [V¥ Motor ON
__ MotorOFF | ¥ Program Fun
Program Run I I™ Emergency
Program Stop | L Busy

Stop Eonvard

Figure 4,20 Aspects of the PPC client application developed in C# to control the
manufacturing cell-like setup (Sensorl = “Input Sensor”, Sensor2 = “Cam Sensor” and
Sensor3 = “Output Sensor™)

210 Industrial Robots Programming

4.3.5 Speech Interface

The current example is an interesting platform to demonstrate the potential of
developing speech recognition systems for human-machine interfaces in industrial
manufacturing systems. This statement is based on the following arguments:

o The system is constituted exclusively of industrial equipment, which
makes it representative of a typical robotic manufacturing cell

o The software architecture developed to handle the system is distributed
and based on a client-server model. This is a current trend in actual
manufacturing plants

e The system uses industrial standards for network communications
(Ethernet and TCP/IP)

o The system software was developed using commonly available software
tools: Microsoft Visual Studio NET 2005

e The concepts and technologies used in the system, for software,
communications system organization, etc., are commonly accessible and
most of them are currently defined as standards

As explained earlier, the system can be commanded manually, i.e., the various
subsystems that compose the system can be directly commanded by the user. That
perspective, or mode of operation, is explored in this section to introduce and
demonstrate the enormous potential of current speech recognition (ASR) and text-
to-speech (TTS) engines. In the presented implementation, the Microsoft Speech
API 5.1 (SAPI 5.1) is used to add speech recognition features (speech commands)
to any of the above presented applications.

The strategy used to build the speech recognition grammar is simple and based on
the concepts already presented in section 4.2. Since the system used here is
composed of three different subsystems, a pre-command string per each piece of
equipment is needed in the speech grammar. This allows the user to address each
subsystem by its name,

m_PreCommandStringl = “Robot”
m_PreCommandString2 = “Conveyor”
m_PreCommandString3 = “Camera”

These three words (“Robot”, “Conveyor”, and “Camera”) are added to the speech
recognition grammar as TopLevelRules, i.e., those words need to be identified to
start the recognition of a command string. This means that the speech recognition
grammar is built considering that the user commands have the following structure:

name_of subsystem command parameters
where “name_of subsystem” is one of the TopLevelRules, i.e., one of the words

that identify each of the subsystems, “command” is a string identifying the
command, and “parameters” is a string containing the parameters associated with

Interface Devices and Systems 211

the specified command. Consequently, to have the system responding to speech
commands, it is necessary to first identify the commands of interest and their
associated parameters (Table 4.3).

Table 4.3 Commands associated with the speech command interface

TopRule Robot
Command Parameters Description
Hello -- Checks if the speech recognition system
is ready
Initialize - Initializes the interface and starts the
login procedure, requesting username
and password
Terminate -~ Terminates the speech interface.
<username> -- Validates the “username”
<password> -- Validates the “password”
Motor On Robot in Motors On state
Off Robot in Motors Off state
Program Run Starts loaded program from the
beginning
Stop Stops loaded program

Run from point

Starts loaded program from the actual
program point

Program Option Root Selects program option “root”: start
menu
<Number> Selects program option defined by
“number”
Pick <Number> Pick object defined by “number”
TopRule Conveyor
Command Parameters Description
Auto -- Places conveyor in Automatic Mode
Start Forces the conveyor to start moving
Manual -= Places conveyor in Manual Mode
Start Conveyor starts moving
Stop Conveyor stops moving
TopRule Camera
Command Parameters Description
Get Objects -- Returns the number of objects in the

scene and their respective positions

Calibration Pixels

Returns the pixel to millimeters ratio

Cam to Pos X Y

Returns the offset that should be added
to the computed positions to obtain the
position in the robot Cartesian space

212 Industrial Robots Programming

Therefore, adding the above presented rules to the speech recognition grammar
(using an XML file or directly in the code), the ASR mechanism fires events when
a rule is correctly identified. Consequently, the client application should just track
the ASR generated events, discriminate the rule that was identified, and execute the
associated actions. To perform those tasks, the ASR API provides functions that
return the identified rule as a string. The application just needs to compare the
string with the relevant possibilities, activating the associated actions when a match
is obtained. Figure 4.21 shows some detail about the code associated with adding a
speech commanding interface to the current application. Only the relevant parts of
the code are listed, taking, as example, a few selected functions.

Speech Recognition Event Routine
strText = Result.PhraseInfo.GetText(0, -1, True)

If ok_command_1 = 0 And (strText = "Robot initialize") Then
Voice.Speak("Your Username please?")
ans_robot_1.Text() = "Your Username please?"
ok _command 1=-1
asr_state.Text() = "Username."
End If

If ok_command_1 = -1 And (strText = "Robot master') Then
Voice.Speak("Correct. And your password please?")
ans_robot_1.Text() = "Correct. And your password please?"
ok_command _1=-2
asr_state. Text() = "Password."

End If

If ok_command_1 =-2 And (strText = "Robot access level three') Then
Voice.Speak("Correct. Welcome again master. Long time no see.")
ans_robot_1.Text() = "Correct. Welcome again, master. Long time no see.
ok_command 1 =1
If (resultl >= 0) Then

robotl_on.Visible() = True
asr_state.Text() = "Login OK."
End If
End If

If ok_command_1 =1 And (strText = "Robot terminate') Then
Voice.Speak("See you soon, master.")
ans_robot_1.Text() = "See you soon, master."
s.Close()
ok _command 1=0
If (robot1_on.Visible = True) Then
robotl_on.Visible = False
asr_state.Text() = "Logout."

Interface Devices and Systems

End If
End If

If ok_command_1 =1 And (strText = "Robot motor on") Then
s = ConnectSocket(server_name, server_port)
If s Is Nothing Then
ans_robot. Text() = "Error connecting to robot, master"
Voice.Speak("Error connecting to robot, master")
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("motor_on")
s.Send(bytesSent, bytesSent.Length, 0)
'Voice.Speak("Motor on command received, master.")
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)
If Encoding. ASCIIL.GetString(bytesReceived, 0, bytes) = "0" Then
Voice.Speak("Motor on, master.")
ans_robot_1.Text() = "Motor on, master."
Else
Voice.Speak("Error executing, master.")
ans_robot_1.Text() = "Error executing, master."
End If
End If
End If

If ok_command_1 =1 And (strText = ""Robot pick eight'") Then

s = ConnectSocket(server_name, server_port)

If s Is Nothing Then
ans_robot. Text() = "Error connecting to robot, master"
Voice.Speak("Error connecting to robot, master")

Else
Dim bytesSent As [Byte]() =
ascii.GetBytes(" command_str 5000_" + object_cam(8))
s.Send(bytesSent, bytesSent.Length, 0)
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)

213

ans_robot. Text() = Encoding. ASCII.GetString(bytesReceived, 0, bytes)

's.Close()

If Encoding.ASCIL.GetString(bytesReceived, 0, bytes) = "0" Then
Voice.Speak("Robot pick, master.")
ans_robot_1.Text() = "Robot pick, master."

Else
Voice.Speak("Error executing, master.")
ans_robot_1.Text() = "Error executing, master.”

End If

End If
End If

214 Industrial Robots Programming

If ok_command_1 =1 And (strText = "Conveyor manual start') Then
s = ConnectSocket(server_name_plc, server_port plc)
If s Is Nothing Then
ans_robot.Text() = "Error connecting to conveyor, master”
Voice.Speak("Error connecting to conveyor, master")
Else
Dim bytesSent As [Byte]() = ascii.GetBytes("Manual_Forward<E>")
s.Send(bytesSent, bytesSent.Length, 0)
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)
pdata.Text() = Encoding. ASCIL GetString(bytesReceived, 0, bytes)
Voice.Speak(""Conveyor manual start, master.")
ans_robot_1.Text() = "Conveyor manual start, master."
End If
End If

If ok_command_1 =1 And (strText = "Conveyor auto start') Then
s = ConnectSocket(server name plc, server_port_plc)
If s Is Nothing Then
ans_robot. Text() = "Error connecting to conveyor, master"
Voice.Speak("Error connecting to conveyor, master")
Else
Dim bytesSent As [Byte]() = ascii.GetBytes("Force_Forward<E>")
s.Send(bytesSent, bytesSent.Length, 0)
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)
pdata.Text() = Encoding.ASCIIL GetString(bytesReceived, 0, bytes)
Voice.Speak("Conveyor automatic start, master.")
ans_robot_1.Text() = "Conveyor automatic start, master."
End If
End If

Figure 4.21 Detail about the code used in the ASR event routine

With this type of procedure, it is fairly simple add speech recognition features to
the client applications described in this section. In general terms, the following is
necessary (or desirable) to use speech commanding with industrial manufacturing
systems:

o The system must be distributed in terms of software and based on a client-
server model

¢ All the necessary subsystems must implement some type of mechanism
for remote access from remote clients: RPC, TCP/IP sockets, etc

¢ A clear definition of the commanding strings must be available for easy
implementation in different environments

o The speech recognition grammar developed for the application must
reflect the above definitions. The routines associated with the recognition
events must implement the service calls (using the defined commanding
strings) and process the answers

Interface Devices and Systems 215

e Some type of access mechanism must be implemented for security and
safety reasons

e Critical commands should require some type of confirmation to avoid
damaging persons and parts

e A careful selection of the headset used to implement the speech interface
must be done, namely selecting devices with noise reduction electronics
and with a press-to-speak switch

With these basic guidelines, speech recognition can be successfully added to
industrial systems, resulting in a speech-enabled human-machine interface that
could be a valuable improvement in terms of operator adaptation to the system.
This would then improve operator productivity and efficiency, which would then
impact the overall competitiveness of the company.

4.4 CAD Interfaces

Since the vast majority of companies use CAD software packages to design their
products, it would be very interesting if the information from CAD files could be
used to generate robot welding programs. That is, the CAD application could be
the environment used for specifying how the welding robots should execute the
welding operation on the specified parts.

Furthermore, because most welding engineers are familiar with CAD packages,
this could be a nice way to proceed. An application presented elsewhere [2, 13-14]
enables the user to work on the CAD file, defining both the welding path and the
approach/escape paths between two consecutive welds, and organize them into the
desired welding sequence. When the definition is complete, a small program,
written in Visual Basic, extracts motion information from the CAD file and
converts it to robot commands that can be immediately tested for detailed tuning. A
set of tools is then available to speed up the necessary corrections, which can be
made online with the robot moving. After a few simulations (with the robot
performing all the programmed motions without welding) the program is ready for
production. The whole process can be completed in just some minutes to a few
hours, depending on the size and complexity of the component to be welded,
representing a huge reduction of programming and set up time. Besides, most of
the work is really easy offline programming.

These issues are further researched elsewhere [2, 13-14]. The objective here is to
focus on the CAD interface and on adding more functionality to the human-
machine interface of welding robots. Here the parameterization approach will be
used. With this approach, the welding information, extracted from the CAD model,
is used to parameterize a generic existing robot program, i.e., the welding routines
are implemented as general as possible enabling the accommodation of the planned
welding tasks. In the case presented here, the information extracted from the CAD
file, and adjusted using the presented software tools, is stored in a “.wdf” file and

216 Industrial Robots Programming

sent to the robot controller using the option “Send to Robot” of the software tool.
The information is sent in the form of single column matrices serialized by the
sequence that must be followed, ie., each line of any matrix contains the
information corresponding to a certain welding point. As already mentioned, the
robot controller is organized as a server, offering a collection of services to the
remote computer. Therefore, the following are examples of services implemented
in the welding server, running on a ABBIRB1400 industrial robot equipped with
the S4C+ robot controller {the same robot used in Section 4.2).

Service 9100 (Move_CRobot): this service is used to move the robot in the
Cartesian space with the specified TOOL frame, in accordance with the
commanded offsets: x, y, z, rX, ry, and rz, where (x, y, z) are the Cartesian offsets
and (rx, ry, rz) are the rotation offsets about the tool axis x, y and z, respectively.

Service 9401 (Welding): this service is used to execute the welding sequence
commanded to the robot.

Service 9301 (Simulation): this service is used to execute the welding sequence
without igniting the arc, i.e., the welding power source is not activated.

Service 9101 (Move_JRobot): this service is used to move the robot in the joint
space in accordance with absolute joint angles commanded from the remote
computer.

Consequently, the main routine of the welding server may be implemented as a
simple SWITCH-CASE-DO cycle, driven by a variable controlled from the remote
computer (Figure 4.22).

Looking into the code in more detail, it’s easy to find out how it works and how it
can be explored, but also how new functions can be added to the system. Let’s
consider for example the Move _CRobot service (Figure 4.22) that corresponds to
the value 9100 of the variable decisionl. To move the robot in the cartesian space,
the following must be commanded from the remote computer.

1. Enter the service routine: to do that, the user must write the value 9100 to the
numeric variable decisionl. The method from the PCROBNET2003/2005 software
component used to command that task is:

perob. WriteNum(“decision!”, 9100, channel);

where channel identifies the RPC socket open between the robot controller and the
remote computer.

Interface Devices and Systems

217

PROC main()
TPErase; TPWrite "Welding Server ...";
reset_signals;
pl:=CRobT(\Tool:=ttj_too\WObj:=trj _wobj),
MoveJ p1,v100,fine,trj_tool\WObj:=trj_wobj;
joints_now:=CJointT();
decision]:=123; varmove:=0;
WHILE TRUE DO
TEST decisionl
CASE 9100:
x:=0; y:=0; z:=0; rx:=0; ry:=0; rz:=0; move:=0;
pl:=CRobT(\Tool:=trj_tool);
WHILE (decision1=9100) DO
IF (move <> 0) THEN
pl:=RelTool(pl,x,y,2\Rx:=rx\Ry:=ry\Rz:=rz);
x:=0; y:=0; 2:=0; rx:=0; ry:=0; rz:=0; move:=0;
ENDIF
IF varmove <> 198 THEN
Movel p1,v100,fine,trj_tool\WObj:=trj_wobj;
ELSE
MoveL pl,v100,fine,trj_tooNWObj:=trj wobj;
ENDIF
ENDWHILE
decisionl:=123; varmove:=0;
CASE 9101:
joints_now:=CJointT();
WHILE decision1=9101 DO
MoveAbsJ joints_now,v100,fine,trj_too\WODbj:=trj_wobyj;
ENDWHILE
decisionl:=123;
CASE 9401:
weld;
decisionl:=123;
pl:=CRobT(\Tool:=ttj_tool);
Movel] RelTool(p1,0,0,-200),v100,fine,trj _too\WObj:=trj_wobj;
CASE 9301:
weld_sim;
decisionl:=123;
ENDTEST
ENDWHILE
ENDPROC

Figure 4.22 Simple welding server running on the robot controller

218 Industrial Robots Programming

2. Define the type of motion: the user must specify what type of motion to
perform to achieve the target point, i.e., linear motion or coordinated joint motion.
This is specified writing to the variable varmove (198 for joint coordinated motion
and any other value for linear motion). For example, the command

pcrob. WriteNum(“varmove”, 198, channel),

specifies joint coordinated motion, using the open RPC socket identified by the
parameter channel.

3. Command the Cartesian and rotational offsets: the user must write the offsets
to the corresponding variables. After that, when the user signals that the offsets are
available (writing a value different than zero to the variable move), the robot moves
to the position/orientation obtained by adding those offsets to the actual position,
and waits for another motion command. For example, the sequence of commands
necessary to move the robot 20 mm in the positive X direction and 10 mm in the
negative Z direction should be:

pcrob. WriteNum(“x”, 20, channel);
perob. WriteNum(“y”, -10, channel);
pcrob. WriteNum(“move”, 1, channel); 4——— robot moves now!

where again channel identifies the open RPC socket.

4. Leave the service: to leave this service the user must write any value different
from 9100 to the variable decisionl. For example, the following command writes
the value -1 to the numeric variable decision! and makes the robot program quit
the Move_CRobot service:

perob. WriteNum(“decision1”, -1, channel),

Finally, let’s consider the service Welding (Figure 4.22) that corresponds to the
value 9401 of the variable decisionl. The simplified version of the code is
presented in Figure 4.23.

It is clear from the presented code (Figure 4.23) that the user should command the
Welding service to execute, after sending the matrices defining the welding
sequence. This service commands the robot to follow exactly the command
sequence, moving the robot and igniting or stopping the welding arc whenever in
the presence of a welding or approach/escape trajectory, respectively.

The example shows clearly that there are considerable gains in terms of flexibility
and agility when using distributed client-server software architecture to assist
industrial welding operations [2], namely taking advantage of the powerful
programming tools developed for personal computers. It also shows that actual
CAD packages can be used for robot programming tasks with great advantage,
which extend the interest of already largely utilized software tools.

Interface Devices and Systems 219

PROC weld()
weldon:=0; i:=1;
WHILE ((decision1=9401) AND (i<=numberpoints) AND (i>=1)) DO
weldpoint:=i,
wd_iref:=trj_voltage{i}; feed_iref:=trj current{i};
wd_hrefi=trj_voltage{i}; feed_hrefi=trj current{i},
wd_refi=trj_voltage{i}; feed_refi=trj_current{i};
IF (trj_type{i}=0) THEN
weld_on; \
weldon:=1; Welding definition
ENDIF
ppos:=trj{i}; pvel:=tj_vel{i};
pzone:=trj_prec{i}; ptype:=trj_mode{i};
move_gen; <
IF (weldon=1) AND ((i+1>numberpoints) OR (trj_type{i+1}=1)) THEN
weld_off;
weldon:=0;
ENDIF
i=it+1;
ENDWHILE
IF (weldon=1) THEN
weld_off;
weldon:=0;
ENDIF
ENDPROC

Move the robot

PROC move_gen()
IF ptype=0 THEN
MoveL ppos,pvel,pzone,trj_too\WObj:=trj_wobj;
ENDIF
IF ptype=1 THEN
Movel ppos,pvel,pzone,irj too\WObj:=ttj wobj;
ENDIF
IF ptype=2 THEN
TPWrite "[MOVE_GEN]: MoveC not implemented.";
ENDIF
ENDPROC

Figure 4.23 Code for the Welding service

220 Industrial Robots Programming

=} JiGigeeF 0 wa ol

Figure 4,24 Definition of the simple welding example using AUTOCAD

To clarify further, let’s consider the simple welding example already used in
section 4.2.7. In that example, the robot is commanded to execute a linear welding
on a work piece placed on a welding table. To demonstrate how this simple task is
completely specified and programmed using a CAD package, the welding table and
work piece were modeled in AUTOCAD. The same strategy used before is again
utilized to specify points/orientations and trajectories, i.e., they are all defined
relative to a work object point/orientation (or reference system) named P . In
this way, when exporting points/orientations and trajectories to the robot, the only
thing needed is a good calibration procedure of the robot TCP relative to Peorner
which can be done automatically using sensors (for example, laser position
sensors) and special alignment routines, or manually using the robot joystick.

To execute the welding operation it is necessary to specify four points/orientations
(Py to P;) and the trajectories between them (Figure 4.24). The following
procedures should be used:

1. Py should be defined as the approach point/orientation, ie., a
point/orientation that could permit the robot to reach safely the work-
piece from the “home” position. P, is consequently a non-welding
point/orientation and the trajectory to Py should be free of obstacles (the
user should guarantee adjusting Py accordingly). The precision to reach Py
should be specified as low.

Interface Devices and Systems 221

2. The trajectory from Py to P; should be defined as an approach linear
trajectory, with point P, reached with the highest precision at low/medium
velocity (let say 100mny/s, for example). As defined in [2], the weld layers
in AUTOCAD are named for easy identification using a string that starts
with the word “WELD”. The next information is the type of trajectory, to
distinguish between welding trajectories and approach/escape trajectories.
After that should be specified the welding current, and then the welding
voltage. Finally, the welding speed is specified. All these parameters are
separated by spaces, constituting a definition string. Consequently, the
label associated with that trajectory [2, 13-14] should be

WELD 10001000

for an approach/escape trajectory, done at 100mm/s with highest precision
in the endpoint.

3. The trajectory from P; to P, should be defined as a welding trajectory with
the required welding parameters. For example, the following label could
be associated with this trajectory:

WELD 0 150.021.3 100

for a welding trajectory executed at 10mm/s, with highest precision in the
end-point, associated with a welding current of 150.0 A and a welding
voltage of 21.3 V.

4. The trajectory from P, to P; should be defined as an approach/escape
trajectory done with low/medium velocity without any special precision in
the endpoint. The following label could be associated with this trajectory:

WELD 100010050

to specify a trajectory done at 100mmy/s, with low precision (50 mm
sphere around the selected point).

This information is saved in the CAD file and can be extracted to a “.wdf’
definition file, which is used for simulation and final tuning using the available
tools [2, 13-14]. Finally, all of the information is sent to the robot using the already
presented procedures, based on the routines developed for the robot controller and
the “write variable” services (see Table 3.3) available from the ActiveX software
[9] component used.

4.4.1 Speech Interface for Welding

Considering the linear weld case presented in Figure 4.24, a simple application was
developed to command the welding procedure using a speech commanding

222 Industrial Robots Programming

interface. This is particularly relevant because the welding cells are usually very
noisy and not attractive to operators, namely the younger ones. Consider that the
trajectories were planned in AUTOCAD and transferred to the robot using the
above mentioned applications. To operate the robot, the speech commands
presented in Table 4.4 are necessary.

Table 4.4 Speech commands for the simple welding application

TopLevelRule Robot Number = Two
Command Parameters Description
Hello - Checks if the speech recognition system
is ready
Initialize - Initializes the interface and starts the
login procedure, requesting username
and password.
Terminate -- Terminates the speech interface.
<username> -- Validates the “username”
<password> -- Validates the “password”
Motor On Robot in Motors On state
Off Robot in Motors Off state
Program Run Starts loaded program from the
beginning
Stop Stops loaded program
Run from point Starts loaded program from the actual
program point
Approach Origin Approach “Origin” position
Final Approach “Final” position
Origin - Move to “Origin” position
Final - Move “Final” position
Weld - Perform a weld operation from “Origin”

position to “Final” position

Note: The command message was defined in sections 4.2.4 and 4.2.7.

The application presented in Figure 4.10 implements a speech interface that
recognizes those commands and executes the appropriate actions [2,13-14]. The
user can command a welding operation just by saying:

User: Robot two approach origin.
Robot: Near origin, master.
User: Robot two origin.

Robot: In origin position, master.
User: Robot two weld.

Robot: I am welding, master.
User: Robot two approach final.
Robot: Near final, master.

User: Robot two home.

Robot: In final position, master.

Interface Devices and Systems 223

That’s easy, isn’t it?
And it makes robotic welding a fun task. Like a computer game.

@

4.5 References

[1] Observatory of European SMEs 2002, European Commission, 2002

[2] Pires, IN, et al, “Welding Robots, Technology, System Issues and Applications”,
Springer, London, 2006

[3] Pires, JN, “Semi-autonomous manufacturing systems: the role of the HMI software and
of the manufacturing tracking software”, Elsevier and IFAC Journal Mechatronics, to
appear 2005.

[4] Microsoft Speech Application Programming Interface (API) and SDK, Version 5.1,
Microsoft Corporation, http://www.microsoft.com/speech

[5] Microsoft Studio .NET 2003/2005, TechNet On-line Documentation, Microsoft
Corporation, http://www.microsoft.com, 2003/2005.

[6] Bloomer J., "Power Programming with RPC", O'Reilly & Associates, Inc., 1992,

[7] RAP, Service Protocol Definition, ABB Flexible Automation, 1996 - 2004.

[8] ABB IRC5 Documentation, ABB Flexible Automation, 2005.

[9] Pires, JN, “PCROBNET2003, an ActiveX Control for ABB S4 Robots”, Internal
Report, Robotics and Control Laboratory, Mechanical Engineering Department,
University of Coimbra, April 2004,

[10] Pires, JN, “Complete Robotic Inspection Line using PC based Control, Supervision and
Parameterization Software”, Elsevier and IFAC Journal Robotics and Computer
Integrated Manufacturing, Vol. 21, N°1, 2005

[11] Pires, JN, “Handling production changes on-line: example using a robotic palletizing
system for the automobile glass industry”, Assembly Automation Journal, MCB
University Press, Volume 24, Number 3, 2004,

[12] Siemens, “S7-2000 Programmable Controller Programming Manual”, Siemens
Automation, Edition 08/2005, 2005.

[13] Pires, JN, Godinho, Tiago, and Ferreira, Pedro, “CAD interface for Automatic Robot
Welding Programming ”, Volume 31, n°l, Industrial Robot, An International Journal,
MCB University Press, 2004,

[14] Pires, JN, and Loureiro, A, et al, “Welding Robots”, IEEE Robotics and Automation
Magazine, June, 2003

5

Industrial Manufacturing Systems

5.1 Introduction

Industrial small and medium (SME) manufacturing companies face complex and
challenging market conditions that may impact their organization and economic
strength. In fact, for a manufacturing SME to remain competitive in the global
economy, it must cope with the following basic characteristics of the market:

Global competition — actual companies compete on a global scale and
with products from all over the world, i.e., coming from very different
economic realities in terms of organization, labor, social protection and
security, etc. Their competitors are global companies that address the
markets with specific objectives and strategies, making the competition
very unpredictable.

Demand for more quality at lower prices — customers want the continuous
improvement of quality at lower prices, i.e., customers tend to evaluate
the quality of the product/service obtained for the money spent in buying
it. This puts big pressure on companies since the market offers other
options for the same product or service, and customers are used to making
comparisons using the quality/price ratio.

Very complex products — many of the modern high-technology products
are very complex to manufacture since they often are composed of many
mechanical parts, electronic components, software modules, etc. This
poses new challenges to manufacturing systems.

Very short life-cycles and time-to-market periods — competition and
continuous innovation tends to reduce the life-cycle of products, forcing
companies to evolve their line of products more often and with higher
levels of agility.

226 Industrial Robots Programming

This scenario poses very difficult challenges to manufacturing SMEs, namely on
the quality of their manufacturing systems, in terms of flexibility and agility, and
on their overall competitiveness. In fact, production plants based on human labor
aren’t competitive with equivalent companies located in low-salary countries.
Consequently, these types of production plants tend to move their facilities to those
countries or economical regions trying to take advantage of the low obligations to
human labor, social security and protection, safety regulations, etc., and remain
competitive in the global market. This logic has negative effects on western
economies because important production sectors and jobs tend to move to low-
salary countries. Consequently, the impact on the economic and social welfare is
significant, working against our civilization model.

The only way to fight this trend is to focus on science and technology, developing
manufacturing solutions that are flexible and agile, and that integrate efficiently
with human operators. Flexibility is important to face the constant product change
due to competition, fashion trends, quality requirements, and so on. But the time to
market is also fundamental, which requires flexible systems that are easy to use
and simple and fast to reconfigure, i.e., the modern world requires far more than
flexibility and puts the focus on agility, which is a very interesting concept.
Another important factor is the efficiency of the human-robot interfaces, which
should allow humans and machines to operate as coworkers taking advantage of
each other’s abilities.

This chapter detail’s a few industrial examples, with the objective of demonstrating
how the concepts and ideas presented in this book can help to build manufacturing
systems that are flexible, agile, and easy to use. All the systems presented were
developed and built by the author of this book in cooperation with partner
companies operating in Portugal.

5.2 Helping Wrapping Machines for the Paper Industry

In this section, a remote software environment developed to monitor and control
robotic manufacturing cells is presented and discussed. It was used with an
industrial system developed to wrap, label, and assist the storage of paper rolls
coming from highly efficient paper machines. The system is also briefly introduced
pointing out its main advantages. Special attention is given to the software
architecture used to develop the remote services available from the system:

Services for system monitoring

Services for system maintenance

Services for file and database handling

Services for production monitoring

Services for operator interface and system parameterization from the
system control panel

Industrial Manufacturing Systems 227

The advantages of using distributed and object-oriented software approaches are
also discussed, using some inside from the presented implementation. Finally, the
utilization of electronic messaging services with industrial manufacturing systems
is introduced and discussed.

5.2.1 Layout of the System

The system presented here was mainly designed to be used at the end of a paper
machine to help with the wrapping and labeling operations of the paper rolls.
Briefly, paper is produced in cylindrical rolls of several dimensions (with
diameters ranging from 800mm up to 1600mm, and lengths ranging from a few
centimeters to 2-3 meters) and weights. Figure 5.1 represents a diagram of the
system showing its basic stations, i.e., places where robots are used to perform the
required operations.

From Paper
Machine

L

Figure 5.1 Basic organization of the of the robotic wrapping and labeling system

228 Industrial Robots Programming

Paper rolls coming from the paper machine are labeled by a human operator using
barcode sticks. The assigned code constitutes a unique identification of each roll.
In the first station, the paper rolls are measured and weighted and that information
is automatically inserted into the factory production database for further use,
namely on the subsequent stations to pre-position the subsystems used in each
station and to adapt the behavior of the local software. The system is controlled
using industrial PLCs, which are accessible through Profibus by the PC that run’s
the human-machine interface software. The fieldbus network connecting the
various system resources is also Profibus.

5.2.1.1 Station One — Dimensions and Weight

In this station, each roll is measured and weighted automatically and
autonomously. The obtained values are introduced into the production database
using the ID number in the barcode (barcode readers are used here). The rolls are
serialized starting from this point and consequently there is no need to keep track
of the rolls in the rest of the process, i.e., after this station there is no way to
remove the rolls manually. The barcode numbers will be checked again at the end
of the wrapping process when the rolis enter the automatic warehouse.

5.2.1.2 Station Two — Roll Wrapping and Inner Header

Rolls are wrapped using a wrapping machine assisted by two industrial robots
ABB IRB6400 (equipped with the S4C+ robot controller) [1]. The robots are
commanded to pick two headers, one per robot, of the appropriate dimensions
(there are six piles of different headers available) and hold them against the two
bases of the roll (Figure 5.2). The dimension of the header to pick is a parameter of
the pick command, which is sent to each robot through Profibus. Consequently, a
client-server software architecture is used, having the robots operating as servers.
Synchronization and messaging (including error handling) with the station PLC,
which also handles the wrapping machine, is done by Profibus using a simple 10
protocol. The system is able to wrap rolls in cycles of less than 20 seconds.

Industrial Manufacturing Systems 229

a)

b)

Figure 5.2 Operation in station two: a) holding the headers, b) picking a header

5.2.1.3 Station Three — External Header

External headers are applied on the rolls to finish the roll wrapping process and
hold the wrapping paper. Operation is assisted using one industrial robot (ABB
IRB6400 equipped with the S4C+ robot controller) [1]. The robot is commanded to
pick two headers (gripper holds two headers) and put them, properly centered in
accordance with its diameter, on the plates of a heated press. The headers are made
from a type of paper that has glue impregnated in its structure. The heat makes the

230 Industrial Robots Programming

glue emerge at the surface of the header, enabling the press to glue them to the
rolls just by applying pressure (Figure 5.3). Due to the cycle time requirements
(less than 20 seconds per roll), the command sent to the robot to pick a pair of
headers includes the diameter of the actual roll (like in the previous station) but
also the actual position of the press plates (to speed up the wrapping process, the
press is independently commanded to pre-position its plates as a function of roll
length). Since the press is hydraulic, the position of its plates is confirmed by the
robot just before entering the press workspace to place the headers. This presents
robot collisions with press plates, which would eventually destroy the robot and

gripper.

5.2.1.4 Station Four — Labeling

In this station (Figure 5.4), two labels are applied to the wrapped rolls (one on the
top and the other on the right side of the roll) with the information about the roll
printed in the label (dimensions, weight, customer, production date, etc.). Each
label also has a barcode that will be used by the automatic warehouse to process
the roll. Labels are printed by an office laser printer, and outputted to a small ramp.
The robot picks the labels when commanded to do it, waits for the “glue labels”
command, puts glue on the surface of the labels (using the gluing machine), waits
for the roll in position, and finally places the labels on the roll. After each basic
operation, the execution status is checked and the next operation is commanded
only if the previous one finished successfully. If an error occurs, the current
process is aborted and the error is issued back to the commanding machine (in this
case a PLC).

Industrial Manufacturing Systems 231

b)
Figure 5.3 Operation in station three: a) picking a pair of headers, b) placing the headers on
the surface of the heated plates of the hydraulic press

This same procedure is used in any of the other stations. All commands are
acknowledged when they finish, i.e., a message specifying that the command
executed correctly is sent back to the commanding machine. Communication runs
over Profibus using a simple IO protocol.

Another version of this labeling station was built for another paper machine (see
section 3.6), at the same company, that uses an Ethernet network and a PC to
interface with the production database. The PC is also used to command the
station, using remote procedure calls (RPC) sent to the robot controller. It is
important to discuss here the basic differences between the two systems.

Considering the brief description made above and in section 3.6, and considering
that robots used in industrial applications are commanded to execute very precise
tasks, it is clear that in both cases there’s the need for a collection of services
properly designed to execute those tasks. Both systems implement a collection of
services designed to execute every task available from the system. The services are
implemented as generally as possible and require parameters to be properly
requested by the remote client. A simple “switch-case-do” loop, driven by the word
or number that defines the command, can be used to implement the server.

The difference resides in the way those services are requested. In the example
presented in section 3.6, the services are requested using RPC calls, and in the
example presented in this section the services are requested using a simple 10

232 Industrial Robots Programming

protocol (see section 3.2.1). Furthermore, the version presented in section 3.6
includes an intermediate server used to connect the factory production software
and the robot controller (Figure 5.5). This server listens for TCP/IP calls and
simply translates the calls to robot commands, collecting the answers and sending
them back to the calling machine (the production software computer).

Figure 5.4 Labeling system: a) tool and gluing machine, b) Robot placing label

Industrial Manufacturing Systems 233

UNIX Station

Production

Sock CMD

Software
. PC Server
Event
w: CMD
Wr
Event
Robot

Figure 5.5 Connection between robots and factory production software: using TCP/IP
sockets and SUN RPC 4.0 compatible RPCs

5.2.2 EmailWare

In every station presented, any error is logged and sent to the commanding
computer as part of the answer: etror codes are used to identify each type of error.
Consequently, on an error situation the calling machine can decide what to do
based on the received error code, for example, repeat the command.

Furthermore, every system has a checklist of basic conditions it needs to operate.
For example, the labeling system needs to verify the following conditions to enter
the ready mode:

e Air pressure at the appropriate working level
e Printing machine at the ready mode
¢ Glue machine at the ready mode

If a system is experiencing some type difficulty and one of the above conditions is
not met, then the system enters the “error mode” and rejects all the incoming
commands until the problem is solved.

At this point several things can be done. Let’s discuss it a little bit more with an
example. Suppose that there was a vacuum failure in the gripper, caused by air
pressure failure (venturi devices are used to generate vacuum for suction cups).
The system is then unable to pick and hold labels. If the problem appears during
task execution, then an event may be fired (if an event firing mechanism is

234 Industrial Robots Programming

available) and an error code is issued back when the command finishes (0 —
success, < 0 means an error identified by the error code). The simple way to
proceed and to warn operators is to act on local warning devices (a bell, a flashing
light, etc), on flashing warnings on system panels, etc.

This scenario was the motivation to develop the EmailWare application, which
was then extended to enable a more general task of supervising and monitoring the
complete system. With those ideas in mind, a server was built to monitor an
installation of robots (networked robots using TCP/IP over Ethernet or a serial
channel) inside a factory or in a research environment. The server uses the already
mentioned ActiveX component (PCROBNET2003/2005) and is capable of checking
the robots available on the nework for selected interesting information, logging all
events, and warning the user immediately when a selected event actually occurs.
Operators are not always near the system control computer, but can be reached by
beeper, mobile phone, or e-mail. In fact, they can be in an office doing some
desktop job, somewhere in the plant or at home after hours. A manufacturing
system should be able to reach them to send urgent information. The same situation
happens with developers. They need to recollect information about their systems
and sometimes, on debugging situations, they need information when certain
conditions are met,

One good solution is to use short e-mail messages sent to selected accounts with
brief information about events. Those accounts could be regular e-mail accounts,
SMS services, beepers, etc. The application should also accept e-mail messages,
coming from authorized users requesting more details about any subject (see
Tables 5.1 and 5.2).

Using this application, the user may define for each robot in the installation the
type of events he wants to receive. The user can also request the system to send
complete reports daily, weekly, or monthly. When one of the selected events
actually occurs, the application sends a short e-mail to the defined e-mail accounts.
The user also selects the accounts that can receive reports, log files, or long e-mails
(long e-mail should not be sent to SMS accounts or beepers).

Table 5.1 Type of events
Type of event Parameter 1 Parameter 2 | Parameter 3 | Parameter 4
10 _DIGITAL name TO/T1
10_ANALOG name H/L Value
VAR NUM name H/L/C Value
VAR BOOL name TO /Tl
STATE SYS TA/T™M '
STATE PRG TR /TS
ERROR
LOGS D type type Type
LOGS W
LOGS M type type Type

where the symbols have the following meaning;

Industrial Manufacturing Systems

10_DIGITAL — digital IO events.

10_ANALOG - analog IO events.

VAR _NUM — events related with RAPID <num> variables.
VAR_BOOL — events related with RAPID <bool> variables.
STATE SYS ~ system state events.

STATE_PRG - program state events.

ERROR — error events (any type of error).

LOGS D - send logs daily.

LOGS W - send logs weekly.

LOGS M - sends logs monthly.

name — name of variable or signal (string).

70 — transition to zero.

T1 — transition to 1.

H — Higher than value.

L ~ Lower than value.

C — When variable changes.

TA — transition to auto mode.

TM — transition to manual mode.

TR — transition to program running.

TS — transition to program stop.

type — type of log.

Table 5.2 Type of commands

235

Command Parameter 1 Parameter 2 Parameter 3
LOGS type type
SYSTEM

PROGRAM

10_DIGITAL all / signal signal
10_ANALOG all / signal signal
10 ALL

VAR NUM name

VAR BOOL name

STOP_PRG password

START PRG password AP /FB
UNLOAD password name
LOAD password name
MOTOR ON password

MOTOR_OFF password

X CMD password par 1

where the symbols have the following meaning:

LOGS — send log files.

SYSTEM — send system state information.

PROGRAM — send program state information.

10 _DIGITAL - send information about digital 1O as specified.
10_ANALOG - send information about analog IO as specified.
10 _ALL - send information about all 10.

STOP_PRG — stops current program.

START PRG - starts current program.

UNLOAD - unload module specified (name).

236 Industrial Robots Programming

LOAD — load module specified (name).

MOTOR_ON - motors ON state,

MOTOR_OFF — motors OFF state.

X CMD — any command implemented in RAPID.

all — all signals of this type.

password — password to execute this command (if password fails, then user is removed
from list of allowed users and an e-mail to administrator is issued).

EMAILWARE

IF poll_now
Poll_Robots

Retrieve commands

Message to send

RPC
Message

Message
Queue

Figure 5.6 EmailWare: selecting a robot

Another important feature is the possibility to send e-mail commands to the
application asking for more details on several aspects (see Table 5.2 for the types
of commands that can be issued). The user can issue commands to any robot in the
installation. The application checks if the sender is allowed and then processes the
command. Those commands are e-mail messages sent to emailware@company
with subject “command” and with the following syntax:

robot_dns_name command parameters

where “robot_dns_name” is the registered DNS name of the robot and “command”
is a command, using the required “parameters” from Table 5.2. The e-mail

Industrial Manufacturing Systems 237

message can hold any number of commands (one per line starting with character
‘#’) addressed to several robots.

The application cycle polls all robots for any change (it does not keep open clients,
just opens a client connection, makes a survey, and closes the connection), fires e-
mails if there is any change, and then processes commands (Figure 5.6). Since
there is an RPC server working in parallel receiving asynchronous messages from
any robot, any urgent event is immediately attended and information is issued to
the user (the information is sent once when it happens, i.e., when the event is fired
from the robot, and a second time when the polling process detects the change).
The polling frequency of the robots can be adjusted to avoid overloading the
system, ranging from 1/10 Hz (higher frequency) to 1/60 Hz (lowest frequency).

5.2.2.1 EmailWare Application Example

To show the potential of this tool, lets give a simple example. Suppose that at some
industrial installation there is a robot (named “babylon5) doing arc-welding
operations. Suppose also that the welding software keeps information on the
number of pieces that have been welded (num_pieces), on the amount of time in
operation (opr_time), and on the idle time (idle_time). There is also information on
how many errors were encountered during operation (num_error); it is considered
here that the system can handle and maybe automatically recover from certain
operational errors (consequently, for each error the num_error variable is
incremented and an operational message is issued like: bad or no piece in place, no
gas, no air pressure, etc), which is normally the case. There are also some IO
inputs and outputs like: gas information (digital input, gas on), air pressure
information (digital input, air_on), wire information (digital input, wire_on), etc.
Finally, suppose that the user wants to have daily reports about the system,
including the state of some of variables.

238 Industrial Robots Programming

X% EmailWare

Figure 5.7 EmailWare: selecting a robot

To configure EmailWare for the welding application, the user starts by selecting
the robot from the available robots (Figure 5.7). After that, the user selects the 10
signals, the variables, and the type of system states of interest.

Industrial Manufacturing Systems 239

EMAIL CONFIGURATION EE - x|
— E-mail Accounts
Inorbertn@lobolics,dem.uc.pt I~ SMS
Inorberto@company_name_com [~ SMS
|368375423@mail tranpt v SMs
I [~ SMS
| [~ sMs
ERASE ALL OK
ADD " Corcel |
e | e

Figure 5.8 EmailWare: dialog to define e-mail accounts

Then the user e-mail accounts (Figure 5.8) must be defined (up to five accounts)
and the ones that can receive long e-mails (the user should identify at least one
normal e-mail account and one SMS account) must be specified. All the
configurations are stored in a configuration file (rob_conf.cfg) that can be accessed
using any text editor (Nofepad, Wordpad, Word, etc). For the above-mentioned
example, the file could look like the one in Figure 5.9.

As mentioned already, the application was fested on the industrial installation,
presented in this section which uses four robots, but the interested reader can make
his own test using our laboratory robots. Just visit the EmailWare web site located
at http.//robotics.dem.uc.pt/emailware/ and sign up to receive warnings about the
operation of one of our robots. Interested readers can also send commands to it.
The site is a demonstration site, so only a few features are demonstrated and users
cannot customize them. Finally, a demo version that is fully operational for one
robot only (robot serial number is needed) may also be requested.

240 Industrial Robots Programming

* EmailWare Header
* (C) J. Norberto Pires 2000-2006
* norberto@robotics.dem.uc.pt

* USER DEFINITION
norberto@robotics.dem.uc.pt
norberto@company_name.com
968975423@mail.tmn.pt SMS
* ROBOT DEFINITION

name = babyion5

domain = dem.uc.pt

IP = 193.136.213.69

Model = ABB_IRB_1400

@

I10_DIGITAL 3
gas_on TQ

wire_on TO

air_on TO
IO_ANALOG 0
VAR_NUM 3

error C

opr_time H 100
idle_time H 50
STATE_SYS T™M
STATE_SYS TA
STATE_PRG TS
STATE_PRG TR
LOGS_D all

&

* ROBOT DEFINITION
name = perseus
domain = dem.uc.pt
IP = 193.136.213.61
Model = ABB_IRB_2400
@

*End of configuration file

Figure 5.9 Example of configuration file (rob_conf.cfg)

Consequently, any of the specified users receive messages (by e-mail or SMS)
about the programmed events that can look like:

Babylon 5: Ei guys, I’'m stopped, no air-pressure or air-pressure too low.
Babylon 5: Ei guys, I'm stopped, no wire.

Babylon 5: Ei guys, wire is running out.

Babylon 5: OK, air-pressure is on again,

Industrial Manufacturing Systems 241

5.2.3 Conclusions and Discussion

The system presented in this section is commanded remotely from the PLC used to
manage the operation of the cell. The system also uses a PC to interface with the
operator, and updates and retrieves information from the factory production
software. The system was designed to operate almost autonomously, i.e., with
minor operator intervention limited to error and maintenance situations.
Consequently, a client-server software architecture was used, with the robots
working as servers allowing remote clients to explore and operate the system. This
proved to be a nice solution capable of providing a good performance and high
levels of flexibility, because the system’s basic operation is defined by the
operating software. Adding new functions or changing the operation is an easy task
and in fact was done several times to adjust to new requirements.

Finally, a simple e-manufacturing solution was introduced in this section. It
enables operators to receive operation events when they occur, allowing a more
efficient supervision of the system, reducing down time due to errors or
unavailability of certain operating conditions. This idea of having automation
equipment sending messages to users with relevant information about its current
status, and enabling users to request more details and sending a few commands,
also by e-mail, can be extended to other areas: monitoring warehouse systems that
could inform users about critical points, smart houses informing users about
current situations and enabling some remote commands, remote maintenance, and
S0 on.

5.3 Complete Robotic Inspection Line for the Ceramic Industry

Non-flat ceramic products, like toilets and bidets, are fully inspected at the end of
the production process to search for structural, surface, and functional defects.
Ceramic pieces are transported to the inspection lines assembled in pallets, carried
by electro-mechanical fork-lifters or automatic guided vehicles (AGV). Pallets
need to be disassembled, feeding the inspection lines where human operators
execute the inspection tasks. Also, the pieces that pass inspection need to be
palletized again in the final pallets used for product distribution. Those de-
palletizing and palletizing operations are physically demanding so they are good
candidates for robots.

This section is a case study on the development of a collection of prototype
manufacturing cells, designed to perform automatic palletizing and de-palletizing
operations of non-flat ceramic pieces such as toilets and bidets. The factories of
these types of products show an impressive mixture of human and automatic labor,
meaning that special attention must be taken with regard to human machine
interfaces (HMI), safety, mode of operation, etc.

242 Industrial Robots Programming

Non-flat ceramic products are commonly used in our homes and are mainly
associated with personal care tasks. The industrial production of these ceramic
products poses several problems to industrial automation, especially if robots are to
be used. Basically, these problems arise from the characteristics of the ceramic
pieces: non-flat objects with high reflective surfaces, very difficult to grasp and
handle due to the external configuration, heavy and fragile, extensive surface
sensitive to damage, high demand for quality on surface smoothness, etc. Also, the
production setups for these types of products require high quality and low cycle
times, since this is a large scale industry that will remain competitive only if
production rates are kept high. Another restriction is that this industry changes
products frequently, due to fashion tendencies in home decoration, etc. Also, there
is the mixture of automatic and human labor production, which is a difficult
problem since HMI are very demanding and a key issue in modern industrial
automation systems.

It was proposed by the partner company to build several de-palletizing and
palletizing solutions, with a simple graphic operator interface, to install in their
final inspection lines. In those lines human operators inspect all pieces by hand to
find functional and surface defects (computer vision solutions for inspection). The
challenge was to build highly efficient systems, capable of handling more pieces a
day than its human counterparts, that could be easy to set up and start up at the
beginning of the day. So, there is a robotic challenge and a software challenge,
namely, in designing human-machine interfaces for operators.

The system presented here (Figure 5.10) was designed to take advantage of
computers and available tools to parameterize and monitor an industrial robotic
cell, i.e., to make human-machine interface. In the process of describing and
discussing the system a few available, a few technical details are highlighted. This
is also important due to the fact that all the software was built from the scratch [2],
without using any of the available commercial software packages (Section 3.2).

5.3.1 Motivation and Goals

The problem addressed in this example is the construction of a complete system to
assist humans in the task of inspecting non-flat ceramic pieces. Those pieces
(bidets and toilets, mainly) reach the inspecting site directly from the high
temperature oven, organized in pallets (input-pallets), using fork-lifters. A few
operators placed along two inspecting lines (15 meters long each), inspect all the
pieces by hand, searching for pieces with functional and surface defects, removing
from the inspection lines the pieces rejected [3, 4]. Consequently, in this system
there is the need to de-palletize the input-pallets, feeding continuously the two
inspection lines. The system must also pick the accepted pieces from the end of the
inspection line, palletizing them again into the pallets (output-pallets) used for
product distribution (Figure 5.10).

Industrial Manufacturing Systems 243

The system should work also as autonomously as possible, requiring only minor
parameterization at the beginning of the work day or production cycle. The system
should be able to work with input-pallets composed of four levels of ceramic
pieces, eight pieces per level placed in a special order to keep pallet equilibrium,
and with levels separated with pieces of hard paper. It should also be able to work
with output-pallets up to five levels of ceramic pieces, eight pieces per level placed
in the same order as in the input-pallets, with levels also separated by hard paper.
The rule used to arrange the pieces in the pallet is to place them alternatively one
up — one down, starting from the ground level, then swap to one down — one up in
the next level (Figure 5.11), and keep the procedure in the proceeding levels.

Figure 5.10 Components of the system

Actually, input-pallets are assembled manually by operators at the end of the high
temperature oven. This means that the robotic system must be tolerant with
possible medium-large palletizing errors, coming from misplaced pieces both in
position and orientation, and also showing significant variations from level fo
level. Another important factor is that pallets are fed into the system by human
operators using electro-mechanic fork-lifters, which also introduces some variation
in the pallets. Sometime in the future, AGVs will be use to fulfill the task, reducing
considerably the variations introduced and increasing the efficiency of the system.

244

a)

b)

Industrial Robots Programming

il imgr v —

GER
\\‘:;;:

Industrial Manufacturing Systems 245

c)
Figure 5.11 Pallets and view of the system: a) input pallets and de-palletizing robot; b)
aspect of the de-palletizing gripper; c) view of the complete system

The main objectives for this system are summarized as follows:

e Build a complete robotic system capable of performing de-palletizing and
palletizing operations to assist inspection lines

e The system must perform each of these operations in less than 12 seconds
per piece

e The system should cope with high palletizing errors on the input-pallets,
since they are assembled by human operators which permits to anticipate
small-medium placement errors (up to Scm in position and up to 5°
around the vertical axis)

e The system should cope with deviations on the dimensions of the pieces
of up to £1 cm in each direction. Ceramic pieces grow inside the high
temperature oven, making these deviations expected due to temperature
deficiencies, variation of time inside the oven, variations in the ceramic
mixture, etc. These deviations are not necessarily errors, but instead a
characteristic of this type of production

e The system must work with pallets, both input and output, with variable
numbers of pieces, ranging from any number of pieces, in the case of the
input pallets, to 8, 16, 24 or 40 pieces, in the case of the output pallets

246 Industrial Robots Programming

e The system should maintain information about its surroundings, so as to
warn about inconsistencies between what is ordered and what is available

o The system must be parameterized easily, using a graphical interface
implemented with a touch-screen. A few commercial software packages
are available in the market. Nevertheless, our option was to build our own
solution since the human-machine interface plays a crucial role in the
performance of the system, including operator acceptance. It is therefore
very important to have full control over the developed software

o The system must be optimized for each model of ceramic pieces. This
means that there should be the option of introducing new models using a
teach strategy

Considering these above mentioned objectives, the following challenges were
identified:

e To build a human-machine interface, easy to use and capable of handling
production needs. System warnings and errors must be issued to the
operator’s attention in an efficient way. All operations and messages must
be logged for future analysis;

e To build a system capable of meeting the planned requirements;

o To explore the capabilities of the current personal computers, operating
systems, and related tools on a very demanding industrial environment;

Taking the above objectives and challenges, and considering the fact that this is an
industrial project, meaning it is supposed to work 24 hours a day without problems,
it was decided to distribute the software to all the components of the system. A
client-server architecture [2-8), based on remote procedure calls (RPC) [9], was
adopted, with the PC as the client of the rest of the components of the system,
including the robot controllers, and also as the interface to the operator.

5.3.2 Approach and Results

The objectives and requirements of this project necessitated a robotic cell that
could handle the ceramic pieces under consideration. Proper grippers and layouts
were designed and built. It was also necessary to operate the system through an
external personal computer, using the teach pendant of the robot only for a few
special routines not performed in every day normal operations. The robots work as
slaves to that central PC, where all the parameterization is performed. The PC also
monitors the operation, being of guidance when something wrong happens. The
operator is able to solve problems from the PC. There is one PC for each robot,
which was done for practical reasons, but it is not a requirement.

A client-server software architecture was adopted. The robot controller software
works as a server, exposing to the client a collection of services that constitute its
basic functionality. A collection of services was designed to fulfill all the tasks
required of the system, so that they could be called from the PC (Figure 5.12). The

Industrial Manufacturing Systems 247

software architecture used in this work was presented in detail elsewhere [2 -8]
(see also Section 3.2), and is distributed using a client-server model based on
software components (ActiveX controls) [10-11] developed to handle equipment
functionality.

The system is completely operated using a graphical panel running on the PC, built
using the above mentioned ActiveX controls in Visual C++ NET 2003 [12]. When
the system is started, the operator needs only to specify what product model will be
used in each pallet, and if first pallets are fully assembled. This need is only for the
de-palletizing subsystem, because there is no identification on the pieces (they are
coming from the high temperature oven). On the palletizing subsystem, there is no
need to specify the model, because the pieces carry barcodes, inserted by the
inspecting operator, that are used by the subsystem with the help of barcode
readers.

PC

Synchronous call

Synchronous answer Event:

Local Area Network Asynchronous call

S o, =

PLC Robot Controller "
/ m{%&m interface @
-

Server Robat
Control
<,
SIRED,

Figure 5.12 Software architecture used in this example

™

Sometimes, there are some non-fully assembled input-pallets on the shop floor that
need to be introduced into the system. To do that, the software allows the operator
to specify the position and level of the first piece. That is, however, only possible
on the first pallet, because the system resets definitions to the next pallets to avoid
accidents, i.e., proceeding pallets are assumed to be fully assembled. The same

248 Industrial Robots Programming

happens with output-pallets, since the system must be able to fill a pallet not
completely filled on the last production cycle for that model.

5.3.2.1 Basic Functioning of the De-palletizing System

When the operator commands “automatic mode” the robot approaches the selected
input-pallet in the direction of the actual piece, searchers the piece border using
optical sensors placed on the gripper, and fetches the ceramic piece. After that, the
robot places the piece in the first available inspection line, alternating inspection
lines if they are both available, i.e., the robot tries to alternate between them, but if
the selected one is not available then the other is used if available. If both
inspection lines are occupied, the robot waits for the first to become available.

Figure 5.13 shows the interface used by the operator to command the system and
monitor production. It shows the commands available, and the online production
data that enables operators to follow production. All commands and events are
logged into a log file, so that production managers can use it for production
monitoring, planning, debugging, etc. The system also uses a database, organized
in function of the model number, where all the data related to each model is stored.
That data includes type of piece, dimensions, height where the gripper should grab
the piece, average position of the first piece of the pallet, height of the pallet, and
so on, Accessing and updating the database is done in “manual mode”, selected in
the PC interface.

There is a “teaching” option that enables operators to introduce new models and
parameterize the database for that model, where a “feach by showing” strategy is
used. When that option is commanded, the robot pre-positions near the input-pallet
and the operator can jog the robot using function keys to the desired
position/orientation. Basically the de-palletizing operation is preformed step-by-
step and the necessary parameters acquired in the process, asking the operator to
correct and acknowledge when necessary. The operator is asked to enter only the
“model number” to teach, the height, and the width of the piece. The rest is
automatic. After finishing this routine the model is introduced into the database,
and the system can then work with that model number.

The system is able to check for errors such as: wrong pallet for model, presence of
pallet, model not known, no piece in place, wrong level, etc. Proper warnings are
sent to the PC for operator information, and displayed using software icons and
short messages.

5.3.2.2 Basic Functioning of the Palletizing System

A similar approach was used for the palletizing operation. Two inspection lines are
also used, with the robot trying to alternate between them. But the first available
piece is removed not slowing down production. A similar approach to the one used
in the de-palletizing sub-system is used to “feach” models to the robot. Also, the
system identifies the model number from the piece barcode when “automatic

Industrial Manufacturing Systems 249

mode” is commanded, fetches the piece, and inserts it in the pallet compatible for
that model. The operator is able to select what pallet to use first, how many pieces
are already there, and how many pieces it should carry (Figure 5.14). Do to the
required dimensions of the output-pallets, the robot was placed on the top of a
linear axis, controlled by the robot control system (robot external axis), so that a
wider area could be reached. The system is also able to check for errors such as:
wrong pallet for model, presence of pallet, model not known, no piece in place, etc.
Proper warnings are sent to the PC for operator information, and displayed using
software icons and short messages.

7 Linha de Escolha Final 1.0 - Leiria I {C) 1. Norberto Pires & Sérgio Paulo, 2002 (PCROB 2.1)

~ Inomag 30 0N Lne (Palsles) —— e — .
s Palete Actus Baico Actus | | Estado doProgema

i L ndited. :
Bl — e =

; p e —
Modo do Programa Cirta Actual Diecy0 Actusl GSE
| Progams 3 coner AUTO 2 i PoaiCrial PegasCria2
b R

DEFINICAD de FALETES

-PALETE1 : :
Madels Pasigha da 11 Pega m uod.b i Pos8oda 11 Pega
[Ea D __1 r"achm-a.m _| ['mn B D | v [Fariecrn =]

a5 none neno o
! b | |
|

= Palete Tempo de Cclo
ol 0!0. omol e

® LA
- Troca Modslo wml
Mensagens

He

Figure 5.13 Example of an interface used by operators (de-palletizing system)

250 Industrial Robots Programming

15 Linha de Escolha Final 1.0 - Leiria 11 (C) 1. Norberto Pires & Sérgio Paulo, 2002 (PCRO8 2.1) T x
ﬁ Controlader de PGM
St
= = =
|| Infomasao ON-Lina Pastes—— —
Falele Actusl Bakcka Actu .
RS i e
EI E’ ;%!':‘L"”_"" ||| | ConladordaPesar LadoAciual
8 e i | 42300
Modo do Frograma || Cotahctual Diecglo Actual | 42300 T Lr= 1 .
f B) e |5m| Do B304 F=as
|l | 51324 [51324
o= T i et i % DEHNICM“MTES A — — — PRS- Y
o MIEs :
| Modaio PosicEo na 1) Paiels EI . - D Posglo na 11 Palels ;
1 i | I Al =
|
| @ -i..., e = ® o e
| |]
| G N e |
Siate Siatic
e Vacuo Paiste 1 Palste 2 Potal Porta2 Pota3 Potad
Temga da Cick ® (] ® L] ® L] ®
e
v
Crtal iz zqujl @
Mensagers L] L]
|

Figure 5.14 Example of an interface used by operators (palletizing system)

5.3.3 Operational Results and Discussion

The system achieved the required operational results and is flexible enough when
introducing new models. Currently it works two shifts a day, almost autonomously,
making around 1400 pieces per shift (one shift is seven and-a-half hours).
Operators adapted easily to the system, and found the touch-screen interface easy
to use.

The company improved production quality and reduced production costs: fewer
operators are needed and production is more efficient (more pieces are handled a
day). This can be demonstrated by operational results, and also by the fact that new
systems followed this one to handle other type of pieces and other types of
operations, creating a strong connection between our university and this company.

A few innovations and technology transfers were successfully introduced with this
project and others are ongoing with the same company [2-5]. An interesting
human-machine interface for robotic manufacturing cells was introduced with
good results [2-5]. The solution has been developed from the scratch using Visual
C++ NET 2003, constituting a software platform that can be used with other
applications. Experience with operators is positive, showing that they adapted well
and really enjoy using it. Nevertheless, new developments are necessary so as to

Industrial Manufacturing Systems 251

guide operators and reduce operator training. This means that advanced help
should be available to guide the operator when inconsistencies are detected. Such
inconsistencies include, for example:

o Commanding “aufomatic mode” without reviewing the pallets
parameterization. That could be correct in some situations and
consequently, allowed. At the moment only a visible warning is issued,
but in the future only some sequence of operations will allow “automatic
mode”

e Ordering a “RSTART”, i.e., proceed with current configuration and from
the same program position, after a system stop due to an error or operator
manual stop. Actually this situation is permitted, after confirming the
password, because we still rely on operator training and judgment.
Nevertheless, in the future, operators should be guided to follow a certain
procedure, reviewing actual status, so as to avoid mistakes. This can
certainly be done, for example, using an inference mechanism based on

fuzzy logic

The two presented situations are good examples of needed future developments.
For a certain industrial robotic cell characterized by a set of available operations, a
collection of routes should be defined considering all possible operational
situations. Consequently, an operator can command the robotic cell if he follows
one of those routes. This will increase safety, avoid errors, and improve efficiency.
At the moment, critical operations require operator confirmation with a password,
and visible warnings issued to the screen.

Another interesting innovation was the utilization of a client-server architecture,
explained elsewhere [2-5] (see Section 3.2), developed by the first author, to be
used with robotic cells. Using this architecture implies the clear intention to
distribute functions to all “intelligent” components of the robotic cell, leaving to
the central PC (the client) the tasks of making the service request calls, properly
parameterized, and displaying system information to the user. The PC is the user’s
commanding interface, and his window to the system.

5.4 Handling Production Changes Online

In this section, the problem of handling production variations online, i.e., during
actual production, is addressed. These variations may occur when it isn’t possible
to exactly guarantee working conditions during a production cycle or between two
consecutive cycles. These variations are common in some types of industries, like
the glass and ceramic industry, where the products may change slightly during the
production cycle. Also, these industries are multi-model industries in which the
production equipment is required to handle several different models of products
that have their own production requirements. Since it is common to have two or

252 Industrial Robots Programming

more different model campaigns during a working day, it should be possible to
easily parameterize the production system when a new campaign is started.

Consequently, this section uses a highly efficient robotic palletizing system,
developed for a partner company, to introduce and explain how these problems
may be addressed. It includes details about practical implementation, along with a
discussion of options and obtained operational results, which show the system to
be a good example of human-machine cooperation.

As is common in several industries, the intermediate products need to be palletized
in several stages of the production cycle, to circulate between manufacturing cells,
be sold to other companies (white-line or undifferentiated products) that finish the
production cycle adding their own characteristics, or to be stored inside the
company in accordance with the defined production planning and company needs.

This case, the products are several models of automobile side-window glass. The
palletizing system is placed after the glass cutting and washing cells. The obtained
pallets are to be used in the manufacturing line that introduces the characteristic
curvature of the glass. This line, which includes a high-temperature oven and an
incurving system, is shared by all models of side-window glass produced by the
company, which makes the task of automatically feeding the line from all cutting
and washing lines very difficult to manage. Consequently, the glass is palletized
using a robot manipulator and de-palletized near the incurving manufacturing line
by another robot. This enables the company to handle all types of models in a very
simple and efficient way.

5.4.1 Robotic Palletizing System

The system used in this example was developed to pick side-window glass from
the production line and palletize it into pre-configured pallets. The system,
depicted in Figures 5.15 and 5.16, is made of the following components:

¢ Anindustrial robot ABB IRB 4400, equipped with the 2002 version of the
ABB S4C+ robot controller

e A PLC Siemens S7-300, to control all the systems peripheral to the robot.

¢ A centering system, placed on the production line, that guarantees that
glasses are centered and placed in a known position before being picked
by the robot

e A pneumatic gripper with retractile contact sensors and suction cups,
capable of picking glasses and measuring the pallet characteristics

e A rotating system that supports two pallets, ensuring that a new empty
pallet is immediately fed into the system when the previous one is full

e A computer for supervision and control, and for implementing also the
human-machine interface

Industrial Manufacturing Systems 253

Robot

/ manipulator

Robot
Controller d—-""—' ‘ Crvpex
(ABB §4 C+)

Synchronization with the: o | PLC L .| Production Line
rest of the line. (Siemens 57 300) i 7| Centering device

| Pallets
Separating paper

machine

Figure 5.15 Components of the palletizing system for the automobile industry

The cycle executed by the system (Figure 5.17) is composed of the following
principal tasks:

5.4.1.1 Identify Empty Pallets and Measure Parameters of an Empty Pallet

An empty pallet needs verification to measure the following pallet parameters:
angle of the back of the pallet with the vertical axis, angle of the base of the pallet
with the horizontal axis, height of the base of the pallet relative to the robot world
reference system, and the pallet dimension. These four values change significantly
from pallet to pallet and need to be obtained each time an empty pallet is
introduced in the system. This task is fundamental for the success of the palletizing
task, because it enables the system to place the glass always in the same
conditions: at the same height relative to the pallet base and at the same distance
from the previous glass. This avoids adding defects to the glass, namely small
scratches on the surface of the glass (due to slipping between consecutive glasses),
or on the edges that contact with the surface of the pallets (due to releasing the
glass more than 1-2mm high from the surface of the pallet).

Any empty pallet needs to be measured for the above mentioned parameters that
will be used during the palletizing process using that pallet. Every time the rotating
base introduces a new pallet, optical sensors, placed behind the back of the pallet,
detect if the pallet is empty and trigger the measuring process.

254 Industrial Robots Programming

Production Line {upper-view) V/

Pallet composed of two

rows of glasses, supported —
by a rotating base that /
enables fast pallet 5
substitution when the
previous one 15 filled..

Centering Zone \ Lty

Machine that
Retractile contact insectsa
SENSOrs, USIng separatmg \\
Suction Cup / posuati beGass o
. cylinders :
“ consecutive

glasses.

Robot
ABB IRB4400

Figure 5.16 General view of the palletizing cell

5.4.1.2 Pick a Glass from the Production Line

After getting information from the PLC that there is a glass available in the
production line, properly centered and in position, the robot is commanded to pick
the glass from the predefined picking position (based on the glass model) and take
it to a position near the entrance of the pallet.

5.4.1.3 Palletize the Glass

The glass must be placed in the row in use, taking into consideration the number of
glasses already palletized and the pallet parameters. This operation means also
knowing the thickness of the glass in a way to maintain the same palletizing
conditions for all glasses. At the end, when a pallet is full, the robot signals the
PLC that the pallet is full and places itself in a non-collision situation with the
pallet, enabling the PLC to start the rotating motion that will exchange the pallets
(Figure 5.18).

Industrial Manufacturing Systems 255

[New Pallet?

[Measure pallet, Y
|_ N
| | wait glass In position.]

)
|
2

(ik glass,]

I_[o)
N

pallet full?]

Rotate pallet.
Y
I_(Wait for new pallet. J

Update counters. I

Figure 5.17 Palletizing cycle executed by the robot in automatic mode

2

Pallets

Robot
Side

Pallets IN/OUT

256 Industrial Robots Programming

5.4.2 System Software

Considering that the above presented system was developed to work with several
models of glass (up to 128 different models), that require their own configuration
in the tasks of picking and palletizing each glass, i.e., these tasks are model
dependent, the operating software should explore the teach-pendant capabilities in
the phase of teaching a new glass model to the system. Consequently, the software
was designed to have two operating modes: manual and automatic.

Manual Mode — In this mode, all subsystem testing and maintenance routines are
allowed (Figure 5.19). The user is also allowed to teach a new model to the system.
This means that the robot will follow pre-determined motions, asking the operator
to adjust positions using function keys. In the process, the software acquires the
necessary data to completely handle that model of glass. In this mode, the
production line is not operational, because production is deactivated. The robot is
commanded from the robot teach-pendant (or console), using local software
designed to assist the selected functions. For practical reasons, this “manual mode”
software will not be explained further here.

ROTINAS EM MODO MANUAL
(C) 3. Norberto Pires 2002

MENU PRINCIPAL

Gripper Robot Teach Porta Sair

Figure 5.19 Pallet main shell presented to the user in “Manual Mode” on the robot console
(original software with Portuguese interface)

Automatic Mode — The production line is placed in automatic mode and the robot
should follow the cycle presented briefly in Figure 5.17. The robot uses the
definitions stored in the database to handle the model selected by the operator,
using the parameterizations he chooses.

Industrial Manufacturing Systems 257

The software developed to interface with the operator runs on a remote computer,
connected to the robot controller by Ethernet. The software was developed in
Visual C++ NET 2003 [12], using an ActiveX control [10-11] designed by the
author to work with industrial robots [2-5] (see Section 3.2). The shell presented in
Figure 5.20 is the operator interface to the system.

To initiate the system, the user must run the robot program using the operator
interface. A “start_program” remote procedure call (RPC) [9] is issued, launching
a computer program that implements a collection of services that can be requested
from the PC using RPCs. After being initiated, the robot program waits for the
selection of the operating mode, i.e., waits the user to command “Automatic
Mode”, where the robot is controlled by the system PLC using the parameterization
selected by the user, or “Manual Mode” where the robot is commanded from the
robot teach-pendant. Both operating modes may be considered as services that the
robot (server) offers to the PC/operator (client). During the “mode selection state”,
where the robot waits for the user to select the operating mode, it is possible to
access the system database where the definitions for each model are stored. Access
to database is not allowed in any other situation, for safety reasons. Consequently,
before selecting the operating mode, the user should select the model he wants to
produce and parameterize the production: thickness of the model, number of pieces
per row and per pallet, and the dimension of the glass. The thickness and
dimension of the glass are characteristics of the model registered in the database,
and consequently are not to be changed by the user. A password is required to
change them.

258 Industrial Robots Programming

ef et eV L et S e T A o R i

Figure 5.20 — Operator interface running on the PC (original software with Portuguese
interface)

Using the interface presented in Figure 5.20, the operator is allowed to command
three types of operations: Access the glass model definition database, control the
robot program, and online monitoring.

Industrial Manufacturing Systems 259

— Definigdo Paletes
Gets actual values after entering model number

/

Enables user to edit the values in each field

/

Locks values entered by user
-—-"'-.-.-

Programa

;

Ndmero Vidros
140

i

Dimensdo
710

:

Updates database

.

Enables user to select what pallet row to fill first

Espessura
3.45

:

(Ol 24— |

Figure 5.21 Accessing the database

Figure 5.21 shows the place where the user can change the glass model definition
database. This operation is only possible, nevertheless, when the robot is waiting
for operating mode selection. This procedure was implemented done for safety
reasons, in a way to avoid corrupting the working database.

— Contr b6
ontrolo do Aobd 5 Mstor ON

—p Program_START

Program_STOP

v

» Motor_OFF
— Controlo do Programa—
= jreroa)
| MAH | LUN{s}——» Places the robot program in “Automatic Mode”
] | Swees]

» Places the robot program in “Manual Mode”

Example: Manual mode commanding routine (Visual C++ :NET 2003)
void CFornoDlg::Onmanual()
{float valor;
fprintf(log,"%s - Comando de MANUAL \n",tbuffer);
if (m_pon.InitClient("babylon",5) >= 0)
{valor=1236;
nresult = m_pon.WriteNum("decision1",&valor);
if (nresult <0) {m_log.SetWindowText("Error in the MANUAL command.");

260 Industrial Robots Programming

fprintf(log,"%s - Ermor in the MANUAL command.\n" tbuffer);erro=1;
m_erro.ShowWindow(1);}

else m_log.SetWindowText("MANUAL command.");

m_pon.DestroyClient();
} else

{m_log.SetWindowText("Robot didn’t answer ... operation cancelled.");
m_comms.Setlcon(AfxGetApp()->Loadlcon(ID]_smile2));

m_erro.ShowWindow(1);
H

}
Figure 5.22 Controlling the robot program

As already mentioned, commanding automatic or manual mode means accessing to
a different set of functionalities. This operating mode change procedure is
implemented in RAPID (ABB programming language) with the following
simplified code (database access removed for simplicity):

WHILE never_end=FALSE DO
WaitUntil (decision1=1235) OR (decision1=1236)\MaxTime:=1\TimeFlag:=timeout;
IF timeout=TRUE THEN
ENDIF
IF (decision1=1235) THEN
auto_mode; 4— Module that implements the “Auromatic Mode”
decision1:=0;
ENDIF
IF (decision1=1236) THEN
manual_mode; <4—— Module the implements the “Manual Mode”
decision!:=0;
ENDIF
ENDWHILE

5.4.3 On-line monitoring

—Informag@o ON-Line
Controlador Tempo de Ciclo Numero total ciclos
{Stand By. 1203 11942
Modo Operago Vertente Actual Dimensdo
Auto Mode. i 710
Controlador de PGM Numero do Programa Espessura
[Stopped State. 4 [3.45
Estado do Programa Contador de Vidros Num_MAX Vidros
lInitiated. 4 140

Figure 5.23 Online monitoring data

This feature (Figure 5.23) allows the user to quickly observe production data, such
as: model in use, pallet row in use, number of cycles (pieces) performed since the

Industrial Manufacturing Systems 261

last counter erase, number of glasses palletized in the current pallet, last cycle time,
robot working modes, and so on. This information is obtained directly from the
robot, making monitoring calls to the relevant services. These calls are triggered by
a timer interrupt routine, programmed to monitor the system in cycles of five
seconds. A complete cycle, i.e., the operation of picking and palletizing a glass,
takes about nine seconds, which justifies the polling monitoring option and the
choice of a monitoring cycle of five seconds.

v Y

Glass placement adjustment. Glass centering adjustment.

Note — The green and red indicators show permitted and error situations, respectively.
Consequently, when a red indicator is present, the operator should interpret the warning and
act accordingly.

Figure 5.24 — Adjusting online

Many times, due to operational difficulties in the production line, or centering
errors, etc., it is necessary to make small adjustments in the palletizing process
without stopping production. The operator may perform those adjustments using
only a mouse (Figure 5.24), observe results, and correct the problem without
stopping production. This type of procedure is fundamental for production
environments characterized by high production rates and very tight quality control,
as is the case of the automobile components industry.

Finally, another important operation under “Adutomatic Mode” is the operation of
measuring the pallet parameters. That is done, as already mentioned, when a new
empty pallet is introduced. This measurement must be done in every pallet, since
they differ from each other significantly. Without this procedure, the palletizing
process would fail. The robot is commanded to extend the precision contact
sensors and use them to measure the pallet parameters. The robot uses three contact
sensors, placed in the vertices of a triangle, to orient itself parallel to each surface
and compute the angles around the robot’s world reference system (Figure 5.25).

262 Industrial Robots Programming

=T i ha-‘“1 W

e eminiginy

[]

Figure 5.25 Getting pallet parameters: dy, d2, 0 and B

The routine associated with this process is very simple and is presented below in a
simplified form:

PROC check_pal()
WaitUntil (divazial=0) AND (divazia2=0)\MaxTime:=5\TimeFlag:=timeout;
IF timeout=TRUE THEN
TPWrite "Pallet not empty ..."; /

PulseDO doerros; Empty pallet??

EXIT;
ENDIF .
Movel pal_app,velocity,z100,toolt; Contact sensors in position
sensores_on;

MoveL RelTool(pal_up,0,0,250),velocity_app,fine,toolt;

/Il Angle of the back of the pallet with the vertical axis

SearchL\PStop,disen!,temp,RelTool(pal_up,0,0,500),velocity_search,toolt;
MoveL temp,v10,fine toolt;

temp:=CRobT(\Tool:=tool_senl);

WHILE (disen2=0) AND ((disen3=0)) DO

Industrial Manufacturing Systems 263

MovelJ RelTool(temp,0,0,00\Ry:=-0.1),velocity search,fine,tool senl;
temp:=CRobT(\Tool:=tool_senl);
ENDWHILE
pal_actual:=CRobT(\Tool:=toolt);
anglel:=Abs(90-Abs(EulerZYX(\Y,pal_actual.rot)));
TPWrite "Back Angle = "\Num:=anglel;

/f Angle of the base of the pallet with the horizontal axis

Movel] pal_up,velocity_app,fine,toolt;
Movel pal_down,velocity_app,fine,toolt;
Searchl.\PStop,disenl,temp,RelTool(pal_down,0,0,500),velocity search,toolt;
MoveL temp,v10,fine,toolt;
temp:=CRobT(\Tool:=tool_senl);
WHILE (disen2=0) AND ((disen3=0)) DO
Movel RelTool(temp,0,0,0\Ry:=-0.1),velocity_search,fine,tool_senl;
temp:=CRobT(\Tool:=tool_senl);
ENDWHILE
WaitTime 0.2;
temp:=CRobT(\Tool:=toolt);
angle:=Abs(EulerZYX(\Y,temp.rot));
TPWrite "Base Angle "\Num:=angle;
templ:=RelTool(pal_actual,-(dim {modelo}/2-(pal_actual.trans.z-temp.trans.z)),0,0);
pal_actual:=templ;

Movel pal_down,velocity_app,z50,toolt; —
Movel] pal_app,velocity,z100,toolt; Height and dimension of the pallet
sensores_off;

ENDPROC

Retract contact sensors

5.4.4 Discussion and Results

The system (Figure 5.26) presented in this section is a good example of a flexible
robotic industrial system, capable of handling any production situation. The system
relies on operator command and judgment, enabling him to fully parameterize
production and introduce new production models. Besides of that, the operator may
also introduce adjustments and change working conditions online, without stopping
production, which is a powerful tool to handle production variations and
difficulties. These features were obtained just by implementing a collection of
services capable of handling all the anticipated production requirements, exposing
them to the remote computer (client) where the operator interface is implemented.
In this way, production may be tailored in a very flexible way, enabling the
operator to solve virtually any operational situation.

Operational results are promising:
¢ Operators adapted easily to the system, which is always a good result
considering their average skills
¢ Achieved production cycle is of aboutnine seconds per glass, which is
more than is required

264 Industrial Robots Programming

o The pallet measuring procedure takes about 25 seconds to complete,
which is compensated by the very fast cycle time. The average overhead
introduced by this procedure in the cycle time is about 25/280 = 0,089 ~
0,1s (taking an average number of 280 glasses per pallet), which has no
meaning

e The system works 24 hours a day without any need for operator
supervision

It is worthwhile to point out that this system uses a client-server architecture,
explained elsewhere [2-5] (see Section 3.2), developed to be used with robotic
cells. Using this architecture implies the clear intention to distribute functions to all
“intelligent” components of the robotic cell, leaving to the central PC (¢he client)
the tasks of making the service request calls, properly parameterized, and
displaying system information to the user. The PC is the user’s commanding
interface, and his window to the system. The developed software was built from
scratch and the authors didn’t use any commercial software, apart from operating
systems (for example, ABB Baseware 4.0 for the industrial robots, and Microsoft
Windows 2000 with Service Pack 4 for the PC) and developing tools (Visual C++
INET 2003 [12] trom Microsofi). A port of the SUNRPC 4.0 [9] package for
Windows NT/2000/Xp, a free open package originally developed for UNLX systems,
was also used. The porting effort was, nevertheless, completely done by the author,

Industrial Manufacturing Systems 265

5.4.5 Conclusion

The system presented in this section is an implementation of a distributed software
architecture developed to work with industrial robotic cells. The main objective
was to be able to change production conditions online, and make adjustments to the
working parameters so as to cope with production variations. The system was
presented in some detail, giving special attention to the software designed to
parameterize, monitor, and adjust the production setup enabling online adjustments
to the working conditions. Obtained operational results demonstrate the interest of
these types of systems for multi-model production environments, where high
production rates and quality demands are a key factor. Finally, the obtained system
is also a good example of man-machine cooperation, demonstrating the advantages
of mixing human and automatic labor in actual manufacturing plants.

5.5 References

[1] ABB Robotics, “IRB6400 User and System Manual”, ABB Robotics, Vasteras, 2002.

[2] Pires IN, S4 da Costa JMG, “Object Oriented and Distributed Approach for
Programming Robotic Manufacturing Cells”, IFAC Journal on Robotics and Computer
Integrated Manufacturing, February 2000.

[3] Pires, JN, “Complete Robotic Inspection Line using PC based Control, Supervision and
Parameterization Software”, Elsevier and IFAC Journal Robotics and Computer
Integrated Manufacturing, Volume 20, N.1, 2004.

266

[4]

[5]

(6]
(71
(8]
(9]

Industrial Robots Programming

Pires, JN, Paulo, S, “High-efficient de-palletizing system for the non-flat ceramic
industry”, Proceedings of the 2003 IEEE International Conference on Robotics and
Automation, Taipei, 2003.

Pires, JN, “Object-oriented and distributed programming of robotic and automation
equipment”, Industrial Robot, An International Journal, MCB University Press, July
2000.

Pires JN, “Interfacing Robotic and Automation Equipment with Matlab”, IEEE
Robotics and Automation Magazine, September 2000.

Pires, JN, Godinho, T, Ferreira, P, “CAD interface for automatic robot welding
programming”, Sensor Review Journal, MCB University Press, July 2002.

Pires, JN, and Loureiro, Altino et al, “Welding Robots”, IEEE Robotics and
Automation Magazine, June, 2003

Bloomer J., "Power Programming with RPC", O'Reilly & Associates, Inc., 1992.

[10] Box D., "Essential COM", Addison-Wesley, 1998
[11] Rogerson D., "Inside COM", Microsoft Press, 1997.
[12] Visual C++ NET 2003/2005 Programmers Reference, Microsoft, 2003 (reference can

be found at Microsoft’s web site in the Visual C++ NET location)

6

Final Notes

6.1 Introduction

Dear reader, I hope you had fun reading and exploring this book, because in my
opinion that is a fundamental outcome of a technical book. Furthermore, a book
about robotics and automation must stimulate the reader curiosity and interest to
explore further on its own.

This book is a practical guide about industrial robotics and related subjects. My
primary objective was to introduce you to the fantastic world of robotics and ride
with you through ideas, examples, and industrial solutions showing how things can
be done, what are the available alternatives and challenges. Robotics and
automation is a multidisciplinary subject that calls for creativity and innovation. It
poses a permanent challenge for performance and practical results and
consequently is a perfect subject for inventive and dedicated people, for whom this
book was written. For that reason, the book presents a considerable amount of
examples and solutions, allowing readers to see, from time-to-time, the complete
picture of building a robotic manufacturing system, which constitutes also an
invitation to maintain the focus. That is important. Robotics is an interesting
subject and people are naturally attracted by its applications and achievements.
Nevertheless, due to its multidisciplinary nature, robotics is also a very demanding
field requiring knowledge of physics, electronics, mechanics, computer science,
and engineering. Consequently, a book in the field gains by having examples and
practical implementations. That was the “design option” followed when planning
and writing the book. You can find the code of several of the presented examples
along with pictures, videos, and other material at:

http://robotics.dem.uc.pt/indrobprog

The access to the site is restricted and requires a login “username” and
“password”. Visit the web site for details on how to obtain a valid login. As author

268 Industrial Robots Programming

of this book, I’ll keep the website updated so that it is a good source of information
on:

New developments

Interesting solutions

Interesting scientific and technical papers
Interesting books

Industrial trends in terms of technology

Most of these issues are related to new developments that result from R&D
projects done in universities, research institutes, and companies, or in cooperation
between academia and industry, resulting in technical papers, books, and new
products. Robotics and automation is perhaps one of the most interesting cases of
industry-academia cooperation since most of the developments require scientific,
technical, and operational advances from both worlds to reach higher levels in
terms of manufacturing flexibility and agility.

To be faithful to the basic “design option” adopted in this book, we will finish with
another example. This final case is about a technical solution designed to
reconfigure an old industrial robot, making it accessible through a local area
network (LAN), and allowing programmers and system engineers to offer remote
services to users.

6.2 Operation “Albert”

Albert is the name of an old robot that we acquired for our laboratory (Figure 6.1).
The primary objective behind the acquisition was to obtain a nice industrial
machine dedicated to teaching activities and to be included in laboratory classes of
the discipline of “Industrial Robotics” (4™ year of the Mechanical Engineering
course). Albert worked for a few years in industry doing several types of tasks:
manipulation, gluing, and labeling. After retiring from industry it is now starting a
promising career in academia. Technically, 4lbert is an anthropomorphic robot
manipulator (from 1992, build year) manufactured by ABB Robotics (model
IRB1500) and equipped with an ABB S3 robot controller [1], i.e., it is a robot from
1992 but carrying technology from the mid eighties. Consequently, it is a rather old
system with the following basic characteristics:

¢ Anthropomorphic manipulator (model ABB IRB1500): Skg of payload, 6
axis, 0.lmm of repeatability and a fairly interesting workspace area
(~1400mm)

s ABB S3 robot controller: This is the main disadvantage of Albert, since
the S3 system is old and not carrying much of the interfaces required by
actual industrial manufacturing systems. The controller is programmed
using the programming language ARLA and has 16 digital inputs, 16

Final Notes 269

digital outputs, a serial port for data communication, and a very basic
teach pendant (Figure 6.2).

Figure 6.2 S3 robot controller

Consequently, this is mechanically a very interesting machine, very similar to its
successor, the IRB1400 model. In fact, they share the same wrist design, which
gives to the arm an excellent maneuverability. Nevertheless, because it is an old

270

Industrial Robots Programming

system with very deficient communication interfaces, without any LAN interface,
an old programming language (although sufficiently powerful) and a very basic
user interface, Albert needs to be upgraded to be useful for teaching and training

tasks.

Figure 6.3 S3 cabinet with the extra hardware

To provide the system with a LAN interface, and the ability to offer programmed
services to remote clients, while keeping the available system functionalities, the
following actions were performed to upgrade the old Albert (Figure 6.3):

[]

A PLC (S7-266 from Siemens) was added to the system, connected to the
robot using the IO digital boards available in the S3 system.
Consequently, a very simple parallel interface was added to transfer data
between the PLC and the robot controller

An Ethernet board (CP 243-1 from Siemens) was also added to the
system, connected to the PLC, to enable the system to interface with the
LAN available in the laboratory. Consequently, remote users interface
with the robot controller through the PLC, which means that a basic data
protocol must be defined to exchange information between remote users
and the running robot programs. That is a very simple task and was
already used in Chapter 3

An extra IO module was also added to the PLC to provide a supplemental
set of IO digital line to use with applications.

Final Notes 271

The PLC is accessed using the Ethermet board and a simple UDP messaging
system. To simplify the access, we used the Siemens S7-200 OPC Data Access
(OPC DA) Server for the S7-200 (a server that is part of the Siemens S7-200 PC
Access package). This server provides a means to access the PLC memory
allowing the user to execute read/write operations on the entire PLC memory
spaces (includes program variables, 10O variables, special memory bits, etc.).

| OPC Server 2

{ OPC Server 3 }

OPC Server 1

Figure 6.4 OPC client-server connection

Basically, OPC (OLE for Process Automation) [2, 3] was designed to allow client
applications to access data from shop floor devices in a consistent and transparent
way. Therefore, the OPC client applications interface with software modules (the
OPC servers) and not with the hardware directly. This means that they rely on
software components provided by the hardware manufacturer to efficiently access
and explore the hardware features. Consequently, changes and hardware upgrades
will not affect the user applications.

With OPC, whose specifications [3] include a set of custom COM interfaces [4]
(used when building client applications) and a collection of OLE automation
interfaces [5] to support clients built using high-level languages and applications
(Visual Basic and Excel, for example), users can take advantage of the nice
features of DCOM to facilitate client access to the system features. An OPC client
can connect to OPC servers provided by any vendor that followed the OPC
specification [3] (Figure 6.4).

Basically there are three types of OPC servers {2, 6]:

1. OPC Data Access Servers (OPC DA Servers) — This type of server is used
to offer read/write data services to the client application. OPC DA servers
constitute a powerful and efficient way to access automation and process
control devices

272

Industrial Robots Programming

OPC Alarm and Event Handling Servers (OPC AE) — This type of server
is used to implement alarm and event notifications services to be used
with client applications

OPC Historical Data Access Servers (OPC HDA) — This type of server is
used to access (read/write) data from an historian engine

In this project to upgrade and reconfigure A/bert an OPC DA server [7] is used to
access the PLC. An OPC DA client application designed to access the PLC
resources needs to deal with three types of objects:

1.

OPC DA Servers — maintains information about the server and operates as
a group container

OPC DA Groups — provides the mechanisms for containing and
organizing items. Every OPC group has a particular update rate that must
be set by the OPC client

OPC DA Items - the items are the real connections to the system
resources. An item could represent a bit (like a memory bit or 10 digital
signal, etc.), a byte, a word, etc

Consequently, to access data from the hardware resource through the OPC server,
the client should follow the following procedure:

® o o o

Connect to the OPC server

Create an OPC group to perform synchronous reads/write operations

Add the necessary items to the group

Monitor the actual state of the items, or make asynchronous read/write
operations

With Albert, twelve digital 10 inputs and twelve digital IO outputs are used as data
bus for robot-PLC communication. Some of those IO lines will be use to control
the information flow between the robot and PLC. The remaining four digital inputs
and four digital outputs will be used for special operations (Table 6.1).

To demonstrate how this can be used to command Albert from a remote PC,
consider that the robot “knows” five positions, which are available for user request.
The idea is to build a simple OPC client application to set up an OPC connection to
the Siemens S7-200 OPC Server, and implement the necessary actions to command
the robot to move to the user-selected positions.

Final Notes 273

Table 6.1 10 assignment for robot-PLC communication

Robot PLC Description

DIl to DI12 Q0.0to Q1.3 Data IN

DOI1 to DO12 10.0toI1.3 Data OUT

DI13 Ql.4 Motor ON

DI14 Q1.5 Motor OFF

DI15 Ql.6 Program_RUN

DI16 Q1.7 Program_STOP

DO13 11.4 Motor_State

DO14 I1.5 Program_State

DO15 11.6 System_State

DO16 11.7 Emergency_State
With that objective in mind, the following items were defined in the OPC server
(Figure 6.5):

q0 — byte that contains the digital outputs Q0.0 to Q0.7
q1 - byte that contains the digital outputs Q1.0 to Q1.7
i0 - byte that contains the digital inputs i0.0 to i0.7
il - byte that contains the digital inputs i1.0 to i1.7

File Edit View Status Tools Help

DSE $2EX =@

= 25 Project Name / | ItemID]
What's New S Microwin. albert.io
= 52, Microwin(TCP/IP) Baq MicrowWin. albert.q0
! Baqt Microwin, albert.ql
Si Microwin.albert.it

Figure 6.5 Items defined in the OPC server for this simple example

To implement the possibility of moving the robot using the OPC server, the
following sequence is adopted:

The robot waits for Q0.7 = DI8 = 1; means that a valid command is ready
The commanded position is specified through bits Q0.0 (DI1) to Q0.4
(DI5), i.e., Q0.0 (DI1) is associated with P1, Q0.1 (DI2) with P2, ..., Q0.4
(DI5) with P5

The robot program jumps to “MOVE P1” routine and acknowledges the
received command by making DO8 =10.7=1

The commanding PC should confirm the motion just by making q0 = DI1-
DI8=0

Robot makes DO8 = 10.7 = 0 and moves to the commanded position.
Robot program jumps to the beginning and waits for a new command

274 Industrial Robots Programming

Consequently, the program running on the robot controller (coded using ARLA)
looks like the generic code presented in Figure 6.6.

while never_end;
wait DIR = 1;
switch (byte DI1-DI8)
case 1: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P1;
case 2: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P2;
case 4: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P3;
case 8: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P4,
case 16: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P5;
endswitch;
endwhile;
Figure 6.6 — Generic code running on Albert s controller

The OPC client application designed to connect to the OPC server, monitor the
selected items and interface with the PLC (and through it to the robot controller) is
represented in Figure 6.7.

nt Connection to Albert
OPC Server Group: ¥ Group Active State Terminate |
|57200.0PCServer |natberto
Carres! I Digeonnect | Lrdd Grour | Femove Gioup
Q0.01000.7 10.0t0l0.7
[Miciowin albert g0 [Mictowin alberti0 S I WZJ
Wie Value: | o 0
Position 3 | Position 4 |
Read Value:] [|
DataChange: | (] 0 RS
Add ltem | Remove ltem | CE“;;* EonsRred
Go Position 3, Albert
witeSme | WiteAwnc | [3658
Answer
Read S ReadAsnc | [0
e | | Abeit: moving to P3.
Goup Active State mustbe TRUE [70

Figure 6.7 OPC client application designed to command the robot

The client application creates a group named “norberto” and enables the user to
add the items of interest. In this, case the selected items are Microwin.albert.q0 and
Microwin.albert.i0). The default group updated rate is 100ms.

When a command is selected (using the software buttons “Position 1” to *Position
5™), the client application follows the above sequence just by monitoring the robot

Final Notes 275

response (through the PLC interface), and acting accordingly. Figure 6.8 reveals
the code associated with the action of commanding the robot to move to P1.

Private Sub p1_Click()
If txtChangeVal(1).Text = "0" Then
txtWriteVall. Text="129" <——— Command valid + MOVE to P1
Ipl=1

cmdWriteAsyne <+— Call to WriteAsynchronous
cmd_sent.Caption = "Go Position I, Albert"
Else
cmd_sent.Caption = "Albert: I'm not ready!"
End If
End Sub

Private Sub Timer1_Timer()
If (Ip1 =1) Then
If (txtChangeVal(1).Text) = "128" Then <€—r—— Robot received the command
txtWriteVall. Text = "0"
cmdWriteAsyne « Call to WriteAsynchronous
Ipl=0
answer.Caption = "Albert: moving to P1."
End If
End If

If (Ip5 = 1) Then
If (txtChangeVal(1).Text) = "128" Then —
txtWriteVall.Text = "0"
cmdWriteAsync < Call to WriteAsynchronous
Ip2=0
answer.Caption = "Albert: moving to P5."
End If
End If
End Sub

Figure 6.8 Code associated with the command action move to P1

This example shows clearly the usefulness of the updated Albert for teaching and
training tasks. In the update process a PLC was added to the robot controlier
cabinet, including an extra IO board and an Ethernet card (on the PL.C bus), which
can work in parallel with the application running on the robot controller. These
new features can be explored when building applications, and since the user needs
to deal with the robot controller software, the PLC software, and the protocol to
manage the robot-PLC communication (as shown in the presented example), it is
fair to say that the new Albert constitutes a very nice platform to learn about
robotics and automation.

6.2.1 And “Albert” Speaks

From the material presented in Chapter 4, the task of adding a speech interface to
Albert is straightforward. Nevertheless, it will be done in this section, step-by-step,

276 Industrial Robots Programming

because in the process a few details about the human-robot interface will be further
clarified. For simplicity, we’ll use the same setup presented above.

The first thing to decide is the structure of the voice commands. The best option is
the “command and control mode” (see Section 4.2.3) because it is more adapted to
industrial situations that require a clear and safe identification of commands. With
this operation mode, the software needs to identify the sequence of words and
strings that compose the command, and generate the appropriate action to the robot
controller. Consequently the selected command structure is

name_of _machine command parameters

where “name_of machine” is the name attributed to the machine (in our case
“Albert” or “robot”), “command’ is a word identifying the command and
“parameters” are words or strings identifying the parameters associated with the
particular command.

In the presented example, there are four commands available:

“hello” — enables the user to query if the interface is available
“initiate” — initiates the speech interface

“terminate” — suspends the speech interface

“move” — commands the robot to move to a position

These commands are associated to the machine “Albert” (or “robot”), which means
that they are associated with the pre-command string “Albert” (or “robot™).

The next step is to write the above defined grammar using a standard format that
can be understood by our software. There are two ways to achieve that:

o Include grammar specific instructions in the body of the software (hard-
coded grammar). This means that any change in the grammar structure, or
a simple update in the command list, requires another compilation of the
application software.

o Specify the grammar using XML files. This is straightforward and flexible
to changes and updates.

In the presented example, an XML file is used to specify the grammar (Figure 6.9).
Since we use English and Portuguese recognizers, two XML grammars were built
to allow the user to select the language. The application reads the grammar from
the XML file, selects the recognizer to use based on the language ID tag, commits
the rules, and handles the recognition events. When a certain rule is identified, an
event is fired by the recognition engine and catch by our application that executes
the appropriate actions (Figure 6.10).

Final Notes

<GRAMMAR LANGID="409">
<DEFINE>
<ID NAME="test" VAL="1"/>
<ID NAME="move" VAL="2"/>
<ID NAME="position" VAL="3"/>
<ID NAME="init" VAL="4"/>
</DEFINE>
<RULE NAME="ROOT" TOPLEVEL="ACTIVE">
<L>
<P>albert</P>
<P>robot</P>
</L>
<RULEREF PROPNAME="move" PROPID="move" NAME="move"/>
<P>to</P>
<RULEREF PROPNAME="position" PROPID="position" NAME="position"/>
<O>please</O>
</RULE>
<RULE NAME="START" TOPLEVEL="ACTIVE">
<L>
<P>albert</P>
<P>robot</P>
</L>
<RULEREF PROPNAME="init" PROPID="init" NAME="init"/>
<O>please</O>
</RULE>
<RULE NAME="move">
<LN PROPNAME="move" PROPID="move">
<PN VAL="1">move</PN>
<PN VAL="2">go</PN>
</LN>
</RULE>
<RULE NAME="init">
<LN PROPNAME="init" PROPID="init">
<PN VAL="1">initialize</PN>
<PN VAL="2">terminate</PN>
<PN VAL="3">hello</PN>
</LN>
</RULE>
<RULE NAME="position">
<LN PROPNAME="position" PROPID="position">
<PN VAL="1">position one</PN>
<PN VAL="2">position two</PN>
<PN VAL="3">position three</PN>
<PN VAL="4">position four</PN>
<PN VAL="5">position five</PN>
</LN>
</RULE>
</GRAMMAR>

Figure 6.9 XML file containing the speech grammar (English version)

2717

278 Industrial Robots Programming

OPC Server: Group: [¥ Group Active Stats Teminale |
|57200 0PCServer |noiberto
Commect I Lisconried! [Add Group | Femove Group I (O Speech Interface Active
Q0010 Q0.7 10.0te10.7
[Miciowin abert.q0 [Miciowin albest.i0 Position 1 J Postion 2 l
Wiite Value: | [}| 0
Position 3 | Position 4 I
ReadValue: | |
DataChange: | o] 0} Arosen I
i Callback Command
Al e l Remove ltem I C
Go Position 4, Albert
s | (=
Answer
Read S, Read Async [0
e] I Albeit: moving to PS.
Goup Active State must be TRUE I 12
Speech: robot move to position four [4)

Figure 6.10 OPC client application with the speech interface included

Figure 6.11 show the code associated with the rules that command the robot to
move to position one:

position one .
Albert / position two s
> move to position three 4 please
Robot position four

position five

nprop = Result.Phraselnfo.Properties.Count
If nprop =1 Then
If Result.PhraselInfo.Properties(0).Children(0).Value = 1 Then
answer.Caption = "initialize"
End If
If Result. PhraseInfo.Properties(0).Children(0).Value = 2 Then
answer.Caption = "terminate"
End If
If Result.Phraselnfo.Properties(0).Children(0).Value = 3 Then
answer.Caption = "hello"
If Result.Phraselnfo.Languageld = 1033 Then ———® English
Voice.Speak ("Hello, I am albert.")
End If
If Result.PhraseInfo.Languageld = 2070 Then ——» Portuguese
Voice.Speak ("Ol4, eu sou o alberto.")

Final Notes 279

End If
End If
End If
If (nprop =2) Then
If Result.Phraselnfo. Properties(1).Name = "position" Then
If (Result.Phraselnfo.Properties(1).Children(0). Value = 1) Then
speech_out.Caption = speech_out.Caption + " (1)"
If Result.Phraselnfo.Languageld = 1033 Then
Voice.Speak ("Position one, master.")
End If
If Result.Phraselnfo.Languageld = 2070 Then
Voice.Speak ("Posi¢do um, mestre.")
End If
pl_Click ————————" Routine that commands the robot to move to P1
End If

()

Figure 6.11 Visual Basic code associated with handling speech events: aspects related with
the “move to position” command

When an event is received, the application needs to query the speech API for the
property that was identified, and take the appropriate actions based on the returned
values. It’s a straightforward procedure based on the selected command structure
defined in the XML file containing the speech grammar.

With this example, I finish this book. My sincere hope is that it could constitute a

nice and useful resource of information and inspiration, but also a “platform” to
stimulate your curiosity to proceed further in the area.

Because... Robotics is Fun!

280 Industrial Robots Programming

6.3 References

[1] ABB Robotics, “IRB1500 Users and Systems Manual”, ABB Robotics, Vasteras, 1992.

[2] Iwanitz, F., Lange, J., “OPC, Fundamentals, Implementation and Application”, Huthig,
2™ edition, 2002.

[3] The OPC Foundation, http://www.opcfoundation.org

[4] Box D., "Essential COM", Addison-Wesley, 1998

[51 Rogerson D., "Inside COM", Microsoft Press, 1997.

[6] OPC Foundation, “OPC Overview”, Version I, OPC Foundation, 1998.

[7] Siemens Automation, “S7-2000 PC Access Users Manual”, Siemens, 2005.

Index

ABB IRB140......c.ccoccvevnrernrenes 199
ABB S3..eerenetsens 268
Albert ..ot 268
al-Jazari......cooovivirneneecee 5
Anthropomorphic manipulator...... 42
ATChYLaS. ..o 4
ASR et 183
AUTOCADcoovvvrrcvenernrneannne 221
CAD e 175
CAD Interfaces......ccccoervrerrennnne. 215
CAN ettt sreenes 122
CANODEN...ooreeriercrerireinirinnenes 123
CCD vt rereiens 95
Ceramic Industrycoocceveriruennen 241
Client-server model..........ccoccen.u.. 127
Command and control mode....... 184
Ctecibiuscevrerrvrcrirecercreereeneans 4
D’ Alembert formulation 80
Denavit-Hartenberg........c.occocevenen. 85
De-palletizing..........ccceoverveveannne 248
DeviceNetcccovevinieievinieeeererenes 122
Dictation modeocecvvvervnnnee 184
Direct kinematics..........ceceuevererenenns 43
Dynamic parameters.............c.c...... 83
Dynamics........ccccvevverveerenrcernninnnnn, 36
EmailWare.......coovverenerirecrevennees 233
Ethernet......ccccovvecerceneivncinrennene 124
Ethernet IP ...ccooceeeivvvevcnreincerinenenns 95
Fieldbus ...cccovvvvviinecereniieiecineenene 121
Force/torque sensors............cervnen. 98
Glass and ceramic industry 251
Henrich Hertzcocevvvvnerennecceennnnns 5

IMAQ Vision toolboX.......c......... 203
Industrial Example...........cccoc...... 162
Inertia tensorccoevevveveerrerveinveneens 77
Inverse kinematicsccoovenvenne. 44
IRCS oot 199
Jacobian.......ocoeeveieiviieieiieeieiens 48
TR e 98
Karel Capek.....cccoccoeniciicncnnnnn. 2
Kinematics.........covveereeevvieescinieennns 36
Labeling systemcc.ccocceeeunenee 163
LabVieW ..cocvvvveeioneririenreenrenen 144
Ladder.....covvvvineinecnnricrieneinnns 119
Lagrange-Euler formulation 79
Laser sensors......c.covevvevveveereervennnes 95
Leonardo da Vincl.......ccceeeevvevevnnnnnn 5
Low Level Interfaces 111
Matjr3pCio..ecencireeeeneerenreeerennene 102
Matlab.......ccocovevivirerrnneenrieir e 85
MIG/MAG......coiiiivirinieiierins 191
MOtOMANvvvvvvecreevrenrervinenrieenens 156
1Y (01 10) ¢ 3P 70
Newton-Euler formulation............ 80
Nicola Teslaccocverieiieiriienicvenanns 3
NXL00 ..o 153
ONC RPCGENcocecvvrvrrirrierenne 131
OPC ..o 271
OPC clientcocovvveevvivireiirieerinnns 274
OPC SEIVET ..covvvriviirecreiinienierirones 271
OSI seven layersooevvveereenes 109
Palletizing.........cocoveverereririeecnnnenes 248
Paper Industryoceeeeeeveceeennene 226

Paper machine.......coceeevvvvevennes 227

282 Industrial Robots Programming

PCROBNET2003/5.....ccccoviniininne 157
Pieper condition.........coecveverrnanenn 44
PLC software......ccccovveereeevineennns 118
Pocket PCcoccvvvvvvvierrnnene 140, 147
Profibus......cccocovvvvrvervecriienninnenene 122
PWM CIrcuit c.oovveerevnevenreienerccreennes 76
RAPID ...oooviirrerecreciecrereeererens 116
Resolver to digital converter......... 68
RESOIVETS .vvvvivvvriciicieceeriiiicn 67
Robot controller......cooeevvveveennnne, 87
Robot operational stock................. 29
RODBOtA...cvvieereiniecriinr e e 2
RPC...ooovirvinceciicc s 131
S4CPLUScovevvrreeerecrncrecnennes 132
SAPL...oovierieeiieeiiveiiceeeesins 184
Sensor Interface.......covvevvennecernennen 95
TS oT:1 3 (O 2R 95
Servo controllersoovvivieveivinnnn. 91
Siemens S7-200.......c.cocevvereevennns 200
SinguUlarities.......covverveverririereerinnen 59
SOCKELS ..o icvvecrecreceiri e 129
SOHAWOIKS...ovvveieiviiieirecieniniens 177

Printed in the United States

Speech grammar............ceccrveeiene 277
Speech Interface.........ccccoevvvienene 210
Speech recognition.........cecveneen. 178
Speech synthesisccovvevvvereene 179
Speech-to-teXt ...oeviveervrrvireennns 183
Strain Gaugescccoeeeeererrrenrerennen 98
SUNRPCcoirvrrrrriereveriinenens 164
TCP POItS cocvverereinroneeeerreneenienene 138
TCP/IP client......ooveeererirrireenrenenes 20
TCP/IP Server.......ccoeveevvevrane. 18, 167
TCP/IP sockets.....cccoeeeevererennenn 135
Thomas EdiSon.........cccervrrvverivniene 10
TPU oottt nssneneees 105
UDP .ottt rerieneeeereniens 138
UDP datagramsccccocecurrennne 153
UDP Datagramscceevervienenns 138
UDP POItS...coecerenirreerirariiennennane 139
VoiceRobCam........ocvveirerriernnnes 198
Webcam........ccovvvenreineininnns 143, 203
Weldingoovevecrnicriecnnns 191, 195
XML file..ccoveeiecriirnrrcnrieireene 212
XML grammars.......ceecverveenveennes 276

